P

ENOVIA

ENOVIA SmarTeam | Dassault Systéemes

www.smarteam.com

www.3ds.com

ENOVIA SmarTeam

SMARTEAM OBJECT MODEL

PROGRAMMER'S GUIDE

Important Notice

© Dassault Systemes, 2004, 2008. All rights reserved.

CATIA, ENOVIA, SmarTeam and the 3DS logo are registered trademarks of Dassault Systemes or
its subsidiaries in the US and/or other countries.

PROPRIETARY RIGHTS NOTICE: This documentation is the property of Dassault Systemes. This
documentation shall be treated as confidential information and may only be used by employees or
contractors of the Customer in accordance with the terms of the End-User License Agreement
accepted by Customer.

Any use of the Licensed Program contained in this media or accompanying it, is subject to the terms
of the End User License Agreement accepted by Customer. The Licensed Program is protected by
international copyright laws and international treaties. Unauthorized use, reproduction and/or
distribution of any of the Licensed Program, or any part thereof, may result in severe civil and/or
criminal penalties, and will be prosecuted to the maximum extent possible under the law. Company
names and product names mentioned herein are the property of their respective owners and certain
portions of the Licensed Program contain elements subject to copyright owned by these entities. See
the Documentation CD provided with the Licensed Program for details and/or additional terms and
conditions relating to these entities.Part No:

API-A3-1803007

Table of Contents

1.INTRODUCTION

What is the SmarTeam Object Model?
Basic Libraries and Service Libraries
Engine and Session Objects
Persistent Objects and Classes
Accessing Objects

Additional Conventions

2.USING SMARTEAM COM OBJECTS

Creating a Creatable Object

Obtaining a Non-Creatable Object

Working with Collection Objects

Using Scripts

Using the SmarTeam Object Model in another Application

Add-In Services

3.SMARTEAM COM LIBRARIES OVERVIEW

SmarTeam Record List Library
SmarTeam Engine Library
SmarTeam GUI Services Library
SmarTeam Utilities Library
SmarTeam - Workflow Library
SmartMessages Library

SmarTeam CAD Interface Library
SmarTeam Integration Tools Library
SmartIXF Library

SmartClientContextService Library

N~ oo b N B

(o]

10
10
11
12
14

16
16
17
17
17
18
18
19
19
20
20

SmarTeam Object Model Programmer's Guide

SmartFileCatalog Library 20
SmartRecordList Library 21

4. SMARTEAM RECORD LIST LIBRARY 22
General Description 22
Dependencies 22
Overview of Record Lists 22
Overview of Objects 23
SmRecordList Object 23
SmRecord Object 36
SmRecordListHeaders Object 39
SmRecordListHeader Object 40
Grouping Columns in a Record List 40
5.SMARTEAM ENGINE LIBRARY 44
General Description 44
Dependencies 45
Persistent Objects and Classes 45
Overview of Objects 45
SmEngine 46
SmSession Object 50
SmDatabase Object 55
SmConfig Object 58
Metadata Management Objects 64
Persistent Object Management 86
SmQuery Object 104
6.SMARTEAM GUI SERVICES LIBRARY 119
General Description 119
Dependencies 119

GUI Concepts 119
Overview of Objects—ISmCommonGUI 120

The Views Property 122

ISmView 123

Specifying Contents for a Standard View 139

ISmActiveWindow 142
Using ISmView and ISmViewWindow 143
ISmDialogs 145
Basic Dialogs 147
ISmSaveAsDialog.ControlProperties 150
ISmSaveAsDialog.OptionsProperties 152
ISmLocalFilesExplorer 154
ISmSaveAsDialog 158
ISmOpenDialog 163
7.SMARTEAM UTILITIES LIBRARY 169
General Description 169
Dependencies 169
Overview of Objects 170
SmSessionUtil Object 170
Object Functionality 171
File Vault Operations 171
Copied-File Registration 175
Lifecycle Operations 177
SmMiscUtil Object 210
SmConvert and SmSessionConvert Objects 210
8.SMARTEAM - WORKFLOW LIBRARY 214
General Description 214
Overview of Objects 215
SmFlowProcess Object 215
SmFlowChart Object 227
SmFlowSession Object 245
SmWorkflowView Object 258
SmFlowStore Object 260
Overview of the SmartMessage Library Objects 263
SmMessageSession Object 263
SmMessageQueue Object 265
SmMessageStore Object 271

SmarTeam Object Model Programmer's Guide

Using the SmarTeam - Workflow Library 273
Writing SmarTeam - Workflow Applications 273
Writing Run-Time Scripts 276

9.SMARTEAM CAD INTERFACE LIBRARY 294

General Description 294
Dependencies 296

Overview of Objects 297
SmCADInterface Object 297

10.SMINTEGRATIONTOOL LIBRARY 318

Introduction 318

ISmIntegrationStore 320
ISmSpecificlntegrationStore 323

ISmCadFileTypes 326
ISmCadFileType 327
ISmManagedClasses 328

ISmPropertyGroupTypes 332
ISmPropertyGroupType 334
ISmPropertyGroups 336
ISmGroupProperties 340
ISmClassesMappings 345

ISmintegrationGUIStore 349
ISmPropertiesGroupsGUIService 350

11.SMARTIXF LIBRARY 354

Introduction 354
Naming Conventions 354

Overview of Objects 355

ISmIxfSchema 356
ISmIxfClassesBehaviors 359
ISmIxfClasses 363
ISmIxfDomainBehaviors 371

ISmIxfInfo 373

Vi

Common Tasks
SmixflnitializationData

SmixfWriter
ISmIxfDataWriter
ISmIxfSchema
Common Tasks

SmixfReader
ISmixfDataReader
ISmixfUnderstoodInfoltems
ISmIxfSchema
Common Tasks

Reading and Writing an External Schema

SmixfExternalSchemaWriter
SmixfExternalSchemaReader

ISmIxfStdHelper
Standard Behaviors
ISmIxfSchemaHelper
ISmIxfWriterHelper
ISmIxfReaderHelper

An IXF Messaging Application
Messaging Format
Class Behaviors
Domain Behaviors
Connectivity of Objects

Implementing the Application
Creating the Schema
Writing the Data
Reading the Data
Executing the Application

12.SMARTEAM CLIENT LIBRARIES OVERVIEW

SmartClientContext Library
ISmClientContext

SmartClientContextService Library

Vii

376
380

382
385
391
391

395
396
398
399
399

401
401
401

402
402
403
410
434

446
446
447
447
448

451
451
460
467
470

473

474
474

475

SmarTeam Object Model Programmer's Guide

ISmClientContextService 475
SmartClientServices Library 476
ISmClientServices 476
ISmClientDictionary 477
ISmDictionaryGroup 477
ISmDictionaryProperty 478
SmartClientConfiguration Library 479
ISmClientConfiguration 479
ISmConfigurationValueList 480
Smartinet Library 481
IHttpConnection 481
IHttpContext 481
IHttpUtils 481
SmartFileCatalog Library 483
SmartRecordList Library 483
SmartintegrationServices Library 483
SmartGUIServices Library 483
SmartEmbeddedScripts Library 484
13.SMARTFILECATALOG LIBRARY 485
General Description 485
Dependencies 485
Overview of File Catalog Library 486
File Catalog Object Organization 486
File Catalog in a Shared Workspace 488
File Catalog with Private Files 489
Relation to SmarTeam Processes 490
Overview of Objects—ISmFileCatalog 491
ISmFiles 495
ISmFile 496
ISmFileldentifiers 507
ISmFileldentifier 509
ISmFolders 511
ISmFolder 511

Vi

ISmWorkspaces 515

ISmWorkspace 516
ISmResultltems 517
ISmResultltem 519
ISmRetrieveFilter 521
Common Tasks 522
14.SMARTRECORDLIST LIBRARY 533
General Description 533
Dependencies 533
Overview of Record List Objects 533
IMutableRecordList 534
IMutableColumns 536
IMutableColumn 537
IMutableRecord 537
IRecordList 539
IColumns 541
IColumn 542
IRecord 542
IRecordListlterator 543
IRecordListUtils 543
IRecordsFactory 544
Events 544
IColumnsChangeEvent 545
IColumnsChangelListener 545
IRecordChangeEvent 545
IRecordChangelListener 546
IRecordListChangeEvent 546
IRecordListChangelListener 546
IRecordListValueChangeEvent 547
IRecordListValueChangeListener 547
Common Tasks 548
APPENDIX A - TIPS FOR WRITING SCRIPTS 551

CAD Integration 556

SmarTeam Object Model Programmer's Guide

APPENDIX B - SMARTEAM ADD-IN SERVICES 557
APPENDIX C - WRITING SERVER APPLICATIONS 559
Requirements 559
Guidelines 559

APPENDIX D - SMARTEAM INTEGRATION AND INTEGRATION LINK
BEHAVIORS 561

SmarTeam Integration_Behaviors 561

SmarTeam Integration_Link_Behaviors 562

PART I

INTRODUCTION TO

SMARTEAM AP

1. Introduction

COM is a platform-independent, distributed, object-oriented system for
creating software components that can interact with each other.

COM offers the following capabilities:

Plug-in ability—adding new accessories into existing applications does
not require rebuilding the application

Ability to interact with other objects independently of the working
environment

Accessibility within a single process, in other processes, or from a
remote machine

Standardized object-oriented programming, including:

Type of objects

Standard methods
Naming conventions

Encapsulation.

Data associated with a COM object is manipulated through its interfaces.
An interface is a class whose members are defined but not implemented.

An interface implementation is associated with an object when an instance
of that object is created, as shown in the following schematic:

Application Interfaces
Interfaces Application
.

SmarTeam Object Model Programmer's Guide

What is the SmarTeam Object Model?

The SmarTeam Object Model provides programmatic access to the
functionality of the SmarTeam family of products. Using the SmarTeam
Object Model, users and developers can customize and enhance
SmarTeam - Editor, as well as build custom solutions that take advantage
of the advanced capabilities of the SmarTeam engine.

The SmarTeam Object Model is exposed as a collection of COM objects
and interfaces, and provides:

e Language-independence

e Standard programming paradigms and naming conventions

o Flexibility.

Language-Independence

The SmarTeam Object Model can be used from any modern development
tool.

Examples of such tools include:

e The Microsoft Visual Studio family of tools, including Visual Basic,
Visual C++ and others

VBScript and Jscript

Borland Delphi

Java

Any other COM-aware tool

Standard Programming Paradigms and Naming
Conventions

The SmarTeam Object Model is exposed as Automation objects, and uses
the same naming conventions as the Microsoft Office Object Models.

Flexibility

The SmarTeam Object Model is compatible with Distributed COM
(DCOM), and can therefore be accessed from within the same process
(single executable), from another process, or from another machine on the
network.

Basic Libraries and Service Libraries

The SmarTeam Object Model consists of a core API, which provides the
basic functionality common to all SmarTeam products, as well as an
extendable collection of Add-in Services, which provides more specialized
functionality.

The core API provides functionality in the following areas:
Database access

Working with SmarTeam objects

Queries

Data structures

The built-in services provide functionality in a number of areas, including,
for example:

o Workflow

e User interface

e Integration

The SmarTeam Object Model includes basic libraries and add-in libraries,

as follows:

e Basic libraries consist of the SmarTeam Record List library and
SmarTeam Engine library.

e Add-in services are located in service libraries, such as the SmarTeam
- Workflow library. In order to have access to service libraries, the
programmer must invoke the appropriate service.

SmarTeam Object Model Programmer's Guide

Engine and Session Objects

Through the SmEngine and SmSession objects, the SmarTeam Object
Model can support several users working at the same time on the same or
different databases.

SmEngine is a creatable object that is a root of the SmarTeam Object
Model, and provides access to all other SmarTeam Object Model objects.
The SmEnNgine object has a limited set of methods that mainly serve for
creating sessions, manipulating configured databases, and changing the
configuration.

The programmer can create several sessions under the SmEngine object.
Each session enables the programmer to open an individual connection to
the database for a specific user. Each session is represented by an
SmSession object, which usually represents a single user.

Each session enables access to the Metalnfo object, which contains
information about the structure of the database opened under the session
and to the UserMetalnfo object, which contains information about the
currently logged-on user for the session. All major objects in the
SmarTeam Object Model operate within the scope of the session.

The SmEngine object keeps a list of all currently open sessions and a list
of all databases opened during the sessions.

Through the SmEngine and SmSession objects, SmarTeam - Editor
enables the following working flexibility:

Multiple users

Multiple databases

Multiple connections to each database

Multiple concurrent sessions, each one associated with a specific user
and database connection

The following schematic illustrates the multi-user, multi-session and
multi-database working flexibility enabled by the SmEngine and
SmSession objects.

Engine

Session Session Session Database Database

1
1
User I User
1
1
1

1 1

1 1

User : !
1

1 1

Persistent Objects and Classes

The terms Persistent Objects and Persistent Classes are used in connection
with the SmarTeam Object Model to describe specific objects and classes
that are held in the SmarTeam database.

See Chapter 5 - SmarTeam Engine Library, for details of Persistent Objects
and Persistent Classes.

Accessing Objects

Most of the objects used in the SmarTeam Object Model cannot be created
directly. Instead, they are accessed and created using properties and
methods of other objects in the model. Some SmarTeam objects are
exceptions to this rule, and can be created externally.

Creatable objects in the SmarTeam object model include:

SmarTeam Object Model Programmer's Guide

e The SmEngine object. When writing scripts from within SmarTeam -
Editor itself, the SmEngine object is always available. However, when
creating custom solutions using the SmarTeam Object Model outside
of SmarTeam - Editor itself, the SmEngine must be created.

e The SmRecordList and SmRecord object. This is a stand-alone object,
which can be used as a general purpose versatile container, and can be
created manually.

e The SmConfig object. This object can be used as a stand-alone object
that provides convenient access to SmarTeam - Editor configuration
information. The SmEngine and SmSession objects contain references
to their own SmConfig object. Using the SmConfig object referenced
by SmEngine or SmSession enables access to application-dependent or
user-dependent configuration information.

e The SmStrings object. This object provides operations for
manipulating string collections.

To create one of these objects, you can use the facilities provided by your
development tool to create a COM object. For example, in Visual Basic,
this would be the CreateObject function, while in Visual C++, you need to
use the API function CoCreatelnstance.

Running the Method ObjectProfile in C++

When performing an Import operation of "smapplic.tlb”, you must add
rename ("EOF","EOFX") and rename ("LoadLibrary"”,"LoadLibraryX") by
doing the following:

#import "smapplic.tlb” no_namespace named_guids
rename("EOF","EOFX") rename ("LoadLibrary","LoadLibraryX")

before #import "smutils" you need to import #import "smartinternal.tlb"
no_namespace named_guids.

SmarTeam COM Naming Conventions

The SmarTeam Object Model applies the following naming conventions:

A SmarTeam COM object is identified by the prefix Sm.

A SmarTeam object interface is identified by the prefix 1Sm.

An Enum variable, used to define two or more constant options, is
designated with the suffix Enum; for example, ClassTypeEnum
identifies alternatives relating to ClassType object functionality.

The names of the constant options of an Enum variable have a prefix,
which is usually a concatenation of two or three capital letters of the
variable name. For example, the constant options of the
ClassTypeEnum are identified by the prefix ct, as in ctComplexLink,
ctHierLink.

Additional Conventions

The following conditions also apply:

A SmarTeam COM creatable object can be created using the facilities
provided by your development tool to create a COM object.

A SmarTeam COM non-creatable object is obtained through the
specific method of another object.

Exceptions are used to indicate a COM failure condition. This is used
in place of API return values.

SmarTeam Object Model Programmer's Guide

2. Using SmarTeam COM Objects

The SmarTeam COM Object Model facilitates access to and manipulation
of SmarTeam data and utilities.

A SmarTeam COM object can be one of the following:

e A creatable object that is independently created, using the facilities
provided by the development tool or the COM CoCreatelnstance API
function.

e A non-creatable object, obtained via method calls of other objects.

Creating a Creatable Object

Each COM class has two identifiers: A Class Identifier (CLSID), which is
a globally unique 128-bit numeric identifier, and a Programmatic Identifier
(PROGID), which is a more readable, textual name for the class.

To create an externally creatable object, do one of the following:
e Use the PROGID to identify the class at run-time:

Set SmEngine = CreateObject('SmApplic.SmEngine'™)

e Include a reference to the corresponding SmarTeam Type Library in
your project, and use the following syntax:

Set SmEngine = New SmApplic.SmEngine

When possible, use the second method, since it is more efficient and results

in faster creation time.
Note: In most cases you will not be able to work properly with the object without
calling the init method, as follows:

SmEngine. init ""Smteam32”

SmarTeam Object Model Programmer's Guide

Obtaining a Non-Creatable Object

A non-creatable object is obtained via method calls of other objects, as
follows:

Set SmSession = SmEngine.CreateSession(..)

Working with Collection Objects

Collections are objects that represent sets of objects or variants over which
users can iterate. They are useful in expressing the concept of “sets of
things that should be grouped together".

For example, the object SmRecordListHeaders represents a collection of
SmRecordListHeader objects that are grouped in one SmRecordlist.

Collection objects always includes the following properties and methods:
e A Count property, which returns the number of items in a collection

e An Item (Index) property which returns a specific item of the
collection Index — the key that uniquely identifies the item. Index can
be type Integer or OleVariant.

If the collection is searchable, it will include an IndexOf method, which
returns the index of an item in a collection.

If the collection can be modified, it will also include the Add and Remove
methods, allowing the users of a collection object to add or remove items.

Some collections can include:

¢ An ItemByName (Name) method that returns an item of the collection
specified by the string name of the item

e An ItemBylIndex (Index) method that returns an item of the collection
specified by integer index.

In addition to these functions and properties, a collection object may

expose additional functions and properties, which are specific to its
functionality.

10

Using Scripts

A script is program code that can be executed in the SmarTeam system,
usually in response to an event.

Using Scripts, the user can customize and enhance the SmarTeam family
of products.

Examples of scripts include setting up a workflow process, or generating
email notification each time a new project is created.

Scripts can be attached to a variety of SmarTeam events and executed in a
number of ways. Scripts can be attached either to system operations or to
specified SmarTeam events.

Script argument structures can differ from one event to another. The script
programmer should be familiar with the script interface at the particular
event hook before beginning to write code.

The SmarTeam API provides the SmartConstants object, which allows
developers writing in scripting languages, such as VBScript and JScript, to
use constants (enumerations) without using their actual numeric value, or
having to redeclare them in their own code (see Appendix A for more
details).

For more information about writing scripts, refer to Appendix A.

11

SmarTeam Object Model Programmer's Guide

Using the SmarTeam Object Model in another
Application

Unlike SmarTeam scripts, if you wish to use the SmarTeam Object
Model from another application, the SmEngine and SmSession objects are
not automatically available.

To initialize them correctly, follow the steps below:
1. Create and initialize the SmEngine object.

2. Create the SmSession object.

3. Open a database connection to a specific database via an SmSession
method (.OpenDatabaseConnection), thereby creating SmDatabase
and SmDatabaseConnection objects.

4. Log in viaa SmSession method (.UserLogin). You can now work
with all other objects.

5. At the end of the application, use method Engine.Terminate.

The above procedure is illustrated in the following example:
Sub mainQ

Dim Engine As SmApplic.SmEngine

Dim Session As SmApplic.SmSession

“ Create SmarTeam Engine object

Set Engine = New SmApplic.SmEngine

“ Initiate the Engine object

Engine.Init "SmTeam32"

“ Create a session object

Set Session = Engine.CreateSession("'DemoApplication™, '‘SmTeam32'")

“ Open Database connection

Session.OpenDatabaseConnection "'SmDemo™, ''<password>'', true

“ Log in as “joe”

Session.UserLogin "joe", "'

12

<Application Body>

Engine.Temminate

End Sub

13

SmarTeam Object Model Programmer's Guide

Add-In Services

Certain services are not created automatically when the session is created.
If the associated functionality is required, the user must obtain the service
from the session, using the ProglD of the appropriate service library. To
obtain the service library, use the GetService method of the session, as
illustrated in the following example:

Sub mainQ
Dim Engine As SmApplic.SmEngine
Dim Session As SmApplica.SmSession
Dim GUIServices As SmGUISKrv.SmCommonGUI
“Create SmarTeam engine
Set Engine = New SmApplic.SmEngine
“ Initialize Engine object
Engine. Init “SmTeam32”
“ Create a session object
Set Session = Engine.CreateSession(“‘DemoApplic”, “‘SmTeam32”
“ Open database connection
Session.OpenDatabaseConnection “SmDemo”, “‘<password>", False
“ Initialize GUI services object by Progld SmGUISrv.SmCommonGUI
Set GUIServices = Session.GetService(**SmGUISrv.SmCommonGUI’")
Open Login window

GUIServices.Dialogs.ExecutelLogin

<Application Body>

Engine.Terminate

End Sub

For a list of SmarTeam Add-In services, refer to Appendix B.

14

PART Il

SMARTEAM COM LIBRARIES

3. SmarTeam COM Libraries Overview |

This chapter contains a brief overview of the SmarTeam COM libraries
described in this document.

e SmarTeam Record List Library
SmarTeam Engine Library
SmarTeam GUI Services Library
SmarTeam Utilities Library
SmarTeam - Workflow Library
SmartMessages Library

SmarTeam CAD Interface Library
SmarTeam Integration Tools Library
SmartlXF Library

SmarTeam Record List Library

The SmarTeam Record List library comprises the set of basic data
structure objects that serve as containers for SmarTeam data.

The objects in the SmarTeam Record List library are expandable,
dynamically allocated data structures. The SmarTeam Record List library
enables you to define new structures on an ad hoc basis, "on the fly".

See SmarTeam Record List Library for further details.

16

SmarTeam Engine Library

The SmarTeam Engine library contains objects that perform the following
basic and advanced SmarTeam - Editor functionality:

e Create and initialize the SmarTeam system connection to the database,
and manage all accesses to the SmarTeam Engine and database

e Manage the SmarTeam data model and retrieve information about the
SmarTeam data model

e Manage all SmarTeam persistent objects
e Manage the various types of SmarTeam queries.

See SmarTeam Engine Library for further details.

SmarTeam GUI Services Library

The SmarTeam GUI Services library comprises objects that enable the
following basic functionality:

o Create new GUI components

Retrieve information about existing GUI components

Create and display SmarTeam views

Perform other special functionality

Display various SmarTeam windows and dialogs.

See SmarTeam GUI Services Library for further details.

SmarTeam Utilities Library

The SmarTeam Utilities library comprises objects that enable the
following functionality:

e Format conversions

e Mask creation and attribute definition

e Life cycle methods

e Other miscellaneous methods.

See SmarTeam Utilities Library for further details.

17

SmarTeam Object Model Programmer's Guide

SmarTeam - Workflow Library

The SmarTeam - Workflow library comprises objects that enable you to
initiate and promote workflow processes. These processes include nodes,
users, tasks, to do lists, and associated Workflow functionality.

The SmarTeam - Workflow library includes the following functionality:

e Creation and retrieval of objects relating to flowchart processes
e Flowchart design and retrieval, flowchart process, and flow engine
functionality

e Creation of flowcharts, including the physical appearance of flowcharts

o Definition of flowchart nodes, including policy, users and/or physical
attributes, such as location and size

e Linking of scripts to node events, for example, before send, after send,
and open

o Definition of node tasks of various types, manual, operation and script

e Definition of automatic and non-automatic node tasks.

See SmarTeam - Workflow Library for further details.

SmartMessages Library

The SmartMessages library comprises objects, methods and properties that
enable you to compose and send SmarTeam messages and Internet e-mail
messages.

See SmarTeam - Workflow Library for further details.

18

SmarTeam CAD Interface Library

The SmarTeam CAD Interface library helps you integrate SmarTeam -
Editor with various CAD systems. The SmarTeam CAD Interface library
works with the files in the CAD system, saving information about the CAD
files in the SmarTeam database.

The SmarTeam CAD Interface library comprises objects that enable you

to:

e Save and update documents and compositions (trees) of the documents
in the SmarTeam database

e Retrieve document meta-information from the SmarTeam database by
file name

e Update various blocks of the drawing with meta-information

e Perform life cycle operations

e Other related operations.

See Introduction for further details.

SmarTeam Integration Tools Library

The SmarTeam Integration Tools library comprises objects that enable

you to define relations between the SmarTeam data model and

components of the CAD system. This library contains methods that enable

you to:

o Define default class and File Type for the Integration Behaviors

e Set up mappings between CAD file property fields and SmarTeam class
attributes in an integration

See SmintegrationTool Library for further details.

19

SmarTeam Object Model Programmer's Guide

SmartIXF Library

iXF is an XML-based format for describing a collection of objects and
associated files that conform to a specific data model. iXF is used to
exchange this data between systems.

The SmartlXF library comprises objects that enable you to perform the
following functions:

Generating an iXF schema

Processing an iXF schema

Generating an iXF Archive File

Processing an iXF Archive File

See Smartl XF Library for further details.

SmartClientContextService Library

This library provides access to the various Client libraries.
See SmarTeam Client Libraries Overview for further details.

SmartFileCatalog Library

The SmarTeam File Catalog library comprises objects that enable the

following functionality:

e Client-side file management for running SmarTeam in all possible
configurations

e Provides API support for integrations, life-cycle operations, SmarTeam
File Explorer, and collaborative design

e Folder-based structure management for file storage on client’s machine
or in network location

e Provides a mechanism for accessing and updating file object attributes

See SmarTeam Client Libraries Overview for further details.

20

SmartRecordList Library

The SmartRecordList library comprises objects that enable the following
functionality:

Allows a client to work with record list data objects that are similar to
those in the SmarTeam API

See SmartFileCatalog Library for further details.

21

4. SmarTeam Record List Library |

General Description

The SmarTeam Record List library provides the SmRecordList object, a
versatile data structure that serves as a generic container for SmarTeam
data.

The SmRecordList object is a dynamically allocated, expandable object
that allows you to define new data structures on an ad hoc basis.

Dependencies

The SmarTeam Record List library has no dependent COM libraries.
Overview of Record Lists

A SmRecordList object is a flexible, matrix-like data structure consisting
of a variable number of records and attributes. Each node in the matrix
contains a value.

A column comprises a header and associated value nodes for each column.
The header contains identifying information about the column.

An SmRecord object represents a row or a subset of a row of an
SmRecordList, and can contain one value node for each column.

The SmarTeam Record List library includes a grouping feature that
enables you to access specific parts of a record list object according to
predefined groups. By using this feature, a subset of columns or a subset of
a record can be represented and you can use the same header name in two
different groups.

22

Overview of Objects

The SmRecordList object is the creatable object that defines the basic data
structures used by SmarTeam - Editor, and serves as a dynamic container
for SmarTeam data.

The following diagram shows the major objects in this library:

ISmRecordList

|
~L ISmRecordListHeaders

ISmRecordListHeader

ISmRecord

Figure 4-1 ISmRecordList Object Diagram

SmRecordList Object

Unlike static arrays or tables, the SmRecordList object is a variable data

structure that is:

e Dynamically allocated, to accommodate the attributes of all future data
objects with maximum flexibility

e Expandable, to hold as much information as necessary

e Generic, to accommodate any format.

This enables you to define new SmarTeam structures, as you need them.

The SmRecordList object holds information in the form of records of
values where each node of a record can have a different value type. Nodes
in the RecordList with the same record index represent the same data type.

23

SmarTeam Object Model Programmer's Guide

The SmRecordList object can be thought of as a matrix whose first row is
a header row comprising header nodes and whose subsequent rows are
records comprising value nodes. Thus, the first element of each column of
this matrix is a header node and subsequent column elements are value
nodes for each record corresponding to the header.

The example below illustrates a sample SmRecordL.ist object structure:

SmRecordList Object

0 | 1 2 |
I Header node | | |Header node : Header node | | SmRecordListHeaders
I part name catalog num part name | object
| |TDMT_CHAR TDMT_CHAR [|ToMT_cHAR
25 o 25 L SmRecordListHeader
| |
l______l_____J________I object
|
O|pump | | |X765—003 | | |26 |
P
1 |valve | | [x7es012 |1 [a |
|
r——————'——————r——“———l
12 piston | ' [x7es-008 | 1[5 — SmFRecord
 — E— _| ______ L - — — object (record)
I
3|seal | | |X765-001 | : |o i— Value node

I -_—
T Column

Each header node of a column contains the following information, deriving

from the SmRecordHeader object:

e Name: Unique string identifying the column.

e Type: Identifies the type of data contained in the column, as one of the
constants in the Enum SmDataTypesEnum.

e Size: Size (in bytes) for each value node, if applicable.

The header nodes are uniquely indexed from 0 to n-1 (n being the current

number of columns in the SmRecordList object). The value nodes in each
column are similarly indexed from 0 to n-1 (n being the current number of
value nodes in the column).

24

Properties

The ISmRecordList object has the following properties

Property

Description

Capacitylncrement

Retrieves or sets the secondary allocation size. When
“Capacitylncrement” is X, there will be X new nodes added to t
header when memory needs to be increased.

DynamicValueSize

Returns the actual Integer value size for a node specified by
header name and record index.

DynamicValueSize

Returns the actual Integer value size for a node specified by

BylIndex header index and record index

FormattedValueAs Gets or sets a value for a node specified by header index and

StringByIndex record index, where the value is represented as String, in spec
Format.

Group Gets the name of the group in this SmRecordList with a specifi
group index. Group indexes start with 0.

GroupCount Retrieves the number of groups in this SmRecordList.

GroupDynamic Returns the actual value size for a node specified by group nai

ValueSize header name, and record index.

GroupDynamic
ValueSizeByIndex

Returns the actual value size for a node specified by group nai
relative header index and record index.

GroupHeaders Returns a collection SmRecordListHeaders for a specified grod
the SmRecordList.

GroupValue Gets or sets a node value for a header in a group, where the n
is specified by group name, header name and record index.

GroupValueByIndex Gets or sets a node value for a header in a group, where the n
is specified by group name, header index relative to the group
record index.

HeaderCount Returns the number of headers.

HeaderIndex

Returns the header index for a header specified by header nan

HeaderName Returns the header name for a header specified by header ind

Headers Returns a collection SmRecordListHeaders for this SmRecordl

InitialCapacity Retrieves or sets the initial allocation size. When “InitialCapac
is X, the new header will have X nodes.

MaxValue Retrieves the maximum value within a collection of nodes in a
specified header.

MinValue Retrieves the minimum value within a collection of nodes in a
specified header.

RecordCount Returns the number of records.

Value Gets or sets a value for a node specified by header name and

record index.

25

SmarTeam Object Model Programmer's Guide

Property Description

ValueAs[Type] Gets or sets a value for a node specified by header name and
record index, where the value is represented as [Type], one of
SmDataTypesEnum.

ValueAs[Type]By Gets or sets a value for a node specified by header index and

Index record index, where the value is represented as [Type], one of

SmDataTypesEnum.

ValueBylIndex

Gets or sets a value for a node specified by header index and
record index.

ValueSize Returns the header Integer Value Size for a header specified b
name.
ValueSize2 Returns the header Long Value Size for a header specified by

name.

ValueSizeByIndex

Returns the header Integer Value Size for a header specified b
index.

ValueSizeByIndex2 Returns the header Long Value Size for a header specified by
index.

ValueType Returns the header value type for a header specified by name.

ValueTypeBylndex Returns the header value type for a header specified by heade

index.

26

Methods

The ISmRecordList object has the following Methods

Method

Description

Creating SmRecordList Objects

CreateFromRecord Adds the headers of a source SmRecord to this SmRecordList
wherever the headers are different from the existing headers o
SmRecordList. The nodes of the added headers are set to nil.

CreateAsCopy Replaces this SmRecordList with a copy of the source

SmRecordList without any records

CloneHeaders

Creates and returns an SmRecordList that has the same headg¢
as this SmRecordList but contains no records.

ClearValues Deletes all records from the SmRecordList while retaining the

headers.
Adding Headers and Records

AddHeader Adds a header, defined by its name, type and value size, to thi
SmRecordList, where the header value size can be Integer.

AddHeader2 Adds a header, defined by its name, type and value size, to th¢
SmRecordList, where the header value size can be Long.

InsertHeader Inserts a header with specified name, type and value size into
SmRecordList, at a specified header index.

AddRecord Adds an empty record to SmRecordList and returns its index.

Getting and Finding Records in a RecordList

GetRecord Creates and returns an SmRecord from a record of this
SmRecordList, specified by record index.

GetGroupRecord Creates and returns an SmRecord of a group of this SmRecorg
specified by group name and record index.

SearchRecord Searches this SmRecordList for a given SmRecord. If found,
returns the record index, otherwise returns -1.

GroupSearchRecord Searches a group of this SmRecordList for a given SmRecord.
found, returns the record index, otherwise returns -1.

SmRecordEXxists Returns True if a given SmRecord, exists in this SmRecordList

RecordExists

Returns True if the record of a SmRecordList, specified by rec
index, exists in this SmRecordList.

OneFieldFilter

Finds a record which has a given header node value in a
SmRecordList. Returns either the record found or the record
index.

MultiFieldFilter

Finds records with given header node values in a SmRecordLi
Returns a SmRecordList containing either the records found of
indexes of the records found.

27

SmarTeam Object Model Programmer's Guide

BinSearch Searches for records with specified node values in an
SmRecordList.
GroupBinSearch Same as BinSearch, but limited to the headers of a specified

group.

Finding a Node of a Header

GetRecordIndex

Returns the record index of the first header node that matches
given value for a header specified by name. Returns -1 if no n
is found.

GetRecordIndexBy
Index

Returns the record index of the first header node that matches
given value for a header specified by index. Header indexes st
from 0. Returns -1 if no node is found.

GetRecordIndexStart
FromIndex

Same as GetRecordindexByIndex, with the search starting poi
specified by 'InitRow'.

28

Combining Two SmRecordList Objects

Cat

Appends (concatenates) the records of the specified RecordLig
this SmRecordList. Optionally, before executing the method
verifies that the headers of both SmRecordLists match.

CatRecord

Appends (concatenates) the specified SmRecord of a source
SmRecordList to this SmRecordList.

InsertRecords

Copies a sequence of records from a SmRecordList and insert
them into this SmRecordList at a specified record index, shiftin
the existing records.

Merge

Adds (merges) to this SmRecordList columns of a specified
SmRecordList whose headers do not exist in this SmRecordLig

Sub

Removes all headers in this SmRecord that also appear as
headers in a given SmRecordList.

Copying SmRecordList Objects

Copy

Replaces this SmRecordList with an exact copy of the specifie
source SmRecordList.

CopyExternal

When the headers are the same, nodes of this SmRecordList 3
overwritten with corresponding nodes of the source SmRecord
Headers and records in the source SmRecordList that do not e
in this SmRecordList are added to it. Information is copied fron
one record list to another, even if they are in different processe

Copying SmRecord Objects

CopyRecord

Copies the specified SmRecord from the source SmRecordList
overwrites the destination SmRecord in this SmRecordList.

CopyRecordByOrder

Copies the specified SmRecord from the source SmRecordList
overwrites the destination SmRecord in this SmRecordList. Th
nodes are copied according to their sequential order, disregarg
the header names.

CopyRecordExt

Copies the specified SmRecord from the source SmRecordList
overwrites the destination SmRecord in this SmRecordList. If
SkipDiffTypes is True, values of non-matching elements will no
copied.

CopySmRecord

Similar to CopyRecord except it operates on an isolated SmRe
instead of on a record in an SmRecordList.

CopySmRecordBy
Order

Similar to CopyRecordByOrder except it operates on an isolate
SmRecord instead of on a record in an SmRecordList.

CopySmRecordExt

Similar to CopyRecordExt except it operates on an isolated
SmRecord instead of on a record in an SmRecordList.

CatSmRecord

Appends (concatenates) an SmRecord to this SmRecordList.

29

SmarTeam Object Model Programmer's Guide

Sorting Records

Sort Sorts the records in this SmRecordList according to the heade
names, sort directions and sort order specified in the SortQuer
SmRecordList.
Deleting
Clear Deletes all headers and nodes in the SmRecordList object.

DeleteElement

Deletes the entire column specified by a header name from the
SmRecordList.

DeleteElementBy
Index

Deletes the entire column specified by a header index from thig
SmRecordList. Header indexes start with 0.

DeleteRecord

Deletes the record specified by a record index from this
SmRecordList. Record indexes start with 0.

30

Exchanging

Exchange Exchanges two nodes of a header in this SmRecordList object,
ExchangeBylndex Exhanges two records in this SmRecordList object.

Miscellaneous

GroupExist Returns True if a specified group exists in this SmRecordList.

Init Defines the initial amount of memory and the amount of
reallocation memory, both in number of records.

PrintToFile Prints the nodes of this SmRecordList to a file in a record by

record format.
Indexed Searches

Createlndex Creates an index for a header with a specified position.

CreatelndexByName Creates an index for a header with a specified header name.

Isindexed Checks if the column in a Record List with a specified column
number is indexed.

IsindexedByName Checks if the column in a Record List with a specified column
name is indexed.

Removelndex Removes indexing from the column with a specified column
number.

RemovelndexByName Removes indexing from the column with a specified column na

Example

The following examples finds selected records in a record list, copies them
to a new record list and deletes them in the original record list.

Dim RecordListA As SmRecList.SmRecordList

Dim RecordListB As SmRecList.SmRecordList

Dim Query As SmRecList.SmRecordList

Dim SRecordIndex As Integer

Dim DRecordIndex As Integer

Dim 1 As Integer

“ Populate record list

Set RecordListA = New SmRecList.SmRecordList
RecordListA_AddHeader "'Objectld', 4, sdtinteger

RecordListA.AddHeader "'FileName™, 256, sdtChar

31

SmarTeam Object Model Programmer's Guide

RecordListA._AddHeader '‘Directory', 256, sdtChar
RecordListA.ValueAsInteger("'Objectld”, 0) = 1
RecordListA_Value('FileName™, 0) = "File2"
RecordListA_Value('Directory', 0) = "Dir2"
RecordListA._ValueAsInteger(*'Objectld”, 1) = 3
RecordListA.Value("'FileName™, 1) = "Filel"”
RecordListA_Value('Directory'”, 1) = "Dirl"
RecordListA_ValueAsInteger(*'Objectld”, 2) = 2
RecordListA.Value('FileName', 2) = "File2"

RecordListA.Value(''Directory', 2) = "Dir2"

"Sort it according to FileName

Set Query = New SmRecList.SmRecordList
Query.AddHeader "'COL_NAME'', 256, sdtChar
Query.AddHeader *"TDM DIRECTION", 4, sdtBoolean
Query_Value("'COL_NAME™, 0) = "FileName"
Query.ValueAsBoolean("'TDM_DIRECTION", 0) = True
"Query.Value("'COL_NAME™, 1) = "H2"
"Query.ValueAsBoolean(""TDM_DIRECTION", 1) = False

RecordListA_Sort Query, 1, O

"MultiFieldFilter to find records with given Filename and Directory
Set Query = New SmRecList.SmRecordList

Query._AddHeader *‘FileName™, 256, sdtChar

Query.AddHeader '‘Directory', 256, sdtChar

Query.Value("'FileName"™, 0) = "File2"

Query_.Value('Directory', 0) = "Dir2"

" RecordListB receives indexes of found records

32

Set RecordListB = RecordListA_MultiFieldFilter(Query, False)

“ Make RecordListC to copy found records to

Dim RecordListC As SmRecList.SmRecordList

Set RecordListC = New SmRecList.SmRecordList
RecordListC.CreateAsCopy RecordListA, 1

“ Copy found records to RecordListC and delete them from RecordListA
For 1 = RecordListB.RecordCount - 1 To O Step -1

SRecordIndex = RecordListB._ValueAsSmallInt(*'SERV_FIELD", 1)
DRecordIndex = RecordListB.RecordCount - 1 - |
RecordListC.CopyRecord RecordListA, SRecordlndex, DRecordlndex
RecordListA._DeleteRecord (SRecordindex)

Next 1
Indexed Searches of RecordLists

The RecordList library provides the ability to perform indexed searches of
a RecordList, where the key used in the search can be specified by the user
as a header of the RecordList.

The indexed search ability is provided within the framework of the existing
ISmRecordList search methods; you cause a method to use an indexed
search instead of a sequential search by setting up indexing for headers of
the specific RecordList to be searched.

Methods that can use Indexing

The following ISmRecordList methods use indexing when at least one of
the headers used has been set up for indexing:

Method Remarks

GetRecordIindexBylndex
GetRecordIndexStartFromIndex

OneFieldFilter Uses indexing when the match Record List includes or
single value for the header.
MultiFieldFilter Uses indexing when the match Record List includes or

single set of values — one match value for each heade

SearchRecord

33

SmarTeam Object Model Programmer's Guide

GroupSearchRecord
SmRecordEXxists

Setting up Indexing

Using the methods Createlndex or Create lndexByName, the user
specifies one or more headers (columns) of a RecordList to be searched to
be possible keys for a binary search. For each header specified as a key, a
separate key array is constructed and sorted in ascending order, where each
key carries a reference back to its original record in the RecordList. The
binary search is carried out on the key array.

Only one key is actually used in a search. In case more than one header of a
RecordList is specified as a key, the user can determine which key will
actually be used by specifying a priority among the keys using
IndexType, which can have the values:

itUnique - Assign this value to a header when you want the system to
use it as a key as a first choice.

itNotUnique - Assign this value to headers that you want the system to
use as a second choice.

You do not have to assign indexing to each header of the RecordList.

Method of Search according to Indexing Setup

After you have set up indexing for a Record List and you then call one of
the ISmRecordList methods that can use indexing, the behavior of the
method depends on which RecordList headers you use in the method call.

For example, when you search SmRecordList using:
SmRecordList.SearchRecord(Query)

The ISmRecord Query parameter method can contain several headers of
the SmRecordList, some of which were indexed and some of which
were not indexed.

The actual search can be a combination of an indexed search and a
sequential search, depending on the headers.

34

The following table shows the method of search that is used in the
SearchRecord method, according to various cases of setting indexing
for the SmRecordList headers.

Query contains SmRecordList headers

to: Method of search

Casg

itUnique [itNotUnique | noindexing

1. Performs index search with itUnique
header as key.

2. Performs sequential search on reco
with the same index values.

1. Peforms index search with itNotUnig
header as key.

2. Performs sequential search on reco
with the same index values.

Performs sequential search with
noindexing header.

When to use Indexing

Setting up for an indexed search also requires resources. An indexed search
is more efficient than a sequential search only when:

e Searching a large RecordL.ist

e Performing multiple searches of a RecordList

Example

The following are examples of multiple searches of a RecordList made
more efficient by using predefined keys.

Set SortQuery = New SmRecList.SmRecordList

Set QueryBylndex = New SmRecList.SmRecord

Set QueryByFileName = New SmRecList.SmRecord

Set QueryComposite = New SmRecList.SmRecord
QueryBylIndex.AddHeader "*OBJECT_ID', 4, sdtlnteger
QueryComposite.AddHeader ""OBJECT_ID', 4, sdtinteger
QueryByFileName.AddHeader "FILE NAME'", 255, sdtChar

QueryComposite_AddHeader "'FILE_NAVE, 255, sdtChar

35

SmarTeam Object Model Programmer's Guide

SortQuery.AddHeader '‘COL_NAME™, 30, sdtChar

"Create keys
ExampleList.CreatelndexByName ""OBJECT_ID", itUnique

ExampleList.CreatelndexByName "'FILE_NAVE", itNotUnique

“Multiple Index search by OBJECT_ID key

For 1 =0ToCnt - 1
QueryByIndex.ValueAsInteger("'OBJECT_ID'™") = |
Recldx = ExampleList.SearchRecord(QueryBylndex) *

Next

“"Multiple Index search by FILE NAME key

For 1 =0ToCnt - 1
QueryByFi leName . ValueAsString("'FILE_NAME™) = CStr(1 Mod 500)
Recldx = ExampleList.SearchRecord(QueryByFileName)

Next

“Multiple Index search by OBJECT_ID and FILE NAVE key

"The query in this case will actually use only the OBJECT_ID key since it
was assigned a higher priority.

For 1 =0To Cnt - 1
QueryComposite.ValueAsInteger("'OBJECT_ID'™) = |
QueryComposite.ValueAsString("'FILE_NAVME'™) = CStr(1 Mod 500)
Recldx = ExampleList.SearchRecord(QueryComposite)

Next

SmRecord Object

36

The SmRecord object represents a record, or a row, in the SmRecordList
data structure. The SmRecord object is also used to represent a subset of a
row.

Unlike rows in a static table, SmRecord objects are not physically part of
the SmRecordL.ist object. The two objects are logically related, with the
SmRecord objects being projections of SmRecordL.ist objects.

A SmRecord object is obtained in two ways:
e By using the SmRecordList.GetRecord method
e By accessing the SmRecord object directly.

With the first method, the lifetime of a record depends on the lifetime of
the SmRecordList object. The SmRecord becomes invalid after the
SmRecordList object is destroyed. With the second method, the lifetime of
the record is independent of the SmRecordList object.

37

SmarTeam Object Model Programmer's Guide

Properties

The ISmRecord object has the following properties

Property

Description

Constants

Gets Smart Constants.

DynamicValueSize

Returns the actual Integer value size for a node specified by heade
name.

DynamicValueSizeBy
Index

Returns the actual Integer value size for a node specified by heade
index.

FormattedValueAs Gets or sets a value for a node specified by header name, where th
String value is represented as String in specified Format.
FormattedValueAs Gets or sets a value for a node specified by header index, where th
StringByIndex value is represented as String in specified Format.

Index Returns the appropriate record index.

Constants Gets Smart Constants.

DynamicValueSize

Returns the actual Integer value size for a node specified by heade
name.

DynamicValueSizeBy
Index

Returns the actual Integer value size for a node specified by heade
index.

FormattedValueAs Gets or sets a value for a node specified by header name, where th
String value is represented as String in specified Format.
FormattedValueAs Gets or sets a value for a node specified by header index, where th
StringByIndex value is represented as String in specified Format.

Index Returns the appropriate record index.

Constants Gets Smart Constants.

DynamicValueSize

Returns the actual Integer value size for a node specified by heade
name.

DynamicValueSizeBy
Index

Returns the actual Integer value size for a node specified by heade
index.

FormattedValueAs Gets or sets a value for a node specified by header name, where th

String value is represented as String in specified Format.

FormattedValueAs Gets or sets a value for a node specified by header index, where th

StringByIndex value is represented as String in specified Format.

Index Returns the appropriate record index.

Constants Gets Smart Constants.

Value Gets or sets a value for a node specified by header name.

ValueAs[Type] Gets or sets a value for a node specified by header name, where th
value is represented as [Type], one of SmDataTypesEnum.

ValueAs[Type]By Gets or sets a value for a node specified by header index, where th

Index value is represented as [Type], one of SmDataTypesEnum.

ValueByIndex Gets or sets a value for a node specified by header index.

38

Methods

The ISmRecord object has the following methods

Method Description
Adding Headers and Records
AddHeader Adds a header, defined by its name, type and value size, to this
SmRecord, where the header value size can be Integer.
AddHeader2 Adds a header, defined by its name, type and value size, to this

SmRecord, where the header value size can be Long.

Copying SmRecord Objects

Copy Replaces this SmRecord with an exact copy of the specified source
SmRecord.
CopyEx Nodes from the Source SmRecord overwrite the corresponding nod

in this SmRecord.

Deleting

DeleteElement

Deletes the entire column specified by a header name from the
SmRecord.

DeleteElementBy
Index

Deletes the entire column specified by a header index from the
SmRecord.

PrintToFile

Prints the nodes of this SmRecord to a file in a record by record for

SetNullValues

Sets the all node values of this SmRecord to nil.

SmRecordListHeaders Object

39

The SmRecordListHeaders object is the collection that comprises a
number of SmRecordListHeader objects, each one defining a header node
of a column of the SmRecordList or SmRecord object.

Methods
The ISmRecordListHeaders object has the following methods

Method Description
IndexOf Returns the index of the SmRecordListHeader with a given name.
HeaderExists Returns True if the SmRecordListHeader with a given name exists.
ItemByName Returns the SmRecordListHeader with a given name.
ItemBylIndex Given an index, creates and returns an object representing the head

SmRecordListHeader Object

The SmRecordListHeader object represents the header node of a column.
It defines the attributes of a specific header in an SmRecordList or
SmRecord object.

Each header node of a column contains the following information:

e Name: Unique string identifying the header node

e Type: Identifies the type of data contained in the node, as one of the
constants in the Enum SmDataTypesEnum

e Size: Size (in bytes) for each header node.

Properties

The ISmRecordListHeaders object has the following properties

Property Description

Index Returns the Header index.

Name Returns the Header name.

ValueSize Returns an Integer ValueSize for headers that were created with the
method ISmRecordList.AddHeader.

ValueSize2 Returns an Long ValueSize for headers that were created with the met
ISmRecordList.AddHeader?.

ValueType Returns the Header value type.

Grouping Columns in a Record List

40

The grouping feature enables you to keep data columns with the same name
in one record list, by adding a prefix to the name. A group represents the
columns in the SmRecordList object that have the same prefix in their
name.

SmRecordList object column names can be defined in the header node in
the following form:

< prefix>.< name>,
where:

< prefix> identifies a selection of columns. For example, the prefix 1
represents the unique Project class ID, and the prefix 8 represents the
unique Project Tree class ID.

<name> identifies the actual name of the column which several other
selections may have in common, for example, CLASS_ID or OBJECT_ID.

For example, when the CLASS_ID and OBJECT _ID attributes are
represented in both the Project class and the Project Tree class, the use of a
prefix enables keeping the names of the attributes unique within the
SmRecordList object.

Columns of the SmRecordList object can then be usefully filtered into
groups by means of the prefix. For example, you can use grouping to
create a projection that isolates the columns that relate only to the Project
class.

If an SmRecordList object is grouped, the methods and properties are
executed according to the object grouping.

Grouping Nodes in a Record

An SmRecord object is similarly divisible into groups and can be
represented in a grouped SmRecord object. The grouped SmRecord
object references a subset of the row that includes nodes that have the same
prefix, comprising a specific group.

You can access a grouped SmRecord that represents the value nodes
within a specific group by supplying an index value for the group name,
using the SmRecordList.GetGroupRecord method.

You can access a specific header in the SmRecordListHeaders of the
grouped SmRecord, using the related header’s index or name of the related
header. You do not need to supply the group information, as this was
supplied when the group was created.

Example

The following example shows how to perform a binary search on a group
in the SmRecordList.

Dim RecordListA As SmRecList.SmRecordList
Dim Query As SmRecList.SmRecordList
Dim IsFound As Boolean

"RecordListA -- Set up with two groups, G1 and G2

41

SmarTeam Object Model Programmer's Guide

"G1.A11 Gl.A12 G2.A11 G2.A12

"Gl.A21 G1.A22 G2.A21 G2.A22

"G1.A31 G1.A32 G2.A31 G2.A32

Set RecordListA = New SmRecLi
RecordListA.AddHeader "'G1.H1'
RecordListA.AddHeader "'G1.H2"
RecordListA.AddHeader *'G2_H1"
RecordListA.AddHeader *'G2.H2"
RecordListA._GroupValue(*'G1",
RecordListA_GroupValue(*'G1",
RecordListA.GroupValue(*'G2",
RecordListA.GroupValue(*'G2",
RecordListA._GroupValue(*'G1",
RecordListA_GroupValue(*'G1",
RecordListA.GroupValue(*'G2",
RecordListA.GroupValue(*'G2",
RecordListA._GroupValue(*'G1",
RecordListA_GroupValue(*'G1",
RecordListA.GroupValue(*'G2",
RecordListA.GroupValue(*'G2",

"BinSearch

st.SmRecordList
, 256, sdtChar
, 256, sdtChar
, 256, sdtChar
, 256, sdtChar
“H1", 0) = “'G1.A11"
"H2'", 0) = “'Gl.A12"
"H1'", 0) = “'G2.A11"
"H2', 0) = "G2.A12"
“H1", 1) = “'G1l.A11"
“H2'", 1) = “'Gl.A22"
"H1'", 1) = “'G2.A11"
“H2, 1) = “G2.A22"
“H1", 2) = “'G1.A31"
“H2'", 2) = “'G1.A32"
"H1'", 2) = “'G2.A31"

"H2, 2) = “G2.A32"

Set Query = New SmRecList.SmRecordList

“ G2.A11 G2.A12

Query.AddHeader "H1'', 256, sdtChar
Query.AddHeader "'H2'*, 256, sdtChar
Query.Value('H1", 0) = "G2.A11"
Query._Value("'H2", 0) = "G2.A12"

MsgBox CStr(RecordListA.GroupBinSearch(*'G2", Query, IsFound)) "= 0

MsgBox IsFound " = True

MsgBox CStr(RecordListA_GroupBinSearch(*'G1", Query, IsFound)) "= -1

MsgBox IsFound "= False
"Example
- Gl G2
T HL H2 H1 H2
" -GroupBinSearch(*'G2", Query, IsFound) = 0

"G1.A11 Gl.A12 G2.A11 G2.A12
"G1.A21 Gl1l.A22 G2.A21 G2.A22

"G1l.A31 G1.A32 G2.A31 G2.A32

43

‘ 5. SmarTeam Engine Library

General Description

The SmarTeam Engine library provides the basic functionality common

to all applications using the SmarTeam Object Model. Among the

features this library provides are:

e Create and manage sessions with the SmarTeam engine—support for
multiple users, each one associated with an SmSession object

e Establish and manage connections to the SmarTeam
databases—support for multiple databases

e Retrieve and manipulate the Meta-information, which describes the

SmarTeam data mode

Retrieve, update and delete Persistent Objects

Manage the lifetime of SmarTeam objects

Creating and running SmarTeam queries

Support for multi-threaded applications.

The SmarTeam Engine Library objects are explained in this chapter

under the following headings:

e SmEngine and SmSession Object, page 46, describes the SmEngine
and the SmEngine Session objects, which provide access to the rest of
the SmarTeam Object Model

e Note: When using the function Session.Config.ReadSection, the Key
is always returned in lowercase.

e Metadata Management Objects, page 66, describes the objects that
contain information relating to the SmarTeam data model

e Persistent Object Management, page 86, describes the objects that
enable the creation, update and deletion of SmarTeam Persistent
Objects, and the retrieval of information about these objects

e SmQuery Object, page 104, describes the facilities provided by the
SmarTeam Object Model to create high-level and low-level queries,
and to retrieve the results of such queries.

44

Chapter 5,SmarTeam Engine Library

Dependencies

The SmarTeam Engine library is used by all libraries except the
SmarTeam Record List Library.

The SmarTeam Engine library uses the SmarTeam Record List Library.

Persistent Objects and Classes

The terms Persistent Objects and Persistent Classes are used in connection
with the SmarTeam Object Model to describe specific objects and classes
that are stored in the SmarTeam database.

The SmObject and SmClass objects, described on pages 86 and 66
respectively, represent these objects and classes.

Overview of Objects

The main objects, which provide access to the SmarTeam object model
are:

e SmEngine, described on page 46
e SmSession, described on page 50

Other important objects are as follows:

e SmDatabase, described on page 55, provides access to SmarTeam
database functionality

e SmConfig, described on page 58, provides access to SmarTeam
system configuration

e SmMetalnfo, described on page 66, provides access to SmarTeam
data model functionality

e SmObjectStore, described on page 86, provides access to SmarTeam
Persistent Objects

e SmODbject, described on page 86, represents a single persistent object
in the SmarTeam database

e SmQueryDefinition, described on page 104, is used to define
attribute-based queries.

45

SmarTeam Object Model Programmer's Guide

SmEngine

The SmEnNgine object is the highest level object for the SmarTeam

Object Model.

The SmEngine and its major components is shown in the following object

diagram.

ISmEnNgine

SessionsCount

DatabasesCount

ProductName

ConfigurationName

UseMultiLanguage

DemoMode

ServerMode

Constants

Sessions

Databases

Config

GlobalData

Figure 5-1 SmEngine Object Diagram

46

Chapter 5,SmarTeam Engine Library

The following schematic shows the relationship between the SmEngine
object and the other objects in the system.

Engine
Session Session Session Database Database
1
1 o 1
L - T T . ,
User 1 User . User : : 1
: ! Lo :
1 1 1

Properties

The ISmEngine object has the following properties

Property Description
Sessions
Sessions Returns one of the collection of the currently open sessions, as
ISmSession
SessionsCount Returns the number of open sessions.
Databases
Databases Returns one of the collection of open Databases as listed in the
SmarTeam configuration, as ISmDatabase
DatabasesCount Returns the number of defined databases
Configuration
Config Returns an SmConfig object, which represents the current
SmarTeam configuration, as ISmConfig
ProductName Returns or sets the name of the product. Defaults to SmarTeam.
ConfigurationName Returns or sets the SmEngine configuration INI file name, for
example, SmarTeam32.INI. The default location for this configur
file is \SmarTeam\LocalConfig\ SmarTeam32.INI
UseMultiLanguage Set to True if the menus can be translated into a different langua
such as French or German, otherwise set to False.
Operation
DemoMode If True, a license was not detected and the system automatically
entered demo mode, which has some operating restrictions.

47

SmarTeam Object Model Programmer's Guide

Property Description

ServerMode Set to True to cause the application to run in Server Mode. In S¢
Mode, errors are not displayed on the screen, and server-side
hooks are used.

Data Access
Constants Accesses SmarTeam Enum constants from the SmApplic Library
constant name
GlobalData Provides access to an Engine-wide shared storage area, which

be used to store and retrieve data throughout the life of the
application. You can use the GlobalData object to transfer these
items between scripts. Data is stored as a VariantList object.

Methods
The ISmEngine object has the following methods
Method Description
Sessions
CreateSession Creates a new SmSession object.
FindSession Searches for a specified session in the currently connected
sessions list.
FindSessionByDatabase | Searches for a session connected to a database specified by it
Alias alias.
Databases
FindDatabase Searches for a specified database in the defined databases list

FindDatabaseByReplica | Returns the Database object corresponding to the specified
Identifier Replica Identifier.

ReloadDatabasesList Reloads the list of configured databases.
GetDatabaseAlliasesList | Gets a Record List that includes, at least, the password and
database name for each database available.
SaveDatabasesList Saves current database connection information.

Configuration

Init Initializes the internal arguments of SmEngine according to dat
the INI file. Called directly after creating the SmEngine.
SetlnitFlags Sets the initialization flags. Internal use only.
GetlnitFlags Gets the initialization flags. Internal use only.
Operation

48

Chapter 5,SmarTeam Engine Library

Terminate Terminates the engine and closes all active sessions and databas
connections. Must be called before the application is closed.

Note: Unlike other objects, SmEngine is released from memory o
when you call the SmEngine.Terminate method.

Note: If the SmEngine.Terminate method is not called before thg
application is closed, the LUM license for the application will not |
released.

LoadLibrary Loads a DLL into memory, and returns the module handle for the
DLL. Using this function eliminates problems related to short vs. |
DLL filenames, and to incorrect handling of floating point operatig
by some compilers.

CreateObject Creates and returns a reference to an Automation object

Obtaining the ISmEngine Object

To create and initialize an ISmEngine Object:
Dim Engine as SmApplic.SmFreeThreadedEngine

' create SmarTeam engine object

Set Engine = CreateObject('SmApplic.SmFreeThreadedEngine'™)

‘' initialize object

SmEngine. Init *"SmTeam32"

Adding an Object using SmartBasicScript Editor

When using a script in SmartBasicScript Editor which needs to create
another SmSession, it is recommended to use the following procedure:

1. In the script attached to Smarteam hook instead of creating the

engine always take it via the session:
Set SmEngine = SmSession.Engine

2. After creating another session, initialize it:
SmSession. Init SmEngine, "‘test”, "‘SmTeam32'

49

SmarTeam Object Model Programmer's Guide

Notes:

= |fitis necessary to open another SmSession you must use the same
(one) running SmEngine object:

Set SmEngine = SmSession.Engine
Set NewSmSession= SmEngine.CreateSession(...)
NewSmSession. Init SmEngine, "“test’, "‘SmTeam32"

= If the new session (application) is running outside the SmarTeam
process (as an external application), it should be compiled using
other development tools, for example, Visual Basic. The bundled
SmartBasic Editor is dedicated only for in-process SmarTeam
script compilation and cannot be used for external or out-of-
process applications.

SmSession Object

The SmSession object represents a session within the SmarTeam Engine.
It is usually associated with a single user, using a single database
connection.

The SmSession object provides the following functionality:

User login and access to information about the user

Access to the Database and the Database Connection

Access to the Data Model Meta-information

Access to the Persistent Objects ObjectStore

Access to a collection of installable Add-in Services

Access to a session-wide shared area for exchange of information.
Access to the configuration parameters.

SmEngine keeps a list of all concurrently open sessions, which can be
accessed using the Sessions property.

The SmSession and its major components is shown in the following object
diagram.

50

Chapter 5,SmarTeam Engine Library

ISmSession

SessionName

CheckDatabaseDesignation

UserLoggedOn

ConfigurationName

UseMultiLanguage

DefaultLanguage

DefaultLanguagelD

Constants
Engine
Database
Metalnfo
Config
ObjectStore
GlobalData
UserMetalnfo
DatabaseConnection

Services

LastOperationResults

MultiLanguagelnfo

Figure 5-2 SmSession Object Diagram

NewSmStrings

51

SmarTeam Object Model Programmer's Guide

Properties

The ISmSession object has the following properties

Property

Description

Configuration

Config

Returns an SmConfig object representing the session
configuration, as ISmConfig

ConfigurationName

Returns or sets the name of the session's configuration file, fo
example, SmTeam32.INI. The default location for this configur
file is \SmarTeam\LocalConfig\[Database LocalName]/[User
Name]/ SmarTeam32.INI

UseMultiLanguage

Set to True to enable multilanguage usage.

SessionName

Returns the universally unique name of the session.

DefaultLanguage

Returns or sets the default language for the display, for examp
Italiano.

DefaultLanguagelD

Returns default language ID.

Database
Database Returns an SmDataBase object representing the connected
database for the session, as ISmDatabase
DatabaseConnection Returns an SmDataBase object that represents the database
connection for the session, as ISmDatabaseConnection
CheckDatabase If set to True, an error message is issued when trying to conng
Designation a non-registered SmarTeam database, which is not a foreign
database (does not have the type sdtForeignDatabase). If set
False, no error message is issued. Default is True.
User
UserLoggedOn True if a user has logged on the system in this SmSession. On

one user can log on to a session.

UserMetalnfo

Returns an SmMetalnfo object representing the current user in
system, as ISmUserMetalnfo

Data Access

GlobalData

Provides access to a session-wide shared storage area, which
be used to store and retrieve data throughout the life of the
session. Data is stored as a VariantList object.

Constants

Accesses SmarTeam Enum constants from the SmApplic Librg
by constant name

Object Access

Engine

Returns the parent SmEngine object, as ISmEngine

Metalnfo

Returns an SmMetalnfo object representing SmarTeam data

model functionality, as ISmMetalnfo

52

Chapter 5,SmarTeam Engine Library

ObjectStore Returns an SmObjectStore object representing SmarTeam
persistent object management, as ISmObjectStore
Services Returns an SmServices collection object representing a list of

in services available to the session, as ISmServices.

LastOperationResults

Returns an SmOperationResults collection object representing
results of a life-cycle task operation on a set of objects, as
ISmOperationResults. An item of the collection is an object
together with the results of the operation on that object.

MultiLanguagelnfo

Provides access to information for creating controls in differen
languages, as ISmMultiLanguagelnfo

Methods

The ISmSession object has the following methods:

53

SmarTeam Object Model Programmer's Guide

Method Description
Configuration
Init Initializes the session parameters according to the sessio
file.
Database
OpenDatabase Opens a connection to a specified SmarTeam database,
Connection ISmDatabaseConnection. Any previous connection is
automatically released.
OpenWizardDatabase Opens a connection to a registeredWizSrc database, as
Connection ISmDatabaseConnection.

OpenForeignDatabase
Connection

Opens a connection to a specified non- SmarTeam (foreig
database, as ISmDatabaseConnection.

User
UserLogin Logs a user into the system by user name and password.
UserLogoff Logs the user off the session.

Object Access

NewVariantList

Creates a new SmVariantList object, as ISmVariantList.

NewSmStrings

Creates a new SmsStrings object, as ISmStrings.

GetService

Returns a specified Add-In service according to a specifie
Progld.

IsServiceEnabled

Returns True if the specified Service object can be used g
the present time. A Service object is considered as disabl
it is not installed, or if there is a condition that prevents it

working, such as a missing license.

Operation

Close

| Terminates the current session.

Obtaining an ISmSession Object

To create and initialize an ISmEngine Object:

Dim Engine as SmApplic.SmFreeThreadedEngine

Dim Session As SmApplic.SmSession

“ create SmarTeam engine object

Set Engine = CreateObject('SmApplic.SmFreeThreadedEngine)

initialize object

SmEngine. Init ""SmTeam32"

54

Chapter 5,SmarTeam Engine Library

Set Session = CreateObject(*'SmApplic.SmSession'™)

Session. Init(Engine, "MySession™, '‘Smteam32'")

SmDatabase Object

The SmDatabase object contains information about a specific database,
such as the database name, language and version, and information about
active connections.

The SmDatabaseConnection object represents a connection to a database,
and provides database-related functionality such as the ability to insert,
update and delete tables, and query functions.

Connection to the database is created when you call the method
SmSession.OpenDatabaseConnection.

The SmDatabase and its major components is shown in the following
object diagram.

55

SmarTeam Object Model Programmer's Guide

ISmDatabase
Alias
Password
ConnectionsCount
Version
Identifier
Name
LocalName
DatabaseType
Language
SmarTeamType
OriginalVersion
Owner
ModificationDate
CreationDate
CompanyName
Siteld
Replicaldentifier
Engine
Connections

~L DatabaseSites

Figure 5-3 SmDatabase Object Diagram

Chapter 5,SmarTeam Engine Library

Properties

The ISmDatabase object has the following properties:

Property Description

Internal Database Data

Password Returns the internal database password.

Version Returns the SmarTeam database version.

Identifier Returns the internal database identifier.

Name Returns the internal database name.

DatabaseType Returns the database type.

Language Returns the database language.

OriginalVersion

Returns database original version.

Owner

Returns database owner.

ModificationDate

Returns the date of the last database modification.

CreationDate

Returns the creation date of the database.

CompanyName

Returns the internal database company name.

Siteld

Returns identifier of the site for a replicated database.

Replicaldentifier

Returns the replica identifier.

Non-Internal Database Data

Alias Returns the alias or connection string of the database.
LocalName Returns the database local name - the name of the directory for
configuring SmarTeam by database.

SmarTeamType Returns SmarTeam database type, as
SmarTeamDatabaseTypeEnum.
ConnectionsCount Returns number of open connections to the database.
Object Access
Engine Returns an SmEngine object representing the parent engine, as
ISmEngine.
Connections Returns an SmDataBaseConnection object representing one of the

connections to the database, as ISmDatabaseConnection.

DatabaseSites

Returns a collection of all replicated database sites, as
ISmDatabaseSites.

Methods

The ISmDatabase object has the following methods:
Method Description

ReloadInfo Reloads database information.

CloseConnections

Closes all open connections to the database.

57

SmarTeam Object Model Programmer's Guide

Obtaining an ISmDatabase Object

The following sample code creates a connection to a database, and
performs a login to the database:

Sub mainQ)

Dim Engine As SmApplic.SmEngine
Dim Session As SmApplic.SmSession
Dim FirstDB As SmApplic.SmDatabase
Set Engine = New SmApplic.SmEngine
Engine. Init "'SmTeam32"

Set Session = Engine.CreateSession(‘'DemoApplication’,
Engine.ConfigurationName)

“ Connect to the first database
Set FirstDB = Engine.Databases(0)

Session.OpenDatabaseConnection FirstDB_Alias,
FirstDB.Password, True

“ Login

Session.UserlLogin "joe",

Engine.Terminate

End Sub
SmConfig Object

The SmConfig object allows retrieval and manipulation of SmarTeam
configuration data. You can edit the configuration data, including reading,
writing and deleting either individual configuration data items or entire
configuration sections.

58

Chapter 5,SmarTeam Engine Library

System Configuration Service

Beginning with V5R13, configuration settings are handled by the System
Configuration Service. This service replaces the various SmarTeam
configuration location (INI files, Registry) used in previous versions of
SmarTeam. For more information on the System Configuration Service
and its parameters, see “System Configuration Service” in the SmarTeam -
Editor Online Help.

Using INI Files

With the System Configuration Service you should continue using
configuration INI files in their same locations. However you should be
aware that SmarTeam now handles INI files according to their file names
in the following way:

If the INI file has a standard SmarTeam INI file name, such as
SmTeam32. ini, SmarTeam gets the configuration settings from the
System Configuration Service. The contents of the INI file are ignored.

If the INI file does not have a standard SmarTeam INI file name, for
example, myname . ini, SmarTeam will take the configuration settings
from the INI file and not from the System Configuration Service.

Using the API to access SmarTeam Configuration Data

With the System Configuration Service, there is no change in how you
access SmarTeam configuration data. You continue to use the same key
path, as described below, where now SmarTeam accesses the System

Configuration Service, transparently to the user.
Note: Since the location of the configuration parameters may change between
versions of SmarTeam, you should not attempt to access the Registry directly.

Accessing Non-SmarTeam Data

In cases where you specify a key path for a registry location, which does
not correspond to a SmarTeam configuration item, SmarTeam will access
the registry and not the System Configuration Service. Similarly, if you
have provided a non-standard INI file name, as above, a key path to the
INI file will access the data in the INI file.

Configuration Types

59

SmarTeam Object Model Programmer's Guide

In order to provide maximum flexibility, SmarTeam can be configured in

the following independent ways:

e Admin Configuration - determines the configuration for all the
SmarTeam users associated with it.

e Local Configuration - determines the configuration for all the users
using a specific workstation

e Database-Specific Configuration - determines the configuration for
all users connected to a specific database

e User-Specific Configuration - determines the configuration for a
specific logged-on user connected to a specific database

Accessing ISmConfig

You can create an SmConfig object as follows:
Dim SmConfig As SmApplic.SmConfig

Set SmConfig = CreateObject('SmApplic.SmConfig')

You can access most of the configuration data through the SmConfig
object without having to create an SmEngine or SmSession object.

For example:
MsgBox SmConfig-HomeDirectory “\SmarTeam

MsgBox SmConfig.-IniFileName "SmTeam32.ini

MsgBox SmConfig.Value('$Local\Init Coordinates\Maximized'?) “YES

Other configuration data only becomes available after you have created an
SmEngine object, an SmSession object, or a user has logged in. That
configuration data is available only through SmSession.Config.

If you create an SmSession object, you can always access configuration
data through SmSession.Config so it is unnecessary to create a separate
SmConfig object in that case.

Accessing Configuration Data

60

Chapter 5,SmarTeam Engine Library

Key Path

You address configuration information by using a key path (also called an
option path) of the form:

$<Option type>\<Section name>\<ldentifier name>

For data in a configuration ini file, the Option type can be Admin,

Local, Database or User,depending on which type of configuration is
desired.

For data in the Registry the Option type can be RegClassesRoot,
RegCurrentUser, RegLocalMachine, UserReg, or AdminReg.

You can also use a parameterized key path to add flexibility in specifying
the configuration item key path.

ISmConfig provides many properties and methods for editing
configuration data; they are all based on addressing the data via a key
path.

See the COM API Reference Guide for detailed information.

Examples

For example, you can access an individual configuration data value by the
following command:

MyOption = Session.Config.Value(<Key path>)
1. The following command reads the value of the <My l1dent> identifier

from the <MySection> section of the SmTeam32.ini file located in the
LocalConfig directory:

MyOption = Session.Config.Value(“‘$Local\<MySection>\<Myldent>"")
2. The following command tries to read the value of the <My Ident>

identifier from the <MySection> section of the SmTeam32.ini file
located in the User subdirectory:

MyOption = Session.Config.Value(“‘$User\<MySection>\<Myldent>"")

If not found, the system tries to read the same identifier from the
SmTeama32.ini file located in the LocalConfig directory.

ExpandValue Property

61

SmarTeam Object Model Programmer's Guide

Important Note: It is not recommended to adjust the ExpandValue
Property of the ISMConfig Interface.

Remarks

The ExpandValue gives the same results as the method ISmConfig.Value,
specifying the configuration item key path.

Instead of using a "hard-wired" key path, you can parameterize some or all
parts of the key path. That lets you use the same key path to address a
related set of configuration items. You address individual configuration
items by setting the values of the key path parameters.

For example, the path:

$RegLocalMachine\SoftWare\Smart Solutions\SmarTeam\Database
Connection Setup\$Num

has its last section parameterized ($Num). By assigning values to $Num,
for example, "1", "2", "3", you address different configuration items
without changing the form of the key path.

Any part of the key path except for the first can be parameterized by
replacing the part name by any variable name prefixed by "$". You can
parameterize more than one part of the path at a time. The parameter
values are represented by a Variant array, which contains as many
elements as there are parameters in the key path. In the above example,
you use an array of one element.

After assigning parameter values directly into the array, you call
ExpandValue with the key path and parameter array as arguments.

Common Parameterized Key Paths

Warning: Do not write to these locations unless you are sure of the
results.

Description Key

GlobalDatabaseConnectionNum | '$AdminReg\Database Connection Setup\$Num
GlobalDatabaseName '$AdminReg\Database Connection Setup\$Num\Database N{

Editing Configuration Data in the Windows Registry

You use the same type of key path to address configuration data in the
Registry, except that the Option type can be AdminReg Or UserReg,
corresponding to Admin or User configuration data:

62

Chapter 5,SmarTeam Engine Library

Examples

1. The command
MyOption = Session.Config.Value(“$AdminReg\ <MySection>\<Myldent>"")

reads the value of the <My ldent> identifier from the
HKEY_LOCAL_MACHINE\SOFTWARE\Smart

Solutions\SmarTeam\<MySection> path of the Windows registry:

2. The command
MyOption = Session.Config.Value(“‘$UserReg\ <MySection>\<Myldent>"")

tries to read the value of the <Myldent> identifier from the
HKEY_ CURRENT _USER\SOFTWARE\Smart Solutions\SmarTeam\<MySection> path
of the Windows registry:

If not found, the system tries to read the identifier from the
HKEY_LOCAL_MACHINE\SOFTWARE\Smart Solutions

\SmarTeam\<MySection> path of the Windows registry.

3. The three option types $RegClassesRoot, $RegCurrentUser, and
$RegLocalMachine, enable you to read from any path of the Windows
registry.

The command

MyOption = Session.Config.-Value(“‘$RegClassRoot\ <MySection>\<Myldent>"")

reads the value of the <My ldent> identifier from
HKEY_CLASSES_ROOT\<MySection> path of the Windows registry:

Properties and Methods for Editing Configuration Data

The following is a list of the methods and properties available for editing
configuration data in . in1i files or in the Registry. See the COM API
Reference Guide for details and examples of these methods and properties.

Terminology

Configuration Item := {Identifier = Value}

Configuration Section := {[SectionName] + Configuration Items}

63

SmarTeam Object Model Programmer's Guide

Properties and Methods

Property or Method Description
[Expand]Value Sets or gets a Configuration item value using
[parameterized] key path
Read[Expand]ValueAs[Type] Gets a Configuration item value as Type using

[parameterized] key path. If the configuration item is
found, the default value specified is returned.
ReadExisting[Expand]ValueAs[Type]| Gets a Configuration item value as Type using
[parameterized] key path. If the configuration item is
found, an error message is issued.

Read[Expand]Section Gets all Configuration items of a section as SmString
using [parameterized] key path

IdentsInSection Gets all Configuration items of a section as
SmRecordList using a fixed key path

Read[Expand]Registry Gets all Configuration items of a registry section as
SmStrings using a [parameterized] key path

Write[Expand]Section Writes all Configuration items of a section as SmStri
using [parameterized] key path

Delete[Expand]Value Deletes an individual configuration item using a
[parameterized] key path

Delete[Expand]Key Deletes an individual configuration item using a
[parameterized] key path (Same as DeleteValue)

Delete[Expand]Section Deletes a configuration section using a [parameterize
key path

Note: When using the function Session.Config.ReadSection, the Key is
always returned in lowercase.

Metadata Management Objects

The metadata management objects of the SmarTeam Engine library
contain information relating to the SmarTeam data model.

