

ENOVIA SmarTeam

SMARTEAM OBJECT MODEL

PROGRAMMER'S GUIDE

ENOVIA SmarTeam | Dassault Systèmes

www.smarteam.com

www.3ds.com

Important Notice
© Dassault Systèmes, 2004, 2008. All rights reserved.

CATIA, ENOVIA, SmarTeam and the 3DS logo are registered trademarks of Dassault Systèmes or
its subsidiaries in the US and/or other countries.

PROPRIETARY RIGHTS NOTICE: This documentation is the property of Dassault Systèmes. This
documentation shall be treated as confidential information and may only be used by employees or
contractors of the Customer in accordance with the terms of the End-User License Agreement
accepted by Customer.

Any use of the Licensed Program contained in this media or accompanying it, is subject to the terms
of the End User License Agreement accepted by Customer. The Licensed Program is protected by
international copyright laws and international treaties. Unauthorized use, reproduction and/or
distribution of any of the Licensed Program, or any part thereof, may result in severe civil and/or
criminal penalties, and will be prosecuted to the maximum extent possible under the law. Company
names and product names mentioned herein are the property of their respective owners and certain
portions of the Licensed Program contain elements subject to copyright owned by these entities. See
the Documentation CD provided with the Licensed Program for details and/or additional terms and
conditions relating to these entities.Part No:

API-A3-1803007

iii iii iii

Table of Contents

1.INTRODUCTION 1

What is the SmarTeam Object Model? 2
Basic Libraries and Service Libraries 3
Engine and Session Objects 4
Persistent Objects and Classes 5
Accessing Objects 5

Additional Conventions 7

2.USING SMARTEAM COM OBJECTS 9

Creating a Creatable Object 9

Obtaining a Non-Creatable Object 10
Working with Collection Objects 10
Using Scripts 11
Using the SmarTeam Object Model in another Application 12

Add-In Services 14

3.SMARTEAM COM LIBRARIES OVERVIEW 16

SmarTeam Record List Library 16
SmarTeam Engine Library 17

SmarTeam GUI Services Library 17
SmarTeam Utilities Library 17

SmarTeam - Workflow Library 18
SmartMessages Library 18

SmarTeam CAD Interface Library 19
SmarTeam Integration Tools Library 19

SmartIXF Library 20
SmartClientContextService Library 20

 SmarTeam Object Model Programmer's Guide

 iii vvv

SmartFileCatalog Library 20
SmartRecordList Library 21

4.SMARTEAM RECORD LIST LIBRARY 22

General Description 22
Dependencies 22

Overview of Record Lists 22
Overview of Objects 23

SmRecordList Object 23
SmRecord Object 36
SmRecordListHeaders Object 39
SmRecordListHeader Object 40
Grouping Columns in a Record List 40

5.SMARTEAM ENGINE LIBRARY 44

General Description 44
Dependencies 45
Persistent Objects and Classes 45

Overview of Objects 45
SmEngine 46
SmSession Object 50
SmDatabase Object 55
SmConfig Object 58
Metadata Management Objects 64
Persistent Object Management 86
SmQuery Object 104

6.SMARTEAM GUI SERVICES LIBRARY 119

General Description 119
Dependencies 119

GUI Concepts 119
Overview of Objects—ISmCommonGUI 120

The Views Property 122
ISmView 123

vvv

Specifying Contents for a Standard View 139
ISmActiveWindow 142
Using ISmView and ISmViewWindow 143
ISmDialogs 145
Basic Dialogs 147
ISmSaveAsDialog.ControlProperties 150
ISmSaveAsDialog.OptionsProperties 152
ISmLocalFilesExplorer 154
ISmSaveAsDialog 158
ISmOpenDialog 163

7.SMARTEAM UTILITIES LIBRARY 169

General Description 169
Dependencies 169

Overview of Objects 170
SmSessionUtil Object 170

Object Functionality 171
File Vault Operations 171
Copied-File Registration 175
Lifecycle Operations 177
SmMiscUtil Object 210
SmConvert and SmSessionConvert Objects 210

8.SMARTEAM - WORKFLOW LIBRARY 214

General Description 214
Overview of Objects 215

SmFlowProcess Object 215
SmFlowChart Object 227
SmFlowSession Object 245
SmWorkflowView Object 258
SmFlowStore Object 260

Overview of the SmartMessage Library Objects 263
SmMessageSession Object 263
SmMessageQueue Object 265
SmMessageStore Object 271

 SmarTeam Object Model Programmer's Guide

 vvv iii

Using the SmarTeam - Workflow Library 273
Writing SmarTeam - Workflow Applications 273
Writing Run-Time Scripts 276

9.SMARTEAM CAD INTERFACE LIBRARY 294

General Description 294
Dependencies 296

Overview of Objects 297
SmCADInterface Object 297

10.SMINTEGRATIONTOOL LIBRARY 318

Introduction 318

ISmIntegrationStore 320
ISmSpecificIntegrationStore 323

ISmCadFileTypes 326
ISmCadFileType 327
ISmManagedClasses 328

ISmPropertyGroupTypes 332
ISmPropertyGroupType 334
ISmPropertyGroups 336
ISmGroupProperties 340
ISmClassesMappings 345

ISmIntegrationGUIStore 349
ISmPropertiesGroupsGUIService 350

11.SMARTIXF LIBRARY 354

Introduction 354
Naming Conventions 354

Overview of Objects 355

ISmIxfSchema 356
ISmIxfClassesBehaviors 359
ISmIxfClasses 363
ISmIxfDomainBehaviors 371
ISmIxfInfo 373

vvv iii iii i

Common Tasks 376

SmIxfInitializationData 380
SmIxfWriter 382

ISmIxfDataWriter 385
ISmIxfSchema 391
Common Tasks 391

SmIxfReader 395
ISmIxfDataReader 396
ISmIxfUnderstoodInfoItems 398
ISmIxfSchema 399
Common Tasks 399

Reading and Writing an External Schema 401
SmIxfExternalSchemaWriter 401
SmIxfExternalSchemaReader 401

ISmIxfStdHelper 402
Standard Behaviors 402
ISmIxfSchemaHelper 403
ISmIxfWriterHelper 410
ISmIxfReaderHelper 434

An IXF Messaging Application 446
Messaging Format 446
Class Behaviors 447
Domain Behaviors 447
Connectivity of Objects 448

Implementing the Application 451
Creating the Schema 451
Writing the Data 460
Reading the Data 467
Executing the Application 470

12.SMARTEAM CLIENT LIBRARIES OVERVIEW 473

SmartClientContext Library 474
ISmClientContext 474

SmartClientContextService Library 475

 SmarTeam Object Model Programmer's Guide

 vvv iii iii iii iiii

ISmClientContextService 475

SmartClientServices Library 476
ISmClientServices 476
ISmClientDictionary 477
ISmDictionaryGroup 477
ISmDictionaryProperty 478

SmartClientConfiguration Library 479
ISmClientConfiguration 479
ISmConfigurationValueList 480

SmartInet Library 481
IHttpConnection 481
IHttpContext 481
IHttpUtils 481

SmartFileCatalog Library 483

SmartRecordList Library 483
SmartIntegrationServices Library 483
SmartGUIServices Library 483
SmartEmbeddedScripts Library 484

13.SMARTFILECATALOG LIBRARY 485

General Description 485
Dependencies 485

Overview of File Catalog Library 486
File Catalog Object Organization 486
File Catalog in a Shared Workspace 488
File Catalog with Private Files 489
Relation to SmarTeam Processes 490

Overview of Objects—ISmFileCatalog 491
ISmFiles 495
ISmFile 496
ISmFileIdentifiers 507
ISmFileIdentifier 509
ISmFolders 511
ISmFolder 511

iii xxx

ISmWorkspaces 515
ISmWorkspace 516
ISmResultItems 517
ISmResultItem 519
ISmRetrieveFilter 521
Common Tasks 522

14.SMARTRECORDLIST LIBRARY 533

General Description 533
Dependencies 533

Overview of Record List Objects 533
IMutableRecordList 534
IMutableColumns 536
IMutableColumn 537
IMutableRecord 537
IRecordList 539
IColumns 541
IColumn 542
IRecord 542
IRecordListIterator 543
IRecordListUtils 543
IRecordsFactory 544

Events 544
IColumnsChangeEvent 545
IColumnsChangeListener 545
IRecordChangeEvent 545
IRecordChangeListener 546
IRecordListChangeEvent 546
IRecordListChangeListener 546
IRecordListValueChangeEvent 547
IRecordListValueChangeListener 547

Common Tasks 548

AAPPPPEENNDDIIXX AA - TIPS FOR WRITING SCRIPTS 551

CAD Integration 556

 SmarTeam Object Model Programmer's Guide

 xxx

AAPPPPEENNDDIIXX BB - SMARTEAM ADD-IN SERVICES 557

AAPPPPEENNDDIIXX CC - WRITING SERVER APPLICATIONS 559

Requirements 559
Guidelines 559

AAPPPPEENNDDIIXX DD - SMARTEAM INTEGRATION AND INTEGRATION LINK
BEHAVIORS 561

SmarTeam Integration_Behaviors 561

SmarTeam Integration_Link_Behaviors 562

xxx iii

PART I

INTRODUCTION TO

SMARTEAM API

111

1. Introduction

COM is a platform-independent, distributed, object-oriented system for
creating software components that can interact with each other.

COM offers the following capabilities:
• Plug-in ability⎯adding new accessories into existing applications does

not require rebuilding the application
• Ability to interact with other objects independently of the working

environment
• Accessibility within a single process, in other processes, or from a

remote machine
• Standardized object-oriented programming, including:
• Type of objects

• Standard methods

• Naming conventions

• Encapsulation.

Data associated with a COM object is manipulated through its interfaces.
An interface is a class whose members are defined but not implemented.

An interface implementation is associated with an object when an instance
of that object is created, as shown in the following schematic:

Application

Object
Application

ObjectInterfaces

Interfaces

 SmarTeam Object Model Programmer's Guide

 222

What is the SmarTeam Object Model?

The SmarTeam Object Model provides programmatic access to the
functionality of the SmarTeam family of products. Using the SmarTeam
Object Model, users and developers can customize and enhance
SmarTeam - Editor, as well as build custom solutions that take advantage
of the advanced capabilities of the SmarTeam engine.

The SmarTeam Object Model is exposed as a collection of COM objects
and interfaces, and provides:
• Language-independence
• Standard programming paradigms and naming conventions
• Flexibility.

Language-Independence

The SmarTeam Object Model can be used from any modern development
tool.

Examples of such tools include:
• The Microsoft Visual Studio family of tools, including Visual Basic,

Visual C++ and others
• VBScript and Jscript
• Borland Delphi
• Java
• Any other COM-aware tool

Standard Programming Paradigms and Naming
Conventions

The SmarTeam Object Model is exposed as Automation objects, and uses
the same naming conventions as the Microsoft Office Object Models.

333

Flexibility

The SmarTeam Object Model is compatible with Distributed COM
(DCOM), and can therefore be accessed from within the same process
(single executable), from another process, or from another machine on the
network.

Basic Libraries and Service Libraries

The SmarTeam Object Model consists of a core API, which provides the
basic functionality common to all SmarTeam products, as well as an
extendable collection of Add-in Services, which provides more specialized
functionality.

The core API provides functionality in the following areas:
• Database access
• Working with SmarTeam objects
• Queries
• Data structures

The built-in services provide functionality in a number of areas, including,
for example:
• Workflow
• User interface
• Integration

The SmarTeam Object Model includes basic libraries and add-in libraries,
as follows:
• Basic libraries consist of the SmarTeam Record List library and

SmarTeam Engine library.
• Add-in services are located in service libraries, such as the SmarTeam

- Workflow library. In order to have access to service libraries, the
programmer must invoke the appropriate service.

 SmarTeam Object Model Programmer's Guide

 444

Engine and Session Objects

Through the SmEngine and SmSession objects, the SmarTeam Object
Model can support several users working at the same time on the same or
different databases.

SmEngine is a creatable object that is a root of the SmarTeam Object
Model, and provides access to all other SmarTeam Object Model objects.
The SmEngine object has a limited set of methods that mainly serve for
creating sessions, manipulating configured databases, and changing the
configuration.

The programmer can create several sessions under the SmEngine object.
Each session enables the programmer to open an individual connection to
the database for a specific user. Each session is represented by an
SmSession object, which usually represents a single user.

Each session enables access to the MetaInfo object, which contains
information about the structure of the database opened under the session
and to the UserMetaInfo object, which contains information about the
currently logged-on user for the session. All major objects in the
SmarTeam Object Model operate within the scope of the session.

The SmEngine object keeps a list of all currently open sessions and a list
of all databases opened during the sessions.

Through the SmEngine and SmSession objects, SmarTeam - Editor
enables the following working flexibility:
• Multiple users
• Multiple databases
• Multiple connections to each database
• Multiple concurrent sessions, each one associated with a specific user

and database connection

The following schematic illustrates the multi-user, multi-session and
multi-database working flexibility enabled by the SmEngine and
SmSession objects.

555

Engine

Database DatabaseSession

User

Session

User

Session

User

Persistent Objects and Classes

The terms Persistent Objects and Persistent Classes are used in connection
with the SmarTeam Object Model to describe specific objects and classes
that are held in the SmarTeam database.

See Chapter 5 - SmarTeam Engine Library, for details of Persistent Objects
and Persistent Classes.

Accessing Objects

Most of the objects used in the SmarTeam Object Model cannot be created
directly. Instead, they are accessed and created using properties and
methods of other objects in the model. Some SmarTeam objects are
exceptions to this rule, and can be created externally.

Creatable objects in the SmarTeam object model include:

 SmarTeam Object Model Programmer's Guide

 666

• The SmEngine object. When writing scripts from within SmarTeam -
Editor itself, the SmEngine object is always available. However, when
creating custom solutions using the SmarTeam Object Model outside
of SmarTeam - Editor itself, the SmEngine must be created.

• The SmRecordList and SmRecord object. This is a stand-alone object,
which can be used as a general purpose versatile container, and can be
created manually.

• The SmConfig object. This object can be used as a stand-alone object
that provides convenient access to SmarTeam - Editor configuration
information. The SmEngine and SmSession objects contain references
to their own SmConfig object. Using the SmConfig object referenced
by SmEngine or SmSession enables access to application-dependent or
user-dependent configuration information.

• The SmStrings object. This object provides operations for
manipulating string collections.

To create one of these objects, you can use the facilities provided by your
development tool to create a COM object. For example, in Visual Basic,
this would be the CreateObject function, while in Visual C++, you need to
use the API function CoCreateInstance.

Running the Method ObjectProfile in C++

When performing an Import operation of "smapplic.tlb", you must add
rename ("EOF","EOFX") and rename ("LoadLibrary","LoadLibraryX") by
doing the following:

#import "smapplic.tlb" no_namespace named_guids
rename("EOF","EOFX") rename ("LoadLibrary","LoadLibraryX")

before #import "smutils" you need to import #import "smartinternal.tlb"
no_namespace named_guids.

777

SmarTeam COM Naming Conventions

The SmarTeam Object Model applies the following naming conventions:

• A SmarTeam COM object is identified by the prefix Sm.
• A SmarTeam object interface is identified by the prefix ISm.
• An Enum variable, used to define two or more constant options, is

designated with the suffix Enum; for example, ClassTypeEnum
identifies alternatives relating to ClassType object functionality.

• The names of the constant options of an Enum variable have a prefix,
which is usually a concatenation of two or three capital letters of the
variable name. For example, the constant options of the
ClassTypeEnum are identified by the prefix ct, as in ctComplexLink,
ctHierLink.

Additional Conventions

The following conditions also apply:
• A SmarTeam COM creatable object can be created using the facilities

provided by your development tool to create a COM object.

• A SmarTeam COM non-creatable object is obtained through the
specific method of another object.

• Exceptions are used to indicate a COM failure condition. This is used
in place of API return values.

 SmarTeam Object Model Programmer's Guide

 888

999

2. Using SmarTeam COM Objects

The SmarTeam COM Object Model facilitates access to and manipulation
of SmarTeam data and utilities.

A SmarTeam COM object can be one of the following:
• A creatable object that is independently created, using the facilities

provided by the development tool or the COM CoCreateInstance API
function.

• A non-creatable object, obtained via method calls of other objects.

Creating a Creatable Object

Each COM class has two identifiers: A Class Identifier (CLSID), which is
a globally unique 128-bit numeric identifier, and a Programmatic Identifier
(PROGID), which is a more readable, textual name for the class.

To create an externally creatable object, do one of the following:
• Use the PROGID to identify the class at run-time:
Set SmEngine = CreateObject("SmApplic.SmEngine")

• Include a reference to the corresponding SmarTeam Type Library in
your project, and use the following syntax:

Set SmEngine = New SmApplic.SmEngine

When possible, use the second method, since it is more efficient and results
in faster creation time.

Note: In most cases you will not be able to work properly with the object without
calling the init method, as follows:

SmEngine.init "Smteam32”

 SmarTeam Object Model Programmer's Guide

 111000 00

Obtaining a Non-Creatable Object

A non-creatable object is obtained via method calls of other objects, as
follows:
Set SmSession = SmEngine.CreateSession(…)

Working with Collection Objects

Collections are objects that represent sets of objects or variants over which
users can iterate. They are useful in expressing the concept of "sets of
things that should be grouped together".

For example, the object SmRecordListHeaders represents a collection of
SmRecordListHeader objects that are grouped in one SmRecordlist.

Collection objects always includes the following properties and methods:

• A Count property, which returns the number of items in a collection

• An Item (Index) property which returns a specific item of the
collection Index – the key that uniquely identifies the item. Index can
be type Integer or OleVariant.

If the collection is searchable, it will include an IndexOf method, which
returns the index of an item in a collection.

If the collection can be modified, it will also include the Add and Remove
methods, allowing the users of a collection object to add or remove items.

Some collections can include:
• An ItemByName (Name) method that returns an item of the collection

specified by the string name of the item
• An ItemByIndex (Index) method that returns an item of the collection

specified by integer index.

In addition to these functions and properties, a collection object may
expose additional functions and properties, which are specific to its
functionality.

111111 1

Using Scripts

A script is program code that can be executed in the SmarTeam system,
usually in response to an event.

Using Scripts, the user can customize and enhance the SmarTeam family
of products.

Examples of scripts include setting up a workflow process, or generating
email notification each time a new project is created.

Scripts can be attached to a variety of SmarTeam events and executed in a
number of ways. Scripts can be attached either to system operations or to
specified SmarTeam events.

Script argument structures can differ from one event to another. The script
programmer should be familiar with the script interface at the particular
event hook before beginning to write code.

The SmarTeam API provides the SmartConstants object, which allows
developers writing in scripting languages, such as VBScript and JScript, to
use constants (enumerations) without using their actual numeric value, or
having to redeclare them in their own code (see Appendix A for more
details).

For more information about writing scripts, refer to Appendix A.

 SmarTeam Object Model Programmer's Guide

 111222 2

Using the SmarTeam Object Model in another
Application

Unlike SmarTeam scripts, if you wish to use the SmarTeam Object
Model from another application, the SmEngine and SmSession objects are
not automatically available.

To initialize them correctly, follow the steps below:
1. Create and initialize the SmEngine object.
2. Create the SmSession object.
3. Open a database connection to a specific database via an SmSession

method (.OpenDatabaseConnection), thereby creating SmDatabase
and SmDatabaseConnection objects.

4. Log in via a SmSession method (.UserLogin). You can now work
with all other objects.

5. At the end of the application, use method Engine.Terminate.

The above procedure is illustrated in the following example:
Sub main()

 Dim Engine As SmApplic.SmEngine

 Dim Session As SmApplic.SmSession

 ‘ Create SmarTeam Engine object

 Set Engine = New SmApplic.SmEngine

 ‘ Initiate the Engine object

 Engine.Init "SmTeam32"

 ‘ Create a session object

 Set Session = Engine.CreateSession("DemoApplication", "SmTeam32")

 ‘ Open Database connection

 Session.OpenDatabaseConnection "SmDemo", "<password>", true

 ‘ Log in as “joe”

 Session.UserLogin "joe", ""

…

111333 3

<Application Body>

…

Engine.Terminate

End Sub

 SmarTeam Object Model Programmer's Guide

 111444 4

Add-In Services

Certain services are not created automatically when the session is created.
If the associated functionality is required, the user must obtain the service
from the session, using the ProgID of the appropriate service library. To
obtain the service library, use the GetService method of the session, as
illustrated in the following example:
Sub main()

 Dim Engine As SmApplic.SmEngine

 Dim Session As SmApplica.SmSession

 Dim GUIServices As SmGUISrv.SmCommonGUI

 ‘Create SmarTeam engine

 Set Engine = New SmApplic.SmEngine

‘ Initialize Engine object

 Engine.Init “SmTeam32”

‘ Create a session object

 Set Session = Engine.CreateSession(“DemoApplic”, “SmTeam32”

‘ Open database connection

 Session.OpenDatabaseConnection “SmDemo”, “<password>”, False

‘ Initialize GUI services object by ProgId SmGUISrv.SmCommonGUI

 Set GUIServices = Session.GetService(“SmGUISrv.SmCommonGUI”)

‘ Open Login window

 GUIServices.Dialogs.ExecuteLogin

 …

 <Application Body>

 …

 Engine.Terminate

 End Sub

For a list of SmarTeam Add-In services, refer to Appendix B.

111555 55

PART II

SMARTEAM COM LIBRARIES

 16

3. SmarTeam COM Libraries Overview

This chapter contains a brief overview of the SmarTeam COM libraries
described in this document.
• SmarTeam Record List Library
• SmarTeam Engine Library
• SmarTeam GUI Services Library
• SmarTeam Utilities Library
• SmarTeam - Workflow Library
• SmartMessages Library
• SmarTeam CAD Interface Library
• SmarTeam Integration Tools Library
• SmartIXF Library

SmarTeam Record List Library

The SmarTeam Record List library comprises the set of basic data
structure objects that serve as containers for SmarTeam data.

The objects in the SmarTeam Record List library are expandable,
dynamically allocated data structures. The SmarTeam Record List library
enables you to define new structures on an ad hoc basis, "on the fly".

See SmarTeam Record List Library for further details.

17

SmarTeam Engine Library

The SmarTeam Engine library contains objects that perform the following
basic and advanced SmarTeam - Editor functionality:
• Create and initialize the SmarTeam system connection to the database,

and manage all accesses to the SmarTeam Engine and database

• Manage the SmarTeam data model and retrieve information about the
SmarTeam data model

• Manage all SmarTeam persistent objects
• Manage the various types of SmarTeam queries.

See SmarTeam Engine Library for further details.

SmarTeam GUI Services Library

The SmarTeam GUI Services library comprises objects that enable the
following basic functionality:
• Create new GUI components
• Retrieve information about existing GUI components
• Create and display SmarTeam views
• Perform other special functionality
• Display various SmarTeam windows and dialogs.

See SmarTeam GUI Services Library for further details.

SmarTeam Utilities Library

The SmarTeam Utilities library comprises objects that enable the
following functionality:
• Format conversions
• Mask creation and attribute definition
• Life cycle methods
• Other miscellaneous methods.

See SmarTeam Utilities Library for further details.

SSSmmmaaarrrTTTeeeaaammm OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

18

SmarTeam - Workflow Library

The SmarTeam - Workflow library comprises objects that enable you to
initiate and promote workflow processes. These processes include nodes,
users, tasks, to do lists, and associated Workflow functionality.

The SmarTeam - Workflow library includes the following functionality:

• Creation and retrieval of objects relating to flowchart processes
• Flowchart design and retrieval, flowchart process, and flow engine

functionality
• Creation of flowcharts, including the physical appearance of flowcharts

• Definition of flowchart nodes, including policy, users and/or physical
attributes, such as location and size

• Linking of scripts to node events, for example, before send, after send,
and open

• Definition of node tasks of various types, manual, operation and script

• Definition of automatic and non-automatic node tasks.

See SmarTeam - Workflow Library for further details.

SmartMessages Library

The SmartMessages library comprises objects, methods and properties that
enable you to compose and send SmarTeam messages and Internet e-mail
messages.

See SmarTeam - Workflow Library for further details.

19

SmarTeam CAD Interface Library

The SmarTeam CAD Interface library helps you integrate SmarTeam -
Editor with various CAD systems. The SmarTeam CAD Interface library
works with the files in the CAD system, saving information about the CAD
files in the SmarTeam database.

The SmarTeam CAD Interface library comprises objects that enable you
to:
• Save and update documents and compositions (trees) of the documents

in the SmarTeam database
• Retrieve document meta-information from the SmarTeam database by

file name
• Update various blocks of the drawing with meta-information
• Perform life cycle operations
• Other related operations.

See Introduction for further details.

SmarTeam Integration Tools Library

The SmarTeam Integration Tools library comprises objects that enable
you to define relations between the SmarTeam data model and
components of the CAD system. This library contains methods that enable
you to:
• Define default class and File Type for the Integration Behaviors
• Set up mappings between CAD file property fields and SmarTeam class

attributes in an integration

See SmIntegrationTool Library for further details.

SSSmmmaaarrrTTTeeeaaammm OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

20

SmartIXF Library

iXF is an XML-based format for describing a collection of objects and
associated files that conform to a specific data model. iXF is used to
exchange this data between systems.

The SmartIXF library comprises objects that enable you to perform the
following functions:
• Generating an iXF schema
• Processing an iXF schema
• Generating an iXF Archive File
• Processing an iXF Archive File

See SmartIXF Library for further details.

SmartClientContextService Library

This library provides access to the various Client libraries.

See SmarTeam Client Libraries Overview for further details.

SmartFileCatalog Library

The SmarTeam File Catalog library comprises objects that enable the
following functionality:
• Client-side file management for running SmarTeam in all possible

configurations
• Provides API support for integrations, life-cycle operations, SmarTeam

File Explorer, and collaborative design
• Folder-based structure management for file storage on client’s machine

or in network location
• Provides a mechanism for accessing and updating file object attributes

See SmarTeam Client Libraries Overview for further details.

 21

SmartRecordList Library

The SmartRecordList library comprises objects that enable the following
functionality:

Allows a client to work with record list data objects that are similar to
those in the SmarTeam API

See SmartFileCatalog Library for further details.

 22

4. SmarTeam Record List Library

General Description

The SmarTeam Record List library provides the SmRecordList object, a
versatile data structure that serves as a generic container for SmarTeam
data.

The SmRecordList object is a dynamically allocated, expandable object
that allows you to define new data structures on an ad hoc basis.

Dependencies

The SmarTeam Record List library has no dependent COM libraries.

Overview of Record Lists

A SmRecordList object is a flexible, matrix-like data structure consisting
of a variable number of records and attributes. Each node in the matrix
contains a value.

A column comprises a header and associated value nodes for each column.
The header contains identifying information about the column.

An SmRecord object represents a row or a subset of a row of an
SmRecordList, and can contain one value node for each column.

The SmarTeam Record List library includes a grouping feature that
enables you to access specific parts of a record list object according to
predefined groups. By using this feature, a subset of columns or a subset of
a record can be represented and you can use the same header name in two
different groups.

23

Overview of Objects

The SmRecordList object is the creatable object that defines the basic data
structures used by SmarTeam - Editor, and serves as a dynamic container
for SmarTeam data.

The following diagram shows the major objects in this library:

ISmRecordList

ISmRecordListHeader

ISmRecord

ISmRecordListHeaders

 Figure 4-1 ISmRecordList Object Diagram

SmRecordList Object

Unlike static arrays or tables, the SmRecordList object is a variable data
structure that is:
• Dynamically allocated, to accommodate the attributes of all future data

objects with maximum flexibility
• Expandable, to hold as much information as necessary
• Generic, to accommodate any format.

This enables you to define new SmarTeam structures, as you need them.

The SmRecordList object holds information in the form of records of
values where each node of a record can have a different value type. Nodes
in the RecordList with the same record index represent the same data type.

SSSmmmaaarrrTTTeeeaaammm OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

24

The SmRecordList object can be thought of as a matrix whose first row is
a header row comprising header nodes and whose subsequent rows are
records comprising value nodes. Thus, the first element of each column of
this matrix is a header node and subsequent column elements are value
nodes for each record corresponding to the header.

The example below illustrates a sample SmRecordList object structure:

Header node
catalog num
TDMT_CHAR
9

Header node
part name
TDMT_CHAR
25

Header node
part name
TDMT_CHAR
25

valve

pump

piston

seal

X765-012

X765-003

X765-009

X765-001

1

26

5

0

0 1 2

0

1

2

3

SmRecordListHeaders
object

SmRecordListHeader
object

SmRecord
object (record)
Value node

Column

SmRecordList Object

Each header node of a column contains the following information, deriving
from the SmRecordHeader object:
• Name: Unique string identifying the column.
• Type: Identifies the type of data contained in the column, as one of the

constants in the Enum SmDataTypesEnum.
• Size: Size (in bytes) for each value node, if applicable.

The header nodes are uniquely indexed from 0 to n-1 (n being the current
number of columns in the SmRecordList object). The value nodes in each
column are similarly indexed from 0 to n-1 (n being the current number of
value nodes in the column).

25

Properties

The ISmRecordList object has the following properties
Property Description

CapacityIncrement Retrieves or sets the secondary allocation size. When
“CapacityIncrement” is X, there will be X new nodes added to t
header when memory needs to be increased.

DynamicValueSize Returns the actual Integer value size for a node specified by
header name and record index.

DynamicValueSize
ByIndex

Returns the actual Integer value size for a node specified by
header index and record index

FormattedValueAs
StringByIndex

Gets or sets a value for a node specified by header index and
record index, where the value is represented as String, in spec
Format.

Group Gets the name of the group in this SmRecordList with a specifie
group index. Group indexes start with 0.

GroupCount Retrieves the number of groups in this SmRecordList.
GroupDynamic
ValueSize

Returns the actual value size for a node specified by group nam
header name, and record index.

GroupDynamic
ValueSizeByIndex

Returns the actual value size for a node specified by group nam
relative header index and record index.

GroupHeaders Returns a collection SmRecordListHeaders for a specified grou
the SmRecordList.

GroupValue Gets or sets a node value for a header in a group, where the no
is specified by group name, header name and record index.

GroupValueByIndex Gets or sets a node value for a header in a group, where the no
is specified by group name, header index relative to the group
record index.

HeaderCount Returns the number of headers.
HeaderIndex Returns the header index for a header specified by header nam

HeaderName Returns the header name for a header specified by header inde

Headers Returns a collection SmRecordListHeaders for this SmRecordL

InitialCapacity Retrieves or sets the initial allocation size. When “InitialCapac
is X, the new header will have X nodes.

MaxValue Retrieves the maximum value within a collection of nodes in a
specified header.

MinValue Retrieves the minimum value within a collection of nodes in a
specified header.

RecordCount Returns the number of records.
Value Gets or sets a value for a node specified by header name and

record index.

SSSmmmaaarrrTTTeeeaaammm OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

26

Property Description

ValueAs[Type] Gets or sets a value for a node specified by header name and
record index, where the value is represented as [Type], one of
SmDataTypesEnum.

ValueAs[Type]By
Index

Gets or sets a value for a node specified by header index and
record index, where the value is represented as [Type], one of
SmDataTypesEnum.

ValueByIndex Gets or sets a value for a node specified by header index and
record index.

ValueSize Returns the header Integer Value Size for a header specified b
name.

ValueSize2 Returns the header Long Value Size for a header specified by
name.

ValueSizeByIndex Returns the header Integer Value Size for a header specified b
index.

ValueSizeByIndex2 Returns the header Long Value Size for a header specified by
index.

ValueType Returns the header value type for a header specified by name.
ValueTypeByIndex Returns the header value type for a header specified by heade

index.

27

Methods

The ISmRecordList object has the following Methods
Method Description

Creating SmRecordList Objects
CreateFromRecord Adds the headers of a source SmRecord to this SmRecordList

wherever the headers are different from the existing headers of
SmRecordList. The nodes of the added headers are set to nil.

CreateAsCopy Replaces this SmRecordList with a copy of the source
SmRecordList without any records

CloneHeaders Creates and returns an SmRecordList that has the same heade
as this SmRecordList but contains no records.

ClearValues Deletes all records from the SmRecordList while retaining the
headers.

Adding Headers and Records

AddHeader Adds a header, defined by its name, type and value size, to this
SmRecordList, where the header value size can be Integer.

AddHeader2 Adds a header, defined by its name, type and value size, to the
SmRecordList, where the header value size can be Long.

InsertHeader Inserts a header with specified name, type and value size into t
SmRecordList, at a specified header index.

AddRecord Adds an empty record to SmRecordList and returns its index.
Getting and Finding Records in a RecordList

GetRecord Creates and returns an SmRecord from a record of this
SmRecordList, specified by record index.

GetGroupRecord Creates and returns an SmRecord of a group of this SmRecord
specified by group name and record index.

SearchRecord Searches this SmRecordList for a given SmRecord. If found,
returns the record index, otherwise returns -1.

GroupSearchRecord Searches a group of this SmRecordList for a given SmRecord.
found, returns the record index, otherwise returns -1.

SmRecordExists Returns True if a given SmRecord, exists in this SmRecordList

RecordExists Returns True if the record of a SmRecordList, specified by reco
index, exists in this SmRecordList.

OneFieldFilter Finds a record which has a given header node value in a
SmRecordList. Returns either the record found or the record
index.

MultiFieldFilter Finds records with given header node values in a SmRecordLis
Returns a SmRecordList containing either the records found or
indexes of the records found.

SSSmmmaaarrrTTTeeeaaammm OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

28

BinSearch Searches for records with specified node values in an
SmRecordList.

GroupBinSearch Same as BinSearch, but limited to the headers of a specified
group.

Finding a Node of a Header

GetRecordIndex Returns the record index of the first header node that matches
given value for a header specified by name. Returns –1 if no no
is found.

GetRecordIndexBy
Index

Returns the record index of the first header node that matches
given value for a header specified by index. Header indexes sta
from 0. Returns –1 if no node is found.

GetRecordIndexStart
FromIndex

Same as GetRecordIndexByIndex, with the search starting poin
specified by 'InitRow'.

29

Combining Two SmRecordList Objects

Cat Appends (concatenates) the records of the specified RecordLis
this SmRecordList. Optionally, before executing the method
verifies that the headers of both SmRecordLists match.

CatRecord Appends (concatenates) the specified SmRecord of a source
SmRecordList to this SmRecordList.

InsertRecords Copies a sequence of records from a SmRecordList and inserts
them into this SmRecordList at a specified record index, shiftin
the existing records.

Merge Adds (merges) to this SmRecordList columns of a specified
SmRecordList whose headers do not exist in this SmRecordLis

Sub Removes all headers in this SmRecord that also appear as
headers in a given SmRecordList.

Copying SmRecordList Objects

Copy Replaces this SmRecordList with an exact copy of the specified
source SmRecordList.

CopyExternal When the headers are the same, nodes of this SmRecordList a
overwritten with corresponding nodes of the source SmRecordL
Headers and records in the source SmRecordList that do not e
in this SmRecordList are added to it. Information is copied from
one record list to another, even if they are in different processe

Copying SmRecord Objects

CopyRecord Copies the specified SmRecord from the source SmRecordList
overwrites the destination SmRecord in this SmRecordList.

CopyRecordByOrder Copies the specified SmRecord from the source SmRecordList
overwrites the destination SmRecord in this SmRecordList. The
nodes are copied according to their sequential order, disregard
the header names.

CopyRecordExt Copies the specified SmRecord from the source SmRecordList
overwrites the destination SmRecord in this SmRecordList. If
SkipDiffTypes is True, values of non-matching elements will no
copied.

CopySmRecord Similar to CopyRecord except it operates on an isolated SmRe
instead of on a record in an SmRecordList.

CopySmRecordBy
Order

Similar to CopyRecordByOrder except it operates on an isolate
SmRecord instead of on a record in an SmRecordList.

CopySmRecordExt Similar to CopyRecordExt except it operates on an isolated
SmRecord instead of on a record in an SmRecordList.

CatSmRecord Appends (concatenates) an SmRecord to this SmRecordList.

SSSmmmaaarrrTTTeeeaaammm OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

30

Sorting Records

Sort

Sorts the records in this SmRecordList according to the header
names, sort directions and sort order specified in the SortQuery
SmRecordList.

Deleting

Clear Deletes all headers and nodes in the SmRecordList object.
DeleteElement Deletes the entire column specified by a header name from the

SmRecordList.
DeleteElementBy
Index

Deletes the entire column specified by a header index from this
SmRecordList. Header indexes start with 0.

DeleteRecord Deletes the record specified by a record index from this
SmRecordList. Record indexes start with 0.

31

Exchanging

Exchange Exchanges two nodes of a header in this SmRecordList object.
ExchangeByIndex Exhanges two records in this SmRecordList object.

Miscellaneous

GroupExist Returns True if a specified group exists in this SmRecordList.
Init Defines the initial amount of memory and the amount of

reallocation memory, both in number of records.
PrintToFile Prints the nodes of this SmRecordList to a file in a record by

record format.
Indexed Searches

CreateIndex Creates an index for a header with a specified position.
CreateIndexByName Creates an index for a header with a specified header name.
IsIndexed Checks if the column in a Record List with a specified column

number is indexed.
IsIndexedByName Checks if the column in a Record List with a specified column

name is indexed.
RemoveIndex Removes indexing from the column with a specified column

number.
RemoveIndexByName Removes indexing from the column with a specified column nam

Example

The following examples finds selected records in a record list, copies them
to a new record list and deletes them in the original record list.
 Dim RecordListA As SmRecList.SmRecordList

 Dim RecordListB As SmRecList.SmRecordList

 Dim Query As SmRecList.SmRecordList

 Dim SRecordIndex As Integer

 Dim DRecordIndex As Integer

 Dim I As Integer

 ‘ Populate record list

 Set RecordListA = New SmRecList.SmRecordList

 RecordListA.AddHeader "ObjectId", 4, sdtInteger

 RecordListA.AddHeader "FileName", 256, sdtChar

SSSmmmaaarrrTTTeeeaaammm OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

32

 RecordListA.AddHeader "Directory", 256, sdtChar

 RecordListA.ValueAsInteger("ObjectId", 0) = 1

 RecordListA.Value("FileName", 0) = "File2"

 RecordListA.Value("Directory", 0) = "Dir2"

 RecordListA.ValueAsInteger("ObjectId", 1) = 3

 RecordListA.Value("FileName", 1) = "File1"

 RecordListA.Value("Directory", 1) = "Dir1"

 RecordListA.ValueAsInteger("ObjectId", 2) = 2

 RecordListA.Value("FileName", 2) = "File2"

 RecordListA.Value("Directory", 2) = "Dir2"

 'Sort it according to FileName

 Set Query = New SmRecList.SmRecordList

 Query.AddHeader "COL_NAME", 256, sdtChar

 Query.AddHeader "TDM_DIRECTION", 4, sdtBoolean

 Query.Value("COL_NAME", 0) = "FileName"

 Query.ValueAsBoolean("TDM_DIRECTION", 0) = True

 'Query.Value("COL_NAME", 1) = "H2"

 'Query.ValueAsBoolean("TDM_DIRECTION", 1) = False

 RecordListA.Sort Query, 1, 0

 'MultiFieldFilter to find records with given Filename and Directory

 Set Query = New SmRecList.SmRecordList

 Query.AddHeader "FileName", 256, sdtChar

 Query.AddHeader "Directory", 256, sdtChar

 Query.Value("FileName", 0) = "File2"

 Query.Value("Directory", 0) = "Dir2"

 ' RecordListB receives indexes of found records

33

 Set RecordListB = RecordListA.MultiFieldFilter(Query, False)

 ‘ Make RecordListC to copy found records to

 Dim RecordListC As SmRecList.SmRecordList

 Set RecordListC = New SmRecList.SmRecordList

 RecordListC.CreateAsCopy RecordListA, 1

 ‘ Copy found records to RecordListC and delete them from RecordListA

 For I = RecordListB.RecordCount - 1 To 0 Step -1

 SRecordIndex = RecordListB.ValueAsSmallInt("SERV_FIELD", I)

 DRecordIndex = RecordListB.RecordCount - 1 - I

 RecordListC.CopyRecord RecordListA, SRecordIndex, DRecordIndex

 RecordListA.DeleteRecord (SRecordIndex)

 Next I

Indexed Searches of RecordLists

The RecordList library provides the ability to perform indexed searches of
a RecordList, where the key used in the search can be specified by the user
as a header of the RecordList.

The indexed search ability is provided within the framework of the existing
ISmRecordList search methods; you cause a method to use an indexed
search instead of a sequential search by setting up indexing for headers of
the specific RecordList to be searched.

Methods that can use Indexing

The following ISmRecordList methods use indexing when at least one of
the headers used has been set up for indexing:

Method Remarks

GetRecordIndexByIndex
GetRecordIndexStartFromIndex
OneFieldFilter Uses indexing when the match Record List includes on

single value for the header.
MultiFieldFilter Uses indexing when the match Record List includes on

single set of values – one match value for each header

SearchRecord

SSSmmmaaarrrTTTeeeaaammm OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

34

GroupSearchRecord
SmRecordExists

Setting up Indexing

Using the methods CreateIndex or CreateIndexByName, the user
specifies one or more headers (columns) of a RecordList to be searched to
be possible keys for a binary search. For each header specified as a key, a
separate key array is constructed and sorted in ascending order, where each
key carries a reference back to its original record in the RecordList. The
binary search is carried out on the key array.

Only one key is actually used in a search. In case more than one header of a
RecordList is specified as a key, the user can determine which key will
actually be used by specifying a priority among the keys using
IndexType, which can have the values:

itUnique - Assign this value to a header when you want the system to
use it as a key as a first choice.

itNotUnique - Assign this value to headers that you want the system to
use as a second choice.

You do not have to assign indexing to each header of the RecordList.

Method of Search according to Indexing Setup

After you have set up indexing for a Record List and you then call one of
the ISmRecordList methods that can use indexing, the behavior of the
method depends on which RecordList headers you use in the method call.

For example, when you search SmRecordList using:

SmRecordList.SearchRecord(Query)

The ISmRecord Query parameter method can contain several headers of
the SmRecordList, some of which were indexed and some of which
were not indexed.

The actual search can be a combination of an indexed search and a
sequential search, depending on the headers.

35

The following table shows the method of search that is used in the
SearchRecord method, according to various cases of setting indexing
for the SmRecordList headers.

Case Query contains SmRecordList headers s
to: Method of search

 itUnique itNotUnique noindexing

1 x x x
1. Performs index search with itUnique
header as key.
2. Performs sequential search on recor
with the same index values.

2 x x
1. Peforms index search with itNotUniq
header as key.
2. Performs sequential search on recor
with the same index values.

3 x Performs sequential search with
noindexing header.

When to use Indexing

Setting up for an indexed search also requires resources. An indexed search
is more efficient than a sequential search only when:
• Searching a large RecordList
• Performing multiple searches of a RecordList

Example

The following are examples of multiple searches of a RecordList made
more efficient by using predefined keys.
 Set SortQuery = New SmRecList.SmRecordList

 Set QueryByIndex = New SmRecList.SmRecord

 Set QueryByFileName = New SmRecList.SmRecord

 Set QueryComposite = New SmRecList.SmRecord

 QueryByIndex.AddHeader "OBJECT_ID", 4, sdtInteger

 QueryComposite.AddHeader "OBJECT_ID", 4, sdtInteger

 QueryByFileName.AddHeader "FILE_NAME", 255, sdtChar

 QueryComposite.AddHeader "FILE_NAME", 255, sdtChar

SSSmmmaaarrrTTTeeeaaammm OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

36

 SortQuery.AddHeader "COL_NAME", 30, sdtChar

 'Create keys

 ExampleList.CreateIndexByName "OBJECT_ID", itUnique

 ExampleList.CreateIndexByName "FILE_NAME", itNotUnique

 'Multiple Index search by OBJECT_ID key

 For I = 0 To Cnt - 1

 QueryByIndex.ValueAsInteger("OBJECT_ID") = I

 RecIdx = ExampleList.SearchRecord(QueryByIndex) '

 Next

 'Multiple Index search by FILE_NAME key

 For I = 0 To Cnt - 1

 QueryByFileName.ValueAsString("FILE_NAME") = CStr(I Mod 500)

 RecIdx = ExampleList.SearchRecord(QueryByFileName)

 Next

 'Multiple Index search by OBJECT_ID and FILE_NAME key

 'The query in this case will actually use only the OBJECT_ID key since it
was assigned a higher priority.

 For I = 0 To Cnt - 1

 QueryComposite.ValueAsInteger("OBJECT_ID") = I

 QueryComposite.ValueAsString("FILE_NAME") = CStr(I Mod 500)

 RecIdx = ExampleList.SearchRecord(QueryComposite)

 Next

SmRecord Object

37

The SmRecord object represents a record, or a row, in the SmRecordList
data structure. The SmRecord object is also used to represent a subset of a
row.

Unlike rows in a static table, SmRecord objects are not physically part of
the SmRecordList object. The two objects are logically related, with the
SmRecord objects being projections of SmRecordList objects.

A SmRecord object is obtained in two ways:
• By using the SmRecordList.GetRecord method
• By accessing the SmRecord object directly.

With the first method, the lifetime of a record depends on the lifetime of
the SmRecordList object. The SmRecord becomes invalid after the
SmRecordList object is destroyed. With the second method, the lifetime of
the record is independent of the SmRecordList object.

SSSmmmaaarrrTTTeeeaaammm OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

38

Properties

The ISmRecord object has the following properties
Property Description

Constants Gets Smart Constants.
DynamicValueSize Returns the actual Integer value size for a node specified by header

name.
DynamicValueSizeBy
Index

Returns the actual Integer value size for a node specified by header
index.

FormattedValueAs
String

Gets or sets a value for a node specified by header name, where th
value is represented as String in specified Format.

FormattedValueAs
StringByIndex

Gets or sets a value for a node specified by header index, where th
value is represented as String in specified Format.

Index Returns the appropriate record index.
Constants Gets Smart Constants.
DynamicValueSize Returns the actual Integer value size for a node specified by header

name.
DynamicValueSizeBy
Index

Returns the actual Integer value size for a node specified by header
index.

FormattedValueAs
String

Gets or sets a value for a node specified by header name, where th
value is represented as String in specified Format.

FormattedValueAs
StringByIndex

Gets or sets a value for a node specified by header index, where th
value is represented as String in specified Format.

Index Returns the appropriate record index.
Constants Gets Smart Constants.
DynamicValueSize Returns the actual Integer value size for a node specified by header

name.
DynamicValueSizeBy
Index

Returns the actual Integer value size for a node specified by header
index.

FormattedValueAs
String

Gets or sets a value for a node specified by header name, where th
value is represented as String in specified Format.

FormattedValueAs
StringByIndex

Gets or sets a value for a node specified by header index, where th
value is represented as String in specified Format.

Index Returns the appropriate record index.
Constants Gets Smart Constants.
Value Gets or sets a value for a node specified by header name.
ValueAs[Type] Gets or sets a value for a node specified by header name, where th

value is represented as [Type], one of SmDataTypesEnum.
ValueAs[Type]By
Index

Gets or sets a value for a node specified by header index, where th
value is represented as [Type], one of SmDataTypesEnum.

ValueByIndex Gets or sets a value for a node specified by header index.

 39

Methods

The ISmRecord object has the following methods
Method Description

Adding Headers and Records

AddHeader Adds a header, defined by its name, type and value size, to this
SmRecord, where the header value size can be Integer.

AddHeader2 Adds a header, defined by its name, type and value size, to this
SmRecord, where the header value size can be Long.

Copying SmRecord Objects

Copy Replaces this SmRecord with an exact copy of the specified source
SmRecord.

CopyEx Nodes from the Source SmRecord overwrite the corresponding nod
in this SmRecord.

Deleting

DeleteElement Deletes the entire column specified by a header name from the
SmRecord.

DeleteElementBy
Index

Deletes the entire column specified by a header index from the
SmRecord.

PrintToFile Prints the nodes of this SmRecord to a file in a record by record form

SetNullValues Sets the all node values of this SmRecord to nil.

SmRecordListHeaders Object

The SmRecordListHeaders object is the collection that comprises a
number of SmRecordListHeader objects, each one defining a header node
of a column of the SmRecordList or SmRecord object.

Methods

The ISmRecordListHeaders object has the following methods
Method Description

IndexOf Returns the index of the SmRecordListHeader with a given name.
HeaderExists Returns True if the SmRecordListHeader with a given name exists.
ItemByName Returns the SmRecordListHeader with a given name.
ItemByIndex Given an index, creates and returns an object representing the heade

 40

SmRecordListHeader Object

The SmRecordListHeader object represents the header node of a column.
It defines the attributes of a specific header in an SmRecordList or
SmRecord object.

Each header node of a column contains the following information:
• Name: Unique string identifying the header node
• Type: Identifies the type of data contained in the node, as one of the

constants in the Enum SmDataTypesEnum
• Size: Size (in bytes) for each header node.

Properties

The ISmRecordListHeaders object has the following properties
Property Description

Index Returns the Header index.
Name Returns the Header name.
ValueSize Returns an Integer ValueSize for headers that were created with the

method ISmRecordList.AddHeader.
ValueSize2 Returns an Long ValueSize for headers that were created with the meth

ISmRecordList.AddHeader2.
ValueType Returns the Header value type.

Grouping Columns in a Record List

The grouping feature enables you to keep data columns with the same name
in one record list, by adding a prefix to the name. A group represents the
columns in the SmRecordList object that have the same prefix in their
name.

SmRecordList object column names can be defined in the header node in
the following form:

< prefix>.< name>,

where:

< prefix> identifies a selection of columns. For example, the prefix 1
represents the unique Project class ID, and the prefix 8 represents the
unique Project Tree class ID.

41

<name> identifies the actual name of the column which several other
selections may have in common, for example, CLASS_ID or OBJECT_ID.

For example, when the CLASS_ID and OBJECT_ID attributes are
represented in both the Project class and the Project Tree class, the use of a
prefix enables keeping the names of the attributes unique within the
SmRecordList object.

Columns of the SmRecordList object can then be usefully filtered into
groups by means of the prefix. For example, you can use grouping to
create a projection that isolates the columns that relate only to the Project
class.

If an SmRecordList object is grouped, the methods and properties are
executed according to the object grouping.

Grouping Nodes in a Record

An SmRecord object is similarly divisible into groups and can be
represented in a grouped SmRecord object. The grouped SmRecord
object references a subset of the row that includes nodes that have the same
prefix, comprising a specific group.

You can access a grouped SmRecord that represents the value nodes
within a specific group by supplying an index value for the group name,
using the SmRecordList.GetGroupRecord method.

You can access a specific header in the SmRecordListHeaders of the
grouped SmRecord, using the related header’s index or name of the related
header. You do not need to supply the group information, as this was
supplied when the group was created.

Example

The following example shows how to perform a binary search on a group
in the SmRecordList.
 Dim RecordListA As SmRecList.SmRecordList

 Dim Query As SmRecList.SmRecordList

 Dim IsFound As Boolean

 '

 'RecordListA -- Set up with two groups, G1 and G2

SSSmmmaaarrrTTTeeeaaammm OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

42

 ' G1 G2

 '------------- -------------

 ' H1 H2 H1 H2

 '------------------------------

 'G1.A11 G1.A12 G2.A11 G2.A12

 'G1.A21 G1.A22 G2.A21 G2.A22

 'G1.A31 G1.A32 G2.A31 G2.A32

 '

 Set RecordListA = New SmRecList.SmRecordList

 RecordListA.AddHeader "G1.H1", 256, sdtChar

 RecordListA.AddHeader "G1.H2", 256, sdtChar

 RecordListA.AddHeader "G2.H1", 256, sdtChar

 RecordListA.AddHeader "G2.H2", 256, sdtChar

 RecordListA.GroupValue("G1", "H1", 0) = "G1.A11"

 RecordListA.GroupValue("G1", "H2", 0) = "G1.A12"

 RecordListA.GroupValue("G2", "H1", 0) = "G2.A11"

 RecordListA.GroupValue("G2", "H2", 0) = "G2.A12"

 RecordListA.GroupValue("G1", "H1", 1) = "G1.A11"

 RecordListA.GroupValue("G1", "H2", 1) = "G1.A22"

 RecordListA.GroupValue("G2", "H1", 1) = "G2.A11"

 RecordListA.GroupValue("G2", "H2", 1) = "G2.A22"

 RecordListA.GroupValue("G1", "H1", 2) = "G1.A31"

 RecordListA.GroupValue("G1", "H2", 2) = "G1.A32"

 RecordListA.GroupValue("G2", "H1", 2) = "G2.A31"

 RecordListA.GroupValue("G2", "H2", 2) = "G2.A32"

 'BinSearch

 Set Query = New SmRecList.SmRecordList

43

 ‘

 ‘ H1 H2

 ‘ --------------

 ‘ G2.A11 G2.A12

 ‘

 Query.AddHeader "H1", 256, sdtChar

 Query.AddHeader "H2", 256, sdtChar

 Query.Value("H1", 0) = "G2.A11"

 Query.Value("H2", 0) = "G2.A12"

 MsgBox CStr(RecordListA.GroupBinSearch("G2", Query, IsFound)) '= 0

 MsgBox IsFound ' = True

 MsgBox CStr(RecordListA.GroupBinSearch("G1", Query, IsFound)) '= -1

 MsgBox IsFound '= False

'Example

 '

' G1 G2

'------------- -------------

' H1 H2 H1 H2

'------------------------------ .GroupBinSearch("G2", Query, IsFound) = 0

'G1.A11 G1.A12 G2.A11 G2.A12

'G1.A21 G1.A22 G2.A21 G2.A22

'G1.A31 G1.A32 G2.A31 G2.A32

 44

5. SmarTeam Engine Library

General Description

The SmarTeam Engine library provides the basic functionality common
to all applications using the SmarTeam Object Model. Among the
features this library provides are:
• Create and manage sessions with the SmarTeam engine⎯support for

multiple users, each one associated with an SmSession object
• Establish and manage connections to the SmarTeam

databases⎯support for multiple databases
• Retrieve and manipulate the Meta-information, which describes the

SmarTeam data mode
• Retrieve, update and delete Persistent Objects
• Manage the lifetime of SmarTeam objects
• Creating and running SmarTeam queries
• Support for multi-threaded applications.

The SmarTeam Engine Library objects are explained in this chapter
under the following headings:
• SmEngine and SmSession Object, page 46, describes the SmEngine

and the SmEngine Session objects, which provide access to the rest of
the SmarTeam Object Model

• Note: When using the function Session.Config.ReadSection, the Key
is always returned in lowercase.

• Metadata Management Objects, page 66, describes the objects that
contain information relating to the SmarTeam data model

• Persistent Object Management, page 86, describes the objects that
enable the creation, update and deletion of SmarTeam Persistent
Objects, and the retrieval of information about these objects

• SmQuery Object, page 104, describes the facilities provided by the
SmarTeam Object Model to create high-level and low-level queries,
and to retrieve the results of such queries.

 Chapter 5,SmarTeam Engine Library

45

Dependencies

The SmarTeam Engine library is used by all libraries except the
SmarTeam Record List Library.

The SmarTeam Engine library uses the SmarTeam Record List Library.

Persistent Objects and Classes

The terms Persistent Objects and Persistent Classes are used in connection
with the SmarTeam Object Model to describe specific objects and classes
that are stored in the SmarTeam database.

The SmObject and SmClass objects, described on pages 86 and 66
respectively, represent these objects and classes.

Overview of Objects

The main objects, which provide access to the SmarTeam object model
are:
• SmEngine, described on page 46
• SmSession, described on page 50

Other important objects are as follows:
• SmDatabase, described on page 55, provides access to SmarTeam

database functionality
• SmConfig, described on page 58, provides access to SmarTeam

system configuration
• SmMetaInfo, described on page 66, provides access to SmarTeam

data model functionality
• SmObjectStore, described on page 86, provides access to SmarTeam

Persistent Objects
• SmObject, described on page 86, represents a single persistent object

in the SmarTeam database
• SmQueryDefinition, described on page 104, is used to define

attribute-based queries.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 46

SmEngine

The SmEngine object is the highest level object for the SmarTeam
Object Model.

The SmEngine and its major components is shown in the following object
diagram.

ISmEngine

DatabasesCount

ProductName

SessionsCount

ConfigurationName

DemoMode

ServerMode

UseMultiLanguage

Constants

Databases

Config

Sessions

GlobalData

Figure 5-1 SmEngine Object Diagram

 Chapter 5,SmarTeam Engine Library

47

The following schematic shows the relationship between the SmEngine
object and the other objects in the system.

Engine

Database DatabaseSession

User

Session

User

Session

User

Properties

The ISmEngine object has the following properties
Property Description

Sessions

Sessions Returns one of the collection of the currently open sessions, as
ISmSession

SessionsCount Returns the number of open sessions.
Databases

Databases Returns one of the collection of open Databases as listed in the
SmarTeam configuration, as ISmDatabase

DatabasesCount Returns the number of defined databases
Configuration

Config Returns an SmConfig object, which represents the current
SmarTeam configuration, as ISmConfig

ProductName Returns or sets the name of the product. Defaults to SmarTeam.
ConfigurationName Returns or sets the SmEngine configuration INI file name, for

example, SmarTeam32.INI. The default location for this configura
file is \SmarTeam\LocalConfig\ SmarTeam32.INI

UseMultiLanguage Set to True if the menus can be translated into a different langua
such as French or German, otherwise set to False.

Operation

DemoMode If True, a license was not detected and the system automatically
entered demo mode, which has some operating restrictions.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 48

Property Description

ServerMode Set to True to cause the application to run in Server Mode. In Se
Mode, errors are not displayed on the screen, and server-side
hooks are used.

Data Access

Constants Accesses SmarTeam Enum constants from the SmApplic Library
constant name

GlobalData Provides access to an Engine-wide shared storage area, which c
be used to store and retrieve data throughout the life of the
application. You can use the GlobalData object to transfer these
items between scripts. Data is stored as a VariantList object.

Methods

The ISmEngine object has the following methods
Method Description

Sessions

CreateSession Creates a new SmSession object.
FindSession Searches for a specified session in the currently connected

sessions list.
FindSessionByDatabase
Alias

Searches for a session connected to a database specified by its
alias.

Databases

FindDatabase Searches for a specified database in the defined databases list

FindDatabaseByReplica
Identifier

Returns the Database object corresponding to the specified
Replica Identifier.

ReloadDatabasesList Reloads the list of configured databases.
GetDatabaseAlliasesList Gets a Record List that includes, at least, the password and

database name for each database available.
SaveDatabasesList Saves current database connection information.

Configuration

Init

Initializes the internal arguments of SmEngine according to dat
the INI file. Called directly after creating the SmEngine.

SetInitFlags Sets the initialization flags. Internal use only.
GetInitFlags Gets the initialization flags. Internal use only.

Operation

 Chapter 5,SmarTeam Engine Library

49

Terminate

Terminates the engine and closes all active sessions and databas
connections. Must be called before the application is closed.

Note: Unlike other objects, SmEngine is released from memory o
when you call the SmEngine.Terminate method.
Note: If the SmEngine.Terminate method is not called before the
application is closed, the LUM license for the application will not b
released.

LoadLibrary Loads a DLL into memory, and returns the module handle for the
DLL. Using this function eliminates problems related to short vs. l
DLL filenames, and to incorrect handling of floating point operatio
by some compilers.

CreateObject Creates and returns a reference to an Automation object

Obtaining the ISmEngine Object

To create and initialize an ISmEngine Object:
Dim Engine as SmApplic.SmFreeThreadedEngine

‘ create SmarTeam engine object

Set Engine = CreateObject("SmApplic.SmFreeThreadedEngine")

‘ initialize object

SmEngine.Init "SmTeam32"

Adding an Object using SmartBasicScript Editor

When using a script in SmartBasicScript Editor which needs to create
another SmSession, it is recommended to use the following procedure:

1. In the script attached to Smarteam hook instead of creating the
engine always take it via the session:
Set SmEngine = SmSession.Engine

2. After creating another session, initialize it:
SmSession.Init SmEngine, "test", "SmTeam32"

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 50

NNNooo ttt eeesss :::

 If it is necessary to open another SmSession you must use the same
(one) running SmEngine object:
 Set SmEngine = SmSession.Engine
 Set NewSmSession= SmEngine.CreateSession(...)
 NewSmSession.Init SmEngine, "test", "SmTeam32"

 If the new session (application) is running outside the SmarTeam
process (as an external application), it should be compiled using
other development tools, for example, Visual Basic. The bundled
SmartBasic Editor is dedicated only for in-process SmarTeam
script compilation and cannot be used for external or out-of-
process applications.

SmSession Object

The SmSession object represents a session within the SmarTeam Engine.
It is usually associated with a single user, using a single database
connection.

The SmSession object provides the following functionality:
• User login and access to information about the user
• Access to the Database and the Database Connection
• Access to the Data Model Meta-information
• Access to the Persistent Objects ObjectStore
• Access to a collection of installable Add-in Services
• Access to a session-wide shared area for exchange of information.
• Access to the configuration parameters.

SmEngine keeps a list of all concurrently open sessions, which can be
accessed using the Sessions property.

The SmSession and its major components is shown in the following object
diagram.

 Chapter 5,SmarTeam Engine Library

51

ISmSession

CheckDatabaseDesignation

UserLoggedOn

SessionName

ConfigurationName

DefaultLanguage

DefaultLanguageID

UseMultiLanguage

Constants

Database

MetaInfo

Engine

Config

GlobalData

UserMetaInfo

ObjectStore

DatabaseConnection

LastOperationResults

MultiLanguageInfo

Services

NewSmStrings

Figure 5-2 SmSession Object Diagram

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 52

Properties

The ISmSession object has the following properties
Property Description

Configuration

Config Returns an SmConfig object representing the session
configuration, as ISmConfig

ConfigurationName Returns or sets the name of the session's configuration file, for
example, SmTeam32.INI. The default location for this configura
file is \SmarTeam\LocalConfig\[Database LocalName]/[User
Name]/ SmarTeam32.INI

UseMultiLanguage Set to True to enable multilanguage usage.
SessionName Returns the universally unique name of the session.
DefaultLanguage Returns or sets the default language for the display, for examp

Italiano.
DefaultLanguageID Returns default language ID.

Database

Database Returns an SmDataBase object representing the connected
database for the session, as ISmDatabase

DatabaseConnection Returns an SmDataBase object that represents the database
connection for the session, as ISmDatabaseConnection

CheckDatabase
Designation

If set to True, an error message is issued when trying to conne
a non-registered SmarTeam database, which is not a foreign
database (does not have the type sdtForeignDatabase). If set t
False, no error message is issued. Default is True.

User

UserLoggedOn True if a user has logged on the system in this SmSession. On
one user can log on to a session.

UserMetaInfo Returns an SmMetaInfo object representing the current user in
system, as ISmUserMetaInfo

Data Access

GlobalData Provides access to a session-wide shared storage area, which
be used to store and retrieve data throughout the life of the
session. Data is stored as a VariantList object.

Constants Accesses SmarTeam Enum constants from the SmApplic Libra
by constant name

Object Access

Engine Returns the parent SmEngine object, as ISmEngine
MetaInfo Returns an SmMetaInfo object representing SmarTeam data

model functionality, as ISmMetaInfo

 Chapter 5,SmarTeam Engine Library

53

ObjectStore Returns an SmObjectStore object representing SmarTeam
persistent object management, as ISmObjectStore

Services Returns an SmServices collection object representing a list of a
in services available to the session, as ISmServices.

LastOperationResults Returns an SmOperationResults collection object representing
results of a life-cycle task operation on a set of objects, as
ISmOperationResults. An item of the collection is an object
together with the results of the operation on that object.

MultiLanguageInfo Provides access to information for creating controls in different
languages, as ISmMultiLanguageInfo

Methods

The ISmSession object has the following methods:

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 54

Method Description

Configuration

Init Initializes the session parameters according to the session
file.

Database

OpenDatabase
Connection

Opens a connection to a specified SmarTeam database, a
ISmDatabaseConnection. Any previous connection is
automatically released.

OpenWizardDatabase
Connection

Opens a connection to a registeredWizSrc database, as
ISmDatabaseConnection.

OpenForeignDatabase
Connection

Opens a connection to a specified non- SmarTeam (foreig
database, as ISmDatabaseConnection.

User

UserLogin Logs a user into the system by user name and password.
UserLogoff Logs the user off the session.

Object Access

NewVariantList Creates a new SmVariantList object, as ISmVariantList.
NewSmStrings Creates a new SmStrings object, as ISmStrings.
GetService Returns a specified Add-In service according to a specified

ProgId.
IsServiceEnabled Returns True if the specified Service object can be used a

the present time. A Service object is considered as disable
it is not installed, or if there is a condition that prevents it f
working, such as a missing license.

Operation

Close Terminates the current session.

Obtaining an ISmSession Object

To create and initialize an ISmEngine Object:
Dim Engine as SmApplic.SmFreeThreadedEngine

Dim Session As SmApplic.SmSession

 ‘ create SmarTeam engine object

Set Engine = CreateObject("SmApplic.SmFreeThreadedEngine")

‘ initialize object

SmEngine.Init "SmTeam32"

 Chapter 5,SmarTeam Engine Library

55

Set Session = CreateObject("SmApplic.SmSession")

Session.Init(Engine, "MySession", "Smteam32")

SmDatabase Object

The SmDatabase object contains information about a specific database,
such as the database name, language and version, and information about
active connections.

The SmDatabaseConnection object represents a connection to a database,
and provides database-related functionality such as the ability to insert,
update and delete tables, and query functions.

Connection to the database is created when you call the method
SmSession.OpenDatabaseConnection.

The SmDatabase and its major components is shown in the following
object diagram.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 56

ISmDatabase

Password

ConnectionsCount

Alias

Version

Name

LocalName

Identifier

DatabaseType

SmarTeamType

OriginalVersion

Language

Owner

CreationDate

CompanyName

ModificationDate

SiteId

Engine

Connections

ReplicaIdentifier

DatabaseSites

Figure 5-3 SmDatabase Object Diagram

 Chapter 5,SmarTeam Engine Library

57

Properties

The ISmDatabase object has the following properties:
Property Description

Internal Database Data

Password Returns the internal database password.
Version Returns the SmarTeam database version.
Identifier Returns the internal database identifier.
Name Returns the internal database name.
DatabaseType Returns the database type.
Language Returns the database language.
OriginalVersion Returns database original version.
Owner Returns database owner.
ModificationDate Returns the date of the last database modification.
CreationDate Returns the creation date of the database.
CompanyName Returns the internal database company name.
SiteId Returns identifier of the site for a replicated database.
ReplicaIdentifier Returns the replica identifier.

Non-Internal Database Data

Alias Returns the alias or connection string of the database.
LocalName Returns the database local name – the name of the directory for

configuring SmarTeam by database.
SmarTeamType Returns SmarTeam database type, as

SmarTeamDatabaseTypeEnum.
ConnectionsCount Returns number of open connections to the database.

Object Access

Engine Returns an SmEngine object representing the parent engine, as
ISmEngine.

Connections Returns an SmDataBaseConnection object representing one of the
connections to the database, as ISmDatabaseConnection.

DatabaseSites Returns a collection of all replicated database sites, as
ISmDatabaseSites.

Methods

The ISmDatabase object has the following methods:
Method Description

ReloadInfo Reloads database information.
CloseConnections Closes all open connections to the database.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 58

Obtaining an ISmDatabase Object

The following sample code creates a connection to a database, and
performs a login to the database:
Sub main()

Dim Engine As SmApplic.SmEngine

Dim Session As SmApplic.SmSession

Dim FirstDB As SmApplic.SmDatabase

Set Engine = New SmApplic.SmEngine

Engine.Init "SmTeam32"

Set Session = Engine.CreateSession("DemoApplication",
Engine.ConfigurationName)

‘ Connect to the first database

Set FirstDB = Engine.Databases(0)

Session.OpenDatabaseConnection FirstDB.Alias,
FirstDB.Password, True

‘ Login

Session.UserLogin "joe", ""

…

Engine.Terminate

End Sub

SmConfig Object

The SmConfig object allows retrieval and manipulation of SmarTeam
configuration data. You can edit the configuration data, including reading,
writing and deleting either individual configuration data items or entire
configuration sections.