The main properties and object hierarchy of the metadata management
objects are shown below:

64

Chapter 5,SmarTeam Engine Library

SmMetalnfo

MainClassld

ID

SmAlIClasses (SmClasses) |

Item (SmClass)

SmClass (SmClass) |

SmClassByName (SmClass) |

SmClassByTableName (SmClass) |

AllOperations (SmOperations) |

L—‘ Item (SmOperation) |

AllUserDefinedOperations (SmOperations) |

\—‘ Item (SmOperation) |

OperationsForClass (SmOperations) |

\—‘ Item (SmOperation) |

UserDefinedOperationsForClass (SmOperations) |

L—‘ Item (SmOperation) |

OperationsForMechanism (SmOperations) |

\—‘ Item (SmOperation) |

OperationMechanismlid |

DefaultApplicationTools (SmApplicationTools) |

\—‘ Item (SmApplicationTool) |

SmProjection (SmProjection) |

S o+ 1[I [L

65

SmMetalnfo Object

The SmMetalnfo object represents all information about a specific
SmarTeam data model. Each SmSession object contains an SmMetalnfo
object for the connected database. The SmMetalnfo object contains several
properties that represent specific terms in the system, including:

e Persistent Classes represented by the SmClasses and SmClass objects.

e System and user-defined operations, defined in the database,
represented by the SmOperations and SmOperation objects.

e Applications tools represented by the SmApplicationTools and
SmApplicationTool objects.

e Projections, represented by the SmProjection object.

Important Note: In a script, SmSession.SmMetadata can be accessed only
after calls to SmSession.OpenDatabaseConnection and
SmSession.UserLogin have been made.

SmClasses and SmClass Objects

66

The SmClass object represents a Persistent Class defined in the
SmarTeam Data Model. SmClasses is a collection object representing a
set of SmClass objects.

The SmClass object provides the following objects and corresponding

functionality:

e Attributes in the class, represented by the SmClassAttributes and
SmClassAttribute objects

e Object tree, represented by the SmObjectTree object. This object
defines the Persistent Classes which can be linked as parents or
children to instances of the class.

e General links, represented by the SmGeneralLinks object. This object
defines the Persistent Classes which can be linked to instances of the
class.

The main properties and object hierarchy of the SmClass object are shown
below:

Chapter 5,SmarTeam Engine Library

SmClass

Classld

SuperClassld |

Name

ClassType

ExternalName

i
I

TableName

—| Attributes (SmClassAttributes)

‘—{ Item (SmClassAttribute)

Name

ExternalName

AttributeType

Size

—I Primaryldentifier (SmClassAttributes)

I DefaultDisplayAttributes (SmClassAttributes)

—| ParentClass (SmClass) |

| LeafClasses (SmClasses) |

—| DirectChildClasses (SmClasses) |

I AlIChildClasses (SmClasses) |

—| AllParentClasses (SmClasses)

| ReferencedInClasses (SmClasses) |

—I ObjectTree (SmObjectTree)

GeneralLinks (SmGeneralLinks) |

—I DefaultHierarchicalClassld |

FileManaged

—| EnabledTopLevelAssignment

| Revision Managed |

I AreThereChildren |

SmClassAttributes and SmClassAttribute Objects

The SmClassAttribute object represents an attribute of a Persistent Class
defined in the SmarTeam Data Model. SmClassAttributes is a collection
object representing a set of SmClassAttribute objects.

67

SmarTeam Object Model Programmer's Guide

The main properties and object hierarchy of the SmClassAttribute object
are shown below:

| SmClassAttribute

Name

ExternalName

Attribute Type

Size

Mandatory

ReadOnly

DefaultValue

—| ReferencedClassld |

—| IsPrimaryldentifier |

68

Chapter 5,SmarTeam Engine Library

Reference to Class

A Class Attribute is called “Reference to Class” when it represents a
reference from the current class to another class (the “referenced class”).
The Classld of the referenced class is represented by the ReferencedClassld
property of the Reference to Class. The purpose of this ability is to allow
an object of a class to reference another object through one of its
properties, usually for displaying properties of the referenced class.

For example, the Class Attribute "USER_OBJECT _ID" of a Document or
Folder is a Reference to Class, which represents a reference to the User
Class; its ReferencedClassld property has the value of the Classld of the
User Class. A Folder object would use this attribute to refer to the User
object that is its creator.

Example

In the following example, FolderObject is an SmObject of class Folder.
You obtain the Class Id of the creator User class as follows:

UserClassld =
FolderObject.SmClass . Attributes. I'temByName("'USER_OBJECT _ID'") .ReferencedClassid

The AttributeType (type of the value that is stored in this attribute) of a
Reference to Class is sdtObjectldentifier. The Reference to Class
attribute of an SmObject contains the Object Id of the referenced
SmObject.

The 1ISmClass.ReferencedInClasses Property and the
SmObject.CheckReferences method check if a class or object is referenced
by another.

69

SmarTeam Object Model Programmer's Guide

SmProjection Object

A Projection object is a subset of the Class Attributes of an SmClass and is
used to represent an SmObject by these attributes. One main use of
Projection objects is to display the attributes of a referenced class. For
example, when you display the properties of a Folder object on a Profile
Card and you want to include the LOGIN property of the User who created
the Folder (where the User class is referenced by the Folder, as described
in the previous section), you would use a Projection. The Projection object
is created for the User Class and selects only the LOGIN property of the
User Class.

70

Chapter 5,SmarTeam Engine Library

Example

The following is an example of how to create a Projection for the
UserClass with the Classld “UserClassld” mentioned above, give it a name
“UserProjection”, and save it in the Database:

Set SmAttributes = SmSession.Metalnfo.NewClassAttributes(UserClasslid)
SmAttributes.Add "LOGIN™

SmAttributes.Add "USER TITLE™

" create projection for the user class

Set UserProjection = SmSession.Metalnfo.NewProjection(UserClassld)
UserProjection.Fields = SmAttributes

UserProjection.Seperator = "'

UserProjection.Name = "UserProjection"

UserProjection. Insert

Any time you want to use this projection you refer to it by the name
UserProjection, similar to the names Folder and Document.

Note that you can define more than one Projection for a Class, which
allows different kinds of property displays for a Class depending on your
requirements.

SmcClassReferenceObject Object

The SmClassReferenceObject object is used to display the properties of a
specific object of a Class for a specific Projection of the Class.

Example

To display the "UserProjection™ Projection properties for the User object
referred to by the Folder object FolderObject, you use the function
GetSmClassReferenceObject as follows:

“ Get the Projection Id for the UserProjection object

UserProjectionld = Metalnfo.SmProjectionByName(UserClassld,
""UserProjection™). ID

71

SmarTeam Object Model Programmer's Guide

“ Get the Object Id of the User object, from the Reference to Class attribute
of “ the Folder object

UserObjectld = FolderObject.Data.ValueAsInteger(*'USER_OBJECT_ID'")

“ Use the GetDisplayValue method to display the Projection values
ProjectionString =
SmSession.ObjectStore.GetSmClassReferenceObject(UserClassld, UserObjectid,
UserProjectionld) .GetDisplayValue(True)

“‘Results: "joe, Chairman of the Board

For each Class, a default Projection is defined. If you set UserProjectionld
to 0 in the code above, the default projection values will be displayed.

To display the Projection attributes when you already have the User object,
you use the function SmClassReferenceObject as follows:

MsgBox
UserObject.SmClassReferenceObject(UserProjectionld) .GetDisplayValue(True) *
joe, Chairman of the Board

Reference to SmLookUp Class

The Reference to Class ClassAttribute is frequently used with a LookUp
class as the referenced class.

A LookUp Class is a collection of predefined objects any of which may
need to be accessed by another class. One example of a LookUp class is
File Type, which contains objects corresponding to each of the possible file
types that can occur in an application, such as SolidWorks Part and
Microsoft Word.

Example

This example uses the Reference to Class attribute FILE_TYPE to access
the file type of a Document object from the LookUp class File Type.

Assuming you have an SmObject of the Document class:
" Get the LookUp object Id — the default is Microsoft Word

LookUp_Object _Id = SmObject.Data.ValueAsString('FILE_TYPE')

" Get the referenced LookUp Class Id

72

Chapter 5,SmarTeam Engine Library

LookUpClassid =
SmObject.SmClass._Attributes. ItemByName("'FILE_TYPE™) _.ReferencedClassld

" Get the LookUp object’s display

LookUpValueStr = SmSession.ObjectStore.GetSmLookUp(LookUpClassid,
LookUp_Object_1d) .DisplayName

73

SmarTeam Object Model Programmer's Guide

SmObjectTree Object

The SmObjectTree object represents composition rules for a specific
Persistent Class in the SmarTeam data model. The SmObjectTree object
is referenced by an ObjectTree property of a SmClass object.

Example

The following example prints all possible child instances for a SolidWorks
Assembly class instance:

Sub Test()

Set SWAssemblyClass = SmSession._Metalnfo.SmClassByName(**Sol idWorks
Assembly')

Set CompClasses = SWAssemblyClass.ObjectTree.GetChildClasses
(SWAssemblyClass.DefaultHierachicalClasslid)

IT Not (CompClasses Is Nothing) Then
count = CompClasses.count — 1
For i = 0 To count
Set SingleClass = CompClasses. Item(i)
MsgBox ‘‘Possible child: " +_ SingleClass.ExternalName
Next
End If

End sub

74

Chapter 5,SmarTeam Engine Library

Class Behaviors

Class behavior refers to a common functionality that can be imposed on a
class.

Examples of such functionality are:

e The ability of an object of the class to be associated with a file (file-
managed)

e The ability of an object of the class to have successive revisions
(revision-managed)

e Restrictions on possible links to objects of the class

SmarTeam provides two different mechanisms to impose a class behavior
on a class:

e Class-level behavior

e Optional class-level behavior

Class-Level Behavior

A class-level behavior (CLB) specifies a special common functionality for
a class. In addition, it optionally specifies a set of class attributes the class
must possess in order to be able to support the required common
functionality. For example, the File Control CLB specifies the functionality
and attributes required for a class to be associated with a file. It specifies a
mechanism for the class to be aware of the file, to point to the physical file
on disk or vault, and to prompt to delete the file when object is deleted.
The class must have a File Name attribute and a Directory attribute. A CLB
imposed on a class can also restrict certain methods from acting on an
object of the class.

The CLBs are defined separately in the data model and are standardized
across classes. One or more CLBs can be associated with a class, and the
same CLB can be associated with two or more classes. Two basic CLBs are
File Control and Revision Control; a class that has these CLBs is called
file-managed and revision-managed, respectively. The Folder and the
Document classes in the SmDemo database are both file-managed and
revision-managed.

Once a CLB is associated with a class in the data model, all objects of that
class must conform to the CLB behavior.

75

SmarTeam Object Model Programmer's Guide

Note: A CLB can be defined in the data model for a link class as well as
for a regular class. This allows you to assign specific behaviors to links at
the class level. One example of a CLB applied to a link class is the Link
Direction CLB, which includes the directionality of the link.

Note: In previous versions of SmarTeam, Class-Level Behavior was
referred to as a Class Mechanism.

States and CLBs

A set of states can be associated with a CLB. When such a CLB is
specified for a class, all objects of the class can be in one of the states of
the set.

The following rules concern states and CLBs:

e The states of the CLB override any “native” states that might have been
assigned to the class, for example, New, CheckedIn, CheckedOut, etc.
for the Document class.

e If no states are associated with the CLBs imposed on a class, the
“native” states of the class will obtain.

e Two CLBs, each associated with a different set of states, cannot be
assigned to the same class

e API methods are available for accessing the states associated with a
CLB or class, see APl Methods below.

Optional Class-Level Behavior

SmarTeam supports a second type of class behavior, the Optional Class-
Level Behavior (OCB). As opposed to a CLB, to which all objects of the
class must conform, an OCB is optionally imposed on an object of the
class. The decision whether to impose an OCB on a particular object of a
class is made when the object is created at run time. If it is decided to use
the OLB, it is imposed then on the object, in addition to any CLBs that may
have been imposed on the class. Accordingly, different objects of the same
class can have different OCBs imposed on them.

One or more of the set of class OCBs can be assigned directly to a
persistent object of the class using the Add method of the
ISmSupportedClassMechanisms interface, accessible through the
OptionalClassMechanisms property of the SmObject that represents the
persistent object.

76

Chapter 5,SmarTeam Engine Library

The collection of all Class Behaviors, including both CLBs and OCBs, that
are imposed on a specific object are called Supported Class Behaviors. The
collection object ISmSupportedClassMechanisms is used to hold the
collection. The object is said to support the class behaviors.

Note: In V5R11, only one OCB can be assigned to an object.

Benefit of Optional Class-Level Behaviors

The major benefit of the OCB is that, by assigning them different OCBs,
two objects of the same class can have different class behaviors. This
allows you to define a wide class that represents a generic object, such as a
Part CAD Component class, which is independent of any particular CAD
product, and then to distinguish, on the object level, between different
types of CAD Documents, such a SolidWorks Part and Solid Edge Part.

The OCB imposed on an object can influence it in the following ways:
e Determines the possible link classes that can link to and from the object

o Determines the object’s life cycle operations characteristics (life cycle
rules)

e Determines which of the generic class attributes are relevant to the
particular object

In general, an object can have more than one OCB, where each OCB can
specify a type of behavior, for example, one OCB for possible links and
one OCB for relevant class attributes.

Example

In this example, two Document objects are created, each with a different
OCB, similar to the previous figure.

Dim Classld As Smalllnt

Dim SWPart, SEPart As ISmObject

Dim SW_PART Mechanism, SE PART Mechanism As ISmClassMechanism
“Create Document object

SWPart = SmSession.ObjectStore.NewObject(Classid)

“Get SolidWorks Document behavior

77

SmarTeam Object Model Programmer's Guide

SW_PART_Mechanism = Metalnfo.ClassMechanismByName(““TDM_SW_PART"”)
“Add it to Document to make it a SolidWorks Document
SWPart._OptionalClassMechanisms.Add(SW_PART_Mechanism)

“Create Document object

SEPart = SmSession.ObjectStore.NewObject(Classid)

“Get Solid Edge Document behavior

SE_PART_Mechanism = Metalnfo.ClassMechanismByName(““TDM_SE PART”)
“Add it to Document to make it a Solid Edge Document

SWPart._OptionalClassMechanisms.Add(SE_PART_Mechanism)

Link Composition

Link Composition is the determination of an appropriate and permissible
link class to link two objects.

Two common composition activities are:

e Determining the permissible link classes to link an object to an
undetermined second object.

e Determining the permissible link classes to link two objects that belong
to different classes.

Link Classes

To choose an appropriate link class for a link composition, three things
should be taken into account:

e The availability of the link class in the data model

e The permissibility of the link class for the linked objects.

e The characteristics of the desired link class

Availability of the link class in the data model

You can only use link classes that have been predefined in the data model.
See below for a discussion of how link classes are defined in the data
model and how you can use API functions to get the possible links.

78

Chapter 5,SmarTeam Engine Library

Permissibility of link class for the linked objects

You can only use link classes that are permissible for the objects to be
linked. Permissibility requirements can exist both on the class and the
object level, as discussed below.

Link Class Characteristics

Using API functions, you can specify desired characteristics of the required
link class:

Direction of the link — The directionality of a link class is specified by the
assignment of the Directional Link CLB to the class. For example, a
hierarchic link class such as Parent-Child or Child-Parent has the
Directional Link CLB assigned to it. The actual direction of the link in a
specific link object whose class has the Directional Link CLB is
determined by the order of the linked object arguments in the function that

creates the link object. For example, in the function
SmObjectl.LinkOneLevel(LinkClassld, SmObject2,

LinkAttributes), the link direction is from SmObjectl to SmObject2.

Regular attributes of the link class — you can specify additional attributes
of a link class by specifying the regular attributes of the link class, which
are defined in the data model.

Link Classes in the Data Model

This section describes how link classes are defined in the Data Model. This
information is necessary to understand how the API supports compositions.

Link class definitions by Data Model Designer

The Data Model Designer automatically establishes a link class between
the main (Project) class and every other superclass. These link classes do
not have the LinkDirection CLB imposed and hence are non-directional.

79

SmarTeam Object Model Programmer's Guide

The Data Model Designer can be used to establish a “user-defined” link
class between any two superclasses, including defining a link class between
a superclass and itself. Only one link object of a link class can be created
for a pair of objects of the two superclasses, unless an index attribute is
added to the link class, as described in the next paragraph. This “user-
defined” link class can optionally have the LinkDirection CLB imposed.
Only one “user-defined” link class can be defined for each pair of
superclasses.

For the user-defined link class of the previous paragraph, you can create
more than one link object between a specific pair of objects if you define
an index attribute in the user-defined link class. The additional link objects
are differentiated by the index attribute value.

One hierarchic link class is automatically established for each superclass,
to link objects within that superclass. It can be used for linking two objects
of that superclass only. For example: assembly and part in the Document
superclass. This link class has the LinkDirection CLB imposed.

Link class definitions introduced by Integration Modules

The integration modules (the integration module is used as an example, the
same is true for other modules) can add link classes to the Data Model, in
addition to the user-defined link class described in the previous section.
Integration link classes are link classes within one superclass. The user
cannot modify Integration link classes.

These integration link classes are set up to be used in CLB compositions,
as described below. A CLB Relations table associates a pair of OCBs with
each integration link class, meaning that the link class can link only objects
with the specified OCBs.

The integration modules do not add hierarchic links. The integrations must
use hierarchic link classes that were defined for the superclass by the Data
Model Designer. It is apparently not a restriction to use the same hierarchic
link class to link different pairs of OCBs.

Permissible Compositions

As mentioned above, you can only use a link class for a composition if the
link class is permissible for the objects to be linked.

Two levels of permission are required:

80

Chapter 5,SmarTeam Engine Library

e Class-Level Permission — The link class must be permissible for the
objects’ superclasses, that is, it must be defined in the Data Model as a
link class that links the superclasses. In the case of hierarchical links,
the link class must be permissible for the objects’ concrete leaf classes

e Object-Level Permission — The link class must be permissible for the
OCBs that are imposed on the objects to be linked, that is, the link class
must be associated with the objects” OCBs in the CLB Relations table
that associates pairs of OCBs with link classes.

Getting Permissible Link Classes for Compositions

API methods are provided to get the permissible link classes for linking
given objects.

A new group of methods is provided in ISmObjectStore to get possible
Link Classes that can link specific objects. These methods take into
account OCBs that may have been assigned to the objects (see API
Methods below).

To get a hierarchic link class to link objects of a specified parent class and
a specified child class, use the HierarchicalLinkClassByClasses method to
get a hierarchic link class that exists between objects of the parent class
and child class.

Class Composition

Class Composition is a special case of the Link Composition discussed in
the previous sections. In Link Composition, the link class must have both
class-level and object-level permissions, as discussed in the section
“Permissible Compositions”. In a Class Composition, only class-level
permission is required for a link class; object-level permissions are
ignored. The permissible link classes of a Class Composition depend only
on the two component classes and are independent of any OCBs that may
have been imposed on the two objects to be linked. The link class is
determined from the two linked objects’ classes and, as a result, the link
class can be used to link any two objects of the two classes. You would use
Class Composition when no OCBs have been assigned to the objects or
when you wish to ignore any OCBs that have been assigned to the objects.

81

SmarTeam Object Model Programmer's Guide

Getting Permissible Link Classes for Class Compositions

API methods are provided to get the permissible link classes for Class
Composition.

The SmGeneralLinks object represents the permissible non-directional link
classes that can exist between any two objects of specified classes. The
HierarchicalLinkClassByClasses method represents the hierarchic link
class that can exist between objects of a specified parent class and a
specified child class, both in the same superclass. The property
SmClass.DefaultHierachicalClassld gets the Id of the hierarchical link class
for that class.

The methods return links that do not take into account OCBs assigned to an
object.

82

Chapter 5,SmarTeam Engine Library

API Methods
Similar APl methods are provided to handle the Link Compositions and the
Class Compositions.

The following table compares the two sets of methods:
Link Composition Methods Class Composition Methods

Requires class-level and object-level permissions Requires class-level permissions and ignores
object-level permissions

Get permissible link classes between two specified objects/classes

ObjectStore.GetPossibleLinkClassesBetween Class1.GeneralLinks.GetLinkClasses (Class2Id) 4
Objects(SmObjectl As ISmObject, SmObject2 As | ISmClasses

ISmObject, LinkDirection As LinkQueryDirectionEny SmMetalnfo.HierarchicalLinkClassByClasses
As ISmClasses (Classlld, Class2ld) As Integer

When one object/class and the link class is specified, get the permissible classes for the related
object/class

ObjectStore.GetPossibleLinkedClasses(Class1.GeneralLinks.GetRelatedClasses(
SmObject As ISmObject, LinkClassld As Integer,| LinkClassld As Integer) As ISmClasses.
LinkDirection As LinkQueryDirectionEnum) As

ISmClasses

Get all permissible link classes to/from one object/class

ObjectStore.GetPossibleLinkClassesForObject(Class1.GeneralLinks.Classes As ISmClasses

SmObject As ISmObject, LinkDirection As
LinkQueryDirectionEnum) As ISmClasses
Get possible OCBs for related object Get CLBs imposed on class
ObjectStore.GetPossibleLinkedClassMechanisms(| Class1.FileManaged

SmObjectl As ISmObiject, LinkClassld As Integen Classl.RevisionManaged

LinkDirection As LinkQueryDirectionEnum) As | Class1. MechanismManaged(Mechanismld)
ISmClassMechanisms

States and CLBs

The following methods are provided to get the states associated with a CLB

and a class:
In SmApplic.IsmMetalnfo:
Method Description
StatesForMechanism Returns the set of state objects supported by the specified
mechanism (CLB). Returns IsmObjects
StateMechanismld Returns the Id of the mechanism (CLB) that supports the State
specified by its id. Returns Integer

83

SmarTeam Object Model Programmer's Guide

StatesForClass Returns the set of state objects supported by the specified class
The set of states depend on the CLB of the class. Returns
ISmObijects

GetDefaultStateForClass | Returns the initial state object for the specified class. Returns
ISmObject

Examples

The following example uses the ceneralninks interface to print the default
link class between classes Project and Documents:

Sub Test()

Set DocumentClass = SmSession.Metalnfo.SmClassByName(®'Documents'™)

Set ProjectClass = SmSession.Metalnfo.SmClassByName(*'Projects')

Set LinkClass =
DocumentClass.GeneralLinks.GetLinkClasses(ProjectClass.Classlid) - 1tem(0)
MsgBox ‘‘General link:" + LinkClass.ExternalName

End Sub

84

Chapter 5,SmarTeam Engine Library

This example demonstrates how to retrieve the linked objects (with reverse
link) to the current object.

“CurrentObject is received from outside with mechanism already set

LinkClassesReverse =
SmSession.ObjectStore.GetPossibleLinkClassesForObject(CurrentObject, LinkQueryD
irectionEnum. lgdSecondToFirst)

For i = O to LinkClassesReverse.Count - 1
linkClass = LinkClassesReverse. item(i)
IT not linkClass.isService Then
LinkClassld = linkClass.Classld
SuperClassid = 5
Roles.clear()
QueryDefinition.clear(
Roles_Add(SuperClassld, *'S™™) "add the linked super class id
Roles_Add(LinkClassld, "L'")
“Enter the direction

QueryDefinition.LinkQueryDirection =
LinkQueryDirectionEnum. IgdSecondToFirst

LinkedObjects = CurrentObject.RetrieveRelationsAndLinks(QueryDefinition)

End IF

Next

85

SmarTeam Object Model Programmer's Guide

Persistent Object Management

The Persistent Object Management support in the SmarTeam Engine
library enables the creation, update and deletion of Persistent Objects, and
the retrieval of information about these objects.

SmObjectStore Object

The SmODbjectStore object contains the functionality used to manage
Persistent Objects. It is used to:

e Retrieve information from the database about Persistent Objects
e Create and update Persistent Objects

e Create query objects.

SmObject and SmObjects Objects

SmObject represents a single Persistent Object in SmarTeam. The object
provides the following functionality:

e Data retrieval for the object

e Manipulation of the object, for example, Insert, Update, Delete

o Retrieval of other objects related to the object.

SmObject provides an in-memory representation of a Persistent Object.
The Persistent Object may match an existing object that is stored in the
database, or it may be a new object that has not yet been stored in the
database.

SmObject objects that match existing objects in the database are returned
using the various retrieval methods provided by ObjectStore and by other
objects. Several other methods, such as the SmObjectStore.NewObject
method, create SmODbject objects that might not have counterparts in the
database.

The main properties and object hierarchy of the SmObject object are
shown below:

86

Chapter 5,SmarTeam Engine Library

SmObject

SmClass (SmClass)

Classld

Objectld

Value

Data (SmRecord)

Value

ValueByIndex

The main properties of SmObject are:

Classld: represents the object’s class ID

Objectld: represents the object’s ID

SmClass: a reference to the SmClass object that represents the class of
the object

Value: used for retrieving and settings the attributes of the object.
Provides a shortcut to the underlying SmRecord object, which is
accessed through the Data property

Data: a SmRecord object which contains an in-memory copy of the
object’s attributes. The attributes can be retrieved and set using the
usual methods of SmRecord.

Changes to the attributes of a SmObject object do not affect the data stored
in the database for this object. To commit the changes to the database, call
one of the relevant methods, such as Insert, InsertEx, Update, UpdateEx
and others.

The SmObject object stores the information in memory in a SmRecord
object. The Data property provides access to this SmRecord, and the
Values property provides a shortcut for retrieving and setting the values of
the object’s properties.

87

SmarTeam Object Model Programmer's Guide

Creating a New Persistent Object via the SmarTeam
Object Model

In order to create a new Persistent Object, follow these steps:

Create an in-memory representation of the object using the
SmObjectStore.NewObject method:

Set NewObject = SmSession.ObjectStore.NewObject(ProjectClassid)

Add the definition of the object’s attributes by calling the
AddAllAttributes method:

NewObject.AddAl IAttributes

The attributes are added to the object with an empty (null) value.

If you want to set only some of the object’s attributes, you can use one of

the following methods:

e The AddAttributes method to add individual attributes. To add more
than one attribute, separate the attribute names with a semicolon “;".

e The AddPrimaryAttributes to add only the primary attributes of the
object.

e The AddProjectionAttributes to add the attributes associated with a
specific projection, and so on.

Set the values of the object’s attributes:

NewObject.Value(“‘CN_PROJECT_ID”) = “Project-Testl”
NewObject.Value(*‘CN_DESCRIPTION”) = “Motor Engineering”

If you wish, you can first set the attributes of the object to their default
values by calling the SetDefaultValues method.

Commit the object to the Database using the Insert method:
NewObject. Insert

Retrieving an Existing Persistent Object

There are several ways to retrieve a SmODbject object from the database.
The most common are:

88

Chapter 5,SmarTeam Engine Library

e SmObjectStore.RetrieveObject: Returns the SmObject representing a
specific Persistent Object, given a Class ID and Object ID, and
retrieves the values of all the attributes.

e SmObjectStore.RetrieveObjectByPrimaryldentity: Returns an
SmObject representing a specific Persistent Object, given a Class ID
and Primary ID as an SmRecord object, and retrieves the values of all
the attributes.

e SmObject.Retrieve: Retrieves all the attributes of an object from the
database. In order for the retrieval to be successful, SmObject must
contain either the values of the Class ID and Object ID of the Persistent
Object, or the values of the Class ID and Primary Identifier of the
Persistent Object.

e SmObject.RetrieveAttributes: Retrieves the values only of the
attributes that were added to the SmObject. Use this method if you
need to select only specific attributes of the object, and not all
attributes. Using this method improves system performance.

e Performing a query and accessing the SmObject instances in the query
result.

Example
The following example retrieves an SmObject that represents an object of

the class Folder, identified by the Primary Identity CN_ID = “Fold-0001”
and Revision = *:

Sub Test()
Dim Prmld As SmRecList.SmRecord
Dim FolderClass As SmApplic.ISnClass
Dim FolderObj As SmApplic. ISmObject
Set Prmld = New SmRecList.SmRecord
Prmld.AddHeader "'CN_ID", 40, sdtChar
Prmld.AddHeader "'REVISION', 40, sdtChar
Prmid.Value(""CN_ID'") = "Fold-0001""
Set FolderClass = SmSession._Metalnfo.SmClassByName(*'Folder'")

Set FolderObj = SmSession.ObjectStore.RetrieveCbjectByPrimary
Identity(FolderClass.Classld, Prmid)

End Sub

89

SmarTeam Object Model Programmer's Guide

Example

The following example retrieves a specific object’s description using the
primary identifier of the object:

Sub Test()
Dim SmObject as SmApplic.1SmObject
Dim SmClass as SmApplic.IsnClass
Set SmClass = SmSession.Metalnfo.SmClassByName(*'Projects'™)
Set SmObject = SmSession.ObjectStore_NewObject(SmClass.Classid)

“Add attributes CN_PROJECT ID, which is the primary identifier of the
Projects class, and CN_DESCRIPTION to the object

SmObject._AddAttributes “CN_PROJECT ID;CN_DESCRIPTION”
“ Set value for CN_PROJECT_ID
SmObject.Value(**CN_PROJECT_ID’”) = “Project-0003"

“ RetrieveAttributes method will search the object by it’s primary
identifier and select value of the CN_DESCRIPTION attribute

SmObject._RetrieveAttributes

MsgBox ““The description of the object is “+
SmObject.Value(“*CN_DESCRIPTION™)

End Sub
Creating an SmObject

The following can be used in various situations to create a new SmObject
object in memory:
e SmObjectStore.NewObject creates a new SmObject in memory:

Set SmObject = ObjectStore.NewObject(Classid)

e SmObjectStore.ObjectFromData creates an SmObject based on the
input SmRecord:

Set SmObject = ObjectStore.ObjectFromData(Record, Disconnect)
e SmObjectClone - clones an SmObject from an existing object:
Set SmObject = SmObjectl.Clone

90

Chapter 5,SmarTeam Engine Library

Connected and Disconnected Objects

The methods used for object creation define whether the internal structure
of the object can be changed, meaning whether you can add attributes to
the object or delete attributes from the object.

SmObject can be created as an independent or disconnected object, or as a
projection inside another SmarTeam object. Disconnected objects can be
restructured.

Disconnected objects can be obtained by the following methods:

e SmObjectStore.NewObject creates a new SmObject not connected to
any other data container.

e SmObject.Clone creates a copy with its own data container.

e SmObjectStore.ObjectFromData sets the second argument
Disconnect to true, in order to detach the new SmObject from
SmRecord container:

Sub Test()
Dim ObjRec as SmRecList.SmRecord
Dim NewObject as SmApplic. ISmObject
Set NewObject = SmSession.ObjectStore.ObjectFromData(ObjRec, True)

End Sub

A connected SmObject can be obtained in one of the following ways:

e SmObjectStore.ObjectFromData, with the second argument Disconnect
set to False

e SmObjects.ltem property

e Any other method that returns a single SmObject stored in another
object. For an example, see SmCompositeObject.ltem on page 99.

The lifetime of a connected object depends on the lifetime of the source
object, meaning that SmObject becomes invalid after the source object is
destroyed.

The mode of a SmObject object is indicated by its CanRestructure
property.

Additional SmObject Functionality

Additional groups of SmObject functionality include the following:

91

SmarTeam Object Model Programmer's Guide

e Object manipulation, Insert, Update, Delete

e Linking an object to other objects: LinkOneLevel, LinkToParent,
LinkToChild

e Unlinking an object from other objects: UnLinkParents,
UnLinkChildren, UnLinkRelations, UnLinkChild, UnLinkParent,
UnLinkRelation

e Manipulating an object’s related objects:

o Retrieve related objects - RetrieveChildren, RetrieveParents,
RetrieveRelations

e Unlink and delete related objects from the SmarTeam database:
DeleteParents, DeleteChildren, DeleteRelations

e Link related objects to another object, and, optionally, delete links with
the current object: MoveParentsToOtherObject,
MoveChildrenToOtherObject.

Note: These methods use the SmQueryDefinition object, as described
on page 104.

Example

The following example sets a value in the CN_DESCRIPTION field of a
specific object and updates it in the database:

Sub Test()
Dim SmObject as SmApplic.lsmObject
Dim SmClass as SmApplic.SmClass
Set SmObject = SmSession.ObjectStore. NewObject(Classlid)
SmObject.Objectld = Objectid
SmObject_AddAttributes “CN_DESCRIPTION”
SmObject.Value(**CN_DESCRIPTION”) = “Updated motor engineering”
SmObject.Update

End Sub

92

Chapter 5,SmarTeam Engine Library

Example

This example links a specific object as a parent of another object:
Sub Test()

Dim ParObject As SmApplic. ISmObject

Dim ChildObject As SmApplic.ISmObject

Dim LinkAttributes As SmRecList.SmRecord

Dim HierClassld As Integer

Set LinkAttributes = New SmRecList.SmRecord
LinkAttributes.AddHeader "'CN_QUANTITY", 2, sdtSmalllnt
LinkAttributes._Value(""CN_QUANTITY'™) = 3

HierClassld = ParObject.SmClass.DefaultHierachicalClassld
ParObject.LinkToChild HierClassld, ChildObject, LinkAttributes

End Sub

Example

The following example retrieves a specific object’s children:
Sub Test()

Dim ParObject As SmApplic. ISmObject
Dim Children As SmApplic.1SmObjects
Dim QueryDefinition As SmApplic. 1SmQueryDefinition
Dim Count As Integer, i As Integer
Dim SingleChild As SmApplic.ISmObject
“Retrieve children of the object
Set Children = ParObject.RetrieveChildren(QueryDefinition)
“Display primary identifier of each child
IT Not (Children Is Nothing) Then
Count = Children.Count - 1

For i

0 To Count

93

SmarTeam Object Model Programmer's Guide

Set SingleChild = Children. Item(i)
MsgBox *'Id of a child is " + SingleChild.Value("'CN_ID"")
Next
End If

End Sub

When creating a new SmarTeam title object from either a GUI or API, the
TDM_FILE_ID parameter is used. The internal attribute value is
automatically assigned.

The following objects are used to assist in implementing the SmarTeam
COM API parameter TDM_FILE_ID.
e Interface: ISmObject
Insert Method
Inserts object. Modification is executed according to DefaultBehavior
object
Sub Insert()

Example:
Set NewObject = Session.ObjectStore.NewObject
Session.Metalnfo.SnClassByName(*'Solid EdgePart'®).Classld
"Additional code if needed

NewObject. Insert
e Interface: ISmObject

Update Method

Updates object. Modification is executed according to DefaultBehavior
object.

Sub Update()
Example

The following example demonstrates using the class SmApplic.1SmObject to
perform operations and accessing data of Sm objects while updating object data
in a Database.

Set NewObject = Session.ObjectStore.NewObject
(Session._Metalnfo.SmClassByName(*'Solid EdgePart'").Classld)

" Additional code iIf needed

94

Chapter 5,SmarTeam Engine Library

NewObject. Insert

When updating an existing SmObject you should not hold the TDM FILE ID while
it is updating object®s record list.

For updating use the following example code:

Set SmObject = Session.ObjectStore_NewObject (Session._Metalnfo.SmClassByName
('Solid Edge Part™).Classld)

SmObject_Objectld = NewObject.Objectld

SmObject.AddAttributes
"TDM_ID;FILE_NAME;DIRECTORY;CAD_REF DIRECTORY;CAD_REF FILE NAME;FILE TYPE™

SmObject._Data.Value("'TDM_ID') = Session.ObjectStore.Sequences. ItemByAttribute
(Session_Metalnfo.SmClassByName(*'Solid Edge Part').GetAttribute(''TDM_ID",
True)) . IncrementGlobal
SmObject._Data.Value("'FILE_NAME'") = "‘test._txt"
SmObject.Data.Value("'DIRECTORY'") = "C:\"

Smobject.Data.Value("CAD_REF DIRECTORY"") = SmObject.Data.Value('DIRECTORY'")

Smobject.Data.Value("CAD REF FILE NAVE™™) = SmObject.Data.ValueC'FILE NAVE'")

SmObject._Data.Value("'FILE TYPE™) =
Session.ObjectStore . GetSmLookUpByUniqueName(Session.Metalnfo. SmClassByName (' 'Fi
le Type').Classld, "Solid Edge Part'™).Id

SmObject.Update

SmObjects Object

The SmODbjects object represents a collection of SmObject objects.

Depending on the method used to retrieve the SmObjects instance, it might
not be possible to perform certain operations on it efficiently. The
CanRestructure property indicates if the SmObjects instance can be
restructured by adding or removing attributes from the objects it contains,
and the CanAddRemove property indicates if objects can be added to the
collection or removed from it.

95

SmarTeam Object Model Programmer's Guide

Accessing SmObject
A SmObject object may be created using various methods, for example:

e SmObjectStore.NewObjects creates a new empty collection.

e SmObjectStore.ObjectsFromData passes an SmRecordList object as
input, and obtains an SmODbjects collection object that represents
objects listed in the SmRecordL.ist object.

e Any other method that enables an SmObject collection to be obtained.

SmBehavior Object

The SmBehavior object contains flags that determine whether specified
conditions are executed.

All object management functions, such as Insert, Update, Delete,
Retrieve, are executed according to behavior flags contained in the
SmBehavior object. For example, when adding objects, you can set a flag
to determine whether to:

e EXxecute scripts

e Prompt the user

e Check user authorization.

The SmObjectStore object contains a default SmBehavior object with
default flag values.

All methods, such as Add, Update, Delete, and Retrieve, use the default
behavior of SmObjectStore. Each of these methods has a counterpart
method, which has the same name with the suffix Ex. These methods take a
SmBehavior object as an argument.

To create your own SmBehavior object, use the Clone method and modify
its flags, as shown in the following example:

Example

Sub test()
Dim SmSession As SmApplic.SmSession
Dim DocClassld as Integer

Dim DocObject As SmApplic. ISmObject

96

Chapter 5,SmarTeam Engine Library

Dim NewBehavior As SmApplic.ISmBehavior

DocClassld = SmSession.Metalnfo.SmClassByName
(“‘Document’) .Classld

Set DocObject = SmSession.ObjectStore.NewObject(DocClassld)
DocObject.Value("'CN_DESCRIPTION'") = *‘docl"
DocObject.Value("'CN_ID'") = "Doc-0010"

Set NewBehavior = SmSession.ObjectStore.DefaultBehavior.Clone
“ Don”t invoke scripts while performing operation
NewBehavior . InvokeScripts = False

“ Don”t prompt user to confirm operation

NewBehavior .ConfirmOperations = False

DocObject. InsertEx NewBehavior

End Sub

The settings for the default system behavior are as follows:
CheckAuthorization = True

InvokeScripts = True

ConfirmOperation = coPromptUser

CheckLinksOnDelete = cldPromptUser
ConfirmAttachedFileDeletion = coPromptUser
CheckObjectsExistence = True

ViewObjectAuthorization = voaCheckAndDeleteFromList

The default behavior settings can be accessed through the
Metalnfo.ObjectStore.DefaultBehavior property.

97

98

Authorization Settings

The two Behavior parameters:
CheckAuthorization
ViewObjectAuthorization

pertain to preventing an operation when the user does not have
authorization privileges.

The CheckAuthorization parameter pertains to the Database operations
Add, Update, Delete and has the values:

CheckAuthorization Description

True The operation is performed only if the user has SmarTeam
authorization on the class on which the operation is running.

False The operation is performed even if the user has no authorization
the class.

The ViewObjectAuthorization parameter pertains to displaying the results
of query operations and has the values:

ViewObjectAuthorization Description

voaNotToCheck All query results objects are returned, irrespective of us
authorization.

voaCheckAndDeleteFromList The query results contain only authorized objects.

voaCheckAndSigninList All query results objects are returned, irrespective of us
authorization, but any objects not authorized are not
displayed by SmarTeam. The objects have a special sig
the RecordList.

SmMultiObjects Object

The SmMultiObjects object represents a collection of SmObjects and
therefore the list may contain Persistent Objects of different superclasses.

The following example shows an iteration on an SmMultiObjects variable
in order to obtain a specific SmObject object.

Example
Sub Test()
Dim SmObjsColl As SmApplic. ISmMultiObjects
Dim i As Integer, CollCount As Integer
Dim SingleColl As SmApplic.1SmObjects
Dim j As Integer, Col2Count As Integer
Dim SingleObj As SmApplic. ISmObject
Col1Count = SmObjsColl.Count - 1
For i = 0 To CollCount
Set SingleColl = SmObjsColl. Item(i)
Col2Count = SingleColl_Count - 1
For j = 0 To Col2Count
Set SingleObj = SingleColl.ltem(j)
Next j
Next |
End Sub
SmCompositeObjects and SmCompositeObject Objects
The SmCompositeObject object represents a collection of SmObject

objects that represent Persistent Objects related to each other by, for
example, a hierarchical link or general link.

99

SmarTeam Object Model Programmer's Guide

The SmCompositeObjects object represents a collection of
SmCompositeObject objects that have the same composition information,
for example, objects and their hierarchical links to a specific parent object.

Each participating object in the SmCompositeObject is identified by its
specific key. This key may be either a character key or an integer key
which represents the object’s Class ID or superclass ID.

For example, the methods SmObject.RetrieveChildrenAndLinks and
SmObject.RetrieveParentsAndLinks create an SmCompositeObjects
collection object in which each SmCompositeObject member contains two
SmObject objects.

These objects are identified as follows:
e The child object itself is identified by its superclass ID
e The link object is identified by its class ID.

In order to retrieve a specific SmObject object from a single
SmCompositeObject, use the Item property. The input to the method can
be either a character role or a class ID role, but not the index of the
SmObject in the SmCompositeObject. To obtain a specific SmObject by
its index, use one of the following:

Role = SmCompositeObject._Role(intindex)

Set SmObject = SmCompositeObject. Item(Role)

or
Classld = SmCompositeObject.Classld(intindex)

Set SmObject = SmCompositeObject. Item(Classlid)

The SmMultiCompositeObjects object represents a collection of
SmCompositeObjects objects, and can therefore contain objects with
different composition information.

SmLookUpObjects and SmLookUpObject Objects

These objects represent the Lookup Table information.

100

Chapter 5,SmarTeam Engine Library

SmClassReferenceObjects and SmClassReferenceObject
Objects

The SmClassReferenceObject object represents the value of an attribute
that references an object from another class.

The SmClassReferenceObjects object provides access to the list of
possible objects from the referenced class, which can be referenced by a
specific attribute.

Managing Transactions in the Database

When working with Persistent Objects, it is often necessary to group
several operations to be performed on the Persistent Objects into a
transaction. Transactions are used to mark a group of operations as an
“atomic operation”, meaning an operation that should either complete
successfully or not at all.

The SmarTeam Object Model provides support for transactions through
the SmDatabaseConnection object. However, the SmarTeam Object
Model also provides the Operation model, which is often more useful for
larger systems.

An operation is similar to a transaction. However, when using operations,
you do not explicitly start, commit or rollback database transactions.
Instead, you mark the beginning of an operation, and later, the successful,
or unsuccessful, end of the operation. The SmarTeam database engine uses
this information to manage database transactions in an efficient manner.

Unlike transactions, operations can be nested, meaning that you can start an
operation while another is still in progress. However, the inner operation
must end before the outer operation is completed. Nested operations are
especially useful in larger systems, where a component needs to participate
in a larger transaction without being aware of the exact scope of the
transaction.

The following SmObjectStore methods manage operations:

101

SmarTeam Object Model Programmer's Guide

StartOperation is used to mark the beginning of an operation. If there
IS no active transaction at this point, the SmarTeam Engine begins a
new transaction automatically. Each call to StartOperation must be
matched with a later call to EndOperation or FailOperation.

EndOperation is used to mark the successful completion of an
operation. If the operation is a top-level operation (i.e. it is not nested
in another operation) the SmarTeam Engine automatically commits the
transaction at this point.

FailOperation is used to mark a failed operation. When a nested
operation fails, all the operations including it are also marked as failed,
even if EndOperation is called for them. If the failed operation is a
top-level operation, the SmarTeam Engine automatically rolls back the
transaction at this point.

In the following example, the program is required to perform the Update,
Retrieve and LinkToParent methods in one database transaction.
EndOperation in this case performs the COMMIT transaction. If the
methods fail, the FailOperation method accomplishes ROLLBACK of the
whole transaction.

Example

Sub LinkObjectsQ

On Error GoTo ErrorHandler
StartOperation

Object._Update

Parent._Retrieve
Object.LinkToParent(LinkClassld, Parent)
EndOperation

ErrorHandler:

FailOperation

End Sub

102

Chapter 5,SmarTeam Engine Library

Below is an example of nested operations. In this example the overall
transaction contains the method UnlinkFromParent and three methods
from the LinkObjects function. COMMIT of the transaction is performed
by the EndOperation from the main routine.

Example

Sub MainQ
On Error GoTo ErrorHandler
StartOperation
Object._UnlinkFromParent(OldParent)

“ Call function from the previous example
LinkObjects

EndOperation

ErrorHandler:

FailOperation

End main

103

SmarTeam Object Model Programmer's Guide

SmQuery Object

Description

The SmQuery object allows you to define a powerful and flexible database
query, run it, and access the query result.

The SmQuery object lets you perform the following advanced query tasks:

Define class roles

Perform a query on linked objects from the same class
Order and sort the query results as desired

Use query filters.

The following is a description of the important properties and methods of
the SmQuery object:

e Query Definition

e QueryResult.

QueryDefinition

The QueryDefinition property provides access to the components of the

query definition as follows:

¢ Roles - the collection of class-role assignments that participate in the
query

e Select — the collection of class attributes which are returned in the
query result

o Where - the collection of conditions that determine which objects will
be included in the query result set

e OrderBy - the collection of attributes that define the sort order of the
returned query result.

Roles

QueryRoles is the collection of class-role assignments on which the query
performs its search. They are analogous to the tables in the FROM clause
of an SQL statement.

A QueryRole item is a pair consisting of a class, represented by its class id,
and a ClassRole, represented by one of the identifiers: “F”, “L”, and “S”.
By assigning different ClassRoles to a class, the same class can assume
different identities for the purpose of the query search.

104

Chapter 5,SmarTeam Engine Library

The main application of the QueryRole is to allow queries on linked objects
from the same class. The basic model is a first object, F, linked to a second
object, S, by a link L (for that reason the letters “F”, “L” and “S” are used
as ClassRole identifiers). For this model you need to define three
QueryRole items in the query definition, with the “F”, “L”, and “S”
identifiers, respectively.

To perform a query on a single class, define a single QueryRole item using
the “F” identifier only. (For a single class query, the role can be whatever
you want.)

As an example of the linked objects model, you might want to locate a
document with certain attributes that has a child document with certain
other attributes. The target document and its child document are in the
same Document class and the parent-child link between them is in a third
class, the Hierarchic Link class. In order to differentiate between parent
and child attributes, the Document class is assigned two separate roles: the
parent role and the child role (identifiers “F” and “S”, respectively). The
Hierarchic Link class is assigned the link role “L”.

This allows you to specify Document class attributes for both parent and
child documents in the Select collection and the Where collection of the
query. You distinguish between them by appending the ClassRole
identifier: F.attributename for the parent document and S.attributename for
the child document.

For example: you want to find the name of a parent document whose name
contains the string “automobile” that has a child Document that has more
than 100 pages.

You define three QueryRole items as follows:

QueryRole Item ClassRole Class

Parent F Document Class
Link L Hierarchic Link Class
Son S Document Class

For example, the first row says that the QueryRole “Parent” is defined as
the pair “F” and the class Document Class.

105

SmarTeam Object Model Programmer's Guide

In terms of the SmarTeam notation, the ObjectID attribute of the
Document class TN DOCUMENTATION is called OBJECT _ID and the
Parent and Son Object ID attributes in the Hierarchic Link class
DOCUMEN_TREE are PAR_OBJECT_ID and SON_OBJECT_ID,
respectively.

Then, using the above role definitions, the analogous SQL format of the
above query would be:

SELECT F.name

FROM TN_DOCUMENTATION F, DOCUMEN_TREE L, TN_DOCUMENTATION S
WHERE F.name LIKE “%automobile%” AND

F.OBJECT_ID = L.PAR OBJECT ID AND S_OBJECT_ID = L.SON_OBJECT ID

AND S_PAGECOUNT > 100

To add a QueryRole item to the collection, use the Roles.Add method. You
specify the class ID and the associated ClassRole identifier.

Note that the identifiers “F” and “S” do not imply a specific order. They
can be interchanged without affecting the result.

Specifying Select Attributes

Any attribute that you specify for the select part of the query must be
identified with a specific QueryRole or class-role assignment, as discussed
in the previous section. Thus when you specify a class attribute, you also
need to specify the ClassRole identifier (“F”, “L” or “S”) associated with
the attribute’s class.

You assign a select attribute to the query using the Select.Add method. The
method provides both attribute name and ClassRole parameters.

For example,
QueryDef.Select.Add “CLASS_ID”,"S",False

means that the query returns values of the CLASS_ID attribute of the class
associated with the ClassRole S.

This is analogous to the SQL statement:
SELECT

106

Chapter 5,SmarTeam Engine Library

S.CLASS_ID

If a class has been assigned two different roles, you can refer to the same
class attribute twice in the query where each time you use a different role:

QueryDef.Select.Add “CLASS_ID”,"F",False
QueryDef.Select.Add “CLASS_ID”,"S",False
This is analogous to the SQL statement:
SELECT

F.CLASS ID, S.CLASS_ID

Specifying Where Conditions

Any attribute that appears in a condition in the Where part of the query
must be identified with a specific QueryRole or class-role assignment, as
discussed above. Thus when you specify a class attribute, you also need to
specify the ClassRole identifier (“F”, “L” or “S”) associated with the
attribute’s class.

You assign a condition on an attribute using the Where.Add method. The
method provides both attribute name and ClassRole parameters.

For example:
QueryDef.Where.Add "**,"CN_VOLUME","=",""1" False,"F"

specifies that the CN_VOLUME attribute of the class associated with
ClassRole F equals 1.

This corresponds to the SQL statement WHERE section:
WHERE

F.CN_VOLUME =1

If a class has been assigned two different ClassRoles, you can refer to the
same attribute twice in the Where part of the query where each time you
use a different ClassRole.

Ordering the Results

The OrderBy property allows you to specify the ordering of the query
results by attribute.

107

SmarTeam Object Model Programmer's Guide

The OrderBy.Add method provides two parameters by which you can
specify two types of sort order:

e SortOrder

e SortIndex

SortOrder

For an individual role-attribute, you can use the SortOrder parameter to
determine the ordering of the results according to that attribute’s values as
follows:

e None

e Ascending

e Descending

SortIndex

In addition, you can use the SortIndex parameter to specify a nested
ordering of the results. The attribute with Sortindex = 1 is sorted first,
according to its sort order. Any entries with the same attribute value are
again sorted, now according to the attribute with Sortindex = 2, and so on.

For example, the attributes selected for a query are the name, year of
manufacture and color of an automobile. If you want to sort all cars first
alphabetically by name, then further sort all cars with the same name by
year of manufacture and finally sort all cars with the same name and year
by color you would set:

Attribute SortOrder Sortindex
Name Ascending 1
Year Ascending 2
Color Ascending 3

SmarTeam Security

SmarTeam has a "data model level™ security that allows the data model
designer to specify permissions on data model entities. The security
includes specifying permissions per class, as well invoking a script which
allows implementation of security per object. The ISmQuery object

supports SmarTeam security.

Note Because the ISmSimpleQuery object does not deal with classes or objects, and
instead deals directly with SQL and RecordList, it is not aware of this mechanism
and does not enforce it.

108

Chapter 5,SmarTeam Engine Library

Object Diagram

The object diagram of IsmQuery is shown below:

ISmQuery
QueryDefinition

Roles
Select
Where

OrderBy
Filters

QueryResult

Figure 5-4 1SmQuery Object Diagram

109

SmarTeam Object Model Programmer's Guide

Obtaining the ISmQuery Object

You obtain a Query object as follows:
Set SmQuery = SmSession.ObjectStore.NewQuery

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a Query.

Query Task: Executing a Query

There are two methods of executing a query depending on how the query
results are retrieved.

Execute a Query and Retrieve all Results — Run Method

Use the Run method to execute the query. The query operation is executed
according to the DefaultBehavior object. All results of the query are placed
in the QueryResults object.

See below for an example of how to use the Run method.

Use the RunEx method to execute the query according to a specified
SmBehavior object.

Execute a Query and Retrieve one Result — Open Method

Use the Open method to open the query. This method executes the query
according to DefaultBehavior object but instead of placing all the results in
the QueryResults object — as the Run method does — only the first row of
the QueryResults object is filled.

You would use the Open method instead of the Run method, for example, if
you don’t need to display all results at one time. You might use it for
paging the results on an HTML display where the user can decide to view
only part of the results.

See below for an example of how to use the Open method.

Use the OpenEx method to open a query where the query is executed
according to a specified SmBehavior object.

110

111

Query Task: Defining the Query Mode

Use the QueryMode property to get or set the query mode.

The query mode specifies how the results of successive queries are handled
in the results record list, as shown in the following table:

QueryMode Description Software Constant

Append Results | The results of the query are appended in the | gmAppend
record list to the results of the previous query.
Build Results All results of previous queries are deleted from gmBuild
record list before inserting the results of this g

Intersect Results| The results of this query are intersected with th gmintersect
results of previous queries in the record list.

Query Task: Defining a Query for One Class

This section presents an example of defining and performing a query on
one class.

" Searching for all SolidWorks Assembly objects that have volume 1
“ First get the class on which the query is to run

Set SWAssemblyClass = SmSession.Metalnfo.SnClassByName(''SolidWorks Assembly')

“ get a new query and query definition

Set SmQuery = SmSession.ObjectStore.NewQuery
Set QueryDef = SmQuery.QueryDefinition

“ use one role, F, for one class
QueryDef_Roles_Add SWAssemblyClass.Classld,"'F"
“ define SELECT attributes
QueryDef._Select._Add “OBJECT_ID”,"F",False
QueryDef._Select_Add “CLASS ID”,"F",False

“ define the WHERE conditions

SmarTeam Object Model Programmer's Guide

QueryDef_Where.Add *™*,""CN_VOLUME™,*="","1",False,"F"
“run it

SmQuery.-Run

Query Task: Defining a Query for Linked Objects

This section presents an example of defining and running a query on linked
objects from the same class.

* Searching for all SolidWorks part objects that are children of any
SolidWorks Assembly object with quantity > 4 and volume = 1

“ First get the classes on which the query is to run
“ the object classes:

Set SWAssemblyClass = SmSession.Metalnfo.SmClassByName(*'SolidWorks Assembly'")

Set SWPart = SmSession.Metalnfo.SmClassByName(''SolidWorks Part'™)
“ and the link class
HierClassld = SWPart.DefaultHierachicalClassld
“ get a new query and query definition
Set SmQuery = SmSession.ObjectStore.NewQuery
Set QueryDef = SmQuery.QueryDefinition

¢ define the F, L, and S roles
QueryDef_Roles_Add SWAssemblyClass.Classld,"'F"
QueryDef.Roles.Add SWPart.Classld,''S"
QueryDef_Roles_Add HierClassld,"L"

“ add the SELECT conditions
QueryDef_Select.Add “NM_OBJECT_ID”,"'S",False
QueryDef.Select.Add “NM_CLASS ID”,"S",False

“ add the WHERE conditions

QueryDef_Where_Add *™*,""CN_VOLUME™,*=","1",False,"F"

112

Chapter 5,SmarTeam Engine Library

QueryDef_Where_Add ""*,""CN_QUANTITY",">","4" False,"L"
“run it

SmQuery.-Run

Query Task: Getting Query Results

Results can be extracted from the QueryResult object in different ways,
depending on the types of QueryRoles that are defined in the Roles
property, according to the following table:

QueryRoles Items Object used to extract Results
Linked Classes CompositeObjects
Single Class ISmObject

See examples in the next section.

Examples

This section contains examples of the use of the Query object to define and
execute queries.
Running a Query

This example uses the Run method on two linked classes. The results are
displayed using a CompositeObject.

Example

* Searching for all SolidWorks Assembly and SolidWorks part objects that
have parent-son relation where both have the status NEW

Sub Example(SmSession As SmApplic.SmSession)
Dim SWAssemblyClass As SmApplic.ISmClass
Dim SWPart As SmApplic.ISmClass
Dim SmQuery As SmApplic. 1SmQuery
Dim QueryDef As SmApplic.1SmQueryDefinition
Dim SmView As SmGUISKrv. ISmView
Dim GUIService As SmGUISKrv.SmCommonGUI
Dim LookUpObject As SmApplic. 1SmLookUpObject

Dim LookUpClassld As Integer

113

SmarTeam Object Model Programmer's Guide

“ First get the classes on which the query is to run
“ the object classes:

Set SWAssemblyClass = SmSession._Metalnfo.SmClassByName(*'SolidWorks
Assembly'™)

Set SWPart = SmSession._Metalnfo.SmClassByName(**SolidWorks Part'™)
“ and the link class

HierClassld = SWPart.DefaultHierachicalClassld

“ get a new query and query definition

Set SmQuery = SmSession.ObjectStore._NewQuery

Set QueryDef = SmQuery.QueryDefinition

“ define the F, L, and S ClassRoles

QueryDef_Roles_Add SWAssemblyClass.Classld, "'F*
QueryDef_Roles_Add SWPart.Classld, "'S™

QueryDef_Roles_Add HierClassld, "L"

“ add the SELECT conditions for the SolidWorks part objects
QueryDef._Select.Add ""OBJECT_ID", 'S, False
QueryDef_Select_Add "'CLASS_ID", 'S, False

QueryDef.Select.Add ""CN_DESCRIPTION", "'S", False

“ getting NEW State id

“ first get id of lookup class of all states

LookUpClassld = SmSession._Metalnfo.SmClassByName(''State'") .Classld
“ get NEW state item from lookup list of all states

Set LookUpObject =
SmSession.ObjectStore.GetlLookUpList(LookUpClassld) . ItemByUniqueName(*'New'")

“ add the WHERE conditions

“ Only Assemblies and Parts with status NEW will be retrieved

114

Chapter 5,SmarTeam Engine Library

“ STATE is field id from F or S classes; Lookupobject.id is id of NEW
state

QueryDef_Where.Add "', "'STATE", "="", LookUpObject.ld, False, "F"
QueryDef_Where.Add '™, "'STATE", "=", LookUpObject.ld, False, ''S"
“run it
SmQuery.-Run
IT (SmQuery.RecordCount > 0) Then “found results
“ Get main GUI service object
Set GUIService = SmSession.GetService('SmGUISrv.SmCommonGUI™™)
“ Create new SmView of type - bottom up tree)
Set Swiew = GUIService.Views_NewiewByType(wWwitBottomUpTree)
“ Assign displayed composite objects for view from query results
“ Need CompositeObjects to display QueryResults of linked objects

SmvView_DisplayObjects.CompositeObjects =
SmSession.ObjectStore.CompositeObjectsFromData(SmQuery.QueryResult, False)

“ Assign title to window

Smview.ViewTitle = "Found: " & CStr(SmQuery.RecordCount) & " records"

“ Show results by window object

SmView. SmViewWindow. Show
Else

MsgBox *"No objects found for this query"
End If

End Sub

Opening a Query

This example uses the Open method on a single class. The results are
displayed 20 records at a time using a CompositeObject.

Example

“ Search for SolidWorks Assembly objects with status NEW

115

SmarTeam Object Model Programmer's Guide

Sub Example(SmSession As SmApplic.SmSession)
Dim SWAssemblyClass As SmApplic.ISmClass
Dim SmQuery As SmApplic. 1SmQuery
Dim QueryDef As SmApplic.1SmQueryDefinition
Dim Swiew As SmGUISKrv.ISmView
Dim GUIService As SmGUISKv.SmCommonGUI
Dim LookUpObject As SmApplic. 1SmLookUpObject
Dim LookUpClassld As Integer
Dim Count As Long
Dim Continue As Boolean
Dim DisplCount As Integer
“ define a query over one class
“ First get the class on which the query is to run

Set SWAssemblyClass = SmSession.Metalnfo.SmClassByName(*'Sol idWorks
Assembly')

“ get a new query and query definition

Set SmQuery = SmSession.ObjectStore._NewQuery
Set QueryDef = SmQuery.QueryDefinition

“ define the F role

QueryDef.Roles.Add SWAssemblyClass.Classld, "F*

“ add the WHERE conditions

“ get Lookup class ID for internal state class

LookUpClassld = SmSession._Metalnfo.SnClassByName(*'State'™) .Classld
“ get NEW state item from states lookup list

Set LookUpObject =
SmSession.ObjectStore.GetlLookUpList(LookUpClassld) - ItemByUniqueName(* 'New'")

116

Chapter 5,SmarTeam Engine Library

“ Only Assemblies with status NEW will be retrieved

“ STATE is a field id from F ; Lookupobject.id is id of state NEW
QueryDef_Where_Add ", "'STATE", =", LookUpObject.ld, False, "F*

“ add description

QueryDef._Select_Add "'CN_DESCRIPTION", "F', False

“ Open query

SmQuery .Open

“ Get main GUI service object

Set GUIService = SmSession.GetService(*'SmGUISrv.SmCommonGUI"™)

Count = 0 ~ total QueryResults record count
Continue = True
“ 1f not at end of QueryResult and want to continue to display
While ((Not SmQuery.EOF) And (Continue))
DisplCount = 0 * count of records displayed on window

“ Create new SmView of type - tree list to show founds object and
their sons

Set Swiew = GUIService.Views_NewiewByType(WtTreelList)
SmView.ViewTitle = "Push Ok button to show next 20 records found *
“ Assign displayed objects for view from query results
While ((Not SmQuery.EOF) And (DisplCount < 20))
DisplCount = DisplCount + 1
Count = Count + 1
“ add one object to display from QueryResult
“ (CompositeObjectFromData gets one item)
SmvView_DisplayObjects.CompositeObjects.Add

SmSession.ObjectStore.CompositeObjectFromData(SmQuery.QueryResult, 0, True)

“ retrieve next QueryResult record

117

SmarTeam Object Model Programmer's Guide

SmQuery.Next
Wend
IT DisplCount > O Then
“ display data/dialog window
SmView. SmViewWindow. ShowModal
“ user pressed Cancel, finish displaying
IT SmView.SmViemWindow.ModalResult = mrCancel Then
Continue = False
End IF
End IF
Wend
IT Count = O Then
MsgBox '"No objects found for this query"
End IF
“ Close Query

SmQuery.Close
End Sub

ISmSimpleQuery function

The 1ISmSimpleQuery function enables the execution of a raw SQL query.
However, while allocating as much memory as necessary to generate
results for the query, the ISmSimpleQuery function does not monitor
memory overflow.

Therefore, when performing a query on a large amount of data, it is
recommended that you use SmincrementalSimpleQuery, which uses paging
and does not cause memory overflow.

118

6. SmarTeam GUI Services Library |

General Description

The SmarTeam GUI Services library comprises objects that enable the
following SmarTeam Windows client-related functionality:

e Create and display SmarTeam views

e Retrieve information about existing GUI components

e Display various SmarTeam windows and dialogs.

Dependencies

The SmarTeam GUI Services library has the following dependencies:
e SmarTeam Record List library
e SmarTeam Engine library.

GUI Concepts

This section describes the basic GUI concepts used in the SmarTeam GUI
services.

The SmarTeam View

The SmarTeam View is a window with a standard and consistent design,
layout and operation that is used to display a variety of persistent
SmarTeam objects and links in various formats. You can also get selected
objects from the display.

119

SmarTeam Dialogs

SmarTeam provides a series of standard Dialogs for inputting and
selecting information such as Local Files Explorer and Open Dialog or for
performing operations such as Login and Save As.

Overview of Objects—ISmCommonGUI

This section presents an overview of the main ISmCommonGUI objects
including a description of the associated objects that are useful for the
programmer:

The ISmCommonGUI is the highest-level object; its main purpose is to
contain the other objects.

The major ISmCommonGUI components are shown in the following object
diagram:

ISmMCommonGUI

Views

Dialogs

ParentWindowHandle

ActiveViewWindow

Figure 6-1 ISmCommonGUI Object Diagram

120

Chapter 6, SmarTeam GUI Services Library

Properties

The CommonGUI object contains the following properties:

Property Description

Views Includes a set of methods for creating new SmarTeam View
and a collection of currently existing SmarTeam View Wind
Returns ISmViews.

Dialogs Includes a set of methods for displaying the SmarTeam

standard dialogs and windows. Returns ISmCommonDialog

ParentWindowHandle

The handle of the window that serves as a parent window fg
the windows and dialogs displayed by the SmarTeam API.

ActiveViewWindow

Accesses the currently active SmarTeam View Window.
Returns ISmViewWindow.

Obtaining the ISmCommonGUI Objects

You can access the GUI Services through the SmGUISrv.SmCommonGUI
SmarTeam Service object, which is accessible through the GetService
function of the Session. The Progld of this object is:
SmGUISrv.SmCommonGUI.

A CommonGUI object is obtained as follows:
Dim CommonGUI As SmGUISIrv.SmCommonGUI

Set CommonGUI = SmSession.GetService("SmGUISrv.SmCommonGUI *)

121

SmarTeam Object Model Programmer's Guide

The Views Property

The Views property provides a set of methods for creating new SmarTeam
Views and contains a collection of currently existing SmarTeam View

Windows.

Properties

The ISmViews object has the following properties:

Property Description

Windows The collection of currently existing SmarTeam ViewWindow obje
Returns ISmViewWindows. See the ISmView object for a descrip
of the ISmViewWindow object.

Methods

The ISmViews object has the following methods:

Method Description

NewViewByType Creates a new SmView instance of the specified ViewType (see
Table 6-1). Returns ISmView.

NewViewByName Creates a new instance of a named SmView. Named View defini
are created by the user in various SmarTeam applications and
stored in the Query and View subsystem of SmarTeam. Returns
ISmView.

NewLifeCycleView Creates a new life cycle SmView instance. Returns
ISmLifeCycleView

Example

Use the NewLifeCycleView method to create a new Life Cycle view.
Set Swiew = CommonGUI .Views._NewLifeCycleView

122

Chapter 6, SmarTeam GUI Services Library

ISmView

The ISmView object represents the design, contents, operations and layout
of a SmarTeam View. See the ISmViewWindow object for the physical
characteristics of a SmarTeam View.

An ISmView object has the following characteristics:

Layout — A SmarTeam View is a two-sided display: the left side, the
controller, displays objects and the right side displays the object data for an
object selected on the controller. The highest-level object displayed on the
controller is referred to as the leading object.

Standard views — you can create standard SmarTeam views for
displaying different types of data including, for example, Parent-Child
Tree, Custom and General Links. The complete set of standard views
available is listed in Table 6-1. You can also create a user-defined view and
a life-cycle view (see “Obtaining the ISmView Object” below.)

Controller format — the format of the controller — either a tree or a grid —
is determined by the choice of standard view.

Contents — The type of data that can be displayed on the View and the way
it is loaded is determined by the choice of standard view.

123

SmarTeam Object Model Programmer's Guide

Sample Standard Views

Figure 6-2 shows a MainClassTree SmarTeam View. The controller
component is a tree, and the right side shows a profile card component for
the object selected on the controller.

Controller component
(Tree component)

Projects:

Frojects Tree

&FMDTY

&7 MicroStation

&5 4uaCAD 2000

&7MAM Production Line - ACAD
&FMRM Engine Cover - MDT

@SX Compressor - Solid Edge
@Lego - Part Copy

Balance Adjustment

Qil Separatar

#575crew Compressar

#57 Design Production Line - CADKEY
@Snow tobile Design - Solidwiarks

#5now Mobile Standard Parts
;I_I

|'__'|.

General Project Information
| Frame ‘Weldment
Frant Skiz

Profile card
component

Tab components

Prafile Cafd | Links I Motes I

Project & 7
Project ID: [Project-0020

D escriptian: IInventor Rz

Start date: I ¥

Finish date: I ¥

Tatal budget: |

Manager: |

Cost: |

Pricrity: IF! - Rioutine j -

'.,General,l{DetaiIs I

Figure 6-2 MainClass View with Tree Controller

124

Chapter 6, SmarTeam GUI Services Library

Figure 6-3 shows a WhereUsed SmarTeam View where now the controller
is a grid and the leading object is displayed.

Controller component Leading Object Tab components
(Grid component)

Parents of Project "Froject-0004™

Description Pricrit ~ Profile Card 4 Link, IN

Project-0007 | Snow Mobile IR - B

e I

Project &

Project ID: [Project-0001

| v

Description: IS niow Mobile Design - Solidwork s

Start date: [01/18/1399 [

Finish date: [06/11/1939 [,

Tatal budget: |snnuuu

tanager: INatan

Cost: 500000

Pricrity: |F| - Routine j =
4] "\ General {Detals fCampasition |

Figure 6-3 WhereUsed View with Grid Controller

Object Diagram

The object diagram of ISmView is shown below:

125

SmarTeam Object Model Programmer's Guide

ISmView

ViewType

Controller

Selected

SmViewWindow

ViewTitle

NotAllowedOperations

ReadOnly

PILL]

DisplayObijects

SingleObject |

Objects |

CompositeObjects |

MultiCompositeObjects |

SingleRelatedObject |

[IL]]

SingleLinkObject |

Figure 6-4 IsmView Object Diagram

126

Chapter 6, SmarTeam GUI Services Library

Properties

The ISmView object has the following properties:

Property

Description

ActiveComponent

Returns an SmGUIComponent object representing the act
component on the SmarTeam view.

Controller

Returns an SmGUIComponent object representing the
controller object of the SmarTeam view.

NotAllowedOperations

Returns a SmOperations object representing operations tk
are not allowed on this View. User can fill in this list before
calling Show method of the corresponding SmViewWindo

Components Collection of all components of the SmarTeam view
ReadOnly If true, this view is opened as read-only

StdContexts Represents the button set for this view (for internal use)
Contexts Sets the button set for this view (for internal use)
Selected Returns an SmComponentObjects object representing the

persistent objects selected on the View.

SmViewWindow

Returns and sets the SmViewWindow object correspondin
the SmView.

Viewldentifier

The identifier of the View in the SmarTeam database. It ¢
be the name of the search or the name of the view.

ViewTitle Returns and sets the View title.
ViewType Returns the View type (see Table 6-1)
ProductViewld Sets or returns the |d of the Product View
DisplayObjects Returns and sets SmComponentObjects, which represent
persistent objects that are displayed on the controller of th
View. This property is relevant to Views with the ViewType
e vwtSingleObject
e vwtTreeList
e ywtCustom
ISmComponentObjects
SingleObject Returns or sets a SmObject object.
Objects Returns a SmObjects object.
CompositeObjects Returns or sets a SmCompositeObjects object.
MultiCompositeObjects Returns or sets a SmMultiCompositeObjects object.
SingleRelatedObject
SingleLinkObject
Methods

The ISmView object has the following methods:

Method

Description

127

SmarTeam Object Model Programmer's Guide

Close

Closes view.

Refresh

Refreshes objects displayed on the view.

RefreshOperationicon

Refreshes operation icon (relevant for Life Cycle views).

128

Chapter 6, SmarTeam GUI Services Library

View Types

Table 6-1 presents a list of View Types available for creating standard
Views. See Table 6-3, for the settings required for each View Type.

Table 6-1 View Types

View Type

The Controller Component shows:

Software Constant

ParentChildTree

Parent-child tree for single object

vwtParentChildTree

Custom

Grid

vwtCustom

GeneralLinks

List of objects linked to the leading objed

vwtGenerallLinks

Revisions All revisions of the leading object vwtRevisions

SingleObject A profile card for a single object. The prq vwtSingleObject
card has a navigator.

WhereUsed Parents of the leading object vwtWhereUsed

ComposedOf A list of children of the leading objects | vwtComposedOf

TreelList A parent-child tree (can come from seve| vwtTreeList
objects).

BottomUpTree A child-parent tree (reverse of parent-ch| vwtBottomUpTree

MainClassTree

A list of persistent objects from a specifi
class, which are linked to the leading obj
arranged as a tree. Typically, the leading
object is the object from the main class i
the Demo database “Project”.

vwtMainClassTree

ProductViewTree

Product view tree

vwProductViewTree

130

Obtaining the ISmView Object

As mentioned, you can create three different categories of views, using the
methods of the ISmViews object as follows:

View Category Method

Create a standard, pre-defined SmarTeam View. Each view type is | NewViewByType
appropriate for presenting a different aspect of the system (see Tablé
6-1). Returns ISmView.

Creates a user-defined SmarTeam View, where the view has been | NewViewByName
created and named by the user of a SmarTeam application and has
stored in the Query and View subsystem of SmarTeam. The new
instance is created according to the name given to the View by the u
Returns ISmView.

Creates a new life cycle SmView instance. Returns mLifeCycleView | NewLifeCycleView

Example

The following creates a standard, pre-defined View of type Top-Down Tree
list and displays a tree browser showing each object from the attached
Search as a root, and the lower level classes for each of these roots.data on
it:

Set SwWiew = CommonGUI .Views._NewViewByType(witTreeList)
" Get ISmViewWindow object attached to ISmView object
Set SmViewWindow = SmView.SmViewWindow

" Set collection of objects in view

SmView._DisplayObjects.CompositeObjects =
Session.ObjectStore.CompositeObjectsFromData(WorkObjects.Data, False)

" Set View Title

SmvView_ViewTitle = "Selected object with children™
" Set window style as MDI child Sm window
SmvViemWindow.Style = swsMDIChild

" Show view window

SmViewWindow.Show

Chapter 6, SmarTeam GUI Services Library

ISmViewWindow

Description

The ISmViewWindow object represents the physical attributes of a
SmarTeam View. It is associated with a ISmView object.

The object diagram of ISmViewWindows is shown below:

ISmViewWindow

ModalResult

SmView

WindowHandle

WindowState

Alive

Style

Figure 6-5 ISmViewWindow Object Diagram

131

SmarTeam Object Model Programmer's Guide

Properties
The ISmViewWindow object has the following properties:
Property Description
Alive True if window is still alive (hasn't been closed)
ModalResult Returns modal result of the windows opened in the modal m
See Table 6-2.
SmView Returns or sets an SmView object representing the
corresponding SmarTeam view.
WindowHandle The window handle
WindowState Returns or sets the state of the window
Style Returns or sets style of the window.
swsNormal
swsMDIChild
Note: You can use the swsMDIChild style only when opening a V
in the SmarTeam application and not, for example, from an
integration.
Methods
The ISmViewWindow object has the following methods:
Method Description
BringToFront Brings window to front.
Close Closes the window.
Show Displays the window in regular mode
ShowModal Displays window in modal mode.
Modal Result

Modal Result is relevant when you display the View using the ShowModal
method. Modal views are used to elicit a user response about the objects
displayed in the view. While a modal view is displayed, the focus is on it
alone. Control returns to the main window only when the modal view is

closed.

Table 6-2 shows the possible modal results.

Table 6-2 Modal Results

Button/Action ModalResultValue
OK mrOK
Cancel mrCancel
Help mrHelp
Yes mrYes

132

Chapter 6, SmarTeam GUI Services Library

No mrNo
Close mrClose
Abort mrAbort
Retry mrRetry
Ignore mrignore
All mrAll
NoAll mrNoAll

Obtaining the ISmViewWindow Object

A ViewWindow object is obtained from SmView as follows:
Set ViewWindow = SmView.ViewWindow

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a ViewWindow and its components.

ViewWindow Task:
Displaying the Window

Example

The following example shows how to open a SmarTeam view defined in
the SmarTeam database by name and display it. The identifier of the view
in the database is “All SolidWorks Assembly"

Set View = CommonGUI .Views_NewiewByName("'All SolidWorks Assembly'")

View. SmViewWindow.Show

ViewWindow Task:
Get the Modal Window Result

Use the ModalResult property to determine the button or action that the
user used to close the form. The ModalResult property defines the result of
the modal dialog.

Example

This example shows how to use the ShowModal and ModalResult
properties.

Set View = CommonGUI .Views _NewiewByName("'All SolidWorks Assembly'")

133

SmarTeam Object Model Programmer's Guide

View. SmViewVindow.ShowModal

IT View.SmViemWindow.ModalResult = mrOK Then

End If
ViewWindow Task:
Get the Window State

Use the WindowState property to get or set the display state of a window.
The possible states are:

WindowState Software Constant
Normal wstNormal

Minimized wstMinimized
Maximized wstMaximized

134

Chapter 6, SmarTeam GUI Services Library

ISmGUIComponent

A SmarTeam View is composed of components, which are represented by
ISmGUIComponent objects. The collection of all ISmGUIComponent
objects is represented by ISmGUIComponents.

Properties
The ISmGUIComponent object has the following properties:
Property Description
Name Returns a name of the GUI component.
ComponentType Returns a type of the GUI component.
e Tree
e Grid
e Treelist
e ProfileCard
e ToolBar
e Menu
e Control
Visible True if the GUI component is set as visible.
Enabled True if the GUI component is set enabled.
ReadOnly True if the GUI component is set Read Only.

Specifying the Controller GUI Component

The controller GUI component of a SmarTeam View (described under the
section ISmView) is associated with one of the following
ISmMGUIComponent types:

e Tree

e Grid

The controller GUI component assumes one of these types when you create
the SmView object, and depends on the value of the ViewType parameter
that you specify. Table 6-3 indicates the component type for each
ViewType.