 Chapter 5,SmarTeam Engine Library

59

System Configuration Service

Beginning with V5R13, configuration settings are handled by the System
Configuration Service. This service replaces the various SmarTeam
configuration location (INI files, Registry) used in previous versions of
SmarTeam. For more information on the System Configuration Service
and its parameters, see “System Configuration Service” in the SmarTeam -
Editor Online Help.

Using INI Files

With the System Configuration Service you should continue using
configuration INI files in their same locations. However you should be
aware that SmarTeam now handles INI files according to their file names
in the following way:

If the INI file has a standard SmarTeam INI file name, such as
SmTeam32.ini, SmarTeam gets the configuration settings from the
System Configuration Service. The contents of the INI file are ignored.

If the INI file does not have a standard SmarTeam INI file name, for
example, myname.ini, SmarTeam will take the configuration settings
from the INI file and not from the System Configuration Service.

Using the API to access SmarTeam Configuration Data

With the System Configuration Service, there is no change in how you
access SmarTeam configuration data. You continue to use the same key
path, as described below, where now SmarTeam accesses the System
Configuration Service, transparently to the user.
Note: Since the location of the configuration parameters may change between

versions of SmarTeam, you should not attempt to access the Registry directly.

Accessing Non-SmarTeam Data

In cases where you specify a key path for a registry location, which does
not correspond to a SmarTeam configuration item, SmarTeam will access
the registry and not the System Configuration Service. Similarly, if you
have provided a non-standard INI file name, as above, a key path to the
INI file will access the data in the INI file.

Configuration Types

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 60

In order to provide maximum flexibility, SmarTeam can be configured in
the following independent ways:
• Admin Configuration - determines the configuration for all the

SmarTeam users associated with it.
• Local Configuration - determines the configuration for all the users

using a specific workstation
• Database-Specific Configuration - determines the configuration for

all users connected to a specific database
• User-Specific Configuration - determines the configuration for a

specific logged-on user connected to a specific database

Accessing ISmConfig

You can create an SmConfig object as follows:
Dim SmConfig As SmApplic.SmConfig

Set SmConfig = CreateObject("SmApplic.SmConfig")

You can access most of the configuration data through the SmConfig
object without having to create an SmEngine or SmSession object.

For example:
MsgBox SmConfig.HomeDirectory '\SmarTeam

MsgBox SmConfig.IniFileName 'SmTeam32.ini

MsgBox SmConfig.Value("$Local\Init Coordinates\Maximized") ‘YES

Other configuration data only becomes available after you have created an
SmEngine object, an SmSession object, or a user has logged in. That
configuration data is available only through SmSession.Config.

If you create an SmSession object, you can always access configuration
data through SmSession.Config so it is unnecessary to create a separate
SmConfig object in that case.

Accessing Configuration Data

 Chapter 5,SmarTeam Engine Library

61

Key Path

You address configuration information by using a key path (also called an
option path) of the form:
$<Option type>\<Section name>\<Identifier name>

For data in a configuration ini file, the Option type can be Admin,
Local, Database or User,depending on which type of configuration is
desired.

For data in the Registry the Option type can be RegClassesRoot,
RegCurrentUser, RegLocalMachine, UserReg, or AdminReg.

You can also use a parameterized key path to add flexibility in specifying
the configuration item key path.

ISmConfig provides many properties and methods for editing
configuration data; they are all based on addressing the data via a key
path.

See the COM API Reference Guide for detailed information.

Examples

For example, you can access an individual configuration data value by the
following command:
MyOption = Session.Config.Value(<Key path>)

1. The following command reads the value of the <MyIdent> identifier
from the <MySection> section of the SmTeam32.ini file located in the
LocalConfig directory:
MyOption = Session.Config.Value(“$Local\<MySection>\<MyIdent>”)

2. The following command tries to read the value of the <MyIdent>
identifier from the <MySection> section of the SmTeam32.ini file
located in the User subdirectory:
MyOption = Session.Config.Value(“$User\<MySection>\<MyIdent>”)

If not found, the system tries to read the same identifier from the
SmTeam32.ini file located in the LocalConfig directory.

ExpandValue Property

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 62

Important Note: It is not recommended to adjust the ExpandValue
Property of the ISMConfig Interface.

Remarks

The ExpandValue gives the same results as the method ISmConfig.Value,
specifying the configuration item key path.

Instead of using a "hard-wired" key path, you can parameterize some or all
parts of the key path. That lets you use the same key path to address a
related set of configuration items. You address individual configuration
items by setting the values of the key path parameters.
For example, the path:

$RegLocalMachine\SoftWare\Smart Solutions\SmarTeam\Database
Connection Setup\$Num

has its last section parameterized ($Num). By assigning values to $Num,
for example, "1", "2", "3", you address different configuration items
without changing the form of the key path.

Any part of the key path except for the first can be parameterized by
replacing the part name by any variable name prefixed by "$". You can
parameterize more than one part of the path at a time. The parameter
values are represented by a Variant array, which contains as many
elements as there are parameters in the key path. In the above example,
you use an array of one element.

After assigning parameter values directly into the array, you call
ExpandValue with the key path and parameter array as arguments.

Common Parameterized Key Paths

Warning: Do not write to these locations unless you are sure of the
results.

Description Key

GlobalDatabaseConnectionNum '$AdminReg\Database Connection Setup\$Num
GlobalDatabaseName

'$AdminReg\Database Connection Setup\$Num\Database Na

Editing Configuration Data in the Windows Registry

You use the same type of key path to address configuration data in the
Registry, except that the Option type can be AdminReg or UserReg,
corresponding to Admin or User configuration data:

 Chapter 5,SmarTeam Engine Library

63

Examples

1. The command
MyOption = Session.Config.Value(“$AdminReg\ <MySection>\<MyIdent>”)

reads the value of the <MyIdent> identifier from the
HKEY_LOCAL_MACHINE\SOFTWARE\Smart
Solutions\SmarTeam\<MySection> path of the Windows registry:
2. The command

MyOption = Session.Config.Value(“$UserReg\ <MySection>\<MyIdent>”)

tries to read the value of the <MyIdent> identifier from the
HKEY_CURRENT_USER\SOFTWARE\Smart Solutions\SmarTeam\<MySection> path
of the Windows registry:

If not found, the system tries to read the identifier from the
HKEY_LOCAL_MACHINE\SOFTWARE\Smart Solutions
\SmarTeam\<MySection> path of the Windows registry.

3. The three option types $RegClassesRoot, $RegCurrentUser, and
$RegLocalMachine, enable you to read from any path of the Windows
registry.

The command
MyOption = Session.Config.Value(“$RegClassRoot\ <MySection>\<MyIdent>”)

reads the value of the <MyIdent> identifier from
HKEY_CLASSES_ROOT\<MySection> path of the Windows registry:

Properties and Methods for Editing Configuration Data

The following is a list of the methods and properties available for editing
configuration data in .ini files or in the Registry. See the COM API
Reference Guide for details and examples of these methods and properties.

Terminology

Configuration Item := {Identifier = Value}

Configuration Section := {[SectionName] + Configuration Items}

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 64

Properties and Methods
Property or Method Description

[Expand]Value Sets or gets a Configuration item value using
[parameterized] key path

Read[Expand]ValueAs[Type] Gets a Configuration item value as Type using
[parameterized] key path. If the configuration item is
found, the default value specified is returned.

ReadExisting[Expand]ValueAs[Type] Gets a Configuration item value as Type using
[parameterized] key path. If the configuration item is
found, an error message is issued.

Read[Expand]Section Gets all Configuration items of a section as SmString
using [parameterized] key path

IdentsInSection Gets all Configuration items of a section as
SmRecordList using a fixed key path

Read[Expand]Registry Gets all Configuration items of a registry section as
SmStrings using a [parameterized] key path

Write[Expand]Section Writes all Configuration items of a section as SmStrin
using [parameterized] key path

Delete[Expand]Value Deletes an individual configuration item using a
[parameterized] key path

Delete[Expand]Key Deletes an individual configuration item using a
[parameterized] key path (Same as DeleteValue)

Delete[Expand]Section Deletes a configuration section using a [parameterize
key path

Note: When using the function Session.Config.ReadSection, the Key is
always returned in lowercase.

Metadata Management Objects

The metadata management objects of the SmarTeam Engine library
contain information relating to the SmarTeam data model.

The main properties and object hierarchy of the metadata management
objects are shown below:

 Chapter 5,SmarTeam Engine Library

65

SmMetaInfo

MainClassId

SmAllClasses (SmClasses)

Item (SmClass)

SmClass (SmClass)

SmClassByName (SmClass)

SmClassByTableName (SmClass)

AllOperations (SmOperations)

Item (SmOperation)

AllUserDefinedOperations (SmOperations)

Item (SmOperation)

OperationsForClass (SmOperations)

Item (SmOperation)

UserDefinedOperationsForClass (SmOperations)

Item (SmOperation)

OperationsForMechanism (SmOperations)

SmProjection (SmProjection)

Item (SmOperation)

OperationMechanismId

DefaultApplicationTools (SmApplicationTools)

Item (SmApplicationTool)

 66

SmMetaInfo Object

The SmMetaInfo object represents all information about a specific
SmarTeam data model. Each SmSession object contains an SmMetaInfo
object for the connected database. The SmMetaInfo object contains several
properties that represent specific terms in the system, including:

• Persistent Classes represented by the SmClasses and SmClass objects.

• System and user-defined operations, defined in the database,
represented by the SmOperations and SmOperation objects.

• Applications tools represented by the SmApplicationTools and
SmApplicationTool objects.

• Projections, represented by the SmProjection object.

Important Note: In a script, SmSession.SmMetadata can be accessed only
after calls to SmSession.OpenDatabaseConnection and
SmSession.UserLogin have been made.

SmClasses and SmClass Objects

The SmClass object represents a Persistent Class defined in the
SmarTeam Data Model. SmClasses is a collection object representing a
set of SmClass objects.

The SmClass object provides the following objects and corresponding
functionality:
• Attributes in the class, represented by the SmClassAttributes and

SmClassAttribute objects
• Object tree, represented by the SmObjectTree object. This object

defines the Persistent Classes which can be linked as parents or
children to instances of the class.

• General links, represented by the SmGeneralLinks object. This object
defines the Persistent Classes which can be linked to instances of the
class.

The main properties and object hierarchy of the SmClass object are shown
below:

 Chapter 5,SmarTeam Engine Library

67

DefaultDisplayAttributes (SmClassAttributes)

SmClass

EnabledTopLevelAssignment

FileManaged

Revision Managed

DefaultHierarchicalClassId

GeneralLinks (SmGeneralLinks)
ObjectTree (SmObjectTree)

ReferencedInClasses (SmClasses)
AllParentClasses (SmClasses)

AllChildClasses (SmClasses)
DirectChildClasses (SmClasses)

LeafClasses (SmClasses)

Item (SmClassAttribute)

ParentClass (SmClass)

Attributes (SmClassAttributes)

Size

AttributeType

AreThereChildren

SuperClassId

ClassId

PrimaryIdentifier (SmClassAttributes)

TableName

ExternalName

Name

ClassType

ExternalName

Name

SmClassAttributes and SmClassAttribute Objects

The SmClassAttribute object represents an attribute of a Persistent Class
defined in the SmarTeam Data Model. SmClassAttributes is a collection
object representing a set of SmClassAttribute objects.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 68

The main properties and object hierarchy of the SmClassAttribute object
are shown below:

SmClassAttribute

Name

ReferencedClassId

IsPrimaryIdentifier

AttributeType

ExternalName

DefaultValue

ReadOnly

Mandatory

Size

 Chapter 5,SmarTeam Engine Library

69

Reference to Class

A Class Attribute is called “Reference to Class” when it represents a
reference from the current class to another class (the “referenced class”).
The ClassId of the referenced class is represented by the ReferencedClassId
property of the Reference to Class. The purpose of this ability is to allow
an object of a class to reference another object through one of its
properties, usually for displaying properties of the referenced class.

For example, the Class Attribute "USER_OBJECT_ID" of a Document or
Folder is a Reference to Class, which represents a reference to the User
Class; its ReferencedClassId property has the value of the ClassId of the
User Class. A Folder object would use this attribute to refer to the User
object that is its creator.

Example

In the following example, FolderObject is an SmObject of class Folder.
You obtain the Class Id of the creator User class as follows:
UserClassId =
FolderObject.SmClass.Attributes.ItemByName("USER_OBJECT_ID").ReferencedClassId

The AttributeType (type of the value that is stored in this attribute) of a
Reference to Class is sdtObjectIdentifier. The Reference to Class
attribute of an SmObject contains the Object Id of the referenced
SmObject.

The ISmClass.ReferencedInClasses Property and the
SmObject.CheckReferences method check if a class or object is referenced
by another.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 70

SmProjection Object

A Projection object is a subset of the Class Attributes of an SmClass and is
used to represent an SmObject by these attributes. One main use of
Projection objects is to display the attributes of a referenced class. For
example, when you display the properties of a Folder object on a Profile
Card and you want to include the LOGIN property of the User who created
the Folder (where the User class is referenced by the Folder, as described
in the previous section), you would use a Projection. The Projection object
is created for the User Class and selects only the LOGIN property of the
User Class.

 Chapter 5,SmarTeam Engine Library

71

Example

The following is an example of how to create a Projection for the
UserClass with the ClassId “UserClassId” mentioned above, give it a name
“UserProjection”, and save it in the Database:
 Set SmAttributes = SmSession.MetaInfo.NewClassAttributes(UserClassId)

 SmAttributes.Add "LOGIN"

 SmAttributes.Add "USER_TITLE"

 ' create projection for the user class

 Set UserProjection = SmSession.MetaInfo.NewProjection(UserClassId)

 UserProjection.Fields = SmAttributes

 UserProjection.Seperator = ", "

 UserProjection.Name = "UserProjection"

 UserProjection.Insert

Any time you want to use this projection you refer to it by the name
UserProjection, similar to the names Folder and Document.

Note that you can define more than one Projection for a Class, which
allows different kinds of property displays for a Class depending on your
requirements.

SmClassReferenceObject Object

The SmClassReferenceObject object is used to display the properties of a
specific object of a Class for a specific Projection of the Class.

Example

To display the "UserProjection" Projection properties for the User object
referred to by the Folder object FolderObject, you use the function
GetSmClassReferenceObject as follows:
‘ Get the Projection Id for the UserProjection object

UserProjectionId = MetaInfo.SmProjectionByName(UserClassId,
"UserProjection").ID

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 72

‘ Get the Object Id of the User object, from the Reference to Class attribute
of ‘ the Folder object

UserObjectId = FolderObject.Data.ValueAsInteger("USER_OBJECT_ID")

‘ Use the GetDisplayValue method to display the Projection values

ProjectionString =
SmSession.ObjectStore.GetSmClassReferenceObject(UserClassId, UserObjectId,
UserProjectionId).GetDisplayValue(True)

‘Results: 'joe, Chairman of the Board

For each Class, a default Projection is defined. If you set UserProjectionId
to 0 in the code above, the default projection values will be displayed.

To display the Projection attributes when you already have the User object,
you use the function SmClassReferenceObject as follows:
MsgBox
UserObject.SmClassReferenceObject(UserProjectionId).GetDisplayValue(True) '
joe, Chairman of the Board

Reference to SmLookUp Class

The Reference to Class ClassAttribute is frequently used with a LookUp
class as the referenced class.

A LookUp Class is a collection of predefined objects any of which may
need to be accessed by another class. One example of a LookUp class is
File Type, which contains objects corresponding to each of the possible file
types that can occur in an application, such as SolidWorks Part and
Microsoft Word.

Example

This example uses the Reference to Class attribute FILE_TYPE to access
the file type of a Document object from the LookUp class File Type.

Assuming you have an SmObject of the Document class:
' Get the LookUp object Id – the default is Microsoft Word

LookUp_Object_Id = SmObject.Data.ValueAsString("FILE_TYPE")

' Get the referenced LookUp Class Id

 Chapter 5,SmarTeam Engine Library

73

LookUpClassId =
SmObject.SmClass.Attributes.ItemByName("FILE_TYPE").ReferencedClassId

' Get the LookUp object’s display

LookUpValueStr = SmSession.ObjectStore.GetSmLookUp(LookUpClassId,
LookUp_Object_Id).DisplayName

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 74

SmObjectTree Object

The SmObjectTree object represents composition rules for a specific
Persistent Class in the SmarTeam data model. The SmObjectTree object
is referenced by an ObjectTree property of a SmClass object.

Example

The following example prints all possible child instances for a SolidWorks
Assembly class instance:
Sub Test()

 Set SWAssemblyClass = SmSession.MetaInfo.SmClassByName("SolidWorks
Assembly")

 Set CompClasses = SWAssemblyClass.ObjectTree.GetChildClasses
(SWAssemblyClass.DefaultHierachicalClassId)

 If Not (CompClasses Is Nothing) Then

 count = CompClasses.count – 1

 For i = 0 To count

 Set SingleClass = CompClasses.Item(i)

 MsgBox "Possible child: " +_ SingleClass.ExternalName

 Next

 End If

End sub

 Chapter 5,SmarTeam Engine Library

75

Class Behaviors

Class behavior refers to a common functionality that can be imposed on a
class.

Examples of such functionality are:
• The ability of an object of the class to be associated with a file (file-

managed)
• The ability of an object of the class to have successive revisions

(revision-managed)
• Restrictions on possible links to objects of the class

SmarTeam provides two different mechanisms to impose a class behavior
on a class:
• Class-level behavior
• Optional class-level behavior

Class-Level Behavior

A class-level behavior (CLB) specifies a special common functionality for
a class. In addition, it optionally specifies a set of class attributes the class
must possess in order to be able to support the required common
functionality. For example, the File Control CLB specifies the functionality
and attributes required for a class to be associated with a file. It specifies a
mechanism for the class to be aware of the file, to point to the physical file
on disk or vault, and to prompt to delete the file when object is deleted.
The class must have a File Name attribute and a Directory attribute. A CLB
imposed on a class can also restrict certain methods from acting on an
object of the class.

The CLBs are defined separately in the data model and are standardized
across classes. One or more CLBs can be associated with a class, and the
same CLB can be associated with two or more classes. Two basic CLBs are
File Control and Revision Control; a class that has these CLBs is called
file-managed and revision-managed, respectively. The Folder and the
Document classes in the SmDemo database are both file-managed and
revision-managed.

Once a CLB is associated with a class in the data model, all objects of that
class must conform to the CLB behavior.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 76

Note: A CLB can be defined in the data model for a link class as well as
for a regular class. This allows you to assign specific behaviors to links at
the class level. One example of a CLB applied to a link class is the Link
Direction CLB, which includes the directionality of the link.

Note: In previous versions of SmarTeam, Class-Level Behavior was
referred to as a Class Mechanism.

States and CLBs

A set of states can be associated with a CLB. When such a CLB is
specified for a class, all objects of the class can be in one of the states of
the set.

The following rules concern states and CLBs:
• The states of the CLB override any “native” states that might have been

assigned to the class, for example, New, CheckedIn, CheckedOut, etc.
for the Document class.

• If no states are associated with the CLBs imposed on a class, the
“native” states of the class will obtain.

• Two CLBs, each associated with a different set of states, cannot be
assigned to the same class

• API methods are available for accessing the states associated with a
CLB or class, see API Methods below.

Optional Class-Level Behavior

SmarTeam supports a second type of class behavior, the Optional Class-
Level Behavior (OCB). As opposed to a CLB, to which all objects of the
class must conform, an OCB is optionally imposed on an object of the
class. The decision whether to impose an OCB on a particular object of a
class is made when the object is created at run time. If it is decided to use
the OLB, it is imposed then on the object, in addition to any CLBs that may
have been imposed on the class. Accordingly, different objects of the same
class can have different OCBs imposed on them.

One or more of the set of class OCBs can be assigned directly to a
persistent object of the class using the Add method of the
ISmSupportedClassMechanisms interface, accessible through the
OptionalClassMechanisms property of the SmObject that represents the
persistent object.

 Chapter 5,SmarTeam Engine Library

77

The collection of all Class Behaviors, including both CLBs and OCBs, that
are imposed on a specific object are called Supported Class Behaviors. The
collection object ISmSupportedClassMechanisms is used to hold the
collection. The object is said to support the class behaviors.

Note: In V5R11, only one OCB can be assigned to an object.

Benefit of Optional Class-Level Behaviors

The major benefit of the OCB is that, by assigning them different OCBs,
two objects of the same class can have different class behaviors. This
allows you to define a wide class that represents a generic object, such as a
Part CAD Component class, which is independent of any particular CAD
product, and then to distinguish, on the object level, between different
types of CAD Documents, such a SolidWorks Part and Solid Edge Part.

The OCB imposed on an object can influence it in the following ways:
• Determines the possible link classes that can link to and from the object

• Determines the object’s life cycle operations characteristics (life cycle
rules)

• Determines which of the generic class attributes are relevant to the
particular object

In general, an object can have more than one OCB, where each OCB can
specify a type of behavior, for example, one OCB for possible links and
one OCB for relevant class attributes.

Example

In this example, two Document objects are created, each with a different
OCB, similar to the previous figure.
Dim ClassId As SmallInt

Dim SWPart, SEPart As ISmObject

Dim SW_PART_Mechanism, SE_PART_Mechanism As ISmClassMechanism

‘Create Document object

SWPart = SmSession.ObjectStore.NewObject(ClassId)

‘Get SolidWorks Document behavior

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 78

SW_PART_Mechanism = MetaInfo.ClassMechanismByName(“TDM_SW_PART”)

‘Add it to Document to make it a SolidWorks Document

SWPart.OptionalClassMechanisms.Add(SW_PART_Mechanism)

‘Create Document object

SEPart = SmSession.ObjectStore.NewObject(ClassId)

‘Get Solid Edge Document behavior

SE_PART_Mechanism = MetaInfo.ClassMechanismByName(“TDM_SE_PART”)

‘Add it to Document to make it a Solid Edge Document

SWPart.OptionalClassMechanisms.Add(SE_PART_Mechanism)

Link Composition

Link Composition is the determination of an appropriate and permissible
link class to link two objects.

Two common composition activities are:
• Determining the permissible link classes to link an object to an

undetermined second object.
• Determining the permissible link classes to link two objects that belong

to different classes.

Link Classes

To choose an appropriate link class for a link composition, three things
should be taken into account:
• The availability of the link class in the data model
• The permissibility of the link class for the linked objects.
• The characteristics of the desired link class

Availability of the link class in the data model

You can only use link classes that have been predefined in the data model.
See below for a discussion of how link classes are defined in the data
model and how you can use API functions to get the possible links.

 Chapter 5,SmarTeam Engine Library

79

Permissibility of link class for the linked objects

You can only use link classes that are permissible for the objects to be
linked. Permissibility requirements can exist both on the class and the
object level, as discussed below.

Link Class Characteristics

Using API functions, you can specify desired characteristics of the required
link class:

Direction of the link – The directionality of a link class is specified by the
assignment of the Directional Link CLB to the class. For example, a
hierarchic link class such as Parent-Child or Child-Parent has the
Directional Link CLB assigned to it. The actual direction of the link in a
specific link object whose class has the Directional Link CLB is
determined by the order of the linked object arguments in the function that
creates the link object. For example, in the function
SmObject1.LinkOneLevel(LinkClassId, SmObject2,
LinkAttributes), the link direction is from SmObject1 to SmObject2.

Regular attributes of the link class – you can specify additional attributes
of a link class by specifying the regular attributes of the link class, which
are defined in the data model.

Link Classes in the Data Model

This section describes how link classes are defined in the Data Model. This
information is necessary to understand how the API supports compositions.

Link class definitions by Data Model Designer

The Data Model Designer automatically establishes a link class between
the main (Project) class and every other superclass. These link classes do
not have the LinkDirection CLB imposed and hence are non-directional.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 80

The Data Model Designer can be used to establish a “user-defined” link
class between any two superclasses, including defining a link class between
a superclass and itself. Only one link object of a link class can be created
for a pair of objects of the two superclasses, unless an index attribute is
added to the link class, as described in the next paragraph. This “user-
defined” link class can optionally have the LinkDirection CLB imposed.
Only one “user-defined” link class can be defined for each pair of
superclasses.

For the user-defined link class of the previous paragraph, you can create
more than one link object between a specific pair of objects if you define
an index attribute in the user-defined link class. The additional link objects
are differentiated by the index attribute value.

One hierarchic link class is automatically established for each superclass,
to link objects within that superclass. It can be used for linking two objects
of that superclass only. For example: assembly and part in the Document
superclass. This link class has the LinkDirection CLB imposed.

Link class definitions introduced by Integration Modules

The integration modules (the integration module is used as an example, the
same is true for other modules) can add link classes to the Data Model, in
addition to the user-defined link class described in the previous section.
Integration link classes are link classes within one superclass. The user
cannot modify Integration link classes.

These integration link classes are set up to be used in CLB compositions,
as described below. A CLB Relations table associates a pair of OCBs with
each integration link class, meaning that the link class can link only objects
with the specified OCBs.

The integration modules do not add hierarchic links. The integrations must
use hierarchic link classes that were defined for the superclass by the Data
Model Designer. It is apparently not a restriction to use the same hierarchic
link class to link different pairs of OCBs.

Permissible Compositions

As mentioned above, you can only use a link class for a composition if the
link class is permissible for the objects to be linked.

Two levels of permission are required:

 Chapter 5,SmarTeam Engine Library

81

• Class-Level Permission – The link class must be permissible for the
objects’ superclasses, that is, it must be defined in the Data Model as a
link class that links the superclasses. In the case of hierarchical links,
the link class must be permissible for the objects’ concrete leaf classes

• Object-Level Permission – The link class must be permissible for the
OCBs that are imposed on the objects to be linked, that is, the link class
must be associated with the objects’ OCBs in the CLB Relations table
that associates pairs of OCBs with link classes.

Getting Permissible Link Classes for Compositions

API methods are provided to get the permissible link classes for linking
given objects.

A new group of methods is provided in ISmObjectStore to get possible
Link Classes that can link specific objects. These methods take into
account OCBs that may have been assigned to the objects (see API
Methods below).

To get a hierarchic link class to link objects of a specified parent class and
a specified child class, use the HierarchicalLinkClassByClasses method to
get a hierarchic link class that exists between objects of the parent class
and child class.

Class Composition

Class Composition is a special case of the Link Composition discussed in
the previous sections. In Link Composition, the link class must have both
class-level and object-level permissions, as discussed in the section
“Permissible Compositions”. In a Class Composition, only class-level
permission is required for a link class; object-level permissions are
ignored. The permissible link classes of a Class Composition depend only
on the two component classes and are independent of any OCBs that may
have been imposed on the two objects to be linked. The link class is
determined from the two linked objects’ classes and, as a result, the link
class can be used to link any two objects of the two classes. You would use
Class Composition when no OCBs have been assigned to the objects or
when you wish to ignore any OCBs that have been assigned to the objects.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 82

Getting Permissible Link Classes for Class Compositions

API methods are provided to get the permissible link classes for Class
Composition.

The SmGeneralLinks object represents the permissible non-directional link
classes that can exist between any two objects of specified classes. The
HierarchicalLinkClassByClasses method represents the hierarchic link
class that can exist between objects of a specified parent class and a
specified child class, both in the same superclass. The property
SmClass.DefaultHierachicalClassId gets the Id of the hierarchical link class
for that class.

The methods return links that do not take into account OCBs assigned to an
object.

 Chapter 5,SmarTeam Engine Library

83

API Methods

Similar API methods are provided to handle the Link Compositions and the
Class Compositions.

The following table compares the two sets of methods:
Link Composition Methods

Requires class-level and object-level permissions

Class Composition Methods

Requires class-level permissions and ignores
object-level permissions

Get permissible link classes between two specified objects/classes

ObjectStore.GetPossibleLinkClassesBetween
Objects(SmObject1 As ISmObject, SmObject2 As
ISmObject, LinkDirection As LinkQueryDirectionEnu
As ISmClasses

Class1.GeneralLinks.GetLinkClasses (Class2Id) A
ISmClasses
SmMetaInfo.HierarchicalLinkClassByClasses
(Class1Id, Class2Id) As Integer

When one object/class and the link class is specified, get the permissible classes for the related
object/class

ObjectStore.GetPossibleLinkedClasses(
 SmObject As ISmObject, LinkClassId As Integer,
 LinkDirection As LinkQueryDirectionEnum) As
ISmClasses

Class1.GeneralLinks.GetRelatedClasses(
 LinkClassId As Integer) As ISmClasses.

Get all permissible link classes to/from one object/class

ObjectStore.GetPossibleLinkClassesForObject(
 SmObject As ISmObject, LinkDirection As
LinkQueryDirectionEnum) As ISmClasses

Class1.GeneralLinks.Classes As ISmClasses

Get possible OCBs for related object Get CLBs imposed on class
ObjectStore.GetPossibleLinkedClassMechanisms(
 SmObject1 As ISmObject, LinkClassId As Integer
 LinkDirection As LinkQueryDirectionEnum) As
ISmClassMechanisms

Class1.FileManaged
Class1.RevisionManaged
Class1. MechanismManaged(MechanismId)

States and CLBs

The following methods are provided to get the states associated with a CLB
and a class:

In SmApplic.IsmMetaInfo:
Method Description

StatesForMechanism Returns the set of state objects supported by the specified
mechanism (CLB). Returns IsmObjects

StateMechanismId Returns the Id of the mechanism (CLB) that supports the State
specified by its id. Returns Integer

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 84

StatesForClass Returns the set of state objects supported by the specified class
The set of states depend on the CLB of the class. Returns
ISmObjects

GetDefaultStateForClass Returns the initial state object for the specified class. Returns
ISmObject

Examples

The following example uses the GeneralLinks interface to print the default
link class between classes Project and Documents:
Sub Test()

Set DocumentClass = SmSession.MetaInfo.SmClassByName("Documents")

Set ProjectClass = SmSession.MetaInfo.SmClassByName("Projects")

Set LinkClass =

DocumentClass.GeneralLinks.GetLinkClasses(ProjectClass.ClassId).Item(0)

MsgBox "General link:" + LinkClass.ExternalName

End Sub

 Chapter 5,SmarTeam Engine Library

85

This example demonstrates how to retrieve the linked objects (with reverse
link) to the current object.

‘CurrentObject is received from outside with mechanism already set

LinkClassesReverse =
SmSession.ObjectStore.GetPossibleLinkClassesForObject(CurrentObject,LinkQueryD
irectionEnum.lqdSecondToFirst)

For i = 0 to LinkClassesReverse.Count - 1

 linkClass = LinkClassesReverse.item(i)

 If not linkClass.isService Then

 LinkClassId = linkClass.ClassId

 SuperClassId = 5

 Roles.clear()

 QueryDefinition.clear()

 Roles.Add(SuperClassId, "S") 'add the linked super class id

 Roles.Add(LinkClassId, "L")

 ‘Enter the direction

 QueryDefinition.LinkQueryDirection =
LinkQueryDirectionEnum.lqdSecondToFirst

 LinkedObjects = CurrentObject.RetrieveRelationsAndLinks(QueryDefinition)

 End If

Next

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 86

Persistent Object Management

The Persistent Object Management support in the SmarTeam Engine
library enables the creation, update and deletion of Persistent Objects, and
the retrieval of information about these objects.

SmObjectStore Object

The SmObjectStore object contains the functionality used to manage
Persistent Objects. It is used to:
• Retrieve information from the database about Persistent Objects
• Create and update Persistent Objects
• Create query objects.

 SmObject and SmObjects Objects

SmObject represents a single Persistent Object in SmarTeam. The object
provides the following functionality:
• Data retrieval for the object
• Manipulation of the object, for example, Insert, Update, Delete
• Retrieval of other objects related to the object.

SmObject provides an in-memory representation of a Persistent Object.
The Persistent Object may match an existing object that is stored in the
database, or it may be a new object that has not yet been stored in the
database.

SmObject objects that match existing objects in the database are returned
using the various retrieval methods provided by ObjectStore and by other
objects. Several other methods, such as the SmObjectStore.NewObject
method, create SmObject objects that might not have counterparts in the
database.

The main properties and object hierarchy of the SmObject object are
shown below:

 Chapter 5,SmarTeam Engine Library

87

Value

Data (SmRecord)

Value

ValueByIndex

SmObject

SmClass (SmClass)

ClassId

ObjectId

The main properties of SmObject are:
• ClassId: represents the object’s class ID
• ObjectId: represents the object’s ID
• SmClass: a reference to the SmClass object that represents the class of

the object
• Value: used for retrieving and settings the attributes of the object.

Provides a shortcut to the underlying SmRecord object, which is
accessed through the Data property

• Data: a SmRecord object which contains an in-memory copy of the
object’s attributes. The attributes can be retrieved and set using the
usual methods of SmRecord.

Changes to the attributes of a SmObject object do not affect the data stored
in the database for this object. To commit the changes to the database, call
one of the relevant methods, such as Insert, InsertEx, Update, UpdateEx
and others.

The SmObject object stores the information in memory in a SmRecord
object. The Data property provides access to this SmRecord, and the
Values property provides a shortcut for retrieving and setting the values of
the object’s properties.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 88

Creating a New Persistent Object via the SmarTeam
Object Model

In order to create a new Persistent Object, follow these steps:

Create an in-memory representation of the object using the
SmObjectStore.NewObject method:
Set NewObject = SmSession.ObjectStore.NewObject(ProjectClassId)

Add the definition of the object’s attributes by calling the
AddAllAttributes method:
NewObject.AddAllAttributes

The attributes are added to the object with an empty (null) value.

If you want to set only some of the object’s attributes, you can use one of
the following methods:
• The AddAttributes method to add individual attributes. To add more

than one attribute, separate the attribute names with a semicolon “;".

• The AddPrimaryAttributes to add only the primary attributes of the
object.

• The AddProjectionAttributes to add the attributes associated with a
specific projection, and so on.

Set the values of the object’s attributes:

NewObject.Value(“CN_PROJECT_ID”) = “Project-Test1”

NewObject.Value(“CN_DESCRIPTION”) = “Motor Engineering”

If you wish, you can first set the attributes of the object to their default
values by calling the SetDefaultValues method.

Commit the object to the Database using the Insert method:
NewObject.Insert

Retrieving an Existing Persistent Object

There are several ways to retrieve a SmObject object from the database.
The most common are:

 Chapter 5,SmarTeam Engine Library

89

• SmObjectStore.RetrieveObject: Returns the SmObject representing a
specific Persistent Object, given a Class ID and Object ID, and
retrieves the values of all the attributes.

• SmObjectStore.RetrieveObjectByPrimaryIdentity: Returns an
SmObject representing a specific Persistent Object, given a Class ID
and Primary ID as an SmRecord object, and retrieves the values of all
the attributes.

• SmObject.Retrieve: Retrieves all the attributes of an object from the
database. In order for the retrieval to be successful, SmObject must
contain either the values of the Class ID and Object ID of the Persistent
Object, or the values of the Class ID and Primary Identifier of the
Persistent Object.

• SmObject.RetrieveAttributes: Retrieves the values only of the
attributes that were added to the SmObject. Use this method if you
need to select only specific attributes of the object, and not all
attributes. Using this method improves system performance.

• Performing a query and accessing the SmObject instances in the query
result.

Example

The following example retrieves an SmObject that represents an object of
the class Folder, identified by the Primary Identity CN_ID = “Fold-0001”
and Revision = “”:
Sub Test()

 Dim PrmId As SmRecList.SmRecord

 Dim FolderClass As SmApplic.ISmClass

 Dim FolderObj As SmApplic.ISmObject

 Set PrmId = New SmRecList.SmRecord

 PrmId.AddHeader "CN_ID", 40, sdtChar

 PrmId.AddHeader "REVISION", 40, sdtChar

 PrmId.Value("CN_ID") = "Fold-0001"

 Set FolderClass = SmSession.MetaInfo.SmClassByName("Folder")

 Set FolderObj = SmSession.ObjectStore.RetrieveObjectByPrimary
Identity(FolderClass.ClassId, PrmId)

End Sub

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 90

Example

The following example retrieves a specific object’s description using the
primary identifier of the object:
Sub Test()

 Dim SmObject as SmApplic.ISmObject

 Dim SmClass as SmApplic.IsmClass

 Set SmClass = SmSession.MetaInfo.SmClassByName("Projects")

 Set SmObject = SmSession.ObjectStore.NewObject(SmClass.ClassId)

 ‘Add attributes CN_PROJECT_ID, which is the primary identifier of the
Projects class, and CN_DESCRIPTION to the object

 SmObject.AddAttributes “CN_PROJECT_ID;CN_DESCRIPTION”

‘ Set value for CN_PROJECT_ID

 SmObject.Value(“CN_PROJECT_ID”) = “Project-0003”

 ‘ RetrieveAttributes method will search the object by it’s primary
identifier and select value of the CN_DESCRIPTION attribute

 SmObject.RetrieveAttributes

 MsgBox “The description of the object is “+
SmObject.Value(“CN_DESCRIPTION”)

End Sub

Creating an SmObject

The following can be used in various situations to create a new SmObject
object in memory:
• SmObjectStore.NewObject creates a new SmObject in memory:
Set SmObject = ObjectStore.NewObject(ClassId)

• SmObjectStore.ObjectFromData creates an SmObject based on the
input SmRecord:

Set SmObject = ObjectStore.ObjectFromData(Record, Disconnect)

• SmObjectClone - clones an SmObject from an existing object:
Set SmObject = SmObject1.Clone

 Chapter 5,SmarTeam Engine Library

91

Connected and Disconnected Objects

The methods used for object creation define whether the internal structure
of the object can be changed, meaning whether you can add attributes to
the object or delete attributes from the object.

SmObject can be created as an independent or disconnected object, or as a
projection inside another SmarTeam object. Disconnected objects can be
restructured.

Disconnected objects can be obtained by the following methods:
• SmObjectStore.NewObject creates a new SmObject not connected to

any other data container.
• SmObject.Clone creates a copy with its own data container.
• SmObjectStore.ObjectFromData sets the second argument

Disconnect to true, in order to detach the new SmObject from
SmRecord container:

Sub Test()

 Dim ObjRec as SmRecList.SmRecord

 Dim NewObject as SmApplic.ISmObject

 Set NewObject = SmSession.ObjectStore.ObjectFromData(ObjRec,True)

End Sub

A connected SmObject can be obtained in one of the following ways:
• SmObjectStore.ObjectFromData, with the second argument Disconnect

set to False
• SmObjects.Item property
• Any other method that returns a single SmObject stored in another

object. For an example, see SmCompositeObject.Item on page 99.

The lifetime of a connected object depends on the lifetime of the source
object, meaning that SmObject becomes invalid after the source object is
destroyed.

The mode of a SmObject object is indicated by its CanRestructure
property.

Additional SmObject Functionality

Additional groups of SmObject functionality include the following:

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 92

• Object manipulation, Insert, Update, Delete
• Linking an object to other objects: LinkOneLevel, LinkToParent,

LinkToChild
• Unlinking an object from other objects: UnLinkParents,

UnLinkChildren, UnLinkRelations, UnLinkChild, UnLinkParent,
UnLinkRelation

• Manipulating an object’s related objects:
• Retrieve related objects - RetrieveChildren, RetrieveParents,

RetrieveRelations
• Unlink and delete related objects from the SmarTeam database:

DeleteParents, DeleteChildren, DeleteRelations
• Link related objects to another object, and, optionally, delete links with

the current object: MoveParentsToOtherObject,
MoveChildrenToOtherObject.

 Note: These methods use the SmQueryDefinition object, as described
on page 104.

Example

The following example sets a value in the CN_DESCRIPTION field of a
specific object and updates it in the database:
Sub Test()

 Dim SmObject as SmApplic.IsmObject

 Dim SmClass as SmApplic.SmClass

 Set SmObject = SmSession.ObjectStore. NewObject(ClassId)

 SmObject.ObjectId = ObjectId

 SmObject.AddAttributes “CN_DESCRIPTION”

 SmObject.Value(“CN_DESCRIPTION”) = “Updated motor engineering”

 SmObject.Update

End Sub

 Chapter 5,SmarTeam Engine Library

93

Example

This example links a specific object as a parent of another object:
Sub Test()

 Dim ParObject As SmApplic.ISmObject

 Dim ChildObject As SmApplic.ISmObject

 Dim LinkAttributes As SmRecList.SmRecord

 Dim HierClassId As Integer

 Set LinkAttributes = New SmRecList.SmRecord

 LinkAttributes.AddHeader "CN_QUANTITY", 2, sdtSmallInt

 LinkAttributes.Value("CN_QUANTITY") = 3

 HierClassId = ParObject.SmClass.DefaultHierachicalClassId

 ParObject.LinkToChild HierClassId, ChildObject, LinkAttributes

End Sub

Example

The following example retrieves a specific object’s children:
Sub Test()

 Dim ParObject As SmApplic.ISmObject

 Dim Children As SmApplic.ISmObjects

 Dim QueryDefinition As SmApplic.ISmQueryDefinition

 Dim Count As Integer, i As Integer

 Dim SingleChild As SmApplic.ISmObject

 ‘Retrieve children of the object

 Set Children = ParObject.RetrieveChildren(QueryDefinition)

 ‘Display primary identifier of each child

 If Not (Children Is Nothing) Then

 Count = Children.Count - 1

 For i = 0 To Count

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 94

 Set SingleChild = Children.Item(i)

 MsgBox "Id of a child is " + SingleChild.Value("CN_ID")

 Next

 End If

End Sub

When creating a new SmarTeam title object from either a GUI or API, the
TDM_FILE_ID parameter is used. The internal attribute value is
automatically assigned.

The following objects are used to assist in implementing the SmarTeam
COM API parameter TDM_FILE_ID.
• Interface: ISmObject

Insert Method
Inserts object. Modification is executed according to DefaultBehavior
object
Sub Insert()

Example:

 Set NewObject = Session.ObjectStore.NewObject

 Session.MetaInfo.SmClassByName("Solid EdgePart").ClassId

 'Additional code if needed

 NewObject.Insert

• Interface: ISmObject

Update Method

Updates object. Modification is executed according to DefaultBehavior
object.

Sub Update()
Example

The following example demonstrates using the class SmApplic.ISmObject to
perform operations and accessing data of Sm objects while updating object data
in a Database.

 Set NewObject = Session.ObjectStore.NewObject
(Session.MetaInfo.SmClassByName("Solid EdgePart").ClassId)

 '.... Additional code if needed

 Chapter 5,SmarTeam Engine Library

95

 NewObject.Insert

 .

When updating an existing SmObject you should not hold the TDM_FILE_ID while
it is updating object's record list.

 For updating use the following example code:

Set SmObject = Session.ObjectStore.NewObject (Session.MetaInfo.SmClassByName
("Solid Edge Part").ClassId)

 SmObject.ObjectId = NewObject.ObjectId

SmObject.AddAttributes
"TDM_ID;FILE_NAME;DIRECTORY;CAD_REF_DIRECTORY;CAD_REF_FILE_NAME;FILE_TYPE"

SmObject.Data.Value("TDM_ID") = Session.ObjectStore.Sequences.ItemByAttribute

(Session.MetaInfo.SmClassByName("Solid Edge Part").GetAttribute("TDM_ID",
True)).IncrementGlobal

 SmObject.Data.Value("FILE_NAME") = "test.txt"

 SmObject.Data.Value("DIRECTORY") = "C:\"

SmObject.Data.Value("CAD_REF_DIRECTORY") = SmObject.Data.Value("DIRECTORY")

SmObject.Data.Value("CAD_REF_FILE_NAME") = SmObject.Data.Value("FILE_NAME")

SmObject.Data.Value("FILE_TYPE") =
Session.ObjectStore.GetSmLookUpByUniqueName(Session.MetaInfo.SmClassByName("Fi
le Type").ClassId, "Solid Edge Part").Id

 SmObject.Update

SmObjects Object

The SmObjects object represents a collection of SmObject objects.

Depending on the method used to retrieve the SmObjects instance, it might
not be possible to perform certain operations on it efficiently. The
CanRestructure property indicates if the SmObjects instance can be
restructured by adding or removing attributes from the objects it contains,
and the CanAddRemove property indicates if objects can be added to the
collection or removed from it.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 96

Accessing SmObject

A SmObject object may be created using various methods, for example:

• SmObjectStore.NewObjects creates a new empty collection.
• SmObjectStore.ObjectsFromData passes an SmRecordList object as

input, and obtains an SmObjects collection object that represents
objects listed in the SmRecordList object.

• Any other method that enables an SmObject collection to be obtained.

SmBehavior Object

The SmBehavior object contains flags that determine whether specified
conditions are executed.

All object management functions, such as Insert, Update, Delete,
Retrieve, are executed according to behavior flags contained in the
SmBehavior object. For example, when adding objects, you can set a flag
to determine whether to:
• Execute scripts
• Prompt the user
• Check user authorization.

The SmObjectStore object contains a default SmBehavior object with
default flag values.

All methods, such as Add, Update, Delete, and Retrieve, use the default
behavior of SmObjectStore. Each of these methods has a counterpart
method, which has the same name with the suffix Ex. These methods take a
SmBehavior object as an argument.

To create your own SmBehavior object, use the Clone method and modify
its flags, as shown in the following example:

Example

Sub test()

 Dim SmSession As SmApplic.SmSession

 Dim DocClassId as Integer

 Dim DocObject As SmApplic.ISmObject

 Chapter 5,SmarTeam Engine Library

97

 Dim NewBehavior As SmApplic.ISmBehavior

 DocClassId = SmSession.MetaInfo.SmClassByName
(“Document”).ClassId

 Set DocObject = SmSession.ObjectStore.NewObject(DocClassId)

 DocObject.Value("CN_DESCRIPTION") = "doc1"

 DocObject.Value("CN_ID") = "Doc-0010"

 Set NewBehavior = SmSession.ObjectStore.DefaultBehavior.Clone

 ‘ Don’t invoke scripts while performing operation

 NewBehavior.InvokeScripts = False

 ‘ Don’t prompt user to confirm operation

 NewBehavior.ConfirmOperations = False

 DocObject.InsertEx NewBehavior

End Sub

The settings for the default system behavior are as follows:
• CheckAuthorization = True
• InvokeScripts = True
• ConfirmOperation = coPromptUser
• CheckLinksOnDelete = cldPromptUser
• ConfirmAttachedFileDeletion = coPromptUser
• CheckObjectsExistence = True
• ViewObjectAuthorization = voaCheckAndDeleteFromList

The default behavior settings can be accessed through the
MetaInfo.ObjectStore.DefaultBehavior property.

 98

Authorization Settings

The two Behavior parameters:

CheckAuthorization

ViewObjectAuthorization

pertain to preventing an operation when the user does not have
authorization privileges.

The CheckAuthorization parameter pertains to the Database operations
Add, Update, Delete and has the values:

CheckAuthorization Description

True The operation is performed only if the user has SmarTeam
authorization on the class on which the operation is running.

False The operation is performed even if the user has no authorization
the class.

The ViewObjectAuthorization parameter pertains to displaying the results
of query operations and has the values:

ViewObjectAuthorization Description

voaNotToCheck All query results objects are returned, irrespective of use
authorization.

voaCheckAndDeleteFromList The query results contain only authorized objects.
voaCheckAndSignInList All query results objects are returned, irrespective of use

authorization, but any objects not authorized are not
displayed by SmarTeam. The objects have a special sig
the RecordList.

 99

SmMultiObjects Object

The SmMultiObjects object represents a collection of SmObjects and
therefore the list may contain Persistent Objects of different superclasses.

The following example shows an iteration on an SmMultiObjects variable
in order to obtain a specific SmObject object.
Example

Sub Test()

 Dim SmObjsColl As SmApplic.ISmMultiObjects

 Dim i As Integer, Col1Count As Integer

 Dim SingleColl As SmApplic.ISmObjects

 Dim j As Integer, Col2Count As Integer

 Dim SingleObj As SmApplic.ISmObject

 Col1Count = SmObjsColl.Count - 1

 For i = 0 To Col1Count

 Set SingleColl = SmObjsColl.Item(i)

 Col2Count = SingleColl.Count - 1

 For j = 0 To Col2Count

 Set SingleObj = SingleColl.Item(j)

 Next j

 Next I

End Sub

SmCompositeObjects and SmCompositeObject Objects

The SmCompositeObject object represents a collection of SmObject
objects that represent Persistent Objects related to each other by, for
example, a hierarchical link or general link.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 100

The SmCompositeObjects object represents a collection of
SmCompositeObject objects that have the same composition information,
for example, objects and their hierarchical links to a specific parent object.

Each participating object in the SmCompositeObject is identified by its
specific key. This key may be either a character key or an integer key
which represents the object’s Class ID or superclass ID.

For example, the methods SmObject.RetrieveChildrenAndLinks and
SmObject.RetrieveParentsAndLinks create an SmCompositeObjects
collection object in which each SmCompositeObject member contains two
SmObject objects.

These objects are identified as follows:
• The child object itself is identified by its superclass ID
• The link object is identified by its class ID.

In order to retrieve a specific SmObject object from a single
SmCompositeObject, use the Item property. The input to the method can
be either a character role or a class ID role, but not the index of the
SmObject in the SmCompositeObject. To obtain a specific SmObject by
its index, use one of the following:
Role = SmCompositeObject.Role(intIndex)

Set SmObject = SmCompositeObject.Item(Role)

or
ClassId = SmCompositeObject.ClassId(intIndex)

Set SmObject = SmCompositeObject.Item(ClassId)

The SmMultiCompositeObjects object represents a collection of
SmCompositeObjects objects, and can therefore contain objects with
different composition information.

SmLookUpObjects and SmLookUpObject Objects

These objects represent the Lookup Table information.

 Chapter 5,SmarTeam Engine Library

101

SmClassReferenceObjects and SmClassReferenceObject
Objects

The SmClassReferenceObject object represents the value of an attribute
that references an object from another class.

The SmClassReferenceObjects object provides access to the list of
possible objects from the referenced class, which can be referenced by a
specific attribute.

Managing Transactions in the Database

When working with Persistent Objects, it is often necessary to group
several operations to be performed on the Persistent Objects into a
transaction. Transactions are used to mark a group of operations as an
“atomic operation”, meaning an operation that should either complete
successfully or not at all.

The SmarTeam Object Model provides support for transactions through
the SmDatabaseConnection object. However, the SmarTeam Object
Model also provides the Operation model, which is often more useful for
larger systems.

An operation is similar to a transaction. However, when using operations,
you do not explicitly start, commit or rollback database transactions.
Instead, you mark the beginning of an operation, and later, the successful,
or unsuccessful, end of the operation. The SmarTeam database engine uses
this information to manage database transactions in an efficient manner.

Unlike transactions, operations can be nested, meaning that you can start an
operation while another is still in progress. However, the inner operation
must end before the outer operation is completed. Nested operations are
especially useful in larger systems, where a component needs to participate
in a larger transaction without being aware of the exact scope of the
transaction.

The following SmObjectStore methods manage operations:

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 102

• StartOperation is used to mark the beginning of an operation. If there
is no active transaction at this point, the SmarTeam Engine begins a
new transaction automatically. Each call to StartOperation must be
matched with a later call to EndOperation or FailOperation.

• EndOperation is used to mark the successful completion of an
operation. If the operation is a top-level operation (i.e. it is not nested
in another operation) the SmarTeam Engine automatically commits the
transaction at this point.

• FailOperation is used to mark a failed operation. When a nested
operation fails, all the operations including it are also marked as failed,
even if EndOperation is called for them. If the failed operation is a
top-level operation, the SmarTeam Engine automatically rolls back the
transaction at this point.

In the following example, the program is required to perform the Update,
Retrieve and LinkToParent methods in one database transaction.
EndOperation in this case performs the COMMIT transaction. If the
methods fail, the FailOperation method accomplishes ROLLBACK of the
whole transaction.

Example

Sub LinkObjects()

 On Error GoTo ErrorHandler

 StartOperation

 Object.Update

 Parent.Retrieve

 Object.LinkToParent(LinkClassId, Parent)

 EndOperation

 ErrorHandler:

 FailOperation

End Sub

 Chapter 5,SmarTeam Engine Library

103

Below is an example of nested operations. In this example the overall
transaction contains the method UnlinkFromParent and three methods
from the LinkObjects function. COMMIT of the transaction is performed
by the EndOperation from the main routine.

Example

Sub Main()

 On Error GoTo ErrorHandler

 StartOperation

 Object.UnlinkFromParent(OldParent)

‘ Call function from the previous example

 LinkObjects

EndOperation

ErrorHandler:

FailOperation

…

End main

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 104

SmQuery Object

Description

The SmQuery object allows you to define a powerful and flexible database
query, run it, and access the query result.

The SmQuery object lets you perform the following advanced query tasks:

• Define class roles
• Perform a query on linked objects from the same class
• Order and sort the query results as desired
• Use query filters.

The following is a description of the important properties and methods of
the SmQuery object:
• Query Definition
• QueryResult.

QueryDefinition

The QueryDefinition property provides access to the components of the
query definition as follows:
• Roles – the collection of class-role assignments that participate in the

query
• Select – the collection of class attributes which are returned in the

query result
• Where – the collection of conditions that determine which objects will

be included in the query result set
• OrderBy – the collection of attributes that define the sort order of the

returned query result.

Roles

QueryRoles is the collection of class-role assignments on which the query
performs its search. They are analogous to the tables in the FROM clause
of an SQL statement.

A QueryRole item is a pair consisting of a class, represented by its class id,
and a ClassRole, represented by one of the identifiers: “F”, “L”, and “S”.
By assigning different ClassRoles to a class, the same class can assume
different identities for the purpose of the query search.

 Chapter 5,SmarTeam Engine Library

105

The main application of the QueryRole is to allow queries on linked objects
from the same class. The basic model is a first object, F, linked to a second
object, S, by a link L (for that reason the letters “F”, “L” and “S” are used
as ClassRole identifiers). For this model you need to define three
QueryRole items in the query definition, with the “F”, “L”, and “S”
identifiers, respectively.

To perform a query on a single class, define a single QueryRole item using
the “F” identifier only. (For a single class query, the role can be whatever
you want.)

As an example of the linked objects model, you might want to locate a
document with certain attributes that has a child document with certain
other attributes. The target document and its child document are in the
same Document class and the parent-child link between them is in a third
class, the Hierarchic Link class. In order to differentiate between parent
and child attributes, the Document class is assigned two separate roles: the
parent role and the child role (identifiers “F” and “S”, respectively). The
Hierarchic Link class is assigned the link role “L”.

This allows you to specify Document class attributes for both parent and
child documents in the Select collection and the Where collection of the
query. You distinguish between them by appending the ClassRole
identifier: F.attributename for the parent document and S.attributename for
the child document.

For example: you want to find the name of a parent document whose name
contains the string “automobile” that has a child Document that has more
than 100 pages.

You define three QueryRole items as follows:
QueryRole Item ClassRole Class

Parent F Document Class
Link L Hierarchic Link Class
Son S Document Class

For example, the first row says that the QueryRole “Parent” is defined as
the pair “F” and the class Document Class.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 106

In terms of the SmarTeam notation, the ObjectID attribute of the
Document class TN_DOCUMENTATION is called OBJECT_ID and the
Parent and Son Object ID attributes in the Hierarchic Link class
DOCUMEN_TREE are PAR_OBJECT_ID and SON_OBJECT_ID,
respectively.

Then, using the above role definitions, the analogous SQL format of the
above query would be:

SELECT F.name

FROM TN_DOCUMENTATION F, DOCUMEN_TREE L, TN_DOCUMENTATION S

WHERE F.name LIKE “%automobile%” AND

F.OBJECT_ID = L.PAR_OBJECT_ID AND S.OBJECT_ID = L.SON_OBJECT_ID

AND S.PAGECOUNT > 100

To add a QueryRole item to the collection, use the Roles.Add method. You
specify the class ID and the associated ClassRole identifier.

Note that the identifiers “F” and “S” do not imply a specific order. They
can be interchanged without affecting the result.

Specifying Select Attributes

Any attribute that you specify for the select part of the query must be
identified with a specific QueryRole or class-role assignment, as discussed
in the previous section. Thus when you specify a class attribute, you also
need to specify the ClassRole identifier (“F”, “L” or “S”) associated with
the attribute’s class.

You assign a select attribute to the query using the Select.Add method. The
method provides both attribute name and ClassRole parameters.

For example,
QueryDef.Select.Add “CLASS_ID”,"S",False

means that the query returns values of the CLASS_ID attribute of the class
associated with the ClassRole S.

This is analogous to the SQL statement:
SELECT

 Chapter 5,SmarTeam Engine Library

107

S.CLASS_ID

If a class has been assigned two different roles, you can refer to the same
class attribute twice in the query where each time you use a different role:

QueryDef.Select.Add “CLASS_ID”,"F",False

QueryDef.Select.Add “CLASS_ID”,"S",False

This is analogous to the SQL statement:
SELECT

F.CLASS_ID, S.CLASS_ID

Specifying Where Conditions

Any attribute that appears in a condition in the Where part of the query
must be identified with a specific QueryRole or class-role assignment, as
discussed above. Thus when you specify a class attribute, you also need to
specify the ClassRole identifier (“F”, “L” or “S”) associated with the
attribute’s class.

You assign a condition on an attribute using the Where.Add method. The
method provides both attribute name and ClassRole parameters.

For example:
QueryDef.Where.Add "","CN_VOLUME","=","1",False,"F"

specifies that the CN_VOLUME attribute of the class associated with
ClassRole F equals 1.

This corresponds to the SQL statement WHERE section:
WHERE

F.CN_VOLUME = 1

If a class has been assigned two different ClassRoles, you can refer to the
same attribute twice in the Where part of the query where each time you
use a different ClassRole.

Ordering the Results

The OrderBy property allows you to specify the ordering of the query
results by attribute.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 108

The OrderBy.Add method provides two parameters by which you can
specify two types of sort order:
• SortOrder
• SortIndex

SortOrder

For an individual role-attribute, you can use the SortOrder parameter to
determine the ordering of the results according to that attribute’s values as
follows:
• None
• Ascending
• Descending

SortIndex

In addition, you can use the SortIndex parameter to specify a nested
ordering of the results. The attribute with SortIndex = 1 is sorted first,
according to its sort order. Any entries with the same attribute value are
again sorted, now according to the attribute with SortIndex = 2, and so on.

For example, the attributes selected for a query are the name, year of
manufacture and color of an automobile. If you want to sort all cars first
alphabetically by name, then further sort all cars with the same name by
year of manufacture and finally sort all cars with the same name and year
by color you would set:

Attribute SortOrder SortIndex

Name Ascending 1
Year Ascending 2
Color Ascending 3

SmarTeam Security

SmarTeam has a "data model level" security that allows the data model
designer to specify permissions on data model entities. The security
includes specifying permissions per class, as well invoking a script which
allows implementation of security per object. The ISmQuery object
supports SmarTeam security.
Note Because the ISmSimpleQuery object does not deal with classes or objects, and

instead deals directly with SQL and RecordList, it is not aware of this mechanism
and does not enforce it.

 Chapter 5,SmarTeam Engine Library

109

Object Diagram

The object diagram of IsmQuery is shown below:

ISmQuery

QueryDefinition

QueryResult

Select

Where

OrderBy

Roles

Filters

Figure 5-4 ISmQuery Object Diagram

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 110

Obtaining the ISmQuery Object

You obtain a Query object as follows:
Set SmQuery = SmSession.ObjectStore.NewQuery

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a Query.

Query Task: Executing a Query

There are two methods of executing a query depending on how the query
results are retrieved.

Execute a Query and Retrieve all Results – Run Method

Use the Run method to execute the query. The query operation is executed
according to the DefaultBehavior object. All results of the query are placed
in the QueryResults object.

See below for an example of how to use the Run method.

Use the RunEx method to execute the query according to a specified
SmBehavior object.

Execute a Query and Retrieve one Result – Open Method

Use the Open method to open the query. This method executes the query
according to DefaultBehavior object but instead of placing all the results in
the QueryResults object – as the Run method does – only the first row of
the QueryResults object is filled.

You would use the Open method instead of the Run method, for example, if
you don’t need to display all results at one time. You might use it for
paging the results on an HTML display where the user can decide to view
only part of the results.

See below for an example of how to use the Open method.

Use the OpenEx method to open a query where the query is executed
according to a specified SmBehavior object.

 111

Query Task: Defining the Query Mode

Use the QueryMode property to get or set the query mode.

The query mode specifies how the results of successive queries are handled
in the results record list, as shown in the following table:

QueryMode Description Software Constant

Append Results The results of the query are appended in the
record list to the results of the previous query.

qmAppend

Build Results All results of previous queries are deleted from
record list before inserting the results of this qu

qmBuild

Intersect Results The results of this query are intersected with th
results of previous queries in the record list.

qmIntersect

Query Task: Defining a Query for One Class

This section presents an example of defining and performing a query on
one class.
' Searching for all SolidWorks Assembly objects that have volume 1

 '

‘ First get the class on which the query is to run

Set SWAssemblyClass = SmSession.MetaInfo.SmClassByName("SolidWorks Assembly")

‘ get a new query and query definition

Set SmQuery = SmSession.ObjectStore.NewQuery

Set QueryDef = SmQuery.QueryDefinition

‘ use one role, F, for one class

QueryDef.Roles.Add SWAssemblyClass.ClassId,"F"

‘ define SELECT attributes

QueryDef.Select.Add “OBJECT_ID”,"F",False

QueryDef.Select.Add “CLASS_ID”,"F",False

‘ define the WHERE conditions

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 112

QueryDef.Where.Add "","CN_VOLUME","=","1",False,"F"

‘ run it

SmQuery.Run

Query Task: Defining a Query for Linked Objects

This section presents an example of defining and running a query on linked
objects from the same class.
' Searching for all SolidWorks part objects that are children of any
SolidWorks Assembly object with quantity > 4 and volume = 1

 '

‘ First get the classes on which the query is to run

‘ the object classes:

Set SWAssemblyClass = SmSession.MetaInfo.SmClassByName("SolidWorks Assembly")

Set SWPart = SmSession.MetaInfo.SmClassByName("SolidWorks Part")

‘ and the link class

HierClassId = SWPart.DefaultHierachicalClassId

‘ get a new query and query definition

Set SmQuery = SmSession.ObjectStore.NewQuery

Set QueryDef = SmQuery.QueryDefinition

‘ define the F, L, and S roles

QueryDef.Roles.Add SWAssemblyClass.ClassId,"F"

QueryDef.Roles.Add SWPart.ClassId,"S"

QueryDef.Roles.Add HierClassId,"L"

‘ add the SELECT conditions

QueryDef.Select.Add “NM_OBJECT_ID”,"S",False

QueryDef.Select.Add “NM_CLASS_ID”,"S",False

 ‘ add the WHERE conditions

QueryDef.Where.Add "","CN_VOLUME","=","1",False,"F"

 Chapter 5,SmarTeam Engine Library

113

QueryDef.Where.Add "","CN_QUANTITY",">","4",False,"L"

‘ run it

SmQuery.Run

Query Task: Getting Query Results

Results can be extracted from the QueryResult object in different ways,
depending on the types of QueryRoles that are defined in the Roles
property, according to the following table:
QueryRoles Items Object used to extract Results

Linked Classes CompositeObjects
Single Class ISmObject

See examples in the next section.

Examples

This section contains examples of the use of the Query object to define and
execute queries.

Running a Query

This example uses the Run method on two linked classes. The results are
displayed using a CompositeObject.

Example

' Searching for all SolidWorks Assembly and SolidWorks part objects that
have parent-son relation where both have the status NEW

Sub Example(SmSession As SmApplic.SmSession)

 Dim SWAssemblyClass As SmApplic.ISmClass

 Dim SWPart As SmApplic.ISmClass

 Dim SmQuery As SmApplic.ISmQuery

 Dim QueryDef As SmApplic.ISmQueryDefinition

 Dim SmView As SmGUISrv.ISmView

 Dim GUIService As SmGUISrv.SmCommonGUI

 Dim LookUpObject As SmApplic.ISmLookUpObject

 Dim LookUpClassId As Integer

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 114

 ‘ First get the classes on which the query is to run

 ‘ the object classes:

 Set SWAssemblyClass = SmSession.MetaInfo.SmClassByName("SolidWorks
Assembly")

 Set SWPart = SmSession.MetaInfo.SmClassByName("SolidWorks Part")

 ‘ and the link class

 HierClassId = SWPart.DefaultHierachicalClassId

 ‘ get a new query and query definition

 Set SmQuery = SmSession.ObjectStore.NewQuery

 Set QueryDef = SmQuery.QueryDefinition

 ‘ define the F, L, and S ClassRoles

 QueryDef.Roles.Add SWAssemblyClass.ClassId, "F"

 QueryDef.Roles.Add SWPart.ClassId, "S"

 QueryDef.Roles.Add HierClassId, "L"

 ‘ add the SELECT conditions for the SolidWorks part objects

 QueryDef.Select.Add "OBJECT_ID", "S", False

 QueryDef.Select.Add "CLASS_ID", "S", False

 QueryDef.Select.Add "CN_DESCRIPTION", "S", False

 ‘ getting NEW State id

 ‘ first get id of lookup class of all states

 LookUpClassId = SmSession.MetaInfo.SmClassByName("State").ClassId

 ‘ get NEW state item from lookup list of all states

 Set LookUpObject =
SmSession.ObjectStore.GetLookUpList(LookUpClassId).ItemByUniqueName("New")

 ‘ add the WHERE conditions

 ‘ Only Assemblies and Parts with status NEW will be retrieved

 Chapter 5,SmarTeam Engine Library

115

 ‘ STATE is field id from F or S classes; Lookupobject.id is id of NEW
state

 QueryDef.Where.Add "", "STATE", "=", LookUpObject.Id, False, "F"

 QueryDef.Where.Add "", "STATE", "=", LookUpObject.Id, False, "S"

 ‘ run it

 SmQuery.Run

 If (SmQuery.RecordCount > 0) Then 'found results

 ‘ Get main GUI service object

 Set GUIService = SmSession.GetService("SmGUISrv.SmCommonGUI")

 ‘ Create new SmView of type - bottom up tree)

 Set SmView = GUIService.Views.NewViewByType(vwtBottomUpTree)

 ‘ Assign displayed composite objects for view from query results

 ‘ Need CompositeObjects to display QueryResults of linked objects

 SmView.DisplayObjects.CompositeObjects =
SmSession.ObjectStore.CompositeObjectsFromData(SmQuery.QueryResult, False)

 ‘ Assign title to window

 SmView.ViewTitle = "Found: " & CStr(SmQuery.RecordCount) & " records"

 ‘ Show results by window object

 SmView.SmViewWindow.Show

 Else

 MsgBox "No objects found for this query"

 End If

End Sub

Opening a Query

This example uses the Open method on a single class. The results are
displayed 20 records at a time using a CompositeObject.

Example

 ‘ Search for SolidWorks Assembly objects with status NEW

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 116

Sub Example(SmSession As SmApplic.SmSession)

 Dim SWAssemblyClass As SmApplic.ISmClass

 Dim SmQuery As SmApplic.ISmQuery

 Dim QueryDef As SmApplic.ISmQueryDefinition

 Dim SmView As SmGUISrv.ISmView

 Dim GUIService As SmGUISrv.SmCommonGUI

 Dim LookUpObject As SmApplic.ISmLookUpObject

 Dim LookUpClassId As Integer

 Dim Count As Long

 Dim Continue As Boolean

 Dim DisplCount As Integer

 ‘ define a query over one class

 ‘ First get the class on which the query is to run

 Set SWAssemblyClass = SmSession.MetaInfo.SmClassByName("SolidWorks
Assembly")

 ‘ get a new query and query definition

 Set SmQuery = SmSession.ObjectStore.NewQuery

 Set QueryDef = SmQuery.QueryDefinition

 ‘ define the F role

 QueryDef.Roles.Add SWAssemblyClass.ClassId, "F"

 ‘ add the WHERE conditions

 ‘ get Lookup class ID for internal state class

 LookUpClassId = SmSession.MetaInfo.SmClassByName("State").ClassId

 ‘ get NEW state item from states lookup list

 Set LookUpObject =
SmSession.ObjectStore.GetLookUpList(LookUpClassId).ItemByUniqueName("New")

 Chapter 5,SmarTeam Engine Library

117

 ‘ Only Assemblies with status NEW will be retrieved

 ‘ STATE is a field id from F ; Lookupobject.id is id of state NEW

 QueryDef.Where.Add "", "STATE", "=", LookUpObject.Id, False, "F"

 ‘ add description

 QueryDef.Select.Add "CN_DESCRIPTION", "F", False

 ‘ Open query

 SmQuery.Open

 ‘ Get main GUI service object

 Set GUIService = SmSession.GetService("SmGUISrv.SmCommonGUI")

 Count = 0 ' total QueryResults record count

 Continue = True

 ‘ if not at end of QueryResult and want to continue to display

 While ((Not SmQuery.EOF) And (Continue))

 DisplCount = 0 ' count of records displayed on window

 ‘ Create new SmView of type - tree list to show founds object and
their sons

 Set SmView = GUIService.Views.NewViewByType(vwtTreeList)

 SmView.ViewTitle = "Push Ok button to show next 20 records found "

 ‘ Assign displayed objects for view from query results

 While ((Not SmQuery.EOF) And (DisplCount < 20))

 DisplCount = DisplCount + 1

 Count = Count + 1

 ‘ add one object to display from QueryResult

 ‘ (CompositeObjectFromData gets one item)

 SmView.DisplayObjects.CompositeObjects.Add
SmSession.ObjectStore.CompositeObjectFromData(SmQuery.QueryResult, 0, True)

 ‘ retrieve next QueryResult record

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 118

 SmQuery.Next

 Wend

 If DisplCount > 0 Then

 ‘ display data/dialog window

 SmView.SmViewWindow.ShowModal

 ‘ user pressed Cancel, finish displaying

 If SmView.SmViewWindow.ModalResult = mrCancel Then

 Continue = False

 End If

 End If

 Wend

 If Count = 0 Then

 MsgBox "No objects found for this query"

 End If

 ‘ Close Query

 SmQuery.Close

End Sub

ISmSimpleQuery function

The ISmSimpleQuery function enables the execution of a raw SQL query.
However, while allocating as much memory as necessary to generate
results for the query, the ISmSimpleQuery function does not monitor
memory overflow.

Therefore, when performing a query on a large amount of data, it is
recommended that you use SmIncrementalSimpleQuery, which uses paging
and does not cause memory overflow.

 119

6. SmarTeam GUI Services Library

General Description

The SmarTeam GUI Services library comprises objects that enable the
following SmarTeam Windows client-related functionality:
• Create and display SmarTeam views
• Retrieve information about existing GUI components
• Display various SmarTeam windows and dialogs.

Dependencies

The SmarTeam GUI Services library has the following dependencies:
• SmarTeam Record List library
• SmarTeam Engine library.

GUI Concepts

This section describes the basic GUI concepts used in the SmarTeam GUI
services.

The SmarTeam View

The SmarTeam View is a window with a standard and consistent design,
layout and operation that is used to display a variety of persistent
SmarTeam objects and links in various formats. You can also get selected
objects from the display.

 120

SmarTeam Dialogs

SmarTeam provides a series of standard Dialogs for inputting and
selecting information such as Local Files Explorer and Open Dialog or for
performing operations such as Login and Save As.

Overview of Objects—ISmCommonGUI

This section presents an overview of the main ISmCommonGUI objects
including a description of the associated objects that are useful for the
programmer:

The ISmCommonGUI is the highest-level object; its main purpose is to
contain the other objects.

The major ISmCommonGUI components are shown in the following object
diagram:

ISmCommonGUI

Views

Dialogs

ParentWindowHandle

ActiveViewWindow

Figure 6-1 ISmCommonGUI Object Diagram

 Chapter 6, SmarTeam GUI Services Library

121

Properties

The CommonGUI object contains the following properties:
Property Description

Views Includes a set of methods for creating new SmarTeam View
and a collection of currently existing SmarTeam View Windo
Returns ISmViews.

Dialogs Includes a set of methods for displaying the SmarTeam
standard dialogs and windows. Returns ISmCommonDialogs

ParentWindowHandle The handle of the window that serves as a parent window fo
the windows and dialogs displayed by the SmarTeam API.

ActiveViewWindow Accesses the currently active SmarTeam View Window.
Returns ISmViewWindow.

Obtaining the ISmCommonGUI Objects

You can access the GUI Services through the SmGUISrv.SmCommonGUI
SmarTeam Service object, which is accessible through the GetService
function of the Session. The ProgId of this object is:
SmGUISrv.SmCommonGUI.

A CommonGUI object is obtained as follows:
Dim CommonGUI As SmGUISrv.SmCommonGUI

Set CommonGUI = SmSession.GetService('SmGUISrv.SmCommonGUI')

SmarTeam Object Model Programmer's Guide

122

The Views Property

The Views property provides a set of methods for creating new SmarTeam
Views and contains a collection of currently existing SmarTeam View
Windows.

Properties

The ISmViews object has the following properties:
Property Description

Windows The collection of currently existing SmarTeam ViewWindow objec
Returns ISmViewWindows. See the ISmView object for a descript
of the ISmViewWindow object.

Methods

The ISmViews object has the following methods:
Method Description

NewViewByType Creates a new SmView instance of the specified ViewType (see
Table 6-1). Returns ISmView.

NewViewByName Creates a new instance of a named SmView. Named View definit
are created by the user in various SmarTeam applications and
stored in the Query and View subsystem of SmarTeam. Returns
ISmView.

NewLifeCycleView Creates a new life cycle SmView instance. Returns
ISmLifeCycleView

Example

Use the NewLifeCycleView method to create a new Life Cycle view.
Set SmView = CommonGUI.Views.NewLifeCycleView

 Chapter 6, SmarTeam GUI Services Library

123

ISmView

The ISmView object represents the design, contents, operations and layout
of a SmarTeam View. See the ISmViewWindow object for the physical
characteristics of a SmarTeam View.

An ISmView object has the following characteristics:

Layout – A SmarTeam View is a two-sided display: the left side, the
controller, displays objects and the right side displays the object data for an
object selected on the controller. The highest-level object displayed on the
controller is referred to as the leading object.

Standard views – you can create standard SmarTeam views for
displaying different types of data including, for example, Parent-Child
Tree, Custom and General Links. The complete set of standard views
available is listed in Table 6-1. You can also create a user-defined view and
a life-cycle view (see “Obtaining the ISmView Object” below.)

Controller format – the format of the controller – either a tree or a grid –
is determined by the choice of standard view.

Contents – The type of data that can be displayed on the View and the way
it is loaded is determined by the choice of standard view.

SmarTeam Object Model Programmer's Guide

124

Sample Standard Views

Figure 6-2 shows a MainClassTree SmarTeam View. The controller
component is a tree, and the right side shows a profile card component for
the object selected on the controller.

Controller component
(Tree component)

Tab componentsProfile card
component

Figure 6-2 MainClass View with Tree Controller

 Chapter 6, SmarTeam GUI Services Library

125

Figure 6-3 shows a WhereUsed SmarTeam View where now the controller
is a grid and the leading object is displayed.

Controller component
(Grid component)

Tab componentsLeading Object

Figure 6-3 WhereUsed View with Grid Controller

Object Diagram

The object diagram of ISmView is shown below:

SmarTeam Object Model Programmer's Guide

126

ISmView

ViewType

Controller

Selected

SmViewWindow

ViewTitle

DisplayObjects

NotAllowedOperations

ReadOnly

SingleObject

Objects

CompositeObjects

MultiCompositeObjects

SingleRelatedObject

SingleLinkObject

Figure 6-4 IsmView Object Diagram

 Chapter 6, SmarTeam GUI Services Library

127

Properties

The ISmView object has the following properties:
Property Description

ActiveComponent Returns an SmGUIComponent object representing the act
component on the SmarTeam view.

Controller Returns an SmGUIComponent object representing the
controller object of the SmarTeam view.

NotAllowedOperations Returns a SmOperations object representing operations th
are not allowed on this View. User can fill in this list before
calling Show method of the corresponding SmViewWindow

Components Collection of all components of the SmarTeam view
ReadOnly If true, this view is opened as read-only
StdContexts Represents the button set for this view (for internal use)
Contexts Sets the button set for this view (for internal use)
Selected Returns an SmComponentObjects object representing the

persistent objects selected on the View.
SmViewWindow Returns and sets the SmViewWindow object correspondin

the SmView.
ViewIdentifier The identifier of the View in the SmarTeam database. It ca

be the name of the search or the name of the view.
ViewTitle Returns and sets the View title.
ViewType Returns the View type (see Table 6-1)
ProductViewId Sets or returns the Id of the Product View
DisplayObjects Returns and sets SmComponentObjects, which represents

persistent objects that are displayed on the controller of th
View. This property is relevant to Views with the ViewType

• vwtSingleObject
• vwtTreeList
• vwtCustom

ISmComponentObjects

SingleObject Returns or sets a SmObject object.
Objects Returns a SmObjects object.
CompositeObjects Returns or sets a SmCompositeObjects object.
MultiCompositeObjects Returns or sets a SmMultiCompositeObjects object.
SingleRelatedObject
SingleLinkObject

Methods

The ISmView object has the following methods:
Method Description

SmarTeam Object Model Programmer's Guide

128

Close Closes view.
Refresh Refreshes objects displayed on the view.
RefreshOperationIcon Refreshes operation icon (relevant for Life Cycle views).

 Chapter 6, SmarTeam GUI Services Library

129

View Types

Table 6-1 presents a list of View Types available for creating standard
Views. See Table 6-3, for the settings required for each View Type.

Table 6-1 View Types

View Type The Controller Component shows: Software Constant

ParentChildTree Parent-child tree for single object vwtParentChildTree
Custom Grid vwtCustom
GeneralLinks List of objects linked to the leading objec vwtGeneralLinks

Revisions All revisions of the leading object vwtRevisions
SingleObject A profile card for a single object. The pro

card has a navigator.
vwtSingleObject

WhereUsed Parents of the leading object vwtWhereUsed
ComposedOf A list of children of the leading objects vwtComposedOf
TreeList A parent-child tree (can come from sever

objects).
vwtTreeList

BottomUpTree A child-parent tree (reverse of parent-chi vwtBottomUpTree

MainClassTree A list of persistent objects from a specific
class, which are linked to the leading obj
arranged as a tree. Typically, the leading
object is the object from the main class in
the Demo database “Project”.

vwtMainClassTree

ProductViewTree Product view tree vwProductViewTree

 130

Obtaining the ISmView Object

As mentioned, you can create three different categories of views, using the
methods of the ISmViews object as follows:

View Category Method

Create a standard, pre-defined SmarTeam View. Each view type is
appropriate for presenting a different aspect of the system (see Table
 6-1). Returns ISmView.

NewViewByType

Creates a user-defined SmarTeam View, where the view has been
created and named by the user of a SmarTeam application and has b
stored in the Query and View subsystem of SmarTeam. The new
instance is created according to the name given to the View by the us
Returns ISmView.

NewViewByName

Creates a new life cycle SmView instance. Returns mLifeCycleView NewLifeCycleView

Example

The following creates a standard, pre-defined View of type Top-Down Tree
list and displays a tree browser showing each object from the attached
Search as a root, and the lower level classes for each of these roots.data on
it:
Set SmView = CommonGUI.Views.NewViewByType(vwtTreeList)

' Get ISmViewWindow object attached to ISmView object

Set SmViewWindow = SmView.SmViewWindow

' Set collection of objects in view

SmView.DisplayObjects.CompositeObjects =
Session.ObjectStore.CompositeObjectsFromData(WorkObjects.Data, False)

' Set View Title

SmView.ViewTitle = "Selected object with children"

' Set window style as MDI child Sm window

SmViewWindow.Style = swsMDIChild

' Show view window

SmViewWindow.Show

 Chapter 6, SmarTeam GUI Services Library

131

ISmViewWindow

Description

The ISmViewWindow object represents the physical attributes of a
SmarTeam View. It is associated with a ISmView object.

The object diagram of ISmViewWindows is shown below:

ISmViewWindow

ModalResult

SmView

WindowHandle

WindowState

Alive

Style

Figure 6-5 ISmViewWindow Object Diagram

SmarTeam Object Model Programmer's Guide

132

Properties

The ISmViewWindow object has the following properties:
Property Description

Alive True if window is still alive (hasn’t been closed)
ModalResult Returns modal result of the windows opened in the modal m

See Table 6-2.
SmView Returns or sets an SmView object representing the

corresponding SmarTeam view.
WindowHandle The window handle
WindowState Returns or sets the state of the window
Style Returns or sets style of the window.

swsNormal
swsMDIChild
Note: You can use the swsMDIChild style only when opening a Vi

in the SmarTeam application and not, for example, from an
integration.

Methods

The ISmViewWindow object has the following methods:
Method Description

BringToFront Brings window to front.
Close Closes the window.
Show Displays the window in regular mode
ShowModal Displays window in modal mode.

Modal Result

Modal Result is relevant when you display the View using the ShowModal
method. Modal views are used to elicit a user response about the objects
displayed in the view. While a modal view is displayed, the focus is on it
alone. Control returns to the main window only when the modal view is
closed.

Table 6-2 shows the possible modal results.
Table 6-2 Modal Results

 Button/Action ModalResultValue

OK mrOK
Cancel mrCancel
Help mrHelp
Yes mrYes

 Chapter 6, SmarTeam GUI Services Library

133

No mrNo
Close mrClose
Abort mrAbort
Retry mrRetry
Ignore mrIgnore
All mrAll
NoAll mrNoAll

Obtaining the ISmViewWindow Object

A ViewWindow object is obtained from SmView as follows:
Set ViewWindow = SmView.ViewWindow

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a ViewWindow and its components.

ViewWindow Task:
Displaying the Window

Example

The following example shows how to open a SmarTeam view defined in
the SmarTeam database by name and display it. The identifier of the view
in the database is “All SolidWorks Assembly"
Set View = CommonGUI.Views.NewViewByName("All SolidWorks Assembly")

View.SmViewWindow.Show

ViewWindow Task:
Get the Modal Window Result

Use the ModalResult property to determine the button or action that the
user used to close the form. The ModalResult property defines the result of
the modal dialog.

Example

This example shows how to use the ShowModal and ModalResult
properties.
Set View = CommonGUI.Views.NewViewByName("All SolidWorks Assembly")

SmarTeam Object Model Programmer's Guide

134

View.SmViewWindow.ShowModal

If View.SmViewWindow.ModalResult = mrOK Then

. . .

End If

ViewWindow Task:
Get the Window State

Use the WindowState property to get or set the display state of a window.
The possible states are:

WindowState Software Constant

Normal wstNormal
Minimized wstMinimized
Maximized wstMaximized

 Chapter 6, SmarTeam GUI Services Library

135

ISmGUIComponent

A SmarTeam View is composed of components, which are represented by
ISmGUIComponent objects. The collection of all ISmGUIComponent
objects is represented by ISmGUIComponents.

Properties

The ISmGUIComponent object has the following properties:
Property Description

Name Returns a name of the GUI component.
ComponentType Returns a type of the GUI component.

• Tree
• Grid
• TreeList
• ProfileCard
• ToolBar
• Menu
• Control

Visible True if the GUI component is set as visible.
Enabled True if the GUI component is set enabled.
ReadOnly True if the GUI component is set Read Only.

Specifying the Controller GUI Component

The controller GUI component of a SmarTeam View (described under the
section ISmView) is associated with one of the following
ISmGUIComponent types:
• Tree
• Grid

The controller GUI component assumes one of these types when you create
the SmView object, and depends on the value of the ViewType parameter
that you specify. Table 6-3 indicates the component type for each
ViewType.

Two ISmGUIComponent objects are provided to support working with the
controller as a separate object:
• ISmTreeComponent
• ISmGridComponent

The controller object is defined and used as follows, for example:
Dim Controller As ISmTreeComponent

SmarTeam Object Model Programmer's Guide

136

Set View = CommonGUI.Views.NewViewByType(vwtParentChildTree)

Set Controller = View.Controller

When the View object is created as a standard tree type of display
(vwtParentChildTree), its Controller property is automatically set to a
ISmTreeComponent type. Therefore the Controller object is defined with
that type.

ISmTreeComponent and ISmGridComponent

As mentioned, the controller object assumes one of the two objects
ISmTreeComponent and ISmGridComponent,, depending on the ViewType
used when creating the View with which the controller is associated.

The object diagram of ISmTreeComponent and ISmGridComponent is
shown below:

 Chapter 6, SmarTeam GUI Services Library

137

ISmTreeComponent
ISmGridComponent

DataSource

DataSourceType

MainClassObject

LeadingObject

BasicClassId

BasicClass

Objects

SingleObject

Objects

CompositeObjects

MultiCompositeObjects

SingleRelatedObject

SingleLinkObject
Figure 6-6 ISmTreeComponent/ ISmGridComponent Object Diagram

SmarTeam Object Model Programmer's Guide

138

Properties

The ISmTreeComponent/ ISmGridComponent object has the following
properties and sub-properties:

Property Description

DataSource Returns an object of type of ISmDataSource.
ISmDataSource

DataSourceType Returns and sets type of data.
MainClassObject Returns or sets an SmObject object representing data sou

object from the main class of the data model.
LeadingObject Returns or sets an SmObject object representing leading

object of the data source.
BasicClassId Returns or sets basic class of the data source.
BasicClass Returns an SmClass object representing basic class of the

data source.
DataSourceType Returns and sets type of data.
Objects Returns an object of the type ISmComponentObjects.

ISmComponentObjects

SingleObject Returns or sets an SmObject object.
Objects Returns an SmObjects object.
CompositeObjects Returns or sets an SmCompositeObjects object.
MultiCompositeObjects Returns or sets an SmMultiCompositeObjects object.
SingleRelatedObject
SingleLinkObject

 Chapter 6, SmarTeam GUI Services Library

139

Methods

The ISmTreeComponent/ISmGridComponent object has the following
methods:

Method Description

AddObjects Not implemented.
DeleteObjects Not implemented
UpdateObjects Not implemented.
Select Not implemented
SelectInTree Not implemented.
GetSelected Not implemented

Example

This example displays the general links for an object
Dim GridComponent as SmGUISrv.IsmGridComponent

Set GridComponent = SmView.Controller

GridComponent.DataSource.LeadingObject = <Leading object of the view>

GridComponent.DataSource.BasicClassId = <Class identifier of the objects
related to the leading objects to be shown on the controller>

Specifying Contents for a Standard View

The way you specify the contents to be displayed on a standard View
depends on the particular View Type you are using.

There are two general ways to specify content for a View:
• Use the DisplayObjects property of the View object
• Use the DataSource property of the Controller object

Where the way you use depends on which View Type you specify.

Table 6-3 shows the settings required to specify the contents of a View for
each standard View Type.

Table 6-3 Loading View Contents According to View Type

View Type Description

Single Object
vwtSingleObject

Displays one entry field in which the user enters the name
part of a name) of an object to display its Profile Card

Settings:
SmView.DisplayObjects.SingleObject = <Single SmObject of persistent object>

SmarTeam Object Model Programmer's Guide

140

Top-Down Tree list
vwtTreeList

Displays a tree browser showing each object from the attac
Search as a root, and the lower level classes for each of th
roots.

Settings:
SmView.DisplayObjects.CompositeObjects = <CompositeObjects Collection of Parents>
Ordinary (Custom)
vwtCustom Display an ordinary list of objects (not hierarchically)

Settings:
1) Display list of persistent objects
SmView.DisplayObjects.CompositeObjects = <Collection SmCompositeObjects of persistent objects

For example:
SmView.DisplayObjects.CompositeObjects =
Session.ObjectStore.CompositeObjectsFromData(WorkObjects.Data, False)
Note: In order to show a collection of the persistent objects by the DisplayObjects property

you need to convert it to an object of type CompositeObjects or MultiObjects.

2) Display named view
No preliminary settings needed
Revisions
vwtRevisions Display a list of revisions
Where-Used List
vwtWhereUsed Display a list of all the parents of the selected object
Composed-Of List
vwtComposedOf Display the list of all the children of the selected object

Settings:
Dim GridComponent as SmGUISrv.IsmGridComponent
Set GridComponent = SmView.Controller
GridComponent.DataSource.LeadingObject = <Leading object of the view>
General Links
vwtGeneralLinks Display a list general links.

Settings:
Dim GridComponent as SmGUISrv.IsmGridComponent
Set GridComponent = SmView.Controller
GridComponent.DataSource.LeadingObject = <Leading object of the view>
GridComponent.DataSource.BasicClassId = <Class identifier of the objects related to the leading
objects to be shown on the controller>

Top-Down Tree
vwtParentChildTree

Display a tree browser showing the selected object or the f
object from the attached Search as the root, and its lower l
classes

Bottom-Up Tree
vwtBottomUpTree

Displays a tree browser that is a hierarchical display of obje
according to the selected object.

 Chapter 6, SmarTeam GUI Services Library

141

Settings:
Dim TreeComponent as SmGUISrv.ISmTreeComponent
Set TreeComponent = SmView.Controller
1) Display desktop objects from the specific class related to specific Main Class object:

TreeComponent.DataSource.MainClassObject = <Project Object>

TreeComponent.DataSource.BasicClassId = <Class identifier of objects linke
to Project Object to be shown on the controller >

2) Display child objects related to one leading object:

TreeComponent.DataSource.LeadingObject =<Leading object of the view>
MainClassTree
vwtMainClassTree Top-down tree view of the main class objects

No preliminary settings

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a View.

View Task:
Getting Selected Objects

Use the Selected property to get the objects that were selected on the view.

' Show view window

SmViewWindow.Show

MsgBox "Select object to change description"

' Get collection of selected objects in view

Set SelectedObjects = SmView.Selected.Objects

SmarTeam Object Model Programmer's Guide

142

View Task:
Refresh the View.

Use the Refresh method to refresh objects displayed on the View.

The object attributes needed to be refreshed can come from either the
collection object itself in memory or – if the information is not in memory
– from the database. Set the RetrieveFromDatabase parameter equal to
“False” to get the information from memory. Otherwise, set the
RetrieveFromDatabase parameter equal to “True”.
Note: Be sure that you actually need to retrieve object information from the Database

for the refresh operation. Excessive retrieval of information from the Database is
time consuming and may affect the performance of SmarTeam.

You can specify the following refresh actions:
Refresh Action Description Software Constant

Add Add an object to the view rfaAdd
Update Update the objects specified rfaUpdate
Delete Delete the objects specified rfaDelete

Example

This example refreshes the selected objects on the view. The object details
are taken directly from the RefreshObjects collection without accessing the
database.
RetrieveFromDatabase = False

SmView.Refresh rfaUpdate, RefreshObjects, RetrieveFromDatabase

ISmActiveWindow

The ISmActiveWindow object represents the ISmViewWindow that is
currently active (see the section ISmViewWindow for details).

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a ISmActiveWindow.

 Chapter 6, SmarTeam GUI Services Library

143

CommonGUI Task:
Get the Active Window and Active View.

Use the ActiveViewWindow property to get the active window and
through it, the active view properties.
' Get CommonGUI object from Sm session

Set CommonGUI = Session.GetService("SmGUISrv.Sm SmCommonGUI")

' Get active smarteam view window

Set ViewWindow = CommonGUI.ActiveViewWindow

' Get active smarteam view

Set View = ViewWindow.SmView

' Show view title

MsgBox "View title: " & View.ViewTitle

Using ISmView and ISmViewWindow

This section shows an example using the GUI objects.
' This script demonstrates using ISmView and ISmViewWindow classes

' for GUI operations with SmarTeam

Sub TestName(Session As SmApplic.SmSession, WorkObjects As
SmApplic.ISmObjects)

 Dim CommonGUI As SmGUISrv.SmCommonGUI ' main object for creating new views

 Dim SmView As SmGUISrv.ISmView ' view properties and data

 Dim SmViewWindow As SmGUISrv.ISmViewWindow ' window methods

 Dim SelectedObjects As SmApplic.ISmObjects ' collection of selected
objects

 Dim SmObject As SmApplic.ISmObject ' first selected object

 Dim RetrieveFromDatabase As Boolean

 ' Retrieve GUI service object from Sm session

SmarTeam Object Model Programmer's Guide

144

 Set CommonGUI = Session.GetService("SmGUISrv.SmCommonGUI")

 ' Create new Sm view - using SmCommonGUI service creates a new
ISmViewWindow automatically

 Set SmView = CommonGUI.Views.NewViewByType(vwtTreeList)

 ' Get ISmViewWindow object attached to ISmView object

 Set SmViewWindow = SmView.SmViewWindow

 ' Set collection of objects in view

 SmView.DisplayObjects.CompositeObjects =
Session.ObjectStore.CompositeObjectsFromData(WorkObjects.Data, False)

 ' Set View Title

 SmView.ViewTitle = "Selected object with children"

 ' Set window style as MDI child Sm window

 SmViewWindow.Style = swsMDIChild

 ' Show view window

 SmViewWindow.Show

 MsgBox "Select object to change description"

 ' Get collection of selected objects in view

 Set SelectedObjects = SmView.Selected.Objects

 Set SmObject = SelectedObjects(0).Clone

 ' Get current attribute value, add word and update object

 OriginalValue = SmObject.Data.ValueAsString("CN_DESCRIPTION")

 SmObject.Data.ValueAsString("CN_DESCRIPTION") = "Test" & OriginalValue

 SmObject.Update

 ' Refresh view according to Database objects' attribute values

 RetrieveFromDatabase = True

 ' Refresh view - update view of selected objects

 SmView.Refresh rfaUpdate, SelectedObjects, RetrieveFromDatabase

End Sub

 Chapter 6, SmarTeam GUI Services Library

145

ISmDialogs

The ISmDialogs object includes a set of methods for creating new
SmarTeam Dialogs.

Methods

The ISmDialogs object has the following methods:
Method Description

NewLocalFilesExplorer Creates Local Files Explorer dialog. Returns
ISmLocalFilesExplorer.
This dialog is accessed from SmarTeam through
Tools/Local File Explorer.

NewSaveAsDialog Creates Save As dialog. Returns IISmSaveAsDialog.
Used, for example, to save an object from a Integration

NewOpenDialog Creates Open dialog. Returns ISmOpenDialog.
Used, for example, to insert objects in a Integration.

ExecuteLogin Displays the SmarTeam login screen and executes log
database.

ExecuteSelectClass Display class structure tree for all classes in the databa
and allows user to select a class.

ExecuteSelectDatabase Displays all databases available and allows user to sele
a database or to add or remove a database from the lis

This dialog is accessed from SmarTeam through
File/Switch to Database

ExecuteUserPreferences Displays the SmarTeam user preferences and allows u
to change preferences.
This dialog is accessed from SmarTeam through
Tools/Options

ExecuteAdminPreferences Displays the SmarTeam adminstrative preferences and
allows administrator to change preferences.
This dialog is accessed from SmarTeam through
Tool/Administrator Options

ExecuteSelectFromQueryResult Opens the query editor, enabling the user to run a
specified query and select objects. The selected object
reside in the function's return value.
This dialog is accessed from SmarTeam through the “F
Object” icon on SmarTeam toolbar

ExecuteVaultMaintenance Displays screen for managing Vault. This dialog is
accessed from SmarTeam through Tools/Vault
Maintenance.

ExecuteQueryByAttributes Displays "Query By Attribute" dialog, returns modal res
"OK" and ViewWindow object, if user performs query.

SmarTeam Object Model Programmer's Guide

146

query.
This dialog is accessed from SmarTeam through the “F
Object by Attributes” icon on the SmarTeam toolbar

ExecuteQueryByExample Displays "Query By Example" dialog, returns modal res
"OK" and ViewWindow object, if user performs query

This dialog is accessed from SmarTeam through “Find
Object by Example” on the SmarTeam toolbar.

ExecuteQueryEditor Displays "Query Editor" dialog, returns modal result "O
and ViewWindow object, if user performs query.

ControlProperties Enables the programmer to alter the appearance of the
Save As dialog box.

OptionsProperties Enables the Options by changing the values in the Sav
Options dialog box

 147

Basic Dialogs

The following sections describe some of the basic dialogs that can be
created using the ISmDialogs object:
• Select Database Dialog
• Select Class Dialog
• Select from Query Dialog
• Query By Attribute Dialog

Select Database Dialog

Use this dialog to choose between the databases available on the system.

Figure 6-7 Select Database Dialog

Example

The following code produces the dialog in Figure 6-7.
Dim DatabaseName as Variant

CommonGUI.Dialogs.ExecuteSelectDatabase DatabaseName

MsgBox DatabaseName

SmarTeam Object Model Programmer's Guide

148

Select Class Dialog

Use this dialog to choose one of the classes available.

Figure 6-8 Select Class Dialog

Example

The following code produces the dialog in Figure 6-8.
Dim ClassId as Integer

CommonGUI.Dialogs.ExecuteSelectClass 1, ClassId

MsgBox ClassId

ExecuteSelectFromQueryResult Dialog

Use this method to:

Display the list of predefined queries

Run a predefined query and display the query results

Select objects from the query results and return them

Use the Query Editor to define a new query

 Chapter 6, SmarTeam GUI Services Library

149

Save the query as a predefined query

It is called in the form:
ModalResult = ExecuteSelectFromQueryResult(MultiObjects As ISmMultiObjects)

The selected objects are returned in the MultiObjects argument.

Example:

Dim MultiQueryResult As SmApplic.ISmMultiObjects

Dim Objects As SmApplic.ISmObjects

Dim Library As SmApplic.ISmObject

ModalResult = ExecuteSelectFromQueryResult(MultiQueryResult)

Set Objects = MultiQueryResult.Item(0)

Set Library = Objects.Item(0)

MsgBox CStr(Library.Value("OBJECT_ID"))

ExecuteQueryByAttributes Dialog

This method displays the "Find Object By Attribute" dialog, and lets you
perform a query. It returns modal result "OK" and, if the user has
performed a query, it returns a ViewWindow object containing the query
results.

The query results are extracted from the ViewWindow object through its
associated View object. To select specific objects from the query results
you would need to display the query results on a separate View.

Note that the ExecuteSelectFromQueryResult Dialog allows you to select
from the query results in the same dialog as you executed the query.

Example

This example runs the ExecuteQueryByAttributes method and extracts the
query results to a ComponentObjects object.
Dim GUI As SmGUISrv.SmCommonGUI

Dim SmView As SmGUISrv.ISmView ' view properties and data

SmarTeam Object Model Programmer's Guide

150

Dim SmViewWindow As SmGUISrv.ISmViewWindow ' window methods

Dim ComponentObjects As ISmComponentObjects

Set SmViewWindow = Nothing

GUI.Dialogs.ExecuteQueryByAttributes SmViewWindow

Set ComponentObjects = Nothing

If Not SmViewWindow Is Nothing Then

 Set SmView = SmViewWindow.SmView

 If Not SmView Is Nothing Then

 Set ComponentObjects = SmView.DisplayObjects

 End If

 SmViewWindow.Close

End If

If Not ComponentObjects Is Nothing Then

 MsgBox ComponentObjects.CompositeObjects.Count

 MsgBox "Not nothing"

End If

ISmSaveAsDialog.ControlProperties

The ISmDaveAsDialog.ControlProperties is a property of the
ISmSaveAsDialog Object which influences the behavior of the Save As
Dialog, for example:

 Chapter 6, SmarTeam GUI Services Library

151

The ISmSaveAsDialog.ControlProperties is a collection of Properties
which influence the appearance of the Save As dialog box.

These collections of Properties are of the ISmGUIProperties Type.

Those Properties support attributes of a screen component, such as visible,
enabled ... The attributes of those Properties are members of the
ISmGUIProperty.

Every Property is recognized by its associated Screen Control - via the
Name attribute of the property.

 152

The following Property Names are supported and possibly appear in the
collection:

Method Description

frmSaveAsDialog Enables the Caption of the Save As window
edtFileName Enables the Visible, Enabled, and Read-Only attributes, in the

"File Name"' edit control
lblFileName Enables the Visible, Enabled and Caption in the "File Name" la

cbxSaveAsClass Enables the Visible and Enabled attributes, in the 'Save As Cla
name box

lblSaveAsClass Enables the Visible, Enabled and Caption in the "Save As Clas
label

chkDontDisplayAgain Enables the Visible, Enabled, Checked and Caption in the "Do
display the Save As dialog" checkbox

chkAddToDesktop Enables the Visible, Enabled, Checked and Caption in the "Ad
To Desktop" checkbox

chkLinkToMainClass Enables the Visible, Enabled, Checked and Caption in the "Lin
To Class" checkbox

chkSecuredBy Enables the Visible, Enabled, Checked and Caption in the
"Secured By" checkbox

chkPropagateSecurity Enables the Visible, Enabled, Checked and Caption in the
"Propagate Security" checkbox

clsClassSettings Enables the Class Settings through ISmRecordList. The
RecordList is transferred by the Value attribute in the Property

ISmSaveAsDialog.OptionsProperties

The ISmDaveAsDialog.OptionsProperties is a property of the
ISmSaveAsDialog Object that influences the behavior of the Options
dialog box (when the options button is clicked), for example the following
dialog boxes:

 Chapter 6, SmarTeam GUI Services Library

153

ISmSaveAsDialog.OptionsProperties is a collection of Properties that
influence the appearance of the Save As dialog box.

These options can be altered later by clicking the Options button on the
Save As Dialog, and changing the values in the Save Options dialog box.

These Option Properties are of the ISmGUIProperties Type.

The Option Properties support attributes in the Save Options dialog box of
screen component, for example, visible, enabled …

Note: The attributes are members of ISmGUIProperty.

The Option is recognized by its associated Screen Control - via the Name
attribute of the option.

SmarTeam Object Model Programmer's Guide

154

The following Option Names are supported and possibly appear in the
collection:

Method Description

chkBatchMode Enables the Visible, Enabled, Checked, Caption in
the "Do not display profile cards for new objects"
checkbox

chkDisplayDialogForNewObject Enables the Visible, Enabled, Checked, Caption in
the "Display the Save As"' dialog in the new
objects' checkbox

lblMainClassExpandLevelTree Enables the Visible, Enabled and Caption of the Expa
level of ... tree label

spnedtMainClassExpandLevelTree Enables the Visible, Enabled, Value of the "Expand le
of ... tree" in the Spin Edit Control

lblObjectsExpandLevelTree Enables the Visible, Enabled, Value of the "Expand le
of ... tree" in the Spin Edit Control

spnedtObjectsExpandLevelTree Enables both, the Visible, Enabled, Value of the "Expa
level of ... tree" Spin Edit Control, and the Visible,
Enabled, Value of the "Expand level of objects tree" S
Edit Control

ISmLocalFilesExplorer

The ISmLocalFilesExplorer object represents the SmarTeam Local Files
Explorer dialog.

The object diagram of ISmLocalFilesExplorer is shown below:

 Chapter 6, SmarTeam GUI Services Library

155

ISmLocalFilesExplorer

WindowHandle

WindowState

Caption

ModalResult

Item

Properties

Figure 6-9 ISmLocalFilesExplorer Object Diagram

SmarTeam Object Model Programmer's Guide

156

Properties

The ISmLocalFilesExplorer object has the following properties and sub-
properties:

Property Description

WindowHandle Handle from application that called the Local Files Explore

WindowState The current display state of the Local Files Explorer windo

• wstMaximized
• wstMinimized
• wstNormal

Caption Sets caption
ModalResult Returns modal result
Properties Returns ISmWindowProperties. See below for details.

Methods

The ISmLocalFilesExplorer object has the following methods:
Method Description

Show Shows the window
Hide Hides the window
Close Closes the window
BringToFront Brings window to front
ShowModal Shows window in modal mode
Refresh Rebuild current directory in Local Files Explorer. This metho

must be called for each change in the life cycle, for example
when adding or deleting an object.

 Chapter 6, SmarTeam GUI Services Library

157

Example

Dim FSmLocalFilesExplorer as new IsmLocalFilesExplorer

‘ CommonGUI as SmCommonGUI

‘ Open Local Files Explorer

 FSmLocalFilesExplorer = CommonGUI.Dialogs.NewLocalFilesExplorer

‘ Refresh the Local Files Explorer

FSmLocalFilesExplorer.Refresh

ISmWindowProperties

The ISmWindowProperties object is a collection of properties associated
with the window.

Properties

The ISmWindowProperties object has the following properties and sub-
properties:

Property Description

Item Individual window property.

Methods

The ISmWindowProperties object has the following methods:
Method Description

Clear Clears a property

SmarTeam Object Model Programmer's Guide

158

ISmSaveAsDialog

The ISmSaveAsDialog object represents the SaveAs dialog.

The object diagram of ISmSaveAsDialog is shown below:

 Chapter 6, SmarTeam GUI Services Library

159

ISmSaveAsDialog

FileName

Classes

SelectedClass

SelectedParent

SelectedMainClassObject

Item

ModalResult

OptionsProperties

ControlsProperties

Name

Caption

Visible

Enabled

ReadOnly

Value

Checked
Figure 6-10 ISmSaveAsDialog Object Diagram

SmarTeam Object Model Programmer's Guide

160

Properties

The ISmSaveAsDialog object has the following properties and sub-
properties:

Property Description

FileName Returns and sets name of the file.
Classes Returns and sets SmClasses object representing list of classe

that appear in the “Save as Class” drop-down list.
SelectedClass Returns or sets SmClass object representing selected class.
SelectedParent Returns or sets SmObject object representing selected parent

SelectedMainClassObject Returns or sets SmObject object representing the selected
project.

ModalResult Modal result of the window
OptionsProperties Returns or sets option properties. Returns ISmGUIProperties.

See below for details.
ControlsProperties Returns or sets control properties. Returns ISmGUIProperties

Methods

The ISmSaveAsDialog object has the following methods:
Method Description

ShowModal Displays window in modal mode.

 Chapter 6, SmarTeam GUI Services Library

161

ISmGUIProperties

The ISmGUIProperties object is a collection of ISmGUIProperty objects.

Properties

The ISmGUIProperties object has the following properties:
Property Description

Item Returns ISmGUIProperty.

Methods

The ISmGUIProperties object has the following methods:
Method Description

NewProperty Adds new SmGUIProperty object to collection specified by
name. Returns ISmGUIProperty

ItemByName Returns a member of a collection by its name. Returns
ISmGUIProperty

Remove Removes SmGUIProperty object from collection.
Clear Clears all SmGUIProperty objects from collection.

SmarTeam Object Model Programmer's Guide

162

ISmGUIProperty

The ISmGUIProperty object represents the visual settings of the SaveAs
dialog.

Properties

The ISmGUIProperty object has the following properties:
Property Description

Name Returns or sets name of the property.
Caption Returns or sets caption of the property.
Visible True if property is visible.
Enabled True if property is enabled.
ReadOnly True if property is read only.
Value Returns or sets value of the property.
Checked True if property is set (checked).

Example

The following example displays the Save As dialog.
Private Sub DisplaySaveAsDialog(SmSession as ISmSession, FileName As String,
ProjectObject As ISmObject)

Begin

 Set ClassesList = SmSession.MetaInfo.NewSmClasses

 ClassesList.Add(354)

 ClassesList.Add(353)

 Dim SmGUIServices As ISmGUIServices

 Set SmGUIServices = SmSession.GetService(“SmGUISrv.SmGUIServices”)

 Set GUIStore = SmGuiServices.GUIStore

 Set SaveAsDialog = GUIStore.NewSaveAsDialog

 ‘ Set input parameter

 SaveAsDialog.Classes=ClassesList

 SelectedMainClassObject =
SmSession.ObjectStore.NewObject(ProjectObject.ClassId)

 SelectedMainClassObject.ObjectId = ProjectObject.ObjectId

 Chapter 6, SmarTeam GUI Services Library

163

 SaveAsDialog.SelectedMainClassObject = SelectedMainClassObject

 SaveAsDialog.FileName= FileName

 SaveAsDialog.ShowModal

End Sub

ISmOpenDialog

The ISmOpenDialog object represents the Open dialog.

The Open dialog has the look and feel of Office 2000. An outlook bar on
the left side of the dialog provides different ways of locating a specific
document.

This dialog has three functions:
1. Search – Running a pre-defined ‘parametric’ query and selecting one or more

document from the results. You can define a wide range of parameters and
parameter criteria.

2. Smart Desktop – Browsing through project data.

3. System Folders – Returns to called function with specific return code

Search

The Search function of the OpenDialog is shown below:

SmarTeam Object Model Programmer's Guide

164

Figure 6-11 ISmOpenDialog Search Function

Smart Desktop

The Open Dialog Smart Desktop is shown below.

Figure 6-12 ISmOpenDialog Smart Desktop Function

 Chapter 6, SmarTeam GUI Services Library

165

Object Diagram

The object diagram of ISmOpenDialog is shown below:

ISmOpenDialog

SelectedObjects

AllowMultipleSelection

Classes

SelectedClass

SelectedMainClassObject

ModalResult

OpenAsReadOnly

ControlsProperties

OpenLatestRevision

Caption

UserRequestedSystem
Folders

Figure 6-13 ISmOpenDialog Object Diagram

SmarTeam Object Model Programmer's Guide

166

Properties

The ISmOpenDialog object has the following properties:
Property Description

SelectedObjects Collection of user-selected objects
AllowMultipleSelection Allows user to select more than one object from window

Classes A Collection of classes from which user can select objec
(can be SuperClasses)

SelectedClass Sets and returns a user-selected class (set for default).
SelectedMainClassObject Sets and returns user-selected main object (set also for

default – chosen on show)
ModalResult Modal result for dialog – Can be either mrOk or mrCanc

for the System Folders button can be mrRetry

OpenAsReadOnly Boolean. Used to receive additional information from us

OpenLatestRevision Boolean. Used to receive additional information from us
true, in case the selected objects are revision-managed
the latest revisions are opened.

Caption View caption
UserRequestedSystemFolders Boolean. If true, shows the System Folders button on th

View
ControlsProperties Returns ISmGUIProperties (see section ISmGUIPropert

 Chapter 6, SmarTeam GUI Services Library

167

Methods

The ISmOpenDialog object has the following methods:
Method Description

ShowModal Displays window in modal mode.

Example

The following example shows how to use the OpenDialog object.
Sub OpenDialogTest(GUI As SmGUISrv.SmCommonGUI)

 Dim OpenDialog As SmGUISrv.ISmOpenDialog

 Set OpenDialog = GUI.Dialogs.NewOpenDialog

 Set OpenDialog.Classes = Session.MetaInfo.NewSmClasses

 OpenDialog.Classes.AddClass
Session.MetaInfo.SmClassByName("Document").ClassId

 OpenDialog.ShowModal

 If OpenDialog.ModalResult = mrOK then

 MsgBox “User selected “ + Cstr(OpenDialog.SelectedObjects.Count) +
“ objects”

 Else

 MsgBox “User has not selected any objects”

 End if

 End Sub

 168

 169

7. SmarTeam Utilities Library

General Description

The SmarTeam Utilities library provides the following functionality:
• Format conversions
• Mask creation and attribute definition
• Life cycle functionality
• Other miscellaneous functionality.

Dependencies

The SmarTeam Utilities library has the following dependencies:
• SmarTeam Record List library
• SmarTeam Engine library.

SmarTeam Object Model Programmer's Guide

170

Overview of Objects

The object hierarchy of the SmarTeam utility library objects is shown
below:

Library scheme

 SmUtil

 SmSessionUtil

 SmSessionConvert

 SmMiscUtil

 SmMiscUtil

 SmConvert

SmSessionUtil Object

The SmSessionUtil object provides various session-related utility
functions, such as options to specify preferences for the current session,
and to retrieve objects by their CAD ID.

SmSessionUtil is a service object. To obtain a reference to the object, use
the following syntax:
Dim SessionUtil as SmSessionUtil

Set SessionUtil = SmSession.GetService(“SmSessionUtil”)

Object scheme

SmSessionUtil

 SmSessionConvert (SmSessionConvert object)

 SmMiscUtil (SmMiscUtil object)

 Register

 CheckIn

 CurrentSessionPreference

 CopyFileFromVault

 …

 Chapter 7, SmarTeam Utilities Library

171

Object Functionality

The object has the following functionality:
• File vault operations
• Copied-file registration
• Life-cycle operations
• Life-cycle authorization operations
• Mask operations
• Miscellaneous utilities.

File Vault Operations

This section describes API functions that copy objects and files in and out
of vaults. Vaults are secure directories where SmarTeam stores an object
document in the different life-cycle stages of the object. A vault can
represent a directory in a remote computer. Thus the vault identifier is
required to uniquely define the file location, since the same directory
name could exist in two different vault computers.

A vault is represented by an SmObject. There is no persistent object (for
example, SmVault) that represents a vault. Instead, a SmObject is defined
with the necessary properties of the vault. The object property
Vault.ObjectId is the unique vault identifier.

Vault objects are active when the vault server is active. When working
locally, vault objects are ignored and the nil Object Id replaces the
Vault.ObjectId as the vault function parameter SourceVault.

Three types of vaults are defined where each type of vault corresponds to
a life-cycle stage. The vault type is represented by VaultTypeEnum.

Each object is associated with one or more vaults for each life-cycle stage,
where one of them is assigned to be the default vault for the object for that
life-cycle stage.

The following types of vaults exist:
Vault Type (VaultTypeEnum) Description

 VltApprove Vault for released documents
 VltInWork Vault for checked in documents
 VltObsolete Vault for obsolete documents

SmarTeam Object Model Programmer's Guide

172

The SmSessionUtil object contains the following functions to support file
vault operations.

Function Description

CompareFile Compares files of two objects
CopyFileExtended Copy file between two vaults
CopyFileFromVault Copies file out of vault
CopyObjectFileFromVaultPermission Copies file of object out of vault and sets file

access permission.
CopyObjectFileToVault Copies file of object to vault
DeleteFileFromVault Deletes a file from a vault
FileExists Checks if file exists in vault
GetPossibleVaultsForObject Gets all vaults associated with object
GetVaultDirectoryForObject Gets directory of object in vault
GetVaultForObject Gets default vault associated with object
MoveFileToVault Moves file to vault

File Vault Task: Copying a File from a Vault

You can use one of the following functions to copy a file from a vault
Function Description

CopyFileFromVault To copy a file from a vault to an external directory
when you know the file name, file location and vault

CopyFileExtended To copy a file from one vault to another when you k
the file names, file locations and vault Ids.

CopyObjectFileFromVaultPermission To copy a file from a vault to an external directory
when you know the object that contains the file and
destination file name and directory. This function al
sets file read/write access permission for the copied
file.

InsteadOf CopyFile

This script is used in the InsteadOf hook of the CopyFile SmarTeam
operation. It can copy a file to the work directory and determine the
read/write access permission.
Function InsteadOfCopyFileExample(ApplHndl As Long,Sstr As String,FirstPar As
Long,SecondPar As Long,ThirdPar As Long) As Integer

 Dim SmSession As SmApplic.SmSession

 Dim FirstRec As Object

 Dim SecondRec As Object

 Chapter 7, SmarTeam Utilities Library

173

 Dim ThirdRec As Object

 Dim FirstWorkObject As SmApplic.ISmObject

 Dim SecondWorkObject As SmApplic.ISmObject

 Dim Vault As SmApplic.ISmObject ' vault as object

 'Dim Vault As Object ' vault as object

 Dim VaultType As Integer ' type of vault

 Dim SourceVault As Long ' source vault object id

 Dim SourceDirectory As String 'source directory in vault

 Dim SourceFileName As String 'source file name

 Dim DestinationDirectory As String 'destination directory in vault

 Dim DestinationFileName As String 'destination file name

 Dim SessionUtil As SmUtil.SmSessionUtil 'main SmarTeam service object

 Dim Result As Long ' object id for refresh

 Dim FileMode As Integer 'file mode in destination directory

 ' Convert pointer to COM object SmSession

 Set SmSession = SCREXT_ObjectForInterface(ApplHndl)

 ' Conver input parameter to COM object

 CONV_RecListToComRecordList FirstPar,FirstRec

 CONV_RecListToComRecordList SecondPar,SecondRec

 CONV_RecListToComRecordList ThirdPar,ThirdRec

 Set FirstWorkObject =
SmSession.ObjectStore.ObjectFromData(FirstRec.GetRecord(0),true)

 Set SecondWorkObject =
SmSession.ObjectStore.ObjectFromData(SecondRec.GetRecord(0),true)

 ' Get service object

 Set SessionUtil = SmSession.GetService("SmUtil.SmSessionUtil")

 ' Vault type

SmarTeam Object Model Programmer's Guide

174

 VaultType = VltInWork

 ' Get Vault for WorkObject according to specific vault type

 Set Vault = SessionUtil.GetVaultForObject(VaultType, FirstWorkObject)

 ' Get Vault object id - for local vault NULL object id

 If Vault Is Nothing Then

 SourceVault = NULL_OBJ_ID

 Else

 SourceVault = Vault.ObjectId

 End If

 ' Set all parameters

 SourceDirectory = FirstWorkObject.Data.ValueAsString(NM_DIRECTORY)

 DestinationDirectory = SecondWorkObject.Data.ValueAsString(NM_DIRECTORY)

 SourceFileName = FirstWorkObject.Data.ValueAsString(NM_FILE_NAME)

 DestinationFileName = SecondWorkObject.Data.ValueAsString(NM_FILE_NAME)

 FileMode = modReadWrite 'file mode in destination directory

 ' Perform operation on object using SmSessionUtil method

 ‘CopyFileFromVault

 ‘Result = SessionUtil.CopyFileFromVault(SourceVault, SourceDirectory,
SourceFileName, DestinationDirectory, DestinationFileName)

 ‘CopyObjectFileFromVaultPermission

 SessionUtil.CopyObjectFileFromVaultPermission FirstWorkObject,
DestinationFileName, DestinationDirectory, FileMode

 InsteadOfCopyFileExample = Err_None

End Function

 Chapter 7, SmarTeam Utilities Library

175

Copied-File Registration

This section describes API functions that manage copied-file registration.
When a file associated with an object is copied to a different directory
using the SmarTeam commands Check Out, New Release, Copy File or
View, the copied file is registered. For example, executing Copy File on a
Document copies the associated file to the work directory and registers the
copied file. The Local File Explorer GUI lets you keep track of all
registered copied files and lets you conveniently delete them when they
are not needed.

The following table shows the four possible status values of a file in the
copied-file registration:

Status of Copied-File in Copie
File Registration

Default Copied-File
Location

SmarTeam command used to co
file

Checked out /work Check Out, New Release
Copied file /work Copy File
Copied and referenced file /work Copy File
Viewed file /view View

The default locations mentioned in the table are specified in the System
Configuration Editor under “Miscellaneous Configuration/Directory
Structure”. The key “USER_DIR” is the default location for the Check
Out, Copy File and New Release operations. The key “ReadOnlyDir” is
the default location for the View operation.

The SmSessionUtil object contains the following functions to support
copied-file registration.

Function Description

AddReferenceToFileCopy Adds a reference to copy file maintenance
(TDM_COPY_FILE table).

DeleteAllFilesRegistration Deletes all registered files
DeleteCopiedFilesRegistration Deletes only registered copied (or copied an

referenced) files
DeleteFilesRegistrationForObject Deletes all files registered for an object
DeleteMissingFilesRegistration Deletes registration records when the

corresponding files are not found
DeleteSpecificFileRegistrationForObject Deletes one of the files registered for an obje

DeleteViewedFilesRegistration Deletes all registered viewed files

SmarTeam Object Model Programmer's Guide

176

Common Tasks

Copied-File Registration Task:
Delete a Viewed File for an Object

The following script uses DeleteSpecificFileRegistrationForObject to
delete a viewed file for an object, including the file and the registration
record. It is assigned as a user-defined function, which is executed when
the object is selected on the SmarTeam view.
Function DeleteViewedFileRegistrationForObject(ApplHndl As Long,Sstr As
String,FirstPar As Long,SecondPar As Long,ThirdPar As Long) As Integer

 Dim SmSession As SmApplic.SmSession

 Dim FirstRec As Object

 Dim SecondRec As Object

 Dim ThirdRec As Object

 Dim SessionUtil As SmUtil.SmSessionUtil 'main SmarTeam service object

 Dim WorkObject As SmApplic.ISmObject

 Dim FileName As String 'file name for object

 Dim ViewDirectory As String 'directory

 Set SmSession = SCREXT_ObjectForInterface(ApplHndl)

 Set SessionUtil = SmSession.GetService("SmUtil.SmSessionUtil")

 ' Conver input parameter to COM object

 CONV_RecListToComRecordList FirstPar,FirstRec

 Set WorkObject =
SmSession.ObjectStore.ObjectFromData(FirstRec.GetRecord(0),true)

 WorkObject.Retrieve 'to get file name

 ViewDirectory= "E:\Program Files\View"

 FileName = WorkObject.Data.ValueAsString(NM_CAD_REF_FILE_NAME) 'original
file name, same as copied file name

 MsgBox "Deleting viewed file " + ViewDirectory + " " + FileName + “ for
object “ + Str(WorkObject.ObjectId)

 Chapter 7, SmarTeam Utilities Library

177

 'deletes file and appearance in local file explorer

 SessionUtil.DeleteSpecificFileRegistrationForObject WorkObject, FileName,
ViewDirectory

 DeleteViewedFileRegistrationForObject = Err_None

End Function

Lifecycle Operations

The SmSessionUtil object contains various types of life-cycle
functionality for persistent objects.

The life cycle functionality is divided into two groups:

• Individual Operations

• Group Operations

Individual Operations

These methods perform life-cycle operations on individual objects. The
methods check for user authorization and whether the object is in a valid
state for the operation. If the object is not valid, an error message is
displayed. The table indicates if the method can call scripts.

Function Description Calls scripts: Optionally
Always Never

Approve Release the object O
CheckIn Check in the object O
CheckOut Check out the object O
NewRelease New-release the object O
Obsolete Obsolete the object O
Register Register the object O
UndoCheckOut Undo the previous checkout

operation. Always calls script
A

UndoCheckOutEx Undo the previous checkout
operation. Can set behavior
preference to not call scripts.

O

HandleCheckInApprove Check in or Release object
Objects are not locked.

N

HandleCheckOutNewRelease Check out or New-release ob

Objects are not locked.

N

HandleRegisterFreeze Register or Obsolete object N

SmarTeam Object Model Programmer's Guide

178

Objects are not locked.

Operations for Part Objects

The following operations are provided for Part objects, which are subject
to Part Class Behavior.

Function Description

Promote (operation) Promotes the state of the Part object. The operation is
executed using the method ExecuteOperationOnObjectTree
as described below.

NewPartRevision Returns a new Part Revision for the specified SourceObjec
and attribute values.

Task Record Argument for Individual Life-Cycle Operations

The individual life-cycle operation methods have the following typical
format:
Function CheckIn(
 SourceObject As ISmObject,
 TaskRecord As ISmRecord,
 InvokeScripts As Boolean
) As Integer

Most of the individual life-cycle methods require the ISmRecord argument
TaskRecord – an object that represents attributes for the life-cycle
operation being performed.
• If you want the life-cycle operation to be performed with the default

attribute values, set the TaskRecord to null.
• If you want to specify attribute values for the life-cycle operation,

which are different from the default values, you need to load them into
the TaskRecord object. Figure 14 shows the structure of the
TaskRecord object. For each attribute, you load its header and its
value.

Figure 14 Task Record for a Life-Cycle Operation

Life-Cycle Operation Attributes

Header: Name
Type
Size

Attribute-1
Type-1
Size-1

Attribute-2
Type-2
Size-2

… Attribute-n
Type-n
Size-n

LC Operation Value-1 Value-2 … Value-n

Example

 Chapter 7, SmarTeam Utilities Library

179

For example, the following creates a Task Record for the Check In
operation and specifies the attributes: NM_LFCYC_CHECKIN_MODE
and NM_REVISION. This code operates in the InsteadOf CheckIn hook.
The attribute values are received from SmarTeam in SecondRec and
loaded into the TaskRecord.

' Create task record

 Set TaskRecord=CreateObject("SmRecList.SmRecord")

 ' Add task to task record

 TaskRecord.AddHeader NM_LFCYC_CHECKIN_MODE, 2, sdtSmallInt

 TaskRecord.ValueAsSmallInt(NM_LFCYC_CHECKIN_MODE) =
SecondRec.ValueAsSmallInt(NM_LFCYC_CHECKIN_MODE, 0)

 TaskRecord.AddHeader NM_REVISION, 256, sdtChar

 TaskRecord.ValueAsString(NM_REVISION) =
SecondRec.ValueAsString(NM_REVISION, 0)

Individual Life-Cycle Operation Task:
Check In an Individual Object

The following script uses the Register and the Check In function to check
an object into the vault depending on its state. It is defined as a script
hook function in the InsteadOf hook of the Check In operation. Check In
does all authorization checks.
Function InsteadOfCheckInExample(ApplHndl As Long,Sstr As String,FirstPar As
Long,SecondPar As Long,ThirdPar As Long) As Integer

 Dim SmSession As SmApplic.SmSession

 Dim FirstRec As Object

 Dim SecondRec As Object

 Dim ThirdRec As Object

Dim Operation As SmApplic.ISmOperation 'performed operation object

 Dim Metainfo As SmApplic.SmMetaInfo 'metainfo object for smClasses

 Dim SessionUtil As SmUtil.SmSessionUtil 'main SmarTeam service object

 Dim TaskRecord As Object 'task record for operation

SmarTeam Object Model Programmer's Guide

180

 Dim OperName As String 'operation name

 Dim InvokeScripts As Boolean 'invoke scripts on operation

 Dim Result As Long 'result of operation

 Dim CheckinMode As Integer

 Dim WorkObject As SmApplic.ISmObject

 Dim State As Integer

 Dim NewLookupObj As SmApplic.ISmLookUpObject

 Dim CheckedOutLookupObj As SmApplic.ISmLookUpObject

 Dim StateClass As SmApplic.IsmClass

 Set SmSession = SCREXT_ObjectForInterface(ApplHndl)

 Set Metainfo = SmSession.Metainfo

 ' Convert pointer to COM object SmSession

 CONV_RecListToComRecordList FirstPar,FirstRec

 CONV_RecListToComRecordList SecondPar,SecondRec

 CONV_RecListToComRecordList ThirdPar,ThirdRec

 ' Get service object

 Set SessionUtil = SmSession.GetService("SmUtil.SmSessionUtil")

 ' Invoke scripts on operation execution (before, after, instead)

 InvokeScripts = False

 ' Conver input parameter to COM object

 Set WorkObject =
SmSession.ObjectStore.ObjectFromData(FirstRec.GetRecord(0),true)

 ' Create task record

 Set TaskRecord=CreateObject("SmRecList.SmRecord")

 ' Add task to task record

 TaskRecord.AddHeader NM_LFCYC_CHECKIN_MODE, 2, sdtSmallInt

 TaskRecord.ValueAsSmallInt(NM_LFCYC_CHECKIN_MODE) =
SecondRec.ValueAsSmallInt(NM_LFCYC_CHECKIN_MODE, 0)

 Chapter 7, SmarTeam Utilities Library

181

 TaskRecord.AddHeader NM_REVISION, 256, sdtChar

 ‘Determine object STATE to choose between REGISTER and CHECKIN

 State = FirstRec.ValueAsInteger(NM_STATE, 0)

 Set StateClass = SmSession.MetaInfo.GetInternalSmClass("TDM_STATE")

 Set NewLookupObj =
SmSession.ObjectStore.GetSmLookUpByUniqueName(StateClass.ClassId, "New")

 Set CheckedOutLookupObj =
SmSession.ObjectStore.GetSmLookUpByUniqueName(StateClass.ClassId, "Checked
Out")

 If Not (WorkObject Is Nothing) Then

 If State = NewLookupObj.Id Then 'new - register

 ' new revision

 TaskRecord.ValueAsString(NM_REVISION) = "x"

 ' Get operation object

 OperName = NM_OPER_REGISTRATION

 Set Operation = Metainfo.OperationsForClass(WorkObject.ClassId,
False).ItemByName(OperName)

 ' Perform CheckIn operation on object using SmSessionUtil method

 Result = SessionUtil.Register(WorkObject, TaskRecord,
InvokeScripts)

 ElseIf State = CheckedOutLookupObj.Id Then 'checked out

 ' Set operation name according to default constant

 OperName = NM_OPER_CHECKIN

 Set Operation = Metainfo.OperationsForClass(WorkObject.ClassId,
False).ItemByName(OperName)

 TaskRecord.ValueAsString(NM_REVISION) =
SecondRec.ValueAsString(NM_REVISION, 0)

 Result = SessionUtil.CheckIn(WorkObject, TaskRecord, InvokeScripts)

 End If

 MsgBox "Deleted Object ID " + Str(Result)

SmarTeam Object Model Programmer's Guide

182

 End If

 InsteadOfCheckInExample = Err_None

End Function

Individual Life-Cycle Operation Task:
Check-in an Individual Object with the
NM_LFCYC_CHECKIN_MODE task
The following script is hooked to 'Before Check in' to handle the file name
change when changing task NM_LFCYC_CHECKIN_MODE.

If Sstr <> NM_OPER_CHECKIN Then Exit Function

Dim SmObj As ISmObject, PrevObj As ISmObject

Set SmObj = Session.ObjectStore.ObjectFromData(RecList1.GetRecord(0),
True)

Dim Util As SmSessionUtil

Set Util = Session.GetService("SmUtil.SmSessionUtil")

Set PrevObj = Util.GetObjectByRevision(SmObj, SmObj.Data.Value(NM_PAR_
REVISION))

If SmObj.ObjectId = PrevObj.ObjectId Then Exit Function ' if no previous
revision exists

Dim filename As String, name As String, ext As String, pos As Integer

filename = SmObj.Data.Value(NM_FILE_NAME)

pos = InStr(filename, ".")

name = Left(filename, pos - 1)

ext = Right(filename, Len(filename) - pos)

If RecList2.Value(NM_LFCYC_CHECKIN_MODE, 0) = LFCYC_WorkRev Then

RecList2.Value(NM_LFCYC_CHECKIN_MODE, 0) = LFCYC_PrevRev ' In 'Replace
previous revision' we have to provide the FILE_NAME task of previus
object

RecList2.Value(NM_FILE_NAME, 0) = PrevObj.Data.Value(NM_FILE_NAME)

Else

 Chapter 7, SmarTeam Utilities Library

183

RecList2.Value(NM_LFCYC_CHECKIN_MODE, 0) = LFCYC_WorkRev ' ' In 'Current
revision' we have to build the FILE_NAME task of current object

RecList2.Value(NM_FILE_NAME, 0) = name & "_" & SmObj.ObjectId & "_" &
SmObj.ClassId & "." & ext

End If

Individual Lifecycle Task:
Check Out an Individual Object

The following script uses the HandleCheckOutNewRelease function to
check out an object from the vault. It is defined as a script hook function
in the InsteadOf hook of the Check Out operation.
Function HandleCheckOut(ApplHndl As Long,Sstr As String,FirstPar As
Long,SecondPar As Long,ThirdPar As Long) As Integer

 Dim SmSession As SmApplic.SmSession

 Dim FirstRec As Object

 Dim SecondRec As Object

 Dim ThirdRec As Object

 Dim Operation As SmApplic.ISmOperation 'performed operation object

 Dim NewWorkObject As SmApplic.ISmObject 'new object

 Dim WorkObject As SmApplic.ISmObject 'new object

 Dim Metainfo As SmApplic.SmMetaInfo 'metainfo object for smClasses

 Dim SessionUtil As SmUtil.SmSessionUtil 'main SmarTeam service object

Dim TaskRecord As Object 'tasks record for operation - for SmartScript

 Dim OperName As String 'operation name

 Dim Result As Long 'result of operation - new object id for refresh

 Dim WorkDir As String 'work directory

 Dim RetValue As Integer

 Dim TreatCommonFileObjects As Boolean

 ' Convert pointer to COM object SmSession

SmarTeam Object Model Programmer's Guide

184

 Set SmSession = SCREXT_ObjectForInterface(ApplHndl)

 ' Conver input parameter to COM object

 CONV_RecListToComRecordList FirstPar,FirstRec

 CONV_RecListToComRecordList SecondPar,SecondRec

 CONV_RecListToComRecordList ThirdPar,ThirdRec

 ' Get service object

 Set SessionUtil = SmSession.GetService("SmUtil.SmSessionUtil")

 ' Conver input parameter to COM object

 Set Metainfo = SmSession.Metainfo

 Set WorkObject =
SmSession.ObjectStore.ObjectFromData(FirstRec.GetRecord(0),true)

 ' Create task record

 Set TaskRecord=CreateObject("SmRecList.SmRecord")

 ' Add task to task record

 TaskRecord.AddHeader NM_FILE_NAME, 255, sdtChar

 ' Add task to task record

 TaskRecord.AddHeader NM_DIRECTORY, 255, sdtChar

 ' Set destination file name for task record

 TaskRecord.ValueAsString(NM_FILE_NAME) =
SecondRec.ValueAsString(NM_FILE_NAME, 0)

 ' Set destination work directory

 TaskRecord.ValueAsString(NM_DIRECTORY) =
SecondRec.ValueAsString(NM_DIRECTORY, 0)

 If Not (WorkObject Is Nothing) Then

 ' Get operation object depending on specific SmClass and operation name

 OperName = NM_OPER_CHECKOUT

 Set Operation = Metainfo.OperationsForClass(WorkObject.ClassId,
False).ItemByName(OperName)

 ' Check if operation allowed for object

 Chapter 7, SmarTeam Utilities Library

185

 If SessionUtil.OperationAllowedOnObject(WorkObject, Operation, False)
Then

 ' Perform operation on object

 Set NewWorkObject = SessionUtil.HandleCheckOutNewRelease(WorkObject,
Operation, TaskRecord)

 ' Pass new checked out object to ST through ThirdRec.

 ThirdRec.CopySmRecord NewWorkObject.Data, 0

 CONV_ComRecListToRecordList ThirdRec, ThirdPar

 End If

 End If

 HandleCheckOut = Err_None

End Function

Individual Lifecycle Task:
Creating a new Part Revision

The following script uses the NewPartRevision function to create a new
Part Revision from a source object.
Dim SourceObject As ISmObject

Dim NewPartRevision As ISmObject

Dim PartAttributes As ISmRecord

Set PartAttributes = GetDefaultNewRevisionPartAttributes(SourceObject)

Comment = "New Part Revision"

Set NewPartRevision = NewPartRevision(SourceObject, PartAttributes , Comment
)

Individual Lifecycle Task:
Promoting a Part object

The following script uses the ExecuteOperationOnObjectTree function to
promote a Part object.
'Display old state

SmarTeam Object Model Programmer's Guide

186

MsgBox WorkObject.State

OperName = 'PROMOTE'

Set Operation = Metainfo.OperationsForClass(WorkObject.ClassId,
False).ItemByName(OperName)

Set DefaultTask=Nothing

‘Add effectivity dates to tasks - this is important for Promote operation -
part objects are not File managed

Propagate = False

' Set main operation name

OperName = 'PROMOTE'

Set MainOperation = Metainfo.OperationsForClass(WorkObject.ClassId,
False).ItemByName(OperName)

Set TaskRL=CreateObject("SmRecList.SmRecordList")

TaskRL.AddHeader NM_CLASS_ID, 2, sdtSmallInt

TaskRL.AddHeader NM_OBJECT_ID,SIZE_OBJ_ID,sdtInteger

TaskRL.AddHeader NM_DSC_NOTES, 256, sdtChar

j = 0

TaskRL.ValueAsSmallInt(NM_CLASS_ID,j) = WorkObject.ClassId

TaskRL.ValueAsInteger(NM_OBJECT_ID,j) = WorkObject.ObjectId

TaskRL.ValueAsString(NM_DSC_NOTES,j) = "Promote TaskRL notes"

If Not (WorkObject Is Nothing) Then

 ' Check if operation allowed for object

 If SessionUtil.OperationAllowedOnObject(WorkObject, Operation,False) Then

 ' Perform operation on object using SmSessionUtil method

 SessionUtil.ExecuteOperationOnObjectTree WorkObject, MainOperation,
Propagate, TaskRL, DefaultTask

 End If

End If

'Display new state

 Chapter 7, SmarTeam Utilities Library

187

WorkObject.Retrieve

MsgBox WorkObject.State

Individual Life-Cycle Operation Task:
Replacing Previous Revision While Keeping Check Out

The 'Before Check in' handles the file name, is hooked to the following
script when changing the task- NM_LFCYC_CHECKIN_MODE

If Sstr <> NM_OPER_CHECKIN Then Exit Function

 Dim SmObj As ISmObject, PrevObj As ISmObject

 Set SmObj = Session.ObjectStore.ObjectFromData(RecList1.GetRecord(0), True)

 Dim Util As SmSessionUtil

 Set Util = Session.GetService("SmUtil.SmSessionUtil")

 Set PrevObj = Util.GetObjectByRevision(SmObj,
SmObj.Data.Value(NM_PAR_REVISION))

 If SmObj.ObjectId = PrevObj.ObjectId Then Exit Function ' if no previous
revision exists

 Dim filename As String, name As String, ext As String, pos As Integer

 filename = SmObj.Data.Value(NM_FILE_NAME)

 pos = InStr(filename, ".")

 name = Left(filename, pos - 1)

 ext = Right(filename, Len(filename) - pos)

 If RecList2.Value(NM_LFCYC_CHECKIN_MODE, 0) = LFCYC_WorkRev Then

 RecList2.Value(NM_LFCYC_CHECKIN_MODE, 0) = LFCYC_PrevRev ' In 'Replace
previous revision' we have to provide the FILE_NAME task of previus object

 RecList2.Value(NM_FILE_NAME, 0) = PrevObj.Data.Value(NM_FILE_NAME)

 Else

SmarTeam Object Model Programmer's Guide

188

 RecList2.Value(NM_LFCYC_CHECKIN_MODE, 0) = LFCYC_WorkRev ' ' In 'Current
revision' we have to build the FILE_NAME task of current object

 RecList2.Value(NM_FILE_NAME, 0) = name & "_" & SmObj.ObjectId & "_" &
SmObj.ClassId & "." & ext

 End If

Group Life-Cycle Operations
• These functions perform life-cycle operations on groups of objects.