Two ISmGUIComponent objects are provided to support working with the
controller as a separate object:

e [SmTreeComponent

e ISmGridComponent

The controller object is defined and used as follows, for example:
Dim Controller As 1SmTreeComponent

135

SmarTeam Object Model Programmer's Guide

Set View = CommonGUI .Views _NewiewByType(wtParentChildTree)

Set Controller = View.Controller

When the View object is created as a standard tree type of display
(vwtParentChildTree), its Controller property is automatically set to a
ISmTreeComponent type. Therefore the Controller object is defined with
that type.

ISmTreeComponent and ISmGridComponent
As mentioned, the controller object assumes one of the two objects

ISmTreeComponent and ISmGridComponent,, depending on the ViewType
used when creating the View with which the controller is associated.

The object diagram of ISmTreeComponent and ISmGridComponent is
shown below:

136

Chapter 6, SmarTeam GUI Services Library

ISmTreeComponent
ISmGridComponent

]

DataSource

Figure 6-6 I1SmTreeComponent/ ISmGridComponent Object Diagram

DataSourceType

MainClassObject

LeadingObject

BasicClassld

BasicClass

[LL]]

Objects

SingleObject |

Objects |

CompositeObjects |

MultiCompositeObjects |

SingleRelatedObject |

[LL] L]

SingleLinkObject |

137

SmarTeam Object Model Programmer's Guide

Properties

The ISmTreeComponent/ ISmGridComponent object has the following
roperties and sub-properties:

Property Description
DataSource Returns an object of type of ISmDataSource.
ISmDataSource

DataSourceType Returns and sets type of data.

MainClassObject Returns or sets an SmObject object representing data sou
object from the main class of the data model.

LeadingObject Returns or sets an SmObject object representing leading
object of the data source.

BasicClassld Returns or sets basic class of the data source.

BasicClass Returns an SmClass object representing basic class of the
data source.

DataSourceType Returns and sets type of data.

Objects Returns an object of the type ISmComponentObjects.

ISmComponentObjects

SingleObject Returns or sets an SmObject object.

Objects Returns an SmObjects object.

CompositeObjects Returns or sets an SmCompositeObjects object.

MultiCompositeObjects Returns or sets an SmMultiCompositeObjects object.

SingleRelatedObject

SingleLinkObject

138

Chapter 6, SmarTeam GUI Services Library

Methods

The ISmTreeComponent/ISmGridComponent object has the following
methods:

Method Description
AddObijects Not implemented.
DeleteObjects Not implemented
UpdateObjects Not implemented.
Select Not implemented
SelectinTree Not implemented.
GetSelected Not implemented

Example

This example displays the general links for an object
Dim GridComponent as SmGUISrv. IsmGridComponent

Set GridComponent = SmwWiew.Controller
GridComponent.DataSource.LeadingObject = <Leading object of the view>

GridComponent.DataSource.BasicClassld = <Class identifier of the objects
related to the leading objects to be shown on the controller>

Specifying Contents for a Standard View

The way you specify the contents to be displayed on a standard View
depends on the particular View Type you are using.

There are two general ways to specify content for a View:
e Use the DisplayObjects property of the View object
o Use the DataSource property of the Controller object

Where the way you use depends on which View Type you specify.

Table 6-3 shows the settings required to specify the contents of a View for
each standard View Type.
Table 6-3 Loading View Contents According to View Type

View Type Description
Single Object Displays one entry field in which the user enters the name
vwtSingleObject part of a name) of an object to display its Profile Card

Settings:
SmView.DisplayObjects.SingleObject = <Single SmObject of persistent object>

139

SmarTeam Object Model Programmer's Guide

Displays a tree browser showing each object from the attaq
Search as a root, and the lower level classes for each of th
roots.

Top-Down Tree list
vwtTreeList

Settings:
SmView.DisplayObjects.CompositeObjects = <CompositeObjects Collection of Parents>
Ordinary (Custom)
vwtCustom
Settings:

1) Display list of persistent objects

SmView.DisplayObjects.CompositeObjects = <Collection SmCompositeObjects of persistent object

Display an ordinary list of objects (not hierarchically)

For example:

SmView.DisplayObjects.CompositeObjects =

Session.ObjectStore.CompositeObjectsFromData(WorkObjects.Data, False)

Note: In order to show a collection of the persistent objects by the DisplayObjects property
you need to convert it to an object of type CompositeObjects or MultiObjects.

2) Display named view

No preliminary settings needed
Revisions

vwtRevisions

Where-Used List
vwtWhereUsed

Composed-Of List
vwtComposedOf

Settings:

Dim GridComponent as SmGUISrv.IsmGridComponent

Set GridComponent = SmView.Controller
GridComponent.DataSource.LeadingObject = <Leading object of the view>
General Links
vwtGenerallLinks
Settings:

Dim GridComponent as SmGUISrv.IsmGridComponent

Set GridComponent = SmView.Controller

GridComponent.DataSource.LeadingObject = <Leading object of the view>
GridComponent.DataSource.BasicClassld = <Class identifier of the objects related to the leading
objects to be shown on the controller>

Display a list of revisions

Display a list of all the parents of the selected object

Display the list of all the children of the selected object

Display a list general links.

Display a tree browser showing the selected object or the f
object from the attached Search as the root, and its lower |
classes

Top-Down Tree
vwtParentChildTree

Bottom-Up Tree Displays a tree browser that is a hierarchical display of obj
vwtBottomUpTree according to the selected object.

140

Chapter 6, SmarTeam GUI Services Library

Settings:

Dim TreeComponent as SmGUISrv.ISmTreeComponent

Set TreeComponent = SmView.Controller

1) Display desktop objects from the specific class related to specific Main Class object:

TreeComponent._DataSource MainClassObject = <Project Object>

TreeComponent.DataSource.BasicClassld = <Class identifier of objects linkg
to Project Object to be shown on the controller >

2) Display child objects related to one leading object:

TreeComponent.DataSource.LeadingObject =<Leading object of the view>
MainClassTree
vwtMainClassTree

No preliminary settings

Top-down tree view of the main class objects

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a View.

View Task:
Getting Selected Objects

Use the Selected property to get the objects that were selected on the view.

" Show view window

SmViewWindow. Show

MsgBox *‘Select object to change description™
" Get collection of selected objects In view

Set SelectedObjects = Snwiew.Selected.Objects

141

SmarTeam Object Model Programmer's Guide

View Task:
Refresh the View.

Use the Refresh method to refresh objects displayed on the View.

The object attributes needed to be refreshed can come from either the
collection object itself in memory or — if the information is not in memory
— from the database. Set the RetrieveFromDatabase parameter equal to
“False” to get the information from memory. Otherwise, set the

RetrieveFromDatabase parameter equal to “True”.

Note: Be sure that you actually need to retrieve object information from the Database
for the refresh operation. Excessive retrieval of information from the Database is
time consuming and may affect the performance of SmarTeam.

You can specify the following refresh actions:

Refresh Action Description Software Constant
Add Add an object to the view rfaAdd
Update Update the objects specified rfaUpdate
Delete Delete the objects specified rfaDelete
Example

This example refreshes the selected objects on the view. The object details
are taken directly from the RefreshObjects collection without accessing the
database.

RetrieveFromDatabase = False

SmvView_Refresh rfaUpdate, RefreshObjects, RetrieveFromDatabase
ISmActiveWindow

The ISmActiveWindow object represents the ISmViewWindow that is
currently active (see the section ISmViewWindow for details).

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a ISmActiveWindow.

142

Chapter 6, SmarTeam GUI Services Library

CommonGUI Task:
Get the Active Window and Active View.

Use the ActiveViewWindow property to get the active window and
through it, the active view properties.

" Get CommonGUI object from Sm session

Set CommonGUI = Session.GetService("*'SmGUISKrv_Sm SmCommonGUI'")
" Get active smarteam view window

Set ViemVindow = CommonGUI .ActiveViewVindow

" Get active smarteam view

Set View = ViewWindow.SmwView

" Show view title

MsgBox *View title: " & View.ViewTitle
Using ISmView and ISmViewWindow

This section shows an example using the GUI objects.

" This script demonstrates using ISmView and ISmViewWindow classes
* for GUI operations with SmarTeam

Sub TestName(Session As SmApplic.SmSession, WorkObjects As
SmApplic. ISmObjects)

Dim CommonGUI As SmGUISrv.SmCommonGUI * main object for creating new views

Dim SmView As SmGUISrv_ISmView " view properties and data
Dim SwWiewindow As SmGUISrv.ISmViewindow * window methods

Dim SelectedObjects As SmApplic.ISmObjects " collection of selected
objects

Dim SmObject As SmApplic.ISmObject " first selected object

Dim RetrieveFromDatabase As Boolean

" Retrieve GUI service object from Sm session

143

SmarTeam Object Model Programmer's Guide

Set CommonGUI = Session.GetService("'SmGUISrv.SmCommonGUI*")

" Create new Sm view - using SmCommonGUl service creates a new
ISmViemWindow automatically

Set SwWiew = CommonGUI .Views.NewViewByType(witTreeList)
" Get ISmViewWindow object attached to ISmView object
Set SmViewWindow = SmView.SmViewWindow

" Set collection of objects in view

SmView.DisplayObjects.CompositeObjects =
Session.ObjectStore.CompositeObjectsFromData(WorkObjects.Data, False)

" Set View Title

SmvView._ViewTitle = "Selected object with children™

" Set window style as MDI child Sm window

SwWiewindow.Style = swsMDIChild

" Show view window

SmViewWindow. Show

MsgBox *‘Select object to change description™

" Get collection of selected objects iIn view

Set SelectedObjects = Snwiew.Selected.Objects

Set SmObject = SelectedObjects(0)-Clone

" Get current attribute value, add word and update object
OriginalValue = SmObject._Data.ValueAsString("'CN_DESCRIPTION'")
SmObject.Data.ValueAsString("'CN_DESCRIPTION'™) = "Test™ & OriginalValue
SmObject.Update

" Refresh view according to Database objects® attribute values
RetrieveFromDatabase = True

" Refresh view - update view of selected objects
SmView.Refresh rfaUpdate, SelectedObjects, RetrieveFromDatabase

End Sub

144

Chapter 6, SmarTeam GUI Services Library

ISmDialogs

The ISmDialogs object includes a set of methods for creating new
SmarTeam Dialogs.

Methods
The 1ISmDialogs object has the following methods:
Method Description
NewLocalFilesExplorer Creates Local Files Explorer dialog. Returns

ISmLocalFilesExplorer.

This dialog is accessed from SmarTeam through
Tools/Local File Explorer.

NewSaveAsDialog Creates Save As dialog. Returns IISmSaveAsDialog.
Used, for example, to save an object from a Integratior

NewOpenDialog Creates Open dialog. Returns ISmOpenDialog.
Used, for example, to insert objects in a Integration.
ExecuteLogin Displays the SmarTeam login screen and executes log
database.
ExecuteSelectClass Display class structure tree for all classes in the databz
and allows user to select a class.
ExecuteSelectDatabase Displays all databases available and allows user to sel

a database or to add or remove a database from the lig

This dialog is accessed from SmarTeam through
File/Switch to Database

ExecuteUserPreferences Displays the SmarTeam user preferences and allows U
to change preferences.

This dialog is accessed from SmarTeam through
Tools/Options

ExecuteAdminPreferences Displays the SmarTeam adminstrative preferences an
allows administrator to change preferences.

This dialog is accessed from SmarTeam through
Tool/Administrator Options
ExecuteSelectFromQueryResult | Opens the query editor, enabling the user to run a
specified query and select objects. The selected object
reside in the function's return value.
This dialog is accessed from SmarTeam through the “
Object” icon on SmarTeam toolbar
ExecuteVaultMaintenance Displays screen for managing Vault. This dialog is
accessed from SmarTeam through Tools/Vault
Maintenance.

ExecuteQueryByAttributes Displays "Query By Attribute" dialog, returns modal res
"OK" and ViewWindow object, if user performs query.

145

SmarTeam Object Model Programmer's Guide

query.
This dialog is accessed from SmarTeam through the “f
Object by Attributes” icon on the SmarTeam toolbar

ExecuteQueryByExample

Displays "Query By Example" dialog, returns modal res
"OK" and ViewWindow object, if user performs query

This dialog is accessed from SmarTeam through “Find
Object by Example” on the SmarTeam toolbar.

ExecuteQueryEditor

Displays "Query Editor" dialog, returns modal result "O
and ViewWindow object, if user performs query.

ControlProperties

Enables the programmer to alter the appearance of the
Save As dialog box.

OptionsProperties

Enables the Options by changing the values in the Say
Options dialog box

146

Basic Dialogs

The following sections describe some of the basic dialogs that can be
created using the ISmDialogs object:

Select Database Dialog

Select Class Dialog

Select from Query Dialog

Query By Attribute Dialog

Select Database Dialog

Use this dialog to choose between the databases available on the system.

Available Databases x|

Select a database:

S martDb
SmbDema

Add... | Bemove | Easswu:urd...l

[ok] oese | Heb

Figure 6-7 Select Database Dialog

Example

The following code produces the dialog in Figure 6-7.
Dim DatabaseName as Variant
CommonGUI .Dialogs.ExecuteSelectDatabase DatabaseName

MsgBox DatabaseName

147

SmarTeam Object Model Programmer's Guide

Select Class Dialog

Use this dialog to choose one of the classes available.

Class Tree

Select a class from the tree:

=] Class Browser
= Classes
B [&] Projects
Praoject
= Docurments
Folder
Dacurnent
B & CAD Files
= Saolidwiorks
Solidw/orks Part
Salidwiorks Drawing
[elMrawminn

b5 olidhw orks Azsembly

O, Canizel |

Figure 6-8 Select Class Dialog

Example

The following code produces the dialog in Figure 6-8.

Dim Classld as Integer

CommonGUI _.Dialogs.-ExecuteSelectClass 1, Classld

MsgBox Classld

ExecuteSelectFromQueryResult Dialog

Use this method to:
Display the list of predefined queries

Run a predefined query and display the query results

Select objects from the query results and return them

Use the Query Editor to define a new query

148

Chapter 6, SmarTeam GUI Services Library

Save the query as a predefined query

It is called in the form:
ModalResult = ExecuteSelectFromQueryResult(MultiObjects As ISmMultiObjects)

The selected objects are returned in the MultiObjects argument.

Example:

Dim MultiQueryResult As SmApplic. IStMultiObjects
Dim Objects As SmApplic. ISmObjects
Dim Library As SmApplic. ISmObject

ModalResult = ExecuteSelectFromQueryResult(MultiQueryResult)

Set Objects = MultiQueryResult. Item(0)
Set Library = Objects. Item(0)

MsgBox CStr(Library.Value("'OBJECT_ID'"))

ExecuteQueryByAttributes Dialog

This method displays the "Find Object By Attribute” dialog, and lets you
perform a query. It returns modal result "OK" and, if the user has
performed a query, it returns a ViewWindow object containing the query
results.

The query results are extracted from the ViewWindow object through its
associated View object. To select specific objects from the query results
you would need to display the query results on a separate View.

Note that the ExecuteSelectFromQueryResult Dialog allows you to select
from the query results in the same dialog as you executed the query.

Example

This example runs the ExecuteQueryByAttributes method and extracts the
query results to a ComponentObjects object.

Dim GUI As SmGUISKrv.SmCommonGUI

Dim SmView As SmGUISrv_ISmView " view properties and data

149

SmarTeam Object Model Programmer's Guide

Dim SwWiewindow As SmGUISrv.ISmViewWindow * window methods
Dim ComponentObjects As ISmComponentObjects
Set SmViewWindow = Nothing
GUI .Dialogs.-ExecuteQueryByAttributes SmViewVindow
Set ComponentObjects = Nothing
If Not SwWiewindow Is Nothing Then
Set SmView = SmViewWindow.SmView
IT Not Swiew Is Nothing Then
Set ComponentObjects = SmView.DisplayObjects
End IF
SmViemWindow.Close
End If
If Not ComponentObjects Is Nothing Then
MsgBox ComponentObjects.CompositeObjects.Count
MsgBox *"Not nothing'™

End If
ISmSaveAsDialog.ControlProperties

The ISmDaveAsDialog.ControlProperties is a property of the
ISmSaveAsDialog Object which influences the behavior of the Save As
Dialog, for example:

150

Chapter 6, SmarTeam GUI Services Library

x4
Prajects: IF'roiects Tree ?f';‘l v| EEI Find Parent |-| rj(l @I
Cancel |
DOptions. .. |
Help |
File name: I
Save as class: IDocument j
[~ Addto Desktop ™ Secured By
I~ | Lirk to Projects ™ Rropagate Security

The ISmSaveAsDialog.ControlProperties is a collection of Properties
which influence the appearance of the Save As dialog box.

These collections of Properties are of the ISmGUIProperties Type.

Those Properties support attributes of a screen component, such as visible,

enabled ... The attributes of those Properties are members of the
ISmMGUIProperty.

Every Property is recognized by its associated Screen Control - via the
Name attribute of the property.

151

The following Property Names are supported and possibly appear in the

collection:

Method

Description

frmSaveAsDialog

Enables the Caption of the Save As window

edtFileName Enables the Visible, Enabled, and Read-Only attributes, in the
"File Name™ edit control
IbIFileName Enables the Visible, Enabled and Caption in the "File Name" |

chxSaveAsClass

Enables the Visible and Enabled attributes, in the 'Save As Cl
name box

[bISaveAsClass

Enables the Visible, Enabled and Caption in the "Save As Cla
label

chkDontDisplayAgain Enables the Visible, Enabled, Checked and Caption in the "Dg
display the Save As dialog" checkbox

chkAddToDesktop Enables the Visible, Enabled, Checked and Caption in the "Ag
To Desktop" checkbox

chkLinkToMainClass Enables the Visible, Enabled, Checked and Caption in the "Lir
To Class" checkbox

chkSecuredBy Enables the Visible, Enabled, Checked and Caption in the
"Secured By" checkbox

chkPropagateSecurity Enables the Visible, Enabled, Checked and Caption in the

"Propagate Security" checkbox

clsClassSettings

Enables the Class Settings through ISmRecordList. The
RecordList is transferred by the Value attribute in the Property

ISmSaveAsDialog.OptionsProperties

152

The ISmDaveAsDialog.OptionsProperties is a property of the
ISmSaveAsDialog Object that influences the behavior of the Options

dialog box (when the options button is clicked), for example the following

dialog boxes:

Chapter 6, SmarTeam GUI Services Library

Save Options

Save | Tree Setlingl

[~ Do not display profile cards for new objects
¥ Dizplay the Saveds dialog for new objects

X

Cancel |

Help |

Save Options

Save Tree Setting |

Expand lewel of Projects tree:

Expand lewel of objects tree:

I
I

Cancel | Help |

ISmSaveAsDialog.OptionsProperties is a collection of Properties that
influence the appearance of the Save As dialog box.

These options can be altered later by clicking the Options button on the
Save As Dialog, and changing the values in the Save Options dialog box.

These Option Properties are of the ISmGUIProperties Type.

The Option Properties support attributes in the Save Options dialog box of
screen component, for example, visible, enabled ...

Note: The attributes are members of ISmGUIProperty.

The Option is recognized by its associated Screen Control - via the Name

attribute of the option.

153

SmarTeam Object Model Programmer's Guide

The following Option Names are supported and possibly appear in the

collection:
Method Description
chkBatchMode Enables the Visible, Enabled, Checked, Caption in
the "Do not display profile cards for new objects"
checkbox

chkDisplayDialogForNewObject Enables the Visible, Enabled, Checked, Caption in
the "Display the Save As™ dialog in the new

objects' checkhox

IbIMainClassExpandLevelTree Enables the Visible, Enabled and Caption of the Expal
level of ... tree label
spnedtMainClassExpandLevelTree | Enables the Visible, Enabled, Value of the "Expand le
of ... tree" in the Spin Edit Control
IblObjectsExpandLevelTree Enables the Visible, Enabled, Value of the "Expand le
of ... tree" in the Spin Edit Control
spnedtObjectsExpandLevelTree Enables both, the Visible, Enabled, Value of the "Exp
level of ... tree" Spin Edit Control, and the Visible,
Enabled, Value of the "Expand level of objects tree" §
Edit Control

ISmLocalFilesExplorer

The ISmLocalFilesExplorer object represents the SmarTeam Local Files
Explorer dialog.

The object diagram of ISmLocalFilesExplorer is shown below:

154

Chapter 6, SmarTeam GUI Services Library

ISmLocalFilesExplorer

WindowHandle

WindowState

Caption

ModalResult

]
~L Properties

Item

Figure 6-9 ISmLocalFilesExplorer Object Diagram

155

SmarTeam Object Model Programmer's Guide

Properties
The ISmLocalFilesExplorer object has the following properties and sub-
properties:
Property Description
WindowHandle Handle from application that called the Local Files Explore
WindowsState The current display state of the Local Files Explorer windo
e wstMaximized
e wstMinimized
e wstNormal
Caption Sets caption
ModalResult Returns modal result
Properties Returns ISmWindowProperties. See below for details.
Methods
The ISmLocalFilesExplorer object has the following methods:
Method Description
Show Shows the window
Hide Hides the window
Close Closes the window
BringToFront Brings window to front
ShowModal Shows window in modal mode
Refresh Rebuild current directory in Local Files Explorer. This metho
must be called for each change in the life cycle, for example
when adding or deleting an object.

156

Chapter 6, SmarTeam GUI Services Library

Example

Dim FSmLocalFilesExplorer as new IsmLocalFilesExplorer

“ CommonGUI as SmCommonGUI

“ Open Local Files Explorer

FSmLocalFilesExplorer = CommonGUI.Dialogs-NewlLocalFilesExplorer
“ Refresh the Local Files Explorer

FSmLocalFilesExplorer.Refresh

ISmWindowProperties

The ISmWindowProperties object is a collection of properties associated
with the window.

Properties

The ISmWindowProperties object has the following properties and sub-
properties:

Property Description
Item Individual window property.
Methods
The ISmWindowProperties object has the following methods:
Method Description
Clear Clears a property

157

SmarTeam Object Model Programmer's Guide

ISmSaveAsDialog

The ISmSaveAsDialog object represents the SaveAs dialog.

The object diagram of ISmSaveAsDialog is shown below:

158

Chapter 6, SmarTeam GUI Services Library

ISmSaveAsDialog

FileName |

Classes |

SelectedClass |

SelectedParent |

SelectedMainClassObject |

ModalResult |

OptionsProperties |

R RN RN A

I—I_I ControlsProperties |

\—{ Item |

Name |

Caption |

Visible |

Enabled |

ReadOnly |

Value |

IR RN R R

Checked |

Figure 6-10 ISmSaveAsDialog Object Diagram

159

SmarTeam Object Model Programmer's Guide

Properties
The ISmSaveAsDialog object has the following properties and sub-
roperties:
Property Description
FileName Returns and sets name of the file.
Classes Returns and sets SmClasses object representing list of classe

that appear in the “Save as Class” drop-down list.

SelectedClass

Returns or sets SmClass object representing selected class.

SelectedParent

Returns or sets SmObject object representing selected paren

SelectedMainClassObject

Returns or sets SmObject object representing the selected
project.

ModalResult

Modal result of the window

OptionsProperties

Returns or sets option properties. Returns ISmGUIProperties,
See below for details.

ControlsProperties

Returns or sets control properties. Returns ISmGUIProperties

Methods
The ISmSaveAsDialog object has the following methods:
Method Description
ShowModal Displays window in modal mode.

160

Chapter 6, SmarTeam GUI Services Library

ISmGUIProperties

The ISmGUIProperties object is a collection of ISmGUIProperty objects.

Properties
The ISmGUIProperties object has the following properties:
Property Description
Item Returns ISmGUIProperty.
Methods
The ISmGUIProperties object has the following methods:
Method Description
NewProperty Adds new SmGUIProperty object to collection specified by
name. Returns ISmGUIProperty
ItemByName Returns a member of a collection by its name. Returns
ISmGUIProperty
Remove Removes SmGUIProperty object from collection.
Clear Clears all SmGUIProperty objects from collection.

161

SmarTeam Object Model Programmer's Guide

ISmGUIProperty

The ISmGUIProperty object represents the visual settings of the SaveAs

dialog.

Properties

The ISmGUIProperty object has the following properties:

Property Description

Name Returns or sets name of the property.
Caption Returns or sets caption of the property.
Visible True if property is visible.
Enabled True if property is enabled.
ReadOnly True if property is read only.
Value Returns or sets value of the property.
Checked True if property is set (checked).

Example

The following example displays the Save As dialog.

Private Sub DisplaySaveAsDialog(SmSession as 1SmSession, FileName As String,
ProjectObject As ISmObject)

Begin
Set ClassesList = SmSession.Metalnfo.NewSmClasses
ClassesList.Add(354)
ClassesList.Add(353)
Dim SmGUIServices As 1SmGUIServices
Set SmGUIServices = SmSession.GetService(“‘SmGUISrv.SmGUIServices™)
Set GUIStore = SmGuiServices.GUIStore
Set SaveAsDialog = GUIStore.NewSaveAsDialog
“ Set input parameter
SaveAsDialog.Classes=ClassesList

SelectedMainClassObject =
SmSession.ObjectStore.NewObject(ProjectObject._Classld)

SelectedMainClassObject.Objectld = ProjectObject.Objectid

162

Chapter 6, SmarTeam GUI Services Library

SaveAsDialog.SelectedMainClassObject = SelectedVainClassObject
SaveAsDialog.FileName= FileName
SaveAsDialog.Showviodal

End Sub

ISmOpenDialog

The ISmOpenDialog object represents the Open dialog.

The Open dialog has the look and feel of Office 2000. An outlook bar on
the left side of the dialog provides different ways of locating a specific
document.

This dialog has three functions:

1. Search — Running a pre-defined ‘parametric’ query and selecting one or more
document from the results. You can define a wide range of parameters and
parameter criteria.

2. Smart Desktop — Browsing through project data.

3. System Folders — Returns to called function with specific return code

Search

The Search function of the OpenDialog is shown below:

163

SmarTeam Object Model Programmer's Guide

=l
Erajects I LI = | =
Atributes I Canditions I Walues I
In] Starts with D
Description Ends with e
Revision

Directory

[" Open as read-only ™ Retieve only last public revisions

Class namne: Document =] Cancel |

Figure 6-11 ISmOpenDialog Search Function

Smart Desktop

The Open Dialog Smart Desktop is shown below.

=0l x|

Projects [Design Production Line - CADKEY =] == e

=] @]Documents Tiee

E| Da w1 0009/1998 1516 Specification Fold-0077 s
tearnhdemnaf 21518 Eye B oy
-0 . prieumatic cylinder specs.doc ##5 ¢ \smarteam\demohles\cadkey 12/09/1998 15:18 Preumatic [
BF (Y me= 12/09/1938 1417 Valve Fold-0012 s
Bl (Y00 m== 120941938 14:11 Jig & Fistures Fold-0077 s
B 100 === 12/09/1998 13:52 Production Line Design Fold-00710 #ss

KN | =
I Open as read-only ™ Fietrieve only last public revisions

Class name: I Document ;I Cancel |

Figure 6-12 1SmOpenDialog Smart Desktop Function

164

Chapter 6, SmarTeam GUI Services Library

Object Diagram

The object diagram of ISmOpenDialog is shown below:

ISmOpenDialog

SelectedObjects

AllowMultipleSelection

Classes

SelectedClass

SelectedMainClassObject

ModalResult

OpenAsReadOnly

OpenLatestRevision

Caption

UserRequestedSystem
Folders

|
~L ControlsProperties

Figure 6-13 ISmOpenDialog Object Diagram

165

SmarTeam Object Model Programmer's Guide

Properties

The ISmOpenDialog object has the following properties:

Property

Description

SelectedObjects

Collection of user-selected objects

AllowMultipleSelection

Allows user to select more than one object from window

Classes

A Collection of classes from which user can select obje
(can be SuperClasses)

SelectedClass

Sets and returns a user-selected class (set for default).

SelectedMainClassObject Sets and returns user-selected main object (set also for
default — chosen on show)

ModalResult Modal result for dialog — Can be either mrOk or mrCanc
for the System Folders button can be mrRetry

OpenAsReadOnly Boolean. Used to receive additional information from us|

OpenLatestRevision

Boolean. Used to receive additional information from us
true, in case the selected objects are revision-managed
the latest revisions are opened.

Caption

View caption

UserRequestedSystemFolders

Boolean. If true, shows the System Folders button on th
View

ControlsProperties

Returns ISmGUIProperties (see section ISmGUIPropert

166

Chapter 6, SmarTeam GUI Services Library

Methods
The ISmOpenDialog object has the following methods:
Method Description
ShowModal Displays window in modal mode.

Example

The following example shows how to use the OpenDialog object.
Sub OpenDialogTest(GUI As SmGUISrv.SmCommonGUI)

Dim OpenDialog As SmGUISrv.1SmOpenDialog
Set OpenDialog = GUI.Dialogs-NewOpenDialog
Set OpenDialog.Classes = Session.Metalnfo.NewSmClasses

OpenDialog.-Classes.AddClass
Session.Metalnfo.SmClassByName("'Document™) .Classld

OpenDialog - Showviodal
IT OpenDialog-ModalResult = mrOK then

MsgBox “‘User selected “ + Cstr(OpenDialog.-SelectedObjects.Count) +
objects”

Else
MsgBox ““User has not selected any objects”
End if

End Sub

167

168

7. SmarTeam Utilities Library \

General Description

The SmarTeam Utilities library provides the following functionality:
e Format conversions

e Mask creation and attribute definition
o Life cycle functionality
e Other miscellaneous functionality.

Dependencies

The SmarTeam Utilities library has the following dependencies:
e SmarTeam Record List library
e SmarTeam Engine library.

169

SmarTeam Object Model Programmer's Guide

Overview of Objects

The object hierarchy of the SmarTeam utility library objects is shown
below:

Library scheme
Smutil
SmSessionUtil
SmSessionConvert
SmMiscUtil
SmMiscUtil

SmConvert

SmSessionUtil Object

The SmSessionUTtil object provides various session-related utility
functions, such as options to specify preferences for the current session,
and to retrieve objects by their CAD ID.

SmSessionUtil is a service object. To obtain a reference to the object, use
the following syntax:

Dim SessionUtil as SmSessionUtil
Set SessionUtil = SmSession.GetService(“SmSessionUtil™)
Object scheme
SmSessionUtil
SmSessionConvert (SmSessionConvert object)
SmMiscUtil (SmMiscUtil object)
Register
ChecklIn
CurrentSessionPreference

CopyFileFromvault

170

Chapter 7, SmarTeam Utilities Library

Object Functionality

The object has the following functionality:
File vault operations

Copied-file registration

Life-cycle operations

Life-cycle authorization operations
Mask operations

Miscellaneous utilities.

File Vault Operations

This section describes API functions that copy objects and files in and out
of vaults. Vaults are secure directories where SmarTeam stores an object
document in the different life-cycle stages of the object. A vault can
represent a directory in a remote computer. Thus the vault identifier is
required to uniquely define the file location, since the same directory
name could exist in two different vault computers.

A vault is represented by an SmObject. There is no persistent object (for
example, SmVault) that represents a vault. Instead, a SmObject is defined
with the necessary properties of the vault. The object property
Vault.Objectld is the unique vault identifier.

Vault objects are active when the vault server is active. When working
locally, vault objects are ignored and the nil Object Id replaces the
Vault.Objectld as the vault function parameter SourceVault.

Three types of vaults are defined where each type of vault corresponds to
a life-cycle stage. The vault type is represented by VaultTypeEnum.

Each object is associated with one or more vaults for each life-cycle stage,
where one of them is assigned to be the default vault for the object for that
life-cycle stage.

The following types of vaults exist:

Vault Type (VaultTypeEnum! Description
VItApprove Vault for released documents
VitinWork Vault for checked in documents
VItObsolete Vault for obsolete documents

171

SmarTeam Object Model Programmer's Guide

The SmSessionUtil object contains the following functions to support file
vault operations.

Function Description
CompareFile Compares files of two objects
CopyFileExtended Copy file between two vaults
CopyFileFromVault Copies file out of vault
CopyObjectFileFromVaultPermission Copies file of object out of vault and sets fil¢

access permission.

CopyObjectFileToVault Copies file of object to vault
DeleteFileFromVault Deletes a file from a vault
FileExists Checks if file exists in vault
GetPossibleVaultsForObject Gets all vaults associated with object
GetVaultDirectoryForObject Gets directory of object in vault
GetVaultForObject Gets default vault associated with object
MoveFileToVault Moves file to vault

File Vault Task: Copying a File from a Vault

You can use one of the following functions to copy a file from a vault
Function Description

CopyFileFromVault To copy a file from a vault to an external directory
when you know the file name, file location and vaul

CopyFileExtended To copy a file from one vault to another when you k
the file names, file locations and vault Ids.

CopyObjectFileFromVaultPermission To copy a file from a vault to an external directory
when you know the object that contains the file and
destination file name and directory. This function al
sets file read/write access permission for the copier
file.

Instead Of CopyFile

This script is used in the InsteadOf hook of the CopyFile SmarTeam
operation. It can copy a file to the work directory and determine the
read/write access permission.

Function InsteadOfCopyFileExample(ApplHndl As Long,Sstr As String,FirstPar As
Long,SecondPar As Long,ThirdPar As Long) As Integer

Dim SmSession As SmApplic.SmSession
Dim FirstRec As Object

Dim SecondRec As Object

172

Chapter 7, SmarTeam Utilities Library

Dim ThirdRec As Object

Dim FirstWorkObject As SmApplic.ISmObject

Dim SecondWorkObject As SmApplic. IStObject

Dim Vault As SmApplic.ISmObject * vault as object

"Dim Vault As Object " vault as object

Dim VaultType As Integer " type of vault

Dim SourceVault As Long " source vault object id

Dim SourceDirectory As String "source directory in vault
Dim SourceFileName As String "source file name

Dim DestinationDirectory As String "destination directory in vault
Dim DestinationFileName As String “destination file name

Dim SessionUtil As SmUtil _SmSessionUtil "main SmarTeam service object

Dim Result As Long " object id for refresh

Dim FileMode As Integer “file mode in destination directory

" Convert pointer to COM object SmSession

Set SmSession = SCREXT_ObjectForInterface(ApplHndl)
" Conver input parameter to COM object

CONV_RecL istToComRecordList FirstPar,FirstRec
CONV_RecListToComRecordList SecondPar ,SecondRec
CONV_RecListToComRecordList ThirdPar,ThirdRec

Set FirstWorkObject =
SmSession.ObjectStore.ObjectFromData(FirstRec.GetRecord(0) , true)

Set SecondWorkObject =
SmSession.ObjectStore.ObjectFromData(SecondRec.GetRecord(0) , true)

" Get service object

Set SessionUtil = SmSession.GetService(*'SmUtil.SmSessionUtil™™)

" Vault type

173

SmarTeam Object Model Programmer's Guide

VaultType = VitinWork
" Get Vault for WorkObject according to specific vault type
Set Vault = Sessionutil._GetVaultForObject(VaultType, FirstWorkObject)
" Get Vault object id - for local vault NULL object id
If Vault Is Nothing Then
SourceVault = NULL_OBJ_ID
Else
SourceVault = Vault._Objectld
End IF
" Set all parameters
SourceDirectory = FirstWorkObject._Data.ValueAsString(NV_DIRECTORY)

DestinationDirectory = SecondWorkObject.Data.ValueAsString(NM_DIRECTORY)

SourceFileName = FirstWorkObject.Data.ValueAsString(NM_FILE NAVE)

DestinationFileName = SecondWorkObject.Data.ValueAsString(NM_FILE_NAME)

FileMode = modReadWrite "file mode in destination directory
" Perform operation on object using SmSessionUtil method
“CopyFileFromvault

“Result = Sessionuti I .CopyFileFromVault(SourceVault, SourceDirectory,
SourceFileName, DestinationDirectory, DestinationFileName)

“CopyObjectFileFromVaultPermission

SessionUti I .CopyObjectFileFromVaultPermission FirstiorkObject,
DestinationFileName, DestinationDirectory, FileMode

InsteadOfCopyFileExample = Err_None

End Function

174

Chapter 7, SmarTeam Utilities Library

Copied-File Registration

This section describes API functions that manage copied-file registration.
When a file associated with an object is copied to a different directory
using the SmarTeam commands Check Out, New Release, Copy File or
View, the copied file is registered. For example, executing Copy File on a
Document copies the associated file to the work directory and registers the
copied file. The Local File Explorer GUI lets you keep track of all
registered copied files and lets you conveniently delete them when they
are not needed.

The following table shows the four possible status values of a file in the
copied-file registration:
Status of Copied-File in Copie Default Copied-File SmarTeam command used to co

File Registration Location file
Checked out Iwork Check Out, New Release
Copied file Iwork Copy File
Copied and referenced file fwork Copy File
Viewed file Iview View

The default locations mentioned in the table are specified in the System
Configuration Editor under “Miscellaneous Configuration/Directory
Structure”. The key “USER_DIR” is the default location for the Check
Out, Copy File and New Release operations. The key “ReadOnlyDir” is
the default location for the View operation.

The SmSessionUtil object contains the following functions to support
copied-file registration.

Function Description
AddReferenceToFileCopy Adds a reference to copy file maintenance
(TDM_COPY_FILE table).
DeleteAllFilesRegistration Deletes all registered files
DeleteCopiedFilesRegistration Deletes only registered copied (or copied an
referenced) files
DeleteFilesRegistrationForObject Deletes all files registered for an object
DeleteMissingFilesRegistration Deletes registration records when the

corresponding files are not found
DeleteSpecificFileRegistrationForObject Deletes one of the files registered for an obji

DeleteViewedFilesRegistration Deletes all registered viewed files

175

SmarTeam Object Model Programmer's Guide

Common Tasks

Copied-File Registration Task:
Delete a Viewed File for an Object

The following script uses DeleteSpecificFileRegistrationForObject to
delete a viewed file for an object, including the file and the registration
record. It is assigned as a user-defined function, which is executed when
the object is selected on the SmarTeam view.

Function DeleteViewedFileRegistrationForObject(ApplHndl As Long,Sstr As
String,FirstPar As Long,SecondPar As Long,ThirdPar As Long) As Integer

Dim SmSession As SmApplic.SmSession
Dim FirstRec As Object

Dim SecondRec As Object

Dim ThirdRec As Object

Dim SessionUtil As SmUtil_SmSessionUtil "main SmarTeam service object

Dim WorkObject As SmApplic.1SmObject

Dim FileName As String "“file name for object

Dim ViewDirectory As String "directory

Set SmSession = SCREXT_ObjectForInterface(ApplHndl)

Set SessionUtil = SmSession.GetService(*'SmUtil.SmSessionUtil™)
" Conver input parameter to COM object
CONV_RecListToComRecordList FirstPar,FirstRec

Set WorkObject =
SmSession.ObjectStore.ObjectFromData(FirstRec.GetRecord(0) , true)

WorkObject.Retrieve "to get file name
ViewDirectory= "E:\Program Files\View"

FileName = WorkObject._Data.ValueAsString(NM_CAD REF FILE NAME) “original
file name, same as copied file name

MsgBox 'Deleting viewed file " + ViewDirectory + ™ ** + FileName + * for
object “ + Str(WorkObject.Objectid)

176

Chapter 7, SmarTeam Utilities Library

Lifecycle Operations

"deletes file and appearance in local file explorer

SessionUti I .DeleteSpecificFileRegistrationForObject WorkObject, FileName,

ViewDirectory

DeleteViewedFileRegistrationForObject = Err_None

End Function

The SmSessionUtil object contains various types of life-cycle
functionality for persistent objects.

The life cycle functionality is divided into two groups:

. Individual Operations

. Group Operations

Individual Operations

These methods perform life-cycle operations on individual objects. The
methods check for user authorization and whether the object is in a valid
state for the operation. If the object is not valid, an error message is
displayed. The table indicates if the method can call scripts.

Function Description Calls scripts: Optionally
Always Never
Approve Release the object 0
Checkln Check in the object 0
CheckOut Check out the object 0
NewRelease New-release the object 0
Obsolete Obsolete the object 0
Register Register the object 0
UndoCheckOut Undo the previous checkout A
operation. Always calls script
UndoCheckOutEx Undo the previous checkout O
operation. Can set behavior
preference to not call scripts.
HandleCheckInApprove Check in or Release object N

HandleCheckOutNewRelease

HandleRegisterFreeze

Objects are not locked.
Check out or New-release ob N

Objects are not locked.
Register or Obsolete object N

177

SmarTeam Object Model Programmer's Guide

Objects are not locked.

Operations for Part Objects

The following operations are provided for Part objects, which are subject
to Part Class Behavior.

Function Description

Promote (operation) Promotes the state of the Part object. The operation is
executed using the method ExecuteOperationOnObjectTre
as described below.

NewPartRevision Returns a new Part Revision for the specified SourceObjeq
and attribute values.

Task Record Argument for Individual Life-Cycle Operations

The individual life-cycle operation methods have the following typical
format:

Function ChecklIn(
SourceObject As ISmObject,
TaskRecord As ISmRecord,
InvokeScripts As Boolean

) As Integer

Most of the individual life-cycle methods require the ISmRecord argument
TaskRecord — an object that represents attributes for the life-cycle
operation being performed.

¢ |If you want the life-cycle operation to be performed with the default
attribute values, set the TaskRecord to null.

e |If you want to specify attribute values for the life-cycle operation,
which are different from the default values, you need to load them into
the TaskRecord object. Figure 14 shows the structure of the
TaskRecord object. For each attribute, you load its header and its

value.
Figure 14 Task Record for a Life-Cycle Operation
Life-Cycle Operation Attributes

Header: Name Attribute-1 Attribute-2 Attribute-n
Type Type-1 Type-2 Type-n
Size Size-1 Size-2 Size-n

LC Operation Value-1 Value-2 Value-n

Example

178

Chapter 7, SmarTeam Utilities Library

For example, the following creates a Task Record for the Check In
operation and specifies the attributes: NM_LFCYC_CHECKIN_MODE
and NM_REVISION. This code operates in the InsteadOf Checkln hook.
The attribute values are received from SmarTeam in SecondRec and
loaded into the TaskRecord.

" Create task record
Set TaskRecord=CreateObject(*'SmRecList.SmRecord'")
" Add task to task record
TaskRecord.AddHeader NM_LFCYC CHECKIN _MODE, 2, sdtSmallint

TaskRecord.ValueAsSmal I Int(NM_LFCYC_CHECKIN_MODE) =
SecondRec.ValueAsSmal Il Int(NM_LFCYC_CHECKIN_MODE, 0)

TaskRecord.AddHeader NM_REVISION, 256, sdtChar
TaskRecord.ValueAsString(NM_REVISION) =
SecondRec.ValueAsString(N\M_REVISION, 0)

Individual Life-Cycle Operation Task:
Check In an Individual Object

The following script uses the Register and the Check In function to check
an object into the vault depending on its state. It is defined as a script
hook function in the InsteadOf hook of the Check In operation. Check In
does all authorization checks.

Function InsteadOfChecklnExample(ApplHndl As Long,Sstr As String,FirstPar As
Long,SecondPar As Long,ThirdPar As Long) As Integer

Dim SmSession As SmApplic.SmSession
Dim FirstRec As Object
Dim SecondRec As Object
Dim ThirdRec As Object
Dim Operation As SmApplic.1SmOperation "performed operation object
Dim Metainfo As SmApplic.SmMetalnfo “metainfo object for smClasses

Dim SessionUtil As SmUtil.SmSessionUtil “"main SmarTeam service object

Dim TaskRecord As Object "task record for operation

179

SmarTeam Object Model Programmer's Guide

Dim OperName As String "operation name

Dim InvokeScripts As Boolean "invoke scripts on operation
Dim Result As Long "result of operation

Dim CheckinMode As Integer

Dim WorkObject As SmApplic.1SmObject

Dim State As Integer

Dim NewLookupObj As SmApplic. 1SmLookUpObject

Dim CheckedOutlookupObj As SmApplic.1SmLookUpObject

Dim StateClass As SmApplic.IsmClass

Set SmSession = SCREXT_ObjectrFor Interface(ApplHndl)

Set Metainfo = SmSession.Metainfo

" Convert pointer to COM object SmSession
CONV_RecListToComRecordList FirstPar,FirstRec
CONV_RecListToComRecordList SecondPar,SecondRec
CONV_RecListToComRecordList ThirdPar,ThirdRec

" Get service object

Set SessionUtil = SmSession.GetService("'SmUtil.SmSessionUtil™)
" Invoke scripts on operation execution (before, after, instead)
InvokeScripts = False

" Conver input parameter to COM object

Set WorkObject =
SmSession.ObjectStore.ObjectFromData(FirstRec.GetRecord(0) , true)

* Create task record

Set TaskRecord=CreateObject(*'SmRecList.SmRecord'")

" Add task to task record

TaskRecord.AddHeader NM_LFCYC_CHECKIN_MODE, 2, sdtSmalllnt

TaskRecord.ValueAsSmal I Int(NM_LFCYC_CHECKIN_MODE) =
SecondRec.ValueAsSmal I Int(NM_LFCYC_CHECKIN_MODE, 0)

180

Chapter 7, SmarTeam Utilities Library

TaskRecord.AddHeader NM_REVISION, 256, sdtChar

“Determine object STATE to choose between REGISTER and CHECKIN
State = FirstRec.ValueAsinteger(NM_STATE, 0)

Set StateClass = SmSession_Metalnfo.GetInternalSmClass('TDM_STATE'")

Set NewLookupObj =
SmSession.ObjectStore . GetSmLookUpByUniqueName(StateClass.Classlid, "New™)

Set CheckedOutlookupObj =
SmSession.ObjectStore . GetSmLookUpByUnigueName(StateClass.Classld, '‘Checked
out™)
IT Not (WorkObject Is Nothing) Then
IT State = NewLookupObj.-Id Then “new - register
" new revision
TaskRecord.ValueAsString(NM_REVISION) = *'X'*
" Get operation object
OperName = NM_OPER_REGISTRATION

Set Operation = Metainfo.OperationsForClass(WorkObject.Classld,
False) . ItemByName(OperName)

" Perform ChecklIn operation on object using SmSessionUtil method
Result = SessionUtil .Register(WorkObject, TaskRecord,
InvokeScripts)
Elself State = CheckedOutLookupObj.Id Then "checked out
" Set operation name according to default constant
OperName = NM_OPER CHECKIN

Set Operation = Metainfo.OperationsForClass(WorkObject.Classid,
False) . ItemByName(OperName)

TaskRecord.ValueAsString(NM_REVISION) =
SecondRec.ValueAsString(N\M_REVISION, 0)

Result = SessionUtil.Checkin(WorkObject, TaskRecord, InvokeScripts)

End If

MsgBox ‘‘Deleted Object ID " + Str(Result)

181

SmarTeam Object Model Programmer's Guide

End If
InsteadOfChecklnExample = Err_None

End Function

Individual Life-Cycle Operation Task:
Check-in an Individual Object with the
NM_LFCYC_CHECKIN_MODE task

The following script is hooked to "Before Check in® to handle the file name
change when changing task NM_LFCYC CHECKIN_MODE.

If Sstr << NM_OPER_CHECKIN Then Exit Function
Dim SmObj As ISmObject, PrevObj As ISmObject

Set SmObj = Session.ObjectStore.ObjectFromData(RecListl.GetRecord(0),
True)

Dim Util As SmSessionUtil
Set Util = Session.GetService("'SmUtil .SmSessionUtil'™")

Set PrevObj = Util._GetObjectByRevision(SmObj, SmObj.Data.Value(NM_PAR
REVISION))

IT SmObj .Objectld = PrevObj.Objectld Then Exit Function * if no previous
revision exists

Dim filename As String, name As String, ext As String, pos As Integer
filename = SmObj .Data.Value(NM_FILE_NAME)

pos = InStr(Ffilename, "'.")

name = Left(Filename, pos - 1)

ext = Right(filename, Len(filename) - pos)

IT RecList2_Value(N\M_LFCYC CHECKIN _MODE, 0) = LFCYC WorkRev Then

RecList2.Value(N\M_LFCYC_CHECKIN_MODE, 0) = LFCYC PrevRev * In "Replace
previous revision®™ we have to provide the FILE NAME task of previus
object

RecList2_Value(N\M_FILE_NAME, 0) = PrevObj.Data.Value(NM_FILE_NAVE)

Else

182

Chapter 7, SmarTeam Utilities Library

End

RecList2.Value(NM_LFCYC_CHECKIN_MODE, 0) = LFCYC WorkRev * * In "Current
revision®™ we have to build the FILE_NAME task of current object

RecList2.Value(N\M_FILE_NAME, 0) = name & " " & SmObj.Objectld & " " &
Smobj .Classld & "'." & ext

If

Individual Lifecycle Task:
Check Out an Individual Object

The following script uses the HandleCheckOutNewRelease function to
check out an object from the vault. It is defined as a script hook function
in the InsteadOf hook of the Check Out operation.

Function HandleCheckOut(ApplHndl As Long,Sstr As String,FirstPar As
Long,SecondPar As Long,ThirdPar As Long) As Integer

Dim

Dim SmSession As SmApplic.SmSession

Dim FirstRec As Object

Dim SecondRec As Object

Dim ThirdRec As Object

Dim Operation As SmApplic. ISmOperation "performed operation object
Dim NewWorkObject As SmApplic.ISmObject "new object

Dim WorkObject As SmApplic.1SmObject "new object

Dim Metainfo As SmApplic.SmMetalnfo "metainfo object for smClasses

Dim SessionUtil As SmUtil.SmSessionUtil "main SmarTeam service object

TaskRecord As Object "tasks record for operation - for SmartScript
Dim OperName As String "operation name

Dim Result As Long "result of operation - new object id for refresh
Dim WorkDir As String "work directory

Dim RetValue As Integer

Dim TreatCommonFileObjects As Boolean

" Convert pointer to COM object SmSession

183

SmarTeam Object Model Programmer's Guide

Set SmSession = SCREXT_ObjectForInterface(AppIHndl)

" Conver input parameter to COM object
CONV_RecListToComRecordList FirstPar,FirstRec
CONV_RecListToComRecordList SecondPar,SecondRec
CONV_RecListToComRecordList ThirdPar,ThirdRec

" Get service object

Set SessionUtil = SmSession.GetService('SmUtil.SmSessionUtil™)
" Conver input parameter to COM object

Set Metainfo = SmSession._Metainfo

Set WorkObject =
SmSession.ObjectStore.ObjectFromData(FirstRec.GetRecord(0) , true)

* Create task record

Set TaskRecord=CreateObject(*'SmRecList.SmRecord'")
" Add task to task record

TaskRecord.AddHeader NM_FILE_NAME, 255, sdtChar
" Add task to task record

TaskRecord.AddHeader NM_DIRECTORY, 255, sdtChar
" Set destination File name for task record

TaskRecord.ValueAsString(NM_FILE_NAME) =
SecondRec.ValueAsString(NM_FILE _NAME, 0O)

" Set destination work directory

TaskRecord.ValueAsString(NM_DIRECTORY) =
SecondRec.ValueAsString(NM_DIRECTORY, 0)

I Not (WorkObject Is Nothing) Then

" Get operation object depending on specific SmClass and operation name

OperName = NM_OPER_CHECKOUT

Set Operation = Metainfo.OperationsForClass(WorkObject.Classld,
False) . I'temByName(OperName)

" Check If operation allowed for object

184

Chapter 7, SmarTeam Utilities Library

IT SessionUtil.OperationAl lonedOnObject(WorkObject, Operation, False)
Then

" Perform operation on object

Set NewWorkObject = SessionUti I .HandleCheckOutNewRelease(WorkObject,
Operation, TaskRecord)

" Pass new checked out object to ST through ThirdRec.
ThirdRec.CopySmRecord NewWorkObject.Data, O
CONV_ComRecListToRecordList ThirdRec, ThirdPar

End If
End IF
HandleCheckOut = Err_None

End Function

Individual Lifecycle Task:
Creating a new Part Revision

The following script uses the NewPartRevision function to create a new
Part Revision from a source object.

Dim SourceObject As 1SmObject

Dim NewPartRevision As 1SmObject

Dim PartAttributes As 1StRecord

Set PartAttributes = GetDefaultNewRevisionPartAttributes(SourceObject)

Comment = "New Part Revision"

Set NewPartRevision = NewPartRevision(SourceObject, PartAttributes , Comment
)

Individual Lifecycle Task:
Promoting a Part object

The following script uses the ExecuteOperationOnObjectTree function to
promote a Part object.

"Display old state

185

SmarTeam Object Model Programmer's Guide

MsgBox WorkObject.State
OperName = “"PROMOTE*

Set Operation = Metainfo.OperationsForClass(WorkObject.Classid,
False) . 1temByName(OperName)

Set DefaultTask=Nothing

“Add effectivity dates to tasks - this is important for Promote operation -
part objects are not File managed

Propagate = False
" Set main operation name
OperName = “"PROMOTE"

Set MainOperation = Metainfo.OperationsForClass(WorkObject.Classld,
False) . 1temByName(OperName)

Set TaskRL=CreateObject(**SmRecList.SmRecordList'")
TaskRL.AddHeader NM_CLASS 1D, 2, sdtSmallint
TaskRL .AddHeader NM_OBJECT ID,SIZE_OBJ_ID,sdtInteger
TaskRL.AddHeader NM_DSC_NOTES, 256, sdtChar
j=0
TaskRL._ValueAsSmal I Int(NM_CLASS ID,j) = WorkObject.Classld
TaskRL.ValueAsinteger(N\M_OBJECT_ID,j) = WorkObject.Objectld
TaskRL.ValueAsString(NM_DSC NOTES, j) = "Promote TaskRL notes™
IT Not (WorkObject Is Nothing) Then

" Check If operation allowed for object

IT SessionUtil.OperationAl lowedOnObject(WorkObject, Operation,False) Then

" Perform operation on object using SmSessionUtil method

SessionuUti I .ExecuteOperationOnObjectTree WorkObject, MainOperation,
Propagate, TaskRL, DefaultTask

End If
End IFf

"Display new state

186

Chapter 7, SmarTeam Utilities Library

WorkObject._Retrieve

MsgBox WorkObject.State

Individual Life-Cycle Operation Task:
Replacing Previous Revision While Keeping Check Out

The 'Before Check in' handles the file name, is hooked to the following
script when changing the task- NM_LFCYC_CHECKIN_MODE

If Sstr < NM_OPER_CHECKIN Then Exit Function
Dim SmObj As ISmObject, PrevObj As ISmObject

Set SmObj = Session.ObjectStore.ObjectFromData(RecListl.GetRecord(0), True)

Dim Util As SmSessionUtil
Set Util = Session.GetService('Smutil.SmSessionUtil™)

Set PrevObj = Util.GetObjectByRevision(SmObj,
SmoObj .Data.Value(NM_PAR_REVISION))

I SmObj .Objectld = PrevObj.Objectld Then Exit Function " if no previous
revision exists

Dim filename As String, name As String, ext As String, pos As Integer
Filename = SmObj .Data.Value(NM_FILE_NAME)
pos = InStr(filename, ".'")
name = Left(Filename, pos - 1)
ext = Right(Filename, Len(Filename) - pos)

IT RecList2.Value(N\M_LFCYC CHECKIN_MODE, 0) = LFCYC WorkRev Then

RecList2.Value(NM_LFCYC_CHECKIN_MODE, Q) = LFCYC PrevRev " In "Replace
previous revision® we have to provide the FILE NAME task of previus object

RecList2.Value(NM_FILE_NAVE, 0) = PrevObj.Data.Value(NM_FILE NAME)

Else

187

SmarTeam Object Model Programmer's Guide

RecList2.Value(N\M_LFCYC_CHECKIN_MODE, 0) = LFCYC WorkRev * * In "Current
revision®™ we have to build the FILE NAME task of current object

RecList2.Value(\M_FILE NAVE, 0) = name & " ** & SmObj.Objectld & ** " &
SmObj .Classld & "." & ext

End IFf

Group Life-Cycle Operations

e These functions perform life-cycle operations on groups of objects.
The user can define advanced preferences for the executing operation.

Function Description Calls scripts:
Optionally Always Never

ExecuteOperationOnObjectTree Perform life-cycle operation A
object tree

ExecuteOperationOnTrees Perform life-cycle operation A
set of object trees

GroupUndoCheckOut Undo group check out. Alwa A
calls script.

GroupUndoCheckOutEx Undo group check out. Can O
behavior preference to not ¢
scripts.

Understanding Group Life-Cycle Operations

In order to use the group life-cycle methods effectively, you need to
understand the way that SmarTeam carries out a group lifecycle
operation.

There are two types of group life-cycle operations:

A life-cycle operation performed on a single object tree with a single root
— corresponding to the method ExecuteOperationOnObjectTree.

A life-cycle operation performed on more than one object tree, each with a
single root -- corresponding to the method ExecuteOperationOnTrees.

188

Chapter 7, SmarTeam Utilities Library

Lifecycle Operation on a Single Object Tree

This section describes how to perform a life-cycle operation on a single
object tree using the function:

Sub ExecuteOperationOnObjectTree (SmObject As ISmObject,

‘Leading object SmOperation As ISmOperation, ‘Life-cycle operation

Propagated As Boolean, ‘To propagate operation to children
ObjectAndTreeTasks As ISmRecordList, ‘Task record list
DefaultTasks As IsmRecordList ‘Default tasks record list)

A later section describes how to perform life-cycle operations on multiple
trees. The basic concepts are the same for both; they are described in
detail in this section.

To understand this operation, you need to know:

What are the elements of the object tree on which the life-cycle operation
is performed?

Which life-cycle operations are performed?

How to specify task attributes for each life-cycle operation that is
performed

Object Tree — Root Object and Descendents

An object tree is composed of a selected root object or leading object
together with the linked objects and CFOs, of the root object. For
example, an object tree could be an assembly together with all of its parts,
subparts and raw materials, or a folder together with all of its documents.

The root object is selected by the user, for example, on a SmarTeam
View, and the hierarchical descendents are added to the tree automatically
by SmarTeam. SmarTeam retrieves the descendents from the database
using the links to the root object. Note that a descendent will not be
retrieved if the user is not authorized to retrieve it.

189

SmarTeam Object Model Programmer's Guide

Figure 15 Object Tree Record List

Object Attributes

Header: Name | Oper_ID Object_ID Class_ID Attribute-n
Type Size sdtSmallint 2 | sdtObject sdtSmallint 2 Type-n

Identifier 4 Size-n
RootObject-1 | OperID-1 ObjectID-1 | ClassID Value-n-1
ChildObject-2 | OperID-2 ObjectID-2 | ClassID Value-n-2
ChildObject-3 | OperID-3 ObjectID-3 | ClassID Value-n-3
ChildObject-m [OperID-m ObjectID-m | ClassID Value-n-m

Lifecycle Operations Performed on Objects

One attribute in the object record list is the life-cycle operation Operld for
the object. For the Lifecycle Stage 2 script hook, the value in this column
is the Operation Code for the operation rather than the Operation Id used
elsewhere. A specific main life-cycle operation is specified for the root
object and that operation is always used for the root object. However, the
lifecycle operation that is performed on the descendent elements of the
object tree can be different than the main operation.

190

Chapter 7, SmarTeam Utilities Library

Table 4 Operation Code Values

Operation Name Operation Code Description
OPCHECKOUT 0 CHECKOUT
OPNEWREL 1 NEWREL
OPCHECKIN 3 CHECKIN
OPAPPROVE 4 APPROVE
OPFREEZE 5 FREEZE
OPCOPYFILE 6 COPYFILE
OPNOOP 7 NOOP
OPNOTALLOWED? 8 NOTALLOWED
OPDUMMY 9 DUMMY
OPSECONDARYCOPY 10 SECONDARYCOPY
OPLOCKCOPY 11 LOCKCOPY
OPUNLOCK 12 UNLOCK

Normally, the same operation is used on all descendent elements even if it
is not the main operation. However, by using a script, you can cause
different operations to be performed on different descendents by changing
the value of the Operation Code for that object.

The operation that is actually performed on the descendent elements of an
object tree depends on the following factors:

The possible operations that can be performed on the descendants is
limited and determined by the selection of main operation.

The main operation can be propagated to the descendents by setting the
NM_PROPAGATED and NM_PROPAGATED _IDENT attributes in the
object record list. For the ExecuteOperationOnObjectTree method these
flags are set by the Propagated parameter. For the
ExecuteOperationOnTrees method you set the flags directly in the object
record list.

If the main operation is not propagated (because the flag is not set), a
SmarTeam default operation is used for the descendents. The default
operation for each main operation is shown in the table below.

The user can intervene in a script hook to change the default operation on
a descendant to one of the other permitted operations.

1 The operation codes from this row until the end of the table are read-only.

191

SmarTeam Object Model Programmer's Guide

The following table shows the operations permitted on the descendants for
each main operation as well as the default operation used on the
descendents in case the main operation is not propagated.

Main Operation

Default for no
propagation

Operations Permitted on Descendants

Checkin

Approve

CheckOut

NewRel

CopyFile

LockCopy
DisableFlowSecurity
DisableFlowSharing
EnableFlowSecurity
EnableFlowSharing
Freeze

NoOp

NotAllowed?

Dummy

UndoCheckOut

Checkln, Registr, Approve
Approve, Registr, Checkin

No Operation
No Operation

CheckOut, NewRel, CopyFile CopyFile
NewRel, CheckOut, CopyFile CopyFile
CopyFile, SecondaryCopy, LockCopy CopyFile

LockCopy, CopyFile, SecondaryCopy
DisableFlowSecurity, DisableFlowSharing
DisableFlowSharing, DisableFlowSecurity
EnableFlowSecurity, EnableFlowSharing
EnableFlowSharing, EnableFlowSecurity

Freeze, NoOp NoOp
NoOp, NotAllowed, Dummy, ReturnNewObjet

NotAllowed, NoOp, Dummy, ReturnNewObjer
Dummy, NoOp, NotAllowed, ReturnNewObjer

UndoCheckOut UndoCheckOut

Specifying Task Attributes for an Operation

In the previous section, we saw that more than one life-cycle operation
can be used on the elements of a tree: the main operation on the root
element and possibly other permitted operations on each of the

descendents.

This section describes how to specify task attributes for each of these
operations. There are three ways you can do this:

You can specify task attributes for an operation performed on a specific
object, where you need to specify the Object Id, the Class Id and the task

attributes.

2 The operations from this row to the end of the table are not available to the

user.

192

Chapter 7, SmarTeam Utilities Library

You can specify task attributes for a specific operation, where you just
need to specify the Operationld and the task attributes. These attributes
are used any time the operation acts on an object — except for objects
specified by method 1 above.

If you do not specify task attributes in either of the previous ways, the
SmarTeam default task attributes are used for the operation.

1 - Specifying Task Attributes for an Operation Performed on a Specific
Object

This section describes case 1 above. If you know the Object Id, Class Id
and the operation to be performed for a specific object, you can use the
following record lists to specify task attributes for the operation:

Method Record List
ExecuteOperationOnObjectTree ObjectAndTreeTasks
ExecuteOperationOnTrees Tasks

1.1 - Specifying Task Attributes for the Main Operation Performed on the
Root Object

In the simplest case, you can use this record list to specify task attributes
for the main operation performed on the root object.

If you want to specify life-cycle operation attributes for the root object
only, it is sufficient to supply a record list containing a single record of
attributes. You do not need to specify either object or operation
information. This format is identical to the Task Record parameter for the
individual life-cycle attributes described above. The remaining members
of the tree are handled with the default attributes.

Figure 16 Task Record for the Root Object

Life-Cycle Operation Attributes
Header: Name | Attribute-1 Attribute-2 Attribute-n
Type Type-1 Type-2 Type-n
Size Size-1 Size-2 Size-n
LC Operation Value-1 Value-2 Value-n

1.2 - Specifying Task Attributes for Additional Objects

193

SmarTeam Object Model Programmer's Guide

If you know the Object Id, Class Id and the operation to be used for
specific descendents in the tree, you can use the record list to specify task
attributes for the operation. You build a record containing the object
information and task attributes appropriate to the operation to be

performed on the object.
Figure 17 Task Record List

Object Attributes Operation Task Attributes
Header: Name | Object_ID Class_ID Attribute-1 Attribute-n
Type 10 2 Type-1 Type-n
Size 4 2 Size-1 Size-n
RootObj ObjectID-0 ClassID-0 Value-1-0 Value-n-0
Child-1 ObjectID-1 ClassID-1 Value-1-1 Value-n-1
Child-2 ObjectID-2 ClassID-2 Value-1-2 Value-n-2
Child-3 ObjectID-3 ClassID-3 Value-1-3 Value-n-3
Child-m ObjectID-m ClassID-m Value-1-m Value-n-m

For example, if the main operation is CheckOut and you know that Copy
File will be used on a specific descendant, you can specify attributes for
the Copy File operation for that descendant, such as a destination file
name.

You do not need to specify the Operation Id in the task record list
(however, if you do not specify the Operation Id in the object record list,
you must specify it in the task record list.) The Operation Id is already
located in the object record list together with the object as shown above.
SmarTeam assumes that the task attributes you specify for that object in
the task record list are appropriate attributes for the operation on that
object.

2 - Specifying Task Attributes for a Specific Operation

This section describes case 2 above. SmarTeam prepares a set of default
task attributes for each operation permitted on the descendents (see table
above). For example, when the main operation is CheckOut, default task
attributes are prepared for CheckOut, NewRelease, and CopyFile. When
one of these operations is performed on a descendant, and that
descendant’s object information does not appear in the Task record list,
the default task attributes are used for the operation.

You can replace or add to the default task attributes for one of the
permitted operations using the following record list.

194

Chapter 7, SmarTeam Utilities Library

Method Record List
ExecuteOperationOnObjectTree DefaultTasks
ExecuteOperationOnTrees DefaultTasks

You create a record containing the Operation Id for a permitted operation
together with the task attributes you want to add or replace as follows.

Figure 18 Default Tasks Record List

Operation Operation Task Attributes

Header: Name Oper_ID Attribute-1 Attribute-n
Type 10 Type-1 Type-n

Size 4 Size-1 Size-n

MainOperation OperID-0 Value-1-0 Value-n-0
PermittedOperation-1 OperID-1 Value-1-1 Value-n-1
PermittedOperation-2 OperID-2 Value-1-2 Value-n-2
PermittedOperation-3 OperID-3 Value-1-3 Value-n-3

You only need to define a record for each operation that you want to
change from its default tasks. SmarTeam maintains an internal Default
Task record list for all permitted operations. The information you provide
alters that internal record list for the operations you specify.

195

SmarTeam Object Model Programmer's Guide

Operating with Record Lists

The following figure shows how SmarTeam uses the record lists Task
and Default in executing life-cycle operations on a tree. SmarTeam
cycles through the Object Record List. For each object in the Object
Record List, it searches for task information for the object’s operation.
First, it looks for the object’s identifying information in the Task Record
List (like Root object and Child 1 in the figure). If found, SmarTeam uses
the task information from the Task Record List. If not, it finds the object’s
operation in the Default Record List (Child 2 in the figure) and uses the
task information from there.

L Root Object / Tasks

Root Object
’—> Child 1/ Tasks
Root Object / Main Oper Task Record List
Child 1

Child 1 / Oper 1 «—!

Child 2 / Oper 1

Object Record List Oper 1 Main Oper / Tasks
\—b Oper 1/ Tasks Oper 1/ Tasks
Oper 2 / Tasks Default Record List

Internal Default
Record List

Note: You should not alter any of the values of Operation Code in the Life-
Cycle Stage 2 hook.

Example

This example checks out the parent assembly, uses Task Record List to
copy a specific child part files to E:\Program Files\View, and uses Default
Record List to copy the other child parts to D:\smartsolutions\examples.

create record for Copy File operation in Default task
OperName = NM_OPER COPY_FILE

Set Operation = Metainfo.OperationsForClass(WorkObject.Classid,
False) . 1temByName(OperName)

196

Chapter 7, SmarTeam Utilities Library

Set DefaultTask=CreateObject("'SmRecList.SmRecordList'")
DefaultTask.AddHeader NM_OPER_ID, 2, sdtSmallint

DefaultTask.AddHeader NM _DIRECTORY, 256, sdtChar
DefaultTask.ValueAsSmall Int(NM_OPER_ID,0) = Operation.Iid
DefaultTask.ValueAsString(NM_DIRECTORY,0) = "‘D:\smartsolutions\examples'
Propagate = False

" Set main operation name

OperName = NM_OPER CHECKOUT

Set MainOperation = Metainfo.OperationsForClass(WorkObject.Classld,
False) . ItemByName(OperName)

Set TaskRL=CreateObject(*'SmRecList.SmRecordList'")
TaskRL.AddHeader NM_CLASS ID, 2, sdtSmallint
TaskRL.AddHeader NM_OBJECT_ID,SIZE OBJ_ID,sdtInteger
TaskRL.AddHeader NM_DSC_NOTES, 256, sdtChar
TaskRL.AddHeader NM_REVISION, 256, sdtChar
TaskRL.AddHeader NM_FILE NAME, 129, sdtChar
TaskRL.AddHeader NM_DIRECTORY, 256, sdtChar
j=0
TaskRL.ValueAsSmal I Int(N\M_CLASS D, j) = WorkObject.Classld
TaskRL.ValueAsInteger(N\M_OBJECT _ID,j) = WorkObject.Objectid
TaskRL.ValueAsString(NM_DSC NOTES, j) = ""NEWRELEASE TaskRL notes'
TaskRL .ValueAsString(\M_REVISION, j) = "x2"
j=1
" Check if children exist for this object
If Count < O Then

For 1 =0 To Count-1

Set Child = Children. Item(i)

IT Child.Classld = PartClassld Then

197

SmarTeam Object Model Programmer's Guide

If Child.Data.ValueAsString("'CN_ID'") = "'SWP-0075" Then
TaskRL.ValueAsSmal 1 Int(NM_CLASS ID,j) = Chilld.Classld
TaskRL.ValueAsInteger(NM_OBJECT_ID,j) = Child.Objectld

TaskRL.ValueAsString(NM_DSC _NOTES, j) = "Copy File TaskRL
Child Document notes™

TaskRL.ValueAsString(NM_FILE_NAVE,j) = "‘assemldoc.doc™

TaskRL . ValueAsString(NM_DIRECTORY, j) = "E:\Program

Files\View"
TaskRL.ValueAsString(\M_REVISION, j) = "'d1"
j=iv
End IT
End IT
Next
End If

IT Not (WorkObject Is Nothing) Then
" Check If operation allowed for object

IT SessionUtil.OperationAl lowedOnObject(WorkObject, Operation,False) Then

" Perform operation on object using SmSessionUtil method

SessionuUti I .ExecuteOperationOnObjectTree WorkObject, MainOperation,
Propagate, TaskRL, DefaultTask

End If

End IF

Multiple-Tree Group Life-Cycle Operations

Life-cycle operations can be performed on a group of trees using the

method:

Sub ExecuteOperationOnTrees(

LeadingObjects As ISmObjects, “Leading object of each tree
Tasks As ISmRecordList, “Task record list
DefaultTasks As IsmRecordList “Default task record list

198

Chapter 7, SmarTeam Utilities Library

In general this method works the same as ExecuteOperationOnObjectTree.
The advantage of using this function over using
ExecuteOperationOnObjectTree is its convenience.

The two record lists Tasks and DefaultTasks work the same as the record
lists ObjectAndTreeTasks and DefaultTasks of the method
ExecuteOperationOnObjectTree. See the explanation in the previous
section.

The parameter LeadingObjects contains the root object or leading object
of each tree on which you want to perform a life-cycle operation. It
replaces the SmObject parameter of the method
ExecuteOperationOnObjectTree.

In addition you need to specify the attributes NM_OPER_ID and
NM_PROPAGATED for each object in LeadingObjects. These replace the
parameters SmOperation and Propagated of the method
ExecuteOperationOnObjectTree.

There are two ways you can specify the attributes NM_OPER_ID and
NM_PROPAGATED for each object:

If you want to specify the same attribute value for all objects, load them
into the DefaultTasks record list. From there they will be loaded into all
the objects in the LeadingObjects parameter.

If you want to specify the same or different values for these parameters,
load them directly into the LeadingObjects parameter and do not load
them into the DefaultTasks record list.

SmarTeam converts LeadingObjects into an ObjectList record list and
adds all descendants of all root object to the record list.

See example below.

Group Life-Cycle Operation Task:
Check In an Object Tree

The following script uses the ExecuteOperationOnObjectTree function to
check in an object tree. It is defined as a user-defined command.