The user can define advanced preferences for the executing operation.

Function Description Calls scripts:
Optionally Always Never

ExecuteOperationOnObjectTree Perform life-cycle operation
object tree

A

ExecuteOperationOnTrees Perform life-cycle operation
set of object trees

A

GroupUndoCheckOut Undo group check out. Alwa
calls script.

A

GroupUndoCheckOutEx Undo group check out. Can
behavior preference to not c
scripts.

O

Understanding Group Life-Cycle Operations

In order to use the group life-cycle methods effectively, you need to
understand the way that SmarTeam carries out a group lifecycle
operation.

There are two types of group life-cycle operations:

A life-cycle operation performed on a single object tree with a single root
– corresponding to the method ExecuteOperationOnObjectTree.

A life-cycle operation performed on more than one object tree, each with a
single root -- corresponding to the method ExecuteOperationOnTrees.

 Chapter 7, SmarTeam Utilities Library

189

Lifecycle Operation on a Single Object Tree

This section describes how to perform a life-cycle operation on a single
object tree using the function:

Sub ExecuteOperationOnObjectTree (SmObject As ISmObject,
 ‘Leading object SmOperation As ISmOperation , ‘Life-cycle operation
Propagated As Boolean, ‘To propagate operation to children
 ObjectAndTreeTasks As ISmRecordList, ‘Task record list
 DefaultTasks As IsmRecordList ‘Default tasks record list)

A later section describes how to perform life-cycle operations on multiple
trees. The basic concepts are the same for both; they are described in
detail in this section.

To understand this operation, you need to know:

What are the elements of the object tree on which the life-cycle operation
is performed?

Which life-cycle operations are performed?

How to specify task attributes for each life-cycle operation that is
performed

Object Tree – Root Object and Descendents

An object tree is composed of a selected root object or leading object
together with the linked objects and CFOs, of the root object. For
example, an object tree could be an assembly together with all of its parts,
subparts and raw materials, or a folder together with all of its documents.

The root object is selected by the user, for example, on a SmarTeam
View, and the hierarchical descendents are added to the tree automatically
by SmarTeam. SmarTeam retrieves the descendents from the database
using the links to the root object. Note that a descendent will not be
retrieved if the user is not authorized to retrieve it.

SmarTeam Object Model Programmer's Guide

190

Figure 15 Object Tree Record List

Object Attributes

Header: Name
Type Size

Oper_ID
sdtSmallInt 2

Object_ID
sdtObject
Identifier 4

Class_ID
sdtSmallInt 2

… Attribute-n
Type-n
Size-n

RootObject-1 OperID-1 ObjectID-1 ClassID … Value-n-1
ChildObject-2 OperID-2 ObjectID-2 ClassID … Value-n-2
ChildObject-3 OperID-3 ObjectID-3 ClassID … Value-n-3
… … … … … …
ChildObject-m OperID-m ObjectID-m ClassID … Value-n-m

Lifecycle Operations Performed on Objects

One attribute in the object record list is the life-cycle operation OperId for
the object. For the Lifecycle Stage 2 script hook, the value in this column
is the Operation Code for the operation rather than the Operation Id used
elsewhere. A specific main life-cycle operation is specified for the root
object and that operation is always used for the root object. However, the
lifecycle operation that is performed on the descendent elements of the
object tree can be different than the main operation.

 Chapter 7, SmarTeam Utilities Library

191

Table 4 Operation Code Values

Operation Name Operation Code Description

OPCHECKOUT 0 CHECKOUT
OPNEWREL 1 NEWREL
OPCHECKIN 3 CHECKIN
OPAPPROVE 4 APPROVE
OPFREEZE 5 FREEZE
OPCOPYFILE 6 COPYFILE
OPNOOP 7 NOOP
OPNOTALLOWED1 8 NOTALLOWED
OPDUMMY 9 DUMMY
OPSECONDARYCOPY 10 SECONDARYCOPY
OPLOCKCOPY 11 LOCKCOPY
OPUNLOCK 12 UNLOCK

Normally, the same operation is used on all descendent elements even if it
is not the main operation. However, by using a script, you can cause
different operations to be performed on different descendents by changing
the value of the Operation Code for that object.

The operation that is actually performed on the descendent elements of an
object tree depends on the following factors:

The possible operations that can be performed on the descendants is
limited and determined by the selection of main operation.

The main operation can be propagated to the descendents by setting the
NM_PROPAGATED and NM_PROPAGATED_IDENT attributes in the
object record list. For the ExecuteOperationOnObjectTree method these
flags are set by the Propagated parameter. For the
ExecuteOperationOnTrees method you set the flags directly in the object
record list.

If the main operation is not propagated (because the flag is not set), a
SmarTeam default operation is used for the descendents. The default
operation for each main operation is shown in the table below.

The user can intervene in a script hook to change the default operation on
a descendant to one of the other permitted operations.

1 The operation codes from this row until the end of the table are read-only.

SmarTeam Object Model Programmer's Guide

192

The following table shows the operations permitted on the descendants for
each main operation as well as the default operation used on the
descendents in case the main operation is not propagated.

Main Operation Operations Permitted on Descendants Default for no
propagation

CheckIn CheckIn, Registr, Approve No Operation
Approve Approve, Registr, CheckIn No Operation
CheckOut CheckOut, NewRel, CopyFile CopyFile
NewRel NewRel, CheckOut, CopyFile CopyFile
CopyFile CopyFile, SecondaryCopy, LockCopy CopyFile
LockCopy LockCopy, CopyFile, SecondaryCopy
DisableFlowSecurity DisableFlowSecurity, DisableFlowSharing
DisableFlowSharing DisableFlowSharing, DisableFlowSecurity
EnableFlowSecurity EnableFlowSecurity, EnableFlowSharing
EnableFlowSharing EnableFlowSharing, EnableFlowSecurity
Freeze Freeze, NoOp NoOp
NoOp NoOp, NotAllowed, Dummy, ReturnNewObjec

NotAllowed2 NotAllowed, NoOp, Dummy, ReturnNewObjec

Dummy Dummy, NoOp, NotAllowed, ReturnNewObjec

UndoCheckOut UndoCheckOut UndoCheckOut

Specifying Task Attributes for an Operation

In the previous section, we saw that more than one life-cycle operation
can be used on the elements of a tree: the main operation on the root
element and possibly other permitted operations on each of the
descendents.

This section describes how to specify task attributes for each of these
operations. There are three ways you can do this:

You can specify task attributes for an operation performed on a specific
object, where you need to specify the Object Id, the Class Id and the task
attributes.

2 The operations from this row to the end of the table are not available to the
user.

 Chapter 7, SmarTeam Utilities Library

193

You can specify task attributes for a specific operation, where you just
need to specify the OperationId and the task attributes. These attributes
are used any time the operation acts on an object – except for objects
specified by method 1 above.

If you do not specify task attributes in either of the previous ways, the
SmarTeam default task attributes are used for the operation.

1 - Specifying Task Attributes for an Operation Performed on a Specific
Object

This section describes case 1 above. If you know the Object Id, Class Id
and the operation to be performed for a specific object, you can use the
following record lists to specify task attributes for the operation:

Method Record List

ExecuteOperationOnObjectTree ObjectAndTreeTasks
ExecuteOperationOnTrees Tasks

1.1 - Specifying Task Attributes for the Main Operation Performed on the
Root Object

In the simplest case, you can use this record list to specify task attributes
for the main operation performed on the root object.

If you want to specify life-cycle operation attributes for the root object
only, it is sufficient to supply a record list containing a single record of
attributes. You do not need to specify either object or operation
information. This format is identical to the Task Record parameter for the
individual life-cycle attributes described above. The remaining members
of the tree are handled with the default attributes.

Figure 16 Task Record for the Root Object

Life-Cycle Operation Attributes

Header: Name
Type
Size

Attribute-1
Type-1
Size-1

Attribute-2
Type-2
Size-2

… Attribute-n
Type-n
Size-n

LC Operation Value-1 Value-2 … Value-n

1.2 - Specifying Task Attributes for Additional Objects

SmarTeam Object Model Programmer's Guide

194

If you know the Object Id, Class Id and the operation to be used for
specific descendents in the tree, you can use the record list to specify task
attributes for the operation. You build a record containing the object
information and task attributes appropriate to the operation to be
performed on the object.

Figure 17 Task Record List

Object Attributes Operation Task Attributes

Header: Name
Type
Size

Object_ID
10
4

Class_ID
2
2

Attribute-1
Type-1
Size-1

… Attribute-n
Type-n
Size-n

RootObj ObjectID-0 ClassID-0 Value-1-0 … Value-n-0
Child-1 ObjectID-1 ClassID-1 Value-1-1 … Value-n-1
Child-2 ObjectID-2 ClassID-2 Value-1-2 … Value-n-2
Child-3 ObjectID-3 ClassID-3 Value-1-3 … Value-n-3
… … … … … …
Child-m ObjectID-m ClassID-m Value-1-m … Value-n-m

For example, if the main operation is CheckOut and you know that Copy
File will be used on a specific descendant, you can specify attributes for
the Copy File operation for that descendant, such as a destination file
name.

You do not need to specify the Operation Id in the task record list
(however, if you do not specify the Operation Id in the object record list,
you must specify it in the task record list.) The Operation Id is already
located in the object record list together with the object as shown above.
SmarTeam assumes that the task attributes you specify for that object in
the task record list are appropriate attributes for the operation on that
object.

2 - Specifying Task Attributes for a Specific Operation

This section describes case 2 above. SmarTeam prepares a set of default
task attributes for each operation permitted on the descendents (see table
above). For example, when the main operation is CheckOut, default task
attributes are prepared for CheckOut, NewRelease, and CopyFile. When
one of these operations is performed on a descendant, and that
descendant’s object information does not appear in the Task record list,
the default task attributes are used for the operation.

You can replace or add to the default task attributes for one of the
permitted operations using the following record list.

 Chapter 7, SmarTeam Utilities Library

195

Method Record List

ExecuteOperationOnObjectTree DefaultTasks
ExecuteOperationOnTrees DefaultTasks

You create a record containing the Operation Id for a permitted operation
together with the task attributes you want to add or replace as follows.

Figure 18 Default Tasks Record List

Operation Operation Task Attributes
Header: Name
Type
Size

Oper_ID
10
4

Attribute-1
Type-1
Size-1

… Attribute-n
Type-n
Size-n

MainOperation OperID-0 Value-1-0 … Value-n-0
PermittedOperation-1 OperID-1 Value-1-1 … Value-n-1
PermittedOperation-2 OperID-2 Value-1-2 … Value-n-2
PermittedOperation-3 OperID-3 Value-1-3 … Value-n-3

You only need to define a record for each operation that you want to
change from its default tasks. SmarTeam maintains an internal Default
Task record list for all permitted operations. The information you provide
alters that internal record list for the operations you specify.

SmarTeam Object Model Programmer's Guide

196

Operating with Record Lists

The following figure shows how SmarTeam uses the record lists Task
and Default in executing life-cycle operations on a tree. SmarTeam
cycles through the Object Record List. For each object in the Object
Record List, it searches for task information for the object’s operation.
First, it looks for the object’s identifying information in the Task Record
List (like Root object and Child 1 in the figure). If found, SmarTeam uses
the task information from the Task Record List. If not, it finds the object’s
operation in the Default Record List (Child 2 in the figure) and uses the
task information from there.

Root Object / Main Oper

Child 1 / Oper 1

Child 2 / Oper 1

Root Object / Tasks

Child 1 / Tasks

Main Oper / Tasks

Oper 1 / Tasks

Oper 2 / Tasks

Task Record List

Internal Default
Record List

Object Record List
Oper 1 / Tasks

Default Record List

Root Object

Child 1

Oper 1

Note: You should not alter any of the values of Operation Code in the Life-

Cycle Stage 2 hook.

Example

This example checks out the parent assembly, uses Task Record List to
copy a specific child part files to E:\Program Files\View, and uses Default
Record List to copy the other child parts to D:\smartsolutions\examples.

‘ create record for Copy File operation in Default task

OperName = NM_OPER_COPY_FILE

Set Operation = Metainfo.OperationsForClass(WorkObject.ClassId,
False).ItemByName(OperName)

 Chapter 7, SmarTeam Utilities Library

197

Set DefaultTask=CreateObject("SmRecList.SmRecordList")

DefaultTask.AddHeader NM_OPER_ID, 2, sdtSmallInt

DefaultTask.AddHeader NM_DIRECTORY, 256, sdtChar

DefaultTask.ValueAsSmallInt(NM_OPER_ID,0) = Operation.Id

DefaultTask.ValueAsString(NM_DIRECTORY,0) = "D:\smartsolutions\examples"

Propagate = False

' Set main operation name

OperName = NM_OPER_CHECKOUT

Set MainOperation = Metainfo.OperationsForClass(WorkObject.ClassId,
False).ItemByName(OperName)

Set TaskRL=CreateObject("SmRecList.SmRecordList")

TaskRL.AddHeader NM_CLASS_ID, 2, sdtSmallInt

TaskRL.AddHeader NM_OBJECT_ID,SIZE_OBJ_ID,sdtInteger

TaskRL.AddHeader NM_DSC_NOTES, 256, sdtChar

TaskRL.AddHeader NM_REVISION, 256, sdtChar

TaskRL.AddHeader NM_FILE_NAME, 129, sdtChar

TaskRL.AddHeader NM_DIRECTORY, 256, sdtChar

j = 0

TaskRL.ValueAsSmallInt(NM_CLASS_ID,j) = WorkObject.ClassId

TaskRL.ValueAsInteger(NM_OBJECT_ID,j) = WorkObject.ObjectId

TaskRL.ValueAsString(NM_DSC_NOTES,j) = "NEWRELEASE TaskRL notes"

TaskRL.ValueAsString(NM_REVISION,j) = "x2"

j = 1

' Check if children exist for this object

If Count <> 0 Then

 For i = 0 To Count-1

 Set Child = Children.Item(i)

 If Child.ClassId = PartClassId Then

SmarTeam Object Model Programmer's Guide

198

 If Child.Data.ValueAsString("CN_ID") = "SWP-0075" Then

 TaskRL.ValueAsSmallInt(NM_CLASS_ID,j) = Child.ClassId

 TaskRL.ValueAsInteger(NM_OBJECT_ID,j) = Child.ObjectId

 TaskRL.ValueAsString(NM_DSC_NOTES,j) = "Copy File TaskRL
Child Document notes"

 TaskRL.ValueAsString(NM_FILE_NAME,j) = "assem1doc.doc"

 TaskRL.ValueAsString(NM_DIRECTORY,j) = "E:\Program
Files\View"

 TaskRL.ValueAsString(NM_REVISION,j) = "d1"

 j=j+1

 End If

 End If

 Next

End If

If Not (WorkObject Is Nothing) Then

 ' Check if operation allowed for object

 If SessionUtil.OperationAllowedOnObject(WorkObject, Operation,False) Then

 ' Perform operation on object using SmSessionUtil method

 SessionUtil.ExecuteOperationOnObjectTree WorkObject, MainOperation,
Propagate, TaskRL, DefaultTask

 End If

End If

Multiple-Tree Group Life-Cycle Operations

Life-cycle operations can be performed on a group of trees using the
method:
Sub ExecuteOperationOnTrees(
LeadingObjects As ISmObjects, ‘Leading object of each tree
Tasks As ISmRecordList, ‘Task record list
DefaultTasks As IsmRecordList ‘Default task record list

 Chapter 7, SmarTeam Utilities Library

199

In general this method works the same as ExecuteOperationOnObjectTree.
The advantage of using this function over using
ExecuteOperationOnObjectTree is its convenience.

The two record lists Tasks and DefaultTasks work the same as the record
lists ObjectAndTreeTasks and DefaultTasks of the method
ExecuteOperationOnObjectTree. See the explanation in the previous
section.

The parameter LeadingObjects contains the root object or leading object
of each tree on which you want to perform a life-cycle operation. It
replaces the SmObject parameter of the method
ExecuteOperationOnObjectTree.

In addition you need to specify the attributes NM_OPER_ID and
NM_PROPAGATED for each object in LeadingObjects. These replace the
parameters SmOperation and Propagated of the method
ExecuteOperationOnObjectTree.

There are two ways you can specify the attributes NM_OPER_ID and
NM_PROPAGATED for each object:

If you want to specify the same attribute value for all objects, load them
into the DefaultTasks record list. From there they will be loaded into all
the objects in the LeadingObjects parameter.

If you want to specify the same or different values for these parameters,
load them directly into the LeadingObjects parameter and do not load
them into the DefaultTasks record list.

SmarTeam converts LeadingObjects into an ObjectList record list and
adds all descendants of all root object to the record list.

See example below.

Group Life-Cycle Operation Task:
Check In an Object Tree

The following script uses the ExecuteOperationOnObjectTree function to
check in an object tree. It is defined as a user-defined command.
Function CheckInObjectTree(ApplHndl As Long,Sstr As String,FirstPar As
Long,SecondPar As Long,ThirdPar As Long) As Integer

Dim SmSession As SmApplic.SmSession

Dim FirstRec As Object

SmarTeam Object Model Programmer's Guide

200

Dim SecondRec As Object

Dim ThirdRec As Object

Dim Operation As SmApplic.ISmOperation 'performed operation object

Dim Metainfo As SmApplic.SmMetaInfo 'metainfo object for smClasses

Dim SessionUtil As SmUtil.SmSessionUtil 'main SmarTeam service object

Dim DefaultTask As Object 'default task record for operation

Dim TaskRL As Object 'task record list for operation per object

Dim OperName As String 'operation name

Dim Propagate As Boolean 'Propagate operation

Dim WorkObject As SmApplic.ISmObject

Dim QueryDefinition As SmApplic.ISmQueryDefinition

Dim Children As SmApplic.ISmObjects ' collection of objects linked

Dim Child As Object '

Dim FolderClassId As Integer

Dim i As Integer

Dim j As Integer

Dim Count As Integer

' use this script for setting defaults in the LC screen through the
ThirdPar and for setting individual records

' through SecondPar

 MsgBox Sstr + " CheckInObjectTree"

' ExecuteOperationOnObjectTreeExample =
LFCycBrowseOper(ApplHndl,Sstr,FirstPar,SecondPar,ThirdPar)

' MsgBox "After"

' Exit Function

' Convert pointer to COM object SmSession

Set SmSession = SCREXT_ObjectForInterface(ApplHndl)

Set SessionUtil = SmSession.GetService("SmUtil.SmSessionUtil")

Set Metainfo = SmSession.Metainfo

 Chapter 7, SmarTeam Utilities Library

201

FolderClassId = Metainfo.SmClassByName("Folder").ClassId

' Conver input parameter to COM object

CONV_RecListToComRecordList FirstPar,FirstRec

CONV_RecListToComRecordList SecondPar,SecondRec

CONV_RecListToComRecordList ThirdPar,ThirdRec

Set WorkObject =
SmSession.ObjectStore.ObjectFromData(SecondRec.GetRecord(0),true)

' Propagate operation for all of the object's children

' Define query

Set QueryDefinition = Nothing

' Retrieve all object's children

Set Children = WorkObject.RetrieveChildren(QueryDefinition)

Count = Children.Count

Propagate = True

' Set operation name according to default constant

OperName = NM_OPER_CHECKIN

' Get operation object depending on specific SmClass and operation name

Set Operation = Metainfo.OperationsForClass(WorkObject.ClassId,
False).ItemByName(OperName)

'Set TaskRL = Nothing

Set TaskRL=CreateObject("SmRecList.SmRecordList")

TaskRL.AddHeader NM_CLASS_ID, 2, sdtSmallInt 'dont need operid - applies to
leading object

TaskRL.AddHeader NM_OBJECT_ID,SIZE_OBJ_ID,sdtInteger 'dont need operid -
applies to leading object

TaskRL.AddHeader NM_OPER_ID,2, sdtSmallInt 'dont need operid - applies to
leading object

TaskRL.AddHeader NM_LFCYC_CHECKIN_MODE, 2, sdtSmallInt 'dont need operid -
applies to leading object

SmarTeam Object Model Programmer's Guide

202

TaskRL.AddHeader NM_DSC_NOTES, 256, sdtChar

j = 0

TaskRL.ValueAsSmallInt(NM_CLASS_ID,j) = WorkObject.ClassId

TaskRL.ValueAsInteger(NM_OBJECT_ID,j) = WorkObject.ObjectId

TaskRL.ValueAsSmallInt(NM_OPER_ID,j) = Operation.Id

TaskRL.ValueAsSmallInt(NM_LFCYC_CHECKIN_MODE,j) = 2

TaskRL.ValueAsString(NM_DSC_NOTES,j) = "Checkin TaskRL notes"

j = 1

' Check if children exist for this object

If Count <> 0 Then

 For i = 0 To Count-1

 Set Child = Children.Item(i)

 If Child.ClassId = FolderClassId Then

 TaskRL.ValueAsSmallInt(NM_CLASS_ID,j) = Child.ClassId
 TaskRL.ValueAsInteger(NM_OBJECT_ID,j) = Child.ObjectId
 TaskRL.ValueAsSmallInt(NM_OPER_ID,j) = Operation.Id
 TaskRL.ValueAsSmallInt(NM_LFCYC_CHECKIN_MODE,j) = 2 'check in
folder as previous

 TaskRL.ValueAsString(NM_DSC_NOTES,j) = "Checkin TaskRL notes"

 j=j+1

 End If

 Next

End If

' Empty task record - default tasks record for operation

Set DefaultTask=CreateObject("SmRecList.SmRecordList") 'create obj from co-
class of library

DefaultTask.AddHeader NM_OPER_ID, 2, sdtSmallInt 'need operid in
DefaultTask - applies to all objects

DefaultTask.ValueAsSmallInt(NM_OPER_ID,0) = Operation.Id

DefaultTask.AddHeader NM_DSC_NOTES, 256, sdtChar

 Chapter 7, SmarTeam Utilities Library

203

DefaultTask.ValueAsString(NM_DSC_NOTES,0) = "Checkin DefaultTask notes"

'Set DefaultTask = Nothing

If Not (WorkObject Is Nothing) Then

' Check if operation allowed for object

 If SessionUtil.OperationAllowedOnObject(WorkObject, Operation,False) Then

 ' Perform operation on object using SmSessionUtil method

 SessionUtil.ExecuteOperationOnObjectTree WorkObject, Operation,
Propagate, TaskRL, DefaultTask

 End If

End If

CONV_ComRecListToRecordList SecondRec, SecondPar

CheckInObjectTree = Err_None

End Function

Group Life-Cycle Operation Task:
Check Out a Set of Object Trees
Function CheckOutTrees(ApplHndl As Long,Sstr As String,FirstPar As
Long,SecondPar As Long,ThirdPar As Long) As Integer

Dim SmSession As SmApplic.SmSession

Dim FirstRec As Object

Dim SecondRec As Object

Dim ThirdRec As Object

Dim Operation As SmApplic.ISmOperation 'performed operation object

Dim Metainfo As SmApplic.SmMetaInfo 'metainfo object for smClasses

Dim SessionUtil As SmUtil.SmSessionUtil 'main SmarTeam service object

Dim DefaultTask As Object 'default task record list for operation

Dim TaskRL As Object 'task record list for operation per object

Dim LeadingObjects As SmApplic.ISmObjects

SmarTeam Object Model Programmer's Guide

204

Dim OperName As String 'operation name

Dim Propagate As Boolean 'Propagate operation

Dim WorkObject As SmApplic.ISmObject

Dim QueryDefinition As SmApplic.ISmQueryDefinition

Dim Children As SmApplic.ISmObjects ' collection of objects linked

'Dim Child As SmApplic.ISmObject '

Dim Child As Object '

Dim FolderClassId As Integer

Dim LOIndex As Integer

Dim TaskRLIndex As Integer

Dim RecordCount As Integer

Dim ChildrenCount As Integer

Dim k As Integer

Dim Result As Long

' Convert pointer to COM object SmSession

Set SmSession = SCREXT_ObjectForInterface(ApplHndl)

Set SessionUtil = SmSession.GetService("SmUtil.SmSessionUtil")

Set Metainfo = SmSession.Metainfo

FolderClassId = Metainfo.SmClassByName("Folder").ClassId

' Create SmObjects and Rec Lists

Set LeadingObjects = SmSession.ObjectStore.NewObjects

LeadingObjects.Data.AddHeader NM_OPER_ID, 2, sdtSmallInt

LeadingObjects.Data.AddHeader NM_PROPAGATED, 2, sdtSmallInt

'Task Record List

Set TaskRL=CreateObject("SmRecList.SmRecordList")

TaskRL.AddHeader NM_CLASS_ID, 2, sdtSmallInt

TaskRL.AddHeader NM_OBJECT_ID, SIZE_OBJ_ID, sdtInteger

TaskRL.AddHeader NM_OPER_ID,2, sdtSmallInt

 Chapter 7, SmarTeam Utilities Library

205

TaskRL.AddHeader NM_DSC_NOTES, 256, sdtChar

TaskRL.AddHeader NM_REVISION, 256, sdtChar

'Default Record List

'create obj from co-class of library

Set DefaultTask=CreateObject("SmRecList.SmRecordList")

DefaultTask.AddHeader NM_PROPAGATED, 2, sdtSmallInt

DefaultTask.AddHeader NM_DSC_NOTES, 256, sdtChar

' Conver input parameter to COM object

CONV_RecListToComRecordList FirstPar,FirstRec

CONV_RecListToComRecordList SecondPar,SecondRec

CONV_RecListToComRecordList ThirdPar,ThirdRec

OperName = NM_OPER_CHECKOUT

Set Operation = MetaInfo.SmOperationByName(OperName)

' Default tasks record for operation - necessary

DefaultTask.ValueAsSmallInt(NM_PROPAGATED,0) = 1

DefaultTask.ValueAsString(NM_DSC_NOTES,0) = "Checkout DefaultTask notes"

RecordCount = FirstRec.RecordCount

If RecordCount <> 0 Then

 TaskRLIndex = 0

 For LOIndex = 0 To RecordCount-1 'loop over leading objects

 Set WorkObject =
SmSession.ObjectStore.ObjectFromData(FirstRec.GetRecord(LOIndex),true)

 Result = LeadingObjects.Add(WorkObject)

 Set Operation =
Metainfo.OperationsForClass(LeadingObjects.Item(LOIndex).ClassId,
False).ItemByName(OperName)

 LeadingObjects.Data.ValueAsSmallInt(NM_OPER_ID,LOIndex) =
Operation.Id

SmarTeam Object Model Programmer's Guide

206

 'fill task list for leading object

 TaskRL.ValueAsSmallInt(NM_CLASS_ID,TaskRLIndex) = WorkObject.ClassId

 TaskRL.ValueAsInteger(NM_OBJECT_ID,TaskRLIndex) = WorkObject.ObjectId

 TaskRL.ValueAsString(NM_DSC_NOTES,TaskRLIndex) = "Checkout TaskRL
notes"

 TaskRL.ValueAsString(NM_REVISION,TaskRLIndex) = "y"

 TaskRLIndex = TaskRLIndex + 1

 ' Retrieve all object's children

 Set QueryDefinition = Nothing

 Set Children = WorkObject.RetrieveChildren(QueryDefinition)

 ChildrenCount = Children.Count

 ' fill task list for children - same operation as parent

 If ChildrenCount <> 0 Then

 For k = 0 To ChildrenCount-1

 Set Child = Children.Item(k)

 'check in folders with previous revision

 If Child.ClassId = FolderClassId Then

 TaskRL.ValueAsSmallInt(NM_CLASS_ID,TaskRLIndex) =
Child.ClassId

 TaskRL.ValueAsInteger(NM_OBJECT_ID,TaskRLIndex) =
Child.ObjectId

 TaskRL.ValueAsString(NM_DSC_NOTES,TaskRLIndex) =
"Checkout TaskRL notes"

 TaskRL.ValueAsString(NM_REVISION,TaskRLIndex) = "w"

 TaskRLIndex=TaskRLIndex + 1

 End If

 Next

 End If

 Chapter 7, SmarTeam Utilities Library

207

 Next

End If

'Set TaskRL = Nothing

If Not (LeadingObjects Is Nothing) Then

 SessionUtil.ExecuteOperationOnTrees LeadingObjects, TaskRL, DefaultTask

End If

 CheckOutTrees = Err_None

End Function

SmarTeam Object Model Programmer's Guide

208

Lifecycle Authorization Operations

The SmSessionUtil object contains the following functions to check
authorization for life-cycle operations.

Function Description

OperationAllowedForStateAndClass Determines if a life-cycle operation is allowed
a life-cycle state.

OperationAllowedOnObject Determines if a life-cycle operation is allowed
the current life-cycle state of an object.

OperationAllowedOnObjectAndAuthorized Determines if a life-cycle operation is allowed
the current life-cycle state of an object and if
is authorized for the operation and the class.

GetTargetState Get resulting life-cycle state of an object after
undergoing the life-cycle operation.

Common Tasks

See examples of the life-cycle operations above for examples of the use of
these functions.

 Chapter 7, SmarTeam Utilities Library

209

Mask Operations

This section describes the mask operations in the SmUtil object.
Note: The functionality of the mask operations has been incorporated in the

new SmSequence object. It is recommended to use it instead of the
functions listed in this section.

The SmSessionUtil object contains the following methods to handle
masks:

Function Description

MaskRollBack Rollbacks a specified attribute mask to a given value.
MaskTrancate Returns a truncated attribute mask according to modifie

group and value.
RetrieveMaskGroupCount Returns number of groups in a specified attribute mask.

RetrieveNextMask Given a specific class attribute, increments and retrieve
the mask value/

RetrieveNextRevision Increments the revision mask and returns it.
RetrieveStartMaskValue Given specific class attribute, retrieves the mask initial

value.

Miscellaneous Utilities

The SmSessionUtil object contains the following special persistent object
retrieval functionality:

Function Description

CurrentSessionPreference Given section name and preference name, retrieves the
value, for example, the current format of time stamp valu

GetObjectByRevision Given a specific object’s revision number, retrieves the
appropriate persistent object.

GetObjectsByCadIdentity Given FileName, Directory and class, retrieves all
corresponding persistent objects.

TranslateToReturnCode Translates a standard COM error code to one of the
SmarTeam-specific error types.

GetObjectStateIcon Gets the icon for the object state
GetOptionValue Get current session preference.

SmarTeam Object Model Programmer's Guide

210

Common Tasks

Sub Test

 Dim TimeStampFormat as string

 TimeStampFormat = SmSessionUtil. CurrentSessionPreference(“CONVERTION
FORMATS”,” TIMESTAMP”)

 MsgBox “Current TimeStamp format is …”+ TimeStampFormat

End Sub

SmMiscUtil Object

The SmMiscUtil object provides various utility functions. Unlike the
SmSessionUtil object, the functions provided by this object are not
dependent on the working session, database or user.

The object contains the following functionality:
• SmConvert – retrieves an SmConvert object (See SmConvert object)

SmConvert and SmSessionConvert Objects

The SmConvert object provides various conversion functions. The
SmSessionConvert object provides a subset of the functions provided by
SmConvert. Unlike SmConvert, SmSessionConvert performs the
conversion according to the SmarTeam preference formats.

 Chapter 7, SmarTeam Utilities Library

211

SmConvert Object

The object contains functionality for converting string variables into
specific type variables and the opposite.

The conversion functionality divides into two groups:
• Simple conversion functionality , such as:
• IntegerValueAsWideString
• IntegerValueFromWideString
• DoubleValueAsWideString
• DoubleValueFromWideString
• Advanced conversion functionality, in which the user passes a string

format that should be designed as follows:

To convert string variables into specific type variable, the string variable
should be structured according to the input format. For example:

DateVal = DateValueFromWideString(“22/02/98”,Format)

The Format should be “dd/mm/yy” in order for DateVal to contain the
appropriate value.

To convert specific type variables into a string variable, the output would
be structured according to the input format. For example :
StringVal = DateValueAsWideString(DateVal,”dd\mm\yy”)

The variable dateVal is a date variable. If its value is September 1st 1999,
the StringVal would be “01\09\99”
• IsValueEmpty – checks whether specific variable contains an empty

value
• SetEmptyValue – retrieves a specific type empty value.

SmarTeam Object Model Programmer's Guide

212

SmSessionConvert Object

The object contains a subset of the advanced conversion functionality of
SmConvert, but using the session formats and not an input format (as in
SmConvert)

Example

DateVal = DateValueFromWideString(StringVal)

 StringVal must be structured according to the session Date
preference value.
StringVal = DateValueAsWideString(DateVal)

 213

 214

8. SmarTeam - Workflow Library

General Description

The SmarTeam - Workflow library enables you to perform the following
workflow-related functions:
• Flow process functionality:
• Initialize process
• Attach objects to the Flow process
• Attach a flowchart to the Flow process
• Send a Flow process
• Maintain of a list of queues, including the standard Incoming, Sent,

and Deleted queues.
• FlowSession functionality:
• Get Information about the Current User
• Get Information about the User Queues
• Work with the FlowQueue Collection
• FlowQueueItem functionality:
• Get Information about the Workplace Environment
• Get Information about the FlowQueueItem
• Select Objects Linked to the FlowQueueItem
• Get the Status of the FlowQueueItem
• Capture a FlowQueueItem
• Check Task Results
• Delegate Users to the FlowQueueItem
• Add Run-Time Users to a Node.
• ActiveProcess functionality:
• Get Information about the ActiveProcess
• Execute Tasks
• Send the FlowProcess
• Send an E-Mail Ahead
• Work with the FlowSentProcesses Collection

Chapter 8, SmarTeam - Workflow Library

215

Overview of Objects

You can access the Flow Services through the SmFlowStore object, which
is obtained by the mechanism of services accessed through the session.

A SmFlowStore object is obtained as follows:
Dim FlowStore As SmartFlow.FlowStore

Set FlowStore = SmSession.GetService(“SmartFlow.FlowStore”)

This section presents an overview of the main SmarTeam - Workflow
objects including a description of the associated objects that are useful for
the programmer:
• SmFlowProcess Object
• SmFlowChart Object
• SmFlowSession Object
• SmWorkflowView Object
• SmFlowStore Object

SmFlowProcess Object

Description

An SmFlowProcess object represents a planned sequence of work
activities on a selected set of SmarTeam objects. The SmFlowProcess
includes an initial state where work on the objects begins, a final state
where work on the objects is finished, and intermediate “workplaces”
where users can perform tasks on the objects of the FlowProcess.

The possible sequences that the FlowProcess can take between workplaces
must conform to a predetermined plan – represented by paths on a
Flowchart (described below). The actual routing of a particular
FlowProcess between workplaces on the Flowchart is determined by the
decisions of the users at each workplace at the time the FlowProcess
executes.

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 216

FlowProcess Classes

Several different classes of FlowProcess objects can be defined in the
SmarTeam - Workflow system. The classes correspond to types of work
processes normally encountered in industry, such as ECP, ECO, and
Engineering Release processes.

Flowchart Object

The SmFlowchart object represents the plan of the SmFlowProcess. It
includes all possible workplaces (nodes) and routing paths (connectors) a
FlowProcess can visit. As mentioned, an actual FlowProcess will take one
specific path through the Flowchart, depending on the responses of the
users. See page 120 for more information about the SmFlowchart object.

Selecting a Flowchart for a FlowProcess

Each FlowProcess class can have a set of Flowcharts assigned to it. One
Flowchart can be designated as the default Flowchart for that class. When
a FlowProcess object is created from a FlowProcess class for a particular
application, an appropriate Flowchart is selected from the set of
Flowcharts assigned to the class and is attached to the FlowProcess object.

The SmProcessAssignment object supports the assignments of
Flowcharts to FlowProcess classes. One SmProcessAssignment object is
defined for each FlowProcess class and represents the collection of
Flowchart objects that are assigned to that FlowProcess class. The
SmProcessAssignment object provides methods to add and remove
Flowcharts object assignments and access the default Flowchart. See page
104 for more information about the FlowProcess object.

The SmProcessAssignments object is the collection of
SmProcessAssignment objects for all FlowProcess classes.

Process History

The SmProcessHistory object is a record of the work activity on a
FlowProcess. Each time the FlowProcess passes a Node a separate
ProcessHistoryItem entry is recorded. The information includes the
Executors and the Responses at the Node.

Chapter 8, SmarTeam - Workflow Library

217

Note: If you log out of a service and plan to log back into a service,
before logging out, you must close the service as follows:
Session.Services.Close("SmartFlow.SmFlowStore");

Object Diagram

The object diagram of SmFlowProcess is shown below:

SmFlowProcess

LinkedObjects

ProcessHistory

Status

CreationDate

StartDate

TimeLimit

GetWorkingNodes

ObjectsData

FlowChart

Figure 8-1 FlowProcess Object Diagram

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 218

Obtaining an Attached Object

Use the following to attach an object.
Function BeforeAttachObject(FlowProcess As Object,

SmObject As Object,

ProcessContents As Object) As Integer

Obtaining the SmFlowProcess Object

1. For a stand-alone application:
Set SmEngine = CreateObject("SmApplic.SmEngine")

SmEngine.Init "SmTeam32"

Set SmSession = SmEngine.CreateSession("Test Session", "Smart32")

Set FlowStore = SmSession.GetService("SmartFlow.SmFlowStore")

ProcessClassId = SmSession.MetaInfo.SmClassByName("General Process").ClassId

Set FlowProcess = FlowStore.InitiateNewProcess(ProcessClassId)

2. In an event or task-driven script use the FlowProcess or ActiveProcess
parameters.

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a FlowProcess.

FlowProcess Task:
Getting the FlowProcess Attributes

Field Name Description

TDM_DESCRIPTION Description of FlowProcess
TDM_END_TIME Time of the process termination
TDM_STATUS Reference to “TDM_SF_PROCESS_STATUS”
TDM_IMPORTANCE Reference to " TDM_IMPORTANCE”
TDM_TIME_LIMIT Time limit of process
TDM_SECONDARY_LNK 0 – do not create secondary links automatically,

1 – create automatically

Chapter 8, SmarTeam - Workflow Library

219

FlowProcess Task:
Getting the FlowProcess Execution Status

A FlowProcess can be in one of four execution states. The following table
describes the states and the software constant used for each state.

State Description Software Constant

Initiated The FlowProcess has been initiated and has not
been sent from the Start Node

fpsInitiated

Running The FlowProcess has been sent from the Start N
and has not reached the End Node

fpsRun

Ended The FlowProcess has reached the End Node fpsEnded
Terminated The FlowProcess has been terminated by a user

is in the CompletedItems queue.
fpsTerminated

Use the Status property to get the execution status of a FlowProcess.

Example

If FlowProcess.Status = fpsInitiated Then

 MsgBox (“Process is in Initiated state”)

End If

FlowProcess Task:
Getting the Time Limits of the FlowProcess

The CreationDate property gives the time when the process was created

The StartDate property gives the time when the initiator sent the process
from the Start Node. If the initiator did not send the process yet, its value
is null.

The EndDate property gives the time the process reached the End Node.
If the process has not yet reached the End Node, its value is null.

The DueDate gives the time the process is due to be completed. If the
process has not yet been sent by the initiator, its value is null.

Example

If Date > FlowProcess.DueDate Then

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 220

 MsgBox (“Process is overdue”)

End If

The TimeLimit is the elapsed time during which the process should be
completed. In case the FlowProcess is finished in time, the EndDate will
be equal or less than StartDate plus TimeLimit.

FlowProcess Task:
Getting the Execution Stage of the FlowProcess

Use the GetWorkingNodes to get a collection of all Nodes whose Queue
contains the current FlowProcess. This tells you at which stage of
workflow the process is located.

Example

Dim FlowProcess As SmartFlow.SmFlowProcess

MsgBox "Number of working nodes for process: " &
CStr(FlowProcess.GetWorkingNodes.Count)

FlowProcess Task:
Getting Objects Linked to the FlowProcess

Use the LinkedObjects property to get a MultiCompositeObject object
that represents the objects that are linked to the current FlowProcess. The
links themselves are in the object. Each member of the collection is a pair
of elements: the first element is the link between object and FlowProcess
and the second element is the object itself.

The ObjectsData property gets the collection of objects without the links.
ObjectData has the type IsmMultiObjects. IsmMultiObjects is a
collection of collections: that is, a collection whose members are
collections. The member collections are collections of objects from
various super classes that are attached to the current FlowProcess, such as
the Documents, Items and Users collections.

Example

‘ An Active Process was obtained either as a parameter in a SmarTeam script
or after capturing a FlowProcess.

‘ get all objects linked to Active Process without their links

Chapter 8, SmarTeam - Workflow Library

221

Set LinkedObjects = ActiveProcess.FlowProcess.ObjectsData

‘ LinkedObjects has type IsmMultiObjects:

‘ including super classes Documents, Items, Users

For I = 0 To LinkedObjects.Count – 1

 ‘ create object for one superclass

 Set SubLinkedObjects = LinkedObjects(I)

 ‘ loop on that superclass collection ;lkj lkj lkj l;kj ;lkj lkj ;lkj

 For J = 0 To SubLinkedObjects.Count - 1

. . .

FlowProcess Task: Getting Flowchart Properties

You get the properties of the FlowChart (or the FlowChart template for an
initiated FlowProcess) attached to the current FlowProcess using the
FlowChart property.

FlowProcess Task: Creating a FlowProcess Object

When you create a new FlowProcess object, you need to attach an
appropriate Flowchart. Each type of FlowProcess has Flowchart types that
are suited to it including a default Flowchart.

To attach the default Flowchart to the newly created FlowProcess object,
use AttachDefaultFlowchart. To attach a specified Flowchart, use
AttachFlowchart.

To send the FlowProcess from the Start Node, use the InitiateProcess
method.

Example

Set Node = FlowProcess.Flowchart.StartNode

‘ create a response object from the response of the first out connector

Set Response = Node.OutConnectors.Item(0).Response

‘ send FlowProcess from start node on all connectors with that Response

Comment = "Auto sent process"

FlowProcess.InitiateProcess FlowSession, Response, Comment, Date

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 222

Changing Flowchart Properties at the Start Node

When you create a new FlowProcess object and attach a Flowchart to it,
initially only a skeleton Flowchart is attached and a pointer is established
to the Flowchart template. The full Flowchart is copied from the template
only when the FlowProcess is sent from the Start Node.

Therefore, if you want to make changes to a new FlowProcess object at
the Start Node that affect the attached Flowchart, you need to use the
FullFlowChartCopy method first to copy the entire Flowchart from its
template. An example of a change that affects the Flowchart is adding new
users to subsequent nodes of the Flowchart.

If you do not make such changes you do not need to perform the
FullFlowChartCopy method.

FlowProcess Task: Deleting a FlowProcess Object

A User can delete a FlowProcess only while it is in the Initiated status,
that is, at time of initialization at the Start Node. Otherwise, only a
Supervisor or Database Administrator can delete it.

FlowProcess Task: Linking Objects to a FlowProcess

You can use the LinkObject method to attach an object, for example, a
Document, to a FlowProcess. The method creates a link object belonging
to Complex Link class “TDM_SF_PROCESS_CONTENTS”.

Example

Set FlowProcess = FlowStore.InitiateNewProcess(ProcessClassId)

‘ establish a complex link between ObjectToSend and the FlowProcess

Set LinkAttributes = Nothing

Set AttachedObject = FlowProcess.LinkObject(ObjectToSend, LinkAttributes)

Chapter 8, SmarTeam - Workflow Library

223

Primary and Secondary Links between FlowProcess and
Object

Links between an object and a FlowProcess can be Primary links or
Secondary links. Primary links are the links that the user creates between
an object and the FlowProcess, for example, using the LinkObject
method. In the event that the object has children, dependencies or CFO
objects (for example, an assembly), SmarTeam - Workflow can create
additional—Secondary—links between them and the FlowProcess.

These Secondary links are created automatically when the user creates a
Primary link to the object if the following attributes have been set to
TRUE in the Flowchart object:

Secondary Links to: Property
Children of Primary-linked object ShouldLinkChildren
Dependencies of Primary-linked object ShouldLinkDependencies
CFOs (Common File Object) of Primary-linked objeShouldLinkMOOFs

You can specify directly that an object be linked to a process by a
secondary link using the LinkObjectAsSecondary method. An object
linked with a secondary link does not appear on the process view at the
first level.

Example

‘ A Document represents an ISmObject

Set LinkAttributes = Nothing

‘ secondary link document to process; doesn’t appear on process view

Set Link = FlowProcess.LinkObjectAsSecondary(Document,LinkAttributes)

Use the UnlinkObject method to detach an object from a FlowProcess

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 224

FlowProcess Task:
Controlling Sharing of Objects between Processes

The ShareObjects property of a FlowProcess controls whether an object
attached to the FlowProcess can be attached to a second FlowProcess. If
the ShareObjects property of a FlowProcess is set to osLimiting, once an
object has been attached to that FlowProcess, it cannot be linked to a
second FlowProcess, even if the ShareObjects property of the second
FlowProcess is set to osNotLimiting.

FlowProcess Task: Controlling the Security Level

The SecurityLevel property of a FlowProcess controls which users can
perform operations on objects attached to the FlowProcess.

If the SecurityLevel property is set to slvHighSecurity, only users that are
permitted to act through the FlowProcess can execute operations on
objects attached to the FlowProcess. For example, if a Document were
attached to a FlowProcess, SmarTeam users not permitted to work
through the FlowProcess would not be able to work on that Document at
all, even through other SmarTeam windows.

If the SecurityLevel property is set to slvAttachedToFlowProcess, any
SmarTeam user can perform operations on objects attached to the current
FlowProcess, subject to the authorization mechanism of SmarTeam –
Editor.
Example

If FlowProcess.SecurityLevel = slvHighSecurity Then

 MsgBox "High security flow process"

End If

ProcessHistory Task:
Working with the ProcessHistory Collection

The ProcessHistory collection contains a set of ProcessHistoryItem
objects. It represents the entire history of a FlowProcess, broken down
into states of the FlowProcess at each Send-from-Node event.

Use the Item property to get a ProcessHistoryItem from the collection

Example

Chapter 8, SmarTeam - Workflow Library

225

‘ Retrieves the first record from the Process History.

Set ProcessHistoryItem = FlowProcess.ProcessHistory.Item(0)

Use the Refresh method to refresh the ProcessHistory collection.

ProcessHistoryItem Task:
Get the ProcessHistoryItem Information

SmProcessHistoryItem is an element of the ProcessHistory collection.

The ProcessHistoryItem contains information about the FlowProcess state
at a single Send-from-Node event. Thus the ProcessHistoryItem refers to a
specific Node, Executor, and Response.

Note that if the FlowProcess is sent again from the same Node, even with
the same Executor and Response, it is considered to be a different Send-
from-Node event and so a new ProcessHistoryItem is generated.

A single ProcessHistoryItem includes the elements:
• The Node from which the FlowProcess was sent
• The ProcessHistoryInformation at the Node for a Send-from-Node

event

Use the Node property to get the Node.

Use the History property to get the ProcessHistoryInformation from the
ProcessHistoryItem.
Set ProcessHistoryInformation = ProcessHistoryItem.History

ProcessHistoryInformation Task:
Get Historical Information about this FlowProcess

This section contains methods and properties to extract historical
information about the state of the FlowProcess at a specific Send-from-
Node event.

Use the ReceiveTime property to get the time the FlowProcess was
received at this Node.

Use the ActualProcessingTime property to get the elapsed time from
when the User captured the FlowProcess until it was sent from this Node.

Use the StartTime property to get the time when the user captured the
FlowProcess.

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 226

Use the EndTime property to get time the FlowProcess was sent from this
node.

The Importance property of the ProcessHistoryInformation object is
defined as the maximum value of the Importance property of the
FlowProcess itself and the Importance property of the FlowProcess at this
Node.

Use the Response property to get the Response on which the FlowProcess
was sent from the Node.

Use the Comment property to get the comment that was entered when the
FlowProcess was sent from this Node.

Use the PastDueFlowchart property to determine if the FlowProcess was
sent from this Node after the FlowProcess time limit was exceeded.

Use the Executor property to get the User that worked on the FlowProcess
for this Node.

Note that if another User worked on the same FlowProcess at the same
Node, that information would be stored in a separate ProcessHistoryItem.

Example

Dim History As SmartFlow.SmProcessHistoryInformation

Dim FlowStore As SmartFlow.SmFlowStore

Dim FlowQueueItem As SmartFlow.SmFlowQueueItem

Set FlowStore = SmSession.GetService("SmartFlow.SmFlowStore")

Set FlowQueueItem = FlowStore.FlowSession.InboxProcesses(0)

'Get first history information record

Set History = FlowQueueItem.FlowProcess.ProcessHistory.Item(0).History

' Get the UserLogin of the user that started this process

UserLogin = History.Executor.Data.ValueAsString("LOGIN")

StartDate = CStr(History.StartTime)

Chapter 8, SmarTeam - Workflow Library

227

MsgBox "The process initialized by user " & UserLogin & " at: " & StartDate

SmFlowChart Object

Description

The SmFlowchart object represents a work plan for a FlowProcess. A
Flowchart is composed of nodes and connectors. A node can be
considered as a “workplace” where users can perform tasks on the objects
linked to the FlowProcess. The connectors between the nodes define the
possible sequencing or routing of the FlowProcess between the
workplaces – the order in which work can be performed on the
FlowProcess.

In general, a Flowchart can be designed with several connectors exiting a
node in order to take into account all possible ways the user at the node
may decide to dispose of the FlowProcess. Each connector corresponds to
one possible response of the user at the node. When the FlowProcess is
executed, its actual path through the Flowchart is determined by the
responses of the users at each node.

The Flowchart specifies:
• The users that can work on the FlowProcess at each node
• The tasks the users can perform at each node
• The connector paths that the FlowProcess can take through the nodes,

depending on the response of the user.

SmFlowchart Object

SmFlowchart properties provide references to the Flowchart components
as follows:
• FlowProcess –the FlowProcess to which the Flowchart is attached
• Nodes – the set of Nodes on the Flowchart
• Connectors – the set of Connectors on the Flowchart
• Supervisor – the Supervisor, a user with special privileges on the

Flowchart

The SmFlowCharts object represents a collection of SmFlowChart
objects.

SmNode Object

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 228

The SmNode object represents an individual node of the Flowchart. The
SmNode properties provide access to the Node components as follows:

• Tasks – the tasks to be performed on the Node. An individual task at
a node is represented by a SmTask object. The SmTask object
TaskType property specifies whether the task is manual, operation-
based, or runs a script.

• Executors – the SmarTeam users defined as users for the node. An
individual user at a Node is represented by the SmExecutor composite
object consisting of a link and a SmarTeam User object. The link
associates the Node with the User object, designating that SmarTeam
User to be an Executor of the Node. The User object contains the data
about the user.

• InConnectors, OutConnectors – the incoming and outgoing
connectors from this Node

SmConnector Object

The SmConnector object represents an individual connector.
SmConnector properties provide references to the Connector components
as follows:
• Response – the response of the Connector. A response is represented

by the SmResponse object. The SmResponse object has a
ResponseType property indicating whether the type of the response is
Reject or Accept.

• FromNode, ToNode – the source and destination Nodes of the
Connector.

The SmConnectors object represents a collection of SmConnector
objects.

Object Diagram

The object diagram of SmFlowChart is shown below:

Chapter 8, SmarTeam - Workflow Library

229

SmFlowChart

Connectors

Nodes

Node

Users (Executors)

Tasks

FlowEvents

Responses

Connector

ToNode

Response

FromNode

Figure 8-2 FlowChart Object Diagram

 230

Obtaining the SmFlowChart Objects

A Flowchart object is obtained from a FlowProcess object:
ProcessClassId = SmSession.MetaInfo.SmClassByName("General Process").ClassId

Set FlowProcess = FlowStore.InitiateNewProcess(ProcessClassId)

Set Flowchart = FlowProcess.Flowchart

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a Flowchart and its components.

FlowChart Task:
Getting Information about the Flowchart.

Use the Nodes property to get a collection of all Nodes in flowchart.
Set Nodes = Flowchart.Nodes

Use the Connectors property to get a collection of all connectors in
flowchart.

Use the StartNode property to reference the Start node

Example.

‘ obtain node object representing Start Node

 Set Node = FlowProcess.Flowchart.StartNode

Use the EndNode property to reference the End node.

Chapter 8, SmarTeam - Workflow Library

231

Use the FlowchartType property to get the Flowchart type. The Flowchart
types are described in the following table.

Flowchart Type Description Software Constan

Template The Flowchart is an original template as created in
Flow Designer

ftTemplate

Library Collection of pre-designed Nodes stored in Library
(not relevant for writing script)

ftLibrary

Work Copy Copy of original template for attaching to FlowProc ftWorkCopy

Dummy The Flowchart is a dummy Flowchart, which is use
for a FlowProcess in its Initiated state.

ftDummy

Use the Supervisor property to get the User object that is defined as the
Supervisor. You can use Supervisor property to designate a Supervisor in
the Initiated state of the FlowProcess.

For more information about the properties: ShareObjects,
ShouldLinkChildren, ShouldLinkDependencies, ShouldLinkMOOFs,
SecurityLevel see the corresponding properties in the FlowProcess
interface.

Nodes Task: Get Individual Nodes from a Collection

The following example shows how to get an individual Node from a Nodes
collection.

Example

Set Node = Nodes.Item(0) ‘ get the first node

Node Task: Getting Information about the Node.

This section describes methods and properties you use when you work with
a Node object. In real time, the Node object occurs in the context of a
Flowchart attached to a specific FlowProcess. Thus, the Node can have
Users and Tasks associated with it through its FlowProcess.

Use the Tasks property to get an ISmTasks collection that represents the
tasks defined at this Node.

Use the Users property to get an ISmExecutors collection that represents
the possible Executors at this Node.
Set Users = FromNodes(i).Users.GetUsers

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 232

Use the InConnectors property to get SmConnectors collection that
represents the entering connectors.

Use the OutConnectors property to get an SmConnectors collection that
represents the exiting connectors.

Example

‘ create a response object from the response of the first out connector

Set Response = Node.OutConnectors.Item(0).Response

Use the GetPreviousNodesSentToCurrent method to get an SmNodes
collection of the previous Nodes that sent a FlowProcess associated with
this node’s Flowchart to the current Node.

Use the GetFollowingNodesEmailList method to get a semicolon-
delimited SmStrings list of e-mail addresses of all users in the following
Nodes.

Use the NodeType property to get the Node type. The Node types are
described in the following table:

 233

Node Type Description Software Constant

Start The Node is the Start Node ntStart
End The Node is the End Node ntEnd
User Defined The Node is a user-defined node, defined in

Flow Designer
ntUserDefined

Automated not implemented ntAutomated
Information Displays Flowchart title or other text. Not for

receiving FlowProcess
ntInformation

Use the GetNotRejectResponses method to get an SmResponses collection
that represents all responses, defined on connectors that exit this Node, that
are not of type Reject.

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 234

Example

ProcessClassId = SmSession.MetaInfo.SmClassByName
("General Process").ClassId

‘ create and initiate new process, attach default Flowchart

Set Process = FlowStore.InitiateNewProcess(ProcessClassId)

Set Node = Process.Flowchart.StartNode

‘ select the first non-reject response for start node

Set ProcessResponse = Node.GetNotRejectResponses(0)

Use the GetRejectResponses method to get an SmResponses collection
that represents all responses, defined on connectors that exit this Node, that
are of type Reject.

Use the FlowStatus property to get the flow status at the Node. The flow
status is the status of the Node relative to the FlowProcess. The following
table describes the flow status:

FlowStatus Description Software Constant

Pending The FlowProcess arrived at the Node but the Users
have taken no action.

nsPending

Completed The FlowProcess has been sent from this Node nsCompleted
Locked This Node is locked. No User can perform actions. T

can occur if a User rejected the FlowProcess to any
Node preceding this Node.

nsLocked

Captured The FlowProcess has been captured at this Node. NsCaptured
Inactive The FlowProcess has not reached this Node, or can

never reach it.
nsInactive

Chapter 8, SmarTeam - Workflow Library

235

Use the Policy property to get the flow policy at this Node. The flow policy
specifies the way in which users are allowed to capture a FlowProcess at
this Node, as described in the following table.

Policy Description Software Constant

And More than one User can capture the FlowProcess at
Node and all Users are required to perform the tasks
defined at this Node.

fpAnd

Or Only one User can capture a FlowProcess at this No
and that User is required to perform the tasks define
this Node.

fpOr

Use the Delegate property to check whether there is a Delegator defined in
this node.

Note: You can use this property as a read property only

Use the Value property to get the value of a Node attribute. The following
table shows some of the properties you can get only through the Value
property.

Field Name Description

TDM_IS_TEMPLATE Whether task/flow definition is template or actual instance
TDM_IMPORTANCE Reference to “TDM_IMPORTANCE”
TDM_TIME_LIMIT Time limitation of task or linked process
TDM_PROCESS_ID Reference to “TDM_SF_PROCESS”. Used only in the copies

the process. In the templates it must be NULL_OBJ_ID
TDM_OBLIG _NODE Node is obligatory
TDM_LOOP_COUNT Count of times node has been reached

Node Task: Saving the Node.

The Save method saves the Node, together with its Users and Tasks, to the
Database.

Node Task: Changing Users

Use the ReplaceExecutor method to replace an existing Executor with
another one at this Node.

Use the RuntimeUsers property to check if an Executor at an immediately
previous Node or at the Start Node can specify an Executor at this Node.

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 236

Example

Dim FlowStore As SmartFlow.SmFlowStore

Dim FlowQueueItem As SmartFlow.SmFlowQueueItem

Dim DestinationNode As SmartFlow.SmNode

Dim Connector As SmartFlow.SmConnector

Set FlowStore = SmSession.GetService("SmartFlow.SmFlowStore")

Set FlowQueueItem = FlowStore.FlowSession.InboxProcesses(0)

Set Connector = FlowQueueItem.Node.OutConnectors.ItemByName("Forward to
Designer")

Set DestinationNode = Connector.ToNode

‘ check if new users can be added to the Destination Node

If DestinationNode.RuntimeUsers Then

‘ loop over selected users

 For I = 0 To Users.Count - 1

 ‘ add selected users to destination node

 FlowQueueItem.AddRunTimeUsers DestinationNode, Users(0)

 Next

 End If

Use the CanChangeUsers method to check if the User of a specified
ActiveProcess can select Executors at this Node at runtime. The method
checks if the Node of the ActiveProcess immediately precedes the current
Node or if it is the Start Node.

Use the CanTryChangeUsers method to check if the User of a specified
FlowQueueItem can select Executors at this Node at runtime. The method
checks if the Node of the FlowQueueItem immediately precedes the current
Node or it is the Start Node. Note that Executors can be specified only if
the FlowQueueItem is successfully captured.

Chapter 8, SmarTeam - Workflow Library

237

SmTask Task:
Getting Information about the Task.

This section describes methods and properties you use when you work with
a Task object. In real time, the Task object occurs in the context of a
specific Node of a Flowchart attached to a specific FlowProcess.

Example

Dim ActiveProcess As SmartFlow.SmActiveProcess

'Show script name for specific process task

MsgBox ActiveProcess.CurrentNode.Tasks.Item(0).ScriptName

Use the Value property to get the value of a Task attribute. The following
table contains some of the Task attributes that can be obtained only through
the Value property.

Field Name Description

TDM_PROCESS_ID Reference to FlowProcess. Used only in the actual copies of th
process; in the definitions it must be NULL_OBJ_ID

TDM_PER_OBJECT Whether task should be performed on the process objects or on
process itself

TDM _AUTOMATED Reference to internal Lookup TDM_SF_TASK_AUTOMATED

Use the TaskType property to get the task type. The task type specifies
how the task is to be performed, as described in the following table:

FlowStatus Description Software Constan

Manual The task is performed manually. ttManual
Operation The task activates a pre-selected lifecycle operation. ttOperation
Script The task activates a script. ttScript

If the task is an Operation task, use the OperationID property to get its
operation ID.

If the task is a Script task, use the ScriptName property to get the script
name of the script that is activated by the task.

Use the Required property to check if the task must be performed in order
that the associated FlowProcess continue.

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 238

SmTask Task: Executing a Task

Use the Execute method to execute the current Task. The objects on which
the Task operates depends on the setting of PerObject, as follows:

• If PerObject was selected, then the Task is executed for all objects that
were selected by the FlowQueueItem SelectedObjects property.

• If PerObject was not selected, the Task is executed on all objects
attached to the FlowProcess. Results are returned as
IsmOperationResults and are stored in the database.

See the ActiveProcess Task: Executing Tasks section for an alternate way
of executing tasks.

Example

'This example uses methods and properties:

' CanCapture, TaskResultStatus, Execute, PendingStatus and others

Sub Main()

 Dim Smart As SmarTeam.SmApplication

 Dim SmEngine As SmApplic.SmEngine

 Dim Session As SmApplic.SmSession

 Set Smart = GetObject(, "SmarTeam.SmApplication")

 Set SmEngine = Smart.Engine

 Set Session = SmEngine.Sessions(0)

 Test Session

End Sub

Sub Test(SmSession As SmApplic.SmSession)

 Dim FlowStore As SmartFlow.SmFlowStore

 Dim FlowSession As SmartFlow.SmFlowSession

 Dim FlowQueueItem As SmartFlow.SmFlowQueueItem

Chapter 8, SmarTeam - Workflow Library

239

 Dim ActiveProcess As SmartFlow.SmActiveProcess

 Dim Task As SmartFlow.SmTask

 Dim OperationResults As SmApplic.SmOperationResults

 ' Get FlowStore object - Sm Flow Service

 Set FlowStore = SmSession.GetService("SmartFlow.SmFlowStore")

 ' Get current user flow session

 Set FlowSession = FlowStore.FlowSession

 ' Check if exist process in Inbox of smartbox

 If FlowSession.InboxProcesses.Count > 0 Then

 ' Retrieve first process from user inbox

 Set FlowQueueItem = FlowSession.InboxProcesses.Item(0)

 ' Check if process has not performed tasks

 If FlowQueueItem.AppropriateTasks.Count > 0 Then

 ' Check if process can be captured

 If FlowQueueItem.CanCapture Or FlowQueueItem.PendingStatus =
fisCapture Then

 ' Capture process

 FlowQueueItem.Capture

 ' Get active process

 Set ActiveProcess = FlowQueueItem.ActiveProcess

 For I = 0 To FlowQueueItem.AppropriateTasks.Count - 1

 ' Get task to execute

 MsgBox I

 Set Task = FlowQueueItem.AppropriateTasks.Item(I)

 ' Check if task not performed yet

 If FlowQueueItem.TaskResultStatus(Task) = rsOperNotPerformed
Then

 ' Perform task and get results per objects

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 240

 Set OperationResults = Task.Execute(ActiveProcess)

 End If

 Next

 End If

 End If

 End If

End Sub

Use the GetObjectResultStatus method to get the result status for a task
performed by a specified Executor on a specified object. The Executor
input parameter is provided for the case that the AND policy for the task is
in effect and more than one Executor can perform the task on the same
specified object.

Chapter 8, SmarTeam - Workflow Library

241

The results can be:
Result Status Description Software Constant

Task not performed The task was not performed. rsOperNotPerformed
Task performed
successfully

The task succeeded. rsOperExecutedSuccessfully

Task failed The task failed. rsOperExecutedNotSuccessfully
Not appropriate unused rsOperNotAppropriate

Connector Task:
Getting Information about the Connector

Use the ToNode property to get the destination Node of the Connector.

Use the FromNode property to get the source Node of the Connector.

Use the Response property to get the Response of the Connector

Example

‘ create a response object from the response of the first out connector

Set Response = Node.OutConnectors.Item(0).Response

Use the Value property to get an attribute of the Connector. The following
table contains some of the Connector attributes that can be obtained only
through the Value property.

Field Name Description

TDM_FLOWCHART_ID Reference to “TDM_SF_FLOWCHART”
TDM_PROCESS_ID Reference to “TDM_SF_PROCESS”. Used only in the actual copie

the process; in the definitions it must be NULL_OBJ_ID

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 242

Response Task:
Getting Information about the Response

Use the Name property to get the name of the Response.
Note: Use for read only.

Use the ResponseType property to get the Response Type of the current
Response.

Note: Use for read only.

Response Type Description Software Constant

Accept The Response has type Accept. rtAccept
AcceptConsult (not
currently in use)

The Response has type Accept Consult rtAcceptConsult

Reject The Response has type Reject rtReject

Example

‘ Find the first response of type "accept"

Set Response = Nothing

Set Responses = FlowStore.Responses

For i = 0 To Responses.Count-1

 If (Responses(i).ResponseType = rtAccept) Then

 Set Response = Responses(i)

 Exit For

 End If

Next i

Use the GetPredefinedId method to get the value of the pre-defined
response property of a Response object.

A pre-defined Response is a Response that is pre-defined in the system and
cannot be assigned by the user to a specific Connector. A pre-defined
Response can be used by an Executor at any Node. Any Response defined
by the user is, by definition, not pre-defined and can be assigned to a
connector.

The pre-defined responses are shown in the following table.

Chapter 8, SmarTeam - Workflow Library

243

Pre-Defined Response Description Software Constant

NotPredefined This Response was defined by user and c
be assigned to a connector.

prNotPredefined

RejectToStart Reject process from current node to start
node. This response is predefined in syste
It cannot be assigned to a specific connec

prRejectToStart

RejectToPrevious Reject process from current node to all
immediately previous nodes This response
predefined in system. It cannot be assigne
a specific connector.

prRejectToPrevious

Consult (not currently in use) prConsult
ConsultAndWait (not currently in use) prConsultAndWait
Reply (not currently in use) prReply

Executors Task:
Working with the Executors Collection

The Executors collection contains the Executors assigned to this Node (see
data model table TDM_SF_EXECUTORS in Appendix).

Use the Item property to get an individual Executor by index.

Use the GetUsers method to refer to the User objects component of the
Executors.

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 244

Example

Dim FlowStore As SmartFlow.SmFlowStore

Dim FlowQueueItem As SmartFlow.SmFlowQueueItem

Dim FromNodes As SmartFlow.SmNodes

Set FlowStore = SmSession.GetService("SmartFlow.SmFlowStore")

Set FlowQueueItem = FlowStore.FlowSession.InboxProcesses(0)

Set FromNodes = FlowQueueItem.FromNodes

For I = 0 To FromNodes.Count - 1

 ‘ retrieve collection of users on all From Nodes

 Set Users = FromNodes(I).Users.GetUsers

 ‘ loop on users of a From Node

 For J = 0 To Users.Count - 1

 ‘ create duplicate User object to get all attributes for that

 ‘ user (can't do that when the User is in a collection)

 Set CurrentUser = Users(J).Clone

 ‘ get info from data base

 CurrentUser.Retrieve

 ‘ add the User email address from the database data record

 ‘ to the mail recipient collection

 Mail.Recipients.Add CurrentUser.Data.ValueAsString("USER_EMAIL")

 Next

Next

Use the Delegator property to get the Executor object corresponding to the
Delegator user at this Node, if a Delegator exists.

Chapter 8, SmarTeam - Workflow Library

245

Executor Task:
Getting Information about an Executor

Use the UserData property to get the User object component of this
Executor

Use the ExecutorData property to get the link component of the this
Executor

Use the Delegator property to check if this Executor is a delegator

Use the PendingStatus property to get the work status of this Executor on
the process associated with the Flowchart at this Node.

FlowPending Status Description Software Constant

New The Executor did not yet begin work on the
Process at this node.

fisNew

Decline The Executor declined to work on the Proce
at this Node

fisDecline

Capture The Executor has captured the Process at t
Node

fisCapture

Completed The Executor has completed working on the
Process at this Node and has sent the Proc
from the Node.

fisCompleted

SmFlowSession Object

Description

The FlowSession object represents the work environment of a SmarTeam
User working with the SmartBox. The FlowSession object allows a
SmarTeam user to view and access any FlowProcess at any Node at which
he is defined as an Executor of the FlowProcess.

The FlowSession object presents the FlowProcesses in the following object
categories:

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 246

• InBoxProcesses
• SentProcessesCompleted
• SentProcessesNotCompleted
• SentProcessDeleted.

The InBoxProcesses object is a collection of FlowProcesses received at the
user’s InBox. A FlowProcess appears in a user’s InBox when it arrives at a
Node at which the user is defined as an Executor for that FlowProcess. The
FlowProcess remains in the InBox for that Node until the user (or another
user in case the OR policy is in effect) sends it from the Node.

The SentProcessesCompleted object is a collection of processes that have
been sent by the user and have been completed, that is, reached the End
Node.

The SentProcessesNotCompleted object is a collection of processes that
have been sent by the user and are not yet completed.

The SentProcessDeleted object is a collection of processes that have been
deleted by the user.

The FlowQueueItem object represents an individual process received at
the user’s InBox. The FlowQueueItem has the following elements:
• The associated FlowProcess
• The current Node
• The current Executor
• ProcessLocation (link between FlowProcess and Node)

Note: It is important to keep in mind the distinction between the objects
FlowProcess and FlowQueueItem. The former refers to an entire
FlowProcess and the latter represents the FlowProcess as an individual
Executor receives it at a specific Node for action or viewing. Several
different SmFlowQueueItem objects can represent the same
FlowProcess, each at the InBox of a different Executor.

The ActiveProcess object represents the FlowProcess associated with the
FlowQueueItem at the current Node. You use the ActiveProcess to execute
tasks defined for the FlowProcess and to send the FlowProcess from the
current node.

Object Diagram

The object diagram of SmFlowSession is shown below:

Chapter 8, SmarTeam - Workflow Library

247

SmFlowSession

InboxProcesses

SentProcessesNotCompleted

SentProcessesCompleted

SmFlowQueueItem

SentProcessesDeleted

Figure 8-3 FlowSession Object Diagram

Obtaining a SmFlowSession Object

1. For a stand-alone application:
Set FlowStore = SmSession.GetService("SmartFlow.SmFlowStore")

Set FlowSession = FlowStore.FlowSession

2. In an event or task-driven script where ActiveProcess is a parameter:
Set FlowStore = ActiveProcess.FlowStore

Set FlowSession = ActiveProcess.FlowSession

3. In an event or task-driven script where FlowSession is a parameter use it
directly.

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a FlowSession and its components.

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 248

FlowSession Task:
Getting Information about the Current User

Use the User property to get information about the user associated with the
FlowSession.

Example

Dim FlowSession As SmartFlow.SmFlowSession

MsgBox "Current user login: " &

FlowSession.User.Data.ValueAsString("LOGIN")

FlowSession Task:
Getting Information about the User Queues

Use the following FlowSession properties to access the current user queue
collections.

Property Queue Description

InboxProcesses Collection of InBox Queue items of user
SentProcessesNotCompleted Collection of SentProcess items of this user which are

yet completed
SentProcessesCompleted Collection of SentProcess items of this user which are

completed
SentProcessesDeleted A Process can arrive at this queue after being deleted a

the queue SentProcessesNotCompleted or
SentProcessesCompleted

FlowQueue Task:
Working with the FlowQueue Collection

The FlowQueue collection represents the set of FlowQueueItem objects
associated with a single SmarTeam user. This section describes how to
work with the FlowQueue collection.

To get an individual FlowQueueItem from the FlowQueue collection by
index, use the Item property.

To get the index of a specified FlowQueueItem in the collection, use the
IndexOf method.

Chapter 8, SmarTeam - Workflow Library

249

Example

Dim FlowQueue As SmartFlow.SmFlowQueue

Index = FlowQueue.IndexOf(FlowQueueItem)

Use the Refresh method to refresh the FlowQueue to include new
FlowQueueItem objects.

To get a FlowQueueItem at a specified Node, use the ItemByNode
property. There can be at most one FlowQueueItem per Node in the
FlowQueue collection.

FlowQueueItem Task:
Getting Information about the Workplace Environment

Use the FlowProcess property to get the FlowProcess related to this
FlowQueueItem. The Node property gets the Node object for this
FlowQueueItem.

Example

Dim FlowStore As SmartFlow.SmFlowStore

Dim FlowQueueItem As SmartFlow.SmFlowQueueItem

Dim Node As SmartFlow.SmNode

Set FlowStore = SmSession.GetService("SmartFlow.SmFlowStore")

Set FlowQueueItem = FlowStore.FlowSession.InboxProcesses(0)

Set Node = FlowQueueItem.Node

MsgBox "I am working at node: " & Node.Name

FlowQueueItem Task:
Getting Information about the FlowQueueItem

The IsRead property indicates whether the current FlowQueueItem has
been viewed.

The GetCapturedUsers method gets a collection of users that have already
captured the current FlowQueueItem on this node.

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 250

Example

Dim FlowStore As SmartFlow.SmFlowStore

Dim FlowQueueItem As SmartFlow.SmFlowQueueItem

Set FlowStore = SmSession.GetService("SmartFlow.SmFlowStore")

Set FlowQueueItem = FlowStore.FlowSession.SentProcessesNotCompleted(0)

Set WorkingUsers = FlowQueueItem.GetCapturedUsers

The Importance property indicates the level of importance that has been
assigned to the current FlowQueueItem.

Importance Description Software Constant

High The FlowQueueItem is very important fiiHigh
Low The FlowQueueItem is has low importance fiiLow
Normal The FlowQueueItem has normal importance fiiNormal

The PastDueNode property indicates whether the time limit has expired for
action on this FlowQueueItem at this node.

The PastDueFlowchart property indicates whether the time limit has
expired for action on this FlowQueueItem on this Flowchart.

Example

Dim FlowQueueItem As SmartFlow.SmFlowQueueItem

If FlowQueueItem.PastDueFlowchart Then

 MsgBox "Flow process past limited time"

End If

The Initiated property indicates whether the current FlowQueueItem was
initiated by current user (executor) and was not yet sent from the Start
Node.

Use the FromNodes property to get the collection of nodes that sent the
current FlowQueueItem.

Example

Set FromNodes = ActiveProcess.QueueItem.FromNodes

Chapter 8, SmarTeam - Workflow Library

251

The ReceiveTime property gives the time the current FlowQueueItem
arrived at the current Node.

The StartTime property gives the time the current executor captured the
current FlowQueueItem.

The ExecutorData property gets information about the current executor.

FlowQueueItem Task:
Selecting Objects Linked to the FlowQueueItem

The SelectedTasks property gives the collection of tasks, which were
selected from collection of all linked objects. This property prepares
objects for performing tasks by the ActiveProcess.ExecuteSelectedTasks
method.

The SelectedObjects property gives the collection of linked objects, which
were selected from collection of all linked objects. This property prepares
objects for performing tasks by the ActiveProcess.ExecuteSelectedTasks
method.

The SelectAllObjects method selects all objects linked to the FlowProcess
represented by this FlowQueueItem.

The AppropriateTasks property gives a list of tasks, which have not yet
been executed for the selected objects for this node.

See the “ActiveProcess Task: Executing Tasks” section for an example that
uses these methods and properties.

FlowQueueItem Task:
Getting the Status of the FlowQueueItem

A FlowQueueItem can be in one of four execution states. The following
table describes the states and the software constant used for each state.

State Description Software Constant

New The FlowQueueItem is new fisNew
Decline The User has declined to work on the FlowQueueItem fisDecline
Capture The FlowQueueItem has been captured fisCapture
Completed The FlowQueueItem has been sent fisCompleted

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 252

The PendingStatus property gets the status of the FlowQueueItem.

ResetStatus lets you reset the status of the FlowQueueItem to New from
Capture or Decline.

FlowQueueItem Task: Capturing a FlowQueueItem

The methods and properties in this section support the capturing of a
FlowQueueItem. You need to capture the FlowQueueItem in order to work
with its associated FlowProcess, execute its Tasks and send on the
FlowProcess.

Use the CanCapture property to check whether the AND/OR capture
policy allows the current user to capture the FlowQueueItem at this Node.
For example, if the policy is OR and another user has already captured the
FlowQueueItem, the current user is not allowed to capture it.

To capture the FlowQueueItem only, without working with its associated
FlowProcess, use the Capture method.

To capture the FlowQueueItem in order to work with its associated
FlowProcess, use the Accept method. The Accept method returns an
ActiveProcess object that you can use to perform tasks associated with the
FlowQueueItem and to send the process from this node.

After using the Accept method to capture the FlowQueueItem and create an
ActiveProcess object, you can use the ActiveProcess property to refer to
the ActiveProcess object.

Use the Decline method to notify the Supervisor that the current user
declines to work on the FlowQueueItem.

FlowQueueItem Task: Checking Task Results

Use the ObjectResultStatus property to determine:

1. If a specific task defined for the current FlowQueueItem has already
been performed for a specific object

2. The order in which tasks defined for the current FlowQueueItem are
performed

Example

' check if task (FlowTask) execution for object (AttachedObject) was
successfully

Chapter 8, SmarTeam - Workflow Library

253

' can be used for error treat procedure

If FlowTask.ObjectResultStatus(AttachedObject, UserObject) =
rsOperExecutedNotSuccessfully Then

 MsgBox "Error execution task " + FlowTask.Name + " for specific object"

End If

FlowQueueItem Task:
Delegating Users to the FlowQueueItem

If a Delegator has been established, the Delegate method assigns the
FlowQueueItem to the ToUsers list for handling. Users in the ToUsers list
can capture the FlowQueueItem according to the AND/OR policy
determined by the Delegator through the Policy parameter of the method.

If no Delegator has been established, this method is not applicable.

FlowQueueItem Task: Adding Run-Time Users to a Node

Use the method AddRunTimeUsers to add a specified User to a specified
target Node.

The method works under the following conditions:

1. The capture policy allows the current user to capture the FlowQueueItem
at the current node

2. The current node is immediate predecessor of the target Node – or else
the current node is the Start Node

3. The target node is designated as “select user at run time”

ActiveProcess Task:
Getting Information about the ActiveProcess

The ActiveProcess object represents the FlowProcess associated with the
FlowQueueItem at the current Node. You use the ActiveProcess to execute
tasks defined for the FlowProcess and to send the FlowProcess from the
current node.

Use the QueueItem property to reference the FlowQueueItem associated
with the ActiveProcess.

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 254

Use the FlowProcess property to reference the FlowProcess associated
with the ActiveProcess.

Use the CurrentNode property to reference the current Node.
Set CurrentNode = ActiveProcess.CurrentNode

ActiveProcess Task: Executing Tasks

Use the ExecuteSelectedTasks method to execute the tasks that were
selected by FlowQueueItem.SelectedTasks on the objects that were
selected by FlowQueueItem.SelectedObject.

See the “SmTask Task: Executing a Task” section for an alternate way of
executing a task.

Example

'This example uses the methods SelectAllObjects, SelectedTasks,

‘ ExecuteSelectedTask to executes tasks and send a process.

Sub Main()

 Dim Smart As Object

 Dim SmEngine As SmApplic.SmEngine

 Dim Session As SmApplic.SmSession

 Set Smart = GetObject(, "SmarTeam.SmApplication")

 Set SmEngine = Smart.Engine

 Set Session = SmEngine.Sessions(0)

 Test Session

End Sub

Sub Test(SmSession As SmApplic.SmSession)

 Dim FlowStore As SmartFlow.SmFlowStore

 Dim FlowSession As SmartFlow.SmFlowSession

Chapter 8, SmarTeam - Workflow Library

255

 Dim FlowQueueItem As SmartFlow.SmFlowQueueItem

 Dim ActiveProcess As SmartFlow.SmActiveProcess

 Dim Response As SmartFlow.SmResponse

 ' Get FlowStore object - Sm Flow Service

 Set FlowStore = SmSession.GetService("SmartFlow.SmFlowStore")

 ' Get current user flow session

 Set FlowSession = FlowStore.FlowSession

 ' Check if exist process in Inbox of smartbox

 If FlowSession.InboxProcesses.Count > 0 Then

 ' Retrieve first process from user inbox

 Set FlowQueueItem = FlowSession.InboxProcesses.Item(0)

 ' Check if can capture process - may be captured by another user

 If FlowQueueItem.CanCapture Or FlowQueueItem.PendingStatus =

fisCapture Then

 ' Capture process

 FlowQueueItem.Capture

 ' Get active process

 Set ActiveProcess = FlowQueueItem.ActiveProcess

 ' Check for tasks that process has not performed

 If FlowQueueItem.AppropriateTasks.Count > 0 Then

 ' Select all linked object for tasks

 FlowQueueItem.SelectAllObjects

 ' Select all tasks not performed

 FlowQueueItem.SelectedTasks = FlowQueueItem.AppropriateTasks

 ' Execute all selected tasks

 ActiveProcess.ExecuteSelectedTasks

 End If

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 256

 ' Get first not reject response for current item

 Set Response = FlowQueueItem.Node.GetNotRejectResponses(0)

 ' Check if process can be sent

 If FlowQueueItem.CheckSendPossibility(Response) Then

 ' Send active process with comment

 ActiveProcess.Send Response, "Sent", Date

 End If

 End If

 End If

End Sub

ActiveProcess Task: Sending the FlowProcess

Use the Send method to send the FlowProcess to the next nodes according
to the specified response. You can add a comment and specify the date.

ActiveProcess Task: Sending an E-Mail Ahead

Use SendEmailToFollowingNodes to display an empty mail item screen
with the To: field filled in with the Users on the following Nodes. You fill
in the message and send it.

FlowSentProcesses Task:
Working with the FlowSentProcesses Collection

The FlowSentProcesses collection includes all FlowSentProcess objects of
a given type for the current user.

To get a FlowSentProcess from the FlowSentProcesses collection by index,
use the Item property.

To refresh the FlowSentProcesses collection, use the Refresh method.

To check if the current FlowSentProcesses collection contains completed
FlowSentProcess objects, use the Completed property.

To determine the type of FlowSentProcess objects in the collection, use the
SentType property. The results can be:

Chapter 8, SmarTeam - Workflow Library

257

SentType Description Software Constant

Sent Collection of SentProcess items related to this u
which are not yet completed
Collection of SentProcess items related to this u
which are completed

qtSent

Deleted A Process can arrive at this queue after being
deleted at SentProcessesNotCompleted or
SentProcessesCompleted

qtDeleted

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 258

SmWorkflowView Object

Description

The SmWorkflowView object represents a user interface relative to a
FlowProcess, a User and a Node. It can be used to view FlowQueueItems
and also SentProcess items.

The SmWorkflowInitiateView object is similar to the SmWorkflowView
object but in this view you can initiate a process.

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a WorkflowView and
WorkflowInitiateView.

WorkflowView Task:
Working with the WorkflowView Object

Use the Process property to set or get the FlowProcess that is displayed on
the user interface.

Example

Sub DisplayProcesses(SmSession As SmApplic.SmSession)

 Dim FlowStore As SmartFlow.SmFlowStore

 Dim WorkFlowView As SmartFlow.ISmWorkflowView

 ' Get FlowStore object - Sm Flow Service

 Set FlowStore = SmSession.GetService("SmartFlow.SmFlowStore")

 ' Create new view

 Set WorkFlowView = FlowStore.NewWorkflowView

 ' Check if has processes in inbox

 If FlowStore.FlowSession.InboxProcesses.Count > 0 Then

 ' Assign process to view

Chapter 8, SmarTeam - Workflow Library

259

 Set WorkFlowView.Process =
FlowStore.FlowSession.InboxProcesses(0).FlowProcess

 ' Show process

 WorkFlowView.Show

 Else

 MsgBox "No processes in your inbox"

 End If

End Sub

Use the User property to set or get the user whose FlowProcess is
displayed on the user interface.

Use the Node property to set or get the node at which the information is to
be displayed.

Use the ReadOnly property only for FlowQueueItem objects at the InBox
to prevent actions on the user interface.

Use the BoxType property to determine which type of box the
WorkflowView is currently displaying. The Box types are described in the
following table.

BoxType Description Software Constan

Inbox A display of all process that have arrived for this user. bxtInbox
Sent A display of all processes that have been sent by this u bxtSent

Deleted A display of all processes that have been deleted by th
user.

bxtDeleted

Completed A display of all processes that have been completed. bxtCompleted

Use the Show method to cause the object to be displayed.

Use the Style property to determine the window style of the user interface,
as described in the following table.

Style Description Software Constan

Normal Defines an independent window swsNormal
MDIChild Defines a child window inside a parent window swsMDIChild

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 260

WorkflowInitiateView Task:
Creating a New FlowProcess and Viewing it.

This section describes the methods and properties used to create a new
process under the user interface WorkflowInitiateView.

Use the ProcessClassId property to select a process ClassId for the
FlowProcess you want to create. Alternately, use the ProcessClass
property to create the FlowProcess class.

Use the AttachedObjects property to specify the objects you want to be
attached to the newly created process.

Use the Show method to create the new process, to attach the default
flowchart, attach the objects to the FlowProcess, and to display them.

Use the Style property to determine the window style of the user interface
(see WorkflowView for an explanation).

SmFlowStore Object

Description

The SmFlowStore object provides access to the functionality of the
SmarTeam - Workflow library. Using the SmFlowStore object, you can
perform the following:
• Access the associated FlowSession object using the FlowSession

property
• Access the associated MessageStore object using the MessageStore

property
• Access collection objects such as FlowCharts, Responses,

ProcessAssignments
• Create new instances of related objects, such as FlowChart,

FlowProcess and others.
• Retrieve FlowProcess objects and other objects from the database.

Object Diagram

The following diagram shows the major properties of the SmFlowStore
object:

Chapter 8, SmarTeam - Workflow Library

261

SmFlowStore

ProcessAssignments

Responses

MessageStore

FlowSession

Figure 8-4 FlowStore Object Access

Obtaining the SmFlowStore Objects

For a stand-alone application:
Set FlowStore = Nothing

Set FlowStore = SmSession.GetService("SmartFlow.SmFlowStore")

Scripts associated with an event or a task are provided with a reference to
an SmFlowProcess object. You can use this reference to obtain the
SmFlowStore object.
Set FlowStore = ActiveProcess.FlowStore

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a FlowStore.

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 262

FlowStore Task: Create a New FlowProcess

The NewFlowProcess method creates a new SmFlowProcess object but
does not save it in the Database.

The InitiateNewProcess method creates a new SmFlowProcess object,
saves it in the Database, and attaches a dummy default Flowchart to it.

Example

ProcessClassId = SmSession.MetaInfo.SmClassByName("General Process").ClassId

Set ChildProcess = FlowStore.InitiateNewProcess(ProcessClassId)

FlowStore Task:
Create New Workflow View

Use the NewWorkflowView method to create a new WorkflowView
object.

Use the NewWorkflowInitiateView method to create a new
WorkflowView object in which you can initiate a FlowProcess.
Set WorkflowInitiateView = FlowStore.NewWorkflowInitiateView

FlowStore Task:
Verify SmarTeam - Workflow Server

Use the FlowServerInUse property to verify if the system works with the
SmarTeam - Workflow Server.

Example

Set FlowStore = SmSession.GetService("SmartFlow.SmFlowStore")

If FlowStore.FlowServerInUse Then

 MsgBox "Flow system is working with the SmartFlow Server"

End If

Chapter 8, SmarTeam - Workflow Library

263

Overview of the SmartMessage Library
Objects

This section presents an overview of the main SmartMessage objects
including a description of the associated objects that are useful for the
programmer.
• SmMessageSession
• SmMessageQueue
• SmMessages
• SmMessage
• SmExternalMessage
• SmMessageStore

SmMessageSession Object

Description

The SmMessageSession object represents the message context of a single
user. It maintains a collection of that user’s Inbox messages, deleted
messages, draft messages and sent messages.

Object Diagram

The object diagram of SmMessageSession is shown below:

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 264

SmMessageSession

RolesForUser

InboxMessages

DeletedMessages

DraftMessages

SentMessages

MessageStore

Figure 8-5 MessageSession Object Diagram

Obtaining a SmMessageSession Object
Set MessageSession = SmMessageStore.MessageSession

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to an SmMessageSession object and its
components.

MessageSession Task:
Getting the User’s Message Context

Use the User property to get the User associated with the current
MessageSession.

Chapter 8, SmarTeam - Workflow Library

265

Use the InboxMessages property to get the ISmMessageQueue collection
of messages in the InBox queue
Use the SentMessages property to get the ISmMessageQueue collection of
messages in the Sent Messages queue

Use the DeletedMessages property to get the ISmMessageQueue collection
of messages in the Deleted Messages queue

Use the DraftMessages property to get the ISmMessageQueue collection
of messages in the Draft Messages queue.

SmMessageQueue Object

Description

The SmMessageQueue object represents a collection of the user’s
messages, including Deleted, Draft, In, and Sent messages.

The SmMessage object represents an individual message for a user that is
sent within the SmarTeam – Editor application.

The SmExternalMessage represents an individual message that is handled
by an external mail program such as Microsoft Outlook.

Object Diagram

The object diagram of SmMessageQueue is shown below:

SmMessageQueue

SmMessage

Figure 8-6 MessageQueue Object Diagram

Obtaining a SmMessageQueue Object

To get a MessageQueue object:
Set InboxQueue = SmMessageSession.InboxMessages

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 266

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to an SmMessageQueue object and its
components.

MessageQueue Task:
Working with the MessageQueue Collection

Use the MessageQueueType property to determine the type of queue that
is represented by the current MessageQueue. The queue types are described
in the following table.

QueueType Description Software Constant

In Collection of InBox Queue items related to
messages of user

qtIn

Sent Collection of SentMessage items related to thi
user

qtSent

Deleted Collection of DeletedMessage items related to
user.

qtDeleted

Draft Collection of DraftMessage items related to th
user.

qtDraft

To get an individual Message object from the MessageQueue collection by
index, use the Item property.

To get the index of a specified Message object in the collection, use the
IndexOf method.

Use the Refresh method to refresh the MessageQueue to include new
Message objects.

Message Task:
Getting the Elements of a Message Object

The following properties represent the components of a message object:

AttachedObjects represents an ISmMultiObjects collection of SmarTeam
objects attached to the message.

Body contains the body of the message

CCAsString represents the list of CC recipients, separated by semi-colons

Chapter 8, SmarTeam - Workflow Library

267

CCList represents the list of CC recipients, as a collection of
IsmCompositeObjects.

CreationDate represents the creation date of the message

Deleted represents a boolean value for the deletion status of an object. It is
True if the object is marked as deleted.

DeletedStatus is the deletion status of the message. It can have the values:

• DsNotdeleted
• DsMarkedAsDeleted
• dsDeleted

From represents the composer of the message, as an ISmCompositeObject

OriginalMessage represents the previous message in the message thread of
this message

ReceiptDate represents the date the message was received.

Use the FromAsString property to get the From: field of the message as a
string.

Use the ToAsString property to get the To: field of the message as a string.
Use the Importance property to get the importance of the message. The
importance property can have the following values:

Importance Description Software Constant

High The Message is very important iiHigh
Low The Message has low importance iiLow
Normal The Message has normal importance iiNormal

Use the Subject property to get the Subject of message as a string

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 268

Use the MessageType property to get the message type. The message types
are listed in the following table:

Message Type Description Software Constant

Message Regular message mtMessage
Process Internal use only mtProcess
Decline SmarTeam - Workflow sends this messa

to the Supervisor when a process is declin
by an Executor.

mtDecline

DeclineAccept Not in use mtDeclineAccept
Capture If the flag is set, SmarTeam - Workflow

sends this message to the Supervisor whe
process is captured by an Executor.

mtCapture

Consult Not in use mtConsult

Reject Not in use mtReject

Chapter 8, SmarTeam - Workflow Library

269

Message Task:
Adding Items to a Message Object

Use the AttachObject method to attach the specified object to the
message.

Use the AddRecipient method to add a recipient to the message according
to the specified role. The message roles are described in the following
table.

Message Role Description Software Constant

From The composer of the message mrFrom
To The receiver of the message mrTo
CC The CC receiver of the message mrCC

ExternalMessage Task:
Getting the Elements of a ExternalMessage Object

The following properties represent the components of an external message
object:
• AttachedObjects
• Body
• CCAsString
• CCList
• CreationDate
• Deleted
• DeletedStatus
• From
• Importance
• OriginalMessage
• ReceiptDate

Use the FromAsString property to get the From field of the message as a
string.

Use the ToAsString property to get the To field of the message as a string.
Use the CCAsString property to get the CC field of the message as a
string.
Use the Importance property to get the importance of the message.

Use the Subject property to get the Subject of message as a string

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 270

Use the Body property to get the Text of the message

Use the MessageType property to get the message type. The message types
are listed in the following table:

ExternalMessage Task:
Adding Items to an External Message Object

Use the AttachObject method to attach the specified object to the
message.

Use the AddRecipient method to add a recipient to the message according
to the specified role. The message roles are described in the following
table.

Message Role Description Software Constant

From The composer of the message mrFrom
To The receiver of the message mrTo
CC The CC receiver of the message mrCC

Chapter 8, SmarTeam - Workflow Library

271

SmMessageStore Object

Description

The SmMessageStore object is the root object for the SmartMessage
library. It provides access to the other objects in the SmartMessage Object
Model, and enables creation of new objects such a messages and message
queues.

Object Diagram

The object diagram of SmMessageStore is shown below:

SmMessageStore

Behavior

MessageTypes

Session

MessageSession

Figure 8-7 MessageStore Object Diagram

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 272

Obtaining a SmMessageStore Object

To obtain a MessageStore object:
Set MessageStore = SmSession.GetService("SmartMessages.SmMessageStore")

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to an SmMessageStore object and its
components.

MessageStore Task:
Creating New Message Objects

The MessageSession property is a reference to the MessageSession object.

Use the NewSmartMessage method to create a new SmartMessage object.

Use the NewExternalMessage method to create a new ExternalMessage
object.

Use the OpenSmartMessage method to open a SmartMessage according to
its objectID.

Chapter 8, SmarTeam - Workflow Library

273

Using the SmarTeam - Workflow Library

This section explains how to write code that operates in conjunction with
SmarTeam - Workflow.

You can use the SmarTeam - Workflow Library to write a SmarTeam -
Workflow application or you can use it to write run-time script.

You can write a SmarTeam - Workflow application which initiates
SmarTeam – Editor to perform a task. For example, you could write an
application to create and send a process.

Run-time script is designed to perform tasks relating to a currently
executing SmarTeam - Workflow session. You might use it, for example,
to automatically send an e-mail or a message when a process is sent out
from a specific node.

Transactions in the SmarTeam - Workflow Library

The following SmarTeam - Workflow methods manage transactions by
themselves. Therefore, they cannot be called when a transaction is open. If
a transaction is open, a call to one of these methods raises an exception.

ISmActiveProcess.Send

ISmServerQueueItem.Send (is used in SmarTeam - Workflow server)

ISmFlowStore.InitiateNewProcess

ISmFlowProcess.InitiateProcess

ISmFlowProcess.FullFlowchartCopy

ISmFlowProcess.SaveChangedFlowChart

Writing SmarTeam - Workflow Applications

Creating a FlowProcess

This section presents an example of a stand-alone application that creates a
new General Process FlowProcess and sends it from the Start Node

Sub Main()

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 274

 Dim SmEngine As SmApplic.SmEngine '(lib.class)

 Dim SmSession As SmApplic.SmSession

 Dim CommonGui As SmGUISrv.SmCommonGUI

 Dim ObjectToSend As SmApplic.ISmObject

 Dim FlowStore As SmartFlow.SmFlowStore

 Dim FlowProcess As SmartFlow.SmFlowProcess

 Dim ProcessClassId As Integer

 Dim FlowSession As SmartFlow.SmFlowSession

 Dim Node As SmartFlow.SmNode

 Dim Response As SmartFlow.SmResponse

 Dim Comment As String

 ‘ uses only visual basic – you don't need to run SmarTeam first

 ‘ create SmarTeam engine object

 Set SmEngine = CreateObject("SmApplic.SmEngine")

 ‘ initialize object

 SmEngine.Init "SmTeam32"

 ‘ creates a SmarTeam session for user

 Set SmSession = SmEngine.CreateSession("Test Session", "Smart32")

 ‘ get a database from the first in the database collection

 Set Database = SmEngine.Databases(0)

 ‘ connect SmSession to Database

 SmSession.OpenDatabaseConnection Database.Alias, Database.Password, True

 ‘ create CommonGui object for SmarTeam views

 Set CommonGui = SmSession.GetService("SmGUISrv.SmCommonGUI")

 ‘ method opens the login dialog box

 CommonGui.Dialogs.ExecuteLogin

Chapter 8, SmarTeam - Workflow Library

275

 ‘ exit if user didn't log in

 If Not SmSession.UserLoggedOn Then

 Exit Sub

 End If

 ‘ get ClassId of process type General Process

 ProcessClassId = SmSession.MetaInfo.SmClassByName("General
Process").ClassId

 ‘ creates FlowStore object for flow operations

 Set FlowStore = SmSession.GetService("SmartFlow.SmFlowStore")

 ‘ create FlowSession object for currently logged-in user

 Set FlowSession = FlowStore.FlowSession

 ‘ gets first object from user-selected list -- SmObject

 Set ObjectToSend =
 CommonGui.Dialogs.ExecuteSelectFromQueryResult(0).Item(0)

 ‘ creates FlowProcess object of type General Process

 Set FlowProcess = FlowStore.InitiateNewProcess(ProcessClassId)

 ‘ establish a complex link between ObjectToSend and the FlowProcess

Set AttachedObject = FlowProcess.LinkObject(ObjectToSend, Nothing)

Comment = "Auto sended process"

 ‘ creates node object representing Start Node

 Set Node = FlowProcess.Flowchart.StartNode

 ‘ From StartNode only accept connectors exist

 ‘ create a response object from the response of the first outconnector

 Set Response = Node.OutConnectors.Item(0).Response

 ‘ send FlowProcess from start node on all connectors with that Response

 FlowProcess.InitiateProcess FlowSession, Response, Comment, Date

End Sub

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 276

Writing Run-Time Scripts

You can cause SmarTeam - Workflow to execute your script in run-time
by attaching the script to “hooks” that are provided for this purpose in the
Flow Chart Designer. You attach the script by using the appropriate dialog
boxes when you design a flow chart.

There are two types of hooks provided: those associated with a task and
those associated with an event.

When the Flowchart is assigned to a FlowProcess, the script is assigned as
well. Then as the FlowProcess executes and events occur and tasks are
performed, the associated script is called and runs automatically.

Task-Driven Scripts

A task-driven script is associated with a task object within a flow chart
when the flow chart is designed.

You can specify that the script be executed.

You can attach automatic script to the following types of events:
Event Type Description

On Capture This event occurs when a user captures a process. A user ca
capture a process either explicitly or implicitly. A process is
captured explicitly through the InBox window. A process is
captured implicitly when the SmarTeam user performs an act
that requires capture privileges.

On Respond This event occurs when the user presses Accept or Reject to
send a process. It is similar to the Before Send event.

Chapter 8, SmarTeam - Workflow Library

277

Script Options

The following options are provided for a task:
Task Option Description

Required task The task must be performed
Perform task per object The task is performed on all objects attached to the

process.
Perform task automatically
--On Capture
--On Respond

Select whether the script is executed when the user
performs a task on the Process window, or when the
events On Capture or On Respond occur.

Class The script is executed for the objects in the specified
class.

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 278

Timing for Task-Driven Scripts

Figure 8-8 shows when a task-driven script is executed relative to a
SmarTeam - Workflow user action. For example, when a SmarTeam user
performs a capture process action, the On-Capture event occurs. If an
automatic task that has a script is attached to that event, the script will be
executed.

SmFlowProcess

 P
re

ss
es

 A
cc

ep
t

O
n

R
es

po
nd

C
ap

tu
re

s
P

ro
ce

ss

Middle Node

O
n

C
ap

tu
re

Start Node End Node

Tasks

SMARTEAM - Workflow User

Events

Operator
Actions

E
xe

cu
te

s
Ta

sk
P

er
fo

rm
 T

as
k

Task-Driven Script

Ta
sk

 c
on

ne
ct

ed
 to

 s
cr

ip
t

Figure 8-8 Time-Line Chart for Task-Driven Scripts

Chapter 8, SmarTeam - Workflow Library

279

Script Format

A task-driven script has the following format:
Sub Task-Driven (ActiveProcess As IsmActiveProcess
 Task As IsmTask
 MObjects As ISmMultiObjects)

OnCapture Example

This section presents an example of a task-driven script. The script sends
an e-mail to all users on previous Nodes notifying them that the current
user captured a process that they sent. The OnCapture event causes this
script to be executed.
Sub OnCapture(

 ActiveProcess As Object, 'the active process you captured

 Task As Object, 'the task that activated this script

 MultiObjects As Object 'objects attached to Active Process

)

 Dim FromNodes As SmartFlow.SmNodes

 Dim CurrentNode As SmartFlow.SmNode

 Dim UserLogin As String

 Dim Users As Object

 Dim CurrentUser As SmApplic.ISmObject

 Dim enumMailItem As Integer

 Dim Mail As Object

 Dim MailServer As Object

 Dim i As Long

 Dim j As Long

 ‘ get the current UserLogin from the current user’s data

 UserLogin = ActiveProcess.Session.UserMetaInfo.UserLogin

 ‘ get the current node

 Set CurrentNode = ActiveProcess.CurrentNode

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 280

 ‘ get collection of nodes that sent QueueItem to the current node

 Set FromNodes = ActiveProcess.QueueItem.FromNodes

 ‘ create Outlook mailserver object(assuming Outlook is installed)

 Set MailServer = CreateObject("Outlook.Application")

 ‘ set type of Outlook mail item to be “new message”

 enumMailItem = 0

 ‘ create mail object

 Set Mail = MailServer.CreateItem(enumMailItem)

 ‘ loop on FromNodes

 For i=0 To FromNodes.Count - 1

 ‘ retrieve collection of users on all From Nodes

 Set Users = FromNodes(i).Users.GetUsers

 ‘ loop on users of a From Node

 For j=0 To Users.Count – 1

 ‘ create duplicate User object to get all attributes for that

 ‘ user (can't do that when the User in a collection)

 Set CurrentUser = Users(j).Clone

 ‘ get info from data base

 CurrentUser.Retrieve

 ‘ add the User email address from the database data record

 ‘ to the mail recipient collection

 Mail.Recipients.Add CurrentUser.Data.ValueAsString("USER_EMAIL")

 Next

 Next

 ‘ Fill in mail text

 Mail.Subject = "Capture process"

Mail.Body = "Process " + ActiveProcess.FlowProcess.Name + " was captured by "
+ UserLogin + " at node " + CurrentNode.Name

 Mail.Send

End Sub

Chapter 8, SmarTeam - Workflow Library

281

Event-Driven Scripts

An event-driven script is associated with an event object within a flow
chart. When the event occurs, the script is executed automatically.

You can attach script to the following types of events:
Event Type Description

On Receive The On Receive event occurs when the SmFlowQueueItem
corresponding to a SmFlowProcess enters a user’s
InBoxProcesses queue.

On Open The On Open event occurs each time a WorkFlow screen
corresponding to a SmFlowQueueItem is opened.

Before Send The Before Send event occurs immediately before the proces
sent on to the next node.

Before Send Accept Similar to Before Send described above
Typical scripts for this event might be:

Before Send Reject The Before Send Reject event occurs immediately before the
process is rejected to a previous node.

After Send The After Send event occurs after the process is sent to the n
node.

After Send Accept The After Send event occurs after the process is sent to the n
node following the user’s accept response.

After Send Reject The After Send event occurs after the process is sent to a
previous node following a user’s reject response.

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 282

Timing for Event-Driven Scripts

Figure 8-9 shows when a event-driven script is executed relative to a
SmarTeam - Workflow user action. For example, when a SmarTeam user
presses accept at the Start Node, the BeforeSend event occurs. If a script is
attached to that event, the script will be executed.

SmFlowProcess

 P
re

ss
es

 A
cc

ep
t

 P
re

ss
es

 A
cc

ep
t

Be
fo

re
 S

en
d

A
fte

r S
en

d

O
n

R
ec

ei
ve

 O
pe

ns
 W

or
kf

lo
w

Be
fo

re
 S

en
d

A
fte

r S
en

d

 O
pe

ns
 W

or
kf

lo
w

 V
ie

w
Middle Node

O
n

O
pe

n

O
n

O
pe

n

Start Node End Node

 O
pe

ns
/R

ef
re

sh
 I

nB
ox

Event-Driven Script

SMARTEAM - Workflow User

Events

Operator
Actions

Figure 8-9 Time-Line Chart for Event-Driven Scripts

Script Format

A event-driven script has the following format:
Function BeforeSend(ActiveProcess As Object,
 Response As Object)As Integer

Function AfterSend(FlowSession As Object,
 FlowProcess As Object,
 Node As Object,
 Response As Object) As Integer

Chapter 8, SmarTeam - Workflow Library

283

Function AfterSendReject(FlowSession As Object,
 FlowProcess As Object,
 Node As Object,
 Response As Object) As Integer

Function AfterSendAccept(FlowSession As Object,
 FlowProcess As Object,
 Node As Object,
 Response As Object) As Integer

BeforeSend Example

The following sample script was written to be activated by a BeforeSend
event.

The script CreateProcessLog creates a process log document and attaches it
to a process and to a selected project. The log can be viewed by all users
through the project window but it is not visible on the process view.

This script creates the log document and puts in the initial entry. To get a
full process log for all stages of the process, a similar script, which adds
information to the log, must be put in every subsequent Node.
Function CreateProcessLog(

 ActiveProcess As Object, ‘ the Active Process you sent

 Response As Object ‘ the Response on which you sent it

) As Integer

 Dim SmSession As SmApplic.SmSession

 Dim FlowProcess As SmartFlow.SmFlowSession

 Dim Document As SmApplic.ISmObject

 Dim NewTempDocument As SmApplic.ISmObject

 Dim Project As SmApplic.ISmObject

 Dim DocumentClassId As Integer

 Dim GUIService As SmGUISrv.SmCommonGUI

 Dim View As SMGUISrv.ISmView

 Dim UserBehavior As SmApplic.ISmBehavior

 Dim Link As SmApplic.ISmObject

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 284

 Dim LinkAttributes As Object

 Dim LinkClassId As Integer

 Dim Task As Object

 Dim SmSessionUtil As SmUtil.SmSessionUtil

 Dim CurrentMask As String

 Dim NextMask As String

 Dim ObjectId As Long

 ‘ get flowprocess

 Set FlowProcess = ActiveProcess.FlowProcess

 ‘ get SmSession

 Set SmSession = ActiveProcess.Session

 ‘ get service for life cycle operation

 Set SmSessionUtil=SmSession.GetService("SmUtil.SmSessionUtil")

 ‘ get class ID for class Document

 DocumentClassId = SmSession.MetaInfo.SmClassByName("Document").ClassId

 ‘ create new Document object

 Set NewTempDocument = SmSession.ObjectStore.NewObject(DocumentClassId)

 ‘ add Document empty attributes

 NewTempDocument.AddAllAttributes

 ‘ fill in default attribute values

 Set Document =NewTempDocument.FillDefaults

 ‘ insert description of Document object into Database

 Document.Data.ValueAsString("CN_DESCRIPTION") = "Auto created for process
" & FlowProcess.Name

 ‘ get the current mask of the Document clss primary identifier attribute
by its name CN_ID. Current mask is the mask of the most recently created
object of class Document, for example, "DOC-002”.

Chapter 8, SmarTeam - Workflow Library

285

 CurrentMask=SmSessionUtil.RetrieveStartMaskValue
(Document.Attributes.ItemByName("CN_ID"))

 ‘ allocate a new primary identifier mask after the CurrentMask

 NextMask = SmSessionUtil.RetrieveNextMask
(Document.Attributes.ItemByName("CN_ID"),CurrentMask)

 ‘ insert it as the Document object primary identifier attribute

 Document.Data.ValueAsString("CN_ID") = NextMask

 ‘ alternative:

 ‘ If you want to use a log file which existed prior to executing this
script then add here a command to open a window to select the file
path\filename and:.

 ‘ put the file name in the Document attribute " FILE_NAME "

 ‘ Document.Data.ValueAsString("FILE_NAME") = "filename"

 ‘ put the path in Document attribute "Directory"

 ‘ Document.Data.ValueAsString("DIRECTORY") = "path"

 ‘ create new file with name PrimaryIdentifier.txt and path C:\

 Open "C:\" & NextMask & ".txt" For Output As #1

 ‘ write name of file creator

 Print #1,"Created by user " & SmSession.UserMetaInfo.UserLogin

 ‘ write data and time

 Print #1,"Date: " & Date$() & " Time: " & Time$()

 ‘ write name of process

 Print #1,"For flow process " & FlowProcess.Name

 ‘ and name of Node

 Print #1,"At node " & ActiveProcess.CurrentNode.Name

 ‘ response on send

 Print #1,"On response " & Response.Name

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 286

 Close #1

 ‘ put name of newly created file in Document attribute "FILE_NAME"

 Document.Data.ValueAsString("FILE_NAME") = NextMask & ".txt"

 ‘ put path in Document attribute "DIRECTORY"

 Document.Data.ValueAsString("DIRECTORY") = "C:\"

 ‘ choose project to which the new Document is to be attached

 ‘ get GUI service

 Set GUIService = SmSession.GetService("SmGUISrv.SmCommonGUI")

 ‘ show project view

 Set View = GUIService.Views.NewViewByType(vwtMainClassTree)

 View.ViewTitle = "Select project to link"

 ‘ open dialog box and let user choose project to link Document

 View.SmViewWindow.ShowModal

 ‘ get the first one he selected

 Set Project = View.Selected.Objects(0)

 ‘ use behavior that doesn't require confirmation

 Set UserBehavior = SmSession.ObjectStore.DefaultBehavior.Clone

 ‘ set automatic confirmation – no prompt will be used

 UserBehavior.ConfirmOperations = coYesToAll

 ‘ insert new document to data base

 Document.InsertEx UserBehavior

 ‘ can't use zero directly as parameter, only by reference

 LinkClassId = 0

 ‘ link Document to project

 Set Link = SmSession.ObjectStore.NewOneLevelLink
(LinkClassId,Project.ClassId,Project.ObjectId,Document.ClassId,Document.Object
Id)

 ‘ insert link to database. the doc will appear linked to the project

 Link.InsertEx UserBehavior

Chapter 8, SmarTeam - Workflow Library

287

 ‘ only by reference

 Set Task = Nothing

 ‘ check-in newly created document object to vault

 ObjectId = SmSessionUtil.CheckIn(Document,Task,True)

 Set LinkAttributes = Nothing

 ‘ secondary link document to process; doesn’t appear on process view

 Set Link = FlowProcess.LinkObjectAsSecondary(Document,LinkAttributes)

 ‘ alternative:

 ‘ primary link document to process; appears on process view

 ‘ Set Link = FlowProcess.LinkObject(Document,LinkAttributes)

End Function

BeforeSendAccept Example

The following sample script was written to be activated by a
BeforeSendAccept event.

The script SendNewProcess creates a new flow process and assigns new
users to nodes. It attaches objects from an existing process to the new
process and sends the new process to selected users including both existing
users and the new users.

Function SendNewProcess(

 ActiveProcess As Object, 'the active process you sent

 Response As Object ‘ the Response on which you sent

) As Integer

 Dim CommonGUI As SmGUISrv.SmCommonGUI

 Dim ViewedCompositeObjects As SmApplic.ISmCompositeObjects

 Dim Query As SmApplic.ISmSimpleQuery

 Dim SelectUserView As SmGUISrv.ISmView

 Dim UserClassId As Integer

 Dim SmSession As SmApplic.SmSession

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 288

 Dim DestinationNode As SmartFlow.SmNode

 Dim Users As SmApplic.ISmObjects

 Dim FlowStore As SmartFlow.SmFlowStore

 Dim FlowSession As SmartFlow.SmFlowSession

 Dim ChildProcess As SmartFlow.SmFlowProcess

 Dim LinkedObjects As SmApplic.ISmMultiObjects

 Dim SubLinkedObjects As SmApplic.ISmObjects

 Dim CompLink As SmApplic.ISmObject

 Dim Node As SmartFlow.SmNode

 Dim OutNodes As SmartFlow.SmNodes

 Dim ChildProcessResponse As SmartFlow.SmResponse

 Dim ObjectToSend As SmApplic.ISmObject

 Dim ProcessClassId As Integer

 Dim Comment As String

 Dim Param As Object

 Dim I As Long

 Dim J As Long

 ‘ get service object FlowStore

 Set FlowStore = ActiveProcess.FlowStore

 ‘ get current user's FlowSession

 Set FlowSession = ActiveProcess.FlowSession

 ‘ get the SmarTeam session

 Set SmSession = ActiveProcess.Session

 ‘ create a new process

 ‘ get classid for General Process class

 ProcessClassId = SmSession.MetaInfo.SmClassByName
("General Process").ClassId

Chapter 8, SmarTeam - Workflow Library

289

 ‘ create and initiate new process, attach default Flowchart

 Set ChildProcess = FlowStore.InitiateNewProcess(ProcessClassId)

 ‘ get all objects linked to Active Process without their links

 Set LinkedObjects = ActiveProcess.FlowProcess.ObjectsData

 ‘ LinkedObjects has type IsmMultiObjects:

 ‘ including super classes Documents, Items, Users

 For I = 0 To LinkedObjects.Count – 1

 ‘ create object for one superclass

 Set SubLinkedObjects = LinkedObjects(I)

 ‘ loop on that superclass collection

 For J = 0 To SubLinkedObjects.Count - 1

 ‘ for each member of collection

 Set ObjectToSend = SubLinkedObjects(J).Clone

 ‘ get all properties

 ObjectToSend.Retrieve

 ‘ link the object to the new process

 ‘ no link parameters, use defaults

 Set Param = Nothing

 Set CompLink = ChildProcess.LinkObject(ObjectToSend, Param)

 Next

 Next

 ‘ get all SmarTeam users from Database

 ‘ create a new query object

 Set Query = SmSession.ObjectStore.NewSimpleQuery

 ‘ define query to find all users defined in database

 Query.SelectStatement = "Select * from USERS"

 ‘ run query

 Query.Run

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 290

 ‘ transform from QueryResult (RecordList) to CompositeObjects for
 viewing

 Set ViewedCompositeObjects =
SmSession.ObjectSTore.CompositeObjectsFromData(Query.QueryResult, true)

 ‘ get viewing service

 Set CommonGUI = SmSession.GetService("SmGUISrv.SmCommonGUI")

 Comment = "Auto created child process process"

 ‘ send the new process from the Start Node

 Set Node = ChildProcess.Flowchart.StartNode

 ‘ send on accept connectors only

 ‘ select the first non-reject response for start node

 Set ChildProcessResponse = Node.GetNotRejectResponses(0)

 ‘ get the collection of outgoing nodes for that response

 Set OutNodes = Node.GetOutgoingNodes(ChildProcessResponse)

 ‘ loop over out nodes

 For J = 0 To OutNodes.Count - 1
 ‘ create node object

 Set DestinationNode = OutNodes.Item(J)

 ‘ let the user choose new users to receive this process.

 ‘ check if new users can be added to the Destination Node

 If DestinationNode.RuntimeUsers Then

 ‘ make userview window object

 Set SelectUserView = CommonGUI.Views.NewViewByType(vwtCustom)

 ‘ define view to include all users

 Set SelectUserView.DisplayObjects.CompositeObjects =
ViewedCompositeObjects

 ‘ set title of SelectUserView window

 SelectUserView.ViewTitle = "Select user for destination node "
& DestinationNode.Name

Chapter 8, SmarTeam - Workflow Library

291

 ‘ open window and display all users for selection

 SelectUserView.SmViewWindow.ShowModal

 ‘ create collection of all users selected

 Set Users = SelectUserView.Selected.Objects

 ‘ loop over selected users

 For I=0 To Users.Count – 1

 ‘ add selected users to destination node

 DestinationNode.Users.Add Users(I)

 Next

 ‘ save destination mode with all added users

 DestinationNode.Save

 End If

 Next

 ‘ send new process to the existing and new users

 ChildProcess.InitiateProcess FlowSession, ChildProcessResponse, Comment,
Date

End Function

AfterSendAccept Example

The following sample script was written to be activated by an
AfterSendAccept event.

The script SendMailAfterAccept sends e-mail to persons outside the system
that the process has been sent.
Function SendMailAfterAccept(

 FlowSession As Object, 'flow session of user that sent process

 FlowProcess As Object, 'FlowProcess that was sent

 Node As Object, 'node from which it was sent

 Response As Object 'response on which process was sent

) As Integer

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 292

 Dim DestinationNodes As SmartFlow.SmNodes

 Dim Users As Object

 Dim CurrentUser As SmApplic.ISmObject

 Dim enumMailItem As Integer

 Dim Mail As Object

 Dim MailServer As Object

 Dim i As Long

 Dim j As Long

 ‘ create collection object of nodes to which process was sent

 Set DestinationNodes = Node.GetOutgoingNodes(Response)

 ‘ create Outlook service main object

 Set MailServer = CreateObject("Outlook.Application")

 enumMailItem = 0

 ‘ mail item

 Set Mail = MailServer.CreateItem(enumMailItem)

 ‘ loop on destination nodes

 For i=0 To DestinationNodes.Count – 1

 ‘ create collection of users on a node

 Set Users = DestinationNodes(i).Users.GetUsers

 ‘ loop over users

 For j=0 To Users.Count – 1

 ‘ duplicate user to retrieve attributes

 Set CurrentUser = Users(j).Clone

 ‘ get attributes of user

 CurrentUser.Retrieve

 ‘ add recipient to mail list

Chapter 8, SmarTeam - Workflow Library

293

 Mail.Recipients.Add
CurrentUser.Data.ValueAsString("USER_EMAIL")

 Next

 Next

 ‘ enter mail subject

 Mail.Subject = "Check your Smartbox"

 ‘ enter mail body

 Mail.Body =
"Process was sent to your SmartBox on response " + Response.Name

 ‘ send mail

 Mail.Send

End Function

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 294

9. SmarTeam CAD Interface Library

General Description

SmarTeam CAD Integration

The SmarTeam Integration Tool, by enabling you to map objects of an
integrated CAD tool such as SolidWorksTM or Microsoft WordTM to objects
in SmarTeam, lets you apply the power of SmarTeam to the CAD tool.

As shown in the following figure, the different CAD file types are mapped
to SmarTeam classes and the CAD file property fields are mapped to the
corresponding SmarTeam class attributes. For example, when a
SolidWorks Part CAD file is mapped to the SmarTeam class
SolidWorksPart, the Summary Information/Author property field of the
CAD file can be mapped to the Object ID class attribute of the
SolidWorksPart class. Now you can use that field in the CAD file for the
SolidWorksPart User Object ID.

In addition, the CAD file is also linked to the corresponding SmarTeam
class as an associated file; SmarTeam can manage the disposition of the
CAD file in the SmarTeam vaults.

This chapter discusses the SmarTeam CAD Interface library, which can be
used once the SmarTeam integration is in place and the mappings are
established, for example, by using the SmarTeam Integration Tool.

Chapter 8, SmarTeam - Workflow Library

295

CAD Document

CAD Application SmarTeam

CAD Interface API

CAD File
Properties

CAD FileType1

Associated File

CAD File
Properties

CAD FileType2

Class
Properties

CAD Class1

Class
Properties

CAD Class2

Main CAD Class

Property Mappings

Property Mappings

Associated File

Integration Data Model

The Integration Data Model uses the CLB and OLB mechanisms discussed
in Chapter 5, section Class Behaviors, to define possible object and link
behaviors to support specific integrations. See that section for more
information about Class Behaviors and SmDemo for examples.

The following terminology is used:
• Integration Behavior – An OLB, defined for the integration

component objects, for example: SolidWorks Part, Solid Edge
Assembly, and CATIA Model.

• Integration Link Behavior –A CLB imposed on a link class, which is
used to distinguish between link classes, for example: CATIA structure,
CATIA contextual, SW Design in Context.

• Integration Composition – A CLB composition, which determines the
permissible link classes for two integration component objects.

Operation Dependency Rules – A set of restrictions on the life-cycle
operations permissible for classes with given Integration Behavior or
Integration Link Behavior.

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 296

SmarTeam CAD Interface

The SmarTeam CAD Interface library provides easy access to SmarTeam
functionality from within an integrated CAD application, such as
SolidWorks, or within a general-purpose application, such as Microsoft
Word.

The functionality of the SmarTeam CAD Interface library includes:
• Improved file search capabilities, including searching for files by

attributes other than the file name. The file search is carried out using
SmarTeam search functions.

• The high-level functions of the CAD Interface library provide easy
access to SmarTeam database information about edited documents and
related documents.

• Improved file security; CAD files can be saved inside the SmarTeam
vault immediately after creation or editing.

• Working directly with the CAD application files, saving file
information in the SmarTeam database.

The SmarTeam CAD Interface library provides objects that enable you to:

• Save and update documents and compositions (trees) of the documents
in the SmarTeam database.

• Retrieve document meta-information by file name from the SmarTeam
database.

• Update various CAD blocks, for example, update the title block of a
drawing with information obtained from SmarTeam.

• Perform life-cycle and other related operations.

Dependencies

The SmarTeam CAD Interface library has the following dependencies:
• SmarTeam Record List library.
• SmarTeam GUI Services library.
• SmarTeam Application library.
• SmarTeam Utilities library.
• SmarTeam Engine library.

Chapter 8, SmarTeam - Workflow Library

297

Overview of Objects

The main object of the SmarTeam CAD Interface library is the
SmCADInterface object.

SmCADInterface provides high-level functionality that enables you to
maintain uniformity across all integrated applications, and to keep the
integration updated when upgrades are implemented in SmarTeam and/or
the applications.

It is possible to work with integrated applications using SmarTeam
standard functions. However, for greater convenience and maintainability,
it is highly recommended that you use the SmCADInterface object for all
your SmarTeam integration requirements.

SmCADInterface Object

The SmCADInterface object provides the following functionality,
including:
• Connecting to the SmarTeam database
• Updating the SmarTeam database
• Retrieving information from SmarTeam database
• GUI operations
• Lifecycle operations
• Improving Performance

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 298

Object Diagram

The object diagram of SmCADInterface is shown below:

SmCADInterface

IntegrationGUIStore

IntegrationDll

IntegrationStore

Session

Figure 9-1 SmCADInterface Object Diagram

Obtaining the SmCADInterface Object

SmCADInterface is a service object. To obtain a reference to the object,
use the following syntax:
Dim CADInterface as SmCADInterface

Set CADInterface = Session.GetService (“SmCad.SmCADInterface”)

SmCADInterface Properties

The SmCADInterface has the following properties:
IntegrationGUIStore Gets the ISmIntegrationGUIStore object of the current session
IntegrationStore Gets the ISmIntegrationStore object of the current session
Session Returns an ISmSession object that represents the current session

The following objects can be accessed through the properties of
SmCADInterface.

Chapter 8, SmarTeam - Workflow Library

299

SmSession

The SmSession property enables you to access the associated SmSession
object from SmCADInterface:
Dim SmSession As ISmSession

Set SmSession = CADInterface.Session

SmIntegrationStore

The SmIntegrationStore property enables you to access the
SmIntegrationStore object from SmCADInterface:
Dim SmIntegrationStore As ISmIntegrationStore

Set SmIntegrationStore = CADInterface.SmIntegrationStore

SmIntegrationGUIStore

The SmIntegrationGUIStore enables you to retrieve the
SmIntegrationGUIStore object from SmCADInterface:
Dim SmIntegrationGUIStore As ISmIntegrationGUIStore

Set SmIntegrationGUIStore = CADInterface.SmIntegrationGUIStore

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 300

SmCADInterface Methods

The SmCADInterface has the following major methods, presented
according to topic:

Database Connection

Initialize Initializes variables, creates database connection and login
UserLogin Connects and login into the SmarTeam database
Terminate Terminates the session and disconnects from database

Updating SmarTeam Database

UpdateLinks Updates links in the database, updating only those that have
changed, and adds the new links

SaveObjectsAndLinks Updates objects and links in the SmarTeam database, updatin
only those that have changed, and adds the new objects and
links.

OdmaSave Displays the Projects Manager dialog and saves the documen
SmarTeam database

Save Saves the document in SmarTeam database
Retrieving Information from SmarTeam Database

FindObject Retrieves Object Id and Class Id for the object (Part or
Document) to which the input CAD document is associated.

FindObjects Retrieves Object Id and Class Id for the objects (Part or
Document) to which the input CAD documents are associated

GetLinkedObjects Retrieves Objects that are linked with a specified link behavio
the object (Part or Document) to which the input CAD docume
is associated and returns specified object attributes.

FindFile Locates the full path of the CAD document associated with the
specified SmarTeam object. In case of multiple files, the first o
found is returned.

GUI Operations

Locate Locates a document and shows its profile card
WhereUsed Displays the document's Where Used list

Life-Cycle Operations

Approve Performs the Release operation
CheckIn Performs the CheckIn operation
CheckOut Performs the CheckOut operation
CheckOutForEdit Performs the CheckOut and Edit operations
CopyFile Performs a CopyFile operation
NewRelease Performs the NewRelease operation
Obsolete Performs the Obsolete operation

Chapter 8, SmarTeam - Workflow Library

301

Performance

BeginSaveOperation Initializes global variables for the save operation
EndSaveOperation Releases global variables after the save operation
GetChildrenWithCopies Retrieves all the assembly's children from the local folders

Miscellaneous

ApplUpdateProperties Updates the document's properties before it is moved to the v
– fires event OnLFCOperation

InvokeScriptWithList Invokes a script with an input record list
SetMainWindowHandle Sets the parent window of SmarTeam API windows
ShowSmarTeam Activates the SmarTeam application
GetDefaultWorkFolder Retrieves current work folder
GetTemporaryFolder Retrieves current folder for temporary files
IsOperationAllowed Checks if operation may be performed
IsLinkAllowed Checks if two documents can be linked
TransferOwnership Transfers document from one user to another in the collabora

design environment

Using the File Description Record List

Many of the SmCADInterface methods use a record list of a certain format
to identify documents that are associated with SmarTeam objects. The
record list should include one or more records, with the following headers:

Header Type Size Description

FILE_NAME CHAR 256 Full file name, including directory and file
name

TDM_COMPONENT_NAME CHAR 256 Name of the component or configuration, m
be empty

INTEGRATION_BEHAVIOR CHAR 256 Integration behavior name as defined in th
integration’s data model.

Example

Dim FullPath As String

FileDescription.AddHeader "FILE_NAME",256,TDMT_CHAR

FileDescription.AddHeader "INTEGRATION_BEHAVIOR",256,TDMT_CHAR

FileDescription.AddHeader "TDM_COMPONENT_NAME",256,TDMT_CHAR

FileDescription.Value("FILE_NAME",0) = "c:\work\p01.sldprt"

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 302

FileDescription.Value("INTEGRATION_BEHAVIOR",0) = "TDM_SW_PART"

FileDescription.Value("TDM_COMPONENT_NAME",0) = "Default"

In addition to the attributes shown above, FileDescription can also include
other attributes that are added to the specified document’s profile card
during Save/Update operations.

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to SmCADInterface.

CADInterface Task:
Connecting to the SmarTeam Database

The first call to the SmCADInterface object must be to the method
Initialize. This method creates the connection to the SmarTeam database
and opens the login screen, as shown in this example:
Dim RetCode as Integer

Dim CADInterface as SmCADInterface

Set CADInterface = Session.GetService (“SmCad.SmCADInterface”)

RetCode = CADInterface.Initialize(“Microsoft Word”)

To deactivate the integration, call the Terminate method. This method
disconnects the user from the SmarTeam database:
CADInterface.Terminate()

CADInterface Task:
Adding/Updating Document Descriptions

The OdmaSave method enables you to add or update a document’s
description inside the SmarTeam database, as shown in the following
example:
Dim RetCode As Integer

Dim ShowSaveAsDialog as Integer

Dim ForceSaveAs as Integer

ShowSaveAsDialog = 1

ForceSaveAs = 0

Chapter 8, SmarTeam - Workflow Library

303

RetCode = SmCADInterface.OdmaSave(FileDescription, ShowSaveAsDialog,
ForceSaveAs)

CADInterface Task:
Adding/Updating Document Links

The SaveObjectsAndLinks and UpdateLinks methods allow you to add and
update SmarTeam links between one document object and other related
document objects. The document’s links are added, deleted or updated in
the SmarTeam database to reflect the current links in the CAD integration.

Updating Links

When the SmarTeam objects corresponding to the CAD documents are
related by links with specific behavior, you update them by calling the
method SaveObjectsAndLinks or UpdateLinks. The difference between
these methods is that SaveObjectsAndLinks updates the links and also
saves the objects that were not yet saved in the SmarTeam database.

For example, consider a SolidWorks assembly A1 that has SolidWorks
parts P1 and P2 as components. A1, P1, and P2 are represented by
SmarTeam objects that are linked with links with behavior “Composed
Of”: A1 P1 and A1 P2.

Suppose that, in the CAD integration, the user deletes part P2 from the
assembly A1 and adds part P3. In order to update the SmarTeam database
accordingly, you call UpdateLinks with assembly A1 as a single record in
the FileDescription parameter and the two components P1 and P3 as
separate records in the References parameter and a single record containing
TDM_SW_COMPOSED_OF record in the LinkBehaviors parameter. The
method acts to delete SmarTeam link A1 P2, and to add a new
SmarTeam link A1 P3.

Note: You must make a separate call to UpdateLinks for each hierarchical
level in the assembly in which a change was made.

Note: If P1 has two instances (records) inside the References record list,
then its link quantity value will be set to “2”.

Note: If any of the documents referred to the input record lists do not yet
exist as objects inside SmarTeam and the SaveObjectsAndLinks is called,
then a new profile card will be created for them.

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 304

Example

The following example shows how to use the method
SaveObjectsAndLinks to update a SolidWorks assembly in the SmarTeam
database.
Dim RetCode As Integer

Dim FileDescription As ISmRecordList

Dim References As ISmRecordList

Dim LinkBehaviors As ISmRecordList

' Load the assembly information into the FileDescription record list

Set FileDescription = New SmRecList.SmRecordList

FileDescription.AddHeader "FILE_NAME",256,TDMT_CHAR

FileDescription.AddHeader "INTEGRATION_BEHAVIOR",256,TDMT_CHAR

FileDescription.AddHeader "TDM_COMPONENT_NAME",256,TDMT_CHAR

FileDescription.Value("FILE_NAME",0) = "c:\work\p01.sldASM"

FileDescription.Value("INTEGRATION_BEHAVIOR",0) = "TDM_SW_ASSEMBLY"

FileDescription.Value("TDM_COMPONENT_NAME",0) = "Default"

' Load each part and document in a separate record in the

‘ References record list

 Set References = New SmRecList.SmRecordList

References.AddHeader "FILE_NAME",256,TDMT_CHAR

References.AddHeader "INTEGRATION_BEHAVIOR",256,TDMT_CHAR

References.AddHeader "TDM_COMPONENT_NAME",256,TDMT_CHAR

References.AddHeader "LINK_BEHAVIOR",256,TDMT_CHAR

References.Value("FILE_NAME",0) = "c:\work\p01.sldprt"

Chapter 8, SmarTeam - Workflow Library

305

References.Value("INTEGRATION_BEHAVIOR",0) = "TDM_SW_PART"

References.Value("TDM_COMPONENT_NAME",0) = "Default"

References.Value("LINK_BEHAVIOR",0) = "TDM_SW_COMPOSEDOF"

References.Value("FILE_NAME",1) = "c:\work\table1.xls"

References.Value("INTEGRATION_BEHAVIOR",1) = "TDM_EXCEL_DOCUMENT"

References.Value("TDM_COMPONENT_NAME",1) = ""

References.Value("LINK_BEHAVIOR",1) = "TDM_SW_TABLE_LNK"

Set LinkBehaviors = New SmRecList.SmRecordList

‘ Load link behaviors specified in References parameter

LinkBehaviors.AddHeader “LINK_BEHAVIOR",256,TDMT_CHAR

LinkBehaviors.Value("LINK_BEHAVIOR",0) = "TDM_SW_COMPOSEDOF"

LinkBehaviors.Value("LINK_BEHAVIOR",1) = "TDM_SW_TABLE_LNK"

RetCode =SmCADInterface.SaveObjectsAndLinks (FileDescription,
References,LinkBehaviors)

CADInterface Task:
Retrieving Document Information

The FindObject method enables you to retrieve a document’s class ID and
object ID.

The document is searched inside the set of classes, which are defined for its
FILE_TYPE. The database query is based on the full path from the
FILE_NAME header, which is used for the file name and directory fields.

If the “Additional Identifier” attribute is set inside the FileDescription
record list, then it will also be used as a search field, in addition to the
document’s file name and directory. The additional identifiers can be
defined inside the “Special Attributes” property group.
Dim FileDescription As SmRecList.SmRecordList

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 306

Dim RetCode As Integer

Dim ObjectId As Integer

Dim ClassId As Integer

FileDescription = SmRecList.NewRecordList

FileDescription.AddHeader "FILE_NAME",256,TDMT_CHAR

FileDescription.AddHeader "INTEGRATION_BEHAVIOR",256,TDMT_CHAR

FileDescription.AddHeader "TDM_COMPONENT_NAME",256,TDMT_CHAR

FileDescription.Value("FILE_NAME",0) = "c:\work\p01.sldprt"

FileDescription.Value("INTEGRATION_BEHAVIOR",0) = "TDM_SW_PART"

FileDescription.Value("TDM_COMPONENT_NAME",0) = "Default"

RetCode = SmCadInterface.FindObject(FileDescription, ObjectId, ClassId)

CADInterface Task:
Opening a Document’s Profile Card

The Locate method enables you to open the active document’s profile card,
as shown below:
Dim RetCode As Integer

RetCode = SmCADInterface.Locate(FileDescription)

CADInterface Task:
Performing Life Cycle Operations

The following methods enable you to perform life cycle operations on a
document:

Chapter 8, SmarTeam - Workflow Library

307

• CheckIn
• CheckOut
• Release
• NewRelease
• Obsolete

The syntax for the life cycle operation methods is shown below:
Dim RetCode As Integer

RetCode = SmCADInterface.CheckIn(FileDescription)

RetCode = SmCADInterface.CheckOut(FileDescription)

RetCode = SmCADInterface.Release(FileDescription)

RetCode = SmCADInterface.NewRelease(FileDescription)

RetCode = SmCADInterface.Obsolete(FileDescription)

CADInterface Task:
Managing SmarTeam API Windows

The SetMainWindowHandle method defines the main application window
handle as the owner window of all SmarTeam API windows. Setting main
window handle ensures that window management problems, such as those
caused by the use of accelerator keys, are avoided, and that all SmarTeam
windows are correctly closed on application termination.

The following example shows how to use this method:
Dim RetCode As Integer

Dim Wnd As HWND

Set Wnd = WinFind(“Microsoft Word”)

If Wnd Is Nothing Then

 MsgBox “Word Application is not active”

Else

 RetCode = SmCADInterface.SetMainWindowHandle(Wnd)

End If

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 308

CADInterface Task:
Updating CAD File Properties in a Life-Cycle Operation

As mentioned above, the CAD document property information is stored in
the CAD file’s property fields. Among these file properties is revision and
life-cycle state information.