Function ChecklnObjectTree(ApplHndl As Long,Sstr As String,FirstPar As
Long,SecondPar As Long,ThirdPar As Long) As Integer

Dim SmSession As SmApplic.SmSession

Dim FirstRec As Object

199

SmarTeam Object Model Programmer's Guide

Dim SecondRec As Object

Dim ThirdRec As Object

Dim Operation As SmApplic. ISmOperation “performed operation object
Dim Metainfo As SmApplic.SmMetalnfo "metainfo object for smClasses
Dim SessionUtil As SmUtil_SmSessionUtil "main SmarTeam service object
Dim DefaultTaskAs Object "default task record for operation

Dim TaskRL As Object “task record list for operation per object
Dim OperName As String “operation name

Dim Propagate As Boolean "Propagate operation

Dim WorkObject As SmApplic.1SmObject

Dim QueryDefinition As SmApplic.ISmQueryDefinition

Dim Children As SmApplic.ISmObjects * collection of objects linked
Dim Child As Object *

Dim FolderClassld As Integer

Dim i As Integer

Dim j As Integer

Dim Count As Integer

" use this script for setting defaults in the LC screen through the
ThirdPar and for setting individual records

" through SecondPar
MsgBox Sstr + ** CheckInObjectTree™

ExecuteOperationOnObjectTreeExample =
LFCycBrowseOper (ApplHndl ,Sstr,FirstPar,SecondPar , ThirdPar)

" MsgBox ‘‘After*

" Exit Function

" Convert pointer to COM object SmSession

Set SmSession = SCREXT_ObjectForInterface(ApplHndl)

Set SessionUtil = SmSession.GetService("'SmUtil_SmSessionUtil™)

Set Metainfo = SmSession.Metainfo

200

Chapter 7, SmarTeam Utilities Library

FolderClassld = Metainfo.SmClassByName(*'Folder'") .Classid
" Conver input parameter to COM object
CONV_RecListToComRecordList FirstPar,FirstRec
CONV_RecListToComRecordList SecondPar,SecondRec

CONV_RecL istToComRecordList ThirdPar,ThirdRec

Set WorkObject =
SmSession.ObjectStore.ObjectFromData(SecondRec.GetRecord(0) , true)

" Propagate operation for all of the object®s children

" Define query

Set QueryDefinition = Nothing

" Retrieve all object"s children

Set Children = WorkObject.RetrieveChildren(QueryDefinition)
Count = Children.Count

Propagate = True

" Set operation name according to default constant
OperName = NM_OPER_CHECKIN

" Get operation object depending on specific SmClass and operation name

Set Operation = Metainfo.OperationsForClass(WorkObject.Classld,
False) . I'temByName(OperName)

"Set TaskRL = Nothing
Set TaskRL=CreateObject(*'SmRecList.SmRecordList'")

TaskRL.AddHeader NM_CLASS ID, 2, sdtSmallint "dont need operid - applies to
leading object

TaskRL.AddHeader NM_OBJECT_ID,SIZE OBJ_ID,sdtInteger "dont need operid -
applies to leading object

TaskRL.AddHeader NM_OPER_ID,2, sdtSmallint "dont need operid - applies to
leading object

TaskRL.AddHeader NM_LFCYC CHECKIN _MODE, 2, sdtSmalllnt "dont need operid -
applies to leading object

201

SmarTeam Object Model Programmer's Guide

TaskRL .AddHeader NM_DSC _NOTES, 256, sdtChar
j=0
TaskRL.ValueAsSmal I Int(NM_CLASS ID,j) = WorkObject.Classld
TaskRL.ValueAsinteger(NM_OBJECT_ID,j) = WorkObject.Objectid
TaskRL.ValueAsSmal l Int(NM_OPER_ID,j) = Operation.ld
TaskRL.ValueAsSmal 1 Int(NM_LFCYC_CHECKIN_MODE, j) = 2
TaskRL.ValueAsString(NM_DSC NOTES,j) = "‘Checkin TaskRL notes™
j=1
" Check If children exist for this object
IT Count < O Then
For 1 =0 To Count-1
Set Child = Children.1tem(i)
IT Child.Classld = FolderClassld Then

TaskRL.ValueAsSmal Int(NM_CLASS ID,j) = Chilld.Classld
TaskRL.ValueAsinteger(NM_OBJECT_ID,j) = Child.Objectld
TaskRL.ValueAsSmal I Int(NM_OPER_ID,j) = Operation.Ild
TaskRL .ValueAsSmal 1 Int(NM_LFCYC CHECKIN MODE,j) = 2 "check in

folder as previous

TaskRL.ValueAsString(NM_DSC NOTES, j) = "‘Checkin TaskRL notes™
J=i+l
End IF
Next
End IT
" Empty task record - default tasks record for operation

Set DefaultTask=CreateObject(*'SmRecList.SmRecordList'") “create obj from co-
class of library

DefaultTask.AddHeader NM_OPER_ID, 2, sdtSmalllnt "need operid in
DefaultTask - applies to all objects

DefaultTask.ValueAsSmal I Int(NM_OPER_ID,0) = Operation.ld

DefaultTask.AddHeader NM_DSC _NOTES, 256, sdtChar

202

Chapter 7, SmarTeam Utilities Library

DefaultTask.ValueAsString(NM_DSC_NOTES,0) = '‘Checkin DefaultTask notes"

"Set DefaultTask = Nothing
If Not (WorkObject Is Nothing) Then
* Check if operation allowed for object

IT SessionUtil _OperationAl lowedOnObject(WorkObject, Operation,False) Then

" Perform operation on object using SmSessionUtil method

SessionUti I .ExecuteOperationOnObjectTree WorkObject, Operation,
Propagate, TaskRL, DefaultTask

End If
End IF
CONV_ComRecL istToRecordList SecondRec, SecondPar
CheckInObjectTree = Err_None

End Function

Group Life-Cycle Operation Task:
Check Out a Set of Object Trees

Function CheckOutTrees(ApplHndl As Long,Sstr As String,FirstPar As
Long,SecondPar As Long,ThirdPar As Long) As Integer

Dim SmSession As SmApplic.SmSession

Dim FirstRec As Object

Dim SecondRec As Object

Dim ThirdRec As Object

Dim Operation As SmApplic. ISmOperation "performed operation object
Dim Metainfo As SmApplic.SmMetalnfo “"metainfo object for smClasses
Dim SessionUtil As SmUtil _SmSessionUtil "main SmarTeam service object
Dim DefaultTaskAs Object "default task record list for operation

Dim TaskRL As Object "task record list for operation per object

Dim LeadingObjects As SmApplic. ISmObjects

203

SmarTeam Object Model Programmer's Guide

Dim OperName As String "operation name

Dim Propagate As Boolean "Propagate operation

Dim WorkObject As SmApplic.1SmObject

Dim QueryDefinition As SmApplic.I1SmQueryDefinition

Dim Children As SmApplic.1SmObjects * collection of objects linked
"Dim Child As SmApplic.ISmObject *

Dim Child As Object *

Dim FolderClassld As Integer

Dim LOIndex As Integer

Dim TaskRLIndex As Integer

Dim RecordCount As Integer

Dim ChildrenCount As Integer

Dim k As Integer

Dim Result As Long

" Convert pointer to COM object SmSession

Set SmSession = SCREXT_ObjectrForInterface(ApplHndl)

Set SessionUtil = SmSession.GetService('Smutil.SmSessionUtil'™)
Set Metainfo = SmSession.Metainfo

FolderClassld = Metainfo.SmClassByName('Folder'”) .Classid

" Create SmObjects and Rec Lists

Set LeadingObjects = SmSession.ObjectStore._NewObjects
LeadingObjects.Data.AddHeader NM_OPER_ID, 2, sdtSmalllnt
LeadingObjects._Data.AddHeader NM_PROPAGATED, 2, sdtSmallint
"Task Record List

Set TaskRL=CreateObject(*'SmRecList.SmRecordList'")
TaskRL.AddHeader NM_CLASS 1D, 2, sdtSmallint
TaskRL.AddHeader NM_OBJECT_ID, SIZE_OBJ 1D, sdtlnteger

TaskRL.AddHeader NM_OPER_ID,2, sdtSmallint

204

Chapter 7, SmarTeam Utilities Library

TaskRL.AddHeader NM_DSC_NOTES, 256, sdtChar
TaskRL.AddHeader NM_REVISION, 256, sdtChar

"Default Record List

"create obj from co-class of library

Set DefaultTask=CreateObject("'SmRecList.SmRecordList'")
DefaultTask.AddHeader NM_PROPAGATED, 2, sdtSmalllnt
DefaultTask.AddHeader NM _DSC NOTES, 256, sdtChar

* Conver input parameter to COM object

CONV_RecL istToComRecordList FirstPar,FirstRec
CONV_RecListToComRecordList SecondPar,SecondRec

CONV_RecListToComRecordList ThirdPar,ThirdRec

OperName = NM_OPER_CHECKOUT

Set Operation = Metalnfo.SmOperationByName(OperName)
" Default tasks record for operation - necessary
DefaultTask.ValueAsSmal I Int(NM_PROPAGATED,0) = 1

DefaultTask.ValueAsString(NM_DSC_NOTES,0) = '‘Checkout DefaultTask notes'

RecordCount = FirstRec.RecordCount
IT RecordCount <> O Then
TaskRLINndex = 0
For LOIndex = O To RecordCount-1 “loop over leading objects

Set WorkObject =
SmSession.ObjectStore.ObjectFromData(FirstRec.GetRecord(LOIndex) , true)

Result = LeadingObjects.Add(WorkObject)

Set Operation =
Metainfo.OperationsForClass(LeadingObjects. Item(LOIndex) .Classid,
False) . ItemByName(OperName)

LeadingObjects.Data.ValueAsSmal l Int(NM_OPER_ID,LOIndex) =
Operation.1d

205

SmarTeam Object Model Programmer's Guide

"fill task list for leading object

TaskRL.ValueAsSmal I Int(NM_CLASS ID,TaskRLIndex) = WorkObject.Classld

TaskRL.ValueAsInteger(N\M_OBJECT _ID, TaskRLIndex) = WorkObject.Objectld

TaskRL.ValueAsString(NM_DSC_NOTES, TaskRLIndex) = "‘Checkout TaskRL

notes"
TaskRL.ValueAsString(NM_REVISION, TaskRLIndex) = "'y**
TaskRLINndex = TaskRLIndex + 1
" Retrieve all object”s children
Set QueryDefinition = Nothing
Set Children = WorkObject.RetrieveChildren(QueryDefinition)
ChildrenCount = Children.Count
* fill task list for children - same operation as parent
IT ChildrenCount <> 0 Then
For k =0 To ChildrenCount-1
Set Child = Children. Item(k)
"check in folders with previous revision
IT Child.Classld = FolderClassld Then
TaskRL.ValueAsSmal I Int(NM_CLASS _ID,TaskRLIndex) =
Child.Classld

TaskRL.ValueAsInteger(N\M_OBJECT _ID,TaskRLIndex) =
Child.Objectid

TaskRL.ValueAsString(N\M_DSC _NOTES, TaskRLIndex) =
""Checkout TaskRL notes™

TaskRL.ValueAsString(N\M_REVISION, TaskRLIndex) = "w'"

TaskRLIndex=TaskRLIndex + 1
End IFf
Next

End IFf

206

Chapter 7, SmarTeam Utilities Library

Next
End IF
"Set TaskRL = Nothing
IT Not (LeadingObjects Is Nothing) Then

SessionUti I .ExecuteOperationOnTrees LeadingObjects, TaskRL, DefaultTask

End If
CheckOutTrees = Err_None

End Function

207

SmarTeam Object Model Programmer's Guide

Lifecycle Authorization Operations

The SmSessionUtil object contains the following functions to check
authorization for life-cycle operations.

Function Description
OperationAllowedForStateAndClass Determines if a life-cycle operation is allowed
a life-cycle state.
OperationAllowedOnObject Determines if a life-cycle operation is allowed

the current life-cycle state of an object.

OperationAllowedOnObjectAndAuthorized | Determines if a life-cycle operation is allowed
the current life-cycle state of an object and if
is authorized for the operation and the class.

GetTargetState Get resulting life-cycle state of an object afte
undergoing the life-cycle operation.

Common Tasks

See examples of the life-cycle operations above for examples of the use of
these functions.

208

Chapter 7, SmarTeam Utilities Library

Mask Operations

This section describes the mask operations in the SmULtil object.
Note: The functionality of the mask operations has been incorporated in the
new SmSequence object. It is recommended to use it instead of the
functions listed in this section.

The SmSessionUtil object contains the following methods to handle

masks:
Function Description

MaskRollBack Rollbacks a specified attribute mask to a given value.

MaskTrancate Returns a truncated attribute mask according to modifie
group and value.

RetrieveMaskGroupCount Returns number of groups in a specified attribute mask

RetrieveNextMask Given a specific class attribute, increments and retrieve
the mask value/

RetrieveNextRevision Increments the revision mask and returns it.

RetrieveStartMaskValue Given specific class attribute, retrieves the mask initial
value.

Miscellaneous Utilities

The SmSessionUtil object contains the following special persistent object
retrieval functionality:

Function Description

CurrentSessionPreference Given section name and preference name, retrieves the
value, for example, the current format of time stamp val

GetObjectByRevision Given a specific object’s revision number, retrieves the
appropriate persistent object.

GetObjectsByCadldentity Given FileName, Directory and class, retrieves all
corresponding persistent objects.

TranslateToReturnCode Translates a standard COM error code to one of the
SmarTeam-specific error types.

GetObjectStatelcon Gets the icon for the object state

GetOptionValue Get current session preference.

209

SmarTeam Object Model Programmer's Guide

Common Tasks

Sub Test
Dim TimeStampFormat as string

TimeStampFormat = SmSessionUtil. CurrentSessionPreference(““CONVERTION
FORMATS”,”” TIMESTAMP™")

MsgBox “‘Current TimeStamp format is ..+ TimeStampFormat

End Sub

SmMiscUtil Object

The SmMiscUtil object provides various utility functions. Unlike the
SmSessionUtil object, the functions provided by this object are not
dependent on the working session, database or user.

The object contains the following functionality:
e SmcConvert — retrieves an SmConvert object (See SmConvert object)

SmConvert and SmSessionConvert Objects

The SmConvert object provides various conversion functions. The
SmSessionConvert object provides a subset of the functions provided by
SmConvert. Unlike SmConvert, SmSessionConvert performs the
conversion according to the SmarTeam preference formats.

210

Chapter 7, SmarTeam Utilities Library

SmConvert Object

The object contains functionality for converting string variables into
specific type variables and the opposite.

The conversion functionality divides into two groups:

Simple conversion functionality , such as:
IntegerValueAsWideString

IntegerValueFromWideString

DoubleValueAsWideString

DoubleValueFromWideString

Advanced conversion functionality, in which the user passes a string
format that should be designed as follows:

To convert string variables into specific type variable, the string variable
should be structured according to the input format. For example:

DateVal = DateValueFromVideString(‘22/02/98” ,Format)

The Format should be “dd/mm/yy” in order for DateVal to contain the
appropriate value.

To convert specific type variables into a string variable, the output would
be structured according to the input format. For example :

Stringval = DateValueAsWideString(DateVal,”’dd\mm\yy’”)

The variable dateVal is a date variable. If its value is September 1% 1999,
the StringVal would be “01\09\99”

e IsValueEmpty — checks whether specific variable contains an empty
value

e SetEmptyValue - retrieves a specific type empty value.

211

SmarTeam Object Model Programmer's Guide

SmSessionConvert Object

The object contains a subset of the advanced conversion functionality of
SmConvert, but using the session formats and not an input format (as in
SmConvert)

Example

DateVal = DateValueFromVideString(Stringval)

StringVal must be structured according to the session Date
preference value.

StringVal = DateValueAsWideString(DateVal)

212

213

‘ 8. SmarTeam - Workflow Library

General Description

The SmarTeam - Workflow library enables you to perform the following
workflow-related functions:

Flow process functionality:

Initialize process

Attach objects to the Flow process

Attach a flowchart to the Flow process

Send a Flow process

Maintain of a list of queues, including the standard Incoming, Sent,
and Deleted queues.

FlowSession functionality:

Get Information about the Current User

Get Information about the User Queues

Work with the FlowQueue Collection
FlowQueueltem functionality:

Get Information about the Workplace Environment
Get Information about the FlowQueueltem

Select Objects Linked to the FlowQueueltem

Get the Status of the FlowQueueltem

Capture a FlowQueueltem

Check Task Results

Delegate Users to the FlowQueueltem

Add Run-Time Users to a Node.

ActiveProcess functionality:

Get Information about the ActiveProcess

Execute Tasks

Send the FlowProcess

Send an E-Mail Ahead

Work with the FlowSentProcesses Collection

214

Chapter 8, SmarTeam - Workflow Library

Overview of Objects

You can access the Flow Services through the SmFlowStore object, which
is obtained by the mechanism of services accessed through the session.

A SmFlowStore object is obtained as follows:
Dim FlowStore As SmartFlow.FlowStore

Set FlowStore = SmSession.GetService(“SmartFlow_FlowStore’)

This section presents an overview of the main SmarTeam - Workflow
objects including a description of the associated objects that are useful for
the programmer:

e SmFlowProcess Object

SmFlowChart Object

SmFlowSession Object

SmWorkflowView Object

SmFlowStore Object

SmFlowProcess Object

Description

An SmFlowProcess object represents a planned sequence of work
activities on a selected set of SmarTeam objects. The SmFlowProcess
includes an initial state where work on the objects begins, a final state
where work on the objects is finished, and intermediate “workplaces”
where users can perform tasks on the objects of the FlowProcess.

The possible sequences that the FlowProcess can take between workplaces
must conform to a predetermined plan — represented by paths on a
Flowchart (described below). The actual routing of a particular
FlowProcess between workplaces on the Flowchart is determined by the
decisions of the users at each workplace at the time the FlowProcess
executes.

215

SmarTeam Object Model Programmer's Guide

FlowProcess Classes

Several different classes of FlowProcess objects can be defined in the
SmarTeam - Workflow system. The classes correspond to types of work
processes normally encountered in industry, such as ECP, ECO, and
Engineering Release processes.

Flowchart Object

The SmFlowchart object represents the plan of the SmFlowProcess. It
includes all possible workplaces (nodes) and routing paths (connectors) a
FlowProcess can visit. As mentioned, an actual FlowProcess will take one
specific path through the Flowchart, depending on the responses of the
users. See page 120 for more information about the SmFlowchart object.

Selecting a Flowchart for a FlowProcess

Each FlowProcess class can have a set of Flowcharts assigned to it. One
Flowchart can be designated as the default Flowchart for that class. When
a FlowProcess object is created from a FlowProcess class for a particular
application, an appropriate Flowchart is selected from the set of
Flowcharts assigned to the class and is attached to the FlowProcess object.

The SmProcessAssignment object supports the assignments of
Flowcharts to FlowProcess classes. One SmProcessAssignment object is
defined for each FlowProcess class and represents the collection of
Flowchart objects that are assigned to that FlowProcess class. The
SmProcessAssignment object provides methods to add and remove
Flowcharts object assignments and access the default Flowchart. See page
104 for more information about the FlowProcess object.

The SmProcessAssignments object is the collection of
SmProcessAssignment objects for all FlowProcess classes.

Process History

The SmProcessHistory object is a record of the work activity on a
FlowProcess. Each time the FlowProcess passes a Node a separate

ProcessHistoryltem entry is recorded. The information includes the
Executors and the Responses at the Node.

216

Chapter 8, SmarTeam - Workflow Library

Note: If you log out of a service and plan to log back into a service,
before logging out, you must close the service as follows:

Session.Services.Close(*'SmartFlow.SmFlowStore™) ;

Object Diagram

The object diagram of SmFlowProcess is shown below:

SmFlowProcess

LinkedObjects

ObjectsData

ProcessHistory

Status

CreationDate

StartDate

TimeLimit

GetWorkingNodes

FlowChart

Figure 8-1 FlowProcess Object Diagram

217

SmarTeam Object Model Programmer's Guide

Obtaining an Attached Object

Use the following to attach an object.
Function BeforeAttachObject(FlowProcess As Object,
SmObject As Object,

ProcessContents As Object) As Integer

Obtaining the SmFlowProcess Object

1. For a stand-alone application:

Set SmEngine = CreateObject(*SmApplic.SmEngine™)

SmEngine. Init "'SmTeam32"

Set SmSession = SmEngine.CreateSession(''Test Session', "Smart32'™)
Set FlowStore = SmSession.GetService('SmartFlow.SmFlowStore™)

ProcessClassld = SmSession_Metalnfo.SmClassByName(*‘General Process'™).Classld

Set FlowProcess = FlowStore. InitiateNewProcess(ProcessClassid)

2. In an event or task-driven script use the FlowProcess or ActiveProcess
parameters.

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a FlowProcess.

FlowProcess Task:
Getting the FlowProcess Attributes

Field Name Description
TDM DESCRIPTION Description of FlowProcess
TDM END TIME Time of the process termination
TDM_STATUS Reference to “TDM_SF PROCESS STATUS”
TDM_IMPORTANCE Reference to " TDM_IMPORTANCE"
TDM TIME LIMIT Time limit of process
TDM_SECONDARY_LNK 0 - do not create secondary links automatically,
1 - create automatically

218

Chapter 8, SmarTeam - Workflow Library

FlowProcess Task:
Getting the FlowProcess Execution Status

A FlowProcess can be in one of four execution states. The following table
describes the states and the software constant used for each state.

State Description Software Constant
Initiated The FlowProcess has been initiated and has not | fpsinitiated
been sent from the Start Node
Running The FlowProcess has been sent from the Start N| fpsRun
and has not reached the End Node
Ended The FlowProcess has reached the End Node fpsEnded
Terminated | The FlowProcess has been terminated by a user| fpsTerminated
is in the Completedltems queue.

Use the Status property to get the execution status of a FlowProcess.

Example
IT FlowProcess.Status = fpsinitiated Then

MsgBox (“Process is in Initiated state™)

End IFf

FlowProcess Task:
Getting the Time Limits of the FlowProcess

The CreationDate property gives the time when the process was created

The StartDate property gives the time when the initiator sent the process
from the Start Node. If the initiator did not send the process yet, its value
is null.

The EndDate property gives the time the process reached the End Node.
If the process has not yet reached the End Node, its value is null.

The DueDate gives the time the process is due to be completed. If the
process has not yet been sent by the initiator, its value is null.

Example

I Date > FlowProcess.DueDate Then

219

SmarTeam Object Model Programmer's Guide

MsgBox (“Process is overdue’™)

End If

The TimeLimit is the elapsed time during which the process should be
completed. In case the FlowProcess is finished in time, the EndDate will
be equal or less than StartDate plus TimeLimit.

FlowProcess Task:
Getting the Execution Stage of the FlowProcess

Use the GetWorkingNodes to get a collection of all Nodes whose Queue
contains the current FlowProcess. This tells you at which stage of
workflow the process is located.

Example

Dim FlowProcess As SmartFlow.SmFlowProcess

MsgBox "Number of working nodes for process: " &
CStr(FlowProcess.GetWorkingNodes. Count)

FlowProcess Task:
Getting Objects Linked to the FlowProcess

Use the LinkedObjects property to get a MultiCompositeObject object
that represents the objects that are linked to the current FlowProcess. The
links themselves are in the object. Each member of the collection is a pair
of elements: the first element is the link between object and FlowProcess
and the second element is the object itself.

The ObjectsData property gets the collection of objects without the links.
ObjectData has the type IsmMultiObjects. IsmMultiObjects is a
collection of collections: that is, a collection whose members are
collections. The member collections are collections of objects from
various super classes that are attached to the current FlowProcess, such as
the Documents, Items and Users collections.

Example

“ An Active Process was obtained either as a parameter in a SmarTeam script
or after capturing a FlowProcess.

“ get all objects linked to Active Process without their links

220

Chapter 8, SmarTeam - Workflow Library

Set LinkedObjects = ActiveProcess.FlowProcess.ObjectsData
“ LinkedObjects has type IsmMultiObjects:
“ including super classes Documents, lItems, Users
For 1 = 0 To LinkedObjects.Count — 1

“ create object for one superclass
Set SubLinkedObjects = LinkedObjects(l)
“ loop on that superclass collection ;1kj Ikj Ikj 1;kj ;01kj B1kj ;IDKj

For J = 0 To SubLinkedObjects.Count - 1

FlowProcess Task: Getting Flowchart Properties

You get the properties of the FlowChart (or the FlowChart template for an
initiated FlowProcess) attached to the current FlowProcess using the
FlowChart property.

FlowProcess Task: Creating a FlowProcess Object

When you create a new FlowProcess object, you need to attach an
appropriate Flowchart. Each type of FlowProcess has Flowchart types that
are suited to it including a default Flowchart.

To attach the default Flowchart to the newly created FlowProcess object,
use AttachDefaultFlowchart. To attach a specified Flowchart, use
AttachFlowchart.

To send the FlowProcess from the Start Node, use the InitiateProcess
method.

Example

Set Node = FlowProcess.Flowchart.StartNode

“ create a response object from the response of the first out connector
Set Response = Node.OutConnectors. I'tem(0) -Response

“ send FlowProcess from start node on all connectors with that Response

Comment = "“'Auto sent process"

FlowProcess. InitiateProcess FlowSession, Response, Comment, Date

221

SmarTeam Object Model Programmer's Guide

Changing Flowchart Properties at the Start Node

When you create a new FlowProcess object and attach a Flowchart to it,
initially only a skeleton Flowchart is attached and a pointer is established
to the Flowchart template. The full Flowchart is copied from the template
only when the FlowProcess is sent from the Start Node.

Therefore, if you want to make changes to a new FlowProcess object at
the Start Node that affect the attached Flowchart, you need to use the
FullFlowChartCopy method first to copy the entire Flowchart from its
template. An example of a change that affects the Flowchart is adding new
users to subsequent nodes of the Flowchart.

If you do not make such changes you do not need to perform the
FullFlowChartCopy method.

FlowProcess Task: Deleting a FlowProcess Object

A User can delete a FlowProcess only while it is in the Initiated status,
that is, at time of initialization at the Start Node. Otherwise, only a
Supervisor or Database Administrator can delete it.

FlowProcess Task: Linking Objects to a FlowProcess

You can use the LinkObject method to attach an object, for example, a
Document, to a FlowProcess. The method creates a link object belonging
to Complex Link class “TDM_SF_PROCESS_CONTENTS”.

Example

Set FlowProcess = FlowStore. InitiateNewProcess(ProcessClassid)
“ establish a complex link between ObjectToSend and the FlowProcess
Set LinkAttributes = Nothing

Set AttachedObject = FlowProcess.LinkObject(ObjectToSend, LinkAttributes)

222

Chapter 8, SmarTeam - Workflow Library

Primary and Secondary Links between FlowProcess and
Object

Links between an object and a FlowProcess can be Primary links or
Secondary links. Primary links are the links that the user creates between
an object and the FlowProcess, for example, using the LinkObject
method. In the event that the object has children, dependencies or CFO
objects (for example, an assembly), SmarTeam - Workflow can create
additional—Secondary—Iinks between them and the FlowProcess.

These Secondary links are created automatically when the user creates a
Primary link to the object if the following attributes have been set to
TRUE in the Flowchart object:

Secondary Links to: Property
Children of Primary-linked object ShouldLinkChildren
Dependencies of Primary-linked object ShouldLinkDependencies

CFOs (Common File Object) of Primary-linked obji ShouldLinkMOOFs

You can specify directly that an object be linked to a process by a
secondary link using the LinkObjectAsSecondary method. An object
linked with a secondary link does not appear on the process view at the
first level.

Example
“ A Document represents an 1SmObject
Set LinkAttributes = Nothing

secondary link document to process; doesn’t appear on process view

Set Link = FlowProcess.LinkObjectAsSecondary(Document, LinkAttributes)

Use the UnlinkObject method to detach an object from a FlowProcess

223

SmarTeam Object Model Programmer's Guide

FlowProcess Task:
Controlling Sharing of Objects between Processes

The ShareObjects property of a FlowProcess controls whether an object
attached to the FlowProcess can be attached to a second FlowProcess. If
the ShareObjects property of a FlowProcess is set to osLimiting, once an
object has been attached to that FlowProcess, it cannot be linked to a
second FlowProcess, even if the ShareObjects property of the second
FlowProcess is set to osNotLimiting.

FlowProcess Task: Controlling the Security Level

The SecurityLevel property of a FlowProcess controls which users can
perform operations on objects attached to the FlowProcess.

If the SecurityLevel property is set to slvHighSecurity, only users that are
permitted to act through the FlowProcess can execute operations on
objects attached to the FlowProcess. For example, if a Document were
attached to a FlowProcess, SmarTeam users not permitted to work
through the FlowProcess would not be able to work on that Document at
all, even through other SmarTeam windows.

If the SecurityLevel property is set to slvAttachedToFlowProcess, any
SmarTeam user can perform operations on objects attached to the current
FlowProcess, subject to the authorization mechanism of SmarTeam —
Editor.

Example

IT FlowProcess.SecuritylLevel = slvHighSecurity Then
MsgBox *High security flow process"

End If

ProcessHistory Task:
Working with the ProcessHistory Collection

The ProcessHistory collection contains a set of ProcessHistoryltem
objects. It represents the entire history of a FlowProcess, broken down
into states of the FlowProcess at each Send-from-Node event.

Use the Item property to get a ProcessHistoryltem from the collection

Example

224

Chapter 8, SmarTeam - Workflow Library

“ Retrieves the first record from the Process History.

Set ProcessHistoryltem = FlowProcess.ProcessHistory. Item(0)

Use the Refresh method to refresh the ProcessHistory collection.

ProcessHistoryltem Task:
Get the ProcessHistoryltem Information

SmProcessHistoryltem is an element of the ProcessHistory collection.

The ProcessHistoryltem contains information about the FlowProcess state
at a single Send-from-Node event. Thus the ProcessHistoryltem refers to a
specific Node, Executor, and Response.

Note that if the FlowProcess is sent again from the same Node, even with
the same Executor and Response, it is considered to be a different Send-
from-Node event and so a new ProcessHistoryltem is generated.

A single ProcessHistoryltem includes the elements:

e The Node from which the FlowProcess was sent

e The ProcessHistorylnformation at the Node for a Send-from-Node
event

Use the Node property to get the Node.

Use the History property to get the ProcessHistorylnformation from the
ProcessHistoryltem.

Set ProcessHistorylnformation = ProcessHistoryltem.History

ProcessHistoryInformation Task:
Get Historical Information about this FlowProcess

This section contains methods and properties to extract historical
information about the state of the FlowProcess at a specific Send-from-
Node event.

Use the ReceiveTime property to get the time the FlowProcess was
received at this Node.

Use the ActualProcessingTime property to get the elapsed time from
when the User captured the FlowProcess until it was sent from this Node.

Use the StartTime property to get the time when the user captured the
FlowProcess.

225

SmarTeam Object Model Programmer's Guide

Use the EndTime property to get time the FlowProcess was sent from this
node.

The Importance property of the ProcessHistorylnformation object is
defined as the maximum value of the Importance property of the
FlowProcess itself and the Importance property of the FlowProcess at this
Node.

Use the Response property to get the Response on which the FlowProcess
was sent from the Node.

Use the Comment property to get the comment that was entered when the
FlowProcess was sent from this Node.

Use the PastDueFlowchart property to determine if the FlowProcess was
sent from this Node after the FlowProcess time limit was exceeded.

Use the Executor property to get the User that worked on the FlowProcess
for this Node.

Note that if another User worked on the same FlowProcess at the same
Node, that information would be stored in a separate ProcessHistoryltem.

Example

Dim History As SmartFlow.SmProcessHistorylnformation
Dim FlowStore As SmartFlow.SmFlowStore

Dim FlonQueueltem As SmartFlow.SmFlowQueueltem

Set FlowStore = SmSession.GetService('SmartFlow.SmFlowStore™)

Set FlowQueueltem = FlowStore._FlowSession. InboxProcesses(0)

"Get first history information record

Set History = FlowQueueltem.FlowProcess.ProcessHistory. Item(0) .History
" Get the UserLogin of the user that started this process

UserLogin = History.Executor .Data.ValueAsString(*'LOGIN'™)

StartDate = CStr(History.StartTime)

226

Chapter 8, SmarTeam - Workflow Library

MsgBox ‘‘The process initialized by user " & UserlLogin & ' at: " & StartDate

SmFlowChart Object

Description

The SmFlowchart object represents a work plan for a FlowProcess. A
Flowchart is composed of nodes and connectors. A node can be
considered as a “workplace” where users can perform tasks on the objects
linked to the FlowProcess. The connectors between the nodes define the
possible sequencing or routing of the FlowProcess between the
workplaces — the order in which work can be performed on the
FlowProcess.

In general, a Flowchart can be designed with several connectors exiting a
node in order to take into account all possible ways the user at the node
may decide to dispose of the FlowProcess. Each connector corresponds to
one possible response of the user at the node. When the FlowProcess is
executed, its actual path through the Flowchart is determined by the
responses of the users at each node.

The Flowchart specifies:

e The users that can work on the FlowProcess at each node

e The tasks the users can perform at each node

e The connector paths that the FlowProcess can take through the nodes,
depending on the response of the user.

SmFlowchart Object

SmFlowchart properties provide references to the Flowchart components

as follows:

e FlowProcess —the FlowProcess to which the Flowchart is attached

e Nodes - the set of Nodes on the Flowchart

e Connectors — the set of Connectors on the Flowchart

e Supervisor — the Supervisor, a user with special privileges on the
Flowchart

The SmFlowCharts object represents a collection of SmFlowChart
objects.

SmNode Object

227

SmarTeam Object Model Programmer's Guide

The SmNode object represents an individual node of the Flowchart. The
SmNode properties provide access to the Node components as follows:

Tasks — the tasks to be performed on the Node. An individual task at
a node is represented by a SmTask object. The SmTask object
TaskType property specifies whether the task is manual, operation-
based, or runs a script.

Executors — the SmarTeam users defined as users for the node. An
individual user at a Node is represented by the SmExecutor composite
object consisting of a link and a SmarTeam User object. The link
associates the Node with the User object, designating that SmarTeam
User to be an Executor of the Node. The User object contains the data
about the user.

InConnectors, OutConnectors — the incoming and outgoing
connectors from this Node

SmConnector Object

The SmConnector object represents an individual connector.
SmConnector properties provide references to the Connector components
as follows:

Response — the response of the Connector. A response is represented
by the SmResponse object. The SmResponse object has a
ResponseType property indicating whether the type of the response is
Reject or Accept.

FromNode, ToNode — the source and destination Nodes of the
Connector.

The SmConnectors object represents a collection of SmConnector
objects.

Object Diagram

The object diagram of SmFlowChart is shown below:

228

Chapter 8, SmarTeam - Workflow Library

SmFlowChart

Nodes

Node

Responses

Users (Executors)

Tasks

FlowEvents

Connectors

Connector

FromNode

ToNode

Response

Figure 8-2 FlowChart Object Diagram

229

230

Obtaining the SmFlowChart Objects

A Flowchart object is obtained from a FlowProcess object:

ProcessClassld = SmSession.Metalnfo.SmClassByName(*'General Process'™).Classld

Set FlowProcess = FlowStore. InitiateNewProcess(ProcessClasslid)

Set Flowchart = FlowProcess.Flowchart

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a Flowchart and its components.

FlowChart Task:
Getting Information about the Flowchart.

Use the Nodes property to get a collection of all Nodes in flowchart.
Set Nodes = Flowchart.Nodes

Use the Connectors property to get a collection of all connectors in
flowchart.

Use the StartNode property to reference the Start node
Example.

obtain node object representing Start Node

Set Node = FlowProcess.Flowchart.StartNode

Use the EndNode property to reference the End node.

Chapter 8, SmarTeam - Workflow Library

Use the FlowchartType property to get the Flowchart type. The Flowchart
types are described in the following table.

Flowchart Typ Description Software Constan
Template The Flowchart is an original template as created inf ftTemplate
Flow Designer
Library Collection of pre-designed Nodes stored in Library ftLibrary
(not relevant for writing script)
Work Copy Copy of original template for attaching to FlowPro{ ftWorkCopy
Dummy The Flowchart is a dummy Flowchart, which is usq ftDummy
for a FlowProcess in its Initiated state.

Use the Supervisor property to get the User object that is defined as the
Supervisor. You can use Supervisor property to designate a Supervisor in
the Initiated state of the FlowProcess.

For more information about the properties: ShareObjects,
ShouldLinkChildren, ShouldLinkDependencies, ShouldLinkMOOFs,
SecurityLevel see the corresponding properties in the FlowProcess
interface.

Nodes Task: Get Individual Nodes from a Collection

The following example shows how to get an individual Node from a Nodes
collection.

Example

Set Node = Nodes.Item(0) “ get the First node

Node Task: Getting Information about the Node.

This section describes methods and properties you use when you work with
a Node object. In real time, the Node object occurs in the context of a
Flowchart attached to a specific FlowProcess. Thus, the Node can have
Users and Tasks associated with it through its FlowProcess.

Use the Tasks property to get an ISmTasks collection that represents the
tasks defined at this Node.

Use the Users property to get an ISmExecutors collection that represents
the possible Executors at this Node.

Set Users = FromNodes(i).Users.GetUsers

231

SmarTeam Object Model Programmer's Guide

Use the InConnectors property to get SmConnectors collection that
represents the entering connectors.

Use the OutConnectors property to get an SmConnectors collection that
represents the exiting connectors.

Example

create a response object from the response of the first out connector

Set Response = Node.OutConnectors. Item(0) .Response

Use the GetPreviousNodesSentToCurrent method to get an SmNodes
collection of the previous Nodes that sent a FlowProcess associated with
this node’s Flowchart to the current Node.

Use the GetFollowingNodesEmailList method to get a semicolon-
delimited SmStrings list of e-mail addresses of all users in the following
Nodes.

Use the NodeType property to get the Node type. The Node types are
described in the following table:

232

Node Type Description Software Constant

Start The Node is the Start Node ntStart

End The Node is the End Node ntEnd

User Defined | The Node is a user-defined node, defined in| ntUserDefined
Flow Designer
Automated not implemented ntAutomated
Information Displays Flowchart title or other text. Not for| ntinformation
receiving FlowProcess

Use the GetNotRejectResponses method to get an SmResponses collection
that represents all responses, defined on connectors that exit this Node, that
are not of type Reject.

233

SmarTeam Object Model Programmer's Guide

Example

ProcessClassld = SmSession.Metalnfo.SmClassByName
('General Process').Classld

“ create and initiate new process, attach default Flowchart
Set Process = FlowStore. InitiateNewProcess(ProcessClassid)
Set Node = Process.Flowchart.StartNode

“ select the First non-reject response for start node

Set ProcessResponse = Node.GetNotRejectResponses(0)

Use the GetRejectResponses method to get an SmResponses collection
that represents all responses, defined on connectors that exit this Node, that
are of type Reject.

Use the FlowStatus property to get the flow status at the Node. The flow
status is the status of the Node relative to the FlowProcess. The following
table describes the flow status:

FlowStatus Description Software Constant

Pending The FlowProcess arrived at the Node but the Userg nsPending
have taken no action.
Completed The FlowProcess has been sent from this Node nsCompleted
Locked This Node is locked. No User can perform actions. | nsLocked
can occur if a User rejected the FlowProcess to any
Node preceding this Node.
Captured The FlowProcess has been captured at this Node. | NsCaptured
Inactive The FlowProcess has not reached this Node, or cal nsinactive
never reach it.

234

Chapter 8, SmarTeam - Workflow Library

Use the Policy property to get the flow policy at this Node. The flow policy
specifies the way in which users are allowed to capture a FlowProcess at
this Node, as described in the following table.

Policy Description Software Constant

And More than one User can capture the FlowProcess at| fpAnd
Node and all Users are required to perform the taskd
defined at this Node.

Or Only one User can capture a FlowProcess at this Ng fpOr
and that User is required to perform the tasks define
this Node.

Use the Delegate property to check whether there is a Delegator defined in

this node.
Note: You can use this property as a read property only

Use the Value property to get the value of a Node attribute. The following
table shows some of the properties you can get only through the Value

property.

Field Name Description
TDM IS TEMPLATE Whether task/flow definition is template or actual instance
TDM_IMPORTANCE Reference to “TDM_IMPORTANCE”
TDM TIME LIMIT Time limitation of task or linked process
TDM_PROCESS_ID Reference to “TDM_SF_PROCESS". Used only in the copies

the process. In the templates it must be NULL OBJ ID

TDM OBLIG NODE Node is obligatory
TDM_LOOP_COUNT Count of times node has been reached

Node Task: Saving the Node.

The Save method saves the Node, together with its Users and Tasks, to the
Database.

Node Task: Changing Users

Use the ReplaceExecutor method to replace an existing Executor with
another one at this Node.

Use the RuntimeUsers property to check if an Executor at an immediately
previous Node or at the Start Node can specify an Executor at this Node.

235

SmarTeam Object Model Programmer's Guide

Example

Dim FlowStore As SmartFlow.SmFlowStore
Dim FlowQueueltem As SmartFlow.SmFlowQueueltem
Dim DestinationNode As SmartFlow.SmNode

Dim Connector As SmartFlow.SmConnector

Set FlowStore = SmSession.GetService("'SmartFlow.SmFlowStore'™)
Set Flomueueltem = FlowStore.FlowSession. InboxProcesses(0)

Set Connector = FlowQueueltem_Node.OutConnectors. ItemByName("'Forward to
Designer’”)

Set DestinationNode = Connector.ToNode

“ check if new users can be added to the Destination Node
IT DestinationNode.RuntimeUsers Then
“ loop over selected users
For 1 = 0 To Users.Count - 1
“ add selected users to destination node
FlowQueueltem_AddRunTimeUsers DestinationNode, Users(0)
Next

End IFf

Use the CanChangeUsers method to check if the User of a specified
ActiveProcess can select Executors at this Node at runtime. The method
checks if the Node of the ActiveProcess immediately precedes the current
Node or if it is the Start Node.

Use the CanTryChangeUsers method to check if the User of a specified
FlowQueueltem can select Executors at this Node at runtime. The method
checks if the Node of the FlowQueueltem immediately precedes the current
Node or it is the Start Node. Note that Executors can be specified only if
the FlowQueueltem is successfully captured.

236

Chapter 8, SmarTeam - Workflow Library

SmTask Task:
Getting Information about the Task.

This section describes methods and properties you use when you work with
a Task object. In real time, the Task object occurs in the context of a
specific Node of a Flowchart attached to a specific FlowProcess.

Example

Dim ActiveProcess As SmartFlow.SmActiveProcess
"Show script name for specific process task

MsgBox ActiveProcess.CurrentNode.Tasks. Item(0) -ScriptName

Use the Value property to get the value of a Task attribute. The following
table contains some of the Task attributes that can be obtained only through
the Value property.

Field Name Description
TDM_PROCESS ID Reference to FlowProcess. Used only in the actual copies of th
process; in the definitions it must be NULL _OBJ _ID
TDM_PER_OBJECT Whether task should be performed on the process objects or o
process itself
TDM AUTOMATED Reference to internal Lookup TDM_SF TASK AUTOMATED

Use the TaskType property to get the task type. The task type specifies
how the task is to be performed, as described in the following table:

FlowStatus Description Software Constan
Manual The task is performed manually. ttManual
Operation The task activates a pre-selected lifecycle operation. | ttOperation
Script The task activates a script. ttScript

If the task is an Operation task, use the OperationID property to get its
operation ID.

If the task is a Script task, use the ScriptName property to get the script
name of the script that is activated by the task.

Use the Required property to check if the task must be performed in order
that the associated FlowProcess continue.

237

SmarTeam Object Model Programmer's Guide

SmTask Task: Executing a Task

Use the Execute method to execute the current Task. The objects on which
the Task operates depends on the setting of PerObject, as follows:

If PerObject was selected, then the Task is executed for all objects that
were selected by the FlowQueueltem SelectedObjects property.

If PerObject was not selected, the Task is executed on all objects
attached to the FlowProcess. Results are returned as
IsmOperationResults and are stored in the database.

See the ActiveProcess Task: Executing Tasks section for an alternate way
of executing tasks.

Example

"This example uses methods and properties:

" CanCapture, TaskResultStatus, Execute, PendingStatus and others

Sub MainQ

End

Sub

Dim Smart As SmarTeam.SmApplication
Dim SmEngine As SmApplic.SmEngine

Dim Session As SmApplic.SmSession

Set Smart = GetObject(, "‘SmarTeam.SmApplication'")
Set SmEngine = Smart.Engine

Set Session = SmEngine.Sessions(0)

Test Session

Sub

Test(SmSession As SmApplic.SmSession)
Dim FlowStore As SmartFlow.SmFlowStore
Dim FlowSession As SmartFlow.SmFlowSession

Dim FlowQueueltem As SmartFlow.SmFlowQueueltem

238

Chapter 8, SmarTeam - Workflow Library

Dim ActiveProcess As SmartFlow.SmActiveProcess
Dim Task As SmartFlow.SmTask

Dim OperationResults As SmApplic.SmOperationResults

" Get FlowStore object - Sm Flow Service
Set FlowStore = SmSession.GetService("'SmartFlow.SmFlowStore'™)
" Get current user flow session
Set FlowSession = FlowStore.FlowSession
" Check if exist process in Inbox of smartbox
IT FlowSession. InboxProcesses.Count > O Then
" Retrieve Tirst process from user inbox
Set FlomQueueltem = FlowSession. InboxProcesses. 1tem(0)
" Check if process has not performed tasks
I FlomQueueltem.AppropriateTasks.Count > 0 Then
* Check if process can be captured

IT FlomQueueltem_CanCapture Or FlowQueueltem_PendingStatus =
TisCapture Then

" Capture process

FlomQueueltem.Capture

" Get active process

Set ActiveProcess = FlomQueueltem.ActiveProcess

For 1 = 0 To FlowQueueltem.AppropriateTasks.Count - 1
" Get task to execute
MsgBox |
Set Task = FlowQueueltem.AppropriateTasks. Item(l)
* Check if task not performed yet

IT FlomQueueltem.TaskResultStatus(Task) = rsOperNotPerformed
Then

" Perform task and get results per objects

239

SmarTeam Object Model Programmer's Guide

Set OperationResults = Task.Execute(ActiveProcess)
End If
Next
End If
End If
End IF

End Sub

Use the GetObjectResultStatus method to get the result status for a task
performed by a specified Executor on a specified object. The Executor
input parameter is provided for the case that the AND policy for the task is
in effect and more than one Executor can perform the task on the same
specified object.

240

Chapter 8, SmarTeam - Workflow Library

The results can be:

Result Status Description Software Constant
Task not performed The task was not performed. | rsOperNotPerformed
Task performed The task succeeded. rsOperExecutedSuccessfully
successfully
Task failed The task failed. rsOperExecutedNotSuccessfully
Not appropriate unused rsOperNotAppropriate

Connector Task:
Getting Information about the Connector

Use the ToNode property to get the destination Node of the Connector.
Use the FromNode property to get the source Node of the Connector.
Use the Response property to get the Response of the Connector

Example

“ create a response object from the response of the first out connector

Set Response = Node.OutConnectors. I'tem(0) .Response

Use the Value property to get an attribute of the Connector. The following
table contains some of the Connector attributes that can be obtained only
through the VValue property.

Field Name Description
TDM_FLOWCHART _ID Reference to “TDM_SF_FLOWCHART"
TDM_PROCESS ID Reference to “TDM_SF_PROCESS". Used only in the actual copig|
the process; in the definitions it must be NULL_OBJ ID

241

SmarTeam Object Model Programmer's Guide

Response Task:
Getting Information about the Response

Use the Name property to get the name of the Response.
Note: Use for read only.

Use the ResponseType property to get the Response Type of the current

Response.
Note: Use for read only.

Response Type Description Software Constant

Accept The Response has type Accept. rtAccept

AcceptConsult (not | The Response has type Accept Consult| rtAcceptConsult
currently in use)
Reject The Response has type Reject rtReject

Example

“ Find the first response of type "accept’
Set Response = Nothing
Set Responses = FlowStore.Responses
For i = 0 To Responses.Count-1
IT (Responses(i)-ResponseType = rtAccept) Then
Set Response = Responses(i)
Exit For
End IF

Next i

Use the GetPredefinedld method to get the value of the pre-defined
response property of a Response object.

A pre-defined Response is a Response that is pre-defined in the system and
cannot be assigned by the user to a specific Connector. A pre-defined
Response can be used by an Executor at any Node. Any Response defined
by the user is, by definition, not pre-defined and can be assigned to a
connector.

The pre-defined responses are shown in the following table.

242

Chapter 8, SmarTeam - Workflow Library

Pre-Defined Respons Description Software Constant
NotPredefined This Response was defined by user and c| prNotPredefined
be assigned to a connector.
RejectToStart Reject process from current node to start | prRejectToStart

node. This response is predefined in systq
It cannot be assigned to a specific conned

RejectToPrevious Reject process from current node to all | prRejectToPrevious
immediately previous nodes This respons
predefined in system. It cannot be assigne
a specific connector.

Consult (not currently in use) prConsult
ConsultAndWait (not currently in use) prConsultAndWait
Reply (not currently in use) prReply

Executors Task:
Working with the Executors Collection

The Executors collection contains the Executors assigned to this Node (see
data model table TDM_SF_EXECUTORS in Appendix).

Use the Item property to get an individual Executor by index.

Use the GetUsers method to refer to the User objects component of the
Executors.

243

SmarTeam Object Model Programmer's Guide

Example

Dim FlowStore As SmartFlow.SmFlowStore
Dim FlowQueueltem As SmartFlow.SmFlowQueueltem

Dim FromNodes As SmartFlow.SmNodes

Set FlowStore = SmSession.GetService(''SmartFlow.SmFlowStore'")
Set FlomQueueltem = FlowStore.FlowSession. InboxProcesses(0)
Set FromNodes = FlowQueueltem.FromNodes
For 1 = O To FromNodes.Count - 1

“ retrieve collection of users on all From Nodes
Set Users = FromNodes(l) .Users.GetUsers
“ loop on users of a From Node
For J = 0 To Users.Count - 1

“ create duplicate User object to get all attributes for that

“ user (can"t do that when the User is in a collection)

Set CurrentUser = Users(J).Clone

“ get info from data base

CurrentUser .Retrieve

“ add the User email address from the database data record

“ to the mail recipient collection

Mail .Recipients_Add CurrentUser .Data.ValueAsString("'USER_EMAIL™)
Next

Next

Use the Delegator property to get the Executor object corresponding to the
Delegator user at this Node, if a Delegator exists.

244

Chapter 8, SmarTeam - Workflow Library

Executor Task:
Getting Information about an Executor

Use the UserData property to get the User object component of this
Executor

Use the ExecutorData property to get the link component of the this
Executor

Use the Delegator property to check if this Executor is a delegator

Use the PendingStatus property to get the work status of this Executor on
the process associated with the Flowchart at this Node.

FlowPending Statu Description Software Constant
New The Executor did not yet begin work on the| fisNew
Process at this node.
Decline The Executor declined to work on the Procq fisDecline
at this Node
Capture The Executor has captured the Process at | fisCapture
Node
Completed The Executor has completed working on th{ fisCompleted
Process at this Node and has sent the Proq
from the Node.

SmFlowSession Object

Description

The FlowSession object represents the work environment of a SmarTeam
User working with the SmartBox. The FlowSession object allows a
SmarTeam user to view and access any FlowProcess at any Node at which
he is defined as an Executor of the FlowProcess.

The FlowSession object presents the FlowProcesses in the following object
categories:

245

SmarTeam Object Model Programmer's Guide

InBoxProcesses
SentProcessesCompleted
SentProcessesNotCompleted
SentProcessDeleted.

The InBoxProcesses object is a collection of FlowProcesses received at the
user’s InBox. A FlowProcess appears in a user’s InBox when it arrives at a
Node at which the user is defined as an Executor for that FlowProcess. The
FlowProcess remains in the InBox for that Node until the user (or another
user in case the OR policy is in effect) sends it from the Node.

The SentProcessesCompleted object is a collection of processes that have
been sent by the user and have been completed, that is, reached the End
Node.

The SentProcessesNotCompleted object is a collection of processes that
have been sent by the user and are not yet completed.

The SentProcessDeleted object is a collection of processes that have been
deleted by the user.

The FlowQueueltem object represents an individual process received at
the user’s InBox. The FlowQueueltem has the following elements:

e The associated FlowProcess

e The current Node

e The current Executor

[)

ProcessLocation (link between FlowProcess and Node)

Note: It is important to keep in mind the distinction between the objects
FlowProcess and FlowQueueltem. The former refers to an entire
FlowProcess and the latter represents the FlowProcess as an individual
Executor receives it at a specific Node for action or viewing. Several
different SmFlowQueueltem objects can represent the same
FlowProcess, each at the InBox of a different Executor.

The ActiveProcess object represents the FlowProcess associated with the
FlowQueueltem at the current Node. You use the ActiveProcess to execute
tasks defined for the FlowProcess and to send the FlowProcess from the
current node.

Object Diagram

The object diagram of SmFlowSession is shown below:

246

Chapter 8, SmarTeam - Workflow Library

SmFlowSession

InboxProcesses

SmFlowQueueltem

SentProcessesNotCompleted

SentProcessesCompleted

SentProcessesDeleted

Figure 8-3 FlowSession Object Diagram

Obtaining a SmFlowSession Object

1. For a stand-alone application:

Set FlowStore = SmSession.GetService('SmartFlow.SmFlowStore'™)

Set FlowSession = FlowStore_FlowSession

2. In an event or task-driven script where ActiveProcess is a parameter:
Set FlowStore = ActiveProcess.FlowStore

Set FlowSession = ActiveProcess.FlowSession

3. In an event or task-driven script where FlowSession is a parameter use it
directly.

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a FlowSession and its components.

247

SmarTeam Object Model Programmer's Guide

FlowSession Task:
Getting Information about the Current User

Use the User property to get information about the user associated with the
FlowSession.

Example

Dim FlowSession As SmartFlow.SmFlowSession
MsgBox '‘Current user login: ™ &
FlowSession.User .Data.ValueAsString(*'LOGIN'™)
FlowSession Task:

Getting Information about the User Queues

Use the following FlowSession properties to access the current user queue
collections.

Property Queue Description

InboxProcesses Collection of InBox Queue items of user
SentProcessesNotCompleted Collection of SentProcess items of this user which are
yet completed

SentProcessesCompleted Collection of SentProcess items of this user which are
completed
SentProcessesDeleted A Process can arrive at this queue after being deleted 3

the queue SentProcessesNotCompleted or
SentProcessesCompleted

FlowQueue Task:
Working with the FlowQueue Collection

The FlowQueue collection represents the set of FlowQueueltem objects
associated with a single SmarTeam user. This section describes how to
work with the FlowQueue collection.

To get an individual FlowQueueltem from the FlowQueue collection by
index, use the Item property.

To get the index of a specified FlowQueueltem in the collection, use the
IndexOf method.

248

Chapter 8, SmarTeam - Workflow Library

Example

Dim FlowQueue As SmartFlow.SmFlowQueue

Index = FlowQueue. IndexOf(FlowQueueltem)

Use the Refresh method to refresh the FlowQueue to include new
FlowQueueltem objects.

To get a FlowQueueltem at a specified Node, use the ItemByNode
property. There can be at most one FlowQueueltem per Node in the
FlowQueue collection.

FlowQueueltem Task:
Getting Information about the Workplace Environment

Use the FlowProcess property to get the FlowProcess related to this
FlowQueueltem. The Node property gets the Node object for this
FlowQueueltem.

Example
Dim FlowStore As SmartFlow.SmFlowStore
Dim FlowQueueltem As SmartFlow.SmFlonQueueltem

Dim Node As SmartFlow.SmNode

Set FlowStore = SmSession.GetService('SmartFlow.SmFlowStore'™)
Set FlomQueueltem = FlowStore.FlowSession. InboxProcesses(0)
Set Node = FlowQueueltem.Node

MsgBox 'l am working at node: ' & Node.Name

FlowQueueltem Task:
Getting Information about the FlowQueueltem

The IsRead property indicates whether the current FlowQueueltem has
been viewed.

The GetCapturedUsers method gets a collection of users that have already
captured the current FlowQueueltem on this node.

249

SmarTeam Object Model Programmer's Guide

Example

Dim FlowStore As SmartFlow.SmFlowStore

Dim FlowQueueltem As SmartFlow.SmFlowQueueltem

Set FlowStore = SmSession.GetService('SmartFlow.SmFlowStore'™)
Set FlomQueueltem = FlowStore.FlowSession.SentProcessesNotCompleted(0)

Set WorkingUsers = FlowQueueltem.GetCapturedUsers

The Importance property indicates the level of importance that has been
assigned to the current FlowQueueltem.

Importance Description Software Constant
High The FlowQueueltem is very important fiiHigh
Low The FlowQueueltem is has low importance | filLow
Normal The FlowQueueltem has normal importance | fiilNormal

The PastDueNode property indicates whether the time limit has expired for
action on this FlowQueueltem at this node.

The PastDueFlowchart property indicates whether the time limit has
expired for action on this FlowQueueltem on this Flowchart.

Example

Dim FlowQueueltem As SmartFlow.SmFlowQueueltem
I FlonQueueltem._PastDueFlowchart Then

MsgBox "Flow process past limited time"
End IT

The Initiated property indicates whether the current FlowQueueltem was
initiated by current user (executor) and was not yet sent from the Start
Node.

Use the FromNodes property to get the collection of nodes that sent the
current FlowQueueltem.

Example

Set FromNodes = ActiveProcess.Queueltem.FromNodes

250

Chapter 8, SmarTeam - Workflow Library

The ReceiveTime property gives the time the current FlowQueueltem
arrived at the current Node.

The StartTime property gives the time the current executor captured the
current FlowQueueltem.

The ExecutorData property gets information about the current executor.

FlowQueueltem Task:
Selecting Objects Linked to the FlowQueueltem

The SelectedTasks property gives the collection of tasks, which were
selected from collection of all linked objects. This property prepares
objects for performing tasks by the ActiveProcess.ExecuteSelectedTasks
method.

The SelectedObjects property gives the collection of linked objects, which
were selected from collection of all linked objects. This property prepares
objects for performing tasks by the ActiveProcess.ExecuteSelectedTasks
method.

The SelectAllObjects method selects all objects linked to the FlowProcess
represented by this FlowQueueltem.

The AppropriateTasks property gives a list of tasks, which have not yet
been executed for the selected objects for this node.

See the “ActiveProcess Task: Executing Tasks” section for an example that
uses these methods and properties.

FlowQueueltem Task:
Getting the Status of the FlowQueueltem

A FlowQueueltem can be in one of four execution states. The following
table describes the states and the software constant used for each state.

State Description Software Constant
New The FlowQueueltem is new fisNew
Decline The User has declined to work on the FlowQueueltem | fisDecline
Capture The FlowQueueltem has been captured fisCapture
Completed | The FlowQueueltem has been sent fisCompleted

251

SmarTeam Object Model Programmer's Guide

The PendingStatus property gets the status of the FlowQueueltem.

ResetStatus lets you reset the status of the FlowQueueltem to New from
Capture or Decline.

FlowQueueltem Task: Capturing a FlowQueueltem

The methods and properties in this section support the capturing of a
FlowQueueltem. You need to capture the FlowQueueltem in order to work
with its associated FlowProcess, execute its Tasks and send on the
FlowProcess.

Use the CanCapture property to check whether the AND/OR capture
policy allows the current user to capture the FlowQueueltem at this Node.
For example, if the policy is OR and another user has already captured the
FlowQueueltem, the current user is not allowed to capture it.

To capture the FlowQueueltem only, without working with its associated
FlowProcess, use the Capture method.

To capture the FlowQueueltem in order to work with its associated
FlowProcess, use the Accept method. The Accept method returns an
ActiveProcess object that you can use to perform tasks associated with the
FlowQueueltem and to send the process from this node.

After using the Accept method to capture the FlowQueueltem and create an
ActiveProcess object, you can use the ActiveProcess property to refer to
the ActiveProcess object.

Use the Decline method to notify the Supervisor that the current user
declines to work on the FlowQueueltem.

FlowQueueltem Task: Checking Task Results

Use the ObjectResultStatus property to determine:

1. If a specific task defined for the current FlowQueueltem has already
been performed for a specific object

2. The order in which tasks defined for the current FlowQueueltem are
performed

Example

* check if task (FlowTask) execution for object (AttachedObject) was
successfully

252

Chapter 8, SmarTeam - Workflow Library

" can be used for error treat procedure

If FlowTask.ObjectResultStatus(AttachedObject, UserObject) =
rsOperExecutedNotSuccessfully Then

MsgBox "‘Error execution task " + FlowTask.Name + " for specific object”

End If

FlowQueueltem Task:
Delegating Users to the FlowQueueltem

If a Delegator has been established, the Delegate method assigns the
FlowQueueltem to the ToUsers list for handling. Users in the ToUsers list
can capture the FlowQueueltem according to the AND/OR policy
determined by the Delegator through the Policy parameter of the method.

If no Delegator has been established, this method is not applicable.

FlowQueueltem Task: Adding Run-Time Users to a Node

Use the method AddRunTimeUsers to add a specified User to a specified
target Node.

The method works under the following conditions:

1. The capture policy allows the current user to capture the FlowQueueltem
at the current node

2. The current node is immediate predecessor of the target Node — or else
the current node is the Start Node

3. The target node is designated as “select user at run time”

ActiveProcess Task:
Getting Information about the ActiveProcess

The ActiveProcess object represents the FlowProcess associated with the
FlowQueueltem at the current Node. You use the ActiveProcess to execute
tasks defined for the FlowProcess and to send the FlowProcess from the
current node.

Use the Queueltem property to reference the FlowQueueltem associated
with the ActiveProcess.

253

SmarTeam Object Model Programmer's Guide

Use the FlowProcess property to reference the FlowProcess associated
with the ActiveProcess.

Use the CurrentNode property to reference the current Node.

Set CurrentNode = ActiveProcess.CurrentNode

ActiveProcess Task: Executing Tasks

Use the ExecuteSelectedTasks method to execute the tasks that were
selected by FlowQueueltem.SelectedTasks on the objects that were
selected by FlowQueueltem.SelectedObject.

See the “SmTask Task: Executing a Task” section for an alternate way of
executing a task.

Example

"This example uses the methods SelectAllObjects, SelectedTasks,

“ ExecuteSelectedTask to executes tasks and send a process.

Sub MainQ
Dim Smart As Object
Dim SmEngine As SmApplic.SmEngine

Dim Session As SmApplic.SmSession

Set Smart = GetObject(, "‘SmarTeam.SmApplication')
Set SmEngine = Smart.Engine

Set Session = SmeEngine.Sessions(0)

Test Session

End Sub

Sub Test(SmSession As SmApplic.SmSession)
Dim FlowStore As SmartFlow.SmFlowStore

Dim FlowSession As SmartFlow.SmFlowSession

254

Chapter 8, SmarTeam - Workflow Library

Dim FlowQueueltem As SmartFlow.SmFlowQueueltem
Dim ActiveProcess As SmartFlow.SmActiveProcess

Dim Response As SmartFlow.SmResponse

" Get FlowStore object - Sm Flow Service
Set FlowStore = SmSession.GetService("'SmartFlow.SmFlowStore'™)
" Get current user flow session
Set FlowSession = FlowStore.FlowSession
" Check if exist process in Inbox of smartbox
IT FlowSession. InboxProcesses.Count > O Then
" Retrieve Tirst process from user inbox
Set FlomQueueltem = FlowSession. InboxProcesses. 1tem(0)
" Check if can capture process - may be captured by another user
I FlomQueueltem.CanCapture Or FlowQueueltem.PendingStatus =
TisCapture Then
" Capture process
FlomQueueltem.Capture
" Get active process
Set ActiveProcess = FlowQueueltem.ActiveProcess
" Check for tasks that process has not performed
IT FlomQueueltem._AppropriateTasks.Count > 0 Then
" Select all linked object for tasks
FlomQueueltem._SelectAllI0bjects
* Select all tasks not performed
FlomQueueltem._SelectedTasks = FlowQueueltem._AppropriateTasks
" Execute all selected tasks
ActiveProcess.ExecuteSelectedTasks

End I

255

SmarTeam Object Model Programmer's Guide

" Get First not reject response for current item
Set Response = FlowQueueltem.Node.GetNotRejectResponses(0)
* Check if process can be sent
IT FlomQueueltem.CheckSendPossibility(Response) Then
" Send active process with comment
ActiveProcess.Send Response, ''Sent’, Date
End If
End If
End If

End Sub

ActiveProcess Task: Sending the FlowProcess

Use the Send method to send the FlowProcess to the next nodes according
to the specified response. You can add a comment and specify the date.

ActiveProcess Task: Sending an E-Mail Ahead

Use SendEmailToFollowingNodes to display an empty mail item screen
with the To: field filled in with the Users on the following Nodes. You fill
in the message and send it.

FlowSentProcesses Task:
Working with the FlowSentProcesses Collection

The FlowSentProcesses collection includes all FlowSentProcess objects of
a given type for the current user.

To get a FlowSentProcess from the FlowSentProcesses collection by index,
use the Item property.

To refresh the FlowSentProcesses collection, use the Refresh method.

To check if the current FlowSentProcesses collection contains completed
FlowSentProcess objects, use the Completed property.

To determine the type of FlowSentProcess objects in the collection, use the
SentType property. The results can be:

256

Chapter 8, SmarTeam - Workflow Library

SentType Description Software Constant

Sent Collection of SentProcess items related to this | qtSent
which are not yet completed
Collection of SentProcess items related to this
which are completed
Deleted A Process can arrive at this queue after being | gtDeleted
deleted at SentProcessesNotCompleted or
SentProcessesCompleted

257

SmarTeam Object Model Programmer's Guide

SmWorkflowView Object

Description

The SmWorkflowView object represents a user interface relative to a
FlowProcess, a User and a Node. It can be used to view FlowQueueltems
and also SentProcess items.

The SmWorkflowlnitiateView object is similar to the SmWorkflowView
object but in this view you can initiate a process.

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a WorkflowView and
WorkflowlnitiateView.

WorkflowView Task:
Working with the WorkflowView Object

Use the Process property to set or get the FlowProcess that is displayed on
the user interface.

Example

Sub DisplayProcesses(SmSession As SmApplic.SmSession)
Dim FlowStore As SmartFlow.SmFlowStore

Dim WorkFlowiew As SmartFlow. ISmWorkflowiew

" Get FlowStore object - Sm Flow Service

Set FlowStore = SmSession.GetService("'SmartFlow.SmFlowStore'™)
" Create new view

Set WorkFlowiew = FlowStore._NewWorkflowiew

" Check if has processes in inbox

IT FlowStore_FlowSession. InboxProcesses.Count > 0 Then

" Assign process to view

258

Chapter 8, SmarTeam - Workflow Library

Set WorkFlowiew.Process =
FlowStore _.FlowSession. InboxProcesses(0) - FlowProcess

" Show process

WorkFlowview.Show
Else

MsgBox "No processes in your inbox'
End If

End Sub

Use the User property to set or get the user whose FlowProcess is
displayed on the user interface.

Use the Node property to set or get the node at which the information is to
be displayed.

Use the ReadOnly property only for FlowQueueltem objects at the InBox
to prevent actions on the user interface.

Use the BoxType property to determine which type of box the
WorkflowView is currently displaying. The Box types are described in the
following table.

BoxType Description Software Constan
Inbox A display of all process that have arrived for this user. | bxtinbox
Sent A display of all processes that have been sent by this | bxtSent

Deleted A display of all processes that have been deleted by th| bxtDeleted
user.
Completed | A display of all processes that have been completed. | bxtCompleted

Use the Show method to cause the object to be displayed.

Use the Style property to determine the window style of the user interface,
as described in the following table.

Style Description Software Constan
Normal Defines an independent window swsNormal
MDIChild Defines a child window inside a parent window swsMDIChild

259

SmarTeam Object Model Programmer's Guide

WorkflowlInitiateView Task:
Creating a New FlowProcess and Viewing it.

This section describes the methods and properties used to create a new
process under the user interface WorkflowlnitiateView.

Use the ProcessClassld property to select a process Classld for the
FlowProcess you want to create. Alternately, use the ProcessClass
property to create the FlowProcess class.

Use the AttachedObjects property to specify the objects you want to be
attached to the newly created process.

Use the Show method to create the new process, to attach the default
flowchart, attach the objects to the FlowProcess, and to display them.

Use the Style property to determine the window style of the user interface
(see WorkflowView for an explanation).

SmFlowStore Object

Description

The SmFlowStore object provides access to the functionality of the

SmarTeam - Workflow library. Using the SmFlowStore object, you can

perform the following:

e Access the associated FlowSession object using the FlowSession
property

e Access the associated MessageStore object using the MessageStore
property

e Access collection objects such as FlowCharts, Responses,
ProcessAssignments

o Create new instances of related objects, such as FlowChart,
FlowProcess and others.

e Retrieve FlowProcess objects and other objects from the database.

Object Diagram

The following diagram shows the major properties of the SmFlowStore
object:

260

Chapter 8, SmarTeam - Workflow Library

SmFlowStore

FlowSession

ProcessAssignments

Responses

MessageStore

Figure 8-4 FlowStore Object Access

Obtaining the SmFlowStore Objects

For a stand-alone application:
Set FlowStore = Nothing

Set FlowStore = SmSession.GetService("'SmartFlow.SmFlowStore'™)

Scripts associated with an event or a task are provided with a reference to
an SmFlowProcess object. You can use this reference to obtain the
SmFlowStore object.

Set FlowStore = ActiveProcess.FlowStore
Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a FlowStore.

261

SmarTeam Object Model Programmer's Guide

FlowStore Task: Create a New FlowProcess

The NewFlowProcess method creates a new SmFlowProcess object but
does not save it in the Database.

The InitiateNewProcess method creates a new SmFlowProcess object,
saves it in the Database, and attaches a dummy default Flowchart to it.

Example

ProcessClassld = SmSession.Metalnfo.SmClassByName(*'General Process').Classid

Set ChildProcess = FlowStore. InitiateNewProcess(ProcessClassid)

FlowStore Task:
Create New Workflow View

Use the NewWorkflowView method to create a new WorkflowView
object.

Use the NewWorkflowlInitiateView method to create a new
WorkflowView object in which you can initiate a FlowProcess.

Set WorkFlowlnitiateView = FlowStore .NewWorkflowlnitiateView

FlowStore Task:
Verify SmarTeam - Workflow Server

Use the FlowServerInUse property to verify if the system works with the
SmarTeam - Workflow Server.

Example
Set FlowStore = SmSession.GetService("'SmartFlow.SmFlowStore'™)
IT FlowStore.FlowServerInUse Then

MsgBox *‘Flow system is working with the SmartFlow Server

End If

262

Chapter 8, SmarTeam - Workflow Library

Overview of the SmartMessage Library
Objects

This section presents an overview of the main SmartMessage objects
including a description of the associated objects that are useful for the
programmer.

e SmMessageSession

SmMessageQueue

SmMessages

SmMessage

SmExternalMessage

SmMessageStore

SmMessageSession Object

Description

The SmMessageSession object represents the message context of a single
user. It maintains a collection of that user’s Inbox messages, deleted
messages, draft messages and sent messages.

Object Diagram

The object diagram of SmMessageSession is shown below:

263

SmarTeam Object Model Programmer's Guide

SmMessageSession

InboxMessages

DeletedMessages

DraftMessages

SentMessages

RolesForUser

MessageStore

Figure 8-5 MessageSession Object Diagram

Obtaining a SmMessageSession Object

Set MessageSession = SmMessageStore.MessageSession

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to an SmMessageSession object and its
components.

MessageSession Task:
Getting the User’'s Message Context

Use the User property to get the User associated with the current
MessageSession.

264

Chapter 8, SmarTeam - Workflow Library

Use the InboxMessages property to get the ISmMessageQueue collection
of messages in the InBox queue

Use the SentMessages property to get the ISmMessageQueue collection of
messages in the Sent Messages queue

Use the DeletedMessages property to get the ISmMessageQueue collection
of messages in the Deleted Messages queue

Use the DraftMessages property to get the ISmMessageQueue collection
of messages in the Draft Messages queue.

SmMessageQueue Object

Description

The SmMessageQueue object represents a collection of the user’s
messages, including Deleted, Draft, In, and Sent messages.

The SmMessage object represents an individual message for a user that is
sent within the SmarTeam — Editor application.

The SmExternalMessage represents an individual message that is handled
by an external mail program such as Microsoft Outlook.

Object Diagram

The object diagram of SmMessageQueue is shown below:

SmMessageQueue

SmMessage

Figure 8-6 MessageQueue Object Diagram

Obtaining a SmMessageQueue Object

To get a MessageQueue object:
Set InboxQueue = SmMessageSession. InboxMessages

265

SmarTeam Object Model Programmer's Guide

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to an SmMessageQueue object and its
components.

MessageQueue Task:
Working with the MessageQueue Collection

Use the MessageQueueType property to determine the type of queue that
is represented by the current MessageQueue. The queue types are described
in the following table.

QueueType Description Software Constant
In Collection of InBox Queue items related to gtin
messages of user
Sent Collection of SentMessage items related to thi qtSent
user
Deleted Collection of DeletedMessage items related tg qgtDeleted
user.
Draft Collection of DraftMessage items related to th| gtDraft
user.

To get an individual Message object from the MessageQueue collection by
index, use the Item property.

To get the index of a specified Message object in the collection, use the
IndexOf method.

Use the Refresh method to refresh the MessageQueue to include new
Message objects.

Message Task:
Getting the Elements of a Message Object

The following properties represent the components of a message object:

AttachedObjects represents an ISmMultiObjects collection of SmarTeam
objects attached to the message.

Body contains the body of the message
CCAsString represents the list of CC recipients, separated by semi-colons

266

Chapter 8, SmarTeam - Workflow Library

CCList represents the list of CC recipients, as a collection of
IsmCompositeObjects.

CreationDate represents the creation date of the message

Deleted represents a boolean value for the deletion status of an object. It is
True if the object is marked as deleted.

DeletedStatus is the deletion status of the message. It can have the values:

e DsNotdeleted
e DsMarkedAsDeleted
e dsDeleted

From represents the composer of the message, as an ISmCompositeObject

OriginalMessage represents the previous message in the message thread of
this message

ReceiptDate represents the date the message was received.

Use the FromAsString property to get the From: field of the message as a
string.

Use the ToAsString property to get the To: field of the message as a string.
Use the Importance property to get the importance of the message. The
importance property can have the following values:

Importance Description Software Constant
High The Message is very important iiHigh
Low The Message has low importance iiLow
Normal The Message has normal importance iiNormal

Use the Subject property to get the Subject of message as a string

267

SmarTeam Object Model Programmer's Guide

Use the MessageType property to get the message type. The message types
are listed in the following table:

to the Supervisor when a process is decli
by an Executor.

Message Type Description Software Constant
Message Regular message mtMessage
Process Internal use only mtProcess
Decline SmarTeam - Workflow sends this messa mtDecline

DeclineAccept

Not in use

mtDeclineAccept

Capture If the flag is set, SmarTeam - Workflow | mtCapture
sends this message to the Supervisor wh
process is captured by an Executor.
Consult Not in use mtConsult
Reject Not in use mtReject

268

Chapter 8, SmarTeam - Workflow Library

Message Task:
Adding Items to a Message Object

Use the AttachObject method to attach the specified object to the
message.

Use the AddRecipient method to add a recipient to the message according
to the specified role. The message roles are described in the following
table.

Message Role Description Software Constant
From The composer of the message mrFrom
To The receiver of the message mrTo
CC The CC receiver of the message mrCC

ExternalMessage Task:
Getting the Elements of a ExternalMessage Object

The following properties represent the components of an external message
object:
AttachedObjects
Body
CCAsString
CCList
CreationDate
Deleted
DeletedStatus
From
Importance
OriginalMessage
ReceiptDate

Use the FromAsString property to get the From field of the message as a
string.

Use the ToAsString property to get the To field of the message as a string.
Use the CCAsString property to get the CC field of the message as a
string.

Use the Importance property to get the importance of the message.

Use the Subject property to get the Subject of message as a string

269

SmarTeam Object Model Programmer's Guide

Use the Body property to get the Text of the message

Use the MessageType property to get the message type. The message types
are listed in the following table:

ExternalMessage Task:

Adding Items to an External Message Object

Use the AttachObject method to attach the specified object to the
message.

Use the AddRecipient method to add a recipient to the message according
to the specified role. The message roles are described in the following

table.
Message Role Description Software Constant
From The composer of the message mrFrom
To The receiver of the message mrTo
CC The CC receiver of the message mrCC

270

Chapter 8, SmarTeam - Workflow Library

SmMessageStore Object

Description

The SmMessageStore object is the root object for the SmartMessage
library. It provides access to the other objects in the SmartMessage Object

Model, and enables creation of new objects such a messages and message
queues.

Object Diagram

The object diagram of SmMessageStore is shown below:

SmMessageStore

MessageSession

Behavior

MessageTypes

Session

Figure 8-7 MessageStore Object Diagram

271

SmarTeam Object Model Programmer's Guide

Obtaining a SmMessageStore Object

To obtain a MessageStore object:

Set MessageStore = SmSession.GetService(''SmartMessages. SmMessageStore™)
Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to an SmMessageStore object and its
components.

MessageStore Task:
Creating New Message Objects

The MessageSession property is a reference to the MessageSession object.
Use the NewSmartMessage method to create a new SmartMessage object.

Use the NewExternalMessage method to create a new ExternalMessage
object.

Use the OpenSmartMessage method to open a SmartMessage according to
its objectID.

272

Chapter 8, SmarTeam - Workflow Library

Using the SmarTeam - Workflow Library

This section explains how to write code that operates in conjunction with
SmarTeam - Workflow.

You can use the SmarTeam - Workflow Library to write a SmarTeam -
Workflow application or you can use it to write run-time script.

You can write a SmarTeam - Workflow application which initiates
SmarTeam — Editor to perform a task. For example, you could write an
application to create and send a process.

Run-time script is designed to perform tasks relating to a currently
executing SmarTeam - Workflow session. You might use it, for example,
to automatically send an e-mail or a message when a process is sent out
from a specific node.

Transactions in the SmarTeam - Workflow Library

The following SmarTeam - Workflow methods manage transactions by
themselves. Therefore, they cannot be called when a transaction is open. If
a transaction is open, a call to one of these methods raises an exception.

ISmActiveProcess.Send

ISmServerQueueltem.Send (is used in SmarTeam - Workflow server)
ISmFlowStore.InitiateNewProcess

ISmFlowProcess.InitiateProcess

ISmFlowProcess.FullFlowchartCopy

ISmFlowProcess.SaveChangedFlowChart

Writing SmarTeam - Workflow Applications

Creating a FlowProcess

This section presents an example of a stand-alone application that creates a
new General Process FlowProcess and sends it from the Start Node

Sub MainQ

273

SmarTeam Object Model Programmer's Guide

Dim SmEngine As SmApplic.SmEngine "(lib.class)
Dim SmSession As SmApplic.SmSession

Dim CommonGui As SmGUISKrv.SmCommonGUI

Dim ObjectToSend As SmApplic. I1SmObject

Dim FlowStore As SmartFlow.SmFlowStore

Dim FlowProcess As SmartFlow.SmFlowProcess

Dim ProcessClassld As Integer

Dim FlowSession As SmartFlow.SmFlowSession

Dim Node As SmartFlow.SmNode

Dim Response As SmartFlow.SmResponse

Dim Comment As String

“ uses only visual basic — you don"t need to run SmarTeam Ffirst
“ create SmarTeam engine object

Set SmEngine = CreateObject('SmApplic.SmEngine’™)

“ initialize object

SmEngine. Init "*SmTeam32"

“ creates a SmarTeam session for user

Set SmSession = SmEngine.CreateSession(‘'Test Session', "‘Smart32'")
“ get a database from the first in the database collection

Set Database = SmEngine.Databases(0)

“ connect SmSession to Database

SmSession.OpenDatabaseConnection Database.Alias, Database.Password, True

create CommonGui object for SmarTeam views
Set CommonGui = SmSession.GetService("'SmGUISrv.SmCommonGUI*")

method opens the login dialog box

CommonGui .Dialogs.Executelogin

274

Chapter 8, SmarTeam - Workflow Library

exit if user didn"t log in
I Not SmSession.UserLoggedOn Then
Exit Sub
End If
“ get Classld of process type General Process

ProcessClassld = SmSession.Metalnfo.SmClassByName("‘General

Process') .Classid

“ creates FlowStore object for flow operations

Set FlowStore = SmSession.GetService('SmartFlow.SmFlowStore'™)
“ create FlowSession object for currently logged-in user
Set FlowSession = FlowStore.FlowSession

“ gets first object from user-selected list —- SmObject

Set ObjectToSend =
CommonGui -Dialogs . ExecuteSelectFromQueryResul t(0) - 1tem(0)

“ creates FlowProcess object of type General Process
Set FlowProcess = FlowStore. InitiateNewProcess(ProcessClassid)

“ establish a complex link between ObjectToSend and the FlowProcess

Set AttachedObject = FlowProcess.LinkObject(ObjectToSend, Nothing)

Comment = ""Auto sended process™

creates node object representing Start Node
Set Node = FlowProcess.Flowchart.StartNode
“ From StartNode only accept connectors exist

create a response object from the response of the first outconnector

Set Response = Node.OutConnectors. I'tem(0) -Response

send FlowProcess from start node on all connectors with that Response

FlowProcess. InitiateProcess FlowSession, Response, Comment, Date

End Sub

275

SmarTeam Object Model Programmer's Guide

Writing Run-Time Scripts

You can cause SmarTeam - Workflow to execute your script in run-time
by attaching the script to “hooks” that are provided for this purpose in the
Flow Chart Designer. You attach the script by using the appropriate dialog
boxes when you design a flow chart.