When a SmarTeam life-cycle check in or release operation is performed on
an object, the object’s associated file is moved to the appropriate secured
vault. During the life-cycle operation, the SmarTeam life-cycle mechanism
can move a file to a vault but it does not have the ability to perform
changes on the file’s property fields, in particular it cannot update the file’s
revision and state information.

The SmCADInterface object provides a function ApplUpdateProperties and
an event OnLFCOperation, which enables you to write a function in the
CAD application that receives updated revision and state information from
SmarTeam and updates the CAD file properties as a SmarTeam life-cycle
operation is taking place.

Checking In an Object

For example, the following figure shows the sequence of operations that
occurs when the CAD application checks in a CAD object.

Chapter 8, SmarTeam - Workflow Library

309

CAD Application SmarTeam

CAD Document Document Object

LFCYC_MassOperationEx

ApplUpdateProperties
(ObjectList, TaskList,1)

Fire_OnLFCOperation
(TaskList)SmCadEvents_

OnLFCOperation(TaskList)

ISmCADInterface::Check-In

Complete Check-in

1

2

3
4

5

6

7 Move updated CAD file to vaultUpdate CAD file properties

CAD File
Properties

CAD File

The figure shows the following sequence of operations:

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 310

• The Check In API method is called in the CAD application, causing
SmarTeam to begin checking in the corresponding SmarTeam object.

• The SmarTeam check in function calls the SmCADInterface method
ApplUpdateProperties (ObjectList, TaskList,1) to transfer the TaskList.
This method is called only if the SmCADInterface service is included
in the session.

• ApplUpdateProperties causes SmCADInterface to fire an event -
OnLFCOperation (TaskList).

• The event activates the CAD Application function
SmCadEvents_OnLFCOperation (TaskList).

Using information from the TaskList, the CAD Application sets the life-
cycle revision and state properties in the CAD file to coordinate with the
properties in the corresponding SmarTeam object, before the CAD file is
moved to the secured vault.

Control is returned to the SmarTeam check in function to complete the
check in process.

The CAD file is moved to the secured vault.

Example

The following is an example of a function in the CAD application, which is
activated by the OnLFCOperation event. It updates the CAD file
properties.
Private Sub SmCadEvents_OnLFCOperation(ByVal TaskList As Object)

Dim Cnt As Long

Dim i As Long

Dim SmTaskList As SmRecList.SmRecordList

Dim FileDescription As SmRecList.SmRecordList

Dim FileName As String

Dim TempFileName As String

Dim Directory As String

Dim FullPath As String

Dim oSmClass As ISmClass

Chapter 8, SmarTeam - Workflow Library

311

Dim IsCheckedIn As Boolean

Dim CurrObjId As Long

Dim intClassID As Integer

Dim FileDesc As SmRecList.SmRecordList

Dim lngObjectID As Long

Dim TDMRet As Integer

ST_SetUpFileDescription FileDesc

ST_ActiveDocs_UpdateFileDesc FileDesc

TDMRet = SmCADInterface.FindObject(FileDesc, lngObjectID, intClassID)

Set SmTaskList = TaskList

Cnt = SmTaskList.RecordCount

For i = 0 To Cnt - 1

 FileName = SmTaskList.ValueAsString("CURR_FILE_NAME", i)

 If Len(FileName) > 0 Then

 Directory = SmTaskList.ValueAsString("CURR_DIRECTORY", i)

 FullPath = Directory & "\" & FileName

 CurrObjId = SmTaskList.ValueAsInteger("OBJECT_ID", i)

 If ObjectID = CurrObjId Then

 ' Set the revision attributes

 Set FileDescription = SmApplication.NewRecordList

 FileDescription.CopyRecord SmTaskList, i, 0

 ' Update CAD file properties

 SetProps_FileDesc_to_IA FileDescription

 ' Check if document is checked in

 IsCheckedIn = GetCheckedInDoc(SmTaskList, i)

 If IsCheckedIn = True Then

 ' Copy the document back to the vault

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 312

 TempFileName = "Temp" & ActiveWorkbook.Name

 ActiveWorkbook.SaveAs FileName:=TempFileName, AddToMRU:=False

 Directory = ActiveWorkbook.Path

 ST_FileClose "NoSave"

 ReplaceCheckedInDoc SmTaskList, i, Directory, TempFileName

 End If

 If IsCheckedIn = False Then

 ST_FileClose "Save"

 End If

 End If

 End If

Next i

End Sub

Chapter 8, SmarTeam - Workflow Library

313

CADInterface Task:
Invoking a User-Defined Command From the CAD Application

You can define a user-defined SmarTeam command by a script and invoke
it from a CAD application using the function:
InvokeScriptWithList(SmRecList, Command)

The parameter SmRecList is loaded with the object attributes you want to
be input to the script. This parameter is equivalent to the input parameter
FirstParam in the normal usage of SmarTeam script hooks.

The parameter Command is the name of the script, as installed in
SmarTeam by the Script Maintenance utility.

Calling this function from the CAD application is equivalent to activating a
user-defined command from a SmarTeam menu. The difference is that a
SmarTeam user command is associated with a specific SmarTeam object
and the user command script automatically receives the object’s attributes
in its FirstParam input record list. When you use InvokeScriptWithList
from a CAD application, there is no automatic association with a
SmarTeam object so you need to create and fill the record list that will be
used as FirstParam when the script is activated.

Example

The following example code is placed in the CAD application. It prepares
the record list parameter RecList that will be used by the script as input
parameter FirstParam. The code then calls InvokeScriptWithList, which
runs the named script with the prepared record list as FirstParam.

Dim RetCode as Integer

Dim RecList as SmRecList.SmRecordList

Dim ScriptName as String

ScriptName = "MyScript"

' Prepare the input record list

Set RecList = new SmRecList.SmRecordList

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 314

' Set required headers and values inside the input RecList...

. . .

' Invoke the script

RetCode = SmCADInterface.InvokeScriptWithList(RecList, ScriptName)

CADInterface Task:
Improving Performance of Mass Save Operations

Two functions BeginSaveOperation and EndSaveOperation are provided to
improve performance of the CADInterface for mass save operations using
Save and ODMA Save.

The functions BeginSaveOperation and EndSaveOperation are used before
and after a mass save operation, for example:
IntgToolLib.BeginSaveOperation

 IntgToolLib.Save

IntgToolLib.EndSaveOperation

Where the library function IntgToolLib.Save might perform a save of an
entire assembly with all of its parts.

The effect of these operations is to minimize accesses to the SmarTeam
data base and optimize operations in memory by retaining common
information in memory during the save.

CADInterface Task:
Improving Search Performance

The function
GetChildrenWithCopies(ClassId, ObjId, SelectAttributeList, ChildrenList)

retrieves all immediate children of an object with a single access to the
database. The information about the children is stored in memory in
ChildrenList. You can now search the ChildrenList for information
efficiently without using multiple accesses to the database.

Chapter 8, SmarTeam - Workflow Library

315

Example

The following is an example using the function GetChildrenWithCopies.
The example loads all children of an object into the ChildrenList record list
in memory and searches it for a child with the file name
Component.FileName. Once found, other information about the child such
as Object ID can be obtained.
‘ Calling function

Private Function SaveAssyStruct

 Dim ChildrenList As SmRecList.SmRecordList

 Set ChildrenList = New SmRecList.SmRecordList

 ‘ Load children into ChildrenList

 GetChildren(ChildrenList)

 Cnt = Children.Count

 ‘ Search for child according to file name

 For I=0 to Cnt

 Found = FindChild(Component(I).FileName, ChildrenList)

 If Not Found then

 ‘Look For the component inside the database

 End if

 End for

End Function

Private Function GetChildren(ChildrenList As SmRecList.SmRecordList) As
Integer

 Dim RetCode As Integer

 Dim SelectList As SmRecList.SmRecordList

 Dim SmCadInterface As SmCadInterface

 Set SelectList = New SmRecList.SmRecordList

 SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 316

 ' Add attributes to the Additional attributes list

 SelectList.AddHeader "COL_NAME", 256, sdtChar

 SelectList.SetValueAsString "COL_NAME", 0, "FILE_NAME"

 SelectList.SetValueAsString "COL_NAME", 1, "STATE"

 ' Call GetChildrenWithCopies

 RetCode = SmCadInterface.GetChildrenWithCopies(AssyClassId, AssyObjId,
SelectList, ChildrenList)

 GetChildren = RetCode

End Function

Private Function FindChild(FileName As String, ChildrenList As
SmRecList.SmRecordList) As Boolean

 Dim Found As Boolean

 Dim ChildFileName As String

 Dim State As Long

 Dim i As Integer

 Dim Cnt As Integer

 Found = False

 Cnt = ChildrenList.RecordCount

 For i = 0 To Cnt

 State = ChildrenList.ValueAsInteger("STATE", i)

 If State = 0 Or State = 2 Then ' new or checked out

 ChildFileName = ChildrenList.ValueAsString("FILE_NAME", i)

 Else

 ChildFileName = ChildrenList.ValueAsString("COPY_FILE_NAME", i)

 End If

Chapter 8, SmarTeam - Workflow Library

317

 If LCase$(ChildFileName) = LCase$(FileName) Then

 Found = True

 Exit For

 End If

 Next

 FindChild = Found

End Function

 318

10. SmIntegrationTool Library

Introduction

The SmIntegrationTool library enables you to perform the following
functions:
• Define default class and File Type for the Integration Behaviors
• Set up mappings between CAD file property fields and SmarTeam class

attributes in an integration

SmarTeam CAD Integration

The SmarTeam Integration Tool, by enabling you to map objects of an
integrated CAD tool such as SolidWorksTM or Microsoft WordTM to objects
in SmarTeam, lets you apply the power of SmarTeam to the CAD tool.

As shown in the following figure, the different CAD file types are mapped
to SmarTeam classes and the CAD file property fields are mapped to the
corresponding SmarTeam class attributes. For example, when a
SolidWorks Part CAD file is mapped to the SmarTeam class
SolidWorksPart, the Summary Information/Author property field of the
CAD file can be mapped to the Object ID class attribute of the
SolidWorksPart class. Now you can use that field in the CAD file for the
SolidWorksPart User Object ID.

In addition, the CAD file is also linked to the corresponding SmarTeam
class as an associated file; SmarTeam can manage the disposition of the
CAD file in the SmarTeam vaults.

Chapter 9 discusses the SmarTeam CAD Interface library, which can be
used once the SmarTeam integration is in place and the mappings
established.

319

CAD Document

CAD Application SmarTeam

CAD Interface API

CAD File
Properties

CAD FileType1

Associated File

CAD File
Properties

CAD FileType2

Class
Properties

CAD Class1

Class
Properties

CAD Class2

Main CAD Class

Property Mappings

Property Mappings

Associated File

Figure 10-1 SmarTeam CAD IntegrationOverview of Objects

This section presents an overview of the main SmarTeam IntegrationTool
objects including a description of the associated objects that are useful for
the programmer:
• ISmIntegrationStore Object
• ISmCadFileTypes Object
• ISmPropertyGroupTypes Object
• ISmIntegrationGUIStore

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 320

ISmIntegrationStore

The ISmIntegrationStore object is the highest level object in the library. It
contains objects for all SmarTeam Integrations. For each specific
SmarTeam Integration, for example, the SolidWorks Integration,
ISmIntegrationStore contains a ISmSpecificIntegrationStore object, which
includes the objects for that Integration.

Object Diagram

The ISmIntegrationStore object and its major objects are shown in the
following object diagram:

321

ISmIntegrationStore

SpecificIntegrationStore
(IntegrationName1)

PropertyGroupTypes

CadFileTypes

SpecificIntegrationStore
(IntegrationName2)

PropertyGroupTypes

CadFileTypes

SpecificIntegrationStore
(IntegrationName3)

PropertyGroupTypes

CadFileTypes

 Figure 10-2 ISmIntegrationStore Object Diagram

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 322

Properties

The ISmIntegrationStore object contains the major properties:
Property Description

Session Returns an SmSession object that represents the parent
session.

SpecificIntegrationStore Returns the SmSpecificIntegrationStore object for Integratio

Methods

The ISmIntegrationStore object contains the methods:
Method Description

NewPropertyGroup
(PropertyGroupType)

Creates a new property group under the property group typ

NewGroupProperty
(PropertyGroup)

Creates a new group property inside the PropertyGroup

GetGroupTypesForApplication
(IntegrationName)

Returns all property group types that are defined for the
application

NewGroupPropertyMapping
(GroupProperty)

Creates a new attribute mapping for the GroupProperty

GetFileTypesForIntegration
(IntegrationName)

Return all SmCadFileTypes that are defined for the applicat

GetApplicationName
(IntegrationName)

Returns the application (integration) name

Get_SpecificIntegrationStore
(IntegrationName)

Return the SmSpecificIntegrationStore for the application. N
modifications can be done inside the SmCadFileTypes after
this call.

GetIntegrationGUIStore Returns the SmIntegrationGUIStore, which is used to displa
dialogs form the integration tools utility.

IntegrationRegistered
(IntegrationName)

Returns true in case the integration is defined inside the
database

GetIntegrationRegistry
(IntegrationName)

Returns the SmCADIntegrationRegistry for the application

323

ISmSpecificIntegrationStore

Properties

The ISmSpecificIntegrationStore object contains the major properties:
Property Description

Integration Name The name of the specific SmarTeam Integration, for example,
SolidWorks

CadFileTypes Types of CAD files for this Integration
PropertyGroupTypes Returns an SmPropertyGroupTypes collection object represen

the integration mapping group types.
PropertyGroups Returns an SmIntegrationPropertyGroups collection object

representing the integration mapping groups.
GroupProperties Returns an SmIntegrationGroupProperties collection object

representing the integration mapping properties.
ClassesMappings Returns an SmIntegrationClassesMappings collection object

representing the integration mappings attributes.
CadFileTypes Returns an SmCadFileTypes collection object representing the

integration supported file types.
ManagedClasses Returns an SmIntegrationManagedClasses collection object

representing the integration managed classes.
DefaultManagedClasses Returns an SmIntegrationManagedClasses collection object

representing the integration default managed classes.
IntegrationStore Returns the ISmIntegrationStore object

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 324

Methods

The ISmSpecificIntegrationStore object contains the methods:
Method Description

SmClassMappingByAttribute
(SmClassAttribute, GroupProperty)

Returns a ISmClassMapping for SmClassAttribute an
GroupProperty

AllMappingsForPropertyName
(PropertyName)

Returns a ISmIntegrationClassesMappings object fo
Property

SmCadFileType
(FileTypeId)

Returns the SmCadFileType according to the file typ
object id

AllMappingsForClassByGroupName
(GroupName, ClassId)

Returns the ISmIntegrationClassMappings object fo
Group and ClassId

GetManagedClassesForBehavior
(Integration Behavior)

Retrieves classes that support the specified Integrat
Behavior

GetDefaultManagedClassForBehavior
(Integration Behavior)

Retrieves the default class assigned for the specified
Integration Behavior

ManagedClassesForCadFileType
(SmCadFileType)

Returns ISmManagedClasses for CadFileType.

DefaultManagedClassForCadFileType
(SmCadFileType)

Returns the ISmManagedClass for SmCadFileType

MappingsForGroupProperty
(SmGroupProperty)

Returns the ISmClassesMappings for Group Propert

PropertiesForGroup
(SmPropertyGroup)

Returns the ISmGroupProperties for PropertyGroup

GroupsForGroupType
(SmPropertyGroupType)

Returns the ISmPropertyGroups for PropertyGroupT

Correspondence with Integration Tool

The above objects are shown on the Integration Tool screen in Figure 10-3.
The correspondence between objects on the screen and objects in the
SmIntegrationTool Library are described in the table following the figure.

325

Figure 10-3 Integration Tool Screen

Object on Integration Tool Screen Object in SmIntegrationTool Library

All Integrations ISmIntegrationStore
SolidWorks SpecificIntegrationStore
Supported component types CadFileTypes
Mapping group types PropertyGroupTypes
AutoCad SpecificIntegrationStore
Supported component types CadFileTypes
Mapping group types PropertyGroupTypes
. . .

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 326

ISmCadFileTypes

A ISmCadFileTypes object is a collection of ISmCadFileType objects and
represents all mappings of Integration file types to the corresponding
SmarTeam managed classes.

Object Diagram

The ISmCadFileTypes components and their corresponding objects are
shown in the following object diagram:

ISmCadFileTypes

ISmCadFileType

IntegrationName

FileType

Data

IntegrationStore

DefaultClass

IntegrationBehavior

ManagedClasses

 Figure 10-4 ISmCadFileTypes Object Diagram

Obtaining the ISmCadFileTypes Object

To obtain an ISmCadFileTypes Object:
CadFileTypes =
IntegrationStore.SpecificIntegrationStore(IntegrationName1).CadFileTypes

327

Methods

The ISmCadFileTypes object has the following methods
Method Description

GetItemByBehavior Retrieves the Default File Type for the specified Integration Behavi

ISmCadFileType

The ISmCadFileType object represents CAD specific component types.

Properties

The ISmCadFileType object has the following properties
Property Description

IntegrationName Returns the associated integration name.
FileType Returns an SmLookUpObject object representing the referenced file type.

Data Returns an SmRecord object that represents object's data.
ManagedClasses Returns an SmManagedClasses collection object representing object's

managed classes
IntegrationStore Returns an SmIntegrationStore object representing the associated integra

store.
DefaultClass Returns an SmManagedClass object representing object's default class.
IntegrationBehavior Represents an integration behavior specific for the component type. See

CADInterface for examples of use.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 328

ISmManagedClasses

The ISmManagedClasses object represents the set of SmarTeam managed
classes to which a specific integration behavior is mapped.

Object Diagram

The ISmManagedClasses components and their corresponding objects are
shown in the following object diagram:

ISmManagedClasses

ISmManagedClass

SmClass

Default

CadFileType

 Figure 10-5 ISmCadFileTypes Object Diagram

329

ISmManagedClass

The ISmManagedClass object represents an individual SmarTeam class to
which the Integration Behavior is mapped.

Properties

ISmManagedClass object has the properties:
Property Description

SmClass Returns the ISmClass object which is linked to the managed class
Default True if object represents a default managed class (the class that is first

displayed inside the profile card, when adding a new object).
CadFileType Returns an SmCadFileType object that represents the parent supported

type.

Methods

The ISmManagedClass object has the following methods
Method Description

Save Saves managed class to the database.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 330

Correspondence with Integration Tool

The above objects are shown on the Integration Tool screen in Figure 10-6.
The correspondence between objects on the screen and objects in the
SmIntegrationTool Library are described in the table following the figure.

Figure 10-6 ISmCadFileType

331

Object on Integration Tool Screen Object in SmIntegrationTool Library

All Integrations ISmIntegrationStore
SolidWorks ISmSpecificIntegrationStore
Supported component types ISmCadFileTypes
SolidWorks Part ISmCadFileType
Classes mapped to SolidWorks Part: ISmManagedClasses
SolidWorks Part ISmManagedClass
Document ISmManagedClass

SolidWorks Assembly ISmCadFileType
Classes mapped to SolidWorks Assem ISmManagedClasses

SolidWorks Assembly ISmManagedClass

SolidWorks Drawing ISmCadFileType
Classes mapped to SolidWorks Drawin ISmManagedClasses

SolidWorks Drawing ISmManagedClass

eDrawing ISmCadFileType
Classes mapped to eDrawing: ISmManagedClasses
eDrawing ISmManagedClass
. . .

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 332

ISmPropertyGroupTypes

A ISmPropertyGroupTypes object is a collection of
ISmPropertyGroupType objects and represents all mappings of all types of
Integration file property fields to the corresponding SmarTeam managed
class attributes.

Object Diagram

The ISmPropertyGroupTypes components and their corresponding objects
are shown in the following object diagram:

ISmPropertyGroup
Types

ISmPropertyGroupType

Name

IntegrationName

Groups

Data

IntegrationStore

Exclusive

ReadOnly

 Figure 10-7 ISmPropertyGroupTypes Object Diagram

Obtaining the ISmPropertyGroupTypes Object

To obtain an ISmPropertyGroupTypes Object:

333

PropertyGroupTypes =
IntegrationStore.SpecificIntegrationStore(IntegrationName1).PropertyGroupTypes

Adding a New ISmPropertyGroupType to the Collection

You use the AddPropertyGroupType (const GroupTypeName: WideString,
Exclusive: WordBool, ReadOnly: WordBool):
ISmRegisteredPropertyGroupType method of the
ISmCADIntegrationRegistry object to add a new ISmPropertyGroupType
object to the ISmPropertyGroupTypes collection.

AddPropertyGroupType Method

The AddPropertyGroupType method is called as follows:
Set IntegrationRegistry = ISmIntegrationStore.
CreateIntegrationRegistry(IntegrationName1, Image)

RegisteredPropertyGroupType =
IntegrationRegistry.AddPropertyGroupType(GroupTypeName, Exclusive, ReadOnly)

The arguments of the method are:
Argument Description

GroupTypeName Name for the property group (hard coded)
Exclusive True if group type is exclusive.
ReadOnly True if group type is read only.

See the example in the section ISmCadFileTypes.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 334

ISmPropertyGroupType

The ISmPropertyGroupType object represents all mappings of an specific
type of Integration file property field to a set of SmarTeam classes.

Properties

The ISmPropertyGroupType object has the following properties
Property Description

Name Returns the group type name.
IntegrationName Returns the associated integration name.
Groups Returns an SmPropertyGroups collection object representing the object's

mapping groups.
Data Returns a SmRecord object that represents object's data.
SmIntegrationStore Returns a SmIntegrationStore object representing the associated integra

store.
Exclusive True if group type is exclusive, i.e., no more than one group exists inside

group type.
ReadOnly True if group type is read only.

Correspondence with Integration Tool

The above objects are shown on the Integration Tool screen in Figure 10-8.
The correspondence between objects on the screen and objects in the
SmIntegrationTool Library are described in the table following the figure.

335

Figure 10-8 Mapping Group Types

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 336

Object on Integration Tool Screen Object in SmIntegrationTool Library

All Integrations ISmIntegrationStore
SolidWorks SpecificIntegrationStore
Supported component types CadFileTypes
Mapping group types PropertyGroupTypes
Summary Information PropertyGroupType
Custom Properties PropertyGroupType
Title Block PropertyGroupType
. . .

ISmPropertyGroups

An ISmPropertyGroups object is a collection of ISmPropertyGroup objects
and represents all groups of mappings of a specific type of Integration file
property field to the corresponding SmarTeam managed class attributes.

Object Diagram

The ISmPropertyGroupTypes components and their corresponding objects
are shown in the following object diagram:

337

ISmPropertyGroups

ISmPropertyGroup

Name

Description

GroupType

Properties

IntegrationName

Data

 Figure 10-9 ISmPropertyGroups Object Diagram

Obtaining the ISmPropertyGroups Object

To obtain an ISmPropertyGroups Object:
PropertyGroups =
IntegrationStore.SpecificIntegrationStore(IntegrationName1).PropertyGroupType.
Groups

Adding a New ISmPropertyGroup to the Collection

You use the AddPropertyGroup(const GroupTypeName: WideString,
Exclusive: WordBool, ReadOnly: WordBool):
ISmRegisteredPropertyGroup method of the ISmCADIntegrationRegistry
object to add a new ISmPropertyGroup object to the ISmPropertyGroups
collection.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 338

AddGroup Method

The AddGroup method is called as follows:
Set IntegrationRegistry = ISmIntegrationStore.
CreateIntegrationRegistry(IntegrationName1, Image)

RegisteredPropertyGroupType =
IntegrationRegistry.AddPropertyGroupType(GroupTypeName, Exclusive, ReadOnly)

Set ISmRegisteredPropertyGroup =
RegisteredPropertyGroupType.AddGroup(GroupName, GroupDescription)

The arguments of the method are:
Argument Description

GroupName Name for the property group (hard coded)
GroupDescription Description for the property group.

Add Method

Alternatively you can use the Add method of is ISmPropertyGroups as
follows:
Get PropertyGroupType

Set SmPropertyGroup = ISmIntegrationStore.
NewPropertyGroup(PropertyGroupType):

ISmPropertyGroups.Add(SmPropertyGroup)

Example

See the example in the section ISmCadFileTypes.

ISmPropertyGroup

The ISmPropertyGroup object represents a mapping of a specific type of
Integration file property field to a set of SmarTeam classes.

339

Properties

The ISmPropertyGroup object has the following properties
Property Description

Name Returns the group type name.
Description Returns or sets the group description.
GroupType Returns an SmPropertyGroupType object representing the parent

mapping group type.
Properties Returns an SmGroupProperties collection object representing the

object's mapping properties.
IntegrationName Returns the associated integration name.
Data Returns an SmRecord object that represents object's data.

Methods

The ISmPropertyGroup object has the following methods
Method Description

Save Saves the property group to the database.

Correspondence with Integration Tool

The above objects are shown on the Integration Tool screen in Figure
 10-10. The correspondence between objects on the screen and objects in
the SmIntegrationTool Library are described in the table following the
figure.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 340

Figure 10-10 Mapping a Property Group

Object on Integration Tool Screen Object in SmIntegrationTool Library

Summary Information groups ISmPropertyGroups
Summary Information ISmPropertyGroup
GroupProperties for this PropertyGroup: ISmGroupProperties
 Title ISmGroupProperty
 Subject ISmGroupProperty
 Author ISmGroupProperty
 Keywords ISmGroupProperty
 Comments ISmGroupProperty

ISmGroupProperties

A ISmGroupProperties object is a collection of ISmGroupProperty objects
and represents all properties of mappings of a specific group of Integration
file property fields to the corresponding SmarTeam managed class
attributes.

341

Object Diagram

The ISmGroupPropertyTypes components and their corresponding objects
are shown in the following object diagram:

ISmGroupProperties

ISmGroupProperty

Name

Updatable

Mappings

Group

Data

MappingsClassType

PropertyType

Description

 Figure 10-11 ISmGroupProperties Object Diagram

Obtaining the ISmGroupProperties Object

To obtain an ISmGroupProperties Object:
GroupProperties =
IntegrationStore.SpecificIntegrationStore(IntegrationName1).GroupPropertyType.
Groups(i).Properties

Adding a New ISmGroupProperty to the Collection

You use the Add method of the ISmGroupProperties object to add a new
GroupProperty to the group.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 342

Add Method

You can use the Add method of is ISmGroupProperties as follows:
Get PropertyGroup

Set SmGroupProperty = ISmIntegrationStore. NewGroupProperty(PropertyGroup):

ISmGroupProperties. Add(SmGroupProperty))

Example

The following example shows how to add a property group to the Mass
Properties” group type.
Dim SmRegisteredPropertyGroupType as ISmRegisteredPropertyGroupType

Dim SmRegisteredPropertyGroup as ISmRegisteredPropertyGroup

Set SmRegisteredPropertyGroupType = SmCADIntReg.AddPropertyGroupType(“Mass
Properties”, True, True)

if Not SmRegisteredPropertyGroupType is Nothing then

 Set SmRegisteredPropertyGroup =
SmRegisteredPropertyGroupType.AddGroup(“Mass Properties”, “Mass Properties”)

 If Not SmRegisteredPropertyGroup is Nothing then

 SmRegisteredPropertyGroup.AddProperty “Volume”, “Volume”
 TDMT_DOUBLE, ctAll, True

 SmRegisteredPropertyGroup.AddProperty “Area”, “Area”, TDMT_DOUBLE,
ctAll, True

 End If

End If

343

ISmGroupProperty

The ISmGroupProperty object represents a mapping of a specific type of
Integration file property field to a set of SmarTeam classes.

Properties

The ISmGroupProperty object has the following properties
Property Description

Name Returns or sets property name.
Updatable True if property can be updated by a SmarTeam attribute.
Mappings Returns an SmClassesMappings collection object representing the

object's mapping attributes.
Group Returns an SmPropertyGroup object representing the parent mapp

group.
Data Returns an SmRecord object representing object's data.
MappingsClassType Returns or sets possible mapped classes type.
PropertyType Returns or sets the property type.
Description Returns or sets the property description.

Methods

The ISmGroupProperty object has the following methods
Method Description

Save Saves group property to the database.

Correspondence with Integration Tool

The above objects are shown on the Integration Tool screen in Figure
 10-10. The correspondence between objects on the screen and objects in
the SmIntegrationTool Library are described in the table following the
figure.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 344

Figure 10-12 Mapping Group Properties

Object on Integration Tool Screen Object in SmIntegrationTool Library

Summary Information groups ISmPropertyGroups
Summary Information ISmPropertyGroup
GroupProperties for this PropertyGrou ISmGroupProperties

Title ISmGroupProperty
Subject ISmGroupProperty
Author ISmGroupProperty
Keywords ISmGroupProperty
Comments ISmGroupProperty

 345

ISmClassesMappings

A ISmClassesMappings object is a collection of ISmClassMapping objects
and represents all mappings of a specific Integration file property field to
the corresponding SmarTeam managed class attribute. This
ISmClassesMappings object collects the mappings from this CAD file
property field (GroupProperty) to a SmarTeam class attribute for all CAD
files in this integration. For example, each of the SolidWorks CAD file
types has an Author field. For each file type, the Author field is mapped to
the User Object ID class attribute for the corresponding class, i.e. the
Author field of the SW Assembly file is mapped to the User Object ID
attribute of the SW Assembly class.

Object Diagram

The ISmClassMappingTypes components and their corresponding objects
are shown in the following object diagram:

ISmClassesMappings

ISmClassMapping

GroupProperty

Attribute

Updatable

MaxLength

Data

SmClass

 Figure 10-13 ISmClassesMappings Object Diagram

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 346

Obtaining the ISmClassesMappings Object

To obtain an ISmClassesMappings Object:
Mappings = IntegrationStore.SpecificIntegrationStore(IntegrationName1).
GroupPropertyType.Groups(i).Properties(i).Mappings

ISmClassMapping

The ISmClassMapping object represents a mapping of an specific
Integration file property field to a set of SmarTeam classes.

Adding a New ISmClassMapping

You can add a new ISmClassMapping as follows:
Get GroupProperty

Set SmClassMapping = ISmIntegrationStore.

NewGroupPropertyMapping(GroupProperty)

SmClassMapping.SmClass = SmClass

SmClassMapping.Attribute = SmClassAttribute

SmClassMapping.MaxLength = SizeInt

SmClassMapping.Updatable = True

SmClassMapping.Save

Properties

The ISmClassMapping object has the following properties
Property Description

GroupProperty Returns an SmGroupProperty object representing the parent mapping
property.

Attribute Returns or sets the mapping attribute.
Updatable True if SmarTeam attribute can be updated by the parent mapping

property.
MaxLength Returns or sets the maximum mapping size.
Data Returns an SmRecord object representing object's data.
SmClass Returns or sets an SmClass object representing the mapping class.

347

Methods

The ISmClassMapping object has the following methods
Method Description

Save Saves the class mapping to the database.

Correspondence with Integration Tool

The above objects are shown on the Integration Tool screen in Figure
 10-14. The correspondence between objects on the screen and objects in
the SmIntegrationTool Library are described in the table following the
figure.

Figure 10-14 Mappings for Group Property

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 348

Object on Integration Tool Screen Object in SmIntegrationTool Library

Summary Information groups ISmPropertyGroups
Summary Information ISmPropertyGroup
GroupProperties for this PropertyGroup: ISmGroupProperties
Title ISmGroupProperty
Subject ISmGroupProperty
Author ISmGroupProperty
Class Mappings for this Group Property: ISmClassesMappings
SolidWorks Assembly – User Object Id ISmClassMapping
SolidWorks Part – User Object Id ISmClassMapping
SolidWorks Drawing – User Object Id ISmClassMapping
eDrawing – User Object Id ISmClassMapping

349

ISmIntegrationGUIStore

The ISmIntegrationGUIStore object is used to display the objects in the
application.

Object Diagram

The ISmIntegrationGUIStore object and its major objects are shown in the
following object diagram:

ISmIntegrationGUIStore

SmIntegrationStore

PropertiesGroupsGUIService

 Figure 10-15 ISmIntegrationGUIStore Object Diagram

Properties

The ISmIntegrationGUIStore object contains the properties:
Property Description

SmIntegrationStore Returns the ISmIntegrationStore object
PropertiesGroupsGUIService Returns ISmSpecificIntegrationStore.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 350

Methods

The ISmIntegrationGUIStore object contains the methods:
Method Description

Init(SmIntegrationStore) Should be called right after the object was crea

ObjectProfile(PossibleClasses, Attributes,
AddToDesktop, ModalResult:)

Opens a profile card for new object

OpenClassManagementScreen
(IntegrationName)

Opens the managed classes dialog

ISmPropertiesGroupsGUIService

Properties

The ISmPropertiesGroupsGUIService object contains the major properties:

Property Description

SmIntegrationGUIStore Returns the SmIntegrationGUIStore object

Methods

The ISmPropertiesGroupsGUIService object contains the methods:
Method Description

OpenGroupAttributeView (SmPropertyGroup,
AddMode)

Opens a view with the attribute mapping

OpenGroupPropertiesTree
(SmPropertyGroup, MaxDepth)

Opens a tree view for a property group

OpenGroupPropertiesView
(SmPropertyGroup, WasChanged)

Opens a view with the properties

OpenGroupPropertyAttributeView
(SmGroupProperty, AddMode):
ViewModalResultEnum

Opens a modal attribute view for a group
property.

OpenGroupsTree
(SmPropertyGroupType, MaxDepth)

Opens a tree view for the property group typ

OpenGroupsView
(SmIntegrationName, WasChanged

Open groups view for a specific integration

OpenGroupsViewForSpecificGroupType
(SmGroupType, WasChanged)

Opens a view with all groups under a group

OpenGroupTypesTree
(IntegrationName, MaxDepth)

Opens a tree view with all group types for a
specific integration

OpenMappingsTree Opens a tree view with all mappings for a gr

351

(SmGroupProperty, MaxDepth) group property
OpenPropertyMappingAttributeView
(SmMapping, AddMode, CanModifyClass)

Opens a modal view for the class mapping

OpenPropertyMappingsView
(SmGroupProperty, WasChanged)

Opens a view with the mapping for a group
property

OpenSpecificClassPropertyMappingsView
(SmGroupProperty, ClassId, WasChanged)

Opens a view with mapping for a specific cla

Example

This example shows how to display the integration tool objects.
SmPropertiesGroupsGUIService = SmIntegrationGUIStore.
PropertiesGroupsGUIService

‘ Display the Add Property dialog

SmPropertiesGroupsGUIService.OpenGroupPropertyAttributeView(SmGroupProperty,
True)

‘ Display the Group Types tree for the application

GUIServices.OpenGroupTypesTree(“Microsoft Word”, dpthPropertyMappings)

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 352

PART III

SMARTEAM

CLIENT LIBRARIES

 353

 354

11. SmartIXF Library

Introduction

The IXF library enables you to perform the following functions:
• Generating an iXF schema
• Processing an iXF schema
• Generating an iXF Archive File
• Processing an iXF Archive File

The IXF format created and processed by the IXF library conforms to the
format described in the “IXF Specifications 1.0” document, available at
http://www.ixfstd.org/std/docs/ixf.

For additional information on the iXF format, see the IXF Standard web
site, at http://www.ixfstd.org.

Naming Conventions

This section describes the naming conventions used in this guide.

NCName

A valid NCName must begin with a letter or an underscore (_) and cannot
contain spaces; letters, digits, and underscores are allowed after the first
character:
NCName ::= (Letter | '_') (NCNameChar)

NCNameChar ::= Letter | Digit | '.' | '-' | '_'

For example: “PartMaster”. See also
http://www.w3.org/TR/REC-xml-names/#NT-NCName.

http://www.ixfstd.org/std/docs/ixf�
http://www.ixfstd.org/�
http://www.w3.org/TR/REC-xml-names/#NT-NCName�

 355

Class Behavior URI

A valid class behavior URI must contain a namespace and a behavior name,
separated by “#” as: Class Behavior URI : : = (Namespace) (‘#’) (Name).

For example,
“http://www.ixfstd.org/std/ns/core/classBehaviors/links/1.0#link”

Overview of Objects

This section presents an overview of the main SmartIxf objects including a
description of the associated objects that are useful for the programmer:

• ISmIxfSchema Object
• SmIxfWriter Object
• SmIxfReader Object
• ISmIxfStdHelper Object

http://www.ixfstd.org/std/ns/core/classBehaviors/links/1.0#link�

 356

ISmIxfSchema

The ISmIxfSchema object serves to organize and refer to the components
of the iXF schema document.

The Schema is maintained wholly in memory. The Schema can be saved to
a file in two ways:

Through SmIxfExternalSchemaWriter

When creating an archive file using the SmIxfWriter.

The ISmIxfSchema object is not a top-level object in the object hierarchy
but is contained in the following top-level objects:
• SmIxfWriter– for writing the iXF schema document
•

 357

• SmIxfReader – for reading the iXF schema document
• SmIxfExternalSchemaWriter – for writing an external iXF schema

document.
• SmIxfExternalSchemaReader– for reading an external iXF schema

document

Because of its importance, the ISmIxfSchema object is discussed separately
in this major section; refer to the sections for the above objects for
information on how the ISmIxfSchema object is included in those objects.

The schema components and their corresponding objects are shown in the
following object diagram:

 358

ISmIxfSchema

ClassesBehaviors

DomainBehaviors

Attributes

ClassBehavior

Attribute

TypeDefinition

DomainBehavior

RoleClassMapping

Classes

Class

CurrentClassBehaviors

ClassBehavior

CurrentClassAttributes

Attribute

Info

InfoItem

XmlAttributeValue

ObjectReferenceType
Definition

StringTypeDefinition

(CreateXmlAttributeValue)

(GetInfoItem)

 Figure 11-1 ISmIxfSchema Object Diagram

 Chapter 11, SmartIXF Library

359

Properties

The ISmIxfSchema object has the following properties
Property Description

Classes Collection ISmIxfClasses of schema classes.
ClassesBehaviors Collection ISmIxfClassesBehaviors of schema ClassBehaviors
DomainBehaviors Collection ISmIxfDomainBehaviors of schema DomainBehaviors
Info ISmIxfInfo object for holding miscellaneous information
SchemaLocation The physical location of the schema file
SchemaURI The Schema URI, which is the unique identifier of the schema.

Obtaining the ISmIxfSchema Object

To create an ISmIxfSchema Object from the SmIxfWriter Object (to create
a SmIxfWriter object see SmIxfWriter):
IxfWriter.Schema

A Schema object can also be obtained similarly from the SmIxfReader
Object, SmIxfExternalSchemaWriter Object, and from the
SmIxfExternalSchemaReader Object.

ISmIxfClassesBehaviors

An ISmIxfClassesBehaviors object is a collection of ISmIxfClassBehavior
objects and represents all ISmIxfClassBehavior objects related to the IXF
schema.
Note: This object is not the same as the ISmIxfClassBehaviors, which represents all

ISmIxfClassBehavior objects declared by a specific class.

Adding a New ClassBehavior to the IXF Schema

You use the Add method of the ClassesBehaviors object to add a new
ClassBehavior object to the IXF Schema. Once you have added a
ClassBehavior to the ClassesBehaviors object you can declare it in a
specific class. Before using the Add method, you need to understand how a
ClassBehavior is packaged.

ClassBehavior Schema File

A ClassBehavior object is defined in a ClassBehavior schema file. The
ClassBehavior schema file can be packaged either embedded in or external
to the IXF Archive file as described below.

 360

ClassBehavior Schema File Packaging State

The following table describes the packaging states of the ClassBehavior
schema file and the software constant used for each state. The packaging
state of the ClassBehavior schema file is described by the ModeTypeEnum
parameter of the Add function.

Packaging State Description ModeTypeEnum Software
Constant

Embedded The class behavior definition is created a
saved to a ClassBehavior schema file, w
is embedded in the iXF archive file. The
ClassBehavior schema is specified by th
namespace of the behavior.

mtEmbedded

External The class behavior was previously define
and the definition is in a schema file. The
ClassBehavior definition is taken from th
external ClassBehavior schema file.

The ClassBehavior schema file is not
embedded in the iXF package; it is spec
by its BehaviorURI.

mtExternal

Add Method

The Add method is called as follows:
Set ClassBehavior = Schema.ClassesBehaviors.Add(ModeTypeEnum, BehaviorURI,
[SchemaLocation], [Load=false])

The arguments of the method are:
Argument Description

Mode Packaging state of the schema – one of ModeTypeEnum. See table
above.

BehaviorURI The Error! Not a valid result for table.
SchemaLocation The behavior schema physical location. Specified only when the Mode

mtExternal.
Load Whether or not the behavior schema needs to be loaded. The default i

false. Can be set to true only when the Mode argument is mtExternal.

Example

Dim IxfClassBehavior as ISmIxfClassBehavior

'Create a Class Behavior "link"

 Chapter 11, SmartIXF Library

361

Set IxfClassBehavior = Schema.ClassesBehaviors.Add(
mtEmbedded,
“http://www.ixfstd.org/std/ns/core/classBehaviors/links/1.0#link”)

See ISmIxfClassBehavior for more information on that object.

ISmIxfClassBehavior

A ClassBehavior lets you define a set of class attributes as an entity
separate from any specific class, where the entity is identified by a unique
URI reference. A ClassBehavior so defined becomes a standard set of
attributes, which can be “implemented” by one or more classes, as
required. In this way, a ClassBehavior is similar to an Interface of a
programming language like JavaTM; any class that wants to implement a
ClassBehavior needs to declare the ClassBehavior usage.

A ClassBehavior is defined in the schema separately from the class
definitions and is used in a specific class by declaring it in the class
definition in the schema (see Adding a ClassBehavior to a Class in
ISmIxfClassBehaviors.) The attribute values for attributes in the
ClassBehavior are assigned in the instantiation of the class in the data file,
in the same way that values are assigned to the internal attributes of the
class.

Figure 10-6 shows how ClassBehaviors are used in schema class
definitions. It shows the internal attribute definitions of a class and the
ClassBehavior declarations. You can declare the same ClassBehavior in
more than one class, and you can declare more than one ClassBehavior in a
single class.

 362

SmIxfSchema Object

Class Attributes

Class1

Class Behavior1

Class Attributes

Class2

Class Behavior1

Class Attributes

Class3

Class Behavior2

Class Behavior2

Class Behavior1

Class Behavior2

Class Behavior
Attributes

Class Behavior
Attributes

Figure 11-2 Class Behaviors

Properties

An ISmIxfClassBehavior object has the following properties:
Property Description

Attributes Collection ISmIxfAttributes of class behavior attributes
SchemaLocation The physical location of the ClassBehavior schema file, in the event th

the ClassBehavior was previously defined and saved to a schema file,
definition can be obtained (loaded) through this schema file. Otherwise
the class behavior is defined in the schema (and not loaded) – the
SchemaLocation parameter is an empty string.

URI The Error! Not a valid result for table., which is the unique identifier
the class behavior.

Adding an Attribute to a ClassBehavior

Use the Add method of the IxfClassBehavior.Attributes collection object to
add an attribute to the IxfClassBehavior.

 Chapter 11, SmartIXF Library

363

Set IxfAttribute = IxfClassBehavior.Attributes.Add(AttributeName)

The Add method returns an object of type ISmIxfAttribute. Specify the
AttributeName as a valid NCName. For more information about Attributes,
see ISmIxfAttribute.

For an example of how to add an attribute to a ClassBehavior, see Common
Tasks, “ISmIxfSchema: Defining a ClassBehavior”.

ISmIxfClasses

An ISmIxfClasses object is a collection of ISmIxfClass objects.

Adding a Class to the IXF Schema

Use the Add method of the ISmIxfClasses object to add a class to the IXF
Schema. The Add method returns an object of type ISmIxfClass. You
specify the name of the class as a valid NCName.

The Add method is called as follows:
Set IxfClass = Schema.Classes.Add(ClassName)

Where ClassName has to be a valid NCName.

Once you have added the class you can specify the class properties, as in
the next section.

For an example of how to add a class to the IXF Schema, see Common
Tasks, “ISmIxfSchema: Creating a Schema with Classes and Class
Attributes”.

ISmIxfClass

The following figure shows the object diagram for the ISmIxfClass Object.

 364

ISmIxfClass

CurrentClassAttributes
(ISmIxfAttributes)

CurrentClassBehaviors
(ISmIxfClassBehaviors)

IsAbstract

Name

ParentClass

InheritedAttributes

AllAttributes

InheritedBehaviors

AllBehaviors

Figure 11-3 ISmIxfClass Object Diagram

Properties

An ISmIxfClass object has the following properties:
Property Description

Name The class name must be a valid NCName.
Parent Class The parent class object
CurrentClassAttributes Collection ISmIxfAttributes of the class attributes. Does not incl

the inherited class attributes.
InheritedAttributes Collection ISmIxfReadOnlyAttributes of the inherited class

attributes.
AllAttributes Collection ISmIxfReadOnlyAttributes of all the class attributes,

including inherited attributes.
CurrentClassBehaviors Collection ISmIxfClassBehaviors of class behaviors that are

supported by the class. Does not include the class behaviors th
were inherited.

 Chapter 11, SmartIXF Library

365

InheritedBehaviors Collection ISmIxfReadOnlyClassBehaviors of the inherited clas
behaviors.

AllBehaviors Collection ISmIxfReadOnlyClassBehaviors of all the class
behaviors that are supported by the class, including inherited c
behaviors.

IsAbstract Indicates whether or not the class is abstract. If it is, it cannot b
instantiated

ISmIxfAttributes

An ISmIxfAttributes object is a collection of ISmIxfAttribute objects.

The CurrentClassAttributes is a collection of ISmIxfAttributes objects,
which represent the attributes defined internally to the current class. The
ClassBehavior object also includes a collection ISmIxfAttributes, which
represents the attributes of the ClassBehavior (see ISmIxfClassBehaviors.)

Adding an Attribute to a Class

Use the Add method of the ISmIxfAttributes object to add an attribute to
the collection. The Add method returns an object of type ISmIxfAttribute.
It is called as follows:
Set IxfAttribute = IxfClass.CurrentClassAttributes.Add(AttributeName)

Where AttributeName must be a valid NCName.

Once you have added the attribute you can specify the attribute properties.

For an example of how to add an attribute to CurrentClassAttributes, see
Common Tasks, “ISmIxfSchema: Creating a Schema with Classes and
Class Attributes”.

ISmIxfAttribute

The ISmIxfAttribute object represents an individual class attribute or an
individual attribute of a ClassBehavior.

Properties

The ISmIxfAttribute object has the following properties:
Property Description

 366

Name The attribute name. A valid NCName.
Default value The default value of the attribute. It is assigned as an object’s (class or

ClassBehavior) attribute value in case no value was assigned.
IsNullAllowed True if the attribute value can be set to Null. Default is true
IsPrimary True if the attribute is part of the class primary identifier. The default is

false.
Required True if the attribute is required. If it is, it has to be assigned, or a default

value must be indicated in the Default value property. Default is false.

TypeDefinition Returns the data type of the attribute. Returns an object of type
ISmIxfTypeDefinition.

Note: ISmIxfAttribute is only the definition of the attribute structure; the actual
value of this attribute is inserted by the SmIxfWriter object.

ISmIxfTypeDefinition

The ISmIxfTypeDefinition Object specifies the data type of the
ISmIxfAttribute object.

Properties

The ISmIxfTypeDefinition object has three properties:
Property Description

ValueType The ValueType property is an Enum type DataTypeEnum that speci
the type of the value that can be assigned to the attribute. It is a sub
of the W3C XML Schema Data Types, as defined in
http://www.w3.org/TR/xmlschema-2/. See Table 5 for a list of data
types.

ObjectReferenceType If ValueType is set to dtObjectReference, the ObjectReferenceType
property lets you specify more information about the object referenc
See below for more information.

StringType If the ValueType is assigned to dtString then the StringType propert
lets you specify more information about the string. See below for mo
details.

Table 5 ValueType Data Types

 Chapter 11, SmartIXF Library

367

ValueType Description Software Constant

String Character strings in XML dtString
Boolean Binary-valued logic dtBoolean
Float IEEE single-precision 32-bit floating point ty dtFloat

Double IEEE double-precision 64-bit floating point tydtDouble

Duration Duration of time dtDuration
Base64Binary Base64-encoded arbitrary binary data dtBase64Binary
HexBinary Arbitrary hex-encoded binary data dtHexBinary
AnyUri A Uniform Resource Identifier Reference (U dtAnyUri

Language Natural language identifiers as defined by [R
1766].

dtLanguage

Int Integer between
-2147483648
and
2147483647.

dtInt

Short Integer between
-32768 and 32767

dtShort

Byte Integer between
-128 and 127

dtByte

UnsignedShort Integer between 0 and 65535 dtUnsignedShort
UnsignedByte Integer between 0 and 255 dtUnsignedByte
DateTime A specific instant of time dtDateTime
Time An instant of time that recurs every day dtTime
Date A calendar date dtDate
gMonth A gregorian month that recurs every year dtGMonth
gYear A gregorian calendar year dtGYear
ObjectReference An object dtObjectReference
XML XML text dtXML

Depending on ValueType, there can be additional options, as discussed in
the following sections.

Specifying Information about an Object Reference

If ISmIxfTypeDefinition.ValueType is set to dtObjectReference, the
ObjectReferenceType property lets you specify more information about the
object reference.

Properties

The ObjectReferenceType property returns an object of type
ISmIxfObjectReferenceTypeDefinition, which has the properties:

http://www.w3.org/TR/xmlschema-2/#RFC1766�
http://www.w3.org/TR/xmlschema-2/#RFC1766�
http://www.w3.org/TR/xmlschema-2/#RFC1766�

 368

Property Description

RestrictionType You use this property to place restrictions on the type of object
referenced through the ObjectReferenceType property. Set to one o
ObjectReferenceRestrictionTypeEnum.

ClassName Specifies a class to which the objects referenced or their descendan
must belong. Can be accessed only if RestrictionType has the valu
ortClass or ortClassAndDescendants. See details of
ObjectReferenceType.RestrictionType below for more information.

BehaviorURI Specifies a behavior that the object referenced must implement. Ca
accessed only if the RestrictionType has the value ortBehavior. See
details of ObjectReferenceType.RestrictionType below for more
information.

ObjectReferenceType Restrictions

You use the RestrictionType property to place restrictions on the type of
object that can be referenced through the ObjectReferenceType property.
This helps you tailor an attribute for special use.

The RestrictionType property is available as follows:
IxfAttribute.TypeDefinition.ObjectReferenceType.RestrictionType

 Chapter 11, SmartIXF Library

369

The RestrictionType can take one of the following
ObjectReferenceRestrictionTypeEnum values:

RestrictionType Description Software Constan

Any The reference can be to any kind of object (the
default)

ortAny

Class The reference can be to an object of a specific cla
only. The class name should be assigned to
TypeDefinition.ObjectReferenceType.ClassName.

ortClass

ClassAnd
Descendants

The reference can be to an object of a specific cla
or its descendants only. The class name should be
assigned to
TypeDefinition.ObjectReferenceType.ClassName.

OrtClassAnd
Descendants

Behavior The reference can be to an object that implements
specific behavior only. The behavior URI should be
assigned to TypeDefinition.
ObjectReferenceType.BehaviorURI

ortBehavior

Example

The following code allows the attribute to reference only objects of the
class “DocumentMaster”.
IxfAttribute.TypeDefinition.ValueType = dtObjectReference

IxfAttribute.ObjectReferenceType.RestrictionType = ortClass

IxfAttribute.ObjectReference.ClassName = “DocumentMaster”

 370

String Type Options

If the ISmIxfTypeDefinition.ValueType is assigned to dtString then you
can specify a maximum length for the string by
ISmIxfTypeDefinition.StringType.MaxLength. The default for MaxLength
is 0, which means there is no restriction for the string length.

Example

The following code restricts the length of the string attribute to 50
characters.
IxfAttribute.TypeDefinition.ValueType = dtString

IxfAttribute.TypeDefinition.StringType.MaxLength = 50

ISmIxfClassBehaviors

The ISmIxfClassBehaviors Object is a collection of ISmIxfClassBehavior
objects. It represents the set of ClassBehaviors declared in a specific class.

Note: This object is not the same as the collection object
ISmIxfClassesBehaviors. The latter refers to the set of all
ClassBehavior objects associated with the entire schema and defined
externally to all classes.

Adding a ClassBehavior to a Class

Once you have added a ClassBehavior to the ClassesBehaviors object (see
Adding a New ClassBehavior to the IXF Schema), you can declare the
ClassBehavior in a specific class. You use the Add method of the
ClassBehaviors object to add a ClassBehavior object to
CurrentClassBehaviors.

The Add function is called as follows:
IxfClass.CurrentClassBehaviors.Add(Behavior,MustUnderstandEnum)

 371

The method parameters are as follows:
Parameter Description

Behavior A ClassBehavior object that already exists in the collection
Schema.ClassesBehaviors.

MustUnderstand Denotes whether this Class Behavior, when declared in this cla
must be understood by the reading processor. Possible values
muYes, muNo

For an example, see Common Tasks, ISmIxfSchema: Declaring usage of a
class behavior by a class.

ISmIxfDomainBehaviors

An ISmIxfDomainBehaviors object is a collection of
ISmIxfDomainBehavior objects.

Adding a DomainBehavior to DomainBehaviors

You use the Add method of the DomainBehaviors object to add a
DomainBehavior object to DomainBehaviors.

The Add function is called as follows:
Add(URI)

ISmIxfDomainBehavior

Conceptually, a Domain Behavior is composed of sets of Class Behaviors
called Roles, where the Domain Behavior also specifies the classes that
declare the Class Behaviors for each Role.

Specifically, a Domain Behavior defines a set of Roles and a set of Role-
to-Class mappings (see Section 2.5 of the IXF Specification.) Each Role is
associated with a set of Class Behaviors, which are specified by the
documentation describing the Domain Behavior. The class that is mapped
to the Role according to its Role-to-Class Mapping must declare the Role’s
Class Behaviors.
Note: It is very important to make sure that a class is mapped to a Role only if it

implements the required class behaviors, even though this is not currently
enforced by the API. The required class behaviors can be verified by consulting
the Domain Behavior documentation.

 372

Figure 11-4 shows the relationship between a Domain Behavior definition
and a schema that uses it:

ISmIxfSchema Object

Class Behavior1

Class1

Class Behavior2

Class Attributes

Class3

Class Behaviors

Role Class

Role - Class Mapping

Class AttributesRole1 Class1

Role2 Class2

Role ClassBehaviors

Role1 ClassBehavior1
ClassBehavior2

Role2 ClassBehavior3

DomainBehavior Definition

Class Behavior3

Class2

Class Attributes

Figure 11-4 Domain Behavior

Properties

An ISmIxfDomainBehavior object has the following properties:
Property Description

URI The unique identifier of the DomainBehavior
RoleClassMapping The RoleClassMapping property defines an association between

names and ISmIxfClass objects, whereby each role is assigned t
class.

 Chapter 11, SmartIXF Library

373

ISmIxfInfo

The ISmIxfInfo Object holds miscellaneous information, which cannot be
categorized as classes or behaviors. It is a collection of ISmIxfInfoItem
objects.

Methods

It has the methods:
Method Description

GetInfoItem Gets an InfoItem from the collection by Name and
Namespace. If it doesn't exist, a new object is created a
added to the collection.

Save Not used when Info accessed through Schema.
CreateXmlAttributeValue Creates an ISmIxfXmlAttributeValue object

The ISmIxfInfo Object is obtained though the ISmIxfSchema object, as
follows:
Set IxfInfo = Schema.Info

Note: ISmIxfInfo Object can also be obtained through the IxfWriter.DataWriter and
IxfReader.DataReader. When the schema is saved ISmIxfInfo is saved
automatically with the schema; in the Writer it has to be saved with the Save
function.

Adding an InfoItem to a Info Object

Use the GetInfoItem method of Info to add a new InfoItem to the Info
collection.
Set IxfInfoItem = IxfInfo.GetInfoItem(Name, Namespace)

 374

ISmIxfInfoItem

The ISmIxfInfoItem object represents a member of the ISmIxfInfo
collection, that is, a basic unit of miscellaneous information in the schema
file.

Properties

The ISmIxfInfoItem object has the properties:
Property Description

Name InfoItem name
Namespace InfoItem namespace
Value InfoItem value
ValueType Value type (see Table 5)
MustUnderstand MustUnderstand flag for this InfoItem. If set to true, the reading

process stops when this InfoItem is not in the list
SmIxfReader.ISmIxfUnderstoodInfoItems, and
Reader.ValidateMustUnderstand = true.

Use the GetInfoItem (Name, Namespace) method of the ISmIxfInfo Object
to create an ISmIxfInfoItem object or to get an existing one.

For an example of how to add miscellaneous information to a
ClassBehavior, see Common Tasks, ISmIxfSchema: Adding miscellaneous
information.
Note: The ISmIxfInfo object under DataWriter represents another, independent way to

write miscellaneous data, which you can use instead of or in addition to this
ISmIxfInfo object under the ISmIxfSchema object. The difference is that with
the current ISmIxfInfo object you do not need to save the object; it is saved
automatically with the Schema.

ISmIxfXmlAttributeValue

The ISmIxfXmlAttributeValue object represents the value of an InfoItem
of type “dtXML”. This object lets you insert miscellaneous information in
the form of XML text. The XML text does not need to be a complete XML
document, but it must be valid and well formed.

If the meaning of a prefix is not included in the XML text, you can provide
it in the Namespaces property.

To create an ISmIxfXmlAttributeValue object, use the ISmIxfInfo method
CreateXmlAttributeValue, as follows:
Set IxfXmlAttributeValue = Info.CreateXmlAttributeValue

 Chapter 11, SmartIXF Library

375

Properties

The ISmIxfXmlAttributeValue object has the properties:
Property Description

Namespaces Returns an object ISmIxfNamespaces, a list of mappings between prefix a
namespace that represents the meaning of each prefix that occurs in the X
string.

XML A well-formed valid XML text as a WideString.
Note: The ISmIxfXmlAttributeValue object can also be used to provide an Xml text

attribute value to a class attribute, when using the Writer object. See
ISmIxfAttributesValues for more information.

Note: The XML string might be changed by the API but the meaning will stay the same.

Example

Dim Info As ISmIxfInfo

Dim InfoItem As ISmIxfInfoItem

Dim NameSpaces As ISmIxfNamespaces

Dim XmlAttributeValue As ISmIxfXmlAttributeValue

Dim XmlText As String

Set Info = Schema.Info

InfoItem = Info.GetInfoItem(“XmlText”, ”http://….”)

InfoItem.ValueType = dtXml

Set XmlAttributeValue = Info.CreateXmlAttributeValue

XmlText = “<p:name>John Bryce<p:name>”

XmlAttributeValue.XML = XmlText

XmlAttributeValue.NameSpaces.Add (“ns1”, “prefix1”)

InfoItem.Value = XmlAttributeValue

 376

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a ISmIxfSchema.

ISmIxfSchema:
Creating a Schema with Classes and Class Attributes

The following procedure creates a basic schema file containing classes and
class attributes.

Get the schema property (see ISmIxfSchema.)

Create a class
Dim IxfClass as ISmIxfClass

‘Create a Class "documentMaster":

Set IxfClass = Schema.Classes.Add("DocumentMaster")

IxfClass.ParentClass = Null

IxfClass.IsAbstract = False

See Adding a Class to the IXF Schema, for more details.

Create a Class attribute
Dim IxfAttribute as ISmIxfAttribute

'Create and add attribute "DocumentName":

Set IxfAttribute = IxfClass.CurrentClassAttributes.Add("DocumentName")

‘Set properties for the attribute:

IxfAttribute.TypeDefinition.ValueType = dtString

IxfAttribute.TypeDefinition.StringType.MaxLength = 50

IxfAttribute.Required = True

IxfAttribute.IsNullAllowed = False

IxfAttribute.IsPrimary = True

'Create and add attribute "Description":

 Chapter 11, SmartIXF Library

377

Set IxfAttribute = IxfClass.CurrentClassAttributes.Add("Description")

‘Set properties for the attribute:

IxfAttribute.TypeDefinition.ValueType = dtString

IxfAttribute.Required = False

IxfAttribute.IsNullAllowed = True

See Adding an Attribute to a Class for more information.

ISmIxfSchema:
Defining a ClassBehavior

In this task, you define a ClassBehavior.

Add a Class Behavior definition to the IXF Schema, that is, to
ClassesBehaviors
Dim IxfClassBehavior as ISmIxfClassBehavior

'Create a Class Behavior "link"

Set IxfClassBehavior = Schema.ClassesBehaviors.Add(
mtEmbedded,
“http://www.ixfstd.org/std/ns/core/classBehaviors/links/1.0#link”)

See Adding a New ClassBehavior, for more information.

Add attributes to the ClassBehavior definition
Dim IxfAttribute as ISmIxfAttribute

'add attribute "object1":

Set IxfAttribute = IxfClassBehavior.Attributes.Add("object1")

‘Set properties for the attribute:

IxfAttribute.TypeDefinition.ValueType = dtObjectReference

IxfAttribute.Required = True

IxfAttribute.IsNullAllowed = True

'add attribute "object2":

Set IxfAttribute = IxfClassBehavior.Attributes.Add("object")

 378

‘Set properties for the attribute:

IxfAttribute.TypeDefinition.ValueType = dtObjectReference

IxfAttribute.Required = True

IxfAttribute.IsNullAllowed = True

See ISmManagedClasses. The ISmManagedClasses object represents the
set of SmarTeam managed classes to which a specific integration behavior
is mapped for more information.

ISmIxfSchema:
Declaring usage of a Class Behavior by a class

In this task, you declare a ClassBehavior in a class.

In case the ClassBehavior has been defined separately, you can retrieve the
class behavior object by URI and declare it in a class as follows:
IxfClassBehavior = Schema.classesBehaviors.ItemByURI(

 “http://www.ixfstd.org/std/ns/core/classBehaviors/links/1.0#link”)

IxfClass = Schema.classes.Add(“myLink”)

IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

See Adding a ClassBehavior to a Class for more information.

ISmIxfSchema:
Defining a DomainBehavior

See example section.

ISmIxfSchema:
Adding Standard Behavior to a schema

See section ISmIxfSchemaHelper on page 403

ISmIxfSchema:
Adding miscellaneous information

To add miscellaneous information ISmIxfInfo to the schema, you use an
ISmIxfInfoItem object
Dim IxfInfo As ISmIxfInfo

Dim IxfInfoItem As ISmIxfInfoItem

http://www.ixfstd.org/std/ns/core/classBehaviors/links/1.0#link�

 Chapter 11, SmartIXF Library

379

‘ Get the Info object

Set IxfInfo = Schema.Info

‘Create and return an InfoItem with the indicated name and namespace:

Set IxfInfoItem = IxfInfo.GetInfoItem("transaction", "http://www.vendor.org")

 IxfInfoItem.ValueType = dtInt

 IxfInfoItem.Value = "2352"

 380

SmIxfInitializationData

A SmIxfInitializationData object represents initialization of data for
SmartIXF applications.

Each creatable object has a reference to the interface
ISmIxfInitializationData.

Setting Proxy Information

For the present release, the SmIxfInitializationData interface relates to the
initialization of proxy information for downloading files by an IXF
Application installed on a UNIX system (optional on Windows).

The user can obtain the current proxy value by calling the GetProxy
method.

The SetProxy method should be performed when the user wants to indicate
the proxy that is about to be used.

On Unix platforms the proxy must be set if files are about to be
downloaded from the web.

On windows using this interface is optional since windows can
automatically detect and identify a proxy.

Methods

The SmIxfInitializationData has the methods
Methods Description

GetProxy Returns the value of the proxy string.
SetProxy Sets the specified string as the proxy string.

 381

Example

In order to set a proxy after creating an object, the SetProxy method should
be called as described in the following sample code.
Public Const PROXY_STR = "123.45.678.90:8080" 'A string indicating the proxy
to be used when downloading files from the web.

Dim IxfWriter As SmIxfWriter

Dim IxfReader As SmIxfReader

Dim IxfStdHelper As SmIxfStdHelpert

Dim IxfExternalSchemaWriter As SmIxfExternalSchemaWriter

Dim IxfExternalSchemaReader As SmIxfExternalSchemaReader

Dim ProxyStr As String

Set IxfWriter = CreateObject("SmartIXF1.SmIxfWriter")

IxfWriter.InitializationData.SetProxy(PROXY_STR)

Set IxfReader = CreateObject("SmartIXF1.SmIxfReader")

IxfReader.InitializationData.SetProxy(PROXY_STR)

Set IxfStdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

IxfStdHelper.InitializationData.SetProxy(PROXY_STR)

Set IxfExternalSchemaWriter = CreateObject("SmartIXF1.ExternalSchemaWriter")

IxfExternalSchemaWriter.InitializationData.SetProxy(PROXY_STR)

Set IxfExternalSchemaReader = CreateObject("SmartIXF1.ExternalSchemaReader")

IxfExternalSchemaReader.InitializationData.SetProxy(PROXY_STR)

...

ProxyStr = IxfReader.InitializationData.GetProxy()

 382

SmIxfWriter

An SmIxfWriter object is used for:
• creating an IXF Archive file
• creating and writing a Schema Document (schema file)
• creating and writing an IXF Instance Document (data file)
• packaging the schema and data files in the IXF Archive file.
• Optionally, the SmIxfWriter can refer to an existing schema file.

Object Diagram

The object diagram of SmIxfWriter is shown below:

 Chapter 11, SmartIXF Library

383

SmIxfWriter

Schema

DataWriter

ObjectWriter

Info

IsmIxfObject(NewObject)

Values

AttributesValue:
OleVariant

ISmIxfXmlAttributeValue(CreateXmlAttributeValue)

IsmIxfAttributesValues(GetBehaviorValues)

Figure 11-5 SmIxfWriter Object Diagram

 384

Properties

SmIxfWriter has the following properties:
Property Description

Schema Holds the definition of the data structure The schema file describe
the data model, including its classes and behaviors.

DataWriter Writes the data file. The data file contains a set of objects that
conforms to the data model described in the schema and
miscellaneous data. [associated files come from WriterHelper]

InitializationData Provides access to methods for initializing data for IXF application
Returns ISmIxfInitializationData

The schema and data files are packaged in an IXF Archive by the
SmIxfWriter object.

Methods

The SmIXfWriter has the methods
Methods Description

CreateIxfArchiveFile Creates the specified iXF Archive file.
CloseIxfArchiveFile Closes the iXF Archive file.
SetSchemaMode Sets the packaging mode of the schema in the Archive file.

Creating the SmIxfWriter Object

To create an SmIxfWriter Object:
Dim IxfWriter As SmIxfWriter

Set IxfWriter = CreateObject("SmartIXF1.SmIxfWriter")

Creating an iXF Archive File

As described in the iXF Specification, an iXF Archive file is a zip file
containing a data file and possibly a schema file. When you use the
SmIxfWriter to write an IXF Instance file, you need to create an iXF
Archive file to contain the IXF Instance file and possibly the schema file.

Specifying the Schema Packaging State

When you create an iXF Archive file, you first need to specify how the
associated schema is to be packaged, using the SetSchemaMode method of
the ISmIxfWriter.

 Chapter 11, SmartIXF Library

385

The following table describes the packaging states of the schema file and
the software constant used for each state. The packaging state of the
schema file is described by the Mode parameter of the SetSchemaMode
method.

Packaging State Description SchemaModeEnum Softwa
Constant

Embedded The schema definition is created and
saved to a schema file, which is
embedded in the iXF archive file.

mtEmbedded

External The schema file is not embedded in th
iXF package; it was previously defined
externally in a file and specified by its
SchemaURI.

mtExternal

SetSchemaMode Method

Use the SetSchemaMode method to specify the packaging state of the
schema. It is called as follows:
IxfWriter.SetSchemaMode(mode,[SchemaURI],[SchemaLocation = “”] [Load=True])

The arguments of the method are:
Argument Description

Mode Packaging state of the schema, one of SchemaModeEnum. See table
above.

SchemaURI The schema namespace. Specified only when Mode is mtExternal.
SchemaLocation The schema physical location. Specified only when Mode is mtExternal.
Load Whether or not the schema needs to be loaded. The default is false. Can

set True only when Mode is mtExternal.
Note: If the Mode is mtEmbedded, or if Mode is mtExternal and Load = False (for

example, when the schema is not accessible) then the Schema object in the
ixfWriter object should be populated by hand. See ISmIxfSchema.

Creating the IXF Archive

To create the iXF Archive, after calling the SetSchemaMode method, use
the methods IxfWriter.CreateIxfArchiveFile and
IxfWriter.CloseIxfArchiveFile.

For an example of how to create the IXF Archive, see Common Tasks,
SmIxfWriter: Creating an iXF Archive.

ISmIxfDataWriter

 386

The ISmIxfDataWriter Object writes the object and miscellaneous data
corresponding to the schema file.

Properties

The ISmIxfDataWriter Object has the two properties:
Property Description

ObjectWriter Returns an ISmIxfObjectWriter object, used to write objects to
data file.

Info Returns an ISmIxfInfo object. It is used for writing miscellaneo
information to the data file.

Obtaining the ISmIxfDataWriter Object

To obtain the ISmIxfDataWriter Object from the IxfWriter Object:
Dim DataWriter as ISmIxfDataWriter

Set DataWriter = IxfWriter.DataWriter

 387

ISmIxfObjectWriter

The ISmIxfObjectWriter uses the NewObject method to create objects,
which are instantiations of the classes declared in the schema.

Obtaining the ISmIxfObjectWriter Object

To obtain the ISmIxfObjectWriter object from the ISmIxfDataWriter
object:
Dim ObjectWriter as ISmIxfObjectWriter

Set ObjectWriter = IxfWriter.DataWriter.ObjectWriter

Creating a New Object

Use the NewObject method to create an object, which is an instantiation of
a class defined in the Schema. Use the Class Name and provide a unique
Object Id (see next section for more details about the parameters).

Set IxfObject = ObjectWriter.NewObject(ixfClassName, ObjectId)

ISmIxfObject

The ISmIxfObject object represents an instantiation of a class in the
schema. You create it a ISmIxfObject object by specifying the class from
which the object is to be instantiated and providing an object id (see
previous section).

Use the ISmIxfObject object to access class attributes and class behavior
attributes that were declared in the schema file for the object’s class.

The ISmIxfObject has the properties:
Property Description

Id Input string that uniquely identifies the object within the IXF
Instance Document. Must be a valid NCName.
The Object ID value must follow the rules defined for the ID
Datatype in XML Schema Part 2: Datatypes, Section 3.3.8: ID.

IxfClassName Name of class of which this object is an instantiation.
Values Returns object ISmIxfAttributesValues, which is the set of value

the class attributes for the object’s class.

 388

The ISmIxfObject has the methods:
Method Description

GetBehaviorValues Returns object ISmIxfAttributesValues, which is the set of the
ClassBehavior attribute values for Class Behaviors declared by
object’s class.

Save Saves object to data file. Can be used only during iXF generati
(writing)

ISmIxfAttributesValues

The ISmIxfAttributesValues object, which is returned by the Values and
GetBehaviorValues methods of an IxfObject, represents the collection of
values of class attributes or ClassBehavior attributes of the IxfObject. You
refer to an individual item of the ISmIxfAttributesValues by the name of
the corresponding ISmIxfAttribute, which was assigned in the class or
ClassBehavior definition in the schema.

IxfObject.Values.Item(AttributeName) = some variant value

Set BehaviorValues = IxfObject.GetBehaviorValues(BehaviorURI)

BehaviorValues.Item(AttributeName) = some variant value

For an example of how to assign values to class attributes, see Common
Tasks, ISmIxfDataWriter: Creating a Data File with Objects and Info.

ISmIxfXmlAttributeValue Object

If you defined the TypeDefinition.ValueType of a class attribute or
ClassBehavior attribute as dtXml in the schema definition, you can create
an ISmIxfXmlAttributeValue object and assign it as the class attribute
value.
Set XmlAttributeValue = IxfObject.Values.CreateXmlAttributeValue

Note: The ISmIxfXmlAttributeValue object can also be used when using the
ISmIxfInfo object to provide an Xml text value to an InfoItem of type
dtXml.

Example

‘In definition of ClassAttributes in Schema, define an Xml attribute:

Set IxfAttribute = IxfClass.CurrentClassAttributes.Add("XmlText")

‘Set properties for the attribute:

 Chapter 11, SmartIXF Library

389

IxfAttribute.TypeDefinition.ValueType = dtXml

‘When loading values into Class attributes in Writer:

Dim DataWriter As ISmIxfDataWriter

Dim ObjectWriter As ISmIxfObjectWriter

Dim Object As ISmIxfObject

Dim XmlAttributeValue As ISmIxf XmlAttributeValue

Dim XmlText As String

Set Object = DataWriter.ObjectWriter.Object

‘Create XmlAttributeValue object and give it an Xml value

XmlAttributeValue = Object.Values.CreateXmlAttributeValue

XmlText = “<p:name>John Bryce<p:name>”

XmlAttributeValue.XML = XmlText

XmlAttributeValue.NameSpaces.Add (“p”, “prefix1”)

‘Put the XmlAttributeValue object into the class attribute value

Object.Value[“XmlText”] = XmlAttributeValue

Object.Save

ISmIxfInfo

The ISmIxfInfo object represents miscellaneous information written to the
data file. See the ISmIxfInfo object of the Schema object.

The ISmIxfInfo Object holds miscellaneous information, which cannot be
categorized as classes or behaviors. It is a collection of ISmIxfInfoItem
objects.

Methods

It has the methods:
Method Description

 390

GetInfoItem Gets an InfoItem from the collection by Name and
Namespace.

Save Saves the InfoItems collection to the iXF Instance file. C
be used only when Info is obtained through
IxfWriter.DataWriter, i.e., during iXF generation.

CreateXmlAttributeValue Creates an ISmIxfXmlAttributeValue object
Note: This ISmIxfInfo object under DataWriter represents an independent way to write

miscellaneous data, which you can use instead of or in addition to the ISmIxfInfo
object under the ISmIxfSchema object. The difference is that with this ISmIxfInfo
object you need to save the object, as shown below.

For an example of how to write an Info object, see Common Tasks,
ISmIxfDataWriter: Writing an Info section.

Note: The ISmIxfInfo information must be written to the data file prior to any object
information.

 Chapter 11, SmartIXF Library

391

ISmIxfSchema

The ISmIxfSchema object represents the schema file in the IXF Archive
being written. See ISmIxfSchema on page 356.

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a SmIxfWriter.

SmIxfWriter:
Creating an iXF Archive

As described in the iXF Specification, an iXF Archive file is a zip file
containing a data file and possibly a schema file.

To create an iXF package file:

Create the IxfWriter object
Dim IxfWriter As SmIxfWriter

Set IxfWriter = CreateObject("SmartIXF1.SmIxfWriter")

Set the schema packaging state using the method SetSchemaMode:

Examples of setting the schema packaging mode:
IxfWriter.SetSchemaMode mtEmbedded

or:
IxfWriter.SetSchemaMode mtExternal,

“http://www.vendor.org.schema”,
“c:\Schemas\MySchema.xsd”, true

or:

IxfWriter.SetSchemaMode mtExternal,

“http://www.vendor.org.schema”,
“c:\Temp\MySchema.xsd”, False

See Creating an iXF Archive File, for more information.

Create a schema (see ISmIxfSchema)

http://www.vendor.org.schema/�
http://www.vendor.org.schema/�

 392

If the ModeTypeEnum is embedded, or if ModeTypeEnum is external and
Load = False (for example, when the schema is not accessible) then the
Schema object in the ixfWriter object should be populated by hand.

Use the method CreateIxfArchiveFile to initialize the process of creating an
IXF Archive:
IxfWriter.CreateIxfArchiveFile ”test.ixf”

Note: This method can be called only after SetSchemaMode is called and the schema
object is populated.

Insert the data information -- Info, objects, changes and files (see next
section “Creating a Data File with Objects and Info”)

Close the iXF file:
IxfWriter.CloseIxfArchiveFile

ISmIxfDataWriter:
Creating a Data File with Objects and Info

The following procedure creates a basic data file containing objects and
miscellaneous information. It is assumed that a schema has already been
created.

The data file is created automatically as part of the package. It is named
IXF_Data.xml.

In this section you create an object corresponding to a class in the schema
and assign values to the class attributes and ClassBehavior attributes for
class behaviors declared by the class.
Note: If you are writing miscellaneous (Info) information, it must be written first, before

any object information.

Create an object

To create an object, you need to obtain the ISmIxfObjectWriter Object as
follows:
Dim ObjectWriter As ISmIxfObjectWriter

Set ObjectWriter = IxfWriter.DataWriter.ObjectWriter

 Chapter 11, SmartIXF Library

393

Use the NewObject method of the ISmIxfObjectWriter Object to create the
new object, where you specify the ClassName and provide a unique
ObjectId. The NewObject method returns an object of type ISmIxfObject.

‘ Create an object for the data file

Dim ixfObject as ISmIxfObject

Set ixfObject = ObjectWriter.NewObject(“DocumentMaster”, “OID_1”)

Assign values according to the object’s class attributes

The attribute values are stored in the collection object
ISmIxfAttributesValues. This object is obtained from ISmIxfObject as
follows:
AttributesValues = ixfObject.Values

You assign a value to this object.
‘ Assign values to the object’s attributes

AttributesValues. Item(“DocumentName”) = “MyDocument”

Assign values to the ClassBehavior attributes

To assign values to the ClassBehavior attributes, use the method
GetBehaviorValues of ISmIxfObject. The method returns the object
ISmIxfAttributesValues as in the previous step.
Dim BehaviorValues As ISmIxfAttributesValues

IxfLinkObject = IxfWriter.DataWriter.ObjectWriter.NewObject(“MyLink”,”OID_2”)

Set BehaviorValues =
IxfLinkObject.GetBehaviorValues(http://project/behavior1#link)

You assign values to this object as in the previous step.
BehaviorValues.Item(“object1”) = IxfObject1

Save the object.
ixfObject.Save

Note: Save each object as soon as you are finished creating it.

 394

SmIxfWriter:
Creating a ISmIxfXmlAttributeValue
Dim XmlAttributeValue as ISmIxfXmlAttributeValue

Set XmlAttributeValue = IxfWriter.DataWriter.Info.CreateXmlAttributeValue

XmlAttributeValue.XML = <p:name>John Bryce<p:name>

XmlAttributeValue.Namespaces.Add 'http://www.vendor.com/ns/personalIdentity',
'p'

ISmIxfDataWriter:
Writing an Info section
'Optional "Info" section:

 Set InfoItem = Writer.DataWriter.Info.GetInfoItem("From",
"http://smarteam.com/dev/ixf/test")

 InfoItem.ValueType = dtString

 InfoItem.Value = "Ann Barkley"

 Set InfoItem = Writer.DataWriter.Info.GetInfoItem("To",
"http://smarteam.com/dev/ixf/test")

 InfoItem.ValueType = dtString

 InfoItem.Value = "Bruce Mayer"

 Set InfoItem = Writer.DataWriter.Info.GetInfoItem("Subject",
"http://smarteam.com/dev/ixf/test")

 InfoItem.ValueType = dtString

 InfoItem.Value = "iXF Example"

 DataWriter.Info.Save

Note: If you are writing Info to the data file, it must be saved to the data file
before saving any object to the data file.

 395

SmIxfReader

An SmIxfReader object is used for:
• unpacking an IXF Archive file
• Reading a Schema Document (schema file)
• Reading an IXF Instance Document (data file)
• Optionally, the SmIxfReader can refer to an external schema file.

Object Diagram

The object diagram of SmIxfReader is shown below:

SmIxfReader

UnderstoodInfoItems

DataReader

ObjectReader

Info

ISmIxfObjectIterator(GetObjectIterator)

ISmIxfObject(GetObject)

Schema

Figure 11-6 SmIxfReader Object Diagram

 396

Properties

The SmIXfReader has the properties
Property Description

DataReader Reference to ISmIxfDataReader, which reads the data file. The da
file contains a set of objects and miscellaneous data that conform
the data model described in the schema. [Associated files come f
Reader helper].

UnderstoodInfoItems Collection of InfoItems that the DataReader declares as understo
Used to validate read-in InfoItems marked as “mustUnderstand”.

Schema Reference to ISmIxfSchema, which holds the definition of the dat
structure.

ValidateMustUnderstand If true, validate read-in InfoItems marked as “mustUnderstand”
against the UnderstoodInfoItems collection.

InitializationData Provides access to methods for initializing data for IXF application
Returns ISmIxfInitializationData

Methods

The SmIXfReader has the methods
Methods Description

OpenIxfArchiveFile Opens the specified iXF Archive file for reading.
Close Closes the iXF Archive file for reading.

ISmIxfDataReader

The ISmIxfDataReader object reads the object and miscellaneous data from
the data file corresponding to the schema file. The ISmIxfDataReader
object includes the ObjectReader property, which is used to read objects
from the data file by iteration, using the ObjectsIterator property.

 Chapter 11, SmartIXF Library

397

Properties

The ISmIxfDataReader Object has the two properties:
Property Description

ObjectReader Returns an ISmIxfObjectReader object
Info Miscellaneous (Info) information read from the data file.

Obtaining the ISmIxfDataReader Object

To obtain the ISmIxfDataReader Object from the ixfReader Object:
Dim DataReader As ISmIxfDataReader

Set DataReader = IxfReader.DataReader

ISmIxfObjectReader

The ISmIxfObjectReader object reads objects from the data file. It has one
method GetObjectIterator, which returns the object ISmIxfObjectIterator.

Obtaining the ISmIxObjectReader Object

To obtain the ISmIxfObjectReader Object:
Dim IxfObjectReader as ISmIxfReader

Set IxfObjectReader = DataReader.ObjectReader

ISmIxfObjectIterator

The ISmIxfObjectIterator reads the objects one-by-one from the data file.

Use the GetObjectIterator method to get an ISmIxfObjectIterator from the
ObjectReader as follows:
Set ObjectIterator = IxfReader.DataReadet.ObjectReader.GetObjectIterator

The ISmIxfObjectIterator has one property and three functions:
Property Description

AtEnd Indicates whether the iterator has reached the end of the collection.
Method Description

GetObject Returns the object to which the iterator is currently pointing.
Next Sets the iterator to read the next object in the collection

 398

ISmIxfObject

The object represents an individual object read from the data file. See
ISmIxfObject under ISmIxfObjectWriter.

Use the GetObject method to get an ISmIxfObject from the ObjectIterator
as follows:
IxfObject = ObjectIterator.GetObject

For an example of how to use the ObjectIterator to read objects, see
Common Tasks, SmIxfReader: Reading an iXF Package.

ISmIxfInfo

The ISmIxfInfo object represents miscellaneous information read from the
data file. See ISmIxfInfo on page 373.
Note: The ISmIxfInfo information in the IXF Instance file, if it exists, must be read

before all object information.

For an example of how to read ISmIxfInfo objects, see Common Tasks,
SmIxfReader: Reading an iXF Package.

ISmIxfUnderstoodInfoItems

ISmIxfUnderstoodInfoItems is a collection object, prepared by the user of
the ISmIxfReader object, of items of type ISmIxfUnderstoodInfoItem,
which denote InfoItems that are required to be understood.

The ISmIxfUnderstoodInfoItems corresponds to a list that specifies those
InfoItems that he declares he understands. When the InfoItems are read by
the ISmIxfReader, the MustUnderstand property of each InfoItem is
matched with the corresponding InfoItem entry in the
ISmIxfUnderstoodInfoItems list. If the MustUnderstand property of an
InfoItem is true and the corresponding InfoItem entry is not found in
ISmIxfUnderstoodInfoItems, the reading process is stopped.

 399

Properties

The ISmIxfUnderstoodInfoItem Object has the two properties:
Property Description

Name Name of the understood item.
Namespace Namespace of the understood item.

ISmIxfSchema

The SmIxfSchema object represents the schema file in the package being
read. See ISmIxfSchema on page 356.

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a SmIxfReader.

SmIxfReader:
Reading an iXF Package

As described in the IXF Specification, an iXF Archive file is a zip file
containing a data file and possibly a schema file. In order to read an iXF
archive file proceed as follows.

Create an IxfReader Object
Dim IxfReader as ISmIxfReader

Set IxfReader = CreateObject("SmartIxf1.SmIxfReader")

Open an Ixf archive file:
IxfReader.OpenIxfArchiveFile “test.ixf”, True

Read Info (if it exists)
Dim Info as ISmIxfInfo

Dim SenderName, ReceiverName, Subject as Variant

Set Info = IxfReader.DataReader.Info

 400

Set InfoItem = Info.GetInfoItem("From", "http://smarteam.com/dev/ixf/test")

SenderName = InfoItem.Value

Set InfoItem = Info.GetInfoItem("To", "http://smarteam.com/dev/ixf/test")

ReceiverName = InfoItem.Value

Set InfoItem = Info.GetInfoItem("Subject", "http://smarteam.com/dev/ixf/test")

Subject = InfoItem.Value

Read Objects:
Dim ObjectIterator as ISmIxfObjectIterator

Dim IxfObject as ISmIxfObject

Set ObjectIterator = IxfReader.DataReadet.ObjectReader.GetObjectIterator

While ObjectIterator.AtEnd = False

 Set IxfObject = ObjectIterator.GetObject

 …..

 ObjectIterator.Next

Wend

Close the reader object:
IxfReader.Close

 Chapter 11, SmartIXF Library

401

Reading and Writing an External Schema

The SmartIxf library provides two objects for reading and writing an
external schema.

SmIxfExternalSchemaWriter

The SmIxfExternalSchemaWriter has the two properties:
Property Description

Schema Returns object ISmIxfSchema containing the external schema information

SchemaURI URI of external schema file.
InitializationData Provides access to methods for initializing data for IXF applications. Retu

ISmIxfInitializationData

The SmIxfExternalSchemaWriter has one method, Save (FileName), which
saves the schema to the file FileName.

See ISmIxfSchema on page 356, for more information.

SmIxfExternalSchemaReader

The SmIxfExternalSchemaReader handles reading an external iXF schema
document

The SmIxfExternalSchemaReader has one method:
• Load(SchemaLocation), which loads the external schema with the

specified SchemaLocation into the ISmIxfSchema object.

And one property:
• InitializationData, which provides access to methods for initializing

data for IXF applications. Returns ISmIxfInitializationData

See ISmIxfSchema on page 356, for more information.

 402

ISmIxfStdHelper

IXF Standard Behaviors, as defined in the IXF Specification, Section 4, are
a set of Class Behaviors and Domain Behaviors, which provide common
functionality required by many IXF-enabled applications.

The ISmIxfStdHelper object provides methods to simplify and facilitate the
usage of IXF Standard Behaviors in the following main functional areas:

• ISmIxfSchemaHelper – Adding Standard Behavior definitions to a
schema

• ISmIxfWriterHelper – Using Standard Behaviors while writing IXF
documents

• ISmIxfReaderHelper – Using Standard Behaviors while reading IXF
documents

Methods

The ISmIxfStdHelper object provides the following methods:
Method Description

CreateReaderHelper Creates a reader Helper for using Standard Behaviors wh
reading IXF documents:

CreateSchemaHelper Creates a schema Helper for adding Standard Behavior
definitions to a schema.

CreateWriterHelper Creates a writer Helper for using Standard Behaviors whil
writing IXF documents.xxx

InitializationData Provides access to methods for initializing data for IXF
applications. Returns ISmIxfInitializationData.

Obtaining the SmIxfStdHelper Object
Dim StdHelper as IsmIxfStdHelper

StdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

Standard Behaviors

The SmartIxf Library supports the following mechanisms, which are
defined in the iXF standard:

 Chapter 11, SmartIXF Library

403

• Time Stamping - provides the ability to time-stamp IXF Objects.
• Change Tracking - provides a standard mechanism for tracking

changes in an IXF Instance Document

File Association -- provides a standard mechanism for:
• Storing file information in the IXF Instance file
• Embedding files in an IXF Archive file
• Associating IXF Objects with files.

Versioning - provides the ability to tag iXF Objects with versioning
information.

Links - formalizes and classifies the relationships between objects in an
IXF Instance Document.

ISmIxfSchemaHelper

The ISmIxfSchemaHelper object provides methods to support defining
Standard Behaviors in a schema.

The ISmIxfSchemaHelper object uses the following naming convention to
describe its methods:

Method Description

Add[std-behavior-name]Support Adds the classes, class behaviors, and domain
behaviors required to support the Standard Behavio
the schema.
Note that all implementation details regarding the
Classes, which are added by this method to the
schema, may change in subsequent versions of this
API.

Enable[std-behavior-name]ForClass Enables standard behavior functionality in a specifi
user-defined class.

Is[std-behavior-name]Enabled Tests a user-defined class to see if it is associated
a Standard Behavior.

Change-Tracking Standard Behavior

The SmartIxf Library provides an implementation of the Change-Tracking
Standard Behavior to provide a standard mechanism for tracking changes
on objects in an IXF Instance Document, including object creation, object
deletion, and attribute value modification.

 404

Methods

The ISmIxfSchemaHelper object provides the following methods to
support defining the Change Tracking Standard Behavior in a schema:

Method Description

AddDefaultChangesSupport Adds the Change-Tracking Standard Behavior to the
schema as shown in Change-Tracking Standard Behavio

EnableChangeTrackingForClass Add the TrackChanges Class Behavior to the specified
user-defined class, enabling the class to be change-trac

IsChangeTrackingEnabled Returns true if the specified user-defined class supports
Change Tracking Standard Behavior.

Behaviors

The following table shows the domain and class behaviors added to the
schema that supports the implementation of the Change Tracking Standard
Behavior:

Domain Behavior

Name URI

Change Tracking <ixfstdns>/domainBehaviors/changeTracking/1.0

Class Behaviors

Name URI

change <ixfstdns-c>/changeTracking/1.0#chang

objectDeleted <ixfstdns-
c>/changeTracking/1.0#objectDeleted

objectValue Modified <ixfstdns-c>
/changeTracking/1.0#objectValueModifi

objectCreated <ixfstdns-
c>/changeTracking/1.0#objectCreated

transaction <ixfstdns-
c>/changeTracking/1.0#transaction

Note: An object can be change-tracked only if it instantiates a class that is
enabled for change-tracking.

 405

File Association Standard Behavior

The SmartIxf Library provides an implementation of the File Association
Standard Behavior to provide a standard mechanism for:
• Storing file information in an IXF Instance file, including

• File Name
• Physical Location
• MIME Content Type
• Associating an IXF Object with a specific file
• Distinguishing between main and secondary files
• Embedding files in an IXF Archive file

Methods

The ISmIxfSchemaHelper object provides the following methods to
support defining the File Association Standard Behavior in a schema:

Method Description

AddDefaultFilesSupport Adds the Files Standard Behavior to the schema as sh
in Error! Not a valid result for table., including the Cl
Behaviors:

EnableFileAssociationForClass Add the File Association Class Behavior to the specifie
user-defined class.

IsFileAssociationEnabled Returns true if the specified user-defined class support
the Files Standard Behavior.

Behaviors

The following table shows the domain and class behaviors added to the
schema that supports the implementation of the File Association Standard
Behavior:

Domain Behavior

Name URI

Files <ixfstdns-d>/domainBehaviors/files/1.

Class Behaviors

Name URI

 406

File Association <ixfstdns-c>/files/1.0#fileAssociatio

File Description <ixfstdns-c>/files/1.0#fileDescriptio

Main File ixfstdns-c>/files/1.0#mainFile
Secondary File <ixfstdns-c>/files/1.0#secondaryFile
Transaction <ixfstdns-

c>/changeTracking/1.0#transaction
Note: An object can be associated with a file only if it instantiates a class that

is enabled for File Association.

Versioning Standard Behavior

The SmartIxf Library provides an implementation of the Versioning
Standard Behavior to provide the ability to tag IXF Objects with versioning
information, enabling you to identify successive revisions of the same
master entity.

The versioning information for an object includes the version identifier of
the current version of the object and the version identifier of its previous
version.

The Versioning Standard Behavior is different from the Change-Tracking
Standard Behavior: it just assigns version numbers without tracking the
changes between versions.

Methods

The ISmIxfSchemaHelper object provides the following methods to
support defining the Versioning Standard Behavior in a schema:

Method Description

AddDefaultVersioningSupport Adds the Versioning Standard Behavior to the schema.
EnableVersioningForClass Add the Versioning Class Behavior to the specified user-

defined class.
IsVersioningEnabled Returns true if the specified user-defined class supports th

Versioning Standard Behavior.

 407

Behaviors

The following table shows the class behaviors added to the schema that
support the Versioning Standard Behavior:

Class Behaviors

Name URI

Versioning <ixfstdns-c>/versioning/1.0#versi

Note: An object can be versioned only if it instantiates a class that is enabled
for Versioning.

TimeStamp Standard Behavior

The SmartIxf Library provides an implementation of the TimeStamp
Standard Behavior to provide the ability to tag IXF Objects with
TimeStamp information, enabling you to mark the time of object creation.

Methods

The ISmIxfSchemaHelper object provides the following methods to
support defining the TimeStamp Standard Behavior in a schema:

Method Description

AddDefaultTimeStampSupport Adds the TimeStamp Standard Behavior to the
schema, as shown in TimeStamp Standard
Behavior.

EnableTimeStampForClass Add the enabler TimeStamp Class Behavior to th
specified user class.

IsTimeStampEnabled Returns true if the specified user class supports
TimeStamp Standard Behavior.

Behaviors

The following table shows the class behaviors added to the schema that
supports the TimeStamp Standard Behavior:

Class Behaviors

Name URI

Time Stamping <ixfstdns-c>
/timeStamp/1.0#timeStamp

 408

Note: An object can be time stamped only if it instantiates a class that is
enabled for TimeStamp.

Obtaining the ISmIxfSchemaHelper Object

To create an ISmIxfSchemaHelper Object:
Dim SchemaHelper as ISmIxfSchemaHelper

 ‘Create Schema Helper:

Set SchemaHelper = StdHelper.CreateSchemaHelper(Schema)

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a ISmIxfSchemaHelper.

ISmIxfSchemaHelper:
Add supported standard behaviors to the schema

Write basic schema, see Common Tasks in ISmIxfSchema section.

Get SchemaHelper object
Dim StdHelper as ISmIxfStdHelper

Dim SchemaHelper as ISmIxfSchemaHelper

‘Create stdHelper:

StdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

 ‘Create Schema Helper:

Set SchemaHelper = StdHelper.CreateSchemaHelper(Schema)

Add support for standard behaviors to the schema:
 ‘Add support for Standard Behaviors:

SchemaHelper.AddDefaultChangesSupport

SchemaHelper.AddDefaultFilesSupport

SchemaHelper.AddDefaultVersioningSupport

SchemaHelper.AddDefaultTimeStampSupport

Enable a user-defined class to support standard behaviors

 Chapter 11, SmartIXF Library

409

SchemaHelper.EnableFileAssociationForClass (IxfClass)

SchemaHelper.EnableChangeTrackingForClass (IxfClass)

SchemaHelper.EnableTimeStampForClass (IxfClass)

 410

ISmIxfWriterHelper

The ISmIxfWriterHelper object supports writing Standard Behaviors
attribute information when writing a data file.

Object Diagram

The object diagram of ISmIxfWriterHelper is shown below:

ISmIxfWriterHelper

FileWriter

ChangeWriter

ISmIxfFile

VersioningWriter

ISmIxfVersioning

(NewFile)

ISmIxfSecondaryFile(NewSecondaryFile)

ISmIxfChangeTransaction(NewTransaction)

ISmIxfChange(NewChange)

(CastToVersioning)

TimeStampWriter

ISmIxfTimeStamp(CastToTimeStamp)

Figure 11-7 ISmIxfWriterHelper Object Diagram

 Chapter 11, SmartIXF Library

411

Properties

Four WriterHelper properties are provided corresponding to the supported
Standard Behaviors:

Property Description

ChangeWriter Provides methods for writing Change-Tracking information
FileWriter Provides methods for writing File Association information
VersioningWriter Provides methods for writing Versioning information
TimeStampWriter Provides methods for writing TimeStamp information

Obtaining the ISmIxfWriterHelper Object

To create an ISmIxfWriterHelper Object:
Dim WriterHelper as ISmIxfWriterHelper

 ‘Create Writer Helper:

Set WriterHelper = StdHelper.CreateWriterHelper(IxfWriter)

ISmIxfChangeWriter

The ISmIxfChangeWriter writes change-tracking information to the data
file.
Note: In order to use the methods of the ISmIxfChangeWriter you need to have added

the ChangeTracking Standard Behavior support in the schema, using the
SchemaHelper method AddDefaultChangesSupport. In addition, in order to use
Change-Tracking on a specific IxfObject, you need to have enabled the
ChangeTracking Standard Behavior support for the class that this object
instantiates, using the SchemaHelper method EnableChangeTrackingForClass
(see Change-Tracking Standard Behavior)

Obtaining the ISmIxfChangeWriter Object
Dim ChangeWriter as ISmIxfChangeWriter

Set ChangeWriter = WriterHelper.ChangeWriter

 412

Methods

The ISmIxfChangeWriter object provides the following methods to write
Change-Tracking information to the data file:

Method Description

NewChange Creates an ISmIxfChange object
NewTransaction Creates an ISmIxfChangeTransaction

ISmIxfChangeTransaction

The ISmIxfChangeTransaction Object is a container object that represents a
group of changes, where each change is represented by a ISmIxfChange
object. A ISmIxfChange object is linked to an ISmIxfChangeTransaction
Object by its Transaction Id property.

Obtaining a ISmIxfChangeTransaction Object

To create a ISmIxfChangeTransaction Object:
Dim Transaction as ISmIxfChangeTransaction

Set Transaction = ChangeWriter.NewTransaction(Id)

Note: ISmIxfChangeTransaction objects can also be obtained through
ISmIxfChangeReader Object. See ChangeReader.

Save a ChangeTransaction to the data file as follows:
ChangeTransaction.Save

 Chapter 11, SmartIXF Library

413

Properties

The ISmIxfChangeTransaction Object has the properties
Property Description

Id Object Id of the SmIxfChangeTransaction object. Has t
a valid NCName.

ParentTransactionId Object Id of parent SmIxfChangeTransaction object in
file, if it exists

PreviousTransactionId Object Id of the previous SmIxfChangeTransaction obje
in the file, if it exists.

Methods

The ISmIxfChangeTransaction Object has the methods
Property Description

Save Saves the ChangeTransaction to the data file.

ISmIxfChange

The ISmIxfChange object represents an individual change on an object, and
includes change-tracking information. Each ISmIxfChange object is
associated with some ISmIxfChangeTransaction object by the Transaction
Id property. Therefore, an ISmIxfChangeTransaction object needs to be
created first.

Three types of changes are tracked: object creation, object deletion and
object modification. The actual changes for each type are represented by
three separate objects, which are returned as properties of ISmIxfChange:

• ISmIxfObjectCreated – contains the Object Id of the created object

• ISmIxfObjectDeleted – contains a reference to the deleted object
• ISmIxfObjectValueModified – contains the Id of the modified object

and contains a list of the object attributes that were changed, including
their previous values.

Object Diagram

The object diagram of ISmIxfChange is shown below:

 414

ISmIxfChange

ObjectDeleted

ObjectCreated

ObjectValueModif ied

ISmIxfAttributesValuesGroups(New OldValues,
GetOldValues)

Values

ISmIxfAttributesValues(GetBehaviorValues)

ISmIxfObject(GetDeletedObject)

CreatedObjectRef

Modif iedObjectRef

ixfClassName

Figure 11-8 ISmIxfChange Object Diagram

Obtaining a ISmIxfChange Object

To create a ISmIxfChange Object:
Dim Change as ISmIxfChange

Set Change = ChangeWriter.NewChange(Id, ChangeType, TransactionId)

Note: ISmIxfChange objects can also be obtained through
ISmIxfChangeReader Object. See ChangeReader.

 415

Properties

The ISmIxfChange object has the properties:
Property Description

Id Object Id of ISmIxfChange object. Has to be a valid
NCName.

TransactionId Object Id of ISmIxfChangeTransaction to which this cha
belongs

ChangeType The type of the SmIxfChange, one of ChangeTypeEnum
with the following possible values:
 - ctObjectCreated
- ctObjectDeleted
- ctObjectValueModified

ObjectCreated Returns ISmIxfObjectCreated object (see below.) Can b
accessed only when the Change is of type ctObjectCrea

ObjectDeleted Returns ISmIxfObjectDeleted object (see below.) Can be
accessed only when the Change is of type ctObjectDele

ObjectValueModified Returns ISmIxfObjectValueModified object (see below.)
be accessed only when the Change is of type
ctObjectValueModified.

PreviousChangeId The Object Id of the previous SmIxfChange in time.
PreviousChangeIdPerObject The Object Id of the previous SmIxfChange on the same

object.
IxfObject Pointer to the ISmIxfObject that is wrapped by the curre

ISmIxfChange object

Methods

The ISmIxfChange Object has the methods
Property Description

Save Saves the Change to the data file.

ISmIxfObjectCreated

The ISmIxfObjectCreated represents a change of type ctObjectCreated.
This change is meant to point to a new object that was created and added to
an already existing set of objects.

 416

Obtaining a ISmIxfObjectCreated Object

ISmIxfObjectCreated object is obtained through ISmIxfChange object of
type ctObjectCreated:
Dim Change as ISmIxfChange

Dim ObjectCreated as ISmIxfObjectCreated

Set Change = ChangeWriter.NewChange(Id, ctObjectCreated, TransactionId)

Set ObjectCreated = Change.ObjectCreated

The ISmIxfObjectCreated object has the properties:
Property Description

CreatedObjectRef The Id of the created object
Example
ObjectCreated.CreatedObjectRef = “1”

ISmIxfObjectDeleted

The ISmIxfObjectDeleted represents a change of type ctObjectDeleted.
This change is meant to hold the information of an object that was deleted
from the data objects set.

Obtaining a ISmIxfObjectDeleted Object

ISmIxfObjectDeleted object is obtained through ISmIxfChange object of
type ctObjectDeleted:
Dim Change as ISmIxfChange

Dim ObjectDeleted as ISmIxfObjectDeleted

Set Change = ChangeWriter.NewChange(Id, ctObjectDeleted, TransactionId)

Set ObjectDeleted = Change.ObjectDeleted

Methods

The ISmIxfObjectDeleted object has the methods:
Method Description

SetDeletedObject Sets the deleted object as the object referenced by the SmIxfChange
GetDeletedObject Returns an ISmIxfObject, which is the deleted object.

 Chapter 11, SmartIXF Library

417

Example

ObjectDeleted.SetDeletedObject(IxfObject)

IsmIxfObjectValueModified

The ISmIxfObjectValueModified represents a change of type
ctObjectValueModified; it contains the previous values of object attributes
that were modified, including both class attributes and behavior attributes.

You do not load individual previous object attribute values directly into the
ISmIxfObjectValueModified change object. Instead, you load the previous
object attribute values, for the attributes that changed, into the intermediate
object ISmIxfAttributesValuesGroups and then map this object to the
ISmIxfObjectValueModified object using the method SetOldValues, as
described below.

Similarly, when you want to access the previous object attribute values in a
ISmIxfObjectValueModified change object, you use the GetOldValues
method to extract the information into a ISmIxfAttributesValuesGroups
object.

An empty intermediate ISmIxfAttributesValuesGroups object can be
created from the ISmIxfObjectValueModified object using the method
NewOldValues.

Obtaining a ISmIxfObjectValueModified Object

ISmIxfObjectValueModified object is obtained through ISmIxfChange
object of type ctObjectValueModified:
Dim Change as ISmIxfChange

Dim ObjectDeleted as ISmIxfObjectValueModified

Set Change = ChangeWriter.NewChange(Id, ctObjectValueModified, TransactionId)

Set ObjectValueModified = Change.ObjectValueModified

 418

Properties and Methods

The ISmIxfObjectValueModified object has the following properties and
methods:

ISmIxfAttributesValuesGroups

Collection of ISmIxfAttributesValues objects, where each
ISmIxfAttributesValues object is a group of either class attributes or
behavior attributes.

Properties and Methods

The ISmIxfAttributesValuesGroups object has the following properties and
methods:

Property Description

Values An SmIxfAttributesValues object that represents class attribute
values (see ISmIxfAttributesValues.)

Method Description
GetBehaviorValues An SmIxfAttributesValues object that represents ClassBehavior

attributes values (see ISmIxfAttributesValues.)

Example

Dim OldValues as ISmIxfAttributesValuesGroups

ObjectValueModified.ModifiedObjectRef = “1”

ObjectValueModified.IxfClassName = “DocumentMaster”

Property Description

ModifiedObjectRef The Object Id of the modified object
IxfClassName The name of the class that the modified object instantiates
Method Description
NewOldValues Creates and returns an ISmIxfAttributesValuesGroups object –

empty collection of attribute values to be filled by the user with
values of the modified object prior to the change (old values)

SetOldValues Sets the old values of the SmIxfObjectValueModified object to
the values specified in the OldValues argument collection, whe
OldValues was filled in by the user.

GetOldValues Returns the collection of attribute values of the modified object
prior to the change represented by SmIxfObjectValueModified

 Chapter 11, SmartIXF Library

419

Set OldValues = ObjectValueModified.NewOldValues

‘Inserting an old value for a class attribute that was modified:

OldValues.Values.Item("DocumentName") = “MyDocument”

ObjectValueModified.SetOldValues(OldValues)

When you finish creating the change, you need to call the Save method of
the ISmIxfChange object for all the change details to be saved to the data
file:
Change.Save

For an example of writing a change, see Common Tasks,
ISmIxfChangesWriter: Writing a change.

ISmIxfFileWriter

The FileWriter lets you include a file as part of the IXF data. In order to
include a file, you must create a ISmIxfFile object to represent it. The
ISmIxfFile object contains detailed information about the file, such as its
name and location.

The physical file, which is represented by the ISmIxfFile object, can be
embedded into the iXF Archive file, using the EmbedFile method.

In addition, you can associate the file with an existing IxfObject such as a
Document.

Note: In order to use the methods of the ISmIxfFileWriter you need to have added
the File Association Standard Behavior support in the schema. Specifically
you should include the AddDefaultFilesSupport method in the schema (see

 420

File Association Standard BBB eeehhhaaavvv iii ooo rrr.) If you want to use the FileAssociation capability
you need to include additional methods, as described below.

Object Diagram

The object diagram of ISmIxfFileWriter is shown below:

 Chapter 11, SmartIXF Library

421

ISmIxfFileWriter

ISmIxfSecondaryFile

ISmIxfFile

ISmIxfFileAssociation

Location

ComputerName

Id

ContentType

FileName

Embedded

CreationTime

Modif icationTime

IxfObject

Source

Properties of ISmIxfFile
(above)

PreviousSibling

(New File)

(New SecondaryFile)

(CastToFileAssociation)

FileId

Figure 11-9 ISmIxfFileWriter Object Diagram

 422

Obtaining the ISmIxfFileWriter Object

Create a ISmIxfFileWriter object as follows:
Dim FileWriter as ISmIxfFileWriter

Set FileWriter = WriterHelper.FileWriter

Methods

The ISmIxfFileWriter object provides methods to write file information to
the data file:

Method Description

NewFile Creates a new ISmIxfFile object
NewSecondaryFile Creates a new ISmIxfSecondaryFile object
EmbedFile Embeds a file in an IXF Archive file.
EmbedSecondaryFile Embeds an associated file in an IXF Archive file.
CastToFile Converts a SmIxfObject to a SmIxfFile object.

The SmIxfObject to be associated with a file must support
File Association Standard Behavior, otherwise the method
returns null.

CastToSecondaryFile Converts a SmIxfObject to a SmIxfSecondaryFile object.
The SmIxfObject to be associated with a file must support
File Association Standard Behavior, otherwise the method
returns null.

CastToFileAssociation Converts a SmIxfObject to a SmIxfFileAssociation object,
which is used to associate the object with a file.
The SmIxfObject to be associated with a file must support
File Association Standard Behavior, otherwise the method
returns null.

Note: In order to use the methods CastTo… you need to have enabled the File
Association Standard Behavior support for the class that the IxfObject
instantiates, by using the method EnableFileAssociationForClass (see

 423

File Association Standard BBB eeehhhaaavvv iii ooo rrr.)

ISmIxfFile

An ISmIxfFile object represents a primary IXF file and contains its
information (see also ISmIxfSecondaryFile).

Obtaining a ISmIxfFile Object

To create a new ISmIxfFile object:
Dim File as ISmIxfFile

Set File = FileWriter.NewFile(Id)

Note: ISmIxfFile object can also be obtained through ISmIxfFileReader Object.
See FileReader.

Save the file object to the data file after creating it, optionally embedding
the physical file into the IXF Archive:
FileWriter.EmbedFile(File)

File.Save

Where, if used, the EmbedFile method needs to be called prior to the Save
method. The File parameter is an existing ISmIxfFile object.

Note: The Save action itself does not embed the physical file to the iXF
Archive file.

For an example of how to write and embed a file, see Common Tasks,
ISmIxfFileWriter: Writing and embedding a file

 424

Properties

The ISmIxfFile object has the properties:
Property Description

Id Input string that uniquely identifies the file object within the IXF
Instance Document. Must be a valid NCName.

FileName Specifies the name of the file
ContentType The file MIME content type
CreationTime The file creation time (TDateTime)
ModificationTime The file last modification time (TDateTime)
Embedded Indicates whether or not the file is embedded in the iXF archive
IxfObject Pointer to the ISmIxfObject that is wrapped by the current ISmIxfF

object
Source The physical location of the file (ISmIxfSource)

ISmIxfSecondaryFile

The ISmIxfSecondaryFile object is provided to handle sequences of files. It
represents any member of a sequence of files that is not the first file. The
position of a ISmIxfSecondaryFile object in the sequence is determined by
its “PrevousSibling" property, which is the Id of the previous file in the
sequence.

The ISmIxfSecondaryFile object has the same set of properties as the
ISmIxfFile object, shown above, except for the addition of the
“PrevousSibling" property.

For example, a sequence of three files might be used to contain the
information from one scanned picture.
File1 (ISmIxfFile) – PreviousSibling = “”

File2 (ISmIxfSecondaryFile) – PreviousSibling = “File1”

File3 (ISmIxfSecondaryFile) – PreviousSibling = “File2”

The ISmIxfSecondaryFile object represents the information about a
secondary file that is written to the data file.

Creating a New Secondary File:
Dim SecondaryFile as ISmIxfSecondaryFile

Set SecondaryFile = FileWriter.NewSecondaryFile(Id, PreviousSibling)

Note: ISmIxfSecondaryFile object can also be obtained through
ISmIxfFileReader Object. See FileReader.

 Chapter 11, SmartIXF Library

425

The file object has to be saved to the data file after finished creating it:
FileWriter.EmbedSecondaryFile(SecondaryFile)

SecondaryFile.Save

where you need to call the EmbedSecondaryFile method prior to calling the
Save method; the file parameter is an existing ISmIxfSecondaryFile object.

Note: The save action does not embed the physical file to the iXF Archive file.

ISmIxfFileAssociation

The ISmIxfFileAssociation object represents an iXF File Association class
behavior, which supports associating an IXF Object, such as a Document
with a specific file.

The association between file and object is established between a
FileAssociation object, which is created from the IxfObject, and the
ISmIxfFile object that represents the file.

The object that is to be associated with a file is cast into an object of type
ISmIxfFileAssociation using the FileWriter method CastToFileAssociation.
The link from object to file is provided through the FileId property of the
ISmIxfFileAssociation object, which is set to the Id of the ISmIxfFile
object.

Obtaining a FileAssociation Object
Dim FileAssociation as ISmIxfFileAssociation

Set FileAssociation = FileWriter.CastToFileAssociation(IxfObject)

Properties

The ISmIxfFileAssociation object has one property: the Id of the associated
file object, which provides the association between object and file.

For an example of writing a file, see Common Tasks, ISmIxfFileWriter:
Writing and embedding a file

 426

ISmIxfVersioningWriter

The ISmIxfVersioningWriter provides the ability to add versioning
information to an ISmIxfObject. The ISmIxfVersioningWriter is useful
when you need to identify successive revisions of the same entity, for
example, successive versions of the same document.

The versioning information itself is represented by an ISmIxfVersioning
object, which is obtained from the ISmIxfObject for which versioning is
desired by the VersioningWriter method CastToVersioning. The
ISmIxfVersioning object includes the version identifiers of the current
version and previous version of the entity.

The ISmIxfVersioningWriter has one method: CastToVersioning, which
converts an ISmIxfObject to ISmIxfVersioning

Note: In order to use the methods of the ISmIxfVersioningWriter you need to
have added the Versioning Standard Behavior support in the schema,
using the SchemaHelper method AddDefaultVersioningSupport (see
Versioning Standard Behavior)

Obtaining the ISmIxfVersioningWriter Object
Dim VersioningWriter as ISmIxfVersioningWriter

Set VersioningWriter = WriterHelper.VersioningWriter

ISmIxfVersioning

The ISmIxfVersioning object represents the versioning information for the
IxfObject from which it was cast.

Obtaining a Versioning object
Dim Versioning as ISmIxfVersioning

Set Versioning = VersioningWriter.CastToVersioning(IxfObject)

Note: In order to use the method CastToVersioning on an IxfObject, you need
to have enabled the Versioning Standard Behavior support for the class
that IxfObject instantiates, using the SchemaHelper method
EnableVersioningForClass (see Versioning Standard Behavior)

 Chapter 11, SmartIXF Library

427

Properties

The ISmIxfVersioning object has two properties:
Property Description

PreviousVersion The previous version identifier of the IxfObject from which t
SmIxfVersioning object was cast.

Version The current version identifier of the IxfObject from which thi
SmIxfVersioning object was cast

For an example of writing a change, see Common Tasks,
ISmIxfVersioningWriter: Versioning an object

ISmIxfTimeStampWriter

The ISmIxfTimeStampWriter provides the ability to add TimeStamp
information to an IxfObject, enabling you to mark the time of object
creation and modification.

The TimeStamp information itself is represented by an ISmIxfTimeStamp
object, which is obtained from the ISmIxfObject for which time-stamping
is desired by the TimeStampWriter method CastToTimeStamp. The
ISmIxfTimeStamp object includes the creation time and modification time
of the ISmIxfObject.

Note: In order to use the methods of the ISmIxfTimeStampWriter you need to
have added the TimeStamp Standard Behavior support in the schema,
using the SchemaHelper method AddDefaultTimeStampSupport (see
TimeStampReader)

Methods

The ISmIxfTimeStampWriter object has one method: CastToTimeStamp,
which converts an ISmIxfObject to ISmIxfTimeStamp

Obtaining the ISmIxfTimeStampWriter Object
Dim TimeStampWriter as ISmIxfTimeStampWriter

Set TimeStampWriter = WriterHelper.TimeStampWriter

ISmIxfTimeStamp

The ISmIxfTimeStamp object represents the TimeStamp information for
the IxfObject from which it was cast.

 428

Obtaining a ISmIxfTimeStamp Object
Dim TimeStamp as ISmIxfTimeStamp

Set TimeStamp = TimeStampWriter.CastToTimeStamp(IxfObject)

Note: In order to use the method CastToTimeStamp you need to have enabled
the TimeStamp Standard Behavior support for the class that IxfObject
instantiates, using the SchemaHelper method
EnableTimeStampForClass (see TimeStamp Standard Behavior)

Properties

The ISmIxfTimeStamp object has two properties:
Property Description

CreationTime Time of creation of IxfObject.
ModificationTime Time of modification of IxfObject.

For an example of writing a change, see Common Tasks,
ISmIxfTimeStampWriter: Time-stamping an object

 Chapter 11, SmartIXF Library

429

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to the Standard Behavior writers.

ISmIxfChangesWriter:
Writing a change
Dim StdHelper as ISmIxfStdHelper

Dim WriterHelper as ISmIxfWriterHelper

Dim ChangeWriter as ISmIxfChangeWriter

Dim DocumentObject as Object

‘Create stdHelper:

StdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

‘Create Writer Helper:

Set WriterHelper = StdHelper.CreateWriterHelper(IxfWriter)

‘Create Change Writer:

Set ChangeWriter = WriterHelper.ChangeWriter

‘Create ChangeTransaction:

Set Transaction = ChangeWriter.NewTransaction(“1”)

Transaction.Save

‘Create a new object:

Set IxfObject = IxfWriter.DataWriter.ObjectWriter.NewObject(“Document”,“3”);

…

IxfObject.Save;

 430

‘Create a Change for the created object:

Set Change = ChangeWriter.NewChange(“2”; ctObjectCreated; “1”)

Set Change.ObjectCreated.CreatedObjectRef = “3”

Change.Save

 Chapter 11, SmartIXF Library

431

ISmIxfFileWriter:
Writing and embedding a file
Dim StdHelper as ISmIxfStdHelper

Dim WriterHelper as ISmIxfWriterHelper

Dim IxfWriter as ISmIxfWriter

Dim FileWriter as ISmIxfFileWriter

Dim File as ISmIxfFile

‘Create stdHelper:

StdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

‘Create a writer:

IxfWriter = CreateObject("SmartIXF1.SmIxfWriter")

‘Create Writer Helper:

Set WriterHelper = StdHelper.CreateWriterHelper(IxfWriter)

‘Create File Writer:

Set FileWriter = WriterHelper.FileWriter

‘Create File:

Set File = FileWriter.NewFile(“1”)

File.FileName = “design.doc”

File.SetSource = “c:\MyDocuments\design.doc”

FileWriter.EmbedFile(File)

File.Save

 432

ISmIxfFileWriter:
Associating an object with a file
Dim FileAssociation as ISmIxfFileAssociation

Dim DocumentObject as ISmIxfObject

‘Create a user-defined object:

Set DocumentObject =
IxfWriter.DataWriterObjectWriter.newObject(“DocumentMaster”, “2”)

……….

‘Cast the user-defined object to a file association object:

FileAssociation = FileWriter.CastToFileAssociation(DocumentObject)

FileAssociation.FileId = “1”

ISmIxfVersioningWriter:
Versioning an Object
Dim StdHelper as ISmIxfStdHelper

Dim WriterHelper as ISmIxfWriterHelper

Dim IxfWriter as ISmIxfWriter

Dim VersioningWriter as ISmIxfVersioningWriter

Dim Versioning as ISmIxfVersioning

Dim DocumentObject as ISmIxfObject

‘Create stdHelper:

StdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

‘Create a writer:

IxfWriter = CreateObject("SmartIXF1.SmIxfWriter")

 Chapter 11, SmartIXF Library

433

‘Create Writer Helper:

Set WriterHelper = StdHelper.CreateWriterHelper(IxfWriter)

‘Create Versioning Writer:

Set VersioningWriter = WriterHelper.VersioningWriter

‘Create a user-defined object:

Set DocumentObject =
IxfWriter.DataWriterObjectWriter.NewObject(“DocumentMaster”, “4”)

……….

‘Cast the user-defined object to versioning object:

Versioning = VersioningWriter.CastToVersioning(DocumentObject)

Versioning.Version = “2.0”

Versioning.PreviousVersion = “1.0”

ISmIxfTimeStampWriter:
Time-stamping an object
Dim StdHelper as ISmIxfStdHelper

Dim WriterHelper as ISmIxfWriterHelper

Dim TimeStampWriter as ISmIxfTimeStampWriter

‘Create stdHelper:

StdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

‘Create Writer Helper:

Set WriterHelper = StdHelper.CreateWriterHelper(IxfWriter)

Set TimeStampWriter = WriterHelper.TimeStampWriter

‘Create TimeStamp:

TimeStamp = TimeStampWriter.CastToTimeStamp(DocumentObject)

TimeStamp.CreationTime = now

 434

ISmIxfReaderHelper

The ISmIxfReaderHelper object supports reading Standard Behaviors
information from a data file.

Identifying and Restoring Read-In Objects

The Standard Behaviors object data is written by the DataWriter to the IXF
Instance data file as the original object types such as ISmIxfChange,
ISmIxfFile, ISmIxfVersioning, as described in the section on the
ISmIxfWriterHelper.

However, the same object data is read by the DataReader from the IXF
Instance data file as generic ISmIxfObject objects rather than as the object
types that were originally written to the data file. To identify and restore
the original object types, the ReaderHelper provides methods for casting
the ISmIxfObject objects read from the data file back to the same type of
objects that were written.

For each object read in, you need to run all the cast methods on it
successively. When a specific cast method returns a non-null result, you
have identified and restored the object.

Object Diagram

The object diagram of ISmIxfReaderHelper is shown below:

 Chapter 11, SmartIXF Library

435

ISmIxfReaderHelper

FileReader

ChangeReader

ISmIxfFile

VersioningReader

ISmIxfVersioning

(CastToFile)

ISmIxfSecondaryFile(CastToSecondaryFile)

ISmIxfChangeTransaction(CastToTransaction)

ISmIxfChange(CastToChange)

(CastToVersioning)

TimeStampReader

ISmIxfTimeStamp(CastToTimeStamp)

ISmIxfFileAssociation(CastToFileAssociation)

Figure 11-10 ISmIxfReaderHelper Object Diagram

 436

Properties

Four ReaderHelper properties are provided corresponding to the supported
Standard Behaviors:

Property Description

ChangeReader Provides methods for reading Change-Tracking objects
FileReader Provides methods for reading File Association objects
VersioningReader Provides methods for reading Versioning objects
TimeStampReader Provides methods for reading TimeStamp objects

Obtaining the ISmIxfReaderHelper Object

To obtain an ISmIxfReaderHelper Object:
Dim ReaderHelper as ISmIxfReaderHelper

Set ReaderHelper = StdHelper.CreateReaderHelper(IxfReader)

ChangeReader

The ChangeReader helps to read the change-tracking objects
ISmIxfChange and ISmIxfChangeTransaction from the Ixf Archive data
file. The ChangeReader identifies and restores the original object types, by
casting the ISmIxfObject objects read from the Ixf Archive data file back to
the same type of objects that were written.

Obtaining the ISmIxfChangeReader Object
Dim ChangeReader as ISmIxfChangeReader

Set ChangeReader = ReaderHelper.ChangeReader

 Chapter 11, SmartIXF Library

437

Methods

The ISmIxfChangeReader object provides the following methods to read
Change-Tracking information from the data file.

Method Description

CastToChange Converts an ISmIxfObject to ISmIxfChange
CastToTransaction Converts an ISmIxfObject to ISmIxfChangeTransaction

Note: In order to use these methods, you need to have added the Change-
Tracking Standard Behavior support in the schema, using the
SchemaHelper method AddDefaultChangesSupport (see Change-
Tracking Standard Behavior)

ISmIxfChangeTransaction

To cast an object to a ChangeTransaction object:
Dim Transaction as ISmIxfChangeTransaction

Set Transaction = ChangeReader.CastToTransaction(IxfObject)

See ISmIxfChangeTransaction section under ISmIxfChangeWriter for
details about the ISmIxfChangeTransaction properties.

ISmIxfChange

To cast an object to a Change object:
Dim Transaction as ISmIxfChangeTransaction

Set Transaction = ChangeReader.CastToTransaction(IxfObject)

See ISmIxfChange section under ISmIxfChangeWriter section for details
about the ISmIxfChange properties.

For an example of how to use ISmIxfReaderHelper to read Change objects,
see Common Tasks, Reading and Casting objects to File and to Change
objects

 438

FileReader

The FileReader helps to read the File Association objects ISmIxfFile,
ISmIxfSecondaryFile and ISmIxfFileAssociation from the Ixf Archive data
file. The FileReader identifies and restores the original object types, by
casting the ISmIxfObject objects read from the Ixf Archive data file back to
the same type of objects that were written.

Obtaining the ISmIxfFileReader Object

To obtain the ISmIxfFileReader object:
Dim FileReader as ISmIxfFileReader

Set FileReader = ReaderHelper.FileReader

Methods

The ISmIxfFileReader object provides the following methods for reading
file information from the data file:

Method Description

CastToFile Converts an ISmIxfObject to ISmIxfFile
CastToSecondaryFile Converts an ISmIxfObject to ISmIxfSecondaryFile
CastToFileAssociation Converts an ISmIxfObject to an ISmIxfFileAssociation object

Note: In order to use these methods, you need to have added the File
Association Standard Behavior support in the schema by including the
AddDefaultFilesSupport method in the schema (see

 439

File Association Standard BBB eeehhhaaavvv iii ooo rrr.) In addition, you need to have enabled
the File Association Standard Behavior support for the class that
IxfObject instantiates, by including the method
EnableFileAssociationForClass (see

 440

File Association Standard BBB eeehhhaaavvv iii ooo rrr.)

 Chapter 11, SmartIXF Library

441

ISmIxfFile

The ISmIxfFile object represents a primary IXF file and contains the file
information.

To cast an object to File object:
Dim File as ISmIxfFile

Set File = FileReader.CastToFile(IxfObject)

See ISmIxfFile section for details about the ISmIxfFile properties.

In order to extract an embedded file from the iXF Archive file, you can use
one the following methods of ISmIxfFile object:
File.Extract(RootFolder)

File.ExtractToFile(NewFileName)

See the reference guide for more details about those functions.

For an example of how to use ISmIxfReaderHelper to read File objects, see
Common Tasks, Reading and Casting objects to File and to Change objects

ISmIxfSecondaryFile

To cast an object to a SecondaryFile object:
Dim SecondaryFile as ISmIxfSecondaryFile

Set SecondaryFile = FileReader.CastToSecondaryFile(Id, PreviousSibling)

See ISmIxfFile section for details about the ISmIxfSecondaryFile
properties.

ISmIxfFileAssociation

To cast an object to a FileAssociation object:
Dim FileAssociation as ISmIxfFileAssociation

Set FileAssociation = FileWriter.CastToFileAssociation(IxfObject)

See ISmIxfFileAssociation for information about the
ISmIxfFileAssociation properties.

VersioningReader

 442

The VersioningReader helps to read ISmIxfVersioning objects from the Ixf
Archive data file. The VersioningReader identifies and restores the original
object types, by casting the ISmIxfObject objects read from the Ixf Archive
data file back to the same type of objects that were written.

Obtaining the ISmIxfVersioningReader Object

To obtain a ISmIxfVersioningReader Object:
Dim VersioningReader as ISmIxfVersioningReader

Set VersioningReader = ReaderHelper.VersioningReader

Methods

The ISmIxfVersioningReader has one method: CastToVersioning, which
converts an ISmIxfObject to a ISmIxfVersioning object.

Note: In order to use this method, you need to have added the Versioning
Standard Behavior support in the schema, using the SchemaHelper
method AddDefaultVersioningSupport (see Versioning Standard
Behavior). In addition, to use CastToVersioning on an IxfObject, you
need to have enabled the Versioning Standard Behavior support for the
class that IxfObject instantiates, by including the method
EnableVersioningForClass (see

 443

File Association Standard BBB eeehhhaaavvv iii ooo rrr.)

ISmIxfVersioning

See the ISmIxfVersioning section under ISmIxfVersioningWriter for
information about this object.

TimeStampReader

The TimeStampReader helps to read ISmIxfTimeStamp objects from the
Ixf Archive data file. The TimeStampReader identifies and restores the
original object types, by casting the ISmIxfObject objects read from the Ixf
Archive data file back to the same type of objects that were written.

Obtaining the ISmIxfTimeStampReader Object
Dim TimeStampReader as ISmIxfTimeStampReader

Set TimeStampWriter = WriterHelper.TimeStampReader

 444

Methods

The ISmIxfTimeStampReader object has one method: CastToTimeStamp,
which converts an ISmIxfObject to a ISmIxfTimeStamp object.

Note: In order to use this method, you need to have added the TimeStamp
Standard Behavior support in the schema, using the SchemaHelper
method AddDefaultTimeStampSupport (see TimeStamp Standard
Behavior). In addition, to use CastToTimeStamp on an IxfObject, you
need to have enabled the TimeStamp Standard Behavior support for the
class that IxfObject instantiates, by including the
mISmIxfTimeStampWriterethod EnableTimeStampForClass (see
TimeStamp Standard Behavior)

ISmIxfTimeStamp

See ISmIxfTimeStamp section under the ISmIxfTimeStampWriter object
for information about this object.

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to an ISmIxfReaderHelper.

ISmIxfReaderHelper:
Reading and Casting objects to File and to Change objects
Dim StdHelper as ISmIxfStdHelper

Dim ReaderHelper as ISmIxfReaderHelper

Dim ObjectIterator As ISmIxfObjectIterator

Dim IxfObject Ss ISmIxfObject

Dim Change As ISmIxfChange

Dim ChangeId, CreatedObjectId As Sting

Dim File As ISmIxfFile

 ‘Create stdHelper:

StdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

‘Create Reader Helper:

 Chapter 11, SmartIXF Library

445

Set ReaderHelper = StdHelper.CreateReaderHelper(IxfReader)

‘Create ObjectIterator:

Set ObjectIterator = IxfReader.DataReader.ObjectReader.GetObjectIterator

While ObjectIterator.AtEnd = False

 Set IxfObject = ObjectIterator.GetObject

 ‘Read Change

 Change = ReaderHelper.ChangeReader.CastToChange(IxfObject)

 If Not (Change Is Nothing) Then

 ChangeId = Change.Id

 If Change.ChangeType = ctObjectCreated Then

 CreatedObjectId = Change.ObjectCreated.CreatedObjectRef

 End If

 …

 End If

 ‘Read File

 File = ReaderHelper.FileReader.CastToFile(IxfObject)

 If Not (File Is Nothing) Then

 FileName = File.FileName

 File.Extract(“Ixf Sample”)

 …

 End If

 ObjectIterator.Next

Wend

 446

An IXF Messaging Application

This section presents a sample iXF application, which demonstrates many
of the objects, properties and methods described above.

The sample application includes generating and processing an iXF package
for a messaging application, using the basic SmartIxf1.0 API functionality.
This example is included in the SDK under Samples/SmartIxf/Vb/Sample1.

A simple messaging format is defined, which includes the basic messaging
entities: message, attachment and folder.

Messaging Format

Entity Attributes

Message - From
- To
- Subject
- Body
- Importance
- Time of sending

Folder - Name
- Creation time

Attachment - File reference
FolderLink - Parent folder

- Child folder
FolderMessageLink - Parent folder

- Child message
MessageAttachmentLink - Parent message

- Child attachment

 Chapter 11, SmartIXF Library

447

Class Behaviors

The following table lists the ClassBehaviors.
ClassBehavior URI Attributes

Message <examplens-c>
/messaging#message

From: String, required
To: String, required
Subject: String, not required
Body: String, not required
Importance: Integer, not require
default value = 0

Folder <examplens-c>
/messaging#folder

Name: String, required

Link <ixfstdns-c>
/links/1.0#link

Object1, Object2

Directed Link <ixfstdns-c>
/links/1.0#directedLink

Object1, Object2
Directed from Object1 to Object

Tree Link <ixfstdns-c>
/links/1.0#treeLink

Object1, Object2
Object1 is the only parent of
Object2

TimeStamp <ixfstdns-c>
/timeStamp/1.0#timeStamp

creationTime
modificationTime

FileAssociation <ixfstdns-c>
/files/1.0#fileAssociation

file

The following abbreviations are used in the table:
<examplens-c> http://example.com/classBehaviors
<ixfstdns-c> http://www.ixfstd.org/std/ns/core/classBehaviors

Domain Behaviors

This section describes the Domain Behavior defined for the messaging
application. The URI for the Domain Behavior is:
http://example.com/domainBehaviors/messaging.

 448

Domain Behavior Definition

The following table defines the Roles and, for each Role, the Class
Behaviors that must be implemented by the class, which is mapped to the
role. The timeStamp Standard Behavior is only included in the Message
and Folder Roles.

Role Required Class Behaviors

Message <examplens-c>/messaging#message
<ixfstdns-c>/timeStamp/1.0#timeStamp

Folder <examplens-c>/messaging#folder
<ixfstdns-c>/timeStamp/1.0#timeStamp

FolderLink <ixfstdns-c>/links/1.0#link
<ixfstdns-c>/links/1.0#directedLink
<ixfstdns-c>/links/1.0#treeLink
Informal restriction: must point to folder-behavior objects

Attachment <ixfstdns-c>/files/1.0#fileAssociation
MessageAttachmentLink

<ixfstdns-c>/links/1.0#link
<ixfstdns-c>/links/1.0#directedLink
informal restriction: parent = message, child = attachment

FolderMessageLink <ixfstdns-c>/links/1.0#link
<ixfstdns-c>/links/1.0#directedLink
informal restriction: parent = folder, child = message

Role-to-Class Mapping

The Role-to-Class mapping for the Domain Behavior is:
Role Class

Message Message
Folder Folder
FolderLink FolderLink
Attachment Attachment
AttachmentLink AttachmentLink
FolderMessageLink FolderMessageLink

Connectivity of Objects

The following diagram shows the connectivity of the basic object and the
link objects in the example.

Associating Files with Messages

 Chapter 11, SmartIXF Library

449

Note that although the file is associated with the message, the File object is
not associated directly to the Message object, but rather through an
Attachment object. The File is associated with the Attachment object
through the FileAssociation Standard Behavior and the attachment object is
linked to the message object with the MessageAttachmentLink.

The reason it is done this way is that the FileAssociation Standard
Behavior allows you to associate at most one file with an object enabled for
FileAssociation. Thus, to allow for the possibility of associating more than
one file to a message, the messaging application has been designed with the
intermediate Attachment object and the MessageAttachmentLink object.
For each file you want to associate with a message, you create a separate
Attachment object and a corresponding MessageAttachmentLink object and
follow the procedure of the example.

The figure below shows how you would associate more than one file to the
message.

 450

Id: OID_5
Name: development

Folder

Id: OID_6
Name: iXF

Id: OID_7
Name: Sample1

Id: OID_1
From: Bruce Mayer

To: David Stein
Subject: ReadMe file

Folder

Folder

Message

Id: OID_3
File: OID_2

Attachment

Id: OID_2
Filename:Sample1.doc
ContentType: text/xml

File

Folder Link

Folder Link

FolderMessageLink

MessageAttachmentLink

FileAssociation

Id:
File:

Attachment1

Id:
Filename:

ContentType:

File1

FileAssociation

Id:
File:

Attachment2

Id:
Filename:

ContentType:

File2

FileAssociation

MessageAttachmentLink1 MessageAttachmentLink2

Associating Additional Files

 Chapter 11, SmartIXF Library

451

Implementing the Application

This section shows code examples of how the messaging application is
implemented. This section does not include all the code in the example, but
rather the code needed to illustrate and explain the implementation. For the
full code, see the example included in:
SDK/Samples/SmartIxf/Vb/Sample1/Sample1.vbp

Creating the Schema

This section shows how to create the schema for the application and
includes the topics:
• Adding Class Behaviors
• Adding Classes
• Adding Domain Behaviors

Adding Class Behaviors

The following functions add the required Class Behaviors to the schema:

Add API-Supported ClassBehaviors
Private Sub (Schema As ISmIxfSchema, SchemaHelper As ISmIxfSchemaHelper)

 ‘Add iXF TimeStamp Standard Class Behavior

 SchemaHelper.AddDefaultTimeStampSupport

 ‘Add iXF FileAssociation Standard Class Behavior

 SchemaHelper.AddDefaultFilesSupport

End Sub

Add Message ClassBehavior
Private Sub AddMessageClassBehavior(Schema As ISmIxfSchema)

 Dim IxfClassBehavior As ISmIxfClassBehavior

 Dim IxfAttribute As ISmIxfAttribute

 452

 ‘Add Message ClassBehavior to Schema ClassesBehaviors

 Set IxfClassBehavior = Schema.ClassesBehaviors.Add(mtEmbedded,
CB_MESSAGE_URI)

 ‘Add “from” attribute to Message ClassBehavior

 Set IxfAttribute = IxfClassBehavior.Attributes.Add("from")

 IxfAttribute.TypeDefinition.ValueType = dtString

 IxfAttribute.Required = True

 ‘Add “to” attribute to Message ClassBehavior

 Set IxfAttribute = IxfClassBehavior.Attributes.Add("to")

 IxfAttribute.TypeDefinition.ValueType = dtString

 IxfAttribute.Required = True

 ‘Add “subject” attribute to Message ClassBehavior

 Set IxfAttribute = IxfClassBehavior.Attributes.Add("subject")

 IxfAttribute.TypeDefinition.ValueType = dtString

 IxfAttribute.Required = False

 ‘Add “body” attribute to Message ClassBehavior

 Set IxfAttribute = IxfClassBehavior.Attributes.Add("body")

 IxfAttribute.TypeDefinition.ValueType = dtString

 IxfAttribute.Required = False

 ‘Add “importance” attribute to Message ClassBehavior

 Set IxfAttribute = IxfClassBehavior.Attributes.Add("importance")

 IxfAttribute.TypeDefinition.ValueType = dtInt

 Chapter 11, SmartIXF Library

453

 IxfAttribute.Required = False

 IxfAttribute.DefaultValue = 0

End Sub

Add Folder ClassBehavior
Private Sub AddFolderClassBehavior(Schema As ISmIxfSchema)

 Dim IxfClassBehavior As ISmIxfClassBehavior

 Dim IxfAttribute As ISmIxfAttribute

 ‘Add Folder ClassBehavior to Schema ClassesBehaviors

 Set IxfClassBehavior = Schema.ClassesBehaviors.Add(mtEmbedded,
CB_FOLDER_URI)

 ‘Add “name” attribute to Folder ClassBehavior

 Set IxfAttribute = IxfClassBehavior.Attributes.Add("name")

 IxfAttribute.TypeDefinition.ValueType = dtString

 IxfAttribute.Required = True

End Sub

Add Link ClassBehavior
Private Sub AddLinkClassBehavior(Schema As ISmIxfSchema)

 Dim IxfClassBehavior As ISmIxfClassBehavior

 Dim IxfAttribute As ISmIxfAttribute

 ‘Add IXF Standard ClassBehavior “Link” to Schema ClassesBehaviors

 Set IxfClassBehavior = Schema.ClassesBehaviors.Add(mtEmbedded,
CB_LINK_URI)

 ‘Add “object1” attribute to Link ClassBehavior

 Set IxfAttribute = IxfClassBehavior.Attributes.Add("object1")

 454

 IxfAttribute.TypeDefinition.ValueType = dtObjectReference

 IxfAttribute.Required = True

 ‘Add “object2” attribute to Link ClassBehavior

 Set IxfAttribute = IxfClassBehavior.Attributes.Add("object2")

 IxfAttribute.TypeDefinition.ValueType = dtObjectReference

 IxfAttribute.Required = True

End Sub

To add Directed Link, Tree Link, and TimeStamp Class Behaviors, see
source files.