There are two types of hooks provided: those associated with a task and
those associated with an event.

When the Flowchart is assigned to a FlowProcess, the script is assigned as
well. Then as the FlowProcess executes and events occur and tasks are
performed, the associated script is called and runs automatically.

Task-Driven Scripts
A task-driven script is associated with a task object within a flow chart
when the flow chart is designed.
You can specify that the script be executed.

You can attach automatic script to the following types of events:
Event Type Description

On Capture This event occurs when a user captures a process. A user ca
capture a process either explicitly or implicitly. A process is
captured explicitly through the InBox window. A process is
captured implicitly when the SmarTeam user performs an act
that requires capture privileges.

On Respond This event occurs when the user presses Accept or Reject to
send a process. It is similar to the Before Send event.

276

Chapter 8, SmarTeam - Workflow Library

Script Options

The following options are provided for a task:

Task Option Description

Required task The task must be performed

Perform task per object The task is performed on all objects attached to the
process.

Perform task automatically Select whether the script is executed when the user

--On Capture performs a task on the Process window, or when the

--On Respond events On Capture or On Respond occur.

Class The script is executed for the objects in the specified
class.

277

SmarTeam Object Model Programmer's Guide

Timing for Task-Driven Scripts

Figure 8-8 shows when a task-driven script is executed relative to a
SmarTeam - Workflow user action. For example, when a SmarTeam user
performs a capture process action, the On-Capture event occurs. If an
automatic task that has a script is attached to that event, the script will be
executed.

(Task-Driven Script)

é

to script

Task con

C Tasks)

Events

On Capture
Perform Task
On Respond

Start Node

SmFlowProcess

Middle Node) End Node

? ~ a
g 2 8
=4 =]
o » <
2 < ¢| Operator
= o a .
2 0 | Actions
] L o
O
(SMARTEAM - Workflow User)

Figure 8-8 Time-Line Chart for Task-Driven Scripts

278

Chapter 8, SmarTeam - Workflow Library

Script Format

A task-driven script has the following format:

Sub Task-Driven (ActiveProcess As IsmActiveProcess
Task As IsmTask
MObjects As ISmMultiObjects)

OnCapture Example

This section presents an example of a task-driven script. The script sends
an e-mail to all users on previous Nodes notifying them that the current
user captured a process that they sent. The OnCapture event causes this
script to be executed.

Sub OnCapture(
ActiveProcess As Object, “the active process you captured

Task As Object, "the task that activated this script

MultiObjects As Object “objects attached to Active Process

)
Dim FromNodes As SmartFlow.SmNodes
Dim CurrentNode As SmartFlow.SmNode
Dim UserLogin As String
Dim Users As Object
Dim CurrentUser As SmApplic.ISmObject
Dim enumMailltem As Integer
Dim Mail As Object
Dim MailServer As Object
Dim i As Long
Dim j As Long
“ get the current UserLogin from the current user’s data
UserLogin = ActiveProcess.Session.UserMetalnfo.UserlLogin

“ get the current node

Set CurrentNode = ActiveProcess.CurrentNode

279

SmarTeam Object Model Programmer's Guide

“ get collection of nodes that sent Queueltem to the current node
Set FromNodes = ActiveProcess.Queueltem.FromNodes
“ create Outlook mailserver object(assuming Outlook is installed)
Set MailServer = CreateObject(‘'Outlook.Application'™)
“ set type of Outlook mail item to be “new message”
enumMailltem = O
“ create mail object
Set Mail = MailServer.Createltem(enumMai Il Item)
“ loop on FromNodes
For i=0 To FromNodes.Count - 1

“ retrieve collection of users on all From Nodes
Set Users = FromNodes(i).Users.GetUsers

“ loop on users of a From Node
For j=0 To Users.Count — 1

create duplicate User object to get all attributes for that
“ user (can"t do that when the User in a collection)

Set CurrentUser = Users(j)-Clone

“ get info from data base

CurrentUser .Retrieve

“ add the User email address from the database data record

“ to the mail recipient collection

Mail .Recipients.Add CurrentUser.Data.ValueAsString("'USER_EMAIL'™)
Next
Next

“ Fill in mail text
Mail.Subject = "Capture process"

Mail.Body = "'Process " + ActiveProcess.FlowProcess.Name + ** was captured by ™
+ UserlLogin + ' at node " + CurrentNode.Name

Mail.Send

End Sub

280

Chapter 8, SmarTeam - Workflow Library

Event-Driven Scripts

An event-driven script is associated with an event object within a flow
chart. When the event occurs, the script is executed automatically.

You can attach script to the following types of events:

Event Type Description
On Receive The On Receive event occurs when the SmFlowQueueltem
corresponding to a SmFlowProcess enters a user’s
InBoxProcesses queue.
On Open The On Open event occurs each time a WorkFlow screen

corresponding to a SmFlowQueueltem is opened.

Before Send

Before Send Accept
Before Send Reject
After Send

After Send Accept

After Send Reject

The Before Send event occurs immediately before the proces
sent on to the next node.

Similar to Before Send described above

Typical scripts for this event might be:

The Before Send Reject event occurs immediately before the
process is rejected to a previous node.

The After Send event occurs after the process is sent to the r
node.

The After Send event occurs after the process is sent to the r
node following the user's accept response.

The After Send event occurs after the process is sent to a
previous node following a user’s reject response.

281

SmarTeam Object Model Programmer's Guide

Timing for Event-Driven Scripts

Figure 8-9 shows when a event-driven script is executed relative to a
SmarTeam - Workflow user action. For example, when a SmarTeam user
presses accept at the Start Node, the BeforeSend event occurs. If a script is

attached to that event, the script will be executed.

C Event-Driven Script)
e) el
5 & = > g 5 =
AT I g AT I
o o e o o © - | Events
o S Q Dé c S Q
S ° < ¢ © @ <
C Start Node SmFlowProcess Middle Node
3 B
e]
z =1 = S =1
= Q 2 S
< 8 <) 3]
o < 3 T <
= 3 % 5 2 Operator
g o 2 o o Actions
(e} o g 9] o
(@] (@]
C SMARTEAM - Workflow User)

Figure 8-9 Time-Line Chart for Event-Driven Scripts

Script Format

A event-driven script has the following format:

Function BeforeSend(ActiveProcess As Object,
Response As Object)As Integer

Function AfterSend(FlowSession As Object,
FlowProcess As Object,
Node As Object,
Response As Object) As Integer

End Node

282

Chapter 8, SmarTeam - Workflow Library

Function AfterSendReject(FlowSession As Object,
FlowProcess As Object,
Node As Object,
Response As Object) As Integer

Function AfterSendAccept(FlowSession As Object,
FlowProcess As Object,
Node As Object,
Response As Object) As Integer

BeforeSend Example

The following sample script was written to be activated by a BeforeSend
event.

The script CreateProcessLog creates a process log document and attaches it
to a process and to a selected project. The log can be viewed by all users
through the project window but it is not visible on the process view.

This script creates the log document and puts in the initial entry. To get a
full process log for all stages of the process, a similar script, which adds
information to the log, must be put in every subsequent Node.

Function CreateProcessLog(
ActiveProcess As Object, “ the Active Process you sent
Response As Object “ the Response on which you sent it
) As Integer

Dim SmSession As SmApplic.SmSession

Dim FlowProcess As SmartFlow.SmFlowSession

Dim Document As SmApplic.1SmObject

Dim NewTempDocument As SmApplic.ISmObject

Dim Project As SmApplic. ISmObject

Dim DocumentClassld As Integer

Dim GUIService As SmGUISKrv.SmCommonGUI

Dim View As SMGUISrv._ISmView

Dim UserBehavior As SmApplic. 1SmBehavior

Dim Link As SmApplic.ISmObject

283

SmarTeam Object Model Programmer's Guide

Dim LinkAttributes As Object

Dim LinkClassld As Integer

Dim Task As Object

Dim SmSessionUtil As SmUtil.SmSessionutil
Dim CurrentMask As String

Dim NextMask As String

Dim Objectld As Long

“ get Flowprocess

Set FlowProcess = ActiveProcess.FlowProcess

“ get SmSession

Set SmSession = ActiveProcess.Session

“ get service for life cycle operation

Set SmSessionUti I=SmSession.GetService("'SmUtil .SmSessionUtil™)
“ get class ID for class Document

DocumentClassld = SmSession._Metalnfo.SmClassByName(*'Document'”) .Classld

create new Document object

Set NewTempDocument = SmSession.ObjectStore._NewObject(DocumentClassid)
“ add Document empty attributes

NewTempDocument .. AddAl 1Attributes

“ fill in default attribute values

Set Document =NewTempDocument.FillDefaults

“ insert description of Document object into Database

Document.Data.ValueAsString("'CN_DESCRIPTION'") = "Auto created for process
" & FlowProcess.Name

“ get the current mask of the Document clss primary identifier attribute
by its name CN_ID. Current mask is the mask of the most recently created
object of class Document, for example, '‘DOC-002.

284

Chapter 8, SmarTeam - Workflow Library

CurrentMask=SmSessionUti I .RetrieveStartMaskValue

(Document _Attributes. ItemByName("'CN_ID'"))

“ allocate a new primary identifier mask after the CurrentMask

NextMask = SmSessionUtil .RetrieveNextMask

(Document . Attributes. ItemByName("'CN_ID""), CurrentMask)

“ insert it as the Document object primary identifier attribute
Document.Data.ValueAsString("'CN_ID'") = NextMask
< alternative:

“ IFf you want to use a log file which existed prior to executing this

script then add here a command to open a window to select the file
path\filename and:.

“ put the File name in the Document attribute " FILE_NAME ™
“ Document.Data.ValueAsString("'FILE_NAVME'™) = "“Filename"
“ put the path in Document attribute *Directory"

“ Document._Data.ValueAsString("'DIRECTORY'") = *‘path™

“ create new File with name Primaryldentifier.txt and path C:\
Open "C:\"" & NextMask & ".txt" For Output As #1

“ write name of file creator

Print #1,"Created by user " & SmSession.UserMetalnfo.UserLogin
“ write data and time

Print #1,"Date: " & Date$(Q) & " Time: " & Time$Q

“ write name of process

Print #1,"For flow process " & FlowProcess.Name

“ and name of Node

Print #1,"At node " & ActiveProcess.CurrentNode.Name

response on send

Print #1,"0On response "' & Response.Name

285

SmarTeam Object Model Programmer's Guide

Close #1

“ put name of newly created file in Document attribute "FILE_NAVE™
Document.Data.ValueAsString("'FILE_NAVE') = NextMask & . txt"

“ put path in Document attribute "DIRECTORY"'
Document.Data.ValueAsString("'DIRECTORY') = "'C:\"

“ choose project to which the new Document is to be attached

“ get GUI service

Set GUIService = SmSession.GetService('SmGUISrv.SmCommonGUI™™)

“ show project view

Set View = GUIService.Views.NewiewByType(WwitMainClassTree)
View.ViewTitle = "Select project to link”

“ open dialog box and let user choose project to link Document
View.SmViewWindow. Showvodal

“ get the Ffirst one he selected

Set Project = View.Selected.Objects(0)

“ use behavior that doesn"t require confirmation

Set UserBehavior = SmSession.ObjectStore.DefaultBehavior.Clone
“ set automatic confirmation — no prompt will be used
UserBehavior.ConfirmOperations = coYesToAll

“ insert new document to data base

Document. InsertEx UserBehavior

“ can"t use zero directly as parameter, only by reference
LinkClassld = 0

“ link Document to project

Set Link = SmSession.ObjectStore._NewOneLevelLink
(LinkClassld,Project.Classld,Project.Objectld,Document.Classld,Document _Object
1d)

insert link to database. the doc will appear linked to the project

Link. InsertEx UserBehavior

286

Chapter 8, SmarTeam - Workflow Library

only by reference

Set Task = Nothing

“ check-in newly created document object to vault

Objectld = SmSessionUtil.CheckIn(Document,Task, True)

Set LinkAttributes = Nothing

“ secondary link document to process; doesn’t appear on process view
Set Link = FlowProcess.LinkObjectAsSecondary(Document, LinkAttributes)
“ alternative:

“ primary link document to process; appears On process view

“ Set Link = FlowProcess.LinkObject(Document,LinkAttributes)

End Function

BeforeSendAccept Example

The following sample script was written to be activated by a
BeforeSendAccept event.

The script SendNewProcess creates a new flow process and assigns new
users to nodes. It attaches objects from an existing process to the new
process and sends the new process to selected users including both existing
users and the new users.

Function SendNewProcess(
ActiveProcess As Object, "the active process you sent
Response As Object “ the Response on which you sent
) As Integer

Dim CommonGUI As SmGUISKv.SmCommonGUI

Dim ViewedCompositeObjects As SmApplic. 1SmCompositeObjects

Dim Query As SmApplic. 1SmSimpleQuery

Dim SelectUserView As SmGUISKrv. 1SwWiew

Dim UserClassld As Integer

Dim SmSession As SmApplic.SmSession

287

SmarTeam Object Model Programmer's Guide

Dim

Dim

DestinationNode As SmartFlow.SmNode
Users As SmApplic.ISmObjects

FlowStore As SmartFlow.SmFlowStore
FlowSession As SmartFlow.SmFlowSession
ChildProcess As SmartFlow.SmFlowProcess
LinkedObjects As SmApplic. IStMultiObjects
SubLinkedObjects As SmApplic. ISmObjects
CompLink As SmApplic. ISmObject

Node As SmartFlow.SmNode

OutNodes As SmartFlow.SmNodes

ChildProcessResponse As SmartFlow.SmResponse

Dim ObjectToSend As SmApplic.1SmObject

Dim

Dim

ProcessClassld As Integer
Comment As String

Param As Object

1 As Long

J As Long

“ get service object FlowStore

Set

FlowStore = ActiveProcess.FlowStore

“ get current user”s FlowSession

Set

FlowSession = ActiveProcess.FlowSession

“ get the SmarTeam session

Set

SmSession = ActiveProcess.Session

Create a new process

“ get classid for General Process class

ProcessClassld = SmSession.Metalnfo.SmClassByName
("'General Process').Classld

288

Chapter 8, SmarTeam - Workflow Library

“ create and initiate new process, attach default Flowchart
Set ChildProcess = FlowStore. InitiateNewProcess(ProcessClassid)
“ get all objects linked to Active Process without their links
Set LinkedObjects = ActiveProcess.FlowProcess.ObjectsData
“ LinkedObjects has type IsmMultiObjects:
“ including super classes Documents, lItems, Users
For 1 = 0 To LinkedObjects.Count — 1
“ create object for one superclass
Set SubLinkedObjects = LinkedObjects(l)
“ loop on that superclass collection
For J = 0 To SubLinkedObjects.Count - 1
“ for each member of collection
Set ObjectToSend = SubLinkedObjects(J)-Clone
“ get all properties
ObjectToSend.Retrieve
“ link the object to the new process
“ no link parameters, use defaults
Set Param = Nothing
Set CompLink = ChildProcess.LinkObject(ObjectToSend, Param)
Next
Next
“ get all SmarTeam users from Database
“ create a new query object
Set Query = SmSession.ObjectStore_NewSimpleQuery
“ define query to find all users defined in database
Query.SelectStatement = "'Select * from USERS"
“ run query

Query.Run

289

SmarTeam Object Model Programmer's Guide

“ transform from QueryResult (RecordList) to CompositeObjects for
viewing

Set ViewedCompositeObjects =
SmSession.ObjectSTore.CompositeObjectsFromData(Query.-QueryResult, true)

“ get viewing service

Set CommonGUI = SmSession.GetService("'SmGUISrv.SmCommonGUI™")
Comment = "‘Auto created child process process'

“ send the new process from the Start Node
Set Node = ChildProcess.Flowchart.StartNode
“ send on accept connectors only

“ select the First non-reject response for start node
Set ChildProcessResponse = Node.GetNotRejectResponses(0)

“ get the collection of outgoing nodes for that response
Set OutNodes = Node.GetOutgoingNodes(Chi ldProcessResponse)

“ loop over out nodes

For J = 0 To OutNodes.Count - 1
“ create node object

Set DestinationNode = OutNodes. Item(J)

“ let the user choose new users to receive this process.
“ check if new users can be added to the Destination Node
IT DestinationNode.RuntimeUsers Then

make userview window object

Set SelectUserView = CommonGUI .Views.NewiewByType(wWwitCustom)

¢ define view to include all users

Set SelectUserView.DisplayObjects.CompositeObjects =
ViewedCompositeObjects

“ set title of SelectUserView window

SelectUserView.ViewTitle = ""Select user for destination node "
& DestinationNode.Name

290

Chapter 8, SmarTeam - Workflow Library

End IF

Next

“ open window and display all users for selection
SelectUserView.SmViewWindow. ShowModal
“ create collection of all users selected

Set Users = SelectUserView.Selected.Objects

“ loop over selected users

For 1=0 To Users.Count — 1
“ add selected users to destination node
DestinationNode.Users.Add Users(l)

Next

“ save destination mode with all added users

DestinationNode.Save

“ send new process to the existing and new users

ChildProcess. InitiateProcess FlowSession, ChildProcessResponse, Comment,

Date

End Function

AfterSendAccept Example

The following sample script was written to be activated by an
AfterSendAccept event.

The script SendMail AfterAccept sends e-mail to persons outside the system
that the process has been sent.

Function SendMai lAfterAccept(

FlowSession As Object, "flow session of user that sent process

FlowProcess As Object, "FlowProcess that was sent

Node As Object, "node from which i1t was sent
Response As Object "response on which process was sent
) As Integer

291

SmarTeam Object Model Programmer's Guide

Dim DestinationNodes As SmartFlow.SmNodes
Dim Users As Object

Dim CurrentUser As SmApplic.ISmObject
Dim enumMailltem As Integer

Dim Mail As Object

Dim MailServer As Object

Dim i As Long

Dim j As Long

“ create collection object of nodes to which process was sent
Set DestinationNodes = Node.GetOutgoingNodes(Response)
“ create Outlook service main object
Set MailServer = CreateObject(‘'Outlook.Application'™)
enumMailltem = O
“ mail item
Set Mail = MailServer.Createltem(enurMailltem)
“ loop on destination nodes
For 1=0 To DestinationNodes.Count — 1
“ create collection of users on a node
Set Users = DestinationNodes(i).Users.GetUsers
“ loop over users
For j=0 To Users.Count — 1
“ duplicate user to retrieve attributes
Set CurrentUser = Users(j)-Clone
“ get attributes of user

CurrentUser .Retrieve

“ add recipient to mail list

292

Chapter 8, SmarTeam - Workflow Library

Mail .Recipients.Add
CurrentUser _Data.ValueAsString("'USER_EMAIL'™)

Next

Next

enter mail subject
Mail.Subject = "Check your Smartbox

enter mail body

Mail .Body =
""Process was sent to your SmartBox on response "' + Response.Name

“ send mail
Mail.Send

End Function

293

SmarTeam Object Model Programmer's Guide

9. SmarTeam CAD Interface Library |

General Description

SmarTeam CAD Integration

The SmarTeam Integration Tool, by enabling you to map objects of an
integrated CAD tool such as SolidWorks™ or Microsoft Word™ to objects
in SmarTeam, lets you apply the power of SmarTeam to the CAD tool.

As shown in the following figure, the different CAD file types are mapped
to SmarTeam classes and the CAD file property fields are mapped to the
corresponding SmarTeam class attributes. For example, when a
SolidWorks Part CAD file is mapped to the SmarTeam class
SolidWorksPart, the Summary Information/Author property field of the
CAD file can be mapped to the Object ID class attribute of the
SolidWorksPart class. Now you can use that field in the CAD file for the
SolidWorksPart User Object ID.

In addition, the CAD file is also linked to the corresponding SmarTeam
class as an associated file; SmarTeam can manage the disposition of the
CAD file in the SmarTeam vaults.

This chapter discusses the SmarTeam CAD Interface library, which can be
used once the SmarTeam integration is in place and the mappings are
established, for example, by using the SmarTeam Integration Tool.

294

Chapter 8, SmarTeam - Workflow Library

CAD Application SmarTeam
CAD Document g g
CAD Interface API ‘ Main CAD Class
CAD File Property Mappings Class
Properties perty Mapping "l Properties
< Associated File >
CADFileTypel | CADClassl
CAD File Property Manpinas Class
Properties perty Mapping "1 Properties
< Associated File »
L A CAD Classz

Integration Data Model

The Integration Data Model uses the CLB and OLB mechanisms discussed
in Chapter 5, section Class Behaviors, to define possible object and link
behaviors to support specific integrations. See that section for more
information about Class Behaviors and SmDemo for examples.

The following terminology is used:

e Integration Behavior — An OLB, defined for the integration
component objects, for example: SolidWorks Part, Solid Edge
Assembly, and CATIA Model.

e Integration Link Behavior —A CLB imposed on a link class, which is
used to distinguish between link classes, for example: CATIA structure,
CATIA contextual, SW Design in Context.

e Integration Composition — A CLB composition, which determines the
permissible link classes for two integration component objects.

Operation Dependency Rules — A set of restrictions on the life-cycle
operations permissible for classes with given Integration Behavior or
Integration Link Behavior.

295

SmarTeam Object Model Programmer's Guide

SmarTeam CAD Interface

The SmarTeam CAD Interface library provides easy access to SmarTeam
functionality from within an integrated CAD application, such as
SolidWorks, or within a general-purpose application, such as Microsoft
Word.

The functionality of the SmarTeam CAD Interface library includes:

Improved file search capabilities, including searching for files by
attributes other than the file name. The file search is carried out using
SmarTeam search functions.

The high-level functions of the CAD Interface library provide easy
access to SmarTeam database information about edited documents and
related documents.

Improved file security; CAD files can be saved inside the SmarTeam
vault immediately after creation or editing.

Working directly with the CAD application files, saving file
information in the SmarTeam database.

The SmarTeam CAD Interface library provides objects that enable you to:

Save and update documents and compositions (trees) of the documents
in the SmarTeam database.

Retrieve document meta-information by file name from the SmarTeam
database.

Update various CAD blocks, for example, update the title block of a
drawing with information obtained from SmarTeam.

Perform life-cycle and other related operations.

Dependencies

The SmarTeam CAD Interface library has the following dependencies:

SmarTeam Record List library.
SmarTeam GUI Services library.
SmarTeam Application library.
SmarTeam Utilities library.
SmarTeam Engine library.

296

Chapter 8, SmarTeam - Workflow Library

Overview of Objects

The main object of the SmarTeam CAD Interface library is the
SmCADInterface object.

SmCADInterface provides high-level functionality that enables you to
maintain uniformity across all integrated applications, and to keep the
integration updated when upgrades are implemented in SmarTeam and/or
the applications.

It is possible to work with integrated applications using SmarTeam
standard functions. However, for greater convenience and maintainability,
it is highly recommended that you use the SmCADInterface object for all
your SmarTeam integration requirements.

SmCADInterface Object

The SmCADInterface object provides the following functionality,
including:

Connecting to the SmarTeam database

Updating the SmarTeam database

Retrieving information from SmarTeam database

GUI operations

Lifecycle operations

Improving Performance

297

SmarTeam Object Model Programmer's Guide

Object Diagram

The object diagram of SmCADInterface is shown below:

SmCADInterface

IntegrationDlII

IntegrationGUIStore

IntegrationStore

Session

Figure 9-1 SmCADInterface Object Diagram

Obtaining the SmCADInterface Object

SmCADInterface is a service object. To obtain a reference to the object,
use the following syntax:

Dim CADInterface as SmCADInterface

Set CADInterface = Session.GetService (““SmCad.SmCADInterface’™)
SmCADInterface Properties

The SmCADInterface has the following properties:

IntegrationGUIStore Gets the ISmintegrationGUIStore object of the current session
IntegrationStore Gets the ISmintegrationStore object of the current session
Session Returns an ISmSession object that represents the current session

The following objects can be accessed through the properties of
SmCADInterface.

298

Chapter 8, SmarTeam - Workflow Library

SmSession

The SmSession property enables you to access the associated SmSession
object from SmCADInterface:

Dim SmSession As ISmSession

Set SmSession = CADInterface.Session

SmintegrationStore

The SmintegrationStore property enables you to access the
SmintegrationStore object from SmCADInterface:

Dim SmintegrationStore As ISmintegrationStore

Set SmintegrationStore = CADInterface.SmintegrationStore

SmintegrationGUIStore

The SmintegrationGUIStore enables you to retrieve the
SmintegrationGUIStore object from SmCADInterface:

Dim SmintegrationGUIStore As ISmintegrationGUIStore

Set SmintegrationGUIStore = CADInterface.SmlntegrationGUIStore

299

SmarTeam Object Model Programmer's Guide

SmCADInterface Methods

The SmCADInterface has the following major methods, presented
according to topic:

Database Connection

Initialize Initializes variables, creates database connection and login
UserLogin Connects and login into the SmarTeam database
Terminate Terminates the session and disconnects from database

Updating SmarTeam Database

UpdateLinks Updates links in the database, updating only those that have
changed, and adds the new links

SaveObjectsAndLinks Updates objects and links in the SmarTeam database, updati
only those that have changed, and adds the new objects and
links.

OdmaSave Displays the Projects Manager dialog and saves the documer
SmarTeam database

Save Saves the document in SmarTeam database

Retrieving Information from SmarTeam Database

FindObject Retrieves Object Id and Class Id for the object (Part or
Document) to which the input CAD document is associated.
FindObjects Retrieves Object Id and Class Id for the objects (Part or

Document) to which the input CAD documents are associated

GetLinkedObjects Retrieves Objects that are linked with a specified link behavig
the object (Part or Document) to which the input CAD documg
is associated and returns specified object attributes.

FindFile Locates the full path of the CAD document associated with th
specified SmarTeam object. In case of multiple files, the first
found is returned.

GUI Operations

Locate Locates a document and shows its profile card

WhereUsed Displays the document's Where Used list
Life-Cycle Operations

Approve Performs the Release operation

Checklin Performs the Checkln operation

CheckOut Performs the CheckOut operation

CheckOutForEdit Performs the CheckOut and Edit operations

CopyFile Performs a CopyFile operation

NewRelease Performs the NewRelease operation

Obsolete Performs the Obsolete operation

300

Chapter 8, SmarTeam - Workflow Library

Performance
BeginSaveOperation Initializes global variables for the save operation
EndSaveOperation Releases global variables after the save operation
GetChildrenWithCopies Retrieves all the assembly's children from the local folders
Miscellaneous
ApplUpdateProperties Updates the document's properties before it is moved to the v
— fires event OnLFCOperation
InvokeScriptWithList Invokes a script with an input record list
SetMainWindowHandle Sets the parent window of SmarTeam APl windows
ShowSmarTeam Activates the SmarTeam application
GetDefaultWorkFolder Retrieves current work folder
GetTemporaryFolder Retrieves current folder for temporary files
IsOperationAllowed Checks if operation may be performed
IsLinkAllowed Checks if two documents can be linked
TransferOwnership Transfers document from one user to another in the collaborg
design environment

Using the File Description Record List

Many of the SmCADInterface methods use a record list of a certain format
to identify documents that are associated with SmarTeam objects. The
record list should include one or more records, with the following headers:

Header Type Size Description
FILE_NAME CHAR 256 Full file name, including directory and file
name
TDM_COMPONENT_NAME CHAR 256 Name of the component or configuration,
be empty
INTEGRATION_BEHAVIOR CHAR 256 Integration behavior name as defined in th
integration’s data model.

Example

Dim FullPath As String

FileDescription.AddHeader "FILE_NAME™,256,TDMT_CHAR
FileDescription.AddHeader ""INTEGRATION BEHAVIOR',256,TDMT_CHAR
FileDescription.AddHeader ""TDM_COMPONENT NAME',256,TDMT_CHAR

FileDescription.Value("FILE_NAME",0) = "‘c:\work\pOl.sldprt"

301

SmarTeam Object Model Programmer's Guide

Fi leDescription.Value("' INTEGRATION_BEHAVIOR™,0) = ""TDM_SW_PART"
FileDescription.Value("'TDM_COMPONENT NAME',0) = "‘Default"

In addition to the attributes shown above, FileDescription can also include
other attributes that are added to the specified document’s profile card
during Save/Update operations.

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to SmCADInterface.

CADinterface Task:
Connecting to the SmarTeam Database

The first call to the SmMCADInterface object must be to the method
Initialize. This method creates the connection to the SmarTeam database
and opens the login screen, as shown in this example:

Dim RetCode as Integer
Dim CADInterface as SmCADInterface
Set CADInterface = Session.GetService (““SmCad.SmCADInterface’™)

RetCode = CADInterface. Initialize(*Microsoft Word™)

To deactivate the integration, call the Terminate method. This method
disconnects the user from the SmarTeam database:

CADInterface.Teminate()

CADinterface Task:
Adding/Updating Document Descriptions

The OdmaSave method enables you to add or update a document’s
description inside the SmarTeam database, as shown in the following
example:

Dim RetCode As Integer

Dim ShowSaveAsDialog as Integer
Dim ForceSaveAs as Integer
ShowSaveAsDialog = 1

ForceSaveAs = 0

302

Chapter 8, SmarTeam - Workflow Library

RetCode = SmCADInterface.OdmaSave(FileDescription, ShowSaveAsDialog,
ForceSaveAs)

CADiInterface Task:
Adding/Updating Document Links

The SaveObjectsAndLinks and UpdateLinks methods allow you to add and
update SmarTeam links between one document object and other related
document objects. The document’s links are added, deleted or updated in
the SmarTeam database to reflect the current links in the CAD integration.

Updating Links

When the SmarTeam objects corresponding to the CAD documents are
related by links with specific behavior, you update them by calling the

method SaveObjectsAndLinks or UpdateLinks. The difference between
these methods is that SaveObjectsAndLinks updates the links and also

saves the objects that were not yet saved in the SmarTeam database.

For example, consider a SolidWorks assembly Al that has SolidWorks
parts P1 and P2 as components. Al, P1, and P2 are represented by
SmarTeam objects that are linked with links with behavior “Composed
Of”: A1 > Pl and Al-> P2.

Suppose that, in the CAD integration, the user deletes part P2 from the
assembly Al and adds part P3. In order to update the SmarTeam database
accordingly, you call UpdateLinks with assembly Al as a single record in
the FileDescription parameter and the two components P1 and P3 as
separate records in the References parameter and a single record containing
TDM_SW_COMPOSED_OF record in the LinkBehaviors parameter. The
method acts to delete SmarTeam link A1-> P2, and to add a new
SmarTeam link A1-> P3.

Note: You must make a separate call to UpdateLinks for each hierarchical
level in the assembly in which a change was made.

Note: If P1 has two instances (records) inside the References record list,
then its link quantity value will be set to “2”.

Note: If any of the documents referred to the input record lists do not yet
exist as objects inside SmarTeam and the SaveObjectsAndLinks is called,
then a new profile card will be created for them.

303

SmarTeam Object Model Programmer's Guide

Example

The following example shows how to use the method
SaveObjectsAndLinks to update a SolidWorks assembly in the SmarTeam
database.

Dim RetCode As Integer
Dim FileDescription As ISmRecordList
Dim References As ISmRecordList

Dim LinkBehaviors As ISmRecordList

" Load the assembly information into the FileDescription record list
Set FileDescription = New SmRecList.SmRecordList
FileDescription.AddHeader "FILE NAME',256,TDMT_CHAR
FileDescription.AddHeader *"INTEGRATION_BEHAVIOR',256, TDMT_CHAR

FileDescription.AddHeader *"TDM_COMPONENT_NAME', 256, TDMT_CHAR

FileDescription.Value("'FILE_NAVE',0) = "‘c:\work\pOl.sIdASM"
FileDescription.Value("'INTEGRATION_BEHAVIOR™,0) = **TDM_SW_ASSEMBLY"*

FileDescription.Value('TDM_COMPONENT_NAME'*,0) = "‘Default’

" Load each part and document in a separate record in the
“ References record list

Set References = New SmRecList.SmRecordList
References.AddHeader "'FILE _NAME',256,TDMT_CHAR
References.AddHeader ""INTEGRATION BEHAVIOR',256, TDMT_CHAR
References.AddHeader '"TDM_COMPONENT_NAME',256, TDMT_CHAR

References.AddHeader “'LINK _BEHAVIOR',256,TDMT_CHAR

References.Value("'FILE_NAVE",0) = "‘c:\work\pOl.sldprt"

304

Chapter 8, SmarTeam - Workflow Library

References.Value("'INTEGRATION_BEHAVIOR",0) = ""TDM_SW_PART"
References.Value("'TDM_COMPONENT_NAVE™,0) = "Default”

References.Value('LINK_BEHAVIOR™,0) = *"TDM_SW_COMPOSEDOF"

References.Value("'FILE_NAVE",1) = "‘c:\work\tablel.xIs"
References.Value("'INTEGRATION_BEHAVIOR'',1) = ""TDM_EXCEL DOCUMENT"
References.Value("'TDM_COMPONENT _NAME,1) = ™"

References.Value("'LINK_BEHAVIOR™,1) = ""TDM SW_TABLE LNK"

Set LinkBehaviors = New SmRecList.SmRecordList

“ Load link behaviors specified in References parameter
LinkBehaviors._AddHeader “LINK_BEHAVIOR™,256,TDMT_CHAR
LinkBehaviors._Value("'LINK_BEHAVIOR',0) = ""TDM_SW_COMPOSEDOF"*

LinkBehaviors.Value("'LINK_BEHAVIOR",1) = "TDM_SW_TABLE LNK"

RetCode =SmCADInterface.SaveObjectsAndLinks (FileDescription,
References,LinkBehaviors)

CADiInterface Task:
Retrieving Document Information

The FindObject method enables you to retrieve a document’s class ID and
object ID.

The document is searched inside the set of classes, which are defined for its
FILE_TYPE. The database query is based on the full path from the
FILE_NAME header, which is used for the file name and directory fields.

If the “Additional Identifier” attribute is set inside the FileDescription
record list, then it will also be used as a search field, in addition to the
document’s file name and directory. The additional identifiers can be
defined inside the “Special Attributes” property group.

Dim FileDescription As SmRecList.SmRecordList

305

SmarTeam Object Model Programmer's Guide

Dim RetCode As Integer
Dim Objectld As Integer

Dim Classld As Integer

FileDescription = SmRecList.NewRecordList

FileDescription.AddHeader *‘FILE_NAVE™,256,TDMT_CHAR
FileDescription.AddHeader *"INTEGRATION_BEHAVIOR',256, TDMT_CHAR
FileDescription.AddHeader '"TDM_COMPONENT_NAME',256, TDMT_CHAR
FileDescription.Value("'FILE_NAVE',0) = "‘c:\work\pOl.sldprt"
FileDescription.Value('INTEGRATION BEHAVIOR™,0) = *"TDM_SW_PART™"

FileDescription.Value('TDM_COMPONENT_NAME'*,0) = "Default’

RetCode = SmCadinterface.FindObject(FileDescription, Objectld, Classld)

CADInterface Task:
Opening a Document’s Profile Card

The Locate method enables you to open the active document’s profile card,
as shown below:

Dim RetCode As Integer

RetCode = SmCADInterface.Locate(FileDescription)
CADInterface Task:

Performing Life Cycle Operations

The following methods enable you to perform life cycle operations on a
document:

306

Chapter 8, SmarTeam - Workflow Library

Checkln
CheckOut
Release
NewRelease
Obsolete

The syntax for the life cycle operation methods is shown below:
Dim RetCode As Integer

RetCode = SmCADInterface.CheckIn(FileDescription)

RetCode

SmCADInterface.CheckOut(FileDescription)

RetCode = SmCADInterface.Release(FileDescription)

RetCode = SmCADInterface.NewRelease(FileDescription)

RetCode

SmCADInterface.Obsolete(FileDescription)

CADinterface Task:
Managing SmarTeam API Windows

The SetMainWindowHandle method defines the main application window
handle as the owner window of all SmarTeam API windows. Setting main
window handle ensures that window management problems, such as those
caused by the use of accelerator keys, are avoided, and that all SmarTeam
windows are correctly closed on application termination.

The following example shows how to use this method:
Dim RetCode As Integer

Dim Wnd As HWND
Set Wnd = WinFind(“Microsoft Word™”)
If Wnd Is Nothing Then
MsgBox “Word Application is not active”
Else
RetCode = SmCADInterface.SetMainWindowHandle(Wnd)

End IF

307

SmarTeam Object Model Programmer's Guide

CADInterface Task:
Updating CAD File Properties in a Life-Cycle Operation

As mentioned above, the CAD document property information is stored in
the CAD file’s property fields. Among these file properties is revision and
life-cycle state information.

When a SmarTeam life-cycle check in or release operation is performed on
an object, the object’s associated file is moved to the appropriate secured
vault. During the life-cycle operation, the SmarTeam life-cycle mechanism
can move a file to a vault but it does not have the ability to perform
changes on the file’s property fields, in particular it cannot update the file’s
revision and state information.

The SmCADInterface object provides a function ApplUpdateProperties and
an event OnLFCOperation, which enables you to write a function in the
CAD application that receives updated revision and state information from
SmarTeam and updates the CAD file properties as a SmarTeam life-cycle
operation is taking place.

Checking In an Object

For example, the following figure shows the sequence of operations that
occurs when the CAD application checks in a CAD object.

308

Chapter 8, SmarTeam - Workflow Library

CAD Application SmarTeam

CAD Document Document Object

ISmCADInterface::Check-In LFCYC_MassOperationEx

L&

ApplUpdateProperties
(ObjectList, TaskList,1)

3

Fire_OnLFCOperation
(TaskList)

SmCadEvents_
OnLFCOperation(TaskList)

Complete Check-in

Update CAD file properties @ @ Move updated CAD file to vault

CAD File
Properties

CAD File

The figure shows the following sequence of operations:

309

SmarTeam Object Model Programmer's Guide

e The Check In API method is called in the CAD application, causing
SmarTeam to begin checking in the corresponding SmarTeam object.

e The SmarTeam check in function calls the SmCADInterface method
ApplUpdateProperties (ObjectList, TaskList,1) to transfer the TaskL.ist.
This method is called only if the SmCADInterface service is included
in the session.

e ApplUpdateProperties causes SmCADInterface to fire an event -
OnLFCOperation (TaskList).

e The event activates the CAD Application function
SmCadEvents_OnLFCOperation (TaskList).

Using information from the TaskList, the CAD Application sets the life-
cycle revision and state properties in the CAD file to coordinate with the
properties in the corresponding SmarTeam object, before the CAD file is
moved to the secured vault.

Control is returned to the SmarTeam check in function to complete the
check in process.

The CAD file is moved to the secured vault.

Example

The following is an example of a function in the CAD application, which is
activated by the OnLFCOperation event. It updates the CAD file
properties.

Private Sub SmCadEvents OnLFCOperation(ByVal TaskList As Object)
Dim Cnt As Long

Dim i As Long

Dim SmTaskList As SmRecList.SmRecordList

Dim FileDescription As StRecList.SmRecordList

Dim FileName As String

Dim TempFileName As String

Dim Directory As String

Dim FullPath As String

Dim oSmClass As ISmClass

310

Chapter 8, SmarTeam - Workflow Library

Dim IsCheckedIn As Boolean

Dim CurrObjld As Long

Dim intClasslID As Integer

Dim FileDesc As SmRecList.SmRecordList
Dim IngObjectlID As Long

Dim TDMRet As Integer

ST_SetUpFileDescription FileDesc
ST_ActiveDocs_UpdateFileDesc FileDesc
TDMRet = SmCADInterface.FindObject(FileDesc, IngObjectID, intClassiD)
Set SmTaskList = TaskList
Cnt = SmTaskList.RecordCount
For i=0ToCnt - 1
FileName = SmTaskList.ValueAsString("'CURR_FILE NAME™, i)
IT Len(FileName) > O Then
Directory = SmTaskList._ValueAsString(‘''CURR_DIRECTORY"", 1)
FullPath = Directory & "\"" & FileName
CurrObjId = SmTaskList.ValueAsInteger("'OBJECT_ID", 1)
IT ObjectlID = CurrObjld Then
" Set the revision attributes
Set FileDescription = SmApplication.NewRecordList
FileDescription.CopyRecord SmTaskList, i, O
" Update CAD file properties
SetProps_FileDesc_to_IA FileDescription
" Check if document is checked in
IsCheckedIn = GetCheckedInDoc(SmTaskList, i)
IT 1sCheckedIn = True Then

" Copy the document back to the vault

311

SmarTeam Object Model Programmer's Guide

TempFileName = "Temp" & ActiveWorkbook.Name

Activelorkbook.SaveAs FileName:=TempFileName, AddToMRU:=False

Directory = Activelorkbook.Path
ST _FileClose "'NoSave™
ReplaceCheckedInDoc SmTaskList, i, Directory, TempFileName

End If

IT IsCheckedIn = False Then
ST_FileClose "'Save™

End IF

End If
End IF
Next i

End Sub

312

Chapter 8, SmarTeam - Workflow Library

CADInterface Task:
Invoking a User-Defined Command From the CAD Application

You can define a user-defined SmarTeam command by a script and invoke
it from a CAD application using the function:

InvokeScriptWithList(StRecList, Command)

The parameter SmRecList is loaded with the object attributes you want to
be input to the script. This parameter is equivalent to the input parameter
FirstParam in the normal usage of SmarTeam script hooks.

The parameter Command is the name of the script, as installed in
SmarTeam by the Script Maintenance utility.

Calling this function from the CAD application is equivalent to activating a
user-defined command from a SmarTeam menu. The difference is that a
SmarTeam user command is associated with a specific SmarTeam object
and the user command script automatically receives the object’s attributes
in its FirstParam input record list. When you use InvokeScriptWithList
from a CAD application, there is no automatic association with a
SmarTeam object so you need to create and fill the record list that will be
used as FirstParam when the script is activated.

Example

The following example code is placed in the CAD application. It prepares
the record list parameter RecList that will be used by the script as input
parameter FirstParam. The code then calls InvokeScriptWithList, which
runs the named script with the prepared record list as FirstParam.

Dim RetCode as Integer
Dim RecList as SmRecList.SmRecordList

Dim ScriptName as String

ScriptName = "MyScript”
" Prepare the input record list

Set RecList = new SmRecList.SmRecordList

313

SmarTeam Object Model Programmer's Guide

" Set required headers and values inside the input ReclList...

* Invoke the script

RetCode = SmCADInterface. InvokeScriptWithList(RecList, ScriptName)

CADInterface Task:
Improving Performance of Mass Save Operations

Two functions BeginSaveOperation and EndSaveOperation are provided to
improve performance of the CADInterface for mass save operations using
Save and ODMA Save.

The functions BeginSaveOperation and EndSaveOperation are used before
and after a mass save operation, for example:

IntgToolLib_BeginSaveOperation
IntgToolLib.Save

IntgToolLib.EndSaveOperation

Where the library function IntgToolLib.Save might perform a save of an
entire assembly with all of its parts.

The effect of these operations is to minimize accesses to the SmarTeam
data base and optimize operations in memory by retaining common
information in memory during the save.

CADinterface Task:
Improving Search Performance

The function
GetChildrenWithCopies(Classld, Objld, SelectAttributelList, ChildrenList)

retrieves all immediate children of an object with a single access to the
database. The information about the children is stored in memory in
ChildrenList. You can now search the ChildrenList for information
efficiently without using multiple accesses to the database.

314

Chapter 8, SmarTeam - Workflow Library

Example

The following is an example using the function GetChildrenWithCopies.
The example loads all children of an object into the ChildrenList record list
in memory and searches it for a child with the file name
Component.FileName. Once found, other information about the child such
as Object ID can be obtained.

“ Calling function
Private Function SaveAssyStruct
Dim ChildrenList As SmRecList.SmRecordList

Set ChildrenList = New SmRecList.SmRecordList

“ Load children into ChildrenList
GetChildren(ChildrenList)
Cnt = Children.Count
“ Search for child according to file name
For 1=0 to Cnt
Found = FindChild(Component(l).FileName, ChildrenList)
IT Not Found then
“Look For the component inside the database
End if
End for

End Function

Private Function GetChildren(ChildrenList As SmRecList.SmRecordList) As
Integer

Dim RetCode As Integer
Dim SelectList As SmRecList.SmRecordList
Dim SmCadlInterface As SmCadlnterface

Set SelectList = New SmRecList.SmRecordList

315

SmarTeam Object Model Programmer's Guide

" Add attributes to the Additional attributes list
SelectList.AddHeader '"COL_NAME™, 256, sdtChar
SelectList.SetValueAsString "'COL_NAME™, 0, "FILE NAME™

SelectlList.SetValueAsString ""COL_NAVE™, 1, "STATE"

* Call GetChildrenWithCopies

RetCode = SmCadInterface.GetChildrenWithCopies(AssyClassld, AssyObjld,
SelectList, ChildrenList)

GetChildren = RetCode

End Function

Private Function FindChild(FileName As String, ChildrenList As
SmRecList.SmRecordList) As Boolean

Dim Found As Boolean

Dim ChildFileName As String
Dim State As Long

Dim i As Integer

Dim Cnt As Integer

Found = False
Cnt = ChildrenList.RecordCount
For i = 0 To Cnt
State = ChildrenList._ValueAsinteger(*'STATE", i)
IT State = 0 Or State = 2 Then " new or checked out
ChildFilleName = ChildrenList.ValueAsString("'FILE _NAVE", i)
Else

ChildFileName = ChildrenList._ValueAsString(*'COPY_FILE _NAVE™, 1)

End If

316

Chapter 8, SmarTeam - Workflow Library

IT LCase$(ChildFileName) = LCase$(FileName) Then

Found = True
Exit For
End IF

Next

FindChild = Found

End Function

317

10. SmintegrationTool Library |

Introduction

The SmintegrationTool library enables you to perform the following

functions:

o Define default class and File Type for the Integration Behaviors

e Set up mappings between CAD file property fields and SmarTeam class
attributes in an integration

SmarTeam CAD Integration

The SmarTeam Integration Tool, by enabling you to map objects of an
integrated CAD tool such as SolidWorks™ or Microsoft Word™ to objects
in SmarTeam, lets you apply the power of SmarTeam to the CAD tool.

As shown in the following figure, the different CAD file types are mapped
to SmarTeam classes and the CAD file property fields are mapped to the
corresponding SmarTeam class attributes. For example, when a
SolidWorks Part CAD file is mapped to the SmarTeam class
SolidWorksPart, the Summary Information/Author property field of the
CAD file can be mapped to the Object ID class attribute of the
SolidWorksPart class. Now you can use that field in the CAD file for the
SolidWorksPart User Object ID.

In addition, the CAD file is also linked to the corresponding SmarTeam
class as an associated file; SmarTeam can manage the disposition of the
CAD file in the SmarTeam vaults.

Chapter 9 discusses the SmarTeam CAD Interface library, which can be
used once the SmarTeam integration is in place and the mappings
established.

318

CAD Application SmarTeam

CAD Document g 4
! CAD Interface API | Main CAD Class
CAD File Property Mappings Class
Properties perty Mapping "l Properties
< Associated File >
CADFileTypel | L CAD Classl
CAD File Property Mappings Class
| Properties perty Mapping "l Properties 3
| < Associated File > |
CADFileType2 | CADClass2

Figure 10-1 SmarTeam CAD IntegrationOverview of Objects

This section presents an overview of the main SmarTeam IntegrationTool
objects including a description of the associated objects that are useful for
the programmer:

e ISmintegrationStore Object

e ISmCadFileTypes Object

e ISmPropertyGroupTypes Object

e ISmintegrationGUIStore

319

SmarTeam Object Model Programmer's Guide

ISmIntegrationStore

The ISmintegrationStore object is the highest level object in the library. It
contains objects for all SmarTeam Integrations. For each specific
SmarTeam Integration, for example, the SolidWorks Integration,
ISmIntegrationStore contains a ISmSpecificlntegrationStore object, which
includes the objects for that Integration.

Object Diagram

The ISmintegrationStore object and its major objects are shown in the
following object diagram:

320

ISmIntegrationStore

SpecificlntegrationStore
(IntegrationName1l)

CadFileTypes

PropertyGroupTypes

SpecificlntegrationStore
(IntegrationName2)

CadFileTypes

PropertyGroupTypes

SpecificlntegrationStore
(IntegrationName3)

CadFileTypes

PropertyGroupTypes

Figure 10-2 ISmintegrationStore Object Diagram

321

SmarTeam Object Model Programmer's Guide

Properties

The ISmIntegrationStore object contains the major properties:

Property

Description

Session

Returns an SmSession object that represents the parent
session.

SpecificIntegrationStore

Returns the SmSpecificIntegrationStore object for Integratic

Methods
The ISmintegrationStore object contains the methods:

Method Description
NewPropertyGroup Creates a new property group under the property group typ
(PropertyGroupType)
NewGroupProperty Creates a new group property inside the PropertyGroup
(PropertyGroup)

GetGroupTypesForApplication
(IntegrationName)

Returns all property group types that are defined for the
application

NewGroupPropertyMapping
(GroupProperty)

Creates a new attribute mapping for the GroupProperty

GetFileTypesForintegration
(IntegrationName)

Return all SmCadFileTypes that are defined for the applica

GetApplicationName
(IntegrationName)

Returns the application (integration) name

Get_SpecificintegrationStore
(IntegrationName)

Return the SmSpecificintegrationStore for the application. |
modifications can be done inside the SmCadFileTypes afte
this call.

GetIntegrationGUIStore

Returns the SmintegrationGUIStore, which is used to displg
dialogs form the integration tools utility.

IntegrationRegistered
(IntegrationName)

Returns true in case the integration is defined inside the
database

GetIntegrationRegistry
(IntegrationName)

Returns the SmCADIntegrationRegistry for the application

322

ISmSpecificlntegrationStore

Properties

The ISmSpecificlntegrationStore object contains the major properties:

Property

Description

Integration Name

The name of the specific SmarTeam Integration, for example,
SolidWorks

CadFileTypes

Types of CAD files for this Integration

PropertyGroupTypes Returns an SmPropertyGroupTypes collection object represen
the integration mapping group types.
PropertyGroups Returns an SmintegrationPropertyGroups collection object

representing the integration mapping groups.

GroupProperties

Returns an SmintegrationGroupProperties collection object
representing the integration mapping properties.

ClassesMappings

Returns an SmintegrationClassesMappings collection object
representing the integration mappings attributes.

CadFileTypes

Returns an SmCadFileTypes collection object representing thé
integration supported file types.

ManagedClasses

Returns an SmintegrationManagedClasses collection object
representing the integration managed classes.

DefaultManagedClasses

Returns an SmintegrationManagedClasses collection object
representing the integration default managed classes.

IntegrationStore

Returns the ISmintegrationStore object

323

SmarTeam Object Model Programmer's Guide

Methods
The ISmSpecificlntegrationStore object contains the methods:

Method Description
SmClassMappingByAttribute Returns a ISmClassMapping for SmClassAttribute a
(SmClassAttribute, GroupProperty) GroupProperty
AllMappingsForPropertyName Returns a ISmintegrationClassesMappings object fq
(PropertyName) Property
SmCadFileType Returns the SmCadFileType according to the file tyg
(FileTypeld) object id
AllMappingsForClassByGroupName | Returns the ISmintegrationClassMappings object fo
(GroupName, Classld) Group and Classld
GetManagedClassesForBehavior Retrieves classes that support the specified Integrat
(Integration Behavior) Behavior
GetDefaultManagedClassForBehavior | Retrieves the default class assigned for the specifie
(Integration Behavior) Integration Behavior

ManagedClassesForCadFileType Returns ISmManagedClasses for CadFileType.
(SmCadFileType)
DefaultManagedClassForCadFileType| Returns the ISmManagedClass for SmCadFileType
(SmCadFileType)

MappingsForGroupProperty Returns the ISmClassesMappings for Group Propert
(SmGroupProperty)
PropertiesForGroup Returns the ISmGroupProperties for PropertyGroup
(SmPropertyGroup)
GroupsForGroupType Returns the ISmPropertyGroups for PropertyGroupT|

(SmPropertyGroupType)

Correspondence with Integration Tool

The above objects are shown on the Integration Tool screen in Figure 10-3.
The correspondence between objects on the screen and objects in the
SmintegrationTool Library are described in the table following the figure.

324

Integration Tool Setup

all integrations:

Ei": Al Integratiors MHame: ISDIidW'DrkS
Elm Solidw/arks
E ﬁir:z;:jr;egtr:j;?zpﬁ Integration Image: ISTSUIidWorks_bmp
#-TF Microzoft word
[-3% Microsoft Excel
-5 Microsoft PawerPoint
[ﬂ---i SolidE dge
[+ AukoCaD
[+-F2y MicroStation
[#- Autodesk Mechanical Desktop
- Irventor
iy CATIA
IWI Help
Figure 10-3 Integration Tool Screen
Object on Integration Tool Screen Object in SmintegrationTool Library
All Integrations ISmintegrationStore
SolidWorks SpecificlntegrationStore
Supported component types CadFileTypes
Mapping group types PropertyGroupTypes
AutoCad SpecificlntegrationStore
Supported component types CadFileTypes
Mapping group types PropertyGroupTypes

325

SmarTeam Object Model Programmer's Guide

ISmCadFileTypes

A ISmCadFileTypes object is a collection of ISmCadFileType objects and
represents all mappings of Integration file types to the corresponding
SmarTeam managed classes.

Object Diagram

The ISmCadFileTypes components and their corresponding objects are
shown in the following object diagram:

ISmCadFileTypes

ISmCadFileType

IntegrationName

FileType

Data

IntegrationStore

DefaultClass

IntegrationBehavior

ManagedClasses

Figure 10-4 ISmCadFileTypes Object Diagram

Obtaining the ISmCadFileTypes Object

To obtain an ISmCadFileTypes Object:

CadFileTypes =
IntegrationStore.SpecificlntegrationStore(IntegrationNamel) .CadFileTypes

326

Methods
The ISmCadFileTypes object has the following methods

Method Description

GetltemByBehavior Retrieves the Default File Type for the specified Integration Behav

ISmCadFileType

The ISmCadFileType object represents CAD specific component types.

Properties
The ISmCadFileType object has the following properties
Property Description

IntegrationName Returns the associated integration name.

FileType Returns an SmLookUpObiject object representing the referenced file type

Data Returns an SmRecord object that represents object's data.

ManagedClasses Returns an SmManagedClasses collection object representing object's
managed classes

IntegrationStore Returns an SmintegrationStore object representing the associated integrz
store.

DefaultClass Returns an SmManagedClass object representing object's default class.

IntegrationBehavior Represents an integration behavior specific for the component type. See
CADInterface for examples of use.

327

SmarTeam Object Model Programmer's Guide

ISmManagedClasses

The ISmManagedClasses object represents the set of SmarTeam managed
classes to which a specific integration behavior is mapped.

Object Diagram

The ISmManagedClasses components and their corresponding objects are
shown in the following object diagram:

ISmManagedClasses

ISmManagedClass

SmClass

Default

CadFileType

Figure 10-5 ISmCadFileTypes Object Diagram

328

ISmManagedClass

The ISmManagedClass object represents an individual SmarTeam class to
which the Integration Behavior is mapped.

Properties
ISmManagedClass object has the properties:
Property Description
SmClass Returns the ISmClass object which is linked to the managed class
Default True if object represents a default managed class (the class that is first
displayed inside the profile card, when adding a new object).
CadFileType Returns an SmCadFileType object that represents the parent supported
type.
Methods
The ISmManagedClass object has the following methods
Method Description
Save Saves managed class to the database.

329

SmarTeam Object Model Programmer's Guide

Correspondence with Integration Tool

The above objects are shown on the Integration Tool screen in Figure 10-6.
The correspondence between objects on the screen and objects in the
SmintegrationTool Library are described in the table following the figure.

Integration Tool Setup B |

all integrations:

Ei": Al Integrations = Class: ISDIidW'DrkS Part
=5 Solidworks

E-E Component Types

| Eherm Solidwiorks Part

. '% Salich, s Part

------ B Salidworks Standard Part

-2 Solidwiorks &zzembly

e Solidwiorks Drawing

. e eDrawing

0: Mapping Group Tepes

f-BF Microsoft word

v Microsoft Excel

#l-{1] Microsoft PowerPaint

H-[fg SolidEdge

H - A toCe |-

H- =y MicroStation

H- Autodesk Mechanical Desktop LI

[| [efanlt

I--F--F--F--F------

Cloze I Help

Figure 10-6 ISmCadFileType

330

Object on Integration Tool Screen

Object in SmintegrationTool Library

All Integrations

ISmintegrationStore

SolidWorks

ISmSpecificintegrationStore

Supported component types

ISmCadFileTypes

SolidWorks Part

ISmCadFileType

Classes mapped to SolidWorks Part:

ISmManagedClasses

SolidWorks Part

ISmManagedClass

Document

ISmManagedClass

SolidWorks Assembly

ISmCadFileType

Classes mapped to SolidWorks Assen

ISmManagedClasses

SolidWorks Assembly

ISmManagedClass

SolidWorks Drawing

ISmCadFileType

Classes mapped to SolidWorks Drawi

ISmManagedClasses

SolidWorks Drawing

ISmManagedClass

eDrawing

ISmCadFileType

Classes mapped to eDrawing:

ISmManagedClasses

eDrawing

ISmManagedClass

331

SmarTeam Object Model Programmer's Guide

ISmPropertyGroupTypes

A ISmPropertyGroupTypes object is a collection of
ISmPropertyGroupType objects and represents all mappings of all types of

Integration file property fields to the corresponding SmarTeam managed
class attributes.

Object Diagram

The ISmPropertyGroupTypes components and their corresponding objects
are shown in the following object diagram:

ISmPropertyGroup
Types

ISmPropertyGroupType

Name

IntegrationName

Groups

Data

IntegrationStore

Exclusive

ReadOnly

Figure 10-7 ISmPropertyGroupTypes Object Diagram

Obtaining the ISmPropertyGroupTypes Object
To obtain an ISmPropertyGroupTypes Object:

332

PropertyGroupTypes =
IntegrationStore.SpecificlntegrationStore(IntegrationNamel) . PropertyGroupTypes

Adding a New ISmPropertyGroupType to the Collection

You use the AddPropertyGroupType (const GroupTypeName: WideString,
Exclusive: WordBool, ReadOnly: WordBool):
ISmRegisteredPropertyGroupType method of the
ISmCADIntegrationRegistry object to add a new ISmPropertyGroupType
object to the ISmPropertyGroupTypes collection.

AddPropertyGroupType Method

The AddPropertyGroupType method is called as follows:

Set IntegrationRegistry = ISmlntegrationStore.
CreatelntegrationRegistry(IntegrationNamel, Image)

RegisteredPropertyGroupType =
IntegrationRegistry.AddPropertyGroupType(GroupTypeName, Exclusive, ReadOnly)

The arguments of the method are:

Argument Description
GroupTypeName Name for the property group (hard coded)
Exclusive True if group type is exclusive.

ReadOnly True if group type is read only.

See the example in the section ISmCadFileTypes.

333

SmarTeam Object Model Programmer's Guide

ISmPropertyGroupType

The ISmPropertyGroupType object represents all mappings of an specific
type of Integration file property field to a set of SmarTeam classes.

Properties
The ISmPropertyGroupType object has the following properties
Property Description
Name Returns the group type name.
IntegrationName Returns the associated integration name.
Groups Returns an SmPropertyGroups collection object representing the object’
mapping groups.
Data Returns a SmRecord object that represents object's data.

SmintegrationStore

Returns a SmintegrationStore object representing the associated integra
store.

Exclusive True if group type is exclusive, i.e., no more than one group exists insid
group type.
ReadOnly True if group type is read only.

Correspondence with Integration Tool

The above objects are shown on the Integration Tool screen in Figure 10-8.
The correspondence between objects on the screen and objects in the
SmintegrationTool Library are described in the table following the figure.

334

Integration Tool Setup

All inteqrations:

Eﬂ’f,: Al Integrations (= Marme: ISummar_l,l Infarmatian
=T Solidwarks
F-%5 Supported component tupe :
:) W | Excl
=% Mapping group ypes | Eachaciv
W& S ummary |nformation F Foad ori
ead anly

Cuztorn Properties
Title Block,
Dimenzions
Special Attributes
Configuration Specific __|
E=F Revision Block

H- R AutoCad

]5 techanical Dezklop

H-TBF Microsaft Ward

H-%E Microzoft Excel

[Microzoft PowerPoint .
il — B |_l|_I

O o O g B s B oy O |

Cloze I Help

Figure 10-8 Mapping Group Types

335

SmarTeam Object Model Programmer's Guide

Object on Integration Tool Screen Object in SmintegrationTool Library

All Integrations ISmintegrationStore

SolidWorks SpecificIntegrationStore

Supported component types CadFileTypes

Mapping group types PropertyGroupTypes

Summary Information PropertyGroupType

Custom Properties PropertyGroupType

Title Block PropertyGroupType
ISmPropertyGroups

An ISmPropertyGroups object is a collection of ISmPropertyGroup objects
and represents all groups of mappings of a specific type of Integration file
property field to the corresponding SmarTeam managed class attributes.

Object Diagram

The ISmPropertyGroupTypes components and their corresponding objects
are shown in the following object diagram:

336

ISmPropertyGroups

ISmPropertyGroup

Name

Description

GroupType

Properties

IntegrationName

Data

Figure 10-9 ISmPropertyGroups Object Diagram

Obtaining the ISmPropertyGroups Object

To obtain an ISmPropertyGroups Object:

PropertyGroups =
IntegrationStore.SpecificlntegrationStore(IntegrationNamel) . PropertyGroupType.
Groups

Adding a New ISmPropertyGroup to the Collection

You use the AddPropertyGroup(const GroupTypeName: WideString,
Exclusive: WordBool, ReadOnly: WordBool):
ISmRegisteredPropertyGroup method of the ISmMCADIntegrationRegistry
object to add a new ISmPropertyGroup object to the ISmPropertyGroups
collection.

337

SmarTeam Object Model Programmer's Guide

AddGroup Method

The AddGroup method is called as follows:

Set IntegrationRegistry = ISmlntegrationStore.
CreatelntegrationRegistry(IntegrationNamel, Image)

RegisteredPropertyGroupType =
IntegrationRegistry.AddPropertyGroupType(GroupTypeName, Exclusive, ReadOnly)

Set 1SmRegisteredPropertyGroup =
RegisteredPropertyGroupType . AddGroup(GroupName, GroupDescription)

The arguments of the method are:

Argument Description
GroupName Name for the property group (hard coded)
GroupDescription Description for the property group.

Add Method

Alternatively you can use the Add method of is ISmPropertyGroups as
follows:

Get PropertyGroupType

Set SmPropertyGroup = ISmintegrationStore.
NewPropertyGroup(PropertyGroupType):

1SmPropertyGroups . Add(SmPropertyGroup)

Example

See the example in the section ISmCadFileTypes.

ISmPropertyGroup

The ISmPropertyGroup object represents a mapping of a specific type of
Integration file property field to a set of SmarTeam classes.

338

Properties

The ISmPropertyGroup object has the following properties

Property Description

Name Returns the group type name.

Description Returns or sets the group description.

GroupType Returns an SmPropertyGroupType object representing the parent
mapping group type.

Properties Returns an SmGroupProperties collection object representing the
object's mapping properties.

IntegrationName Returns the associated integration name.

Data Returns an SmRecord object that represents object's data.

Methods

The ISmPropertyGroup object has the following methods

Method Description

Save Saves the property group to the database.

Correspondence with Integration Tool

The above objects are shown on the Integration Tool screen in Figure
10-10. The correspondence between objects on the screen and objects in
the SmintegrationTool Library are described in the table following the
figure.

339

SmarTeam Object Model Programmer's Guide

Summary Information Mapping Groups Tree

All tree folders:

Kemwords
] Comments

- Summary Information groups Mapping grovp infarmation
E| ':ilm'ur' |r'|f|:|rl'|'|-E||.i|:|r|_ Mo ISUmmary —
Subject :
Aithar Description: |Summary Infarmation

[~ Eeadonly

Cloze I Help

Figure 10-10 Mapping a Property Group

Object on Integration Tool Screen | Object in SmintegrationTool Library
Summary Information groups ISmPropertyGroups
Summary Information ISmPropertyGroup
GroupProperties for this PropertyGroup: ISmGroupProperties
Title ISmGroupProperty
Subject ISmGroupProperty
Author ISmGroupProperty
Keywords ISmGroupProperty
Comments ISmGroupProperty

ISmGroupProperties

A ISmGroupProperties object is a collection of ISmGroupProperty objects
and represents all properties of mappings of a specific group of Integration
file property fields to the corresponding SmarTeam managed class

attributes.

340

Object Diagram

The ISmGroupProperty Types components and their corresponding objects
are shown in the following object diagram:

ISmGroupProperties

ISmGroupProperty

Name

Updatable

Mappings

Group

Data

MappingsClassType

PropertyType

Description

Figure 10-11 ISmGroupProperties Object Diagram

Obtaining the ISmGroupProperties Object

To obtain an ISmGroupProperties Object:

GroupProperties =
IntegrationStore.SpecificlntegrationStore(IntegrationNamel) .GroupPropertyType.
Groups(@) -Properties

Adding a New ISmGroupProperty to the Collection

You use the Add method of the ISmGroupProperties object to add a new
GroupProperty to the group.

341

SmarTeam Object Model Programmer's Guide

Add Method

You can use the Add method of is ISmGroupProperties as follows:
Get PropertyGroup
Set SmGroupProperty = ISmintegrationStore. NewGroupProperty(PropertyGroup):

1SmGroupProperties. Add(SmGroupProperty))

Example

The following example shows how to add a property group to the Mass
Properties” group type.

Dim SmRegisteredPropertyGroupType as ISmRegisteredPropertyGroupType
Dim SmRegisteredPropertyGroup as ISmRegisteredPropertyGroup

Set SmRegisteredPropertyGroupType = SmCADIntReg.AddPropertyGroupType(‘‘Mass
Properties”, True, True)

if Not SmRegisteredPropertyGroupType is Nothing then

Set SmRegisteredPropertyGroup =
SmRegisteredPropertyGroupType . AddGroup(“‘Mass Properties”, “Mass Properties™)

IT Not SmRegisteredPropertyGroup is Nothing then

SmRegisteredPropertyGroup.AddProperty “Vollume™, “Volume”
TOMT_DOUBLE, ctAll, True

SmRegisteredPropertyGroup.-AddProperty “Area’”, “Area”, TDMT_DOUBLE,
ctAll, True

End IF

End If

342

ISmGroupProperty

The ISmGroupProperty object represents a mapping of a specific type of
Integration file property field to a set of SmarTeam classes.

Properties
The ISmGroupProperty object has the following properties
Property Description

Name Returns or sets property name.

Updatable True if property can be updated by a SmarTeam attribute.

Mappings Returns an SmClassesMappings collection object representing the
object's mapping attributes.

Group Returns an SmPropertyGroup object representing the parent mapp
group.

Data Returns an SmRecord object representing object's data.

MappingsClassType Returns or sets possible mapped classes type.

PropertyType Returns or sets the property type.

Description Returns or sets the property description.

Methods

The 1ISmGroupProperty object has the following methods

Method

Description

Save

Saves group property to the database.

Correspondence with Integration Tool

The above objects are shown on the Integration Tool screen in Figure
10-10. The correspondence between objects on the screen and objects in
the SmintegrationTool Library are described in the table following the

figure.

343

SmarTeam Object Model Programmer's Guide

Summary Information Mapping Groups Tree

Al tree folders:
=8
E|--- Summary Infarmation

? Summary Information groups tapping property information

I arne: ITitIe
Diezcription: ITltIe
'EI Kemwords
.8 Comments Tupe: ICharacter
Class Type: |AII clazzes

¥ Enable updating of property

Cloze I Help

Figure 10-12 Mapping Group Properties

Object on Integration Tool Screen

Object in SmintegrationTool Library

Summary Information groups ISmPropertyGroups
Summary Information ISmPropertyGroup
GroupProperties for this PropertyGroy ISmGroupProperties
Title ISmGroupProperty
Subject ISmGroupProperty
Author ISmGroupProperty
Keywords ISmGroupProperty
Comments ISmGroupProperty

344

ISmClassesMappings

345

A ISmClassesMappings object is a collection of ISmClassMapping objects
and represents all mappings of a specific Integration file property field to
the corresponding SmarTeam managed class attribute. This
ISmClassesMappings object collects the mappings from this CAD file
property field (GroupProperty) to a SmarTeam class attribute for all CAD
files in this integration. For example, each of the SolidWorks CAD file
types has an Author field. For each file type, the Author field is mapped to
the User Object ID class attribute for the corresponding class, i.e. the
Author field of the SW Assembly file is mapped to the User Object ID
attribute of the SW Assembly class.

Object Diagram

The 1ISmClassMappingTypes components and their corresponding objects
are shown in the following object diagram:

ISmClassesMappings

ISmClassMapping

GroupProperty

Attribute

Updatable

MaxLength

Data

SmClass

Figure 10-13 ISmClassesMappings Object Diagram

SmarTeam Object Model Programmer's Guide

Obtaining the ISmClassesMappings Object

To obtain an ISmClassesMappings Object:

Mappings = IntegrationStore.SpecificlntegrationStore(IntegrationNamel).
GroupPropertyType.Groups(@) -Properties(i) -Mappings

ISmClassMapping

The 1ISmClassMapping object represents a mapping of an specific
Integration file property field to a set of SmarTeam classes.

Adding a New ISmClassMapping

You can add a new ISmClassMapping as follows:
Get GroupProperty

Set SmClassMapping = ISmIntegrationStore.
NewGroupPropertyMapping(GroupProperty)
SmClassMapping.-SmClass = SmClass
SmClassMapping.Attribute = SmClassAttribute
SmClassMapping.MaxLength = Sizelnt
SmClassMapping.Updatable = True

SmClassMapping-Save

Properties
The ISmClassMapping object has the following properties
Property Description
GroupProperty Returns an SmGroupProperty object representing the parent mappin
property.
Attribute Returns or sets the mapping attribute.
Updatable True if SmarTeam attribute can be updated by the parent mapping
property.
MaxLength Returns or sets the maximum mapping size.
Data Returns an SmRecord object representing object's data.
SmClass Returns or sets an SmClass object representing the mapping class.

346

Methods
The ISmClassMapping object has the following methods

Method Description

Save Saves the class mapping to the database.

Correspondence with Integration Tool

The above objects are shown on the Integration Tool screen in Figure
10-14. The correspondence between objects on the screen and objects in
the SmintegrationTool Library are described in the table following the

figure.
Summary Information Mapping Groups Tree ll
Al tree folders:
EHEF Summary Infarmation groups Mapping attribute information

E%) m.:.-?;;}l Information Class: ISDIid\-\-’Drks Azzembly

Subject
-FEE Auathor Attribute name:

ILlser Object Id

[S olidw/orks Assembly-User Object Id]

Solidw/orks F'art-LlL@l L Display zize [in characters): |1 =
B Salidwork s Dirawing-1J
eDrawing-User Dbject ¥ Enable updating of Smarleanm

- Feywords
----- Cornments

al | i

Cloze I Help

Figure 10-14 Mappings for Group Property

347

SmarTeam Object Model Programmer's Guide

Object on Integration Tool Screen

Object in SmintegrationTool Library

Summary Information groups ISmPropertyGroups
Summary Information ISmPropertyGroup
GroupProperties for this PropertyGroup: | ISmGroupProperties
Title ISmGroupProperty
Subject ISmGroupProperty
Author ISmGroupProperty
Class Mappings for this Group Property: | ISmClassesMappings
SolidWorks Assembly — User Object Id | ISmClassMapping
SolidWorks Part — User Object Id ISmClassMapping
SolidWorks Drawing — User Object Id ISmClassMapping
eDrawing — User Object Id ISmClassMapping

348

ISmIntegrationGUIStore

The 1SmintegrationGUIStore object is used to display the objects in the
application.
Object Diagram

The ISmintegrationGUIStore object and its major objects are shown in the
following object diagram:

ISmintegrationGUIStore

SmintegrationStore

PropertiesGroupsGUIService

Figure 10-15 ISmintegrationGUIStore Object Diagram

Properties

The ISmIntegrationGUIStore object contains the properties:
Property Description

SmintegrationStore Returns the ISmintegrationStore object

PropertiesGroupsGUIService | Returns ISmSpecificintegrationStore.

349

SmarTeam Object Model Programmer's Guide

Methods

The ISmIntegrationGUIStore object contains the methods:

Method

Description

Init(SmintegrationStore)

Should be called right after the object was cre

ObjectProfile(PossibleClasses, Attributes,
AddToDesktop, ModalResult:)

Opens a profile card for new object

OpenClassManagementScreen
(IntegrationName)

Opens the managed classes dialog

Properties

ISmPropertiesGroupsGUIService

The ISmPropertiesGroupsGUIService object contains the major properties:

Property

Description

SmintegrationGUIStore

Returns the SmintegrationGUIStore object

Methods

The ISmPropertiesGroupsGUIService object contains the methods:

Method

Description

OpenGroupAttributeView (SmPropertyGroup,
AddMode)

OpenGroupPropertiesTree
(SmPropertyGroup, MaxDepth)
OpenGroupPropertiesView
(SmPropertyGroup, WasChanged)
OpenGroupPropertyAttributeView
(SmGroupProperty, AddMode):
ViewModalResultEnum
OpenGroupsTree
(SmPropertyGroupType, MaxDepth)
OpenGroupsView

(SmintegrationName, WasChanged
OpenGroupsViewForSpecificGroupType
(SmGroupType, WasChanged)
OpenGroupTypesTree
(IntegrationName, MaxDepth)
OpenMappingsTree

Opens a view with the attribute mapping
Opens a tree view for a property group
Opens a view with the properties

Opens a modal attribute view for a group
property.

Opens a tree view for the property group tyg
Open groups view for a specific integration

Opens a view with all groups under a group
Opens a tree view with all group types for a

specific integration
Opens a tree view with all mappings for a gr

350

(SmGroupProperty, MaxDepth) group property

OpenPropertyMappingAttributeView Opens a modal view for the class mapping
(SmMapping, AddMode, CanModifyClass)

OpenPropertyMappingsView Opens a view with the mapping for a group
(SmGroupProperty, WasChanged) property
OpenSpecificClassPropertyMappingsView Opens a view with mapping for a specific cle

(SmGroupProperty, Classld, WasChanged)

Example

This example shows how to display the integration tool objects.

SmPropertiesGroupsGUIService = SmintegrationGUIStore.
PropertiesGroupsGUIService

“ Display the Add Property dialog

SmPropertiesGroupsGUIService.OpenGroupPropertyAttributeView(SmGroupProperty,
True)

“ Display the Group Types tree for the application

GUIServices.OpenGroupTypesTree(“‘Microsoft Word”, dpthPropertyMappings)

351

SmarTeam Object Model Programmer's Guide

PART Il

SMARTEAM

CLIENT LIBRARIES

352

353

11. SmartIXF Library

Introduction

The IXF library enables you to perform the following functions:
Generating an iXF schema

Processing an iXF schema

Generating an iXF Archive File

Processing an iXF Archive File

The IXF format created and processed by the IXF library conforms to the
format described in the “IXF Specifications 1.0” document, available at
http://www.ixfstd.org/std/docs/ixf.

For additional information on the iXF format, see the I XF Standard web
site, at http://www.ixfstd.org.

Naming Conventions

This section describes the naming conventions used in this guide.

NCName

354

A valid NCName must begin with a letter or an underscore (_) and cannot
contain spaces; letters, digits, and underscores are allowed after the first
character:

NCName ::= (Letter | "_") (NCNameChar)

NCNameChar ::= Letter | Digit | "." | "-" | "_"

For example: “PartMaster”. See also
http://www.w3.0rg/TR/REC-xml-names/#NT-NCName.

http://www.ixfstd.org/std/docs/ixf�
http://www.ixfstd.org/�
http://www.w3.org/TR/REC-xml-names/#NT-NCName�

Class Behavior URI

A valid class behavior URI must contain a namespace and a behavior name,
separated by “#” as: Class Behavior URI : : = (Namespace) (‘#’) (Name).

For example,
“http://www.ixfstd.org/std/ns/core/classBehaviors/links/1.0#link”

Overview of Objects

This section presents an overview of the main Smartixf objects including a
description of the associated objects that are useful for the programmer:

ISmIxfSchema Object
SmixfWriter Object
SmixfReader Object
ISmIxfStdHelper Object

355

http://www.ixfstd.org/std/ns/core/classBehaviors/links/1.0#link�

ISmIxfSchema

The ISmIxfSchema object serves to organize and refer to the components
of the iXF schema document.

The Schema is maintained wholly in memory. The Schema can be saved to
a file in two ways:

Through SmixfExternalSchemaWriter
When creating an archive file using the SmixfWriter.

The ISmIxfSchema object is not a top-level object in the object hierarchy
but is contained in the following top-level objects:

o SmixfWriter— for writing the iXF schema document
[]

356

357

e SmlixfReader — for reading the iXF schema document

o SmlixfExternalSchemaWriter — for writing an external iXF schema
document.

e SmixfExternalSchemaReader— for reading an external iXF schema
document

Because of its importance, the ISmIxfSchema object is discussed separately
in this major section; refer to the sections for the above objects for
information on how the 1ISmIxfSchema object is included in those objects.

The schema components and their corresponding objects are shown in the
following object diagram:

ISmIXf'Schema

ClassesBehaviors

ClassBehavior

Attributes
Attribute
Classes
Class
CurrentClassAttributes
Attribute

TypeDefinition

ObjectReferenceType
Definition

String Ty peDefinition

CurrentClassBehaviors

ClassBehavior

DomainBehaviors

DomainBehavior
RoleClassMapping
Info
(Getinfoltem) Infoltem
(CreateXmlAttributeValue) XmiAttributeValue

Figure 11-1 ISmIxfSchema Object Diagram

358

Chapter 11, SmartIXF Library

Properties

The ISmIxfSchema object has the following properties

Property Description
Classes Collection ISmIxfClasses of schema classes.
ClassesBehaviors Collection ISmIxfClassesBehaviors of schema ClassBehaviors
DomainBehaviors Collection ISmIxfDomainBehaviors of schema DomainBehaviors
Info ISmixfinfo object for holding miscellaneous information
Schemalocation The physical location of the schema file
SchemaURI The Schema URI, which is the unique identifier of the schema.

Obtaining the ISmIxfSchema Object

To create an ISmIxfSchema Object from the SmIxfWriter Object (to create
a SmiIxfWriter object see SmiIxfWriter):

IxfWriter._Schema
A Schema object can also be obtained similarly from the SmIxfReader

Object, SmIxfExternalSchemaWeriter Object, and from the
SmixfExternalSchemaReader Object.

ISmIxfClassesBehaviors

An ISmIxfClassesBehaviors object is a collection of ISmIxfClassBehavior
objects and represents all ISmIxfClassBehavior objects related to the IXF

schema.
Note: This object is not the same as the ISmIxfClassBehaviors, which represents all
ISmIxfClassBehavior objects declared by a specific class.

Adding a New ClassBehavior to the IXF Schema

You use the Add method of the ClassesBehaviors object to add a new
ClassBehavior object to the IXF Schema. Once you have added a
ClassBehavior to the ClassesBehaviors object you can declare it in a
specific class. Before using the Add method, you need to understand how a
ClassBehavior is packaged.

ClassBehavior Schema File

A ClassBehavior object is defined in a ClassBehavior schema file. The
ClassBehavior schema file can be packaged either embedded in or external
to the IXF Archive file as described below.

359

ClassBehavior Schema File Packaging State

The following table describes the packaging states of the ClassBehavior
schema file and the software constant used for each state. The packaging
state of the ClassBehavior schema file is described by the ModeTypeEnum

arameter of the Add function.

Packaging State

Description

ModeTypeEnum Softwarg
Constant

Embedded

The class behavior definition is created
saved to a ClassBehavior schema file,
is embedded in the iXF archive file. The
ClassBehavior schema is specified by th
namespace of the behavior.

mtEmbedded

External

The class behavior was previously defin
and the definition is in a schema file. Th
ClassBehavior definition is taken from tH
external ClassBehavior schema file.

The ClassBehavior schema file is not
embedded in the iXF package; it is spec

by its BehaviorURI.

mtExternal

Add Method
The Add method

is called as follows:

Set ClassBehavior = Schema.ClassesBehaviors.Add(ModeTypeEnum, BehaviorURI,

[SchemalLocation],

[Load=False])

The arguments of the method are:

Argument Description

Mode Packaging state of the schema — one of ModeTypeEnum. See table
above.

BehaviorURI The Error! Not a valid result for table.

Schemalocation The behavior schema physical location. Specified only when the Mode
mtExternal.

Load Whether or not the behavior schema needs to be loaded. The default
false. Can be set to true only when the Mode argument is mtExternal.

Example

Dim IxfClassBehavior as ISmIxfClassBehavior

"Create a Class Behavior "link"

360

Chapter 11, SmartIXF Library

Set IxfClassBehavior = Schema.ClassesBehaviors.Add(
mtEmbedded,
“http://ww . ixFstd.org/std/ns/core/classBehaviors/links/1.0#1ink’”)

See ISmIxfClassBehavior for more information on that object.

ISmIixfClassBehavior

A ClassBehavior lets you define a set of class attributes as an entity
separate from any specific class, where the entity is identified by a unique
URI reference. A ClassBehavior so defined becomes a standard set of
attributes, which can be “implemented” by one or more classes, as
required. In this way, a ClassBehavior is similar to an Interface of a
programming language like Java™; any class that wants to implement a
ClassBehavior needs to declare the ClassBehavior usage.

A ClassBehavior is defined in the schema separately from the class
definitions and is used in a specific class by declaring it in the class
definition in the schema (see Adding a ClassBehavior to a Class in
ISmIxfClassBehaviors.) The attribute values for attributes in the
ClassBehavior are assigned in the instantiation of the class in the data file,
in the same way that values are assigned to the internal attributes of the
class.

Figure 10-6 shows how ClassBehaviors are used in schema class
definitions. It shows the internal attribute definitions of a class and the
ClassBehavior declarations. You can declare the same ClassBehavior in
more than one class, and you can declare more than one ClassBehavior in a
single class.

361

Class Behaviorl

Class Behavior
Attributes

Class1

Class Attributes

Class Behaviorl

Class Behavior2

Class Behavior
Attributes

A

A

Class?2

Class Attributes

Class Behaviorl

Class Behavior2

Properties

An ISmIxfClassBehavior object has the following properties:

Class3

Class Attributes

Class Behavior2

SmixfSchema Object

Figure 11-2 Class Behaviors

Property Description
Attributes Collection ISmixfAttributes of class behavior attributes
Schemalocation The physical location of the ClassBehavior schema file, in the event th

the ClassBehavior was previously defined and saved to a schema file,
definition can be obtained (loaded) through this schema file. Otherwis¢
the class behavior is defined in the schema (and not loaded) - the

Schemalocation parameter is an empty string.

URI

The Error! Not a valid result for table., which is the unique identifier
the class behavior.

Adding an Attribute to a ClassBehavior

Use the Add method of the IxfClassBehavior.Attributes collection object to
add an attribute to the IxfClassBehavior.

Chapter 11, SmartIXF Library

Set IxfAttribute = IxfClassBehavior _Attributes.Add(AttributeName)

The Add method returns an object of type ISmIxfAttribute. Specify the
AttributeName as a valid NCName. For more information about Attributes,
see ISmIxfAttribute.

For an example of how to add an attribute to a ClassBehavior, see Common
Tasks, “ISmIxfSchema: Defining a ClassBehavior”.

ISmIxfClasses

An ISmIxfClasses object is a collection of ISmIxfClass objects.

Adding a Class to the IXF Schema

Use the Add method of the ISmIxfClasses object to add a class to the IXF
Schema. The Add method returns an object of type ISmIxfClass. You
specify the name of the class as a valid NCName.

The Add method is called as follows:
Set IxfClass = Schema.Classes.Add(ClassName)
Where ClassName has to be a valid NCName.

Once you have added the class you can specify the class properties, as in
the next section.

For an example of how to add a class to the IXF Schema, see Common
Tasks, “ISmIxfSchema: Creating a Schema with Classes and Class
Attributes”.

ISmIxfClass

The following figure shows the object diagram for the ISmIxfClass Object.

363

ISmIxfClass

Properties

CurrentClassAttributes
(ISmixfAttributes)

InheritedAttributes

AllAttributes

CurrentClassBehaviors
(ISmixfClassBehaviors)

InheritedBehaviors

AllBehaviors

IsAbstract

Name

ParentClass

Figure 11-3 ISmIxfClass Object Diagram

An ISmIxfClass object has the following properties:

Property

Description

Name

The class name must be a valid NCName.

Parent Class

The parent class object

CurrentClassAttributes

Collection ISmIixfAttributes of the class attributes. Does not inc
the inherited class attributes.

InheritedAttributes

Collection ISmIxfReadOnlyAttributes of the inherited class
attributes.

AllAttributes

Collection ISmIxfReadOnlyAttributes of all the class attributes,
including inherited attributes.

CurrentClassBehaviors

Collection ISmIxfClassBehaviors of class behaviors that are
supported by the class. Does not include the class behaviors t
were inherited.

364

Chapter 11, SmartIXF Library

InheritedBehaviors Collection ISmIxfReadOnlyClassBehaviors of the inherited clas
behaviors.

AllBehaviors Collection ISmIxfReadOnlyClassBehaviors of all the class
behaviors that are supported by the class, including inherited c
behaviors.

IsAbstract Indicates whether or not the class is abstract. If it is, it cannot i
instantiated

ISmIxfAttributes

An ISmIxfAttributes object is a collection of ISmIxfAttribute objects.

The CurrentClassAttributes is a collection of ISmIxfAttributes objects,
which represent the attributes defined internally to the current class. The
ClassBehavior object also includes a collection ISmIxfAttributes, which
represents the attributes of the ClassBehavior (see ISmIxfClassBehaviors.)

Adding an Attribute to a Class

Use the Add method of the ISmIxfAttributes object to add an attribute to
the collection. The Add method returns an object of type ISmIxfAttribute.
It is called as follows:

Set IxfAttribute = IxfClass.CurrentClassAttributes.Add(AttributeName)
Where AttributeName must be a valid NCName.

Once you have added the attribute you can specify the attribute properties.

For an example of how to add an attribute to CurrentClassAttributes, see
Common Tasks, “ISmIxfSchema: Creating a Schema with Classes and
Class Attributes”.

ISmIxfAttribute

The ISmIxfAttribute object represents an individual class attribute or an
individual attribute of a ClassBehavior.

Properties

The ISmIxfAttribute object has the following properties:

Property Description

365

Name The attribute name. A valid NCName.

Default value The default value of the attribute. It is assigned as an object’s (class or
ClassBehavior) attribute value in case no value was assigned.

IsNullAllowed True if the attribute value can be set to Null. Default is true

IsPrimary True if the attribute is part of the class primary identifier. The default is
false.

Required True if the attribute is required. If it is, it has to be assigned, or a defaul

value must be indicated in the Default value property. Default is false.

TypeDefinition Returns the data type of the attribute. Returns an object of type
ISmIxfTypeDefinition.

Note: ISmIxfAttribute is only the definition of the attribute structure; the actual
value of this attribute is inserted by the SmixfWriter object.

ISmIxfTypeDefinition

The ISmIxfTypeDefinition Object specifies the data type of the
ISmIxfAttribute object.

Properties

The ISmIxfTypeDefinition object has three properties:

Property Description

ValueType The ValueType property is an Enum type DataTypeEnum that spec
the type of the value that can be assigned to the attribute. It is a su
of the W3C XML Schema Data Types, as defined in
http://www.w3.0rg/TR/xmlschema-2/. See Table 5 for a list of data
types.

ObjectReferenceType | If ValueType is set to dtObjectReference, the ObjectReferenceType
property lets you specify more information about the object referenc
See below for more information.

StringType If the ValueType is assigned to dtString then the StringType proper
lets you specify more information about the string. See below for m
details.

Table 5 ValueType Data Types

366

Chapter 11, SmartIXF Library

ValueType Description Software Constant
String Character strings in XML dtString
Boolean Binary-valued logic dtBoolean
Float IEEE single-precision 32-hit floating point ty dtFloat
Double IEEE double-precision 64-bit floating point t dtDouble
Duration Duration of time dtDuration
Base64Binary Base64-encoded arbitrary binary data dtBase64Binary
HexBinary Arbitrary hex-encoded binary data dtHexBinary
AnyUri A Uniform Resource Identifier Reference (U dtAnyUri
Language Natural language identifiers as defined by [dtLanguage
1766].
Int Integer between dtint
-2147483648
and
2147483647.
Short Integer between dtShort
-32768 and 32767
Byte Integer between dtByte
-128 and 127
UnsignedShort Integer between 0 and 65535 dtUnsignedShort
UnsignedByte Integer between 0 and 255 dtUnsignedByte
DateTime A specific instant of time dtDateTime
Time An instant of time that recurs every day dtTime
Date A calendar date dtDate
gMonth A gregorian month that recurs every year dtGMonth
gYear A gregorian calendar year dtGYear
ObjectReference An object dtObjectReference
XML XML text dtXML

Depending on ValueType, there can be additional options, as discussed in
the following sections.

Specifying Information about an Object Reference

If ISmIxfTypeDefinition.ValueType is set to dtObjectReference, the
ObjectReferenceType property lets you specify more information about the

object reference.

Properties

The ObjectReferenceType property returns an object of type
ISmIxfObjectReferenceTypeDefinition, which has the properties:

367

http://www.w3.org/TR/xmlschema-2/#RFC1766�
http://www.w3.org/TR/xmlschema-2/#RFC1766�
http://www.w3.org/TR/xmlschema-2/#RFC1766�

Property

Description

RestrictionType

You use this property to place restrictions on the type of object
referenced through the ObjectReferenceType property. Set to one (
ObjectReferenceRestrictionTypeEnum,

ClassName

Specifies a class to which the objects referenced or their descenda
must belong. Can be accessed only if RestrictionType has the valu
ortClass or ortClassAndDescendants. See details of
ObjectReferenceType.RestrictionType below for more information.

BehaviorURI

Specifies a behavior that the object referenced must implement. Ca
accessed only if the RestrictionType has the value ortBehavior. See
details of ObjectReferenceType.RestrictionType below for more
information.

ObjectReferenceType Restrictions

You use the RestrictionType property to place restrictions on the type of
object that can be referenced through the ObjectReferenceType property.
This helps you tailor an attribute for special use.

The RestrictionType property is available as follows:

IxFAttribute.TypeDefinition.ObjectReferenceType.RestrictionType

368

Chapter 11, SmartIXF Library

The RestrictionType can take one of the following
ObjectReferenceRestrictionTypeEnum values:

RestrictionTyp¢ Description Software Consta
Any The reference can be to any kind of object (the | ortAny
default)
Class The reference can be to an object of a specific cla ortClass

only. The class name should be assigned to
TypeDefinition.ObjectReferenceType.ClassName.

ClassAnd The reference can be to an object of a specific cla| OrtClassAnd
Descendants or its descendants only. The class name should b¢ Descendants
assigned to
TypeDefinition.ObjectReferenceType.ClassName.
Behavior The reference can be to an object that implementg ortBehavior

specific behavior only. The behavior URI should b
assigned to TypeDefinition.
ObjectReferenceType.BehaviorURI

Example

The following code allows the attribute to reference only objects of the
class “DocumentMaster”.

IxFAttribute.TypeDefinition.ValueType = dtObjectReference
IxFAttribute._ObjectReferenceType.RestrictionType = ortClass

IxfAttribute.ObjectReference.ClassName = “DocumentMaster”

369

String Type Options

If the ISmIxfTypeDefinition.ValueType is assigned to dtString then you
can specify a maximum length for the string by
ISmIxfTypeDefinition.StringType.MaxLength. The default for MaxLength
is 0, which means there is no restriction for the string length.

Example

The following code restricts the length of the string attribute to 50
characters.

IxFAttribute._TypeDefinition.ValueType = dtString

IxFAttribute.TypeDefinition._StringType.MaxLength = 50
ISmIxfClassBehaviors

The ISmIxfClassBehaviors Object is a collection of ISmIxfClassBehavior
objects. It represents the set of ClassBehaviors declared in a specific class.

Note: This object is not the same as the collection object
ISmIxfClassesBehaviors. The latter refers to the set of all
ClassBehavior objects associated with the entire schema and defined
externally to all classes.

Adding a ClassBehavior to a Class

Once you have added a ClassBehavior to the ClassesBehaviors object (see
Adding a New ClassBehavior to the IXF Schema), you can declare the
ClassBehavior in a specific class. You use the Add method of the
ClassBehaviors object to add a ClassBehavior object to
CurrentClassBehaviors.

The Add function is called as follows:
IxfClass.CurrentClassBehaviors.Add(Behavior ,MustUnderstandEnum)

370

The method parameters are as follows:

Parameter Description
Behavior A ClassBehavior object that already exists in the collection
Schema.ClassesBehaviors.
MustUnderstand Denotes whether this Class Behavior, when declared in this cl
must be understood by the reading processor. Possible values
muYes, muNo

For an example, see Common Tasks, ISmIxfSchema: Declaring usage of a
class behavior by a class.

ISmIxfDomainBehaviors

An ISmIxfDomainBehaviors object is a collection of
ISmIxfDomainBehavior objects.

Adding a DomainBehavior to DomainBehaviors

You use the Add method of the DomainBehaviors object to add a
DomainBehavior object to DomainBehaviors.

The Add function is called as follows:
Add(URD)

ISmIixfDomainBehavior

371

Conceptually, a Domain Behavior is composed of sets of Class Behaviors
called Roles, where the Domain Behavior also specifies the classes that
declare the Class Behaviors for each Role.

Specifically, a Domain Behavior defines a set of Roles and a set of Role-
to-Class mappings (see Section 2.5 of the IXF Specification.) Each Role is
associated with a set of Class Behaviors, which are specified by the
documentation describing the Domain Behavior. The class that is mapped
to the Role according to its Role-to-Class Mapping must declare the Role’s

Class Behaviors.

Note: It is very important to make sure that a class is mapped to a Role only if it
implements the required class behaviors, even though this is not currently
enforced by the API. The required class behaviors can be verified by consulting
the Domain Behavior documentation.

Figure 11-4 shows the relationship between a Domain Behavior definition
and a schema that uses it:

Role ClassBehaviors Role Class Classl
Rolel CIassBehav!orl o Rolel Class1 L Class Attributes
ClassBehavior2 M o |
Class Behaviorl
Role2 ClassBehavior3 > Role2 Class2 — Class Behavior2

DomainBehavior Definition

Role - Class Mapping

Class2

Class Attributes

Class Behavior3

Class3

Class Attributes

Class Behaviors

ISmIxfSchema Object

Figure 11-4 Domain Behavior

Properties

An ISmIxfDomainBehavior object has the following properties:

Property Description

URI The unique identifier of the DomainBehavior

RoleClassMapping The RoleClassMapping property defines an association between

names and ISmIxfClass objects, whereby each role is assigned {
class.

372

Chapter 11, SmartIXF Library

ISmIxfInfo

The ISmixfinfo Object holds miscellaneous information, which cannot be
categorized as classes or behaviors. It is a collection of ISmIxfInfoltem

objects.

Methods
It has the methods:

Method

Description

GetInfoltem Gets an Infoltem from the collection by Name and
Namespace. If it doesn't exist, a new object is created 3
added to the collection.

Save Not used when Info accessed through Schema.

CreateXmlAttributeValue Creates an ISmixfXmlAttributeValue object

The ISmixfinfo Object is obtained though the ISmIxfSchema object, as

follows:

Set IxFInfo = Schema. Info

Note: ISmIxfinfo Object can also be obtained through the IxfWriter.DataWriter and
IxXfReader.DataReader. When the schema is saved ISmIixfInfo is saved
automatically with the schema; in the Writer it has to be saved with the Save

function.

Adding an Infoltem to a Info Object

Use the GetInfoltem method of Info to add a new Infoltem to the Info

collection.

Set IxfFInfoltem = IxfInfo.Getlnfoltem(Name, Namespace)

373

ISmixfinfoltem

The ISmixfinfoltem object represents a member of the ISmIxfinfo
collection, that is, a basic unit of miscellaneous information in the schema

file.
Properties
The ISmixfInfoltem object has the properties:

Property Description

Name Infoltem name

Namespace Infoltem namespace

Value Infoltem value

ValueType Value type (see Table 5)

MustUnderstand MustUnderstand flag for this Infoltem. If set to true, the reading
process stops when this Infoltem is not in the list
SmixfReader.ISmIxfUnderstoodInfoltems, and
Reader.ValidateMustUnderstand = true.

Use the GetInfoltem (Name, Namespace) method of the ISmIxfinfo Object
to create an ISmixfinfoltem object or to get an existing one.

For an example of how to add miscellaneous information to a
ClassBehavior, see Common Tasks, ISmIxfSchema: Adding miscellaneous

information.

Note: The ISmIxfInfo object under DataWriter represents another, independent way to
write miscellaneous data, which you can use instead of or in addition to this
ISmIxfinfo object under the ISmIxfSchema object. The difference is that with
the current ISmixfInfo object you do not need to save the object; it is saved
automatically with the Schema.

ISmIxfXmIAttributeValue

The ISmIxfXmlAttributeValue object represents the value of an Infoltem
of type “dtXML”. This object lets you insert miscellaneous information in
the form of XML text. The XML text does not need to be a complete XML
document, but it must be valid and well formed.

If the meaning of a prefix is not included in the XML text, you can provide
it in the Namespaces property.

To create an ISmIxfXmlAttributeValue object, use the ISmIxflnfo method
CreateXmlAttributeValue, as follows:

Set IxPXmlAttributeValue = Info.CreateXmlAttributeValue

374

Chapter 11, SmartIXF Library

Properties

The ISmIxfXmlAttributeValue object has the properties:
Property Description

Namespaces Returns an object ISmIxfNamespaces, a list of mappings between prefix g

namespace that represents the meaning of each prefix that occurs in the

string.

XML A well-formed valid XML text as a WideString.

Note: The ISmIxfXmlAttributeValue object can also be used to provide an Xml text
attribute value to a class attribute, when using the Writer object. See
ISmIxfAttributesValues for more information.

Note: The XML string might be changed by the API but the meaning will stay the same.

Example

Dim Info As ISmixfinfo

Dim Infoltem As ISmixfInfoltem

Dim NameSpaces As 1SmlxfNamespaces

Dim XmlAttributeValue As 1SmIxFXmIAttributeValue

Dim XmlText As String

Set Info = Schema. Info

Infoltem = Info.Getinfoltem(*“XmiText”, "http://..."")
Infoltem.ValueType = dtXml

Set XmlAttributeValue = Info.CreateXmlAttributeValue
XmIText = ““<p:name>John Bryce<p:name>"
XmlAttributeValue XML = XmlText

XmlAttributeValue NameSpaces.Add (“‘ns1”, “prefix1”)

Infoltem.Value = XmlAttributeValue

375

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a ISmIxfSchema.

ISmIxfSchema:
Creating a Schema with Classes and Class Attributes

The following procedure creates a basic schema file containing classes and
class attributes.

Get the schema property (see ISmIxfSchema.)

Create a class
Dim IxfClass as ISmIxfClass

“Create a Class '‘documentMaster':

Set IxfClass = Schema.Classes.Add("‘DocumentMaster'™)
IxfClass.ParentClass = Null

IxfClass. IsAbstract = False

See Adding a Class to the IXF Schema, for more details.

Create a Class attribute
Dim IxFAttribute as ISmixfAttribute

"Create and add attribute "‘DocumentName'':

Set IxfAttribute = IxfClass.CurrentClassAttributes.Add('DocumentName'™)
“Set properties for the attribute:
IxFAttribute._TypeDefinition._ValueType = dtString
IxFAttribute.TypeDefinition._StringType.MaxLength = 50
IxFAttribute.Required = True

IxfAttribute. IsNullAllowed = False

IxFAttribute. IsPrimary = True

"Create and add attribute "Description':

376

Chapter 11, SmartIXF Library

Set IxfAttribute = IxfClass.CurrentClassAttributes.Add(*'Description'™)
“Set properties for the attribute:
IxFAttribute._TypeDefinition.ValueType = dtString
IxFAttribute_Required = False

IxfAttribute. IsNullAllowed = True

See Adding an Attribute to a Class for more information.

ISmIxfSchema:
Defining a ClassBehavior

In this task, you define a ClassBehavior.

Add a Class Behavior definition to the IXF Schema, that is, to
ClassesBehaviors

Dim IxfClassBehavior as ISmIxfClassBehavior
"Create a Class Behavior "link"

Set IxfClassBehavior = Schema.ClassesBehaviors.Add(
mtEmbedded,
“http://ww. ixFstd.org/std/ns/core/classBehaviors/links/1.0#1ink’)

See Adding a New ClassBehavior, for more information.

Add attributes to the ClassBehavior definition
Dim IxfAttribute as ISmixfAttribute

"add attribute "objectl':

Set IxfAttribute = IxfClassBehavior _Attributes_Add('objectl'™)
“Set properties for the attribute:
IxFAttribute.TypeDefinition.ValueType = dtObjectReference
IxFAttribute_Required = True

IxFAttribute. IsNullAllowed = True

"add attribute "object2":

Set IxfAttribute = IxfClassBehavior _Attributes.Add('object')

377

“Set properties for the attribute:
IxFAttribute.TypeDefinition.ValueType = dtObjectReference
IxFAttribute_Required = True

IxFAttribute. IsNullAllowed = True

See ISmManagedClasses. The ISmManagedClasses object represents the
set of SmarTeam managed classes to which a specific integration behavior
is mapped for more information.

ISmIxfSchema:
Declaring usage of a Class Behavior by a class

In this task, you declare a ClassBehavior in a class.

In case the ClassBehavior has been defined separately, you can retrieve the
class behavior object by URI and declare it in a class as follows:

IxfClassBehavior = Schema.classesBehaviors. ItemByURI (

“http://ww . ixFstd.org/std/ns/core/classBehaviors/links/1_C#1ink™)

IxfClass = Schema.classes.Add(“myLink’”)

IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

See Adding a ClassBehavior to a Class for more information.

ISmIxfSchema:
Defining a DomainBehavior

See example section.

ISmIxfSchema:
Adding Standard Behavior to a schema

See section 1SmIxfSchemaHelper on page 403

ISmIxfSchema:
Adding miscellaneous information

To add miscellaneous information ISmixflnfo to the schema, you use an
ISmIxfInfoltem object

Dim IxfInfo As ISmixfinfo

Dim IxfInfoltem As ISmixFInfoltem

378

http://www.ixfstd.org/std/ns/core/classBehaviors/links/1.0#link�

Chapter 11, SmartIXF Library

“ Get the Info object

Set IxFInfo = Schema. Info

“Create and return an Infoltem with the indicated name and namespace:

Set IxfFinfoltem = IxfInfo.Getinfoltem('transaction', "http://ww.vendor.org'™")

IxFInfoltem.ValueType = dtint

IxFInfoltem.Value = ""2352"

379

SmixfinitializationData

A SmixfInitializationData object represents initialization of data for
SmartIXF applications.

Each creatable object has a reference to the interface
ISmixfinitializationData.

Setting Proxy Information

For the present release, the SmixfinitializationData interface relates to the
initialization of proxy information for downloading files by an IXF
Application installed on a UNIX system (optional on Windows).

The user can obtain the current proxy value by calling the GetProxy
method.

The SetProxy method should be performed when the user wants to indicate
the proxy that is about to be used.

On Unix platforms the proxy must be set if files are about to be
downloaded from the web.

On windows using this interface is optional since windows can
automatically detect and identify a proxy.

Methods
The SmixfinitializationData has the methods

Methods Description
GetProxy Returns the value of the proxy string.
SetProxy Sets the specified string as the proxy string.

380

381

Example

In order to set a proxy after creating an object, the SetProxy method should
be called as described in the following sample code.

Public Const PROXY_STR = '"123.45.678.90:8080" "A string indicating the proxy
to be used when downloading files from the web.

Dim IxfWriter As SmixfWriter

Dim IxfReader As SmixfReader

Dim IxfStdHelper As SmixfStdHelpert

Dim IxfExternalSchemalriter As SmixfExternalSchemaWriter
Dim IxfExternalSchemaReader As SmixfExternalSchemaReader
Dim ProxyStr As String

Set IxfWriter = CreateObject('SmartIXF1.SmixfWriter')

IxfVriter. InitializationData.SetProxy(PROXY_STR)

Set IxfReader = CreateObject('SmartIXF1.SmixfReader')
IxfReader . Initial izationData.SetProxy(PROXY_STR)

Set IxfStdHelper = CreateObject(*'SmartIXF1.SmixfFStdHelper'™)
IxFStdHelper . Initial izationData. SetProxy(PROXY_STR)

Set IxfExternalSchemalWriter = CreateObject(*'SmartIXF1._ExternalSchemalriter'")

IxfExternalSchemalriter . Initial izationData.SetProxy(PROXY_STR)

Set IxfExternalSchemaReader = CreateObject(''SmartIXF1.ExternalSchemaReader'")

IxfExternal SchemaReader . Initial izationData. SetProxy(PROXY_STR)

ProxyStr = IxfReader . InitializationData.GetProxy()

SmixfWriter

An SmIxfWriter object is used for:

e creating an IXF Archive file

creating and writing a Schema Document (schema file)

creating and writing an IXF Instance Document (data file)
packaging the schema and data files in the IXF Archive file.
Optionally, the SmIxfWriter can refer to an existing schema file.

Object Diagram

The object diagram of SmIxfWriter is shown below:

382

Chapter 11, SmartIXF Library

SmixfWriter
DataWriter
ObjectWriter
(NewObject) IsmixfObject
Values
AttributesValue:
OleVariant
(CreateXmlAttributeValue) ISmiIxfxmiAtiributeValue
(GetBehaviorValues) IsmixfAttributesValues
Info
Schema

Figure 11-5 SmixfWriter Object Diagram

383

Properties

SmixfWriter has the following properties:

Property Description
Schema Holds the definition of the data structure The schema file describ
the data model, including its classes and behaviors.
DataWriter Writes the data file. The data file contains a set of objects that

conforms to the data model described in the schema and
miscellaneous data. [associated files come from WriterHelper]

InitializationData

Provides access to methods for initializing data for IXF applicatio
Returns ISmIxfInitializationData

The schema and data files are packaged in an IXF Archive by the

SmixfWriter object.

Methods

The SmIXfWriter has the methods

Methods

Description

CreatelxfArchiveFile

Creates the specified iXF Archive file.

CloselxfArchiveFile

Closes the iXF Archive file.

SetSchemaMode

Sets the packaging mode of the schema in the Archive file.

Creating the SmixfWriter Object

To create an SmixfWriter Object:
Dim IxfWriter As Smixfiriter

Set IxfWriter = CreateObject('SmartIXF1.Smixflriter'™)

Creating an iXF Archive File

As described in the iXF Specification, an iXF Archive file is a zip file
containing a data file and possibly a schema file. When you use the
SmixfWriter to write an IXF Instance file, you need to create an iXF
Archive file to contain the IXF Instance file and possibly the schema file.

Specifying the Schema Packaging State

When you create an iXF Archive file, you first need to specify how the
associated schema is to be packaged, using the SetSchemaMode method of

the ISmIxfWriter.

384

Chapter 11, SmartIXF Library

The following table describes the packaging states of the schema file and
the software constant used for each state. The packaging state of the
schema file is described by the Mode parameter of the SetSchemaMode

method.
Packaging State Description SchemaModeEnum Softw3
Constant

Embedded The schema definition is created and | mtEmbedded
saved to a schema file, which is
embedded in the iXF archive file.

External The schema file is not embedded in t mtExternal
iXF package; it was previously define
externally in a file and specified by its
SchemaURI.

SetSchemaMode Method

Use the SetSchemaMode method to specify the packaging state of the
schema. It is called as follows:

IxfWriter.SetSchemaMode(mode, [SchemaURI], [SchemalLocation = ““”] [Load=True])

The arguments of the method are:

Argument Description
Mode Packaging state of the schema, one of SchemaModeEnum. See table
above.
SchemaURI The schema namespace. Specified only when Mode is mtExternal.
Schemalocation | The schema physical location. Specified only when Mode is mtExternal.

Load

Whether or not the schema needs to be loaded. The default is false. Ca
set True only when Mode is mtExternal.

Note: If the Mode is mtEmbedded, or if Mode is mtExternal and Load = False (for
example, when the schema is not accessible) then the Schema object in the
ixfWriter object should be populated by hand. See ISmIxfSchema.

Creating the IXF Archive

To create the iXF Archive, after calling the SetSchemaMode method, use
the methods IxfWriter.CreatelxfArchiveFile and
IxfWriter.CloselxfArchiveFile.

For an example of how to create the IXF Archive, see Common Tasks,
SmixfWriter: Creating an iXF Archive.

ISmIxfDataWriter

385

The ISmixfDataWriter Object writes the object and miscellaneous data
corresponding to the schema file.

Properties

The ISmixfDataWriter Object has the two properties:

Property Description
ObjectWriter Returns an ISmIxfObjectWriter object, used to write objects to
data file.
Info Returns an ISmixfinfo object. It is used for writing miscellaneo
information to the data file.

Obtaining the ISmIxfDataWriter Object

To obtain the ISmIxfDataWriter Object from the IxfWriter Object:
Dim DataWriter as ISmixfDatalWriter

Set Datalriter = IxfWriter.Datalriter

386

ISmIxfObjectWriter

The 1ISmIxfObjectWriter uses the NewObject method to create objects,
which are instantiations of the classes declared in the schema.

Obtaining the ISmIxfObjectWriter Object

To obtain the ISmIxfObjectWriter object from the ISmixfDataWriter
object:

Dim ObjectWriter as 1SmixfObjectWriter

Set ObjectWriter = IxfWriter.DataWriter.ObjectWriter

Creating a New Object

Use the NewObject method to create an object, which is an instantiation of
a class defined in the Schema. Use the Class Name and provide a unique
Object Id (see next section for more details about the parameters).

Set IxfObject = ObjectiWriter.NewObject(ixfClassName, Objectld)
ISmIxfObject

The 1SmIxfObject object represents an instantiation of a class in the
schema. You create it a ISmIxfObject object by specifying the class from
which the object is to be instantiated and providing an object id (see
previous section).

Use the ISmIxfObject object to access class attributes and class behavior
attributes that were declared in the schema file for the object’s class.

The 1SmIxfObject has the properties:
Property Description

ld Input string that uniquely identifies the object within the IXF
Instance Document. Must be a valid NCName.

The Object ID value must follow the rules defined for the ID
Datatype in XML Schema Part 2: Datatypes, Section 3.3.8: ID.
IxfClassName Name of class of which this object is an instantiation.

Values Returns object ISmixfAttributesValues, which is the set of valu
the class attributes for the object’s class.

387

The 1SmIxfObject has the methods:
Method Description

GetBehaviorValues Returns object ISmixfAttributesValues, which is the set of the
ClassBehavior attribute values for Class Behaviors declared by
object’s class.

Save Saves object to data file. Can be used only during iXF generati
(writing)

ISmIxfAttributesValues

The ISmIxfAttributesValues object, which is returned by the Values and
GetBehaviorValues methods of an IxfObject, represents the collection of
values of class attributes or ClassBehavior attributes of the IxfObject. You
refer to an individual item of the ISmIxfAttributesValues by the name of
the corresponding ISmIxfAttribute, which was assigned in the class or
ClassBehavior definition in the schema.

IxfObject.Values. I'tem(AttributeName) = some variant value
Set BehaviorValues = IxfObject.GetBehaviorValues(BehaviorURIl)

BehaviorValues. Item(AttributeName) = some variant value

For an example of how to assign values to class attributes, see Common
Tasks, ISmIxfDataWriter: Creating a Data File with Objects and Info.

ISmIxfXmIlAttributeValue Object

If you defined the TypeDefinition.ValueType of a class attribute or
ClassBehavior attribute as dtXml in the schema definition, you can create
an ISmixfXmlAttributeValue object and assign it as the class attribute
value.

Set XmlAttributeValue = IxfObject.Values.CreateXmlAttributeValue

Note: The ISmIxfXmlAttributeValue object can also be used when using the
ISmIxfinfo object to provide an Xml text value to an Infoltem of type
dtXml.

Example

“In definition of ClassAttributes in Schema, define an Xml attribute:
Set IxfAttribute = IxfClass.CurrentClassAttributes.Add(""XmlText'")

“Set properties for the attribute:

388

Chapter 11, SmartIXF Library

IxfAttribute.TypeDefinition.ValueType = dtXml

“When loading values into Class attributes in Writer:
Dim DataWriter As ISmixfDataWriter

Dim ObjectWriter As ISmIxfObjectiWriter

Dim Object As ISmixfObject

Dim XmlAttributeValue As 1SmIxF XmlAttributeValue

Dim XmIText As String

Set Object = DataWriter.ObjectWriter.Object

“Create XmlAttributeValue object and give it an Xml value
XmIAttributeValue = Object.Values.CreateXmlAttributeValue

XmIText = ““<p:name>John Bryce<p:name>"

XmlAttributeValue XML = XmlText

XmIAttributeValue _NameSpaces.Add (“p”, “prefix1l’”)

“Put the XmlAttributeValue object into the class attribute value
Object._Value[*XmIText”] = XmlAttributevalue

Object.Save

ISmIxfinfo

The ISmIxfinfo object represents miscellaneous information written to the
data file. See the ISmIxfInfo object of the Schema object.

The ISmIxflnfo Object holds miscellaneous information, which cannot be
categorized as classes or behaviors. It is a collection of ISmIxfInfoltem
objects.

Methods

It has the methods:

Method Description

389

GetInfoltem Gets an Infoltem from the collection by Name and
Namespace.
Save Saves the Infoltems collection to the iXF Instance file. ¢
be used only when Info is obtained through
IxfWriter.DataWriter, i.e., during iXF generation.
CreateXmlAttributeValue Creates an ISmixfXmlAttributeValue object
Note: This ISmIxfinfo object under DataWriter represents an independent way to write
miscellaneous data, which you can use instead of or in addition to the ISmIixfinfo
object under the ISmiIxfSchema object. The difference is that with this ISmixfinfo
object you need to save the object, as shown below.

For an example of how to write an Info object, see Common Tasks,
ISmIxfDataWriter: Writing an Info section.

Note: The ISmIxfInfo information must be written to the data file prior to any object
information.

390

Chapter 11, SmartIXF Library

ISmIxfSchema

The ISmIxfSchema object represents the schema file in the IXF Archive
being written. See ISmIxfSchema on page 356.

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a SmixfWriter.

SmixfWriter:
Creating an iXF Archive

As described in the iXF Specification, an iXF Archive file is a zip file
containing a data file and possibly a schema file.

To create an iXF package file:
Create the IxfWriter object
Dim IxfWriter As SmixfWriter

Set IxfWriter = CreateObject(*'SmartIXF1.SmixflWriter'™)

Set the schema packaging state using the method SetSchemaMode:

Examples of setting the schema packaging mode:
IxfiWriter.SetSchemaMode mtEmbedded

or:

IxfWriter.SetSchemaMode mtExternal,

“http://ww.vendor .org.schema”,
““c:\Schemas\MySchema.xsd”, true

or:

IxfWriter.SetSchemaMode mtExternal,

“http://ww.vendor.org.schema”,
“‘c:\Temp\MySchema.xsd”, False

See Creating an iXF Archive File, for more information.

Create a schema (see ISmIxfSchema)

391

http://www.vendor.org.schema/�
http://www.vendor.org.schema/�

If the ModeTypeEnum is embedded, or if ModeTypeEnum is external and
Load = False (for example, when the schema is not accessible) then the
Schema object in the ixfWriter object should be populated by hand.

Use the method CreatelxfArchiveFile to initialize the process of creating an
IXF Archive:

IxfWriter.CreatelxfArchiveFile test.ixf’

Note: This method can be called only after SetSchemaMode is called and the schema
object is populated.

Insert the data information -- Info, objects, changes and files (see next
section “Creating a Data File with Objects and Info”)

Close the iXF file:
IxfWriter.CloselxfArchiveFile

ISmIixfDataWriter:
Creating a Data File with Objects and Info

The following procedure creates a basic data file containing objects and
miscellaneous information. It is assumed that a schema has already been
created.

The data file is created automatically as part of the package. It is named
IXF_Data.xml.

In this section you create an object corresponding to a class in the schema
and assign values to the class attributes and ClassBehavior attributes for
class behaviors declared by the class.

Note: If you are writing miscellaneous (Info) information, it must be written first, before
any object information.

Create an object

To create an object, you need to obtain the ISmixfObjectWriter Object as
follows:

Dim ObjectWriter As ISmixfObjectWriter

Set ObjectiWriter = IxfWriter_DataWriter.Objectiriter

392

Chapter 11, SmartIXF Library

Use the NewObject method of the ISmIxfObjectWriter Object to create the
new object, where you specify the ClassName and provide a unique
Objectld. The NewObject method returns an object of type ISmIxfObject.

“ Create an object for the data file
Dim ixfObject as ISmIxfObject

Set ixfObject = ObjectiWriter.NewObject(“‘DocumentMaster”, “OID_1"")

Assign values according to the object’s class attributes

The attribute values are stored in the collection object
ISmIxfAttributesValues. This object is obtained from ISmIxfObject as
follows:

AttributesValues = ixfObject._Values
You assign a value to this object.
“ Assign values to the object’s attributes

AttributesValues. Item(“DocumentName’™) = “MyDocument’

Assign values to the ClassBehavior attributes

To assign values to the ClassBehavior attributes, use the method
GetBehaviorValues of ISmIxfObject. The method returns the object
ISmIxfAttributesValues as in the previous step.

Dim BehaviorValues As ISmIxFAttributesValues

IxfLinkObject = IxfWriter_DataWriter_ObjectWriter.NewObject(“MyLink’”,”0OID_2"")

Set BehaviorValues =
IxfLinkObject.GetBehaviorValues(http://project/behaviorl#1ink)

You assign values to this object as in the previous step.
BehaviorValues. Item(*‘objectl”) = IxfObjectl

Save the object.

ixfObject._Save
Note: Save each object as soon as you are finished creating it.

393

SmixfWriter:
Creating a ISmIxfXmlAttributeValue

Dim XmlAttributeValue as ISmIxPXmlAttributeValue
Set XmlAttributeValue = Ixfilriter.Datalriter. Info.CreateXmlAttributeValue
XmlAttributeValue . XML = <p:name>John Bryce<p:name>

XmlAttributeValue _Namespaces.-Add "http://ww.vendor.com/ns/personal ldentity”,

p

ISmIxfDataWriter:
Writing an Info section

"Optional ""Info" section:

Set Infoltem = Writer.DataWriter. Info.GetInfoltem(*'From',
“http://smarteam.con/dev/ixf/test'")

Infoltem.ValueType = dtString
Infoltem.Value = ""Ann Barkley"

Set Infoltem = Writer.DataWriter. Info.GetInfoltem(*'To",
""http://smarteam.con/dev/ixf/test'")

Infoltem.ValueType = dtString
Infoltem.Value = "Bruce Mayer™

Set Infoltem = Writer.DataWriter. Info.GetInfoltem(*'Subject"”,
“http://smarteam.con/dev/ixf/test'")

Infoltem.ValueType = dtString
Infoltem.Value = "iXF Example™

DataWriter. Info.Save

Note: If you are writing Info to the data file, it must be saved to the data file
before saving any object to the data file.

394

SmixfReader

An SmIxfReader object is used for:

e unpacking an IXF Archive file

¢ Reading a Schema Document (schema file)

¢ Reading an IXF Instance Document (data file)

e Optionally, the SmixfReader can refer to an external schema file.

Object Diagram

The object diagram of SmIxfReader is shown below:

SmixfReader

395

DataReader

ObjectReader

(GetObjectlterator)

ISmIxfObjectlterator

(GetObject)

ISmIxfObject

Info

UnderstoodInfoltems

Schema

Figure 11-6 SmixfReader Object Diagram

Properties

The SmIXfReader has the properties
Property Description

DataReader Reference to ISmIxfDataReader, which reads the data file. The d
file contains a set of objects and miscellaneous data that conforn
the data model described in the schema. [Associated files come f
Reader helper].

UnderstoodInfoltems Collection of Infoltems that the DataReader declares as understo
Used to validate read-in Infoltems marked as “mustUnderstand”.

Schema Reference to ISmIxfSchema, which holds the definition of the dat
structure.

ValidateMustUnderstand | If true, validate read-in Infoltems marked as “mustUnderstand”
against the Understoodinfoltems collection.

InitializationData Provides access to methods for initializing data for IXF applicatio
Returns ISmixfInitializationData

Methods

The SmIXfReader has the methods
Methods Description

OpenlxfArchiveFile Opens the specified iXF Archive file for reading.
Close Closes the iXF Archive file for reading.

ISmIxfDataReader

The ISmixfDataReader object reads the object and miscellaneous data from
the data file corresponding to the schema file. The ISmixfDataReader
object includes the ObjectReader property, which is used to read objects
from the data file by iteration, using the Objectslterator property.

396

Chapter 11, SmartIXF Library

Properties

The ISmixfDataReader Object has the two properties:

Property Description
ObjectReader Returns an ISmixfObjectReader object
Info Miscellaneous (Info) information read from the data file.

Obtaining the ISmIxfDataReader Object

To obtain the ISmIxfDataReader Object from the ixfReader Object:
Dim DataReader As ISmixfDataReader

Set DataReader = IxfReader.DataReader

ISmIxfObjectReader

The 1SmIxfObjectReader object reads objects from the data file. It has one
method GetObjectlterator, which returns the object ISmIxfObjectlterator.

Obtaining the ISmIxObjectReader Object

To obtain the ISmIxfObjectReader Object:
Dim IxfObjectReader as ISmIxfReader

Set IxfObjectReader = DataReader.ObjectReader

ISmIxfObjectlterator

The ISmIxfObjectlterator reads the objects one-by-one from the data file.

Use the GetObjectlterator method to get an ISmIxfObjectlterator from the
ObjectReader as follows:

Set Objectlterator = IxfReader.DataReadet.ObjectReader.GetObjectlterator

The ISmIxfObjectlterator has one property and three functions:

Property Description

AtEnd Indicates whether the iterator has reached the end of the collection.
Method Description

GetObject Returns the object to which the iterator is currently pointing.

Next Sets the iterator to read the next object in the collection

397

ISmIxfObject

The object represents an individual object read from the data file. See
ISmIxfObject under ISmIxfObjectWriter.

Use the GetObject method to get an ISmIxfObject from the Objectlterator
as follows:

IxfObject = Objectlterator.GetObject

For an example of how to use the Objectlterator to read objects, see
Common Tasks, SmIxfReader: Reading an iXF Package.

ISmixfinfo

The ISmIxfInfo object represents miscellaneous information read from the
data file. See ISmIxfinfo on page 373.

Note: The ISmIxfInfo information in the IXF Instance file, if it exists, must be read
before all object information.

For an example of how to read ISmIxfinfo objects, see Common Tasks,
SmixfReader: Reading an iXF Package.

ISmIxfUnderstoodInfoltems

ISmIxfUnderstoodInfoltems is a collection object, prepared by the user of
the ISmIxfReader object, of items of type ISmIxfUnderstoodInfoltem,
which denote Infoltems that are required to be understood.

The ISmIxfUnderstoodInfoltems corresponds to a list that specifies those
Infoltems that he declares he understands. When the Infoltems are read by
the ISmIxfReader, the MustUnderstand property of each Infoltem is
matched with the corresponding Infoltem entry in the
ISmIxfUnderstoodInfoltems list. If the MustUnderstand property of an
Infoltem is true and the corresponding Infoltem entry is not found in
ISmIxfUnderstoodInfoltems, the reading process is stopped.

398

Properties

The ISmixfUnderstoodInfoltem Object has the two properties:

Property Description
Name Name of the understood item.
Namespace Namespace of the understood item.

ISmIxfSchema

The SmixfSchema object represents the schema file in the package being
read. See ISmIxfSchema on page 356.

Common Tasks

399

The following sections describe methods and properties that are used to
perform common tasks related to a SmixfReader.

SmixfReader:
Reading an iXF Package

As described in the IXF Specification, an iXF Archive file is a zip file
containing a data file and possibly a schema file. In order to read an iXF
archive file proceed as follows.

Create an IxfReader Object
Dim IxfReader as ISmIxfReader

Set IxfReader = CreateObject('Smartixfl.SmixfReader')

Open an Ixf archive file:
IxfReader .OpenlxfArchiveFile “test.ixf’, True

Read Info (if it exists)
Dim Info as ISmixfinfo

Dim SenderName, ReceiverName, Subject as Variant

Set Info = IxfReader.DataReader. Info

Set Infoltem = Info.GetInfoltem(*'From, "http://smarteam.com/dev/ixf/test'")

SenderName = Infoltem.Value
Set Infoltem = Info.GetInfoltem(*'To", "http://smarteam.com/dev/ixf/test’™)
ReceiverName = Infoltem.Value

Set Infoltem = Info.Getinfoltem(*'Subject’, "http://smarteam.com/dev/ixf/test’)

Subject = Infoltem_Value

Read Objects:

Dim Objectlterator as 1SmixfObjectlterator

Dim IxfObject as I1SmIxfObject

Set Objectlterator = IxfReader.DataReadet.ObjectReader.GetObjectlterator
While Objectlterator AtEnd = False

Set IxfObject = Objectlterator.GetObject

Objectlterator.Next

Wend

Close the reader object:
IxfReader .Close

400

Chapter 11, SmartIXF Library

Reading and Writing an External Schema

The Smartlxf library provides two objects for reading and writing an
external schema.

SmixfExternalSchemaWriter

The SmixfExternalSchemaWriter has the two properties:

Property Description
Schema Returns object ISmIxfSchema containing the external schema informatior|
SchemaUR URI of external schema file.
InitializationData | Provides access to methods for initializing data for IXF applications. Retu
[SmixflnitializationData

The SmiIxfExternalSchemaWriter has one method, Save (FileName), which
saves the schema to the file FileName.

See ISmIxfSchema on page 356, for more information.

SmixfExternalSchemaReader

The SmixfExternalSchemaReader handles reading an external iXF schema
document

The SmixfExternalSchemaReader has one method:
e Load(SchemaLocation), which loads the external schema with the
specified SchemalLocation into the ISmIxfSchema object.

And one property:
¢ InitializationData, which provides access to methods for initializing
data for IXF applications. Returns ISmixfinitializationData

See ISmIxfSchema on page 356, for more information.

401

ISmIxfStdHelper

IXF Standard Behaviors, as defined in the IXF Specification, Section 4, are
a set of Class Behaviors and Domain Behaviors, which provide common
functionality required by many IXF-enabled applications.

The ISmIxfStdHelper object provides methods to simplify and facilitate the
usage of IXF Standard Behaviors in the following main functional areas:

o ISmIxfSchemaHelper — Adding Standard Behavior definitions to a

schema
o ISmIxfWriterHelper — Using Standard Behaviors while writing IXF
documents
o ISmIxfReaderHelper — Using Standard Behaviors while reading IXF
documents
Methods
The ISmIxfStdHelper object provides the following methods:
Method Description
CreateReaderHelper Creates a reader Helper for using Standard Behaviors wh
reading IXF documents:
CreateSchemaHelper Creates a schema Helper for adding Standard Behavior
definitions to a schema.
CreateWriterHelper Creates a writer Helper for using Standard Behaviors whi
writing IXF documents.xxx
InitializationData Provides access to methods for initializing data for IXF
applications. Returns ISmixfInitializationData.

Obtaining the SmIxfStdHelper Object
Dim StdHelper as IsmixfStdHelper

StdHelper = CreateObject(*'SmartIXF1._SmixfStdHelper'™)
Standard Behaviors

The Smartlxf Library supports the following mechanisms, which are
defined in the iXF standard:

402

Chapter 11, SmartIXF Library

e Time Stamping - provides the ability to time-stamp IXF Objects.
e Change Tracking - provides a standard mechanism for tracking
changes in an IXF Instance Document

File Association -- provides a standard mechanism for:
e Storing file information in the IXF Instance file

e Embedding files in an IXF Archive file

e Associating IXF Objects with files.

Versioning - provides the ability to tag iXF Objects with versioning
information.

Links - formalizes and classifies the relationships between objects in an
IXF Instance Document.

ISmIxfSchemaHelper

The ISmIxfSchemaHelper object provides methods to support defining
Standard Behaviors in a schema.

The ISmIxfSchemaHelper object uses the following naming convention to
describe its methods:

Method Description
Add[std-behavior-name]Support Adds the classes, class behaviors, and domain
behaviors required to support the Standard Behavi
the schema.

Note that all implementation details regarding the
Classes, which are added by this method to the
schema, may change in subsequent versions of thi
API.

Enable[std-behavior-name]ForClass | Enables standard behavior functionality in a specifi
user-defined class.

Is[std-behavior-name]Enabled Tests a user-defined class to see if it is associated
a Standard Behavior.

Change-Tracking Standard Behavior

The Smartlxf Library provides an implementation of the Change-Tracking
Standard Behavior to provide a standard mechanism for tracking changes

on objects in an IXF Instance Document, including object creation, object
deletion, and attribute value modification.

403

Methods

The ISmIxfSchemaHelper object provides the following methods to
support defining the Change Tracking Standard Behavior in a schema:

Method Description

AddDefaultChangesSupport Adds the Change-Tracking Standard Behavior to the
schema as shown in Change-Tracking Standard Behavi

EnableChangeTrackingForClass | Add the TrackChanges Class Behavior to the specified
user-defined class, enabling the class to be change-trad

IsChangeTrackingEnabled Returns true if the specified user-defined class supports
Change Tracking Standard Behavior.

Behaviors

The following table shows the domain and class behaviors added to the
schema that supports the implementation of the Change Tracking Standard
Behavior:

Domain Behavior

Name URI

Change Tracking <ixfstdns>/domainBehaviors/changeTracking/1.0

Class Behaviors

Name URI

change <ixfstdns-c>/changeTracking/1.0#chand

objectDeleted <ixfstdns-
c>/changeTracking/1.0#objectDeleted

objectValue Modified <ixfstdns-c>
/changeTracking/1.0#objectValueModifi

objectCreated <ixfstdns-
c>/changeTracking/1.0#objectCreated
transaction <ixfstdns-

c>/changeTracking/1.0#transaction

Note: An object can be change-tracked only if it instantiates a class that is
enabled for change-tracking.

404

File Association Standard Behavior

405

The Smartlxf Library provides an implementation of the File Association
Standard Behavior to provide a standard mechanism for:
e Storing file information in an IXF Instance file, including

Associating an IXF Object with a specific file
Distinguishing between main and secondary files
Embedding files in an IXF Archive file

e File Name
e Physical Location
e MIME Content Type
[)
[)
[)

Methods

The ISmIxfSchemaHelper object provides the following methods to
support defining the File Association Standard Behavior in a schema:

Method

Description

AddDefaultFilesSupport

Adds the Files Standard Behavior to the schema as sh
in Error! Not a valid result for table., including the C
Behaviors:

EnableFileAssociationForClass Add the File Association Class Behavior to the specifig

user-defined class.

IsFileAssociationEnabled

Returns true if the specified user-defined class suppor
the Files Standard Behavior.

Behaviors

The following table shows the domain and class behaviors added to the
schema that supports the implementation of the File Association Standard

Behavior:
Domain Behavior
Name URI
Files <ixfstdns-d>/domainBehaviors/files/1
Class Behaviors
Name URI

File Association <ixfstdns-c>/Tiles/1.0#FileAssociatid

File Description <ixfstdns-c>/Tiles/1._0#fFileDescriptic
Main File ixfstdns-c>/files/1_O#mainFile

Secondary File <ixfstdns-c>/files/1.0#secondaryFile
Transaction <ixfstdns-

c>/changeTracking/1_0#transaction
Note: An object can be associated with a file only if it instantiates a class that
is enabled for File Association.

Versioning Standard Behavior

The Smartlxf Library provides an implementation of the Versioning
Standard Behavior to provide the ability to tag IXF Objects with versioning
information, enabling you to identify successive revisions of the same
master entity.

The versioning information for an object includes the version identifier of
the current version of the object and the version identifier of its previous
version.

The Versioning Standard Behavior is different from the Change-Tracking
Standard Behavior: it just assigns version numbers without tracking the
changes between versions.

Methods

The ISmIxfSchemaHelper object provides the following methods to
support defining the Versioning Standard Behavior in a schema:

Method Description

AddDefaultVersioningSupport | Adds the Versioning Standard Behavior to the schema.
EnableVersioningForClass Add the Versioning Class Behavior to the specified user-
defined class.

IsVersioningEnabled Returns true if the specified user-defined class supports tf
Versioning Standard Behavior.

406

Behaviors

The following table shows the class behaviors added to the schema that
support the Versioning Standard Behavior:
Class Behaviors

Name URI
Versioning <ixfstdns-c>/versioning/1.0#versi

Note: An object can be versioned only if it instantiates a class that is enabled
for Versioning.

TimeStamp Standard Behavior

The Smartlxf Library provides an implementation of the TimeStamp
Standard Behavior to provide the ability to tag IXF Objects with
TimeStamp information, enabling you to mark the time of object creation.

Methods

The ISmIxfSchemaHelper object provides the following methods to
support defining the TimeStamp Standard Behavior in a schema:

Method Description

AddDefaultTimeStampSupport Adds the TimeStamp Standard Behavior to the
schema, as shown in TimeStamp Standard
Behavior.

EnableTimeStampForClass Add the enabler TimeStamp Class Behavior to t
specified user class.

IsTimeStampEnabled Returns true if the specified user class supports
TimeStamp Standard Behavior.

Behaviors

The following table shows the class behaviors added to the schema that
supports the TimeStamp Standard Behavior:
Class Behaviors

Name URI

Time Stamping <ixfstdns-c>
/timeStamp/1.0#timeStamp

407

Note: An object can be time stamped only if it instantiates a class that is
enabled for TimeStamp.

Obtaining the ISmIxfSchemaHelper Object
To create an ISmIxfSchemaHelper Object:
Dim SchemaHelper as 1SmlxfSchemaHelper

“Create Schema Helper:

Set SchemaHelper = StdHelper .CreateSchemaHelper(Schema)

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a ISmIxfSchemaHelper.

ISmIxfSchemaHelper:
Add supported standard behaviors to the schema

Write basic schema, see Common Tasks in ISmIxfSchema section.

Get SchemaHelper object
Dim StdHelper as ISmIxfStdHelper

Dim SchemaHelper as 1SmlxfSchemaHelper

“Create stdHelper:

StdHelper = CreateObject(*'SmartIXF1.SmixfStdHelper'™)
“Create Schema Helper:

Set SchemaHelper = StdHelper .CreateSchemaHelper(Schema)

Add support for standard behaviors to the schema:
“Add support for Standard Behaviors:

SchemaHel per . AddDefaultChangesSupport

SchemaHelper .AddDefaultFi lesSupport

SchemaHelper .AddDefaultVersioningSupport

SchemaHelper . AddDefaul tTimeStampSupport

Enable a user-defined class to support standard behaviors

408

Chapter 11, SmartIXF Library

SchemaHelper .EnableFileAssociationForClass (IxfClass)
SchemaHelper .EnableChangeTrackingForClass (IxfClass)

SchemaHelper .EnableTimeStampForClass (IxfClass)

409

ISmIxfWriterHelper

The ISmIxfWriterHelper object supports writing Standard Behaviors
attribute information when writing a data file.

Object Diagram

The object diagram of ISmIxfWriterHelper is shown below:

ISmIxfWriterHelper

ChangeWriter

(NewTransaction)

(NewChange)

ISmIxfChangeTransaction

ISmIxfChange

FileWriter

(NewFile)

(NewSecondaryFile)

ISmIxfFile

ISmIxfSecondaryFile

VersioningWriter

(CastToVersioning)

ISmIxfVersioning

TimeStampWriter

(CastToTimeStamp)

ISmIxfTimeStamp

Figure 11-7 ISmIxfWriterHelper Object Diagram

410

Chapter 11, SmartIXF Library

Properties

Four WriterHelper properties are provided corresponding to the supported
Standard Behaviors:

Property Description
ChangeWriter Provides methods for writing Change-Tracking information
FileWriter Provides methods for writing File Association information
VersioningWriter Provides methods for writing Versioning information
TimeStampWriter Provides methods for writing TimeStamp information

Obtaining the ISmIxfWriterHelper Object
To create an ISmIxfWriterHelper Object:
Dim WriterHelper as 1SmixfWriterHelper

“Create Writer Helper:

Set WriterHelper = StdHelper.CreateWriterHelper(Ixfivriter)

ISmIxfChangeWriter

The ISmIxfChangeWriter writes change-tracking information to the data
file.

Note: In order to use the methods of the ISmIxfChangeWriter you need to have added
the ChangeTracking Standard Behavior support in the schema, using the
SchemaHelper method AddDefaultChangesSupport. In addition, in order to use
Change-Tracking on a specific IxfObject, you need to have enabled the
ChangeTracking Standard Behavior support for the class that this object
instantiates, using the SchemaHelper method EnableChangeTrackingForClass
(see Change-Tracking Standard Behavior)

Obtaining the ISmIxfChangeWriter Object
Dim ChangeWriter as 1SmlxfChangeWriter

Set ChangeWriter = WriterHelper.ChangeWriter

411

Methods

The ISmIxfChangeWriter object provides the following methods to write
Change-Tracking information to the data file:

Method Description
NewChange Creates an ISmixfChange object
NewTransaction Creates an ISmixfChangeTransaction

ISmIxfChangeTransaction

The ISmIxfChangeTransaction Object is a container object that represents a
group of changes, where each change is represented by a ISmIxfChange
object. A ISmIxfChange object is linked to an ISmIxfChangeTransaction
Object by its Transaction Id property.

Obtaining a ISmIxfChangeTransaction Object
To create a ISmIxfChangeTransaction Object:
Dim Transaction as ISmIxfChangeTransaction

Set Transaction = ChangeWriter.NewTransaction(ld)

Note: ISmIxfChangeTransaction objects can also be obtained through
ISmIxfChangeReader Object. See ChangeReader.

Save a ChangeTransaction to the data file as follows:

ChangeTransaction.Save

412

Chapter 11, SmartIXF Library

Properties
The ISmIxfChangeTransaction Object has the properties
Property Description
Id Object Id of the SmIxfChangeTransaction object. Has {
a valid NCName.
ParentTransactionld Object Id of parent SmIxfChangeTransaction object in
file, if it exists
PreviousTransactionld Object Id of the previous SmixfChangeTransaction obj
in the file, if it exists.

Methods
The ISmIxfChangeTransaction Object has the methods
Property Description
Save Saves the ChangeTransaction to the data file.

ISmIxfChange

The ISmIxfChange object represents an individual change on an object, and
includes change-tracking information. Each ISmixfChange object is
associated with some ISmIxfChangeTransaction object by the Transaction
Id property. Therefore, an ISmIxfChangeTransaction object needs to be
created first.

Three types of changes are tracked: object creation, object deletion and
object modification. The actual changes for each type are represented by
three separate objects, which are returned as properties of ISmIxfChange:

e ISmIxfObjectCreated — contains the Object Id of the created object

e ISmIxfObjectDeleted — contains a reference to the deleted object

e ISmIxfObjectValueModified — contains the Id of the modified object
and contains a list of the object attributes that were changed, including
their previous values.

Object Diagram

The object diagram of ISmIxfChange is shown below:

413

ISmIxfChange

ObjectCreated

CreatedObjectRef

ObjectDeleted

(GetDeletedObject) ISmixfObject

ObjectValueModified

ModifiedObjectRef

ixfClassName

(New OldValues,
GetOldValues)

ISmixfAttributesValuesGroups

Values

(GetBehaviorValues) ISmixfAttributesValues

Figure 11-8 ISmIxfChange Object Diagram

Obtaining a ISmIxfChange Object

To create a ISmIxfChange Object:
Dim Change as ISmIxfChange

Set Change = ChangeWriter_NewChange(ld, ChangeType, Transactionld)

Note: ISmIxfChange objects can also be obtained through
ISmIxfChangeReader Object. See ChangeReader.

414

Properties

The ISmIxfChange object has the properties:
Property Description

Id Object Id of ISmIxfChange object. Has to be a valid
NCName.

Transactionld Object Id of ISmIxfChangeTransaction to which this cha
belongs
ChangeType The type of the SmixfChange, one of ChangeTypeEnun
with the following possible values:
- ctObjectCreated

- ctObjectDeleted

- ctObjectValueModified
ObjectCreated Returns ISmIxfObjectCreated object (see below.) Can b
accessed only when the Change is of type ctObjectCreg

ObjectDeleted Returns ISmIxfObjectDeleted object (see below.) Can b
accessed only when the Change is of type ctObjectDele

ObjectValueModified Returns ISmixfObjectValueModified object (see below.)
be accessed only when the Change is of type
ctObjectValueModified.

PreviousChangeld The Object Id of the previous SmixfChange in time.

PreviousChangeldPerObject The Object Id of the previous SmixfChange on the samg¢
object.

IxfObject Pointer to the ISmIxfObject that is wrapped by the curre

ISmIxfChange object

Methods
The ISmIxfChange Object has the methods
Property Description
Save Saves the Change to the data file.

ISmIxfObjectCreated

The ISmIxfObjectCreated represents a change of type ctObjectCreated.
This change is meant to point to a new object that was created and added to
an already existing set of objects.

415

Obtaining a ISmIxfObjectCreated Object

ISmIxfObjectCreated object is obtained through 1ISmixfChange object of
type ctObjectCreated:

Dim Change as ISmIxfChange
Dim ObjectCreated as ISmIxfObjectCreated
Set Change = ChangeWriter.NewChange(ld, ctObjectCreated, Transactionld)

Set ObjectCreated = Change.ObjectCreated

The 1ISmIxfObjectCreated object has the properties:
Property Description
CreatedObjectRef The Id of the created object
Example

ObjectCreated.CreatedObjectRef = “1”

ISmIxfObjectDeleted

The 1SmIxfObjectDeleted represents a change of type ctObjectDeleted.
This change is meant to hold the information of an object that was deleted
from the data objects set.

Obtaining a ISmIxfObjectDeleted Object

ISmIxfObjectDeleted object is obtained through 1ISmixfChange object of
type ctObjectDeleted:

Dim Change as ISmIxfChange
Dim ObjectDeleted as ISmIxfObjectDeleted
Set Change = ChangeWriter.NewChange(ld, ctObjectDeleted, Transactionld)

Set ObjectDeleted = Change.ObjectDeleted

Methods

The 1ISmIxfObjectDeleted object has the methods:
Method Description

SetDeletedObject | Sets the deleted object as the object referenced by the SmixfChange
GetDeletedObject | Returns an ISmixfObject, which is the deleted object.

416

Chapter 11, SmartIXF Library

Example

ObjectDeleted.SetDeletedObject(IxfObject)

IsmIxfObjectValueModified

The 1ISmIxfObjectValueModified represents a change of type
ctObjectValueModified; it contains the previous values of object attributes
that were modified, including both class attributes and behavior attributes.

You do not load individual previous object attribute values directly into the
ISmIxfObjectValueModified change object. Instead, you load the previous
object attribute values, for the attributes that changed, into the intermediate
object ISmIxfAttributesValuesGroups and then map this object to the
ISmIxfObjectValueModified object using the method SetOldValues, as
described below.

Similarly, when you want to access the previous object attribute values in a
ISmIxfObjectValueModified change object, you use the GetOldValues
method to extract the information into a ISmIxfAttributesValuesGroups
object.

An empty intermediate ISmIxfAttributesValuesGroups object can be
created from the ISmIxfObjectValueModified object using the method
NewOldValues.

Obtaining a ISmIxfObjectValueModified Object

ISmIxfObjectValueModified object is obtained through 1ISmixfChange
object of type ctObjectValueModified:

Dim Change as ISmIxfChange
Dim ObjectDeleted as ISmIxfObjectValueModified

Set Change = ChangeWriter_NewChange(ld, ctObjectValueModified, Transactionld)

Set ObjectValueModified = Change.ObjectValueModified

417

Properties and Methods

The 1SmIxfObjectValueModified object has the following properties and

methods:
Property Description

ModifiedObjectRef The Object Id of the modified object

IxfClassName The name of the class that the modified object instantiates

Method Description

NewOldValues Creates and returns an ISmixfAttributesValuesGroups object —
empty collection of attribute values to be filled by the user with
values of the modified object prior to the change (old values)

SetOldValues Sets the old values of the SmixfObjectValueModified object to
the values specified in the OldValues argument collection, whe
OldValues was filled in by the user.

GetOldValues Returns the collection of attribute values of the modified object
prior to the change represented by SmixfObjectValueModified

ISmIxfAttributesValuesGroups

Collection of ISmIxfAttributesValues objects, where each
ISmIxfAttributesValues object is a group of either class attributes or

behavior attributes.

Properties and Methods

The ISmIxfAttributesValuesGroups object has the following properties and

methods:
Property Description
Values An SmixfAttributesValues object that represents class attribute
values (see ISmixfAttributesValues.)
Method Description
GetBehaviorValues An SmixfAttributesValues object that represents ClassBehavio
attributes values (see ISmixfAttributesValues.)

Example

Dim OldValues as ISmixFAttributesValuesGroups

ObjectValueModified . .ModifiedObjectRef = ““1”

ObjectValueModified. IxfClassName = “‘DocumentMaster”

418

Chapter 11, SmartIXF Library

Set Oldvalues = ObjectValueModified.NewOldValues
“Inserting an old value for a class attribute that was modified:
OldValues.Values. I'tem(*'DocumentName’™) = ““MyDocument”

ObjectValueModified.SetOldvalues(Oldvalues)

When you finish creating the change, you need to call the Save method of
the ISmIxfChange object for all the change details to be saved to the data
file:

Change.Save

For an example of writing a change, see Common Tasks,
ISmIxfChangesWriter: Writing a change.

ISmIxfFileWriter

The FileWriter lets you include a file as part of the IXF data. In order to
include a file, you must create a ISmIxfFile object to represent it. The
ISmIxfFile object contains detailed information about the file, such as its
name and location.

The physical file, which is represented by the ISmIxfFile object, can be
embedded into the iXF Archive file, using the EmbedFile method.

In addition, you can associate the file with an existing IxfObject such as a

Document.
Note: In order to use the methods of the ISmIxfFileWriter you need to have added
the File Association Standard Behavior support in the schema. Specifically
you should include the AddDefaultFilesSupport method in the schema (see

419

File Association Standard Behavior.) If you want to use the FileAssociation capability
you need to include additional methods, as described below.

Object Diagram

The object diagram of ISmIxfFileWriter is shown below:

420

Chapter 11, SmartIXF Library

ISmixfFileWriter

(New File) ISmixfFile

ContentType

FileName

Embedded

CreationTime

ModificationTime

IxfObject

Source

Location

ComputerName

(New SecondaryFile) ISmixfSecondaryFile

Properties of ISmixfFile
(above)

PreviousSibling

(CastToFileAssociation) ISmixfFileAssociation

Fileld

Figure 11-9 ISmIxfFileWriter Object Diagram

421

Obtaining the ISmIxfFileWriter Object

Create a ISmIxfFileWriter object as follows:
Dim FileWriter as ISmixfrileWriter

Set FileWriter = WriterHelper.FileWriter

Methods
The ISmIxfFileWriter object provides methods to write file information to
the data file:
Method Description

NewFile Creates a new ISmIxfFile object

NewSecondaryFile Creates a new ISmixfSecondaryFile object

EmbedFile Embeds a file in an IXF Archive file.

EmbedSecondaryFile Embeds an associated file in an IXF Archive file.

CastToFile Converts a SmixfObject to a SmixfFile object.

The SmixfObject to be associated with a file must support
File Association Standard Behavior, otherwise the method
returns null.

CastToSecondaryFile

Converts a SmixfObject to a SmixfSecondaryFile object.
The SmixfObject to be associated with a file must support
File Association Standard Behavior, otherwise the method
returns null.

CastToFileAssociation

Converts a SmixfObject to a SmixfFileAssociation object,
which is used to associate the object with a file.

The SmixfObject to be associated with a file must support
File Association Standard Behavior, otherwise the method
returns null.

Note: In order to use the methods CastTo... you need to have enabled the File
Association Standard Behavior support for the class that the IxfObject
instantiates, by using the method EnableFileAssociationForClass (see

422

423

File Association Standard Behavior.)

ISmIxfFile

An ISmIxfFile object represents a primary IXF file and contains its
information (see also ISmIxfSecondaryFile).

Obtaining a ISmIxfFile Object

To create a new ISmIxfFile object:
Dim File as ISmixfFile

Set File = FileWriter_Newrile(ld)

Note: ISmIxfFile object can also be obtained through ISmixfFileReader Object.
See FileReader.

Save the file object to the data file after creating it, optionally embedding
the physical file into the IXF Archive:

FileWriter_EmbedFile(File)

File.Save

Where, if used, the EmbedFile method needs to be called prior to the Save

method. The File parameter is an existing ISmIxfFile object.
Note: The Save action itself does not embed the physical file to the iXF
Archive file.

For an example of how to write and embed a file, see Common Tasks,
ISmIxfFileWriter: Writing and embedding a file

Properties

The ISmIxfFile object has the properties:

Property Description

Id Input string that uniquely identifies the file object within the IXF
Instance Document. Must be a valid NCName.

FileName Specifies the name of the file

ContentType The file MIME content type

CreationTime The file creation time (TDateTime)

ModificationTime The file last modification time (TDateTime)

Embedded Indicates whether or not the file is embedded in the iXF archive

IxfObject Pointer to the ISmIxfObject that is wrapped by the current ISmIxf
object

Source The physical location of the file (ISmIxfSource)

ISmIxfSecondaryFile

The ISmIxfSecondaryFile object is provided to handle sequences of files. It
represents any member of a sequence of files that is not the first file. The
position of a ISmIxfSecondaryFile object in the sequence is determined by
its “PrevousSibling" property, which is the Id of the previous file in the
sequence.

The ISmIxfSecondaryFile object has the same set of properties as the
ISmIxfFile object, shown above, except for the addition of the
“PrevousSibling"” property.

For example, a sequence of three files might be used to contain the
information from one scanned picture.

Filel (ISmixfFile) — PreviousSibling =
File2 (I1SmixfSecondaryFile) — PreviousSibling = “Filel”

File3 (I1SmIxfSecondaryFile) — PreviousSibling = “File2”

The ISmIxfSecondaryFile object represents the information about a
secondary file that is written to the data file.

Creating a New Secondary File:

Dim SecondaryFile as ISmIxfSecondaryFile

Set SecondaryFile = FileWriter.NewSecondaryFile(ld, PreviousSibling)

Note: ISmIxfSecondaryFile object can also be obtained through
ISmIxfFileReader Object. See FileReader.

424

Chapter 11, SmartIXF Library

The file object has to be saved to the data file after finished creating it:
FileWriter.EmbedSecondaryFile(SecondaryFile)

SecondaryFile.Save

where you need to call the EmbedSecondaryFile method prior to calling the
Save method; the file parameter is an existing ISmixfSecondaryFile object.

Note: The save action does not embed the physical file to the iXF Archive file.

ISmIxfFileAssociation

The ISmIxfFileAssociation object represents an iXF File Association class
behavior, which supports associating an IXF Object, such as a Document
with a specific file.

The association between file and object is established between a
FileAssociation object, which is created from the IxfObject, and the
ISmIxfFile object that represents the file.

The object that is to be associated with a file is cast into an object of type
ISmIxfFileAssociation using the FileWriter method CastToFileAssociation.
The link from object to file is provided through the Fileld property of the
ISmIxfFileAssociation object, which is set to the Id of the ISmIxfFile
object.

Obtaining a FileAssociation Object

Dim FileAssociation as ISmIxfFileAssociation

Set FileAssociation = FileWriter.CastToFileAssociation(IxfObject)

Properties
The ISmIxfFileAssociation object has one property: the Id of the associated
file object, which provides the association between object and file.

For an example of writing a file, see Common Tasks, ISmIxfFileWriter:
Writing and embedding a file

425

ISmIxfVersioningWriter

The ISmIxfVersioningWriter provides the ability to add versioning
information to an 1ISmIxfObject. The ISmIxfVersioningWriter is useful
when you need to identify successive revisions of the same entity, for
example, successive versions of the same document.

The versioning information itself is represented by an ISmIxfVVersioning
object, which is obtained from the ISmIxfObject for which versioning is
desired by the VersioningWriter method CastToVersioning. The
ISmIxfVersioning object includes the version identifiers of the current
version and previous version of the entity.

The ISmIxfVersioningWriter has one method: CastToVersioning, which

converts an ISmIxfObject to ISmIxfVersioning
Note: In order to use the methods of the ISmIxfVersioningWriter you need to
have added the Versioning Standard Behavior support in the schema,
using the SchemaHelper method AddDefaultVersioningSupport (see
Versioning Standard Behavior)

Obtaining the ISmIxfVersioningWriter Object
Dim VersioningWriter as ISmixfVersioningWriter

Set VersioningWriter = WriterHelper_VersioningWriter

ISmIxfVersioning

The ISmIxfVersioning object represents the versioning information for the
IxfObject from which it was cast.

Obtaining a Versioning object
Dim Versioning as 1Smlxf\ersioning

Set Versioning = VersioningWriter.CastToVersioning(IxfObject)

Note: In order to use the method CastToVersioning on an IxfObject, you need
to have enabled the Versioning Standard Behavior support for the class
that IxfObject instantiates, using the SchemaHelper method
EnableVersioningForClass (see Versioning Standard Behavior)

426

Chapter 11, SmartIXF Library

Properties
The ISmIxfVersioning object has two properties:
Property Description
PreviousVersion The previous version identifier of the IxfObject from which {
SmixfVersioning object was cast.
Version The current version identifier of the IxfObject from which th
SmixfVersioning object was cast

For an example of writing a change, see Common Tasks,
ISmIxfVersioningWriter: Versioning an object

ISmIxfTimeStampWriter

The ISmIxfTimeStampWriter provides the ability to add TimeStamp
information to an IxfObject, enabling you to mark the time of object
creation and modification.

The TimeStamp information itself is represented by an ISmIxfTimeStamp
object, which is obtained from the ISmIxfObject for which time-stamping
is desired by the TimeStampWriter method CastToTimeStamp. The
ISmIxfTimeStamp object includes the creation time and modification time
of the ISmIxfObject.
Note: In order to use the methods of the ISmIxfTimeStampWriter you need to
have added the TimeStamp Standard Behavior support in the schema,

using the SchemaHelper method AddDefaultTimeStampSupport (see
TimeStampReader)

Methods

The ISmIxfTimeStampWriter object has one method: CastToTimeStamp,
which converts an ISmIxfObject to ISmIxfTimeStamp

Obtaining the ISmIxfTimeStampWriter Object
Dim TimeStampWriter as ISnIxfTimeStampWriter

Set TimeStampWriter = WriterHelper.TimeStampWriter

ISmIxfTimeStamp

The ISmIxfTimeStamp object represents the TimeStamp information for
the IxfObject from which it was cast.

427

Obtaining a ISmIxfTimeStamp Object
Dim TimeStamp as ISmIxFfTimeStamp

Set TimeStamp = TimeStampWriter .CastToTimeStamp(IxfObject)

Note: In order to use the method CastToTimeStamp you need to have enabled
the TimeStamp Standard Behavior support for the class that IxfObject
instantiates, using the SchemaHelper method
EnableTimeStampForClass (see TimeStamp Standard Behavior)

Properties
The ISmIxfTimeStamp object has two properties:
Property Description
CreationTime Time of creation of IxfObject.
ModificationTime Time of modification of IxfObject.

For an example of writing a change, see Common Tasks,
ISmIxfTimeStampWriter: Time-stamping an object

428

Chapter 11, SmartIXF Library

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to the Standard Behavior writers.

ISmIxfChangesWriter:
Writing a change

Dim StdHelper as ISmixfStdHelper
Dim WriterHelper as I1SmixfWriterHelper
Dim ChangeWriter as 1SmlxfChangeWriter

Dim DocumentObject as Object

“Create stdHelper:

StdHelper = CreateObject('SmartIXF1.SmixfStdHelper'™)

“Create Writer Helper:

Set WriterHelper = StdHelper.CreateWriterHelper(Ixfivriter)

“Create Change Writer:

Set ChangeWriter = WriterHelper.ChangeWriter
“Create ChangeTransaction:
Set Transaction = ChangeWriter_NewTransaction(*1”)

Transaction.Save

“Create a new object:

Set IxfObject = Ixfriter_DataWriter.Objectiriter_NewObject(“‘Document”,“3”);

IxfObject._Save;

429

“Create a Change for the created object:
Set Change = ChangeWriter_NewChange(*2”’; ctObjectCreated; “1)
Set Change.ObjectCreated.CreatedObjectRef = “3”

Change.Save

430

Chapter 11, SmartIXF Library

ISmIxfFileWriter:
Writing and embedding a file

Dim StdHelper as ISmixfStdHelper

Dim WriterHelper as I1SmixfWriterHelper
Dim IxfWriter as ISmIxfWriter

Dim FileWriter as ISmixfFileWriter

Dim File as ISmixfFile

“Create stdHelper:

StdHelper = CreateObject(*'SmartIXF1._SmixfStdHelper'™)

“Create a writer:

IxfWriter = CreateObject('SmartIXF1.Smixflriter'™)

“Create Writer Helper:

Set WriterHelper = StdHelper.CreateWriterHelper(Ixfivriter)

“Create File Writer:

Set FileWriter = WriterHelper.FileWriter

“Create File:

Set File = FileWriter.NewrFile(*1”)
File_FileName = “‘design.doc”

File.SetSource = “‘c:\MyDocuments\design.doc”
FileWriter.EmbedFile(File)

File.Save

431

ISmIxfFileWriter:
Associating an object with a file

Dim FileAssociation as ISmIxfFileAssociation

Dim DocumentObject as 1SmIxfObject

“Create a user-defined object:

Set DocumentObject =
IxfWriter _DatalriterObjectiriter_newObject(“‘DocumentMaster’, “2)

“Cast the user-defined object to a file association object:
FileAssociation = FileWriter._CastToFileAssociation(DocumentObject)

FileAssociation.Fileld = “1”

ISmIxfVersioningWriter:
Versioning an Object

Dim StdHelper as ISmixfStdHelper

Dim WriterHelper as I1SmixfWriterHelper

Dim IxfWriter as ISmIxfWriter

Dim VersioningWriter as ISmixfVersioningWriter
Dim Versioning as ISmixf\Versioning

Dim DocumentObject as 1SmIxfObject

“Create stdHelper:

StdHelper = CreateObject(*'SmartIXF1.SmixfStdHelper'™)

“Create a writer:

IxfWriter = CreateObject('SmartIXF1.Smixflriter'™)

432

Chapter 11, SmartIXF Library

“Create Writer Helper:

Set WriterHelper = StdHelper.CreateWriterHelper(Ixfivriter)

“Create Versioning Writer:

Set VersioningWriter = WriterHelper._VersioningWriter

“Create a user-defined object:

Set DocumentObject =
IxfWriter _DatalriterObjectiriter NewObject(*‘DocumentMaster’, “4)

“Cast the user-defined object to versioning object:
Versioning = VersioningWriter.CastToVersioning(DocumentObject)
Versioning.Version = “2.0”

Versioning-PreviousVersion = “1.0”

ISmIxfTimeStampWriter:
Time-stamping an object

Dim StdHelper as ISmixfStdHelper

Dim WriterHelper as I1SmixfWriterHelper

Dim TimeStampWriter as 1SmIxXfTimeStampWriter

“Create stdHelper:

StdHelper = CreateObject(*'SmartIXF1.SmixfStdHelper'™)
“Create Writer Helper:

Set WriterHelper = StdHelper.CreateWriterHelper(Ixfiriter)
Set TimeStampWriter = WriterHelper._TimeStampWriter

“Create TimeStamp:

TimeStamp = TimeStampWriter.CastToTimeStamp(DocumentObject)

TimeStamp.CreationTime = now

433

ISmIxfReaderHelper

The ISmixfReaderHelper object supports reading Standard Behaviors
information from a data file.

Identifying and Restoring Read-In Objects

The Standard Behaviors object data is written by the DataWriter to the IXF
Instance data file as the original object types such as ISmIxfChange,
ISmIxfFile, ISmIxfVersioning, as described in the section on the
ISmIxfWriterHelper.

However, the same object data is read by the DataReader from the IXF
Instance data file as generic ISmIxfObject objects rather than as the object
types that were originally written to the data file. To identify and restore
the original object types, the ReaderHelper provides methods for casting
the ISmIxfObject objects read from the data file back to the same type of
objects that were written.

For each object read in, you need to run all the cast methods on it
successively. When a specific cast method returns a non-null result, you
have identified and restored the object.

Object Diagram

The object diagram of ISmIxfReaderHelper is shown below:

434

Chapter 11, SmartIXF Library

ISmIxfReaderHelper

ChangeReader

(CastToTransaction)

ISmIxfChangeTransaction

(CastToChange)

ISmIxfChange

FileReader

(CastToFile)

ISmIxfFile

(CastToSecondaryFile)

ISmIxfSecondaryFile

(CastToFileAssociation)

ISmIxfFileAssociation

VersioningReader

(CastToVersioning)

ISmIxfVersioning

TimeStampReader

(CastToTimeStamp)

ISmIxfTimeStamp

Figure 11-10 ISmIxfReaderHelper Object Diagram

435

Properties

Four ReaderHelper properties are provided corresponding to the supported
Standard Behaviors:

Property Description
ChangeReader Provides methods for reading Change-Tracking objects
FileReader Provides methods for reading File Association objects
VersioningReader Provides methods for reading Versioning objects
TimeStampReader Provides methods for reading TimeStamp objects

Obtaining the ISmIxfReaderHelper Object

To obtain an ISmIxfReaderHelper Object:
Dim ReaderHelper as 1SmlxfReaderHelper

Set ReaderHelper = StdHelper .CreateReaderHelper(IxfReader)

ChangeReader

The ChangeReader helps to read the change-tracking objects
ISmIxfChange and ISmIxfChangeTransaction from the Ixf Archive data
file. The ChangeReader identifies and restores the original object types, by
casting the ISmIxfObject objects read from the Ixf Archive data file back to
the same type of objects that were written.

Obtaining the ISmIxfChangeReader Object
Dim ChangeReader as 1SmlxfChangeReader

Set ChangeReader = ReaderHelper.ChangeReader

436

Chapter 11, SmartIXF Library

Methods

The ISmIxfChangeReader object provides the following methods to read
Change-Tracking information from the data file.

Method Description
CastToChange Converts an ISmIxfObject to ISmIxfChange
CastToTransaction Converts an ISmIxfObject to ISmIxfChangeTransaction

Note: In order to use these methods, you need to have added the Change-
Tracking Standard Behavior support in the schema, using the
SchemaHelper method AddDefaultChangesSupport (see Change-
Tracking Standard Behavior)

ISmIxfChangeTransaction
To cast an object to a ChangeTransaction object:
Dim Transaction as ISmIxfChangeTransaction

Set Transaction = ChangeReader.CastToTransaction(IxfObject)

See ISmIxfChangeTransaction section under ISmIxfChangeWriter for
details about the ISmIxfChangeTransaction properties.

ISmIxfChange
To cast an object to a Change object:
Dim Transaction as ISmIxfChangeTransaction

Set Transaction = ChangeReader.CastToTransaction(IxfObject)

See ISmIxfChange section under ISmixfChangeWriter section for details
about the ISmIxfChange properties.

For an example of how to use ISmIxfReaderHelper to read Change objects,
see Common Tasks, Reading and Casting objects to File and to Change
objects

437

FileReader

The FileReader helps to read the File Association objects ISmIxfFile,
ISmIxfSecondaryFile and ISmIxfFileAssociation from the Ixf Archive data
file. The FileReader identifies and restores the original object types, by
casting the ISmIxfObject objects read from the Ixf Archive data file back to
the same type of objects that were written.

Obtaining the ISmIxfFileReader Object

To obtain the ISmIxfFileReader object:
Dim FileReader as ISmIxfFileReader

Set FileReader = ReaderHelper.FileReader

Methods

The ISmixfFileReader object provides the following methods for reading
file information from the data file:

Method Description
CastToFile Converts an ISmIxfObject to ISmIxfFile
CastToSecondaryFile Converts an ISmIxfObject to ISmIxfSecondaryFile
CastToFileAssociation Converts an ISmIxfObject to an ISmIxfFileAssociation object

Note: In order to use these methods, you need to have added the File
Association Standard Behavior support in the schema by including the
AddDefaultFilesSupport method in the schema (see

438

File Association Standard Behavior.) In addition, you need to have enabled
the File Association Standard Behavior support for the class that
IxfObject instantiates, by including the method
EnableFileAssociationForClass (see

439

File Association Standard Behavior.)

440

Chapter 11, SmartIXF Library

ISmIxfFile

The ISmIxfFile object represents a primary IXF file and contains the file
information.

To cast an object to File object:
Dim File as ISmixfFile

Set File = FileReader.CastToFile(IxfObject)

See ISmIxfFile section for details about the ISmIxfFile properties.

In order to extract an embedded file from the iXF Archive file, you can use
one the following methods of ISmIxfFile object:

File.Extract(RootFolder)
File_ExtractToFi le(NewFi leName)

See the reference guide for more details about those functions.

For an example of how to use ISmIxfReaderHelper to read File objects, see
Common Tasks, Reading and Casting objects to File and to Change objects

ISmIxfSecondaryFile

To cast an object to a SecondaryFile object:
Dim SecondaryFile as ISmIxfSecondaryFile

Set SecondaryFile = FileReader.CastToSecondaryFile(ld, PreviousSibling)

See ISmIxfFile section for details about the ISmIxfSecondaryFile
properties.

ISmIxfFileAssociation

To cast an object to a FileAssociation object:
Dim FileAssociation as ISmIxfFileAssociation

Set FileAssociation = FileWriter.CastToFileAssociation(IxfObject)

See ISmixfFileAssociation for information about the
ISmIxfFileAssociation properties.

VersioningReader

441

The VersioningReader helps to read 1SmIxfVersioning objects from the Ixf
Archive data file. The VersioningReader identifies and restores the original
object types, by casting the ISmIxfObject objects read from the Ixf Archive
data file back to the same type of objects that were written.

Obtaining the ISmIxfVersioningReader Object

To obtain a ISmixfVersioningReader Object:

Dim VersioningReader as ISmIxf\ersioningReader

Set VersioningReader = ReaderHelper .VersioningReader

Methods

The ISmixfVersioningReader has one method: CastToVersioning, which
converts an ISmIxfObject to a ISmIxfVersioning object.

Note: In order to use this method, you need to have added the Versioning
Standard Behavior support in the schema, using the SchemaHelper
method AddDefaultVersioningSupport (see Versioning Standard
Behavior). In addition, to use CastToVersioning on an IxfObject, you
need to have enabled the Versioning Standard Behavior support for the
class that IxfObject instantiates, by including the method
EnableVersioningForClass (see

442

File Association Standard Behavior.)

ISmIxfVersioning

See the ISmIxfVersioning section under ISmixfVersioningWriter for
information about this object.

TimeStampReader

443

The TimeStampReader helps to read 1SmIxfTimeStamp objects from the
IXf Archive data file. The TimeStampReader identifies and restores the
original object types, by casting the ISmIxfObject objects read from the Ixf
Archive data file back to the same type of objects that were written.

Obtaining the ISmIxfTimeStampReader Object
Dim TimeStampReader as ISmIxfTimeStampReader

Set TimeStampWriter = WriterHelper.TimeStampReader

Methods

The ISmIxfTimeStampReader object has one method: CastToTimeStamp,
which converts an ISmIxfObject to a ISmIxfTimeStamp object.

Note: In order to use this method, you need to have added the TimeStamp
Standard Behavior support in the schema, using the SchemaHelper
method AddDefaultTimeStampSupport (see TimeStamp Standard
Behavior). In addition, to use CastToTimeStamp on an IxfObject, you
need to have enabled the TimeStamp Standard Behavior support for the
class that IxfObject instantiates, by including the
mISmIxfTimeStampWriterethod EnableTimeStampForClass (see
TimeStamp Standard Behavior)

ISmIxfTimeStamp

See ISmIxfTimeStamp section under the ISmIxfTimeStampWriter object
for information about this object.

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to an ISmixfReaderHelper.

ISmIxfReaderHelper:
Reading and Casting objects to File and to Change objects
Dim StdHelper as ISmIxfStdHelper
Dim ReaderHelper as I1SmlxfReaderHelper
Dim Objectlterator As ISmixfObjectlterator
Dim IxfObject Ss ISmIxfObject
Dim Change As ISmIxfChange
Dim Changeld, CreatedObjectld As Sting
Dim File As ISmixfFile
“Create stdHelper:

StdHelper = CreateObject('SmartlXF1.SmixfStdHelper'™)

“Create Reader Helper:

444

Chapter 11, SmartIXF Library

Set ReaderHelper = StdHelper .CreateReaderHelper(IxfReader)

“Create Objectlterator:

Set Objectlterator = IxfReader.DataReader_ObjectReader.GetObjectlterator

While Objectlterator AtEnd = False

Set IxfObject = Objectlterator.GetObject

“Read Change
Change = ReaderHelper .ChangeReader .CastToChange(IxfObject)
IT Not (Change Is Nothing) Then
Changeld = Change.Id
If Change.ChangeType = ctObjectCreated Then
CreatedObjectld = Change.ObjectCreated.CreatedObjectRef

End IF

End If

“Read File
File = ReaderHelper_FileReader.CastToFile(IxfObject)
IT Not (File Is Nothing) Then

FileName = File._FileName

File_Extract(“‘Ixf Sample™)

End If
Objectlterator.Next

Wend

445

An IXF Messaging Application

This section presents a sample iXF application, which demonstrates many
of the objects, properties and methods described above.

The sample application includes generating and processing an iXF package
for a messaging application, using the basic Smartlxf1.0 API functionality.
This example is included in the SDK under Samples/SmartIxf/\Vb/Samplel.

A simple messaging format is defined, which includes the basic messaging

entities: message, attachment and folder.

Messaging Format

Entity

Attributes

Message

- From

-To

- Subject

- Body

- Importance

- Time of sending

Folder

- Name
- Creation time

Attachment

- File reference

FolderLink

- Parent folder
- Child folder

FolderMessageLink

- Parent folder
- Child message

MessageAttachmentLink

- Parent message
- Child attachment

446

Chapter 11, SmartIXF Library

Class Behaviors

The following table lists the ClassBehaviors.

ClassBehaviol URI Attributes
Message <examplens-c> From: String, required
Imessaging#message To: String, required

Subject: String, not required
Body: String, not required

Importance: Integer, not requirg
default value = 0

Folder <examplens-c> Name: String, required
Imessagingifolder

Link <ixfstdns-c> Objectl, Object2
Mlinks/1.0#link

Directed Link <ixfstdns-c> Object1, Object2
/links/1.0#directedLink Directed from Objectl to Objec

Tree Link <ixfstdns-c> Objectl, Object2
/links/1.0#treeLink Objectl is the only parent of

Object2

TimeStamp <ixfstdns-c> creationTime
/timeStamp/1._0#timeStamp | modificationTime

FileAssociation | <ixfstdns-c> file

[files/1.0#fileAssociation

The following abbreviations are used in the table:

<examplens-c>

http://example.com/classBehaviors

<ixfstdns-c>

http://www.ixfstd.org/std/ns/core/classBehaviors

Domain Behaviors

This section describes the Domain Behavior defined for the messaging
application. The URI for the Domain Behavior is:
http://lexample.com/domainBehaviors/messaging.

447

Domain Behavior Definition

The following table defines the Roles and, for each Role, the Class
Behaviors that must be implemented by the class, which is mapped to the
role. The timeStamp Standard Behavior is only included in the Message
and Folder Roles.

Role Required Class Behaviors
Message <examplens-c>/messaging#message
<ixfstdns-c>/timeStamp/1.0#timeStamp
Folder <examplens-c>/messaging#folder
<ixfstdns-c>/timeStamp/1.0#timeStamp
FolderLink <ixfstdns-c>/links/1.0#link

<ixfstdns-c>/links/1.0#directedLink
<ixfstdns-c>/links/1.0#treelLink
Informal restriction: must point to folder-behavior objects

Attachment <ixfstdns-c>/files/1.0#fileAssociation

MessageAttachmentLink <ixfstdns-c>/links/1.0#link
<ixfstdns-c>/links/1.0#directedLink
informal restriction: parent = message, child = attachment

FolderMessageLink <ixfstdns-c>/links/1.0#link
<ixfstdns-c>/links/1.0#directedLink
informal restriction: parent = folder, child = message

Role-to-Class Mapping

The Role-to-Class mapping for the Domain Behavior is:

Role Class
Message Message
Folder Folder
FolderLink FolderLink
Attachment Attachment
AttachmentLink AttachmentLink
FolderMessageLink FolderMessageLink

Connectivity of Objects

The following diagram shows the connectivity of the basic object and the
link objects in the example.

Associating Files with Messages

448

Chapter 11, SmartIXF Library

Note that although the file is associated with the message, the File object is
not associated directly to the Message object, but rather through an
Attachment object. The File is associated with the Attachment object
through the FileAssociation Standard Behavior and the attachment object is
linked to the message object with the MessageAttachmentLink.

The reason it is done this way is that the FileAssociation Standard
Behavior allows you to associate at most one file with an object enabled for
FileAssociation. Thus, to allow for the possibility of associating more than
one file to a message, the messaging application has been designed with the
intermediate Attachment object and the MessageAttachmentLink object.
For each file you want to associate with a message, you create a separate
Attachment object and a corresponding MessageAttachmentLink object and
follow the procedure of the example.

The figure below shows how you would associate more than one file to the
message.

449

Folder

Id: OID_5
Name: development

I
Folder Link

Folder

Id: OID_6
Name: iXF

I
Folder Link

v

Folder

Id: OID_7
Name: Samplel

I
FolderMessageLink

v

Message
Id: OID_1
From: Bruce Mayer
To: David Stein
Subject: ReadMe file

MessageAttachmentLink

MessageAttachmentLinkl

MessageAttachmentLink2

v v v
Attachment Attachmentl Attachment2
Id: OID_3 Id: Id:
File: OID_2 File: File:
A A A
FileAssociation FileAssociation FileAssociation
v v v
File Filel File2
Id: OID_2 Id: Id:
Filename:Samplel.doc Filename: Filename:
ContentType: text/xml ContentType: ContentType:

Associating Additional Files

450

Chapter 11, SmartIXF Library

Implementing the Application

This section shows code examples of how the messaging application is
implemented. This section does not include all the code in the example, but

rather the code needed to illustrate and explain the implementation. For the
full code, see the example included in:
SDK/Samples/Smartixf/Vb/Samplel/Samplel.vbp

Creating the Schema

This section shows how to create the schema for the application and
includes the topics:

e Adding Class Behaviors
e Adding Classes
e Adding Domain Behaviors

Adding Class Behaviors

The following functions add the required Class Behaviors to the schema:

Add API-Supported ClassBehaviors
Private Sub (Schema As ISmIxfSchema, SchemaHelper As ISmIxfSchemaHelper)
“Add iXF TimeStamp Standard Class Behavior

SchemaHelper . AddDefaul tTimeStampSupport

“Add iXF FileAssociation Standard Class Behavior
SchemaHelper . AddDefaultFi lesSupport
End Sub

Add Message ClassBehavior
Private Sub AddMessageClassBehavior(Schema As I1SmIxfSchema)
Dim IxfClassBehavior As ISmIxfClassBehavior

Dim IxfAttribute As ISmixfAttribute

451

“Add Message ClassBehavior to Schema ClassesBehaviors

Set IxfClassBehavior = Schema.ClassesBehaviors.Add(mtEmbedded,
CB_MESSAGE_URI)

“Add “from” attribute to Message ClassBehavior
Set IxfAttribute = IxfClassBehavior _Attributes.Add("*from')
IxFAttribute.TypeDefinition.ValueType = dtString

IxFAttribute_Required = True

“Add ““to” attribute to Message ClassBehavior
Set IxfAttribute = IxfClassBehavior.Attributes.Add('to'")
IxFAttribute._TypeDefinition.ValueType = dtString

IxFAttribute_Required = True

“Add ““subject” attribute to Message ClassBehavior
Set IxfAttribute = IxfClassBehavior _Attributes.Add('subject’™)
IxFAttribute._TypeDefinition._ValueType = dtString

IxFAttribute_Required = False

“Add ““body” attribute to Message ClassBehavior
Set IxfAttribute = IxfClassBehavior_Attributes.Add(*body'")
IxfAttribute.TypeDefinition.ValueType = dtString

IxFAttribute.Required = False

“Add ““importance” attribute to Message ClassBehavior
Set IxfAttribute = IxfClassBehavior _Attributes.Add('importance’)

IxFAttribute.TypeDefinition.ValueType = dtint

452

Chapter 11, SmartIXF Library

IxFAttribute_Required = False
IxfAttribute.Defaultvalue = 0

End Sub

Add Folder ClassBehavior
Private Sub AddFolderClassBehavior(Schema As 1SmixfSchema)
Dim IxfClassBehavior As ISmIxfClassBehavior

Dim IxfAttribute As ISmixfAttribute

“Add Folder ClassBehavior to Schema ClassesBehaviors

Set IxfClassBehavior = Schema.ClassesBehaviors.Add(mtEmbedded,
CB_FOLDER_URI)

“Add “name” attribute to Folder ClassBehavior

Set IxfAttribute = IxfClassBehavior _Attributes.Add('name')
IxfAttribute.TypeDefinition.ValueType = dtString
IxFAttribute.Required = True

End Sub

Add Link ClassBehavior
Private Sub AddLinkClassBehavior(Schema As ISmIxfSchema)
Dim IxfClassBehavior As ISmIxfClassBehavior

Dim IxfAttribute As ISmIxfAttribute

“Add IXF Standard ClassBehavior “Link™ to Schema ClassesBehaviors

Set IxfClassBehavior = Schema.ClassesBehaviors.Add(mtEmbedded,
CB_LINK_URI)

“Add “‘objectl” attribute to Link ClassBehavior

Set IxfAttribute = IxfClassBehavior _Attributes_Add('objectl'™)

453

IxFAttribute.TypeDefinition.ValueType = dtObjectReference

IxFAttribute.Required = True

“Add ““object2” attribute to Link ClassBehavior

Set IxfAttribute = IxfClassBehavior _Attributes.Add("'object2'")
IxFAttribute.TypeDefinition.ValueType = dtObjectReference
IxFAttribute_Required = True

End Sub

To add Directed Link, Tree Link, and TimeStamp Class Behaviors, see
source files.
Execute Functions

Public Sub AddClassBehaviorsDefinitionsToSchema(Schema As 1SmixfSchema,
SchemaHelper As 1SmIxfSchemaHelper)

AddAP1SupportedClassBehaviors Schema, SchemaHelper
AddMessageClassBehavior Schema
AddrolderClassBehavior Schema
AddLinkClassBehavior Schema
AddDirectedLinkClassBehavior Schema
AddTreeLinkClassBehavior Schema

End Sub
Adding Classes
The following functions add the required classes to the schema:

Add Message Class

Private Sub AddMessageClass(Schema As ISmIxfSchema, SchemaHelper As
1SmIxFSchemaHelper)

Dim IxfClass As ISmIxfClass

Dim IxfClassBehavior As ISmIxfClassBehavior

454

Chapter 11, SmartIXF Library

“Add class “message” to Schema Classes

Set IxfClass = Schema.Classes.Add(*'message')

“Enable IXF TimeStamp Standard Behavior for message class as required
“by DB_MESSAGING_URI Domain Behavior

SchemaHelper .EnableTimeStampForClass IxfClass

“Declare CB_MESSAGE _URI ClassBehavior in message class as required
“by DB_MESSAGING_URI Domain Behavior

Set IxfClassBehavior = Schema.ClassesBehaviors. 1temByURI(CB_MESSAGE_URI)

IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

End Sub

Add Folder Class

Private Sub AddFolderClass(Schema As ISmixfSchema, SchemaHelper As
1SmIxfFSchemaHelper)

Dim IxfClass As ISmIxfClass

Dim IxfClassBehavior As ISmIxfClassBehavior

“Add class “folder” to Schema Classes

Set IxfClass = Schema.Classes.Add(*'folder'")

“Enable IXF TimeStamp Standard Behavior for folder class as required
“by DB_MESSAGING_URI Domain Behavior

SchemaHelper .EnableTimeStampForClass IxfClass

“Declare CB_FOLDER URI ClassBehavior in folder class as required

“by DB_MESSAGING_URI Domain Behavior

455

Set IxfClassBehavior = Schema.ClassesBehaviors. ItemByURI(CB_FOLDER_URI)

IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

End Sub

Add FolderLink Class
Private Sub AddFolderLinkClass(Schema As ISmIxfSchema)
Dim IxfClass As ISmIxfClass

Dim IxfClassBehavior As ISmIxfClassBehavior

“Add class “folderLink” to Schema Classes

Set IxfClass = Schema.Classes.Add(**folderLink')

“Declare CB_LINK URI, CB DIRECTEDLINK URI, and CB_TREELINK_URI
“ClassBehaviors in folderLink class as required

“by DB_MESSAGING_URI Domain Behavior. When writing the object, only
“the CB_LINK_URI is used. (The presence of the CB DIRECTEDLINK_URI,
“and CB_TREELINK URI ClassBehaviors cause the CB LINK URI to be
“interpreted as a directed parent-son tree link.)
Set IxfClassBehavior = Schema.ClassesBehaviors. 1temByURI(CB_LINK_URI)
IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

Set IxfClassBehavior =
Schema.ClassesBehaviors. 1temByURI(CB_DIRECTEDLINK_URI)

IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

Set IxfClassBehavior = Schema.ClassesBehaviors. ItemByURI(CB_TREELINK URI)

IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

End Sub

456

Chapter 11, SmartIXF Library

Add Attachment Class

Private Sub AddAttachmentClass(Schema As ISmIxfSchema, SchemaHelper As
1SmIxFSchemaHe lper)

Dim IxfClass As ISmIxfClass

“Add class ““attachment” to Schema Classes

Set IxfClass = Schema.Classes.Add(*'attachment'")

“Enable IXF FileAssociation Standard Behavior for folder class as
“required by DB_MESSAGING_URI Domain Behavior

SchemaHelper .EnableFileAssociationForClass IxfClass

End Sub

Add MessageAttachmentLink Class
Private Sub AddMessageAttachmentLinkClass(Schema As 1SmIxfSchema)
Dim IxfClass As ISmIxfClass

Dim IxfClassBehavior As ISmIxfClassBehavior

“Add class “messageAttachmentLink” to Schema Classes

Set IxfClass = Schema.Classes.Add(*'messageAttachmentLink')

“Declare CB_LINK URI, and CB _DIRECTEDLINK_URI ClassBehaviors in
“messageAttachmentLink class as required by DB_MESSAGING_URI Domain
“Behavior

Set IxfClassBehavior = Schema.ClassesBehaviors. 1temByURI(CB_LINK_URI)
IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

Set IxfClassBehavior =
Schema.ClassesBehaviors. 1temByURI(CB_DIRECTEDLINK_URI)

IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

End Sub

457

Add FolderMessageLink Class
Private Sub AddFolderMessagelinkClass(Schema As ISmIxfSchema)
Dim IxfClass As ISmIxfClass

Dim IxfClassBehavior As ISmIxfClassBehavior

“Add class “folderMessagelLink” to Schema Classes

“Set IxfClass = Schema.Classes.Add(""folderMessageLink'")

“Declare CB_LINK URI, and CB_DIRECTEDLINK_URI ClassBehaviors in
“folderMessageLink class as required by DB _MESSAGING _URI Domain
“Behavior

Set IxfClassBehavior = Schema.ClassesBehaviors. ItemByURI(CB_LINK URI)
IxfClass.CurrentClassBehaviors._Add IxfClassBehavior

Set IxfClassBehavior =
Schema.ClassesBehaviors. 1temByURI (CB_DIRECTEDLINK_URI)

IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

End Sub

Execute Functions

Public Sub AddClassesDefininitionsToSchema(Schema As ISmIxfSchema,
SchemaHelper As ISmixfSchemaHelper)

AddMessageClass Schema, SchemaHelper
AddFolderClass Schema, SchemaHelper
AddFolderLinkClass Schema
AddAttachmentClass Schema, SchemaHelper
AddMessageAttachmentLinkClass Schema
AddFolderMessageLinkClass Schema

End Sub

458

Adding Domain Behaviors

459

The following functions add the required Domain Behavior to the schema:

Add Messaging Domain Behavior
Private Sub AddMessagingDomainBehavior(Schema As 1SmlxfSchema)
Dim IxfDomainBehavior As ISmixfDomainBehavior
Dim IxfClass As ISmIxfClass
“Add Domain Behavior DB_MESSAGING_URI”” to Schema DomainBehaviors

Set IxfDomainBehavior = Schema.DomainBehaviors.Add(DB_MESSAGING_URI)

“Assign the Domain Behavior Roles to their corresponding classes

Set IxfClass = Schema.Classes. I'temByName(*'message’)

IxfDomainBehavior.RoleClassMapping(‘'message'™) = IxfClass

Set IxfClass = Schema.Classes. I'temByName("*folder'™)

IxfDomainBehavior_RoleClassMapping(**folder'”) = IxfClass

Set IxfClass = Schema.Classes. ItemByName(**folderLink'™)

IxfDomainBehavior.RoleClassMapping(**folderLink'") = IxfClass

Set IxfClass = Schema.Classes. ItemByName(*‘attachment'")

IxfDomainBehavior_RoleClassMapping(*‘attachment'?) = IxfClass

Set IxfClass = Schema.Classes. ItemByName(*'messageAttachmentLink'™)

IxfDomainBehavior.RoleClassMapping(*'messageAttachmentLink') = IxfClass
End Sub

Execute Functions
Public Sub AddDomainBehaviorsToTheSchema(Schema As 1SmIxFSchema)
AddMessagingDomainBehavior Schema

End Sub

Writing the Data

This section shows how to write the data to a data file. Two types of
objects are written:

Basic Objects
Link Objects

Basic Objects

Write Message Object

Private Sub CreateMessageObject(Datalriter As ISmixfDataWriter, WriterHelper
As ISmixfriterHelper)

Dim IxfObject As ISmixfObject
Dim BehaviorValues As ISmIxfAttributesValues

Dim TimeStamp As ISmIxFTimeStamp

“Instantiate an object from the message class; give it an Id

Set IxfObject = DataWriter.Objectiriter .NenObject(*'message™, ""OID_1'")

“Assign values to CB_MESSAGE URI BehaviorValues

Set BehaviorValues = IxfObject.GetBehaviorValues(CB_MESSAGE URI)
BehaviorValues. Item("*from') = "Bruce Mayer"

BehaviorvValues. Item("'to'") = "David Stein™

BehaviorValues. Item('subject’™”) = ** The Samplel.doc file ™

BehaviorValues. Item('body'?) = " Attached is the Samplel.doc file"

“TimeStamp the message object

Set TimeStamp = WriterHelper.TimeStampWriter.CastToTimeStamp(IxfObject)

TimeStamp.CreationTime = Now

460

Chapter 11, SmartIXF Library

“Save the message object to the data File
IxfObject._Save

End Sub

Create and Embed the File Object

Private Sub CreateFileObjectAndEmbedFile(WriterHelper As ISmixfiriterHelper)

Dim IxfFile As ISmixfFile

“Instantiate a File object and give it values

Set IxfFile = WriterHelper.FileWriter _Newrile('0ID_2'")
Ixfrile.FileName = " Samplel.doc"

Ixfrile_ContentType = "“text/xml""

Ixfrile_SetSource (*'Samplel.doc'™)

“Embed the File object and save it to the data file
WriterHelper_FileWriter _EmbedFile IxfFile
Ixfrile_Save

End Sub

Write Attachment Object

Private Sub CreateAttachmentObject(Datalriter As ISmixfDataWriter,
WriterHelper As ISmixfWriterHelper)

Dim Ixfobject As ISmIxfObject

Dim FileAssociation As ISmixfFileAssociation

“Instantiate an object from the attachment class; give it an Id

Set IxfObject = DataWriter._ObjectWriter.NewObject(*‘attachment”, "OID_3'")

461

“Associate the File object OID_2 with the attachment object

Set FileAssociation =
WriterHelper._FileWriter._CastToFileAssociation(I1xfObject)

FileAssociation.Fileld = "0ID_2"

“Save the attachment object
IxfObject.Save

End Sub

Write Folder Objects

Private Sub CreateFolderObjects(Datalriter As ISmixfDataWriter, WriterHelper
As ISmixfriterHelper)

Dim IxfObject As ISmixfObject
Dim BehaviorValues As ISmixfAttributesValues

Dim TimeStamp As ISmIxFfTimeStamp

“Development folder
“Instantiate an object from the folder class; give it an Id

Set IxfObject = Datalriter.ObjectWriter.NewObject(**folder'”, "0ID 5)

“Get CB_FOLDER URI ClassBehavior BehaviorValues for this folder “object
Set BehaviorValues = IxfObject.CGetBehaviorValues(CB_FOLDER_URI)
“Name the folder “Development”

BehaviorValues. Item(*'name') = *Development’

“Time-stamp the “Development” folder

Set TimeStamp = WriterHelper.TimeStampWriter.CastToTimeStamp(IxfObject)

TimeStamp.CreationTime = Now

462

Chapter 11, SmartIXF Library

“Save the “Development” folder

IxfObject.Save

“iXF folder
“Instantiate another object from the folder class; give it an Id

Set IxfObject = Datalriter.ObjectWriter.NewObject(**folder'”, "OID _6')

“Get CB_FOLDER URI ClassBehavior BehaviorValues for this folder “object and
name It “iXF”’

Set BehaviorValues = IxfObject.GetBehaviorValues(CB_FOLDER_URI)

BehaviorValues. Item(*'name™) = "iXF"

“Time-stamp the “iXF’ folder

Set TimeStamp = WriterHelper.TimeStampWriter.CastToTimeStamp(IxfObject)

TimeStamp.CreationTime = Now

“Save the “iXF”’ folder

IxfObject._Save

“Samplel folder
“Instantiate another object from the folder class; give it an Id

Set IxfObject = Datalriter.ObjectiWriter.NewObject(**folder™, "OID_7'")

“Get CB_FOLDER _URI ClassBehavior BehaviorValues for this folder “object and
name it “Samplel”

Set BehaviorValues = IxfObject.CGetBehaviorValues(CB_FOLDER_URI)

Behaviorvalues. Item("'name') = "‘Samplel™

463

“Time-stamp the “Samplel” folder

Set TimeStamp = WriterHelper.TimeStampWriter.CastToTimeStamp(IxfObject)

TimeStamp.CreationTime = Now

“Save the “‘Samplel” folder
IxfObject.

End Sub

Link Objects

Write MessageAttachmentLink Object

Private Sub CreateMessageAttachmentLinkObject(DataWriter As ISmixfDataWriter)

Dim IxfObject As ISmIxfObject

Dim BehaviorValues As ISmixfAttributesValues

“Instantiate an object from the messageAttachmentLink class;
“give it an Id

Set IxfObject = DataWriter._ObjectWriter.NewObject(*'messageAttachmentLink'”,
"0l1D_4")

“Get CB_LINK_URI ClassBehavior BehaviorValues for this object
Set BehaviorValues = IxfObject.GetBehaviorValues(CB_LINK _URI)
"Link between the message object and the attachment object
Behaviorvalues. Item("'objectl'™) = "0OID_1"

BehaviorValues. Item('object2'™) = "0OID_3"

“Save the messageAttachmentLink object
IxfObject.Save

End Sub

464

Chapter 11, SmartIXF Library

Write FolderLink Objects
Private Sub CreateFolderLinkObjects(DatalWriter As ISmixfDataWriter)
Dim IxfObject As I1SmixfObject

Dim BehaviorValues As ISmixfAttributesValues

"Link "Development’” folder as parent of "iXF" folder

Set IxfObject = DataWriter._ObjectWriter.NewObject(**folderLink™, "OID_8™)

Set BehaviorValues = IxfObject.GetBehaviorValues(CB_LINK_URI)
BehaviorValues. Item('objectl'™) = "0OID 5"

BehaviorValues. Item("'object2') = "0OID_6"

“Save the folderLink

IxfObject_Save

"Link "iXF" folder as parent of "Samplel” folder

Set IxfObject = DataWriter._ObjectWriter.NewObject(**folderLink™, "OID _9™)

Set BehaviorValues = IxfObject.GetBehaviorValues(CB_LINK_URI)
BehaviorValues. Item(*'objectl'™) = "0OID_6"

BehaviorValues. Item(*'object2'”) = "0OID_7""

“Save the folderLink
IxfObject_Save

End Sub

Write FolderMessageAttachment Objects

Private Sub CreateFolderiMessageAttachmentObjects(Datalriter As
I1SmIxfDatalriter)

465

Dim IxfObject As ISmixfObject

Dim BehaviorValues As ISmIxFAttributesValues

"Link where "Samplel™ folder as parent of the message with the
"subject '"The Samplel.doc file"

Set IxfObject = DataWriter.ObjectWriter.NewObject(*"folderMessagelLink',
L] IOI D_8l l)

Set BehaviorValues = IxfObject.GetBehaviorValues(CB_LINK _URI)
BehaviorValues. Item('objectl'™) = "0OID_7"*

BehaviorValues. Item('object2'”) = "0OID_1""

“Save the link
IxfObject._Save

End Sub

Execute Functions
Public Sub CreateData(Writer As ISmixfiWriter, StdHelper As SmixfStdHelper)
Dim WriterHelper As 1SmixfWriterHelper

Dim DataWriter As ISmixfDataWriter

Set WriterHelper = StdHelper.CreateWriterHelper(Writer)

CreateMessageObject Writer_DataWriter, WriterHelper
CreateFileObjectAndEmbedFile WriterHelper
CreateAttachmentObject Writer.DataWriter, WriterHelper
CreateMessageAttachmentLinkObject Writer _Datalriter
CreateFolderObjects Writer_DataWriter, WriterHelper
CreateFolderLinkObjects Writer.DataWriter

CreateFolderlMessageAttacmentObjects Writer.Datalriter

466

Chapter 11, SmartIXF Library

End Sub
Reading the Data

This section shows how to use the Reader and the ReaderHelper to read the
data file.
Read Data Objects
Public Sub ReadData(Reader As ISmixfReader, StdHelper As SmixfStdHelper)
Dim ReaderHelper As 1SmlxfReaderHelper
Dim Objectlterator As ISmixfObjectlterator
Dim IxfObject As ISmixfObject

Dim Ixfrile As ISmixfFile

Set ReaderHelper = StdHelper.CreateReaderHelper(Reader)

Set Objectlterator = Reader.DataReader.ObjectReader.GetObjectlterator

While Objectlterator AtEnd = False
Set IxfObject = Objectlterator.GetObject
“Read in object
HandleObject IxfObject, Reader
“See if it is File object
Set IxfFile = ReaderHelper_FileReader.CastToFile(IxfObject)
If Not (IxfFile Is Nothing) Then
HandleFileObject IxfFile
End IF
Objectlterator .Next
Wend

End Sub

467

Handle a File Object
Private Sub HandleFileObject(IxfFile As ISmixfFile)
IT IxfFile_Embedded = True Then
Ixfrile_Extract App_Path + "“\ExtractedFiles"
End If

End Sub

Read an Object

Private Sub HandleObject(IxfObject As ISmixfObject, IxfReader As SmixfReader)

Dim IxfClass As ISmIxfClass

Dim IxFfAttribute As ISmIxFAttribute

Dim IxfClassBehavior As ISmIxfClassBehavior
Dim Value As Variant

Dim Values As ISmIxFAttributesValues

Dim i, j As Integer

Set IxfClass = IxfReader.Schema.Classes. ItemByName(IxfObject. ixfClassName)

frmSamplel.IstObjects._Listltems.Add , , "Object Id = " + IxfObject.Id +

frmSamplel.IstObjects._Listltems.Add , , ' Class = " + IxfClass_Name

"class attributes

IT IxfClass.AllAttributes.Count > O Then
frmSamplel.IstObjects._Listltems.Add , , ' Attributes:"
Set Values = IxfObject._Values

For 1 = 0 To IxfClass.AllAttributes.Count - 1

468

Chapter 11, SmartIXF Library

Set IxfAttribute = IxfClass.AllAttributes. Item(i)
Set Value = Values. Item(IxFAttribute.Name)

IT Not VarType(Value) = vbNull Then

frmSamplel.IstObjects._Listltems.Add , , " " +
IxfAttribute_.Name + " = " + Value
End If
Next
End IF

"Behavior attributes
IT IxfClass.AllBehaviors.Count > 0 Then
frmSamplel. IstObjects.Listltems.Add , , ' BehaviorAttributes:"
For i = O To IxfClass.AllBehaviors.Count - 1
Set IxfClassBehavior = IxfClass._AllBehaviors. Item(i)
Set Values = IxfObject.GetBehaviorValues(IxfClassBehavior.URI)
For j = 0 To IxfClassBehavior . Attributes.Count - 1
Set IxfAttribute = IxfClassBehavior _Attributes. Item(j)
Value = Values. I'tem(IxfAttribute_Name)
If Not VarType(Value) = vbNull Then

frmSamplel. IstObjects.Listltems.Add , , " " +
IxfAttribute.Name + " = ' + CStr(Value)

End If
Next
Next
End If
frmSamplel. IstObjects.Listltems.Add , , '™

End Sub

469

Executing the Application

This section shows how to execute the application.
Private Sub cndCreatelXF _ClickQ

Dim IxfWriter As Smixfilriter
Dim IxfStdHelper As SmixfStdHelper

Dim IxfFileName As String
IstObjects.Listltems.Clear

dlglxfFile._ShowOpen
IxfrileName = diglxfFile.FileName

If IxfFileName = vbNullString Then Exit Sub

Set IxfWriter = CreateObject('SmartIXF1.SmixfWriter'™)

Set IxfStdHelper = CreateObject(*'SmartlXF1._SmixfStdHelper'™)

IT btnCreateSchema.Value = True Then
Ixfiriter.SetSchemaMode mtEmbedded
SchemaCreation.CreateSchema IxfWriter.Schema, IxfStdHelper
Else

IxfWriter.SetSchemaMode mtExternal, "‘http://example.com/messaging'’,
“'samplel.xsd", True

End IF

IxfWriter.CreatelxfArchiveFile IxfFileName
DataWriting.CreateData IxfWriter, IxfStdHelper

IxfWriter.CloselxfArchiveFile

470

Chapter 11, SmartIXF Library

MsgBox (*‘Done'™)

End Sub

Private Sub cmdReadlxf _ClickQ
Dim IxfReader As SmixfReader
Dim IxfStdHelper As SmixfStdHelper

Dim IxfFileName As String

IstObjects.Listltems.Clear

dlglxfFile_ShowOpen
IxfFileName = dliglxfrile.FileName

If IxfFileName = vbNulIString Then Exit Sub

Set IxfReader = CreateObject('SmartIXF1.SmixfReader')

Set IxfStdHelper = CreateObject(*'SmartIXF1._SmixFStdHelper'™)

IxfReader .OpenlxfArchiveFile IxfFileName, True
DataReading.-ReadData IxfReader, IxfStdHelper

IxfReader .Close

MsgBox (**Done'™)

End Sub

471

472

12. SmarTeam Client Libraries Overview |

This chapter contains a brief overview of the SmarTeam Client libraries
described in this document.

e SmartClientContext Library
SmartClientContextService Library
SmartClientServices Library
SmartClientConfiguration Library
Smartlnet Library
SmartFileCatalog Library
SmartRecordList Library
SmartIntegrationServices Library
SmartGUIServices Library
SmartEmbeddedScripts Library

473

SmarTeam-Object Model Programmer's Guide

SmartClientContext Library

Provides access to client libraries.

ISmClientContext

If you are using SmarTeam — Web Editor, SmartClientContext gives you
access to all client libraries.

Methods
The SmartClientContext object has the following methods:

Method Description
ClientServices Accesses ClientServices. Returns ISmClientServices.
FileCatalog Accesses FileCatalog. Returns ISmFileCatalo
EmbeddedScripts Accesses EmbeddedScripts. Returns ISmEmbeddedScripts
GuiServices Accesses GuiServices. Returns ISmGuiServices
Initialize (ApplicationName) | Initializes specified application for the Client Libraries.
IntegrationService Accesses IntegrationService. Returns ISmintegrationServices
ClientConfiguration Accesses ClientConfiguration. Returns ISmClientConfiguration

Obtaining the SmartClientContext Object

clientContext = SmCreateSmClientContext();

Examples of these methods appear in each Client Library.

474

SmartClientContextService Library

Provides access to client libraries.

ISmClientContextService

This service is used only with SmarTeam — Editor and is only used there to
create an instance of the File Catalog library.

Properties

The SmartClientContextService object contains the following properties:

Property Description
ClientContext Entry point for all Client libraries
Workspaces If the database includes the mechanism of collaborative design,

returns a SmarTeam RecordList containing a list of all Workspace
the database associated with the session.

IsSharedMode Returns true if the session database includes the mechanism of
collaborative design

Examples of these properties appear in the File Catalog library.

475

SmarTeam-Object Model Programmer's Guide

SmartClientServices Library

This service handles client library services.

ISmClientServices

The ISmClientServices object provides methods to create and manage a
ISmClientDictionary.

Properties

The 1ISmClientServices object has the following properties:
Property Description

Userld User name

Databaseld Id of current database

Replicald Replica Id of current database

Methods

The 1ISmClientServices object has the following methods:
Method Description

CreateDictionary Creates a dictionary. Returns ISmClientDictionary.

476

ISmClientDictionary

The ISmClientDictionary object represents a client dictionary.

Properties
The ISmClientDictionary object has the following properties:
Property Description
Group Returns a group of the dictionary by keyname. ISmDictionaryProy
Methods

The ISmClientDictionary object has the following methods:
Method Description

CreateDictionaryGroup Creates a dictionary group. Returns ISmDictionaryProperty.

ISmDictionaryGroup

The ISmDictionaryGroup object represents a dictionary group.

Properties

The ISmDictionaryGroup object has the following properties:

Property Description
DictionaryProperty Returns a dictionary property by name. ISmDictionaryProperty
Methods

The ISmDictionaryGroup object has the following methods:
Method Description

CreateDictionaryProperty: | Creates a dictionary property. Returns ISmDictionaryProperty.

477

SmarTeam-Object Model Programmer's Guide

ISmDictionaryProperty

The ISmDictionaryProperty object represents a dictionary group property.

Properties

The ISmDictionaryProperty object has the following properties:
Property Description

Value Value of the dictionary property.

478

SmartClientConfiguration Library

This service handles client library configuration.

ISmClientConfiguration

The ISmClientConfiguration object provides methods to access client

configuration items

Methods
The 1ISmClientConfiguration object has the following methods:
Method Description

GetValue Gets the value of a configuration item.

SetValue Sets the value of a configuration item

NewSmConfiguration Creates a new object of type SmConfigurationValueList

ValueList

GetValuelList Gets the collection of all configuration item values correspondi
to a single key. Multiple identical values are entered as a sing|
item in the collection.

SetValueList Sets the collection of all configuration item values correspondi
a single key

Examples

Get a configuration item value (GetValue)

Set value = SmClientConfiguration.GetValue(*'Pure Client Configuration’,

“'server'")

Set a configuration item value (SetValue)

SmClientConfiguration.SetValue "'smarteam.std.clientLibraries.Ul",
“'smarteam.std.clientLibraries._ui.insert”,
/WebEditor/Views/Searches/Default.aspx

Get and set a value list (GetValueList, SetValueList)

“ GetValuelList

Set SmConfigurationValueList =
SmClientConfiguration.GetValueList('smarteam.std.clientLibraries.Ul",
“'smarteam.std.clientLibraries._ui.insert'")

479

SmarTeam-Object Model Programmer's Guide

“ SetvaluelList

Set SmvalueList = SmClientConfiguration.NewSmConfigurationValuelList;
SmValueList.Add *‘valuel”

SmValueList_Add *‘value2"

SmvalueList.Add "‘value3"

SmClientConfiguration.SetValueList "'smarteam.std.clientLibraries.Ul",
“'smarteam.std.clientLibraries._ui.insert”, SmvaluelList

ISmConfigurationValueList

The ISmConfigurationVValueL.ist object represents a collection of
configuration item values.

Properties

The ISmConfigurationValueL ist object has the following properties:

Property Description

Item Gets a value from the collection by index

Methods

The ISmConfigurationValueL.ist object has the following methods:
Method Description

Add Adds a value to the collection. Returns the index of the adde

value.
Remove Removes a value from the collection by index
IndexOf Gets index of a configuration item value

480

Smartinet Library

This service handles low level connection to the server.

IHttpConnection

The IHttpConnection object provides methods for connecting to the server

Methods

The IHttpConnection object has the following methods:
Method Description

Open Opens a connection to the server.
Close Closes a connection to the server
CreateContext Creates a session on the server. Returns IHttpContext

IHttpContext

The IHttpContext object provides methods for opening a session on the
server.

Methods

The IHttpContext object has the following methods:
Method Description

Open
RequestAddHeader

RequestSubmit
RequestGetHeader
ResponseRead
ResponseSaveToFile
RequestUploadFile
Close

IHttp Utils

The IHttpUtils object provides utilities for working on the server.

481

SmarTeam-Object Model Programmer's Guide

Methods

The 1Htputils object has the following methods:

Method

Description

SaveUrlToFile

Save URL to file

DetectFileMimeType

Detects file Mime type

482

SmartFileCatalog Library

The SmartFileCatalog library comprises objects that enable the following
functionality:

Client-side file management for running SmarTeam in all possible
configurations

Provides API support for integrations, life-cycle operations, SmarTeam
File Explorer, and collaborative design

Folder-based structure management for file storage on client’s machine or
in network location

Provides a mechanism for accessing and updating file object attributes
See Chapter 13 for further details.

SmartRecordList Library

The SmartRecordList library comprises objects that enable the following
functionality:

Allows a client to work with record list data objects that are similar to
those in the SmarTeam API

See Chapter 14 for further details.
SmartintegrationServices Library

The SmartintegrationServices library comprises objects that enable the
following functionality:

e Exposes SmarTeam functionality in Host Applications

Implements mapping of component data to SmarTeam objects
Implements common integration tasks

Implements data transfer to SmarTeam Database

Provides a multi-platform solution

Components tree traversal

Optimized data exchanges

See SmarTeam Integration Tools Library on page 19 for further details.

SmartGUIServices Library

483

SmarTeam-Object Model Programmer's Guide

The SmartGUIServices library comprises objects that enable the following
functionality:

Displays standard SmarTeam — WebEditor GUI windows in client
applications

Enables selection of browser to be used in the window
Receives user input and initiates appropriate action at client
See SmarTeam GUI Services Library on page 17 for further details.

SmartEmbeddedScripts Library

The SmartEmbeddedScripts library comprises objects that enable the
following functionality:

Send scripts to the server for execution

Receive results as various types, including Record List
Upload and download files from the server.

See Chapter 17 for further details.

484

13. SmartFileCatalog Library |

General Description

The SmarTeam File Catalog library comprises objects that enable the
following functionality:

e Client-side file management for running SmarTeam in all possible
configurations

e Provides API support for integrations, life-cycle operations, SmarTeam
File Explorer, and collaborative design

e Folder-based structure management for file storage on client’s machine
or in network location

e Provides a mechanism for accessing and updating file object attributes

Dependencies

The SmarTeam File Catalog library has the following dependencies:
e SmarTeam Record List library
e SmarTeam Client Services.

485

SmarTeam Object Model Programmer's Guide

Overview of File Catalog Library

The File Catalog manages the files and data connected with a specific
database. In a SmarTeam session, the File Catalog relates to the
information from the connected database for that session.

File Catalog Object Organization

The following diagram shows the organization of the File Catalog objects.
Note that, for reasons of efficiency, the SmFile objects are not directly
accessed through the SmFolder objects. Instead, they are fetched at run
time by search functions like GetFileitems.

486

Chapter 13, SmartFileCatalog Library

Workspace

Workspace Identifier

Workspace Name

Workspace P

ath

Current Workspace

. GetCatalogFolders(WorkSpaceld)
. GetFoldersByPath(Folderldentifiers)
. GetFileltems(Fileldentifiers)

Folder Folder Folder Catalog
Folder Id Folder Id Folder Id Folders
Folder Name Folder Name Folder Name
Folder Path Folder Path Folder Path
Folder Type Folder Type Folder Type
| Default
File File Catalog
File Identifier File Identifier File Identifier Files
Full Name Full Name Full Name
Local State Local State Local State
File Version File Version File Version
Owner Owner Owner
Masks Masks Masks
Component Component Reference Reference
Name Name ChildFullName ChildFullName
Local State Local State ParentFullName ParentFullName

Attached Items

IMutableRecord

List

487

SmarTeam Object Model Programmer's Guide

File Catalog in a Shared Workspace

The File Catalog provides file management abilities for working with both
private user files and with files in a Shared Workspace. “Private user files”
refers to a situation where an individual engineer copies files from a vault
and edits or views the files in a non-shared working directory. A Shared
Workspace refers to a situation where team members work on files in a
shared workspace, referencing each other’s designs from the shared

location.

The figure below shows how two users use the File Catalog to access files

in a Shared Workspace.

%E Private Files

% Folder 1

L“' Folder 2
l_,:. File Catalog

SMARTEAM -
Application

N

J

Client Site 1

SMARTEAM -
Application
—fE Private Files

Folder 1

T Folder 2
* File Catalog

Client Site 2

Network

Shared Directory

— Shared Workspace 1 (DB1)

| I

Shared Workspace 2 (DB2)
. Main File Catalog
s “Folder 1
Pl \ File Catalog
‘. Eé)lder 2
¥ Folder 3
Léo File Catalog

L—=¢ Shared Workspace 3 (DB3)

J

Site 1

Catalog File Access in a Shared Workspace

488

Chapter 13, SmartFileCatalog Library

File Catalog with Private Files

The figure below shows how the File Catalog is used to access Private

files.
4 N\
% Folder 11
r ~ L,:, ST File Catalog
Folder 12
SMARTEAM - Folder 121
Application % ST File Catalog
N -~ Y,
Client | - Site 1
Private Files]
% Main ST File Catalog (DB1) %-—--—"
A 4 N

Folder 1

» Folder 2 4
l—‘? File Catalog -
\ /' Network . Server 2
Client Site -

;*L Folder 21
% ST File Catalog
Folder 22

» Folder 221
L"a ST File Catalog

. J
Site 2

Using the File Catalog to Access Private Files

489

SmarTeam Object Model Programmer's Guide

Relation to SmarTeam Processes

When using the File Catalog with the SmarTeam — Editor, the registration
of a file object in the File Catalog represents a physical file that is
associated with a file-managed SmarTeam object, for example, a CAD Part,
as shown below. The registration is performed when the physical file is
moved or copied from its vault, for example, under a Check Out or View
operation on the SmarTeam object. When the file is returned to the vault,
the physical file and its registration in the File Catalog object are deleted,
unless a copy of the file is left out of vault.

The following figure shows the relation between the checked-out file-
managed object CAD Part 1 and the file registration created in the File
Catalog for the checked-out file. The figure also shows a CFO CAD Part 2
that refers to the same physical file. The relation between the two CFO’s is
represented in the FileCatalog by assigning both CAD Part 1 and CAD Part
2 as component objects of the file object. One of the checked-out
components is designated as the primary component of the file object.

Physical File WWWWWWWWWWWMMW SmFile
FullName FullName
Fileld

CAD Part 1 » FileVersion

> FullName LocalState
ComponentNamel [| CAD Part 1 ‘
TDM_FILE_ID
TDM_FILE_VERSION |
CAD Part 2 —» TDM_COMPONENT_NAME *1

> FullName STATE SmComponent
Common ComponentName2 —— L: Name

Physical File CAD Part 2 LocalState
SMARTEAM - TDM_FILE_ID
Integration TDM_FILE_VERSION |
—» TDM_COMPONENT_NAME l

STATE T’ SmComponent
L Name
SMARTEAM -- Editor LocalState
Smart
FileCatalog

490

Chapter 13, SmartFileCatalog Library

SmFile Attributes

The information in the File Catalog corresponds with the information in
SmarTeam — Editor, as shown in the following table:

SmFile
Attribute

Description

SmarTeam — Editor Object Attribute

FullName

Fileld

FileVersion

Component
Name

Uniquely defines the SmFile object in t
File Catalog

Id of File. Should be same as
TDM_FILE_ID attribute of SmarTeam
managed object that refers to the file -
when that attribute exists.

Version of file. Should be same as the
TDM_FILE_VERSION attribute of the
SmarTeam file-managed object that re
to the file

Name of component. Should be same
TDM_COMPONENT_NAME attribute ¢
the SmarTeam file-managed object the
refers to the file.

SmarTeam file-managed object does not use
FullName to refer to the physical file.
TDM_FILE_ID is the identifier of the file
referenced by the file-managed SmarTeam ol

When a new SmarTeam file-managed object
references a specific file name is created (for
example, on CheckOut), then a new File Id is
also created. SmFile.Fileld uses that new val

TDM_FILE_VERSION is a counter of version:
the file referred to by the file-managed
SmarTeam object

When operation Check-In is performed with
replacement of previous revision, FileVersion
increased by one.
TDM_COMPONENT_NAME of the file-manac
object.

Overview of Objects—ISmFileCatalog

This section presents a hierarchical overview of the main ISmFileCatalog
objects including a description of the associated objects that are useful for
the programmer:

The ISmFileCatalog is the highest-level object; its main purpose is to
contain the other objects.

The major ISmFileCatalog components are shown in the following object
diagram:

491

SmarTeam Object Model Programmer's Guide

ISmFileCatalog

—— CurrentWorkspace

—— RecentWorkspaces

Figure 13-1 ISmFileCatalog Object Diagram

492

Chapter 13, SmartFileCatalog Library

Properties

The ISmFileCatalog object contains the following properties:

Property Description
CurrentWorkspace Gets the GUID of the Current Workspace for private files an
a shared workspace.
RecentWorkspaces Retrieves a ISmWorkspaces collection that represents rece
accessed workspaces. Returns ISmWorkspaces
Methods
The ISmFileCatalog object contains the following methods:
Method Description
AddRecentWorkspace Adds a specified Workspace to the recently accessed

workspace collection SmRecentWorkspaces

DeleteFileFromCatalog

Deletes the SmFile object registration from File Catalog (4
physical file is not deleted)

DeleteFilesFromCatalog

Deletes the registration of SmFile objects from File Catalg
(the physical files are not deleted)

DeleteSmFile

Deletes the specified SmFile object from the File Catalog
deletes the physical file. Returns ISmResultltem

DeleteSmFiles

Deletes a set of specified SmFile objects from the File
Catalog and deletes the physical files. Returns
ISmResultitems

GetCatalogFolders Gets File Catalog folders for a specified Workspace. It ret
folders for either private files or shared Workspace. It dog
not return the Temporary folder for a shared Workspace.
Returns SmFolders.

GetDefaultFolderOriginal Gets the original (non-UNC) path of the default folder for

Path specified Workspace

GetDefaultFolderPath Gets the path of the default Working Directory for a speci
Workspace or for private files

GetFileltems Gets information about SmFile objects in the File Catalog

GetFoldersByPath Gets folders from SmCatalog for specified folder path stri

Returns ISmFolders.

GetTemporaryFiles

Gets files from the Temporary folder for specified SmFile
objects. Returns ISmResultltems.

GetTemporaryFolder Gets the original (non-UNC) path of the Temporary Direct
OriginalPath

GetTemporaryFolderPath Gets the UNC path of the Temporary folder.
GetWorkspaceByld Gets Workspace by specified Workspace Id. Returns

ISmWorkspace.

493

SmarTeam Object Model Programmer's Guide

IsLinkAllowed

Returns True if an SmReference object can be establishe
from a specified parent path to a specified child path. Thig
method can return False when parent or child is not in the
shared workspace.

IsOperationAllowed

Returns True if the specified operation is allowed for the
specified path. This method can return False if the path ig
in the shared Workspace.

IsPartOfSharedWork
Space

Returns True if the specified path belongs to a directory t
of the shared workspace associated with the FileCatalog.

NewSmPFileldentifiers

Creates a new SmFileldentifiers collection object. Returng
ISmFileldentifiers.

NewSmPFiles

Creates a new SmFiles collection object. Returns ISmFile

NewSmFolderldentifiers

Creates a new SmFolderldentifiers collection object. Retu
ISmFolderldentifiers.

NewSmReferences

Creates a new SmReferences collection object. Returns
ISmReferences.

NewSmRetrieveFilter

Creates a new SmRetrieveFilter object. Returns
ISmRetrieveFilter.

RecentWorkspaces

Retrieves ISmWorkspaces collection that represents rece
accessed workspaces. Returns ISmWorkspaces.

SetCurrentWorkspace

Sets the Workspace specified by its Id to be the

CurrentWorkspace and changes. The Default Working
Directory to the Default Working Directory of newly set
Workspace. If the Workspace Id is empty, it means that th
user is working with private files.

SetDefaultFolderPath

Sets a folder specified by path and Workspace to be the
Default Working Directory for the Workspace or for privatg
files.

SetFileltemOwnership

Sets new ownership for a file specified by FullName.

SetTemporaryFolderPath

Sets a folder specified by path to be the Temporary Direc
for this user.

494

Chapter 13, SmartFileCatalog Library

Update Updates specified SmFile objects in File Catalog. Returng
ISmResultltems.

Links argument:

The list of SmReferences to list in the FileCatalog.

An SmReference in the Links parameter will be listed in th
File Catalog by the Update method under the following
circumstances:

The SmFile object represented by the ParentName paran
of the SmReference object is included in the Fileltems
parameter of the Update method.

The SmFile object represented by the ChildName of the
SmReference object is included in the Fileltems paramete
the Update method or is already listed in the FileCatalog.

Otherwise the SmReference object is ignored.
UpdateReferences argument

When the Update References parameter is true the set of
SmReferences in the FileCatalog is replaced by the set of
SmReferences passed in the Links parameters. As a speq
case, when the set of SmReferences passed in the Links
parameters is empty, the set of SmReferences in the File
Catalog is deleted.

When the Update References parameter is false, the Link
parameter is ignored and no change is made to the set of
SmReferences in the File Catalog.

DeleteFiles argument

DeleteFiles controls whether FileCatalog is allowed to del
files during an Update if circumstances permit. If DeleteFi
is set to False, FileCatalog is prevented from deleting file
during an Update under any circumstances. Default is Try

Obtaining the ISmFileCatalog Objects

You can access the File Catalog through the ISmFileCatalog object, which
is accessible through the ClientContextService library.

Dim SmFileCatalog As SmartFileCatalog. 1SnFileCatalog

Dim ClientContextService As SmartClientContextService.SmClientContextService
Set ClientContextService =
SmSession.GetService("'SmartClientContextService.SnClientContextService')

Set SmFileCatalog = ClientContextService.ClientContext.FileCatalog

ISmFiles

495

SmarTeam Object Model Programmer's Guide

The ISmFiles object represents a collection of ISmFile objects.

Properties

The ISmFiles object has the following properties:

Property Description

Item Returns a member of the collection by position. Returns ISm

Methods

The ISmFiles object has the following methods:

Method Description

Add Adds new SmFile object to the collection.

Remove Removes a SmFile object from the collection

IndexOf Returns the index of the first entry in the collection with a
specified full file name

Example

Adds an SmFile object to the collection.
Dim SmFiles As SmartFileCatalog. I1SmFiles

Dim SmFille As SmartFileCatalog. ISvFile
Set SmFiles = SmFileCatalog.-NewSmFiles

Set SmFile = SmFiles.Add(*'C:\Work\MyFile_bmp'")
ISmFile

The SmFile object represents an individual file in the File Catalog.

A SmFile object represents a physical file in a folder and carries some of
the physical file’s attributes such as file name, path and read-only status.

The object diagram of ISmFile is shown below:

496

Chapter 13, SmartFileCatalog Library

ISmFile

Path
Name
Fileld
IsReferenced
AllowAutomaticDelete
Owner

LocalState

ExistsinCatalog

ExistsInFileSystem

FullName

IsSynchronizedWithServe

IsReadOnly

PrimaryComponentName

FileVersion

OriginalPath

FileReferences:
ISmReferences

Components:
ISmComponents

Masks:
ISmMasks

Figure 13-2 ISmFile Object Diagram

497

SmarTeam Object Model Programmer's Guide

Properties

The ISmFile object has the following properties:

Property

Description

AllowAutomaticDelete

Returns or sets automatic delete for this SmFile. When true,
Catalog can automatically delete the physical file and associ
(mask) files when conditions permit. If false, a file can only b
deleted by the DeleteSmFile method.
Default is True.

Components

Retrieve collection object of ISmComponents. Returns
ISmComponents

ExistsInCatalog

Returns true if this SmFile object exists in the File Catalog.
Relevant on return from call to GetFileltems.

ExistsInFileSystem

Returns true, if a physical file exists that has this object’s
FullName. Relevant on return from call to GetFileltems.

Fileld

Returns or sets the Fileld of SmFile — should be as maintain
the TDM_FILE_ID attribute of the associated file-managed
object in the SmarTeam database.

The TDM_FILE_ID and TDM_FILE_VERSION attributes uni
specify the File object in SmarTeam.

FileVersion

File version — should be as maintained in the
TDM_FILE_VERSION attribute of the associated file-manag
object in the SmarTeam database.

FullName

Returns the FullName (Path and FileName) of SmFile. The
property uniquely specifies SmFile object in File Catalog.

IsReadOnly

Returns true on call to GetFileltems if the physical file is rea
only on the file system

IsReferenced

Returns True if this SmFile object appears as a child in at le
one SmReference object in the File Catalog.

A value of True normally means that the File Catalog should
delete the physical file from its working directory.

498

Chapter 13, SmartFileCatalog Library

IsSynchronizedWithServer | GetFileltems returns IsSynchronizedWithServer = True wher
modification date of the physical file corresponds with the
SmFile modification date listed in the File Catalog.

Description

On registering a file in the File Catalog, (update operation), t
modification date of the physical file is entered in the File
Catalog.

IsSynchronizedWithServer, as a returned value from
GetFileltems, is calculated and read-only. GetFileltems look
current modification date of the physical file and compares
the file's modification date in the File Catalog. If it is the sam
i.e. file was not changed, it returns IsSynchronizedWithServé
true. If it is different, it returns false, meaning that the file wa
modified. GetFileltem does not change the modification date
registered in the File Catalog.

LocalState Returns or sets the LocalState of SmFile as
CatalogltemLocalStateEnum

cilsUndefined - undefined state in File Catalog. Also indicate
“file not found” when returned by GetFileltems.

cilsEditable —equivalent to the Checked Out or New state of
file-managed SmarTeam object to which this object correspg

cilsStandard — for future use
cilsNotEditable- equivalent to the Copied or the View state o
file-managed SmarTeam object to which this object correspd

Masks Returns or sets the Masks collection of SmFile. Returns
ISmMasks

Name Returns the File Name (without path) of this SmFile

OriginalPath Returns the local (non-UNC) path of SmFile. Use only for pri
files, not for a shared workspace.

Owner Returns or sets the Owner of SmFile (same as
SmFileCatalog.SetFileltemOwnership)

Path Returns the path of the SmFile

PrimaryComponentName | Returns or sets the PrimaryComponentName of the SmFile
If there are no components other than this SmFile object itse
is set as the primary component. If there are several CFO
elements for this SmFile object, then the first to be registere
the File Catalog with its LocalState editable is defined as the
primary component.

499

SmarTeam Object Model Programmer's Guide

Methods

The ISmFile object has the following methods:

Method

Description

GetAttachedltems

Retrieves Attachedltems attached to the object (not
implemented). Specified by ItemType to transfer additional
objects (as a Record List) related to the file

SetAttachedltems

Set Attachedltems to the object. Specified by ItemType and
Attachedltems object

GetAttachedltem

Retrieves Attachedltem to the object. Specified by ltemType
Column name and Attacheditemld

SetAttachedltem

Set Attachedltem to the object. Specified by ltemType, Colu
name, Attachedltemld and ItemRecord

RemoveAttachedltems

Remove Attachedltems to the object. Specified by ItemType

RemoveAttachedltem

Remove Attachedltem to the object. Specified by ltemType,
Column name and Attacheditemld

GetReferences

Retrieves collection object of SmReferences in the File Catg
for which this SmFile object is the referencing (parent) objeq
Returns ISmReferences

MarkToSynchronize
WithServer

Set the method argument to True to allow the SmFile
modification date in the File Catalog to be updated on
subsequent calls to the Update method.

The Update method can change the modification date in the,
Catalog to correspond to the current modification date of the
physical file. It will do so only if the method
MarkToSynchronizeWithServer has been called with a value
true previous to the call to Update.
In the case that you only want to the Update method to updz
certain SmFile attributes in the File Catalog and not to updal
the SmFile modified status in the File Catalog, then do not ¢
MarkToSynchronizeWithServer previous to calling the Upda
operation.

Obtaining the ISmFile Object

You obtain the ISmFile object as follows:

Example

The following:

Dim SmFilles As SmartFileCatalog. ISmFiles

Dim SmFile As SmartFileCatalog. ISvFile

Set SmFile = SmFiles.Add(*'C:\Work\MyFile_bmp'")

500

Chapter 13, SmartFileCatalog Library

ISmReferences

The ISmReferences object represents a collection of ISmReference objects.

Properties

The ISmReferences object has the following properties:

Property Description
Item Returns a member of the collection by position. Returns ISmReference.
Methods

The ISmReferences object has the following methods:

Method Description

Add Adds new SmReference object to the collection.

Remove Removes a SmReference object from the collection

Example

Obtain an SmReferences collection object.
Dim SmReference As SmartFileCatalog. 1SmReference

Dim SmReferences As SmartFileCatalog. I1SmReferences

Set SmReferences = SmFileCatalog.NewSmReferences

ISmReference

The SmReference object represents a directed reference between two file
objects for the purpose of controlling automatic deleting of files by the File
Catalog.

An SmReference object is established between a referencing file object
(called the parent file object), and a referenced file object (called the child
file object), such as an assembly file and a part file in the assembly. The
SmReference object expresses the fact that when the parent file is present
in its working directory, then the child file should be present in its working
directory.

501

SmarTeam Object Model Programmer's Guide

As an example of when you would establish an SmReference object,
SmReference objects might be established between file objects that have
directed SmarTeam links between them and would normally need to be
checked out together.

Automatic Delete of Files

The purpose of the File Catalog ISmReference is to provide a mechanism
to insure that files are deleted from their working directories by the File
Catalog automatic delete function at the proper time. The mechanism
determines whether a child file is referenced by more than one parent file
currently in work. It prevents automatically deleting a child file from its
working directory on deletion of one parent file, when another parent still
requires it to be there. Without this facility, a child file that is required by
two separate parent files in work would be automatically deleted when one
parent is checked in. Note that you can disable the File Catalog automatic
delete facility for a specific file by setting SmFile.AllowAutomaticDelete
to false.

Parent/Child Terminology

Note that the parent/child terminology is used with the SmReference object
to emphasize that the direction of the reference is from the first parameter
(referencing file) to the second parameter (referenced file) in the
SmReferences.Add (ParentFullName, ChildFullName) method.

The parent/child terminology does not imply any connection to SmarTeam
hierarchic links that may exist between the file objects and SmReference is
also applicable to two file objects that are linked by a SmarTeam directed
link.

502

Accessing a SmReference Object

You can access an SmReference object through its parent SmFile object.
The GetFileReferences method of a SmFile object returns the all
SmReference objects in which the SmFile object is a parent. You cannot
access an SmReference through its child object.

Updating SmReference Object in the File Catalog

The Update method registers in the File Catalog the SmReference objects
you have defined. It replaces SmReference objects in the File Catalog with
the SmReference objects in the Links parameter. When the Links parameter
is empty, all SmReference objects are deleted from the File Catalog. In
order to avoid deleting all SmReference objects in the File Catalog when
you pass an empty Links parameter, set the parameter UpdateReferences to

False.
Properties
The ISmReference object has the following properties:
Property Description
ParentFullName Returns or sets the file name of the referencing file obje
SmReference.
ChildFullName Returns or sets the file name of the referenced object
SmReference.

Obtaining the ISmReference Object

You obtain the ISmReference object as follows:

Set SmReference = SmReferences.Add('C:\Work\Parent.sldasm™,
"'C:\Work\Child.sldprt'")

ISmComponents

The ISmComponents object represents a collection of ISmComponent
objects representing SmarTeam CFO elements for a single SmFile object.

503

SmarTeam Object Model Programmer's Guide

Properties

The ISmComponents object has the following properties:

Property Description

Item Returns a member of a collection by position. Returns
ISmComponent.

Methods

The ISmComponents object has the following methods:

Method Description

Add Adds new SmComponent object to the collection.

Remove Removes a SmComponent object from the collection.

IndexOf Returns the index of the first entry in the collection with a
specified Component name.

Example

Adds a SmComponent object to the collection.
Dim SmFille As SmartFileCatalog. ISvFile

Dim SmComponent As SmartFileCatalog. 1SmComponent
Dim SmComponents As SmartFileCatalog. 1SmComponents
Set SmComponents = SmFile.Components

Set SmComponent = SmComponents.Add(**ComponentName™)

ISmComponent

An SmComponent object represents a SmarTeam Component object in the
File Catalog. The SmComponent.ComponentName property should be the
same as the TDM_COMPONENT_NAME attribute of the SmarTeam file-
managed object that refers to the file.

The ComponentName is used as the Component Identifier, for example:

Componentldentifiers.Add (ComponentName)

504

Chapter 13, SmartFileCatalog Library

A SmComponent exists in the File Catalog when the corresponding
Component File Catalog exists. The Component File Catalog, which
contains the SmComponent properties, exists in a subdirectory of the File
Catalog for its SmFile object.

You can determine if an SmComponent exists in the File Catalog by calling
the GetFileltems method with its Component Name. If the Component
exists in the File Catalog, the ExistsInCatalog property is set true on return.
If the Component does not exist in the File Catalog, the LocalState
parameter will be returned with the value cilsUndefined.

Properties

The ISmComponent object has the following properties:

Property Description

Name Returns or sets the ComponentName of SmComponent.

LocalState Returns or sets the LocalState of SmComponent as
CatalogltemLocalStateEnum.

ExistsInCatalog Returns True if the Component exists in File Catalog. Relg
on return from call to GetFileltems.

Obtaining the ISmComponent Object

You obtain the ISmComponent object as follows:
SmComponent = SmComponents . Add(* *ComponentName'")

ISmMasks

The ISmMasks object represents a collection of Mask strings for getting
accompanying files for an SmFile object.

Accompanying files, such as redline files, should be copied to File Catalog
during a Check Out or Copy operation when the file they are related to is
being copied and they should be deleted from the Catalog when the
corresponding file is deleted.

Automatic Delete of Accompanying Files

These accompanying files are also automatically deleted whenever the File
Catalog automatically deletes the SmFile file (when
SmFile.AllowAutomaticDelete is true). File Catalog recognizes the
accompanying files to delete according to the mask list specified for the
SmFile object in the File Catalog.

505

SmarTeam Object Model Programmer's Guide

File Formats

The SmMasks items specify file formats in the form:
BF. B0 ($F=Filename, $E = extension)

For example, for file myfile.sldprt
$F.red

represents myfile.red
$F_$Ered*

represents myfile.sldprtredxx and myfile.sldprtredyy

Properties

The ISmMasks object has the following properties:

Property Description

Item Returns a member of a collection by position. Returns string.
Format; $F.$Exxx* ($F=filename, $E = extension)

506

Chapter 13, SmartFileCatalog Library

Methods
The ISmMasks object has the following methods:
Method Description
Add Adds new Mask string to the collection.
Remove Removes a Mask string from the collection
IndexOf Returns the index of the first entry in the collection with a specifiec
Mask
Example

Adds a Mask string to the collection.

Dim Masks As SmartFileCatalog. 1SmMasks

Masks.Add "'$F.red"

ISmFileldentifiers

The ISmFileldentifiers object represents a collection of ISmFileldentifier

objects.

This object is a way of specifying a set of SmFile objects as a parameter in
methods like GetFileltems.

The interpretation of SmFileldentifier.KeyValue for all SmFileldentifier
objects in the SmFileldentifiers collection depends on the value of

KeyType:

KeyType KeyValue
cktFileld Fileldentifier.KeyValue = SmFile.Fileld
cktFullName Fileldentifier.KeyValue = SmFile.FullName

507

SmarTeam Object Model Programmer's Guide

Properties

The ISmFileldentifiers object has the following properties:
Property Description

KeyType Returns or sets the KeyType of SmFileldentifiers, one of
CatalogKeyTypeEnum, either a file identifier or a full name. Each
SmFileldentifier in the collection must use the specified KeyType.

Item Returns a member of a collection by position. Returns ISmFileldentif
Methods
The ISmFileldentifiers object has the following methods:
Method Description
Add Adds a new SmFileldentifier object to the collection.
Remove Removes a SmFileldentifier object from the collection
IndexOf Returns the index of the first entry in the collection with a specified K
Value
Example

Adds an SmFileldentifier object to the collection.
Dim SmFileldentifier As SmartFileCatalog.1SmFileldentifier

Dim SmFileldentifiers As SmartFileCatalog. ISvFileldentifiers
Set SmFileldentifiers = SmFileCatalog.NewSmFileldentifiers
SmFileldentifiers._KeyType = cktFul IName

Set SmFileldentifier = SmFileldentifiers.Add('C:\Work\MyFile_bmp'")

508

Chapter 13, SmartFileCatalog Library

ISmFileldentifier

The SmFileldentifier object represents an individual Fileldentifier in the
File Catalog.

Properties

The ISmFileldentifier object has the following properties:
Property Description

KeyValue Returns or sets the KeyValue of SmFileldentifier.

The interpretation of KeyValue depends on the value of
SmFileldentifiers.KeyType for the collection to which this obje
belongs. It can be either Fileld or FullName.
Componentldentifiers Retrieves the collection object of ISmComponentldentifiers fo
SmComponent objects associated with the SmFile object with
SmFileldentifier. Returns ISmComponentldentifiers

Obtaining the ISmFileldentifier Object

You obtain the ISmFileldentifier object as follows:

Example

The following:
Set SmFileldentifier = SmFileldentifiers.Add('C:\Work\MyFile_bmp'™)
Note: An SmFileldentifier object cannot exist without being a member of

an SmFileldentifiers collection. You create an SmFileldentifier object by
adding an identifier string to a collection as in this example.

ISmComponentldentifiers

The ISmComponentldentifiers object represents a collection of Component
Identifier strings.

The members of an SmComponentldentifiers collection are the
ComponentNames of a set of SmComponent objects. There is no
SmComponentldentifier object in the library.

The SmComponent.ComponentName property is used as the Component
Identifier, for example:

Componentldentifiers.Add (SmComponent.ComponentName)

509

SmarTeam Object Model Programmer's Guide

Properties

The ISmComponentldentifiers object has the following properties:

Property Description
Item Returns a member of a collection by position. Returns
Component Identifier string.
Methods
The ISmComponentldentifiers object has the following methods:
Method Description
Add Adds new Component Identifier string to the collection.
Remove Removes a Component Identifier string from the collection
IndexOf Returns the index of the first entry in the collection with a
specified Componentldentifier string
Example

Adds a Component Identifier string to the collection.
Dim SmFileldentifier As SmartFileCatalog.1SmFileldentifier

Dim SmFileldentifiers As SmartFileCatalog. ISvFileldentifiers

Dim SmComponentsldentifiers As SmartFileCatalog. ISmComponentldentifiers

Set SmFileldentifiers = SmFileCatalog.NewSmFileldentifiers

SmFileldentifiers_KeyType = cktFileld

Set SnFileldentifier = SmFileldentifiers.Add(''4334-05495454844448')

Set SmComponentsldentifiers = SmFileldentifier.Componentldentifiers

SmComponentsldentifiers.Add(“Default’”)

510

ISmFolders

The ISmFolders object represents a collection of ISmFolder objects.

Properties
The ISmFolders object has the following properties:

Property Description
Item Returns a member of a collection by position. Returns ISmFolde
Methods
The ISmFolders object has the following methods:

Method Description

IndexOf Returns the index of the first SmFolder in the collection with

specified path

Example

Get a SmFolder object from the collection.
Dim SmFolder As SmartFileCatalog.ISmFolder
Dim SmFolders As SmartFileCatalog.ISmFolders

Set SmFolders =
SmFileCatalog.GetCatalogFolders(SmFileCatalog.CurrentWorkspace)

Set SmFolder = SmFolders. I'tem(0)
ISmFolder
The SmFolder object represents an individual file Folder in the File Catalog.

A SmFolder object is associated with private files or a shared Workspace and
is returned by the GetCatalogFolder method.

511

SmarTeam Object Model Programmer's Guide

Note: For a shared Workspace, an SmFolder object is returned by the
GetCatalogFolder method if its physical folder belongs to the directory tree of
the Workspace folder — even if there are no SmarTeam files in the folder.

Folders are differentiated by FolderType

FolderType Description
cftRegular Regular folder containing private files or belonging to a specifig
shared Workspace
cftTemporary A temporary folder is defined for a user but not for a specific

shared Workspace.

A Temporary folder is used for storing files for viewing. (SmarT,
creates subfolders named by GUIDs under the Temporary
Directory for this purpose).

The Temporary folder is returned by GetCatalogFolders only fg

private files.

cftLibrary A library folder is defined for storing standard parts (not
implemented, SmarTeam doesn't pass this folder)

cftDefault A Default folder is defined for each Workspace. It is normally u

as the default working directory.

SmFolder Creation

A registration of the physical folder containing a file is created in the File
Catalog when the file object is registered. In the API, the Update method
performs the file registration operation.

File Catalog classifies the new folder object as follows: If the path of the
folder that contains the file being registered is not in a shared Workspace tree
under the root, the folder is classified as a private file folder. If the path of the
folder that contains the file being registered is in a shared Workspace tree
under the root, then the folder is associated with the shared Workspace.

In the API, a folder object is represented by SmFolder and is uniquely
specified by its path, represented by property SmFolder.Path. The collection
SmFolderldentifiers contains path strings that identify the SmFolder objects

The Folderld property does not identify the folder. The Folderld property can
be used to determine the presence of SmarTeam files in the folder: If a
Catalog folder has SmarTeam files located in it, then the SmFolder.Folderld
property is non-zero.

The object diagram of ISmFolder is shown below:

512

Chapter 13, SmartFileCatalog Library

ISmFolder

Path

Workspaceld

FolderType

Folderld

OriginalPaths:
ISmFolderldentifiers

Figure 13-3 ISmFolder Object Diagram

513

SmarTeam Object Model Programmer's Guide

Properties

The ISmFolder object has the following properties:

Property

Description

Path

Returns the path of the folder represented by SmFolder.

Workspaceld

Returns the Workspace Id of the SmFolder. For private files and
shared Workspaces, it represents the Workspace to which the f
belongs.

The Workspaceld property is non-zero if SmFolder is located in
shared workspace directory tree under the root, even if there ar
SmarTeam files in the folder.

FolderType

Returns the FolderType of SmFolder as CatalogFolderTypeEnu

Folderld

Returns the Folderldentifier of SmFolder.
A non-zero value of this property for both private files and a sha
workspace indicates that the SmFolder.Path contains SmarTear
files.

Note: the members of the collection SmFolderldentifiers are val
of SmFolder.Path, and not SmFolder.Folderld.

OriginalPaths

List of previous mappings of this SmFolder Returns
ISmFolderldentifiers

Obtaining the ISmFolder Object

You obtain the ISmFolder object as follows:

Example

The following:

Set SmFolders = SmFileCatalog.GetCatalogFolders(SmFileCatalog.

CurrentWorkspace)

Set SmFolder = SmFolders. Item(0)

ISmFolderldentifiers

The ISmFolderldentifiers object represents a collection of path strings that
uniquely identify SmFolder objects.

514

Properties

The ISmFolderldentifiers object has the following properties:

Property Description
Item Returns a member of a collection by position. Returns SmFolder path
string.
Methods
The ISmFolderldentifiers object has the following methods:
Method Description
Add Adds new Folder path string to the collection.
Remove Removes a Folder path string from the collection
IndexOf Returns the index of the first entry in the collection with a specified Fg
path string
Example

Adds a Folder path string to the collection.
Dim SmFoldersldentifiers As SmartFileCatalog. 1SnFolderldentifiers

Set SmFoldersldentifiers = SmFileCatalog.-NewSmFolderldentifiers

SmFoldersldentifiers.Add ""C:\Work'*
ISmWorkspaces

The ISmWorkspaces object represents a collection of ISmWorkspace objects.

Properties
The ISmWorkspaces object has the following properties:
Property Description
Item Returns a member of a collection by position. Returns ISmWorkspace.
Methods

The ISmWorkspaces object has the following methods:
Method Description

515

SmarTeam Object Model Programmer's Guide

| IndexOf | Returns the index of the first entry in the collection with a specified id. |

Example

Get a SmWorkspace object from the collection.
Dim SmWorkspace As SmartFileCatalog.ISmWorkspace
Dim SmWorkspaces As SmartFileCatalog.ISmWorkspaces

Set SmWorkspaces = SmFileCatalog.RecentWorkspaces
Set SmWorkspace = SmWorkspaces. Item(0)

ISmWorkspace

The SmWorkspace object represents an individual Workspace in the File
Catalog.

A Workspace defines a directory tree with one root for the purpose of file
storage of shared files used by several users in collaboration and provides a
mechanism for security management, all of which provides a basis for
Collaborative Design.

In one Workspace you work only with information and files from one
database.

An SmWorkspace is characterized by Id, Name and Path. For private files,
Name is empty. Path specifies the location of the Workspace. The Workspace
name is used for display purposes.

Properties

The ISmWorkspace object has the following properties:

Property Description

Id Returns the Id of SmWorkspace

Path Returns the Path of SmWorkspace

Name The workspace name is determined by its creator and it used f
display purposes.

Obtaining the ISmWorkspace Object

You obtain the ISmWorkspace object as follows:

516

Chapter 13, SmartFileCatalog Library

Example

The following:
Set SmiWorkspace = SmWorkspaces. Item(0)

ISmResultitems

The ISmResultltems object represents a collection of ISmResultltem objects.

In the method GetFileltems(SmFileldentifiers), the number of elements in the
returned parameter SmResultltems is determined according to the value of the
KeyType property in the SmFileldentifiers parameter as follows:

If KeyType is cktFullName, then the file items are uniquely determined by
their full name and the number of SmFiles objects in SmResultltems will be
the same as the number of files specified in GetFileltems method.

If KeyType is cktFileld, then since file items are not uniquely determined by
Fileld, there may be more elements in SmResultltems than the number of files
specified in the GetFileltems method. This can occur when there exist
multiple copies of a file specified by Fileld in the GetFileltems method. Each
copy is returned as a separate element of ISmResultltems. An exception to
this rule occurs when only one of the multiple copies of the file is in the
editable state (checked out). In that case, only the editable file copy is
returned as an element in SmResultltems and the other copies are ignored.

In a call to the Update method, the KeyType is automatically set to
cktFullName.

517

SmarTeam Object Model Programmer's Guide

Properties
The ISmResultltems object has the following properties:
Property Description
HasErrors True if any errors have occurred.
KeyType Returns KeyType of SmResultltems as CatalogKeyTypeEnum.
The value of KeyType depends on which method was called:
e For a call to GetFileltems, the value of KeyType that was used i
the Fileldentifiers argument is used in SmResultltems.
e For a call to the Update method, the value of KeyType =
cktFullName is always used in SmResultltems.
Item Returns a SmResultltem of the collection by position. Returns
ISmResultltem.
Methods
The ISmResultltems object has the following methods:
Method Description
AsSmFiles Returns the SmFile objects in SmResultltems as a SmFiles collection
Returns ISmFiles.
IndexOf Returns the index of the first SmResultltem in the collection with a
specified file identifier KeyValue.

518

Chapter 13, SmartFileCatalog Library

Example

Get an SmResultltem object from the collection.
Dim SmFiles As SmartFileCatalog.I1SmFiles

Dim SmFile As SmartFileCatalog. ISvFile
Dim SmComponent As SmartFileCatalog. 1SmComponent
Dim SmComponents As SmartFileCatalog. 1SmComponents
Dim SmResultltem As SmartFileCatalog. 1SmResultltem
Dim SmResultltems As SmartFileCatalog. IStResultltems
Set SmFile = SmFiles.Add(*'C:\Work\MyFile.bmp'™)
SmFile_Fileld = "98789021101989849832832""
SmFile.AllowAutomaticDelete = True
SvFile_FileVersion = 0
SmFile.LocalState = cilsEditable
SmFile.Owner = *‘joe™
SmFi le_PrimaryComponentName = *"‘Default’
Set SmComponents = SmFile.Components
Set SmComponent = SmComponents.Add('Default'™)
Set SmReferences = SmFileCatalog.NewSmReferences
Set SmResultltems = SmFileCatalog.Update(SmFiles, SmReferences, False, True)
If (SmResultltems.HasErrors = False) Then

Set SmResultltem = SmResultltems. Item(0)

End I
ISmResultltem

The SmResultltem object represents an individual Resultltem in the File
Catalog.

519

SmarTeam Object Model Programmer's Guide

Properties

The ISmResultitem object has the following properties:

Property

Description

ReturnCode

Return error code for a specific File Item as
CatalogReturnCodeEnum.

KeyValue

The value of KeyType used for this KeyValue parameter depends

which method was called:

e For a call to GetFileltems, the value of KeyType that was

used in the Fileldentifiers argument is used in
SmResultltems.

e For a call to the Update method, the value of KeyType =

cktFullName is always used in SmResultltems.

SmFile

SmFile object. Returns ISmFile.

Obtaining the ISmResultltem Object

You obtain the ISmResultltem object as follows:
IT (SmResultltems._HasErrors = False) Then

Set SmResultltem = SmResultltems. Item(0)

End IFf

520

Chapter 13, SmartFileCatalog Library

ISmRetrieveFilter

The SmRetrieveFilter object represents a RetrieveFilter in the File Catalog.

Properties
The ISmRetrieveFilter object has the following properties:
Property Description
RetrieveComponents Retrieve components according to setting

CatalogRetrieveFilterEnum: crfAll or crfSelected. When
crfSelected, then only the Components specified by
Componentldentifier in ISmFileldentifier are returned with the
ISmFile.

RetrieveReferences

True to retrieve SmReference objects.

RetrieveMasks

True to retrieve SmMask objects..

RetrieveAttachedltems

True to retrieve Attachedltems.

Obtaining the ISmRetrieveFilter Object

You obtain the ISmRetrieveFilter object as follows:
Dim SmRetrieveFilter As SmartFileCatalog. 1SmRetrieveFilter

Set SmRetrieveFilter = SmFileCatalog.-NewSmRetrieveFilter

Example

The following sets a Retrieve Filter:
Dim SmRetrieveFilter As SmartFileCatalog. ISmRetrieveFilter

Set SmRetrieveFilter = SmFileCatalog.NewSmRetrieveFilter

SmRetrieveFi lter_RetrieveComponents = crfAll

SmRetrieveFilter _RetrieveMasks = True

SmRetrieveFilter .RetrieveReferences = True

521

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a File Catalog and its components.

FileCatalog Task:
Update File Item

The following example shows how to register a new SmarTeam file to
SmartFileCatalog.

Dim SmFileCatalog As SmartFileCatalog. ISmFileCatalog
Dim ClientContextService As SmartClientContextService.SmClientContextService

Set ClientContextService =
SmSession.GetService("'SmartClientContextService.SmClientContextService')

Set SmFileCatalog = ClientContextService.ClientContext.FileCatalog
Dim SmFiles As SmartFileCatalog. ISmFiles

Dim SmFile As SmartFileCatalog. I1SmFile

Dim SmResultltem As SmartFileCatalog. ISmResultltem

Dim SmResultltems As SmartFileCatalog. ISmResultltems

Dim SmComponent As SmartFileCatalog. 1SnComponent

Dim SmComponents As SmartFileCatalog. ISmComponents

Set SmFile = SmFiles.Add(*'C:\Work\MyFile.bmp'™)
SmFile_Fileld = "98789021101989849832832"" “from Database
SmFile_AllowAutomaticDelete = True

“prevent modification date of file from being updated
SmFile_MarkToSynchronizeWithServer = False
SmFile_FileVersion = 0 “from Database
SmFile.LocalState = cilsEditable

SmFile.Owner = ""joe"

SmFile.PrimaryComponentName = "‘Default”

522

Chapter 13, SmartFileCatalog Library

Set SmComponents = SmFile.Components
Set SmComponent = SmComponents.Add('Default'™)
Set SmReferences = SmFileCatalog.-NewSmReferences
Set SmResultltems = SmFileCatalog.Update(SmFiles, SmReferences, False, True)
If (SmResultltems.HasErrors = False) Then
Set SmResultltem = SmResultltems. Item(0)

End IF

FileCatalog Task:
Get File Item

This example shows how to Get File Item properties registered in
SmartFileCatalog.

Dim SmFileCatalog As SmartFileCatalog. 1SnFileCatalog
Dim ClientContextService As SmartClientContextService.SmClientContextService

Set ClientContextService =
SmSession.GetService("'SmartClientContextService.SnClientContextService')

Set SmFileCatalog = ClientContextService.ClientContext.FileCatalog
Dim SmFille As SmartFileCatalog. ISvFile

Dim SmRetrieveFilter As SmartFileCatalog. 1SmRetrieveFilter

Dim SmFileldentifier As SmartFileCatalog.1SmFileldentifier

Dim SmResultltem As SmartFileCatalog. ISmResultltem

Dim SmResultltems As SmartFileCatalog. IStResultltems

Dim SmFileldentifiers As SmartFileCatalog. ISvFileldentifiers

Set SmFileldentifier = SmFileldentifiers._Add(''9237678327864690120'")
Set SmRetrieveFilter = SmFileCatalog.-NewSmRetrieveFilter
SmRetrieveFi lter.RetrieveComponents = crfAll
SmRetrieveFilter._RetrieveMasks = True

SmRetrieveFilter _RetrieveReferences = True

523

SmarTeam Object Model Programmer's Guide

Set SmResultltems = SmFileCatalog.GetFileltems(SvFileldentifiers,
SmRetrieveFilter)

IT (SmResultltems.HasErrors = False) Then
Set SmResultltem = SmResultltems. Item(0)

Set SmFile = SmResultltem.SnFile

End IFf

FileCatalog Task:
Get Catalog Folders

This example shows how to get Catalog folders of Current workspace
Dim SmFileCatalog As SmartFileCatalog. 1SnFileCatalog
Dim ClientContextService As SmartClientContextService.SmClientContextService

Set ClientContextService =
SmSession.GetService("'SmartClientContextService.SmClientContextService')

Set SmFileCatalog = ClientContextService.ClientContext.FileCatalog
Dim SmFolder As SmartFileCatalog. ISmFolder

Dim SmFolders As SmartFileCatalog. 1SmFolders

Set SmFolders = SmFileCatalog.GetCatalogFolders(SmFileCatalog.Currentiorkspace)

For i = 0 To SmFolders.Count - 1

Set SmFolder = SmFolders. Item(i)

Next i

FileCatalog Task:
Get Temporary Files

This example shows how to use GetTemporaryFiles to retrieve the given
SmFiles from the user’s Temporary folder. Each input SmFile object uniquely
specifies a file by Fileld and FileVersion.

524

Chapter 13, SmartFileCatalog Library

Dim SmFilleCatalog As SmartFileCatalog. 1SmFileCatalog
Dim ClientContextService As SmartClientContextService.SnClientContextService

Set ClientContextService =
SmSession.GetService("'SmartClientContextService.SmClientContextService'™)

Set SmFileCatalog = ClientContextService.ClientContext.FileCatalog
Dim SmFiles As SmartFileCatalog.1SmFiles

Dim SmFile As SmartFileCatalog. ISvFile

Dim SmResultltem As SmartFileCatalog. ISmResultltem

Dim SmResultltems As SmartFileCatalog. IStResultltems

Set SmFile = SmFiles.Add(""MyTempFilel.bmp™) \\ Insert only file name without path

SmFile_Fileld = "'47298C20-8F20-406C-8962-1C11B552F5A5™ \\ From database
SmFile_FileVersion = 0 \\ From database

Set SnFile = SnFiles.Add("MyTempFile2.bmp'™) \\ Insert only file name
SmFile_Fileld = ""47298C20-8F20-406C-8962-1C11B552F5A6™ \\ From database
SmFile_FileVersion = 0 \\ From database

Set SmResultltems = SmFileCatalog.GetTemporaryFiles(SmFiles)

If (SmResultltems.HasErrors = False) Then

Set SmResultltem = SmResultltems. Item(0)

End If

525

SmarTeam Object Model Programmer's Guide

FileCatalog Task:
Updating a Component name

This example shows how to update a Component name in the File Catalog.
This is a complete example, showing how the object information is extracted
from the SmarTeam database and updated in the File Catalog. The example
uses a script, which is triggered by the updating of the Component name in
the SmarTeam object. The BeforeUpdate script gets the new and old
component names and the AfterUpdate script calls the routine to update the
File Catalog.

Const NM_TDM_COMPONENT NAME = ""TDM_COMPONENT NAME'

Const NM_TDM FILE ID = "TDM FILE_ID"

Const NM_GLB_COMPONENT NAME OLD = **SmuUDGlobalUpdatedComponentNameOld'
Const NM_GLB_COMPONENT_NAME_NEW = **SmUDGIobalUpdatedComponentNameNew'*
Const NM_GLB_FILE_ID = "'SmUDGlobalUpdatedComponentFileld"”

Const NM_GLB_0OBJ STATE = *‘SmUDGlobalUpdatedComponentState™

BeforeUpdate Script

Function BeforeUpdateComponent(ApplHndl As Long,Sstr As String,FirstPar As
Long,SecondPar As Long,ThirdPar As Long) As Integer

Dim Recordl As Object
Dim UpdatedObject As ISmObject
Dim SmartSession As ISmSession

Dim Glbldx As Integer

"Convert ApplHndl to SmSession

Set SmartSession = SCREXT_ObjectForInterface(AppIHndl)
“Convert record lists into COM SmRecordList objects
CONV_RecListToComRecordList FirstPar,Recordl

IT Recordl.Headers.HeaderExists(NM_TDM_COMPONENT_NAME) And (Not
Recordl._Headers_._HeaderExists(NM_TDM_FILE_ID)) Then

526

Chapter 13, SmartFileCatalog Library

SmartSession.GlobalData.Value(NM_GLB_COMPONENT_NAME_NEW) =
Record1.ValueAsString(NM_TDM_COMPONENT NAME,O)

Set UpdatedObject =
SmartSession.ObjectStore._RetrieveObject(Recordl . ValueAsInteger(N\M_CLASS 1D,0),
Recordl.ValueAsiInteger(N\M_OBJECT_ID,0))

SmartSession.GlobalData.Value(NM_GLB _COMPONENT_NAME_OLD) =
UpdatedObject.Data.ValueAsString(NM_TDM_COMPONENT_NAME)

SmartSession._GlobalData.Value(N\M_GLB FILE ID) =
UpdatedObject.Data.ValueAsString(NM_TDM_FILE_ID)

SmartSession.GlobalData.Value(NM_GLB OBJ STATE) =
UpdatedObject.Data.ValueAsInteger (NM_STATE)

Else
Glbldx = SmartSession.GlobalData. IndexOf(NM_GLB_COMPONENT_NAME_NEW)
IT Glbldx >= 0 Then
SmartSession.GlobalData.Delete NM_GLB COMPONENT NAME NEW
End If
Glbldx = SmartSession.GlobalData. IndexOf(NM_GLB_COMPONENT_NAME_OLD)
IT Glbldx >= 0 Then
SmartSession.GlobalData.Delete NM_GLB_COMPONENT NAME OLD
End If
Glbldx = SmartSession.GlobalData. IndexOf(NM_GLB_FILE_ID)
IT Glbldx >= 0 Then
SmartSession.GlobalData.Delete NM_GLB FILE 1D
End If
Glbldx = SmartSession.GlobalData. IndexOf(NM_GLB_OBJ_STATE)
IT Glbldx >= 0 Then
SmartSession.GlobalData.Delete NM_GLB OBJ STATE
End If
End IF

BeforeUpdateComponent=Err_None

527

SmarTeam Object Model Programmer's Guide

End Function

AfterUpdate Script

Function AfterUpdateComponent(ApplHndl As Long,Sstr As String,FirstPar As
Long,SecondPar As Long,ThirdPar As Long) As Integer

Dim SmartSession As ISmSession

Dim Glbldx As Integer

AfterUpdateComponent=Err_none

“Convert ApplHndl to SmSession

Set SmartSession = SCREXT_ObjectForInterface(AppIHndl)

Glbldx = SmartSession.GlobalData. IndexOFf(NM_GLB_COMPONENT_NAME_NEW)
IT GIbldx >= 0 Then

AfterUpdateComponent=UpdateSmartCatalog(SmartSession,
SmartSession.GlobalData.Value(N\M_GLB _COMPONENT_NAME _OLD),
SmartSession.GlobalData.Value(NM_GLB_COMPONENT_NAME_NEW),
SmartSession._GlobalData.Value(N\M_GLB FILE ID),
SmartSession.GlobalData.Value(NM_GLB 0BJ_STATE))

End IF

End Function

528

Chapter 13, SmartFileCatalog Library

Subroutine for Updating File Catalog
Function UpdateSmartCatalog(SmartSession As Object,

OldComponentName As String,
NewComponentName As String,
Fileld As String,_
ObjectState As Integer) As Integer
" Obtaining the ISmFileCatalog Objects
Dim SmFileCatalog As Object
Dim ClientContextService As Object

Set ClientContextService =
SmartSession.GetService('SmartClientContextService.SmClientContextService'™)

Set SmFileCatalog = ClientContextService.ClientContext_FileCatalog

Dim Index As Integer

" Create SmFileldentitiers for the object to retrieve
Set SmFileldentifiers = SmFileCatalog-NewSmFileldentifiers
SmFileldentifiers_KeyType = 1 " CatalogKeyTypeEnum.cktFileld
FileldStr = Fileld

SmFileldentifiers.Add FileldStr

" Create SmRetrieveFilter to retrieve all components
Set SmRetrieveFilter = SmFileCatalog.NewSmRetrieveFilter

SmRetrieveFilter.RetrieveComponents = 0 " CatalogRetrieveFilterEnum.crfAll

" Execute GetFileltems operation

Set StResultltems = SmFileCatalog.GetFileltems(SvFileldentifiers,
SmRetrieveFilter)

If SmResultltems.HasErrors = False Then

529

SmarTeam Object Model Programmer's Guide

" Get the first item in the SmResultltems, you might get more the one object
if the file is checked in

and there in more then one copy File in your disk

For i=0 To SmResultltems.Count - 1
Set SmResultltem = SmResultltems. Item(i)
IT SmResultltem Is Not Nothing Then
Set SmFile = SmResultltem.SmFile
IT SmFile.LocalState = 1 Then " cilsEditable
Set SmComponents = SmFile.Components
IT SmComponents Is Not Nothing Then
oldComponentNameStr = OldComponentName
Index = SmComponents. IndexOf(oldComponentNameStr)
If Index < -1 Then
" Remove the old component
intindex = Index
SmComponents.Remove intindex
" Add the new component
newComponentNameStr = NewComponentName
Set SmComponent = SmComponents . Add(newComponentNameStr)
IT ObjectState = O Or ObjectState = 2 Then * new or checked out
SmComponent.LocalState = 1 " cilsEditable

Elself ObjectState = 1 Or ObjectState = 3 Then " checked in or
released

SmComponent.LocalState = 3 " cilsNotEditable
Else
SmComponent.LocalState = 0 * cilsUndefined
End IT

" Create new SmFiles object

530

Chapter 13, SmartFileCatalog Library

Set newSmFiles = SmFileCatalog-NewSmFiles
Set newSmFile = newSmFiles.Add(SmFile.Ful IName)
newSmFile_Fileld = SmFile.Fileld
Set newSmComponents = newSmFi le_Components
For j=0 To SmComponents.Count - 1
newSmComponents.Add SmComponents. Item(j) -Name

newSmComponents. I'tem(j) - LocalState =
SmComponents. Item(j) -LocalState

Next j
Set newSmMasks = newSmFile_Masks
For j=0 To SmFile.Masks.Count - 1
newSmMasks.Add SmFile._Masks. Item(j)
Next j
Set SmReferences = SmFileCatalog-NewSmReferences
" Update the object with the new component
Dim boolValue
boolValue = False

Set SmResultltems2 = SmFileCatalog.Update(newSmFiles, SmReferences,
boolValue, boolValue)

IT SmResultltems2_HasErrors = False Then
UpdateSmartCatalog = Err_None

End IF
End IT

End If
End If
End IF
Next i
End IT

End Function

531

SmarTeam Object Model Programmer's Guide

532

14. SmartRecordList Library |

General Description

The SmartRecordList library comprises objects that enable the following

functionality:
e Allows a client to work with record list data objects that are similar to
those in the SmarTeam API

Dependencies

The SmarTeam File Catalog library has the following dependencies:
e SmarTeam Record List library
e SmarTeam Client Services.

Overview of Record List Objects

The SmartRecordList Library provides two record list types:
IMutableRecordList and IRecordList.

The purpose of these Record List objects is to allow the client to work with
record list data objects that are similar to those in the SmarTeam API (see
Chapter 4, SmarTeam Record List Library).

For example, a client can request that SmarTeam return information to him
in a Record List.

The IMutableRecordList is provided for working with and modifying the
data in the record list. The IRecordList is provided when you want to read
data while preserving it.

The two Record List objects are similar in structure. The main difference is
that you can create read-only objects from the read-write objects but not

vice versa.

533

SmarTeam Object Model Programmer's Guide

IMutableRecordList

The following figure shows the object diagram for the MutableRecordL.ist
Object.

MutableRecordList

Size

MutableColumns

MutableColumn

DisplayName

ColumnName

ColumnType

Column

RecordList

Figure 4 MutableRecordList Object Diagram

534

Properties

The MutableRecordList object has the following properties:

Property Description

Columns Returns the set of columns associated with the
MutableRecordList, as IMutableColumns.

RecordList Returns a read-only copy of this MutableRecordList, as
IRecordList.

Size Number of MutableRecord objects in this MutableRecordL

Methods

The MutableRecordList object has the following methods:

Method Description

AddRecord Add a MutableRecord to the MutableRecordList. Returns
IMutableRecord.

AddRecordList Adds specified RecordListChangeListener to this

ChangeListener MutableRecordList.

AddRecordListValu Adds a RecordListValueChangeListener to this

ChangeListener MutableRecordList.

Clear Deletes all headers and nodes in this MutableRecordList
object.

CompareTo Compares this MutableRecordList to a specified
MutableRecordList. If all nodes are equal it returns 0,
otherwise it returns a non-zero value.

Create Creates MutableRecordList with the headers of a specified

of MutableColumns. All nodes are set to nil.

EnableMutableRecordListEvents

Enable the MutableRecordListEvents for this
MutableRecordList.

GetFilteredlterator

Returns a filtered RecordListlterator. The filtered iterator
retrieves records from the RecordList that satisfy the cond
specified by 1Condition.

Getlterator

Returns a simple RecordListlterator. The RecordListlteratq
can be synchronized to the MutableRecord List.

GetSortedlterator

Returns a sorted RecordListlterator. The sorted iterator
retrieves records from the RecordList sorted according to {
Comparator object.

RemoveRecordList

Removes a RecordListChangeListener from this

ChangeListener MutableRecordList.
RemoveRecordListValue Removes a RecordListValueChangeListener from this
ChangeListener MutableRecordList.

535

SmarTeam Object Model Programmer's Guide

IMutableColumns

Properties

The MutableColumns object has the following properties:

Method

Description

Columns

Retrieves a read-only object of MutableColumns. Returng
IColumns.

MutableColumn

Gets a MutableColumn by index. Returns IMutableColum

Size

Returns the number of MutableColumn objects in the
collection.

Methods

The IMutableColumns object has the following methods:

Method

Description

AddColumn

Adds a MutableColumn, specified by header name and data
type, to the collection.

AddColumnsChangeListener

Add a ColumnsChangeListener to the collection.

AddPropertyChangeListener

Adds a PropertyChangeListener to the collection.

Clear

Clears headers and nodes of all MutableColumn objects in th
collection.

CompareTo

Compares the MutableColumn objects in the collection to the
MutableColumn objects in the argument collection. Returns (
all corresponding MutableColumn objects are equal, otherwi
returns 1. Two MutableColumns are equal if the ColumnType
DisplayName and ColumnName are equal.

EnableMutableColumnsEvents

Enables or disables the events fired by the MutableColumns
object.

IndexOf

Returns the index of a specified MutableColumn in the colleg

RemoveColumn

Removes a MutableColumn specified by position.

RemoveColumnsChangeListener

Removes a ColumnsChangeListener from the collection.

RemovePropertyChangeListener

Removes a PropertyChangelListener from the collection.

536

IMutableColumn

Properties

The MutableColumn object has the following properties:

Property Description
Column Retrieves a read-only object of MutableColumn. Returns

IColumn (Ref).

ColumnName Gets the header name of this MutableColumn.
ColumnType Gets the data type of this MutableColumn.
DisplayName Gets the display name for this MutableColumn.
Methods

The MutableColumn object has the following methods:

Method

Description

AddPropertyChangeListener

Adds a PropertyChangeListener to the MutableColumn

CompareTo

Compare this MutableColumn to a specified
MutableColumn. Returns 0 if the ColumnType, DisplayN
and ColumnName are equal, otherwise returns 1.

Create

Creates a MutableColumn, according to specified heads
name and data type.

RemovePropertyChangeListener

Removes a PropertyChangeListener from the
MutableColumn.

IMutableRecord

Properties

The MutableRecord object has the following properties:

Property Description

Columns Returns the set of MutableColumns associated with the
MutableRecord, as IMutableColumns.

Record Returns a read-only copy of this MutableRecord as IReg

537

SmarTeam Object Model Programmer's Guide

Methods

The MutableRecord object has the following methods:

Method

Description

AddRecordChangeListener

Adds a RecordChangeListener to this
MutableRecord.

Clear

Clears the nodes of this MutableRecord.

CompareTo

Compares this MutableRecord to a specified
MutableRecord. Returns 0 if every node value i
equal, otherwise returns a non-zero value.

EnableMutableRecordEvents

Enable the MutableRecordEvents for this
MutableRecord.

GetValue(index)

Returns a node value according to node index.

GetValueAs[Boolean, Byte, Double, Float,
Long, Short, String] (index)

Returns a node value according to node index,
which casts back to simple values instead of ob
(int instead of an Integer object).

GetValueByName(ColumnName)

Returns a node value according to header namg

RemoveRecordChangelListener

Removes a RecordChangeListener from this
MutableRecord.

SetValue(index, newVal)

Sets the value of a specific location in the
MutableRecord.

SetValueAs[Boolean, Byte, Double, Float, |
Long, Short, String] (index, newVal)

Sets a value with casting of simple types to objg
(No need to cast int to Integer object)

SetValueByName(ColumnName, newVal)

Sets a value in the MutableRecord according to
header name.

538

IRecordList

The following figure shows the object diagram for the RecordList Object.

RecordList

Size

] Columns

Column

DisplayName

ColumnName

ColumnType

Figure 5 RecordList Object Diagram

IRecordList and its associated interfaces are a read-only version of the
IMutableRecordList object. They are used in the same way, with the
following exceptions:

All getVValue methods work as in the IMutableRecord object; the setValue
methods do not. You cannot set the values of an IRecord object; you can
only read them.

You cannot create an IMutableRecordList, IMutableRecord or
IMutableColumn from an IRecordList, IRecord or IColumn object.

539

SmarTeam Object Model Programmer's Guide

Properties

The RecordList object has the following properties:

Property Description

Columns Returns the set of Column objects associated with this Record
as IColumns.

Size Returns the number of records in this RecordList.
Methods
The RecordList object has the following methods:

Method Description
AddRecord Add an Record to this RecordList. Returns IRecord.
AddRecordList Adds specified RecordListChangeListener to this RecordList.
ChangeListener
AddRecordListValue Adds a RecordListValueChangeListener to this RecordList.
ChangeListener
CompareTo Compares this RecordList to a specified RecordList. Returns 0

Records are equal, otherwise returns a non-zero value. Two
Records are equal if all nodes are equal.

EnableRecordListEvents

Enable the RecordListEvents for this RecordList.

GetFilteredlterator

Returns a filtered IRecordListlterator. The filtered iterator retrig
records from the RecordList that satisfy the condition specified
ICondition.

Getlterator

Returns a simple RecordListlterator. The RecordListlterator ca
synchronized to the Record List: when a record is removed fro
the RecordListlterator, the corresponding record is removed frg
the RecordList (?)

GetSortedlterator

Returns a sorted IRecordListlterator. The sorted iterator retrie
records from the RecordList sorted according to the Comparat
object.

RemoveRecordList
ChangeListener

Removes a RecordListChangeListener from this RecordList.

RemoveRecordListValue
ChangeListener

Removes a RecordListValueChangeListener from this RecordL

540

IColumns

541

Properties

The Columns object has the following properties:

Property Description
Column Gets a Column by index. Returns IColumn.
Size Returns the number of Column objects in the collection.
Methods

The Columns object has the following methods:

Method

Description

AddColumnsChangeListener

Add a ColumnsChangelListener to the collection.

AddPropertyChangeListener

Adds a PropertyChangeListener to the collection.

CompareTo

Compares the Column objects in the collection to the Col
objects in the argument collection. Returns 0 if all
corresponding Column objects are equal, otherwise retur
1. Two Columns are equal if the ColumnType, DisplayNa
and ColumnName are equal.

EnableColumnsEvents

Enables or disables the events that are fired by the Colu
object.

IndexOf

Returns the index of a member Column specified by
ColumnName.

RemoveColumnsChangeListener

Removes a ColumnsChangeListener from the collection.

RemovePropertyChangeListener

Removes a PropertyChangeListener from the collection.

IColumn

Properties

The Column object has the following properties:

Property Description
ColumnName Gets the header name of this Column.
ColumnType Gets the data type in this Column.
DisplayName Gets the display name of this Column.

Methods

The Column object has the following methods:

Method

Description

AddPropertyChangeListener

Adds a PropertyChangeListener to the Column.

CompareTo

Compare this Column to a specified Column. Returns 0
the ColumnType, DisplayName and ColumnName are e
otherwise returns 1.

RemovePropertyChangeListener

Removes a PropertyChangeListener from the Column.

IRecord

542

Properties

The Record object has the following properties:

Property

Description

Columns

Returns the set of Column objects associated with the
Record, as IColumns.

Methods

The Record object has the following methods:

Method

Description

AddRecordChangeListener

Adds a RecordChangeListener to this Record.

CompareTo

Compares this Record to a specified Record. Returns
every node value is equal, otherwise returns a non-zer
value.

EnableRecordEvents

Enables the RecordEvents for this Record.

GetValue(index)

Returns a node value according to node index.

GetValueAs[Boolean, Byte, Double,
Float, Int, Long, Short, String] (inde|

Returns a node value according to node index, which g
back to simple values instead of objects (int instead of
Integer object).

GetValueByName(ColumnName)

Returns a node value according to column name.

RemoveRecordChangelListener

Removes a RecordChangelListener from this Record.

IRecordListlterator

Methods

The IRecordListlterator object has the following methods:

Method Description

Find Moves to the next position according to the given
ICondition, Else moves to the end of the list.

FindNext Moves to the next position according to the ICondition
specified in the last Find method, Else moves to the end
the list.

HasNext Returns true if the iteration has more elements.

IsSynchronized

Returns true if the Iterator is synchronized to the
IRecordList.

Next

Returns the next element in the iteration.

Remove

Removes from the underlying collection the last elemen
returned by the iterator.

IRecordListUtils

Methods
The RecordListUtils object has the following methods:
Method Description

GetGroupCount Returns the number of groups in the specified RecordLi

GetGroupName Returns the Group Name of the Column of the specified
RecordList at the specified index.

GetMutableGroupCount Returns the number of groups in the specified
MutableRecordList.

GetMutableGroupName Returns the Group Name of the Column of the specified

MutableRecordList at the specified index.

543

SmarTeam Object Model Programmer's Guide

GetMutableRecordListByGroup

Returns a sub MutableRecordList that contains only the
Column objects of the specified group. Returns
IMutableRecordList.

GetRecordListByGroup Returns a sub RecordList that contains only the Colum
objects of the specified group. Returns IRecordList.
SaveToFile Save To File (not implemented).
IRecordsFactory
Methods

The RecordsFactory object has the following methods:

Method

Description

CreateMutableRecord

Creates an empty MutableRecord

CreateMutableRecordFromColumns

Creates a MutableRecord with same Column objects
the specified MutableColumns

Events

The SmartRecordList Library has four event types:

¢ ColumnsChangeEvent

- Fires on change of Columns object

e RecordChangeEvent - Fires on change of Record object
¢ RecordListChangeEvent - Fires on change of RecordList object, such

as adding a record to the

RecordList

o RecordListValueChangeEvent- Fires on change of a record in a

RecordList

All events have a stop () method that can be called by the listener to

prevent the action from occu

rring. The event source checks the event stop

flag before executing the action.

544

IColumnsChangeEvent

Methods
The ColumnsChangeEvent object has the following methods:
Method Description

GetColumnChanged Gets Column that was changed.
GetSource Gets the object that threw the event.
Initialize Sets the event.
IsStopped Checks if the event is stopped.
Stop Disables the event procedure.

IColumnsChangeListener

Methods
The ColumnsChangeL.istener object has the following methods:
Method Description
ColumnBeforeAdd Called before adding a column.
ColumnAfterAdd Called after adding a column.
ColumnBeforeRemove Called before removing a column.
ColumnAfterRemove Called after removing a column.
IRecordChangeEvent
Methods
The RecordChangeEvent object has the following methods:
Method Description

Getlndex Gets index that was changed.
GetSource Gets the object that threw the event.
Initialize Sets the event.
IsStopped Checks if the event is stopped.
Stop Disables the event procedure.

545

SmarTeam Object Model Programmer's Guide

IRecordChangeListener

Methods

The RecordChangeL.istener object has the following methods:

Method

Description

ValueBeforeChange

Called before changing a record value.

ValueAfterChange

Called after changing a record value.

IRecordListChangeEvent

Methods
The RecordListChangeEvent object has the following methods:
Method Description
GetRecordChanged Gets Record that was changed.
GetSource Gets the object that threw the event.
Initialize Sets the event.
IsStopped Checks if the event is stopped.
Stop Disables the event procedure.

IRecordListChangeListener

Methods

The RecordListChangeListener object has the following methods:
Method Description

RecordBeforeAdd Called before adding a Record

RecordAfterAdd Called after adding a Record

RecordBeforeRemove Called before removing a Record

RecordAfterRemove Called after removing a Record

546

IRecordListValueChangeEvent

Methods
The RecordListValueChangeEvent object has the following methods:
Method Description
Getlndex Gets the index that was changed.
GetRecordChanged Gets Record that was changed.
GetSource Gets the object that threw the event.
Initialize Sets the event.
IsStopped Checks if the event is stopped.
Stop Disables the event procedure.

IRecordListValueChangeListener

Methods
The RecordListValueChangeListener object has the following methods:
Method Description
ValueBeforeChange Called before changing a specified Record value in the
RecordList.
ValueAfterChange Called after changing a specified Record value in the
RecordList.

547

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks in client applications.

IMutableRecordList:

Creating and setting values
Dim RecList As MutableRecordList

Dim MutableColumns As IMutableColumns

Dim Column As IMutableColumn

// Create new record list object

Set RecList = New MutableRecordList

// Set the columns for the new record list
Set MutableColumns = RecList.Columns
Set Column = MutableColumns.AddColumn(**ID"", rldtShort)

Column_DisplayName = *"worker ID"

// Add record
Dim Record As IMutableRecord
Set Record = reclList.AddRecord

Record.SetValueByName "'ID*, 101

IMutableRecordList:
Usage of ICondition interface and filtered iterators

Implements ICondition

548

Private Function ICondition_Evaluate(ByVal pRecval As
SmartRecordList. IMutableRecord) As Boolean

End Function

Dim Cond As New Classl

Dim RecList As MutableRecordList
Dim Iterator As IRecordListlterator

Set lterator = RecList.GetFilteredlterator(Cond, True)

Do While (Iterator_HasNext())
Set TmpRecord = Iterator .Next()
Dim i As Integer
For i = 0 To TmpRecord.Columns_Size
Dim tmp As Integer
tmp = TmpRecord.GetValueAsShort(i)
Next i

Loop

549

IMutableRecordList:
Adding a RecordListChangelListener

The following example adds a RecordListChangeListener to a
MutableRecordList.

Implements IRecordListChangelListener

Private Sub IRecordListChangelListener_RecordAfterAdd(Byval pval As
SmartRecordList. IRecordListChangeEvent)

End Sub

Private Sub IRecordListChangelListener RecordAfterRemove(Byval pval As
SmartRecordList. IRecordListChangeEvent)

End Sub

Private Sub IRecordListChangelListener_RecordBeforeAdd(ByVal pval As
SmartRecordList. IRecordListChangeEvent)

End Sub

Private Sub IRecordListChangelListener_RecordBeforeRemove(ByVal pVal As
SmartRecordList. IRecordListChangeEvent)

End Sub

Dim RecList As MutableRecordList

Dim Listener As New Class2

Set RecList = New MutableRecordList

RecList.AddRecordListChangeListener Listener

550

Appendix A - Tips for Writing Scripts

A script is program code that can be executed in the SmarTeam system,
usually in response to an event.

With scripts, the user can customize and enhance the SmarTeam family of
products.

Scripts can be attached to a variety of SmarTeam events and executed in a
number of ways. Scripts can be attached either to system operations or to
specified SmarTeam events.

Scripts should be written in Basic with the Smart BasicScript editor. The
scripts should be located within the script directory specified in the System
Configuration Editor under “Miscellaneous Configuration/Directory
Structure”, key “ScriptDirectory”. The script directory can be, for example,
c:\Program Files\SmarTeam\Script. A script file name should not exceed
50 characters.

Script argument structures can differ from one event to another. The script
programmer should be familiar with the script interface at the particular
event hook before beginning to write code.

In SmarTeam there are two types of the interfaces between main
application and embedded script:

e Procedural API interface

e COM interface; all new script hooks, mainly event hooks of WorkFlow.

The following description shows how to switch to COM API within API
procedural interface and how to use procedural API within script invoked
through COM interface.

How to switch to COM API within procedural script interface

In order to work with SmarTeam object model from within the script that
was invoked through a procedural API interface, you need to get the
current Session object and convert procedural record lists to COM
representation. In some script hooks, second or third record lists are used
for transferring data to main applications. You have two options to
implement that:

551

SmarTeam Object Model Programmer's Guide

e Use CONV_RecListToComRecordList to convert procedural
record list, obtained as the parameter of the script, to COM
representation, fill the resulting list with values and copy it back to
procedural representation using function
ComRecListToRecordList. The example below show how to
implement this approach.

e Use procedural record list API functions in order to fill values directly
to the procedural record list, received as the parameter of the script.

Example

Template for writing scripts

* ApplHndl - application handle

" FirstPar - record list usually contains attributes of the selected
object(s)

" SecondPar - record list usually used for transfer of service data between

" script and application

" ThirdPar - record list usually for transfer of data from the script to the
application

Declare Sub CONV_RecListToComRecordList Lib ""SmTdm32" (ByVal RecList As
Long,ByRef COMRecList As ISmRecordList)

Declare Sub CONV_ComRecListToRecordList Lib ""SmTdm32" (ByVal ComRecList As
I1SmRecordList,ByRef RecList As Long)

Function TemplateFunc (ApplHndl As Long,Sstr As String,FirstPar As
Long,SecondPar As Long,ThirdPar As Long) As Integer

Dim SmSession As ISmSession

Dim COMFirstList As ISmRecordList
Dim COMSecondList As ISmRecordList
Dim COMThirdList As ISmRecordList

“ Get Session from Application handle

Set SmSession = SCREXT_ObjectForInterface(ApplHndl)

552

“ Convert Record lists to COM representation
CONV_RecL istToComRecordList FirstPar,COMFirstList
CONV_RecListToComRecordList SecondPar ,COMSecondList

CONV_RecListToComRecordList ThirdPar,COMThirdList

<Body of the script>

“ Copy values from COM Record List to procedural record lists that must be
returned to main application

CONV_ComRecListToRecordList COMThirdList,ThirdPar

End Function

How to use procedural API functions in COM interface script

In order to work with functions of procedural API you need to have
Application handle. Use function SCREXT_ObjectForinterface to get
ApplHndl from the Session object as shown in the following example.

Function AfterSendReject(FlowSession As Object, FlowProcess As Object, Node As
Object, Response As Object) As Integer

Dim ApplHndl As Long
ApplHndl = SCREXT_ObjectFor Interface(FlonSession.FlowStore._Session)
AfterSendReject = ERR_NONE

End Function

553

SmarTeam Object Model Programmer's Guide

Programming Constants

The SmarTeam API provides the SmartConstants object, which allows
developers writing in scripting languages, such as VBScript and JScript, to
use constants (enumerations) without using their actual numeric value, or
having to redeclare them in their own code. SmartConstants provides easy
access to these constants. The SmartConstants constants are described in
the reference guide, for each type library.

Following are some VBScript code samples that demonstrate the use of
SmartConstants.

Example

Set Constants = CreateObject(’'SmartConstants.SmConstants')

RecordList.AddHeader "Headerl', 255, Constants.SmReclList.sdtChar

Once you have established a reference to the SmConstants object, the
syntax is Constants. library-name.constant-name. You can also
use the same instance of the object to access several libraries.

Example

Set Constants = CreateObject("'SmartConstants.SmConstants')
RecordList.AddHeader '‘Headerl', 255, Constants.SmRecList.sdtChar
Set B = Session.ObjectStore._DefaultBehavior.Clone
B.ConfirmOperations = Constants.SmApplic.coYesToAll

You can also keep a reference to the library specific instance:
Example

Set Constants = CreateObject(’'SmartConstants.SmConstants')

Set C2 = Constants.SmRecList

RecordList.AddHeader '‘Headerl'', 255, C2.sdtChar

554

To make this a bit more convenient, we've added library specific shortcuts
from some of the main objects. So RecordList.Constants is a short cut to
the constants object for the SmRecList TLB, and Session.Constants /
Engine.Constants are shortcuts to the constants object for the SmApplic
TLB. So the above code can also be written without creating the Constants
object, in the following manner:

Example

RecordList.AddHeader '‘Headerl', 255, RecordList.Constants.sdtChar
Set B = Session.ObjectStore._DefaultBehavior.Clone

B.ConfirmOperations = Session.Constants.coYesToAll

Currently, the objects that support these shortcuts are RecordList, Record,
Engine and Session, with more to follow.

A few more things to note:

e Delphi, Visual Basic and C++ developers do not need to use these
objects. It is much more efficient to use the constants defined in the
_TLB.pas and .H files.

e The SmConstants object loads the type-library information
dynamically, so there is no need to recompile it when new libraries are
added or new values are added to an existing library.

SmartScript Editor Workarounds

The following workarounds are used in the following conditions:

e Using the SmartScript Editor with the SmarfFileCatalog library, objects
such as, ISmFolder, and ISmFileldentifier, error "type mismatch" is
displayed

To avoid this error, use the following workaround:

e The variables for the SmarTFileCatalog library Objects should not be
defined as an exact data type but as a Variant type.

e In the SmartScript Editor while using properties with arguments, such
as, Property Value (HeaderName,RecordIndex). The following error
message is displayed, "...Too many parameters encountered".

To avoid this error use either of the following workarounds:
e When using a SmRecordList/SmRecord object(s), their variables need
to be defined as generic OLE Object:

Dim SmRecList as Object

555

SmarTeam Object Model Programmer's Guide

SmRecList.Value("TDM_ID",0) = "test"
o When working with the ISmObject object, use either of the following
workarounds:
a. Define the variable as its exact data type ISmObject, but call for
the Property Value via another Property Data:

Dim FolderObject as ISmObject

FolderObject.Data.Value("TDM_ID")="1111"
b. Define variable as OLE Object:

Dim FolderObject as Object
FolderObject.Value("CN_ID")="1111".

ISM Objects Workaround

The following are specific Conditions that are disregarded in ISM Objects:

ISMObject.RetrieveParentsAndLinks
ISMObject.RetrieveParentsAndLinksEx
ISMObject.RetrieveChildrenAndLinks
ISMObject.RetrieveChildrenAndLinksEx
ISMObject.RetrieveRelationsAndLinks
ISMObject.RetrieveRelationsAndLinksEx
ISMObject.RetrieveParents
ISMObject.RetrieveParentsEx
ISMObject.RetrieveChildren
ISMObject.RetrieveChildrenEx
ISMObject.RetrieveRelations
ISMObject.RetrieveRelationsEx

CAD Integration

Integration Name Integration Class Integration Behavior

CATIA CATIA_PART TDM_CATIA_PART

556

Appendix B - SmarTeam Add-In

Services

The following is a list of SmarTeam add-in services libraries:

SmarTeam Library Name Progld
GUI Services SmGUISrv.SmCommonGUI
Utilities SmuUtil.SmSessionUtil
SmartFlow SmartFlow.SmFlowStore
SmartMessages SmartMessages.SmMessageStore
Integration Tools SmintegrationTool.SmintegrationStore
CAD Interface SmCad.SmCADInterface

557

558

Appendix C - Writing Server

Applications

This appendix describes how to use the SmarTeam COM API to create
server-type applications.

Requirements

The requirements of a server-type application are normally as follows:
1. The application should be able to handle multiple concurrent requests
from several clients

2. The application should not display a user interface while running.

Guidelines

The following guidelines help you to use the SmarTeam API to create
server applications that meet the above requirements and that function in a
correct and efficient manner:

Guideline 1: Use SmApplic.SmFreeThreadedEngine instead of
SmApplic.SmEngine.

SmFreeThreadedEngine is almost identical to SmEngine. The main
difference between the two objects is the threading model: SmEngine is
marked as “Both”, while SmFreeThreadedEngine is marked as “Free”. The
“Both” threading model used by SmEngine can result in significantly
slower performance, and even in deadlocks. These problems do not occur
when using SmFreeThreadedEngine.

You can use SmFreeThreadedEngine exclusively. SmEngine and its old
threading model are retained only for backward compatibility and continue
to work well for single-threaded applications. However, you must use
SmFreeThreadedEngine in multi-threaded applications.

559

SmarTeam Object Model Programmer's Guide

Guideline 2: Create SmSession objects explicitly; do not use
SmEngine.CreateSession

Using the old SmEngine.CreateSession to create a SmSession object causes
the object to be created in the Engine apartment. This is not the correct
behavior in a multi-threaded application. Instead, you should create the
SmSession object explicitly, using the mechanism appropriate for your
environment: CreateObject in Visual Basic, Server.CreateObject in ASP
applications, and CoCreatelnstance in C, and so on.

After creating the session, SmSession.Init must be called to associate the
new session with the SmEngine object.

Code that that was written using CreateSession will continue to work. New
code should use the new style, and multi-threaded applications must use the
new style.

Guideline 3: Set SmEngine.ServerMode to True

Setting the property SmEngine.ServerMode to True right after the
initialization stage (SmEngine.Init) prevents the SmarTeam API from
displaying message dialog boxes on the screen. Displaying a dialog box has
the effect of suspending a server application since no operator is available
to respond to it.

Guideline 4. Call SmSession.Close when the session is no longer
required

Call the SmSession.Close method as soon as the session is not
required to release the server resources for other sessions. Failing to call
this method can result in errors during the SmEngine.Terminate
method.

Guideline 5: Follow the rules of creating Win32 multi-threaded COM
applications

Check the MSDN and other Microsoft documentation for a description of
the rules that apply when creating Win32 multi-threaded applications.

560

Appendix D - SmarTeam Integration

and Integration Link Behaviors

SmarTeam Integration Behavior and Integration Link Behavior refer to a
common functionality that can be imposed on an object.

SmarTeam Integration _Behaviors

The following is a list of SmarTeam Integration_Behaviors:

Integration Integration Behavior Description

CATIA TDM_UG_ASSEMBLY UG Assembly

CATIA TDM_CATIA DESIGN_TABLE | CATIA Design Table
CATIA TDM_CATIA ANAL CATIA Analysis

CATIA TDM_CATIA CATALOG CATIA Catalog

CATIA TDM_CATIA DRAWING CATIA Drawing

CATIA TDM CATIA MATERIAL CATIA Material

CATIA TDM_CATIA MODEL CATIA Model

CATIA TDM_CATIA PART CATIA Part

CATIA TDM_CATIA PRODUCT CATIA Product

CATIA TDM_CATIA PROCESS CATIA Process

CATIA TDM_CATIA SHEET CATIA Sheet

CATIA TDM_CATIA_INTCOM CATIA Internal Component
CATIA TDM_CATIA RESULTDOC CATIA Result Document
CATIA TDM_CATIA DOCUMENT CATIA Document

CATIA TDM_CATIA REPRESENT CATIA Representation
CATIA TDM_CATIA_AN ALCOMP CATIA Analysis Computations
CATIA TDM_CATIA ANALINPUT CATIA Analysis Input
CATIA TDM_NC_DOCUMENT NC

CATIA TDM_CAD_DOCUMENT CAD Document

CATIA TDM_CATIA ANALRESULT CATIA Analysis Results
CATIA TDM_CATIA _CADAM CATIA CADAM

CATIA TDM_CATIA PROCESS _LIB CATIA Process Library
CATIA TDM_CATIA SYSTEM CATIA System

CATIA TDM_CATIA FEATURE_DIC CATIA Feature Dictionary
CATIA TDM_UG_PART UG Part

Microsoft Excel TDM_EXCEL_DOCUMENT Excel Document

561

SmarTeam Object Model Programmer's Guide

AutoCAD TDM_ACAD_DOCUMENT ACAD Document
Inventor TDM _INV_ASSEMBLY Inventor Assembly
Inventor TDM _INV_PART Inventor Part
Inventor TDM _INV_PRESENTATION Inventor Presentation
Inventor TDM _INV_DRAWING Inventor Drawing
Autodesk Mechanical | TDM_MDT_ASSEMBLY MDT Assembly
Desktop

Autodesk Mechanical | TDM_MDT_PART MDT Part

Desktop

Microsoft Word TDM_WORD DOCUMENT Word Document
SolidEdge TDM_SE_ASSEMBLY Solid Edge Assembly
SolidEdge TDM_SE_PART Solid Edge Part
SolidEdge TDM_SE SHEETMETAL Solid Sheet Metal
SolidEdge TDM_SE _WELDMENT Solid Edge Weldment
SolidEdge TDM_SE DRAFT Solid Edge Draft
SolidWorks TDM_SW_ASSEMBLY SolidWorks Assembly
SolidWorks TDM_SW_PART SolidWorks Part
SolidWorks TDM_SW DRAWING SolidWorks Drawing
SolidWorks TDM_SW_PRESENTATION eDrawing

Pro/ENGINEER

TDM_PROE_REPORT

ProE Report

Pro/ENGINEER

TDM_PROE_MARKUP

ProE Markup

Pro/ENGINEER

TDM_PROE_DIAGRAM

ProE Diagram

Pro/ENGINEER

TDM_PROE_FORMAT

ProE Format

Pro/ENGINEER

TDM_PROE_GROUP

ProE Group

Pro/ENGINEER

TDM_PROE_PART_IAC

ProE Part iAccelerator

Pro/ENGINEER

TDM_PROE_ASSEMBLY_IAC

ProE Assembly iAccelerator

Pro/ENGINEER

TDM_PROE_ASSEMBLY

ProE Assembly

Pro/ENGINEER

TDM_PROE_PART

ProE Part

Pro/ENGINEER

TDM_PROE_DRAWING

ProE Drawing

Pro/ENGINEER

TDM_PROE_MANUFACTURING

ProE Manufacturing

Pro/ENGINEER

TDM_PROE_LAYOUT

ProE Layout

MicroStation

TDM_MI_DOCUMENT

Microstation Document

SmarTeam Integration_Link _Behaviors

The following is a list of SmarTeam Integration Link Behaviors:

Integration Integration_Link Behavior Description

CATIA TDM_CATIA_COMPOSEDOF CATIA Composed of

CATIA TDM_CAT_PRODUCT_LNK CATIA Product

CATIA TDM_CAT_DESIGN_LNK CATIA Design

CATIA TDM_CAT_RULEBASE_LNK CATIA Rule Base

CATIA TDM_CAT_DESIGNTABLE_LNK CATIA Design Table

CATIA TDM_CAT DNSTR_LNK CATIA Downstream Application
CATIA TDM_CAT_REF_LNK CATIA Reference

562

CATIA TDM_CAT_CONTXT_LNK CATIA Contextual
CATIA TDM_CAT_RESULT _LNK CATIA Result
AutoCAD TDM_ACAD_COMPOSEDOF AutoCAD Composed of
AutoCAD TDM_ACAD_IMAGE_LNK Image

AutoCAD TDM_ACAD_OVERLAY_LNK AutoCAD Overlay

Inventor

TDM_INV_COMPOSEDOF

Inventor Composed of

Inventor

TDM_INV_DRAWINGOF

Inventor Drawing of

Autodesk Mechanical | TDM_MDT_COMPOSEDOF MDT Composed of
Desktop

Autodesk Mechanical | TDM_MDT _TABLE_LNK MDT Driven table
Desktop

SolidEdge TDM_SE_COMPOSEDOF Solid Edge Composed of
SolidEdge TDM_SE DRAFTOF Solid Edge Dratft of
SolidWorks TDM_SW_COMPOSEDOF SolidWorks Composed of
SolidWorks TDM SW DRAWINGOF SolidWorks Drawing of
SolidWorks TDM SW _INCONTEXT SolidWorks In Context
SolidWorks TDM_SW _DERIVEDPART SolidWorks Derived Part
SolidWorks TDM_SW_RAPIDDRAFT SolidWorks RapidDraft
SolidWorks TDM_SW_EDRAWING eDrawing Of
Pro/ENGINEER TDM_PROEHL_ATTRIBUTES ProE Attributes
Pro/ENGINEER TDM_PROE_COMPOSEDOF ProE Composed of
Pro/ENGINEER TDM_PROE_DRAWINGOF ProE Drawing of

Pro/ENGINEER

TDM_PROE_DEPENDENTOF

ProE Dependents

Pro/ENGINEER

TDM_PROE_MANUFACTURINGOF

ProE Manufacturing of

Pro/ENGINEER

TDM_PROELL_ATTRIBUTES

ProE Attributes

Pro/ENGINEER

TDM_PROE_LAYOUTOF

ProE Layouts

Pro/ENGINEER

TDM_PROEL_INSTANCE

ProE Instances

Pro/ENGINEER TDM_PROEL_SKELETON ProE Skeleton of
Pro/ENGINEER TDM_PROEL_EXTREFERENCE ProE External References
Pro/ENGINEER TDM_PROEL_MEMBER ProE Member of
Pro/ENGINEER TDM_PROEL_SHAREDDRAWING | ProE Shared Drawings
Pro/ENGINEER TDM_PROEL_DIAGRAM ProE Diagrams
Pro/ENGINEER TDM_PROEL_REPORT ProE Report of
Pro/ENGINEER TDM_PROEL_MARKUP ProE Markup of

Pro/ENGINEER

TDM_PROEL_FORMAT

ProE Formats

Pro/ENGINEER

TDM_PROEL_SIMPLIFIEDREP

ProE Simplified Reps

Pro/ENGINEER

TDM_PROEL_GROUP

ProE Groups

Pro/ENGINEER

TDM_PROEL_GROUPMODEL

ProE Group Model

Pro/ENGINEER

TDM_PROEL_IACCELERATOR

ProE iAccelerator

MicroStation

TDM_MI_REFDOC

Microstation Reference Document

=]

563

	1. Introduction
	What is the SmarTeam Object Model?
	Language-Independence
	Standard Programming Paradigms and Naming Conventions
	Flexibility
	Basic Libraries and Service Libraries
	Engine and Session Objects
	Persistent Objects and Classes
	Accessing Objects

	Additional Conventions

	2. Using SmarTeam COM Objects
	Creating a Creatable Object
	Obtaining a Non-Creatable Object
	Working with Collection Objects
	Using Scripts
	Using the SmarTeam Object Model in another Application
	Add-In Services

	3. SmarTeam COM Libraries Overview
	SmarTeam Record List Library
	SmarTeam Engine Library
	SmarTeam GUI Services Library
	SmarTeam Utilities Library
	SmarTeam - Workflow Library
	SmartMessages Library
	SmarTeam CAD Interface Library
	SmarTeam Integration Tools Library
	SmartIXF Library
	SmartClientContextService Library
	SmartFileCatalog Library
	SmartRecordList Library

	4. SmarTeam Record List Library
	General Description
	Dependencies

	Overview of Record Lists
	Overview of Objects
	SmRecordList Object
	Example
	Indexed Searches of RecordLists
	Example

	SmRecord Object
	SmRecordListHeaders Object
	SmRecordListHeader Object
	Grouping Columns in a Record List
	Grouping Nodes in a Record
	Example

	5. SmarTeam Engine Library
	General Description
	Dependencies
	Persistent Objects and Classes

	Overview of Objects
	SmEngine
	SmSession Object
	SmDatabase Object
	SmConfig Object
	Configuration Types
	Accessing ISmConfig
	Accessing Configuration Data
	ExpandValue Property
	Properties and Methods for Editing Configuration Data

	Metadata Management Objects
	SmMetaInfo Object
	SmClasses and SmClass Objects
	SmClassAttributes and SmClassAttribute Objects
	Reference to Class
	SmObjectTree Object
	Class Behaviors
	Class-Level Behavior
	Optional Class-Level Behavior
	Link Composition
	Permissible Compositions
	Class Composition
	API Methods

	Persistent Object Management
	SmObjectStore Object
	 SmObject and SmObjects Objects
	Creating a New Persistent Object via the SmarTeam Object Model
	Retrieving an Existing Persistent Object
	Creating an SmObject
	Connected and Disconnected Objects
	Additional SmObject Functionality
	SmObjects Object
	Accessing SmObject
	SmBehavior Object
	SmMultiObjects Object
	SmCompositeObjects and SmCompositeObject Objects
	SmLookUpObjects and SmLookUpObject Objects
	SmClassReferenceObjects and SmClassReferenceObject Objects
	Managing Transactions in the Database

	SmQuery Object
	Examples
	ISmSimpleQuery function

	6. SmarTeam GUI Services Library
	General Description
	Dependencies

	GUI Concepts
	The SmarTeam View
	SmarTeam Dialogs

	Overview of Objects—ISmCommonGUI
	The Views Property
	ISmView
	ISmViewWindow
	ISmGUIComponent
	ISmTreeComponent and ISmGridComponent

	Specifying Contents for a Standard View
	ISmActiveWindow
	Using ISmView and ISmViewWindow
	ISmDialogs
	Basic Dialogs
	Select Database Dialog
	Select Class Dialog
	ExecuteSelectFromQueryResult Dialog
	ExecuteQueryByAttributes Dialog

	ISmSaveAsDialog.ControlProperties
	ISmSaveAsDialog.OptionsProperties
	ISmLocalFilesExplorer
	ISmWindowProperties

	ISmSaveAsDialog
	ISmGUIProperties
	ISmGUIProperty

	ISmOpenDialog

	7. SmarTeam Utilities Library
	General Description
	Dependencies

	Overview of Objects
	SmSessionUtil Object
	Object Functionality
	File Vault Operations
	Copied-File Registration
	Common Tasks

	Lifecycle Operations
	Individual Operations
	Group Life-Cycle Operations
	Understanding Group Life-Cycle Operations
	Lifecycle Authorization Operations
	Mask Operations
	Miscellaneous Utilities

	SmMiscUtil Object
	SmConvert and SmSessionConvert Objects
	SmConvert Object
	SmSessionConvert Object

	8. SmarTeam - Workflow Library
	General Description
	Overview of Objects
	SmFlowProcess Object
	SmFlowChart Object
	SmFlowSession Object
	SmWorkflowView Object
	SmFlowStore Object

	Overview of the SmartMessage Library Objects
	SmMessageSession Object
	SmMessageQueue Object
	SmMessageStore Object

	Using the SmarTeam - Workflow Library
	Writing SmarTeam - Workflow Applications
	Writing Run-Time Scripts
	Task-Driven Scripts
	Event-Driven Scripts

	9. SmarTeam CAD Interface Library
	General Description
	SmarTeam CAD Integration
	Integration Data Model
	SmarTeam CAD Interface
	Dependencies

	Overview of Objects
	SmCADInterface Object
	SmCADInterface Properties
	SmCADInterface Methods

	10. SmIntegrationTool Library
	Introduction
	SmarTeam CAD Integration

	ISmIntegrationStore
	ISmSpecificIntegrationStore

	ISmCadFileTypes
	ISmCadFileType
	ISmManagedClasses
	ISmManagedClass

	ISmPropertyGroupTypes
	ISmPropertyGroupType
	ISmPropertyGroups
	ISmPropertyGroup

	ISmGroupProperties
	ISmGroupProperty

	ISmClassesMappings
	ISmClassMapping

	ISmIntegrationGUIStore
	ISmPropertiesGroupsGUIService

	11. SmartIXF Library
	Introduction
	Naming Conventions
	NCName
	Class Behavior URI

	Overview of Objects
	ISmIxfSchema
	ISmIxfClassesBehaviors
	ISmIxfClassBehavior

	ISmIxfClasses
	ISmIxfClass
	ISmIxfAttributes
	ISmIxfAttribute
	ISmIxfClassBehaviors

	ISmIxfDomainBehaviors
	ISmIxfDomainBehavior

	ISmIxfInfo
	ISmIxfInfoItem
	ISmIxfXmlAttributeValue

	Common Tasks

	SmIxfInitializationData
	Setting Proxy Information

	SmIxfWriter
	Creating an iXF Archive File
	ISmIxfDataWriter
	ISmIxfObjectWriter
	ISmIxfObject
	ISmIxfAttributesValues
	ISmIxfInfo

	ISmIxfSchema
	Common Tasks

	SmIxfReader
	ISmIxfDataReader
	ISmIxfObjectReader
	ISmIxfObjectIterator
	ISmIxfObject
	ISmIxfInfo

	ISmIxfUnderstoodInfoItems
	ISmIxfSchema
	Common Tasks

	Reading and Writing an External Schema
	SmIxfExternalSchemaWriter
	SmIxfExternalSchemaReader

	ISmIxfStdHelper
	Standard Behaviors
	ISmIxfSchemaHelper
	Change-Tracking Standard Behavior
	File Association Standard Behavior
	Versioning Standard Behavior
	TimeStamp Standard Behavior
	Common Tasks

	ISmIxfWriterHelper
	ISmIxfChangeWriter
	ISmIxfFileWriter
	ISmIxfVersioningWriter
	ISmIxfTimeStampWriter
	Common Tasks

	ISmIxfReaderHelper
	Identifying and Restoring Read-In Objects
	ChangeReader
	FileReader
	VersioningReader
	TimeStampReader
	Common Tasks

	An IXF Messaging Application
	Messaging Format
	Class Behaviors
	Domain Behaviors
	Domain Behavior Definition
	Role-to-Class Mapping

	Connectivity of Objects
	Associating Files with Messages

	Implementing the Application
	Creating the Schema
	Adding Class Behaviors
	Adding Classes
	Adding Domain Behaviors

	Writing the Data
	Basic Objects
	Link Objects

	Reading the Data
	Executing the Application

	12. SmarTeam Client Libraries Overview
	SmartClientContext Library
	ISmClientContext

	SmartClientContextService Library
	ISmClientContextService

	SmartClientServices Library
	ISmClientServices
	ISmClientDictionary
	ISmDictionaryGroup
	ISmDictionaryProperty

	SmartClientConfiguration Library
	ISmClientConfiguration
	ISmConfigurationValueList

	SmartInet Library
	IHttpConnection
	IHttpContext
	IHttpUtils

	SmartFileCatalog Library
	SmartRecordList Library
	SmartIntegrationServices Library
	SmartGUIServices Library
	SmartEmbeddedScripts Library

	13. SmartFileCatalog Library
	General Description
	Dependencies

	Overview of File Catalog Library
	File Catalog Object Organization
	File Catalog in a Shared Workspace
	File Catalog with Private Files
	Relation to SmarTeam Processes
	SmFile Attributes

	Overview of Objects—ISmFileCatalog
	ISmFiles
	ISmFile
	ISmReferences
	ISmReference
	ISmComponents
	ISmComponent
	ISmMasks

	ISmFileIdentifiers
	ISmFileIdentifier
	ISmComponentIdentifiers

	ISmFolders
	ISmFolder
	ISmFolderIdentifiers

	ISmWorkspaces
	ISmWorkspace
	ISmResultItems
	ISmResultItem
	ISmRetrieveFilter
	Common Tasks

	14. SmartRecordList Library
	General Description
	Dependencies

	Overview of Record List Objects
	IMutableRecordList
	IMutableColumns
	IMutableColumn
	IMutableRecord
	IRecordList
	IColumns
	IColumn
	IRecord
	IRecordListIterator
	IRecordListUtils
	IRecordsFactory

	Events
	IColumnsChangeEvent
	IColumnsChangeListener
	IRecordChangeEvent
	IRecordChangeListener
	IRecordListChangeEvent
	IRecordListChangeListener
	IRecordListValueChangeEvent
	IRecordListValueChangeListener

	Common Tasks
	CAD Integration
	Requirements
	Guidelines

	SmarTeam Integration_Behaviors
	SmarTeam Integration_Link_Behaviors