Execute Functions
Public Sub AddClassBehaviorsDefinitionsToSchema(Schema As ISmIxfSchema,
SchemaHelper As ISmIxfSchemaHelper)

 AddAPISupportedClassBehaviors Schema, SchemaHelper

 AddMessageClassBehavior Schema

 AddFolderClassBehavior Schema

 AddLinkClassBehavior Schema

 AddDirectedLinkClassBehavior Schema

 AddTreeLinkClassBehavior Schema

End Sub

Adding Classes

The following functions add the required classes to the schema:

Add Message Class
Private Sub AddMessageClass(Schema As ISmIxfSchema, SchemaHelper As
ISmIxfSchemaHelper)

 Dim IxfClass As ISmIxfClass

 Dim IxfClassBehavior As ISmIxfClassBehavior

 Chapter 11, SmartIXF Library

455

 ‘Add class “message” to Schema Classes

 Set IxfClass = Schema.Classes.Add("message")

 ‘Enable IXF TimeStamp Standard Behavior for message class as required

 ‘by DB_MESSAGING_URI Domain Behavior

 SchemaHelper.EnableTimeStampForClass IxfClass

 ‘Declare CB_MESSAGE_URI ClassBehavior in message class as required

 ‘by DB_MESSAGING_URI Domain Behavior

 Set IxfClassBehavior = Schema.ClassesBehaviors.ItemByURI(CB_MESSAGE_URI)

 IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

End Sub

Add Folder Class
Private Sub AddFolderClass(Schema As ISmIxfSchema, SchemaHelper As
ISmIxfSchemaHelper)

 Dim IxfClass As ISmIxfClass

 Dim IxfClassBehavior As ISmIxfClassBehavior

 ‘Add class “folder” to Schema Classes

 Set IxfClass = Schema.Classes.Add("folder")

 ‘Enable IXF TimeStamp Standard Behavior for folder class as required

 ‘by DB_MESSAGING_URI Domain Behavior

 SchemaHelper.EnableTimeStampForClass IxfClass

 ‘Declare CB_FOLDER_URI ClassBehavior in folder class as required

 ‘by DB_MESSAGING_URI Domain Behavior

 456

 Set IxfClassBehavior = Schema.ClassesBehaviors.ItemByURI(CB_FOLDER_URI)

 IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

End Sub

Add FolderLink Class
Private Sub AddFolderLinkClass(Schema As ISmIxfSchema)

 Dim IxfClass As ISmIxfClass

 Dim IxfClassBehavior As ISmIxfClassBehavior

 ‘Add class “folderLink” to Schema Classes

 Set IxfClass = Schema.Classes.Add("folderLink")

 ‘Declare CB_LINK_URI, CB_DIRECTEDLINK_URI, and CB_TREELINK_URI

 ‘ClassBehaviors in folderLink class as required

 ‘by DB_MESSAGING_URI Domain Behavior. When writing the object, only

 ‘the CB_LINK_URI is used. (The presence of the CB_DIRECTEDLINK_URI,

 ‘and CB_TREELINK_URI ClassBehaviors cause the CB_LINK_URI to be

 ‘interpreted as a directed parent-son tree link.)

 Set IxfClassBehavior = Schema.ClassesBehaviors.ItemByURI(CB_LINK_URI)

 IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

 Set IxfClassBehavior =
Schema.ClassesBehaviors.ItemByURI(CB_DIRECTEDLINK_URI)

 IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

 Set IxfClassBehavior = Schema.ClassesBehaviors.ItemByURI(CB_TREELINK_URI)

 IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

End Sub

 Chapter 11, SmartIXF Library

457

Add Attachment Class
Private Sub AddAttachmentClass(Schema As ISmIxfSchema, SchemaHelper As
ISmIxfSchemaHelper)

 Dim IxfClass As ISmIxfClass

 ‘Add class “attachment” to Schema Classes

 Set IxfClass = Schema.Classes.Add("attachment")

 ‘Enable IXF FileAssociation Standard Behavior for folder class as

 ‘required by DB_MESSAGING_URI Domain Behavior

 SchemaHelper.EnableFileAssociationForClass IxfClass

End Sub

Add MessageAttachmentLink Class
Private Sub AddMessageAttachmentLinkClass(Schema As ISmIxfSchema)

 Dim IxfClass As ISmIxfClass

 Dim IxfClassBehavior As ISmIxfClassBehavior

 ‘Add class “messageAttachmentLink” to Schema Classes

 Set IxfClass = Schema.Classes.Add("messageAttachmentLink")

 ‘Declare CB_LINK_URI, and CB_DIRECTEDLINK_URI ClassBehaviors in

 ‘messageAttachmentLink class as required by DB_MESSAGING_URI Domain

 ‘Behavior

 Set IxfClassBehavior = Schema.ClassesBehaviors.ItemByURI(CB_LINK_URI)

 IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

 Set IxfClassBehavior =
Schema.ClassesBehaviors.ItemByURI(CB_DIRECTEDLINK_URI)

 IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

End Sub

 458

Add FolderMessageLink Class
Private Sub AddFolderMessageLinkClass(Schema As ISmIxfSchema)

 Dim IxfClass As ISmIxfClass

 Dim IxfClassBehavior As ISmIxfClassBehavior

 ‘Add class “folderMessageLink” to Schema Classes

 `Set IxfClass = Schema.Classes.Add("folderMessageLink")

 ‘Declare CB_LINK_URI, and CB_DIRECTEDLINK_URI ClassBehaviors in

 ‘folderMessageLink class as required by DB_MESSAGING_URI Domain

 ‘Behavior

 Set IxfClassBehavior = Schema.ClassesBehaviors.ItemByURI(CB_LINK_URI)

 IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

 Set IxfClassBehavior =
Schema.ClassesBehaviors.ItemByURI(CB_DIRECTEDLINK_URI)

 IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

End Sub

Execute Functions
Public Sub AddClassesDefininitionsToSchema(Schema As ISmIxfSchema,
SchemaHelper As ISmIxfSchemaHelper)

 AddMessageClass Schema, SchemaHelper

 AddFolderClass Schema, SchemaHelper

 AddFolderLinkClass Schema

 AddAttachmentClass Schema, SchemaHelper

 AddMessageAttachmentLinkClass Schema

 AddFolderMessageLinkClass Schema

End Sub

 459

Adding Domain Behaviors

The following functions add the required Domain Behavior to the schema:

Add Messaging Domain Behavior
Private Sub AddMessagingDomainBehavior(Schema As ISmIxfSchema)

 Dim IxfDomainBehavior As ISmIxfDomainBehavior

 Dim IxfClass As ISmIxfClass

 ‘Add Domain Behavior DB_MESSAGING_URI” to Schema DomainBehaviors

 Set IxfDomainBehavior = Schema.DomainBehaviors.Add(DB_MESSAGING_URI)

 ‘Assign the Domain Behavior Roles to their corresponding classes

 Set IxfClass = Schema.Classes.ItemByName("message")

 IxfDomainBehavior.RoleClassMapping("message") = IxfClass

 Set IxfClass = Schema.Classes.ItemByName("folder")

 IxfDomainBehavior.RoleClassMapping("folder") = IxfClass

 Set IxfClass = Schema.Classes.ItemByName("folderLink")

 IxfDomainBehavior.RoleClassMapping("folderLink") = IxfClass

 Set IxfClass = Schema.Classes.ItemByName("attachment")

 IxfDomainBehavior.RoleClassMapping("attachment") = IxfClass

 Set IxfClass = Schema.Classes.ItemByName("messageAttachmentLink")

 IxfDomainBehavior.RoleClassMapping("messageAttachmentLink") = IxfClass

End Sub

Execute Functions
Public Sub AddDomainBehaviorsToTheSchema(Schema As ISmIxfSchema)

 AddMessagingDomainBehavior Schema

End Sub

 460

Writing the Data

This section shows how to write the data to a data file. Two types of
objects are written:

Basic Objects

Link Objects

Basic Objects

Write Message Object
Private Sub CreateMessageObject(DataWriter As ISmIxfDataWriter, WriterHelper
As ISmIxfWriterHelper)

 Dim IxfObject As ISmIxfObject

 Dim BehaviorValues As ISmIxfAttributesValues

 Dim TimeStamp As ISmIxfTimeStamp

 ‘Instantiate an object from the message class; give it an Id

 Set IxfObject = DataWriter.ObjectWriter.NewObject("message", "OID_1")

 ‘Assign values to CB_MESSAGE_URI BehaviorValues

 Set BehaviorValues = IxfObject.GetBehaviorValues(CB_MESSAGE_URI)

 BehaviorValues.Item("from") = "Bruce Mayer"

 BehaviorValues.Item("to") = "David Stein"

 BehaviorValues.Item("subject") = " The Sample1.doc file "

 BehaviorValues.Item("body") = " Attached is the Sample1.doc file"

 ‘TimeStamp the message object

 Set TimeStamp = WriterHelper.TimeStampWriter.CastToTimeStamp(IxfObject)

 TimeStamp.CreationTime = Now

 Chapter 11, SmartIXF Library

461

 ‘Save the message object to the data file

 IxfObject.Save

End Sub

Create and Embed the File Object
Private Sub CreateFileObjectAndEmbedFile(WriterHelper As ISmIxfWriterHelper)

 Dim IxfFile As ISmIxfFile

 ‘Instantiate a File object and give it values

 Set IxfFile = WriterHelper.FileWriter.NewFile("OID_2")

 IxfFile.FileName = " Sample1.doc"

 IxfFile.ContentType = "text/xml"

 IxfFile.SetSource ("Sample1.doc")

 ‘Embed the File object and save it to the data file

 WriterHelper.FileWriter.EmbedFile IxfFile

 IxfFile.Save

End Sub

Write Attachment Object
Private Sub CreateAttachmentObject(DataWriter As ISmIxfDataWriter,
WriterHelper As ISmIxfWriterHelper)

 Dim IxfObject As ISmIxfObject

 Dim FileAssociation As ISmIxfFileAssociation

 ‘Instantiate an object from the attachment class; give it an Id

 Set IxfObject = DataWriter.ObjectWriter.NewObject("attachment", "OID_3")

 462

 ‘Associate the File object OID_2 with the attachment object

 Set FileAssociation =
WriterHelper.FileWriter.CastToFileAssociation(IxfObject)

 FileAssociation.FileId = "OID_2"

 ‘Save the attachment object

 IxfObject.Save

End Sub

Write Folder Objects
Private Sub CreateFolderObjects(DataWriter As ISmIxfDataWriter, WriterHelper
As ISmIxfWriterHelper)

 Dim IxfObject As ISmIxfObject

 Dim BehaviorValues As ISmIxfAttributesValues

 Dim TimeStamp As ISmIxfTimeStamp

 ‘Development folder

 ‘Instantiate an object from the folder class; give it an Id

 Set IxfObject = DataWriter.ObjectWriter.NewObject("folder", "OID_5")

‘Get CB_FOLDER_URI ClassBehavior BehaviorValues for this folder ‘object

 Set BehaviorValues = IxfObject.GetBehaviorValues(CB_FOLDER_URI)

 ‘Name the folder “Development”

 BehaviorValues.Item("name") = "Development"

 ‘Time-stamp the “Development” folder

 Set TimeStamp = WriterHelper.TimeStampWriter.CastToTimeStamp(IxfObject)

 TimeStamp.CreationTime = Now

 Chapter 11, SmartIXF Library

463

 ‘Save the “Development” folder

 IxfObject.Save

 ‘iXF folder

 ‘Instantiate another object from the folder class; give it an Id

 Set IxfObject = DataWriter.ObjectWriter.NewObject("folder", "OID_6")

‘Get CB_FOLDER_URI ClassBehavior BehaviorValues for this folder ‘object and
name it “iXF”

 Set BehaviorValues = IxfObject.GetBehaviorValues(CB_FOLDER_URI)

 BehaviorValues.Item("name") = "iXF"

 ‘Time-stamp the “iXF” folder

 Set TimeStamp = WriterHelper.TimeStampWriter.CastToTimeStamp(IxfObject)

 TimeStamp.CreationTime = Now

 ‘Save the “iXF” folder

 IxfObject.Save

 ‘Sample1 folder

 ‘Instantiate another object from the folder class; give it an Id

 Set IxfObject = DataWriter.ObjectWriter.NewObject("folder", "OID_7")

‘Get CB_FOLDER_URI ClassBehavior BehaviorValues for this folder ‘object and
name it “Sample1”

 Set BehaviorValues = IxfObject.GetBehaviorValues(CB_FOLDER_URI)

 BehaviorValues.Item("name") = "Sample1"

 464

 ‘Time-stamp the “Sample1” folder

 Set TimeStamp = WriterHelper.TimeStampWriter.CastToTimeStamp(IxfObject)

 TimeStamp.CreationTime = Now

 ‘Save the “Sample1” folder

 IxfObject.

End Sub

Link Objects

Write MessageAttachmentLink Object
Private Sub CreateMessageAttachmentLinkObject(DataWriter As ISmIxfDataWriter)

 Dim IxfObject As ISmIxfObject

 Dim BehaviorValues As ISmIxfAttributesValues

 ‘Instantiate an object from the messageAttachmentLink class;

 ‘give it an Id

 Set IxfObject = DataWriter.ObjectWriter.NewObject("messageAttachmentLink",
"OID_4")

 ‘Get CB_LINK_URI ClassBehavior BehaviorValues for this object

 Set BehaviorValues = IxfObject.GetBehaviorValues(CB_LINK_URI)

 'Link between the message object and the attachment object

 BehaviorValues.Item("object1") = "OID_1"

 BehaviorValues.Item("object2") = "OID_3"

 ‘Save the messageAttachmentLink object

 IxfObject.Save

End Sub

 Chapter 11, SmartIXF Library

465

Write FolderLink Objects
Private Sub CreateFolderLinkObjects(DataWriter As ISmIxfDataWriter)

 Dim IxfObject As ISmIxfObject

 Dim BehaviorValues As ISmIxfAttributesValues

 'Link "Development" folder as parent of "iXF" folder

 Set IxfObject = DataWriter.ObjectWriter.NewObject("folderLink", "OID_8")

 Set BehaviorValues = IxfObject.GetBehaviorValues(CB_LINK_URI)

 BehaviorValues.Item("object1") = "OID_5"

 BehaviorValues.Item("object2") = "OID_6"

 ‘Save the folderLink

 IxfObject.Save

 'Link "iXF" folder as parent of "Sample1" folder

 Set IxfObject = DataWriter.ObjectWriter.NewObject("folderLink", "OID_9")

 Set BehaviorValues = IxfObject.GetBehaviorValues(CB_LINK_URI)

 BehaviorValues.Item("object1") = "OID_6"

 BehaviorValues.Item("object2") = "OID_7"

 ‘Save the folderLink

 IxfObject.Save

End Sub

Write FolderMessageAttachment Objects
Private Sub CreateFolderMessageAttachmentObjects(DataWriter As
ISmIxfDataWriter)

 466

 Dim IxfObject As ISmIxfObject

 Dim BehaviorValues As ISmIxfAttributesValues

 'Link where "Sample1" folder as parent of the message with the

 'subject "The Sample1.doc file"

 Set IxfObject = DataWriter.ObjectWriter.NewObject("folderMessageLink",
"OID_8")

 Set BehaviorValues = IxfObject.GetBehaviorValues(CB_LINK_URI)

 BehaviorValues.Item("object1") = "OID_7"

 BehaviorValues.Item("object2") = "OID_1"

 ‘Save the link

 IxfObject.Save

End Sub

Execute Functions
Public Sub CreateData(Writer As ISmIxfWriter, StdHelper As SmIxfStdHelper)

 Dim WriterHelper As ISmIxfWriterHelper

 Dim DataWriter As ISmIxfDataWriter

 Set WriterHelper = StdHelper.CreateWriterHelper(Writer)

 CreateMessageObject Writer.DataWriter, WriterHelper

 CreateFileObjectAndEmbedFile WriterHelper

 CreateAttachmentObject Writer.DataWriter, WriterHelper

 CreateMessageAttachmentLinkObject Writer.DataWriter

 CreateFolderObjects Writer.DataWriter, WriterHelper

 CreateFolderLinkObjects Writer.DataWriter

 CreateFolderMessageAttacmentObjects Writer.DataWriter

 Chapter 11, SmartIXF Library

467

End Sub

Reading the Data

This section shows how to use the Reader and the ReaderHelper to read the
data file.

Read Data Objects
Public Sub ReadData(Reader As ISmIxfReader, StdHelper As SmIxfStdHelper)

 Dim ReaderHelper As ISmIxfReaderHelper

 Dim ObjectIterator As ISmIxfObjectIterator

 Dim IxfObject As ISmIxfObject

 Dim IxfFile As ISmIxfFile

 Set ReaderHelper = StdHelper.CreateReaderHelper(Reader)

 Set ObjectIterator = Reader.DataReader.ObjectReader.GetObjectIterator

 While ObjectIterator.AtEnd = False

 Set IxfObject = ObjectIterator.GetObject

 ‘Read in object

 HandleObject IxfObject, Reader

 ‘See if it is File object

 Set IxfFile = ReaderHelper.FileReader.CastToFile(IxfObject)

 If Not (IxfFile Is Nothing) Then

 HandleFileObject IxfFile

 End If

 ObjectIterator.Next

 Wend

End Sub

 468

Handle a File Object
Private Sub HandleFileObject(IxfFile As ISmIxfFile)

 If IxfFile.Embedded = True Then

 IxfFile.Extract App.Path + "\ExtractedFiles"

 End If

End Sub

Read an Object
Private Sub HandleObject(IxfObject As ISmIxfObject, IxfReader As SmIxfReader)

 Dim IxfClass As ISmIxfClass

 Dim IxfAttribute As ISmIxfAttribute

 Dim IxfClassBehavior As ISmIxfClassBehavior

 Dim Value As Variant

 Dim Values As ISmIxfAttributesValues

 Dim i, j As Integer

 Set IxfClass = IxfReader.Schema.Classes.ItemByName(IxfObject.ixfClassName)

 frmSample1.lstObjects.ListItems.Add , , "Object Id = " + IxfObject.Id +
":"

 frmSample1.lstObjects.ListItems.Add , , " Class = " + IxfClass.Name

 'class attributes

 If IxfClass.AllAttributes.Count > 0 Then

 frmSample1.lstObjects.ListItems.Add , , " Attributes:"

 Set Values = IxfObject.Values

 For i = 0 To IxfClass.AllAttributes.Count - 1

 Chapter 11, SmartIXF Library

469

 Set IxfAttribute = IxfClass.AllAttributes.Item(i)

 Set Value = Values.Item(IxfAttribute.Name)

 If Not VarType(Value) = vbNull Then

 frmSample1.lstObjects.ListItems.Add , , " " +
IxfAttribute.Name + " = " + Value

 End If

 Next

 End If

 'Behavior attributes

 If IxfClass.AllBehaviors.Count > 0 Then

 frmSample1.lstObjects.ListItems.Add , , " BehaviorAttributes:"

 For i = 0 To IxfClass.AllBehaviors.Count - 1

 Set IxfClassBehavior = IxfClass.AllBehaviors.Item(i)

 Set Values = IxfObject.GetBehaviorValues(IxfClassBehavior.URI)

 For j = 0 To IxfClassBehavior.Attributes.Count - 1

 Set IxfAttribute = IxfClassBehavior.Attributes.Item(j)

 Value = Values.Item(IxfAttribute.Name)

 If Not VarType(Value) = vbNull Then

 frmSample1.lstObjects.ListItems.Add , , " " +
IxfAttribute.Name + " = " + CStr(Value)

 End If

 Next

 Next

 End If

 frmSample1.lstObjects.ListItems.Add , , ""

End Sub

 470

Executing the Application

This section shows how to execute the application.
Private Sub cmdCreateIXF_Click()

 Dim IxfWriter As SmIxfWriter

 Dim IxfStdHelper As SmIxfStdHelper

 Dim IxfFileName As String

 lstObjects.ListItems.Clear

 dlgIxfFile.ShowOpen

 IxfFileName = dlgIxfFile.FileName

 If IxfFileName = vbNullString Then Exit Sub

 Set IxfWriter = CreateObject("SmartIXF1.SmIxfWriter")

 Set IxfStdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

 If btnCreateSchema.Value = True Then

 IxfWriter.SetSchemaMode mtEmbedded

 SchemaCreation.CreateSchema IxfWriter.Schema, IxfStdHelper

 Else

 IxfWriter.SetSchemaMode mtExternal, "http://example.com/messaging",
"sample1.xsd", True

 End If

 IxfWriter.CreateIxfArchiveFile IxfFileName

 DataWriting.CreateData IxfWriter, IxfStdHelper

 IxfWriter.CloseIxfArchiveFile

 Chapter 11, SmartIXF Library

471

 MsgBox ("Done")

End Sub

Private Sub cmdReadIxf_Click()

 Dim IxfReader As SmIxfReader

 Dim IxfStdHelper As SmIxfStdHelper

 Dim IxfFileName As String

 lstObjects.ListItems.Clear

 dlgIxfFile.ShowOpen

 IxfFileName = dlgIxfFile.FileName

 If IxfFileName = vbNullString Then Exit Sub

 Set IxfReader = CreateObject("SmartIXF1.SmIxfReader")

 Set IxfStdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

 IxfReader.OpenIxfArchiveFile IxfFileName, True

 DataReading.ReadData IxfReader, IxfStdHelper

 IxfReader.Close

 MsgBox ("Done")

End Sub

 472

 473

12. SmarTeam Client Libraries Overview

This chapter contains a brief overview of the SmarTeam Client libraries
described in this document.
• SmartClientContext Library
• SmartClientContextService Library
• SmartClientServices Library
• SmartClientConfiguration Library
• SmartInet Library
• SmartFileCatalog Library
• SmartRecordList Library
• SmartIntegrationServices Library
• SmartGUIServices Library
• SmartEmbeddedScripts Library

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 474

SmartClientContext Library

Provides access to client libraries.

ISmClientContext

If you are using SmarTeam – Web Editor, SmartClientContext gives you
access to all client libraries.

Methods

The SmartClientContext object has the following methods:
Method Description

ClientServices Accesses ClientServices. Returns ISmClientServices.
FileCatalog Accesses FileCatalog. Returns ISmFileCatalo
EmbeddedScripts Accesses EmbeddedScripts. Returns ISmEmbeddedScripts
GuiServices Accesses GuiServices. Returns ISmGuiServices
Initialize (ApplicationName) Initializes specified application for the Client Libraries.
IntegrationService Accesses IntegrationService. Returns ISmIntegrationServices
ClientConfiguration Accesses ClientConfiguration. Returns ISmClientConfiguration

Obtaining the SmartClientContext Object
clientContext = SmCreateSmClientContext();

Examples of these methods appear in each Client Library.

475

SmartClientContextService Library

Provides access to client libraries.

ISmClientContextService

This service is used only with SmarTeam – Editor and is only used there to
create an instance of the File Catalog library.

Properties

The SmartClientContextService object contains the following properties:

Property Description

ClientContext Entry point for all Client libraries
Workspaces If the database includes the mechanism of collaborative design,

returns a SmarTeam RecordList containing a list of all Workspaces
the database associated with the session.

IsSharedMode Returns true if the session database includes the mechanism of
collaborative design

Examples of these properties appear in the File Catalog library.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 476

SmartClientServices Library

This service handles client library services.

ISmClientServices

The ISmClientServices object provides methods to create and manage a
ISmClientDictionary.

Properties

The ISmClientServices object has the following properties:
Property Description

UserId User name
DatabaseId Id of current database
ReplicaId Replica Id of current database

Methods

The ISmClientServices object has the following methods:
Method Description

CreateDictionary Creates a dictionary. Returns ISmClientDictionary.

477

ISmClientDictionary

The ISmClientDictionary object represents a client dictionary.

Properties

The ISmClientDictionary object has the following properties:
Property Description

Group Returns a group of the dictionary by keyname. ISmDictionaryProp

Methods

The ISmClientDictionary object has the following methods:
Method Description

CreateDictionaryGroup Creates a dictionary group. Returns ISmDictionaryProperty.

ISmDictionaryGroup

The ISmDictionaryGroup object represents a dictionary group.

Properties

The ISmDictionaryGroup object has the following properties:
Property Description

DictionaryProperty Returns a dictionary property by name. ISmDictionaryProperty

Methods

The ISmDictionaryGroup object has the following methods:
Method Description

CreateDictionaryProperty: Creates a dictionary property. Returns ISmDictionaryProperty.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 478

ISmDictionaryProperty

The ISmDictionaryProperty object represents a dictionary group property.

Properties

The ISmDictionaryProperty object has the following properties:
Property Description

Value Value of the dictionary property.

479

SmartClientConfiguration Library

This service handles client library configuration.

ISmClientConfiguration

The ISmClientConfiguration object provides methods to access client
configuration items

Methods

The ISmClientConfiguration object has the following methods:
Method Description

GetValue Gets the value of a configuration item.
SetValue Sets the value of a configuration item
NewSmConfiguration
ValueList

Creates a new object of type SmConfigurationValueList

GetValueList Gets the collection of all configuration item values correspondin
to a single key. Multiple identical values are entered as a single
item in the collection.

SetValueList Sets the collection of all configuration item values correspondin
a single key

Examples

Get a configuration item value (GetValue)
Set value = SmClientConfiguration.GetValue("Pure Client Configuration",
"server")

Set a configuration item value (SetValue)
SmClientConfiguration.SetValue "smarteam.std.clientLibraries.UI",
"smarteam.std.clientLibraries.ui.insert",
/WebEditor/Views/Searches/Default.aspx

Get and set a value list (GetValueList, SetValueList)
‘ GetValueList

Set SmConfigurationValueList =
SmClientConfiguration.GetValueList("smarteam.std.clientLibraries.UI",
"smarteam.std.clientLibraries.ui.insert")

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 480

‘ SetValueList

Set SmValueList = SmClientConfiguration.NewSmConfigurationValueList;

SmValueList.Add "value1"

SmValueList.Add "value2"

SmValueList.Add "value3"

SmClientConfiguration.SetValueList "smarteam.std.clientLibraries.UI",
"smarteam.std.clientLibraries.ui.insert", SmValueList

ISmConfigurationValueList

The ISmConfigurationValueList object represents a collection of
configuration item values.

Properties

The ISmConfigurationValueList object has the following properties:
Property Description

Item Gets a value from the collection by index

Methods

The ISmConfigurationValueList object has the following methods:
Method Description

Add Adds a value to the collection. Returns the index of the adde
value.

Remove Removes a value from the collection by index
IndexOf Gets index of a configuration item value

481

SmartInet Library

This service handles low level connection to the server.

IHttpConnection

The IHttpConnection object provides methods for connecting to the server

Methods

The IHttpConnection object has the following methods:
Method Description

Open Opens a connection to the server.
Close Closes a connection to the server
CreateContext Creates a session on the server. Returns IHttpContext

IHttpContext

The IHttpContext object provides methods for opening a session on the
server.

Methods

The IHttpContext object has the following methods:
Method Description

Open
RequestAddHeader

RequestSubmit
RequestGetHeader
ResponseRead
ResponseSaveToFile
RequestUploadFile
Close

IHttpUtils

The IHttpUtils object provides utilities for working on the server.

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 482

Methods

The IHttpUtils object has the following methods:
Method Description

SaveUrlToFile Save URL to file
DetectFileMimeType Detects file Mime type

483

SmartFileCatalog Library

The SmartFileCatalog library comprises objects that enable the following
functionality:

Client-side file management for running SmarTeam in all possible
configurations

Provides API support for integrations, life-cycle operations, SmarTeam
File Explorer, and collaborative design

Folder-based structure management for file storage on client’s machine or
in network location

Provides a mechanism for accessing and updating file object attributes

See Chapter 13 for further details.

SmartRecordList Library

The SmartRecordList library comprises objects that enable the following
functionality:

Allows a client to work with record list data objects that are similar to
those in the SmarTeam API

See Chapter 14 for further details.

SmartIntegrationServices Library

The SmartIntegrationServices library comprises objects that enable the
following functionality:
• Exposes SmarTeam functionality in Host Applications
• Implements mapping of component data to SmarTeam objects
• Implements common integration tasks
• Implements data transfer to SmarTeam Database
• Provides a multi-platform solution
• Components tree traversal
• Optimized data exchanges

See SmarTeam Integration Tools Library on page 19 for further details.

SmartGUIServices Library

SmarTeam OOObbb jjj eeeccc ttt MMMooodddeee lll PPPrrrooogggrrraaammmmmmeeerrr ''' sss GGGuuu iii dddeee

 484

The SmartGUIServices library comprises objects that enable the following
functionality:

Displays standard SmarTeam – WebEditor GUI windows in client
applications

Enables selection of browser to be used in the window

Receives user input and initiates appropriate action at client

See SmarTeam GUI Services Library on page 17 for further details.

SmartEmbeddedScripts Library

The SmartEmbeddedScripts library comprises objects that enable the
following functionality:

Send scripts to the server for execution

Receive results as various types, including Record List

Upload and download files from the server.

See Chapter 17 for further details.

 485

13. SmartFileCatalog Library

General Description

The SmarTeam File Catalog library comprises objects that enable the
following functionality:
• Client-side file management for running SmarTeam in all possible

configurations
• Provides API support for integrations, life-cycle operations, SmarTeam

File Explorer, and collaborative design
• Folder-based structure management for file storage on client’s machine

or in network location
• Provides a mechanism for accessing and updating file object attributes

Dependencies

The SmarTeam File Catalog library has the following dependencies:
• SmarTeam Record List library
• SmarTeam Client Services.

SmarTeam Object Model Programmer's Guide

 486

Overview of File Catalog Library

The File Catalog manages the files and data connected with a specific
database. In a SmarTeam session, the File Catalog relates to the
information from the connected database for that session.

File Catalog Object Organization

The following diagram shows the organization of the File Catalog objects.
Note that, for reasons of efficiency, the SmFile objects are not directly
accessed through the SmFolder objects. Instead, they are fetched at run
time by search functions like GetFileitems.

 Chapter 13, SmartFileCatalog Library

487

GetCatalogFolders(WorkSpaceId)
GetFoldersByPath(FolderIdentifiers)
GetFileItems(FileIdentifiers)

Folder

Folder Id

Folder Name

Folder Path

Folder Type

Workspace

Workspace Identifier

Workspace Name

Workspace Path

Current Workspace

Folder

Folder Id

Folder Name

Folder Path

Folder Type

Default

File

File Identifier

Full Name

Local State

File Version

Owner

Masks

Component

Name

Local State

Component

Name

Local State

Reference

ChildFullName

ParentFullName

Reference

ChildFullName

ParentFullName

Attached Items

IMutableRecordList

File

File Identifier

Full Name

Local State

File Version

Owner

Masks

File

File Identifier

Full Name

Local State

File Version

Owner

Masks

Folder

Folder Id

Folder Name

Folder Path

Folder Type

Catalog
Folders

Catalog
Files

SmarTeam Object Model Programmer's Guide

 488

File Catalog in a Shared Workspace

The File Catalog provides file management abilities for working with both
private user files and with files in a Shared Workspace. “Private user files”
refers to a situation where an individual engineer copies files from a vault
and edits or views the files in a non-shared working directory. A Shared
Workspace refers to a situation where team members work on files in a
shared workspace, referencing each other’s designs from the shared
location.

The figure below shows how two users use the File Catalog to access files
in a Shared Workspace.

Client Site 2

Client

Server1

Shared Directory

Main File Catalog

Shared Workspace 1 (DB1)

Folder 1

Site 1

Catalog File Access in a Shared Workspace

Network

Client Site 1

Client

Private Files

Shared Workspace 2 (DB2)

File Catalog

Folder 2

Shared Workspace 3 (DB3)

Folder 3

File Catalog

Folder 1

Folder 2

File Catalog

SMARTEAM -
Application

SMARTEAM -
Application

Private Files

Folder 1

Folder 2

File Catalog

 Chapter 13, SmartFileCatalog Library

489

File Catalog with Private Files

The figure below shows how the File Catalog is used to access Private
files.

Client Site

Client

Private Files
Main ST File Catalog (DB1)

Server1

Folder 11

Server 2

Site 1

Site 2

Using the File Catalog to Access Private Files

Network

Folder 1

Folder 12

Folder 121
ST File Catalog

ST File Catalog

Folder 21

Folder 22

Folder 221

ST File Catalog

ST File Catalog

Folder 2

File Catalog

SMARTEAM -
Application

SmarTeam Object Model Programmer's Guide

 490

Relation to SmarTeam Processes

When using the File Catalog with the SmarTeam – Editor, the registration
of a file object in the File Catalog represents a physical file that is
associated with a file-managed SmarTeam object, for example, a CAD Part,
as shown below. The registration is performed when the physical file is
moved or copied from its vault, for example, under a Check Out or View
operation on the SmarTeam object. When the file is returned to the vault,
the physical file and its registration in the File Catalog object are deleted,
unless a copy of the file is left out of vault.

The following figure shows the relation between the checked-out file-
managed object CAD Part 1 and the file registration created in the File
Catalog for the checked-out file. The figure also shows a CFO CAD Part 2
that refers to the same physical file. The relation between the two CFO’s is
represented in the FileCatalog by assigning both CAD Part 1 and CAD Part
2 as component objects of the file object. One of the checked-out
components is designated as the primary component of the file object.

CAD Part 1

TDM_FILE_ID

TDM_FILE_VERSION

TDM_COMPONENT_NAME

STATE

SmFile

FullName

FileId

FileVersion

LocalState

SMARTEAM -- Editor

Smart
FileCatalog

Physical File

FullName

SmComponent

Name

LocalStateCAD Part 2

TDM_FILE_ID

TDM_FILE_VERSION

TDM_COMPONENT_NAME

STATE

CAD Part 1

FullName

ComponentName1

SMARTEAM -
Integration

CAD Part 2

FullName

ComponentName2Common
Physical File

SmComponent

Name

LocalState

 Chapter 13, SmartFileCatalog Library

491

SmFile Attributes

The information in the File Catalog corresponds with the information in
SmarTeam – Editor, as shown in the following table:

SmFile
Attribute

Description SmarTeam – Editor Object Attribute

FullName Uniquely defines the SmFile object in t
File Catalog

SmarTeam file-managed object does not use
FullName to refer to the physical file.

FileId Id of File. Should be same as
TDM_FILE_ID attribute of SmarTeam f
managed object that refers to the file --
when that attribute exists.

TDM_FILE_ID is the identifier of the file
referenced by the file-managed SmarTeam ob

When a new SmarTeam file-managed object t
references a specific file name is created (for
example, on CheckOut), then a new File Id is
also created. SmFile.FileId uses that new valu

FileVersion Version of file. Should be same as the
TDM_FILE_VERSION attribute of the
SmarTeam file-managed object that re
to the file

TDM_FILE_VERSION is a counter of versions
the file referred to by the file-managed
SmarTeam object
When operation Check-In is performed with
replacement of previous revision, FileVersion
increased by one.

Component
Name

Name of component. Should be same
TDM_COMPONENT_NAME attribute o
the SmarTeam file-managed object tha
refers to the file.

TDM_COMPONENT_NAME of the file-manag
object.

Overview of Objects—ISmFileCatalog

This section presents a hierarchical overview of the main ISmFileCatalog
objects including a description of the associated objects that are useful for
the programmer:

The ISmFileCatalog is the highest-level object; its main purpose is to
contain the other objects.

The major ISmFileCatalog components are shown in the following object
diagram:

SmarTeam Object Model Programmer's Guide

 492

ISmFileCatalog

RecentWorkspaces

CurrentWorkspace

Figure 13-1 ISmFileCatalog Object Diagram

 Chapter 13, SmartFileCatalog Library

493

Properties

The ISmFileCatalog object contains the following properties:
Property Description

CurrentWorkspace Gets the GUID of the Current Workspace for private files an
a shared workspace.

RecentWorkspaces Retrieves a ISmWorkspaces collection that represents recen
accessed workspaces. Returns ISmWorkspaces

Methods

The ISmFileCatalog object contains the following methods:
Method Description

AddRecentWorkspace Adds a specified Workspace to the recently accessed
workspace collection SmRecentWorkspaces

DeleteFileFromCatalog Deletes the SmFile object registration from File Catalog (t
physical file is not deleted)

DeleteFilesFromCatalog Deletes the registration of SmFile objects from File Catalo
(the physical files are not deleted)

DeleteSmFile Deletes the specified SmFile object from the File Catalog
deletes the physical file. Returns ISmResultItem

DeleteSmFiles Deletes a set of specified SmFile objects from the File
Catalog and deletes the physical files. Returns
ISmResultItems

GetCatalogFolders Gets File Catalog folders for a specified Workspace. It ret
folders for either private files or shared Workspace. It doe
not return the Temporary folder for a shared Workspace.
Returns SmFolders.

GetDefaultFolderOriginal
Path

Gets the original (non-UNC) path of the default folder for a
specified Workspace

GetDefaultFolderPath Gets the path of the default Working Directory for a specif
Workspace or for private files

GetFileItems Gets information about SmFile objects in the File Catalog
GetFoldersByPath Gets folders from SmCatalog for specified folder path strin

Returns ISmFolders.
GetTemporaryFiles Gets files from the Temporary folder for specified SmFile

objects. Returns ISmResultItems.
GetTemporaryFolder
OriginalPath

Gets the original (non-UNC) path of the Temporary Direct

GetTemporaryFolderPath Gets the UNC path of the Temporary folder.
GetWorkspaceById Gets Workspace by specified Workspace Id. Returns

ISmWorkspace.

SmarTeam Object Model Programmer's Guide

 494

IsLinkAllowed Returns True if an SmReference object can be established
from a specified parent path to a specified child path. This
method can return False when parent or child is not in the
shared workspace.

IsOperationAllowed Returns True if the specified operation is allowed for the
specified path. This method can return False if the path is
in the shared Workspace.

IsPartOfSharedWork
Space

Returns True if the specified path belongs to a directory tr
of the shared workspace associated with the FileCatalog.

NewSmFileIdentifiers Creates a new SmFileIdentifiers collection object. Returns
ISmFileIdentifiers.

NewSmFiles Creates a new SmFiles collection object. Returns ISmFile

NewSmFolderIdentifiers Creates a new SmFolderIdentifiers collection object. Retu
ISmFolderIdentifiers.

NewSmReferences Creates a new SmReferences collection object. Returns
ISmReferences.

NewSmRetrieveFilter Creates a new SmRetrieveFilter object. Returns
ISmRetrieveFilter.

RecentWorkspaces Retrieves ISmWorkspaces collection that represents recen
accessed workspaces. Returns ISmWorkspaces.

SetCurrentWorkspace Sets the Workspace specified by its Id to be the
CurrentWorkspace and changes. The Default Working
Directory to the Default Working Directory of newly set
Workspace. If the Workspace Id is empty, it means that th
user is working with private files.

SetDefaultFolderPath Sets a folder specified by path and Workspace to be the
Default Working Directory for the Workspace or for private
files.

SetFileItemOwnership Sets new ownership for a file specified by FullName.
SetTemporaryFolderPath Sets a folder specified by path to be the Temporary Direct

for this user.

 Chapter 13, SmartFileCatalog Library

495

Update Updates specified SmFile objects in File Catalog. Returns
ISmResultItems.
Links argument:
The list of SmReferences to list in the FileCatalog.
An SmReference in the Links parameter will be listed in th
File Catalog by the Update method under the following
circumstances:
The SmFile object represented by the ParentName param
of the SmReference object is included in the FileItems
parameter of the Update method.
The SmFile object represented by the ChildName of the
SmReference object is included in the FileItems paramete
the Update method or is already listed in the FileCatalog.

Otherwise the SmReference object is ignored.
UpdateReferences argument
When the Update References parameter is true the set of
SmReferences in the FileCatalog is replaced by the set of
SmReferences passed in the Links parameters. As a spec
case, when the set of SmReferences passed in the Links
parameters is empty, the set of SmReferences in the File
Catalog is deleted.
When the Update References parameter is false, the Link
parameter is ignored and no change is made to the set of
SmReferences in the File Catalog.
DeleteFiles argument
DeleteFiles controls whether FileCatalog is allowed to del
files during an Update if circumstances permit. If DeleteFi
is set to False, FileCatalog is prevented from deleting files
during an Update under any circumstances. Default is Tru

Obtaining the ISmFileCatalog Objects

You can access the File Catalog through the ISmFileCatalog object, which
is accessible through the ClientContextService library.
Dim SmFileCatalog As SmartFileCatalog.ISmFileCatalog

Dim ClientContextService As SmartClientContextService.SmClientContextService

Set ClientContextService =
SmSession.GetService("SmartClientContextService.SmClientContextService")

Set SmFileCatalog = ClientContextService.ClientContext.FileCatalog

ISmFiles

SmarTeam Object Model Programmer's Guide

 496

The ISmFiles object represents a collection of ISmFile objects.

Properties

The ISmFiles object has the following properties:
Property Description

Item Returns a member of the collection by position. Returns ISm

Methods

The ISmFiles object has the following methods:
Method Description

Add Adds new SmFile object to the collection.
Remove Removes a SmFile object from the collection
IndexOf Returns the index of the first entry in the collection with a

specified full file name

Example

Adds an SmFile object to the collection.
Dim SmFiles As SmartFileCatalog.ISmFiles

Dim SmFile As SmartFileCatalog.ISmFile

Set SmFiles = SmFileCatalog.NewSmFiles

Set SmFile = SmFiles.Add("C:\Work\MyFile.bmp")

ISmFile

The SmFile object represents an individual file in the File Catalog.

A SmFile object represents a physical file in a folder and carries some of
the physical file’s attributes such as file name, path and read-only status.

The object diagram of ISmFile is shown below:

 Chapter 13, SmartFileCatalog Library

497

ISmFile

FileId

IsReferenced

Name

AllowAutomaticDelete

LocalState

ExistsInCatalog

Owner

ExistsInFileSystem

Path

IsReadOnly

PrimaryComponentName

IsSynchronizedWithServer

FileVersion

FileReferences:
ISmReferences

Components:
ISmComponents

OriginalPath

Masks:
ISmMasks

FullName

Figure 13-2 ISmFile Object Diagram

SmarTeam Object Model Programmer's Guide

 498

Properties

The ISmFile object has the following properties:
Property Description

AllowAutomaticDelete Returns or sets automatic delete for this SmFile. When true,
Catalog can automatically delete the physical file and associ
(mask) files when conditions permit. If false, a file can only b
deleted by the DeleteSmFile method.
Default is True.

Components Retrieve collection object of ISmComponents. Returns
ISmComponents

ExistsInCatalog Returns true if this SmFile object exists in the File Catalog.
Relevant on return from call to GetFileItems.

ExistsInFileSystem Returns true, if a physical file exists that has this object’s
FullName. Relevant on return from call to GetFileItems.

FileId Returns or sets the FileId of SmFile – should be as maintaine
the TDM_FILE_ID attribute of the associated file-managed
object in the SmarTeam database.
The TDM_FILE_ID and TDM_FILE_VERSION attributes uniq
specify the File object in SmarTeam.

FileVersion File version – should be as maintained in the
TDM_FILE_VERSION attribute of the associated file-manage
object in the SmarTeam database.

FullName Returns the FullName (Path and FileName) of SmFile. The
property uniquely specifies SmFile object in File Catalog.

IsReadOnly Returns true on call to GetFileItems if the physical file is read
only on the file system

IsReferenced Returns True if this SmFile object appears as a child in at lea
one SmReference object in the File Catalog.
A value of True normally means that the File Catalog should
delete the physical file from its working directory.

 Chapter 13, SmartFileCatalog Library

499

IsSynchronizedWithServer GetFileItems returns IsSynchronizedWithServer = True when
modification date of the physical file corresponds with the
SmFile modification date listed in the File Catalog.

Description
On registering a file in the File Catalog, (update operation), t
modification date of the physical file is entered in the File
Catalog.
IsSynchronizedWithServer, as a returned value from
GetFileItems, is calculated and read-only. GetFileItems looks
current modification date of the physical file and compares w
the file’s modification date in the File Catalog. If it is the sam
i.e. file was not changed, it returns IsSynchronizedWithServe
true. If it is different, it returns false, meaning that the file wa
modified. GetFileItem does not change the modification date
registered in the File Catalog.

LocalState Returns or sets the LocalState of SmFile as
CatalogItemLocalStateEnum
cilsUndefined – undefined state in File Catalog. Also indicate
“file not found” when returned by GetFileItems.
cilsEditable –equivalent to the Checked Out or New state of
file-managed SmarTeam object to which this object correspo

cilsStandard – for future use
cilsNotEditable- equivalent to the Copied or the View state of
file-managed SmarTeam object to which this object correspo

Masks Returns or sets the Masks collection of SmFile. Returns
ISmMasks

Name Returns the File Name (without path) of this SmFile
OriginalPath Returns the local (non-UNC) path of SmFile. Use only for pri

files, not for a shared workspace.
Owner Returns or sets the Owner of SmFile (same as

SmFileCatalog.SetFileItemOwnership)
Path Returns the path of the SmFile
PrimaryComponentName Returns or sets the PrimaryComponentName of the SmFile

If there are no components other than this SmFile object itse
is set as the primary component. If there are several CFO
elements for this SmFile object, then the first to be registered
the File Catalog with its LocalState editable is defined as the
primary component.

SmarTeam Object Model Programmer's Guide

 500

Methods

The ISmFile object has the following methods:
Method Description

GetAttachedItems Retrieves AttachedItems attached to the object (not
implemented). Specified by ItemType to transfer additional
objects (as a Record List) related to the file

SetAttachedItems Set AttachedItems to the object. Specified by ItemType and
AttachedItems object

GetAttachedItem Retrieves AttachedItem to the object. Specified by ItemType
Column name and AttachedItemId

SetAttachedItem Set AttachedItem to the object. Specified by ItemType, Colu
name, AttachedItemId and ItemRecord

RemoveAttachedItems Remove AttachedItems to the object. Specified by ItemType
RemoveAttachedItem Remove AttachedItem to the object. Specified by ItemType,

Column name and AttachedItemId
GetReferences Retrieves collection object of SmReferences in the File Cata

for which this SmFile object is the referencing (parent) objec
Returns ISmReferences

MarkToSynchronize
WithServer

Set the method argument to True to allow the SmFile
modification date in the File Catalog to be updated on
subsequent calls to the Update method.
The Update method can change the modification date in the
Catalog to correspond to the current modification date of the
physical file. It will do so only if the method
MarkToSynchronizeWithServer has been called with a value
true previous to the call to Update.
In the case that you only want to the Update method to upda
certain SmFile attributes in the File Catalog and not to updat
the SmFile modified status in the File Catalog, then do not c
MarkToSynchronizeWithServer previous to calling the Updat
operation.

Obtaining the ISmFile Object

You obtain the ISmFile object as follows:

Example

The following:
Dim SmFiles As SmartFileCatalog.ISmFiles

Dim SmFile As SmartFileCatalog.ISmFile

Set SmFile = SmFiles.Add("C:\Work\MyFile.bmp")

 Chapter 13, SmartFileCatalog Library

501

ISmReferences

The ISmReferences object represents a collection of ISmReference objects.

Properties

The ISmReferences object has the following properties:
Property Description

Item Returns a member of the collection by position. Returns ISmReference.

Methods

The ISmReferences object has the following methods:
Method Description

Add Adds new SmReference object to the collection.
Remove Removes a SmReference object from the collection

Example

Obtain an SmReferences collection object.
Dim SmReference As SmartFileCatalog.ISmReference

Dim SmReferences As SmartFileCatalog.ISmReferences

Set SmReferences = SmFileCatalog.NewSmReferences

ISmReference

The SmReference object represents a directed reference between two file
objects for the purpose of controlling automatic deleting of files by the File
Catalog.

An SmReference object is established between a referencing file object
(called the parent file object), and a referenced file object (called the child
file object), such as an assembly file and a part file in the assembly. The
SmReference object expresses the fact that when the parent file is present
in its working directory, then the child file should be present in its working
directory.

SmarTeam Object Model Programmer's Guide

 502

As an example of when you would establish an SmReference object,
SmReference objects might be established between file objects that have
directed SmarTeam links between them and would normally need to be
checked out together.

Automatic Delete of Files

The purpose of the File Catalog ISmReference is to provide a mechanism
to insure that files are deleted from their working directories by the File
Catalog automatic delete function at the proper time. The mechanism
determines whether a child file is referenced by more than one parent file
currently in work. It prevents automatically deleting a child file from its
working directory on deletion of one parent file, when another parent still
requires it to be there. Without this facility, a child file that is required by
two separate parent files in work would be automatically deleted when one
parent is checked in. Note that you can disable the File Catalog automatic
delete facility for a specific file by setting SmFile.AllowAutomaticDelete
to false.

Parent/Child Terminology

Note that the parent/child terminology is used with the SmReference object
to emphasize that the direction of the reference is from the first parameter
(referencing file) to the second parameter (referenced file) in the
SmReferences.Add (ParentFullName, ChildFullName) method.

The parent/child terminology does not imply any connection to SmarTeam
hierarchic links that may exist between the file objects and SmReference is
also applicable to two file objects that are linked by a SmarTeam directed
link.

 503

Accessing a SmReference Object

You can access an SmReference object through its parent SmFile object.
The GetFileReferences method of a SmFile object returns the all
SmReference objects in which the SmFile object is a parent. You cannot
access an SmReference through its child object.

Updating SmReference Object in the File Catalog

The Update method registers in the File Catalog the SmReference objects
you have defined. It replaces SmReference objects in the File Catalog with
the SmReference objects in the Links parameter. When the Links parameter
is empty, all SmReference objects are deleted from the File Catalog. In
order to avoid deleting all SmReference objects in the File Catalog when
you pass an empty Links parameter, set the parameter UpdateReferences to
False.

Properties

The ISmReference object has the following properties:
Property Description

ParentFullName Returns or sets the file name of the referencing file obje
SmReference.

ChildFullName Returns or sets the file name of the referenced object
SmReference.

Obtaining the ISmReference Object

You obtain the ISmReference object as follows:
Set SmReference = SmReferences.Add("C:\Work\Parent.sldasm",
"C:\Work\Child.sldprt")

ISmComponents

The ISmComponents object represents a collection of ISmComponent
objects representing SmarTeam CFO elements for a single SmFile object.

SmarTeam Object Model Programmer's Guide

 504

Properties

The ISmComponents object has the following properties:
Property Description

Item Returns a member of a collection by position. Returns
ISmComponent.

Methods

The ISmComponents object has the following methods:
Method Description

Add Adds new SmComponent object to the collection.
Remove Removes a SmComponent object from the collection.
IndexOf Returns the index of the first entry in the collection with a

specified Component name.

Example

Adds a SmComponent object to the collection.
Dim SmFile As SmartFileCatalog.ISmFile

Dim SmComponent As SmartFileCatalog.ISmComponent

Dim SmComponents As SmartFileCatalog.ISmComponents

Set SmComponents = SmFile.Components

Set SmComponent = SmComponents.Add("ComponentName")

ISmComponent

An SmComponent object represents a SmarTeam Component object in the
File Catalog. The SmComponent.ComponentName property should be the
same as the TDM_COMPONENT_NAME attribute of the SmarTeam file-
managed object that refers to the file.

The ComponentName is used as the Component Identifier, for example:
ComponentIdentifiers.Add (ComponentName)

 Chapter 13, SmartFileCatalog Library

505

A SmComponent exists in the File Catalog when the corresponding
Component File Catalog exists. The Component File Catalog, which
contains the SmComponent properties, exists in a subdirectory of the File
Catalog for its SmFile object.

You can determine if an SmComponent exists in the File Catalog by calling
the GetFileItems method with its Component Name. If the Component
exists in the File Catalog, the ExistsInCatalog property is set true on return.
If the Component does not exist in the File Catalog, the LocalState
parameter will be returned with the value cilsUndefined.

Properties

The ISmComponent object has the following properties:
Property Description

Name Returns or sets the ComponentName of SmComponent.
LocalState Returns or sets the LocalState of SmComponent as

CatalogItemLocalStateEnum.
ExistsInCatalog Returns True if the Component exists in File Catalog. Rele

on return from call to GetFileItems.

Obtaining the ISmComponent Object

You obtain the ISmComponent object as follows:
SmComponent = SmComponents.Add("ComponentName")

ISmMasks

The ISmMasks object represents a collection of Mask strings for getting
accompanying files for an SmFile object.

Accompanying files, such as redline files, should be copied to File Catalog
during a Check Out or Copy operation when the file they are related to is
being copied and they should be deleted from the Catalog when the
corresponding file is deleted.

Automatic Delete of Accompanying Files

These accompanying files are also automatically deleted whenever the File
Catalog automatically deletes the SmFile file (when
SmFile.AllowAutomaticDelete is true). File Catalog recognizes the
accompanying files to delete according to the mask list specified for the
SmFile object in the File Catalog.

SmarTeam Object Model Programmer's Guide

 506

File Formats

The SmMasks items specify file formats in the form:
$F.$Exxx* ($F=filename, $E = extension)

For example, for file myfile.sldprt
$F.red

represents myfile.red
$F.$Ered*

represents myfile.sldprtredxx and myfile.sldprtredyy

Properties

The ISmMasks object has the following properties:
Property Description

Item Returns a member of a collection by position. Returns string.
Format: $F.$Exxx* ($F=filename, $E = extension)

 Chapter 13, SmartFileCatalog Library

507

Methods

The ISmMasks object has the following methods:
Method Description

Add Adds new Mask string to the collection.
Remove Removes a Mask string from the collection
IndexOf Returns the index of the first entry in the collection with a specified

Mask

Example

Adds a Mask string to the collection.
Dim Masks As SmartFileCatalog.ISmMasks

Masks.Add "$F.red"

ISmFileIdentifiers

The ISmFileIdentifiers object represents a collection of ISmFileIdentifier
objects.

This object is a way of specifying a set of SmFile objects as a parameter in
methods like GetFileItems.

The interpretation of SmFileIdentifier.KeyValue for all SmFileIdentifier
objects in the SmFileIdentifiers collection depends on the value of
KeyType:

KeyType KeyValue

cktFileId FileIdentifier.KeyValue = SmFile.FileId
cktFullName FileIdentifier.KeyValue = SmFile.FullName

SmarTeam Object Model Programmer's Guide

 508

Properties

The ISmFileIdentifiers object has the following properties:
Property Description

KeyType Returns or sets the KeyType of SmFileIdentifiers, one of
CatalogKeyTypeEnum, either a file identifier or a full name. Each
SmFileIdentifier in the collection must use the specified KeyType.

Item Returns a member of a collection by position. Returns ISmFileIdentif

Methods

The ISmFileIdentifiers object has the following methods:
Method Description

Add Adds a new SmFileIdentifier object to the collection.
Remove Removes a SmFileIdentifier object from the collection
IndexOf Returns the index of the first entry in the collection with a specified K

Value

Example

Adds an SmFileIdentifier object to the collection.
Dim SmFileIdentifier As SmartFileCatalog.ISmFileIdentifier

Dim SmFileIdentifiers As SmartFileCatalog.ISmFileIdentifiers

Set SmFileIdentifiers = SmFileCatalog.NewSmFileIdentifiers

SmFileIdentifiers.KeyType = cktFullName

Set SmFileIdentifier = SmFileIdentifiers.Add("C:\Work\MyFile.bmp")

 Chapter 13, SmartFileCatalog Library

509

ISmFileIdentifier

The SmFileIdentifier object represents an individual FileIdentifier in the
File Catalog.

Properties

The ISmFileIdentifier object has the following properties:
Property Description

KeyValue Returns or sets the KeyValue of SmFileIdentifier.
The interpretation of KeyValue depends on the value of
SmFileIdentifiers.KeyType for the collection to which this obje
belongs. It can be either FileId or FullName.

ComponentIdentifiers Retrieves the collection object of ISmComponentIdentifiers for
SmComponent objects associated with the SmFile object with
SmFileIdentifier. Returns ISmComponentIdentifiers

Obtaining the ISmFileIdentifier Object

You obtain the ISmFileIdentifier object as follows:

Example

The following:
Set SmFileIdentifier = SmFileIdentifiers.Add("C:\Work\MyFile.bmp")

Note: An SmFileIdentifier object cannot exist without being a member of
an SmFileIdentifiers collection. You create an SmFileIdentifier object by
adding an identifier string to a collection as in this example.

ISmComponentIdentifiers

The ISmComponentIdentifiers object represents a collection of Component
Identifier strings.

The members of an SmComponentIdentifiers collection are the
ComponentNames of a set of SmComponent objects. There is no
SmComponentIdentifier object in the library.

The SmComponent.ComponentName property is used as the Component
Identifier, for example:
ComponentIdentifiers.Add (SmComponent.ComponentName)

SmarTeam Object Model Programmer's Guide

 510

Properties

The ISmComponentIdentifiers object has the following properties:
Property Description

Item Returns a member of a collection by position. Returns
Component Identifier string.

Methods

The ISmComponentIdentifiers object has the following methods:
Method Description

Add Adds new Component Identifier string to the collection.
Remove Removes a Component Identifier string from the collection
IndexOf Returns the index of the first entry in the collection with a

specified ComponentIdentifier string

Example

Adds a Component Identifier string to the collection.
Dim SmFileIdentifier As SmartFileCatalog.ISmFileIdentifier

Dim SmFileIdentifiers As SmartFileCatalog.ISmFileIdentifiers

Dim SmComponentsIdentifiers As SmartFileCatalog.ISmComponentIdentifiers

Set SmFileIdentifiers = SmFileCatalog.NewSmFileIdentifiers

SmFileIdentifiers.KeyType = cktFileId

Set SmFileIdentifier = SmFileIdentifiers.Add("4334-05495454844448")

Set SmComponentsIdentifiers = SmFileIdentifier.ComponentIdentifiers

SmComponentsIdentifiers.Add(“Default”)

 511

ISmFolders

The ISmFolders object represents a collection of ISmFolder objects.

Properties

The ISmFolders object has the following properties:
Property Description

Item Returns a member of a collection by position. Returns ISmFolde

Methods

The ISmFolders object has the following methods:
Method Description

IndexOf Returns the index of the first SmFolder in the collection with
specified path

Example

Get a SmFolder object from the collection.

Dim SmFolder As SmartFileCatalog.ISmFolder

Dim SmFolders As SmartFileCatalog.ISmFolders

Set SmFolders =
SmFileCatalog.GetCatalogFolders(SmFileCatalog.CurrentWorkspace)
Set SmFolder = SmFolders.Item(0)

ISmFolder

The SmFolder object represents an individual file Folder in the File Catalog.

A SmFolder object is associated with private files or a shared Workspace and
is returned by the GetCatalogFolder method.

SmarTeam Object Model Programmer's Guide

 512

Note: For a shared Workspace, an SmFolder object is returned by the
GetCatalogFolder method if its physical folder belongs to the directory tree of
the Workspace folder – even if there are no SmarTeam files in the folder.

Folders are differentiated by FolderType
FolderType Description

cftRegular Regular folder containing private files or belonging to a specific
shared Workspace

cftTemporary A temporary folder is defined for a user but not for a specific
shared Workspace.
A Temporary folder is used for storing files for viewing. (SmarT
creates subfolders named by GUIDs under the Temporary
Directory for this purpose).
The Temporary folder is returned by GetCatalogFolders only fo
private files.

cftLibrary A library folder is defined for storing standard parts (not
implemented, SmarTeam doesn’t pass this folder)

cftDefault A Default folder is defined for each Workspace. It is normally u
as the default working directory.

SmFolder Creation

A registration of the physical folder containing a file is created in the File
Catalog when the file object is registered. In the API, the Update method
performs the file registration operation.

File Catalog classifies the new folder object as follows: If the path of the
folder that contains the file being registered is not in a shared Workspace tree
under the root, the folder is classified as a private file folder. If the path of the
folder that contains the file being registered is in a shared Workspace tree
under the root, then the folder is associated with the shared Workspace.

In the API, a folder object is represented by SmFolder and is uniquely
specified by its path, represented by property SmFolder.Path. The collection
SmFolderIdentifiers contains path strings that identify the SmFolder objects

The FolderId property does not identify the folder. The FolderId property can
be used to determine the presence of SmarTeam files in the folder: If a
Catalog folder has SmarTeam files located in it, then the SmFolder.FolderId
property is non-zero.

The object diagram of ISmFolder is shown below:

 Chapter 13, SmartFileCatalog Library

513

ISmFolder

FolderType

FolderId

WorkspaceId

OriginalPaths:
ISmFolderIdentifiers

Path

Figure 13-3 ISmFolder Object Diagram

SmarTeam Object Model Programmer's Guide

 514

Properties

The ISmFolder object has the following properties:
Property Description

Path Returns the path of the folder represented by SmFolder.
WorkspaceId Returns the Workspace Id of the SmFolder. For private files and

shared Workspaces, it represents the Workspace to which the fo
belongs.
The WorkspaceId property is non-zero if SmFolder is located in
shared workspace directory tree under the root, even if there are
SmarTeam files in the folder.

FolderType Returns the FolderType of SmFolder as CatalogFolderTypeEnum

FolderId Returns the FolderIdentifier of SmFolder.
A non-zero value of this property for both private files and a sha
workspace indicates that the SmFolder.Path contains SmarTeam
files.
Note: the members of the collection SmFolderIdentifiers are valu
of SmFolder.Path, and not SmFolder.FolderId.

OriginalPaths List of previous mappings of this SmFolder Returns
ISmFolderIdentifiers

Obtaining the ISmFolder Object

You obtain the ISmFolder object as follows:

Example

The following:

Set SmFolders = SmFileCatalog.GetCatalogFolders(SmFileCatalog.
CurrentWorkspace)
Set SmFolder = SmFolders.Item(0)

ISmFolderIdentifiers

The ISmFolderIdentifiers object represents a collection of path strings that
uniquely identify SmFolder objects.

 515

Properties

The ISmFolderIdentifiers object has the following properties:
Property Description

Item Returns a member of a collection by position. Returns SmFolder path
string.

Methods

The ISmFolderIdentifiers object has the following methods:
Method Description

Add Adds new Folder path string to the collection.
Remove Removes a Folder path string from the collection
IndexOf Returns the index of the first entry in the collection with a specified Fo

path string

Example

Adds a Folder path string to the collection.
Dim SmFoldersIdentifiers As SmartFileCatalog.ISmFolderIdentifiers

Set SmFoldersIdentifiers = SmFileCatalog.NewSmFolderIdentifiers

SmFoldersIdentifiers.Add "C:\Work"

ISmWorkspaces

The ISmWorkspaces object represents a collection of ISmWorkspace objects.

Properties

The ISmWorkspaces object has the following properties:
Property Description

Item Returns a member of a collection by position. Returns ISmWorkspace.

Methods

The ISmWorkspaces object has the following methods:
Method Description

SmarTeam Object Model Programmer's Guide

 516

IndexOf Returns the index of the first entry in the collection with a specified id.

Example

Get a SmWorkspace object from the collection.

Dim SmWorkspace As SmartFileCatalog.ISmWorkspace

Dim SmWorkspaces As SmartFileCatalog.ISmWorkspaces

Set SmWorkspaces = SmFileCatalog.RecentWorkspaces
Set SmWorkspace = SmWorkspaces.Item(0)

ISmWorkspace

The SmWorkspace object represents an individual Workspace in the File
Catalog.

A Workspace defines a directory tree with one root for the purpose of file
storage of shared files used by several users in collaboration and provides a
mechanism for security management, all of which provides a basis for
Collaborative Design.

In one Workspace you work only with information and files from one
database.

An SmWorkspace is characterized by Id, Name and Path. For private files,
Name is empty. Path specifies the location of the Workspace. The Workspace
name is used for display purposes.

Properties

The ISmWorkspace object has the following properties:
Property Description

Id Returns the Id of SmWorkspace
Path Returns the Path of SmWorkspace
Name The workspace name is determined by its creator and it used fo

display purposes.

Obtaining the ISmWorkspace Object

You obtain the ISmWorkspace object as follows:

 Chapter 13, SmartFileCatalog Library

517

Example

The following:
Set SmWorkspace = SmWorkspaces.Item(0)

ISmResultItems

The ISmResultItems object represents a collection of ISmResultItem objects.

In the method GetFileItems(SmFileIdentifiers), the number of elements in the
returned parameter SmResultItems is determined according to the value of the
KeyType property in the SmFileIdentifiers parameter as follows:

If KeyType is cktFullName, then the file items are uniquely determined by
their full name and the number of SmFiles objects in SmResultItems will be
the same as the number of files specified in GetFileItems method.

If KeyType is cktFileId, then since file items are not uniquely determined by
FileId, there may be more elements in SmResultItems than the number of files
specified in the GetFileItems method. This can occur when there exist
multiple copies of a file specified by FileId in the GetFileItems method. Each
copy is returned as a separate element of ISmResultItems. An exception to
this rule occurs when only one of the multiple copies of the file is in the
editable state (checked out). In that case, only the editable file copy is
returned as an element in SmResultItems and the other copies are ignored.

In a call to the Update method, the KeyType is automatically set to
cktFullName.

SmarTeam Object Model Programmer's Guide

 518

Properties

The ISmResultItems object has the following properties:
Property Description

HasErrors True if any errors have occurred.
KeyType Returns KeyType of SmResultItems as CatalogKeyTypeEnum.

The value of KeyType depends on which method was called:
• For a call to GetFileItems, the value of KeyType that was used in

the FileIdentifiers argument is used in SmResultItems.
• For a call to the Update method, the value of KeyType =

cktFullName is always used in SmResultItems.
Item Returns a SmResultItem of the collection by position. Returns

ISmResultItem.

Methods

The ISmResultItems object has the following methods:
Method Description

AsSmFiles Returns the SmFile objects in SmResultItems as a SmFiles collection.
Returns ISmFiles.

IndexOf Returns the index of the first SmResultItem in the collection with a
specified file identifier KeyValue.

 Chapter 13, SmartFileCatalog Library

519

Example

Get an SmResultItem object from the collection.
Dim SmFiles As SmartFileCatalog.ISmFiles

Dim SmFile As SmartFileCatalog.ISmFile

Dim SmComponent As SmartFileCatalog.ISmComponent

Dim SmComponents As SmartFileCatalog.ISmComponents

Dim SmResultItem As SmartFileCatalog.ISmResultItem

Dim SmResultItems As SmartFileCatalog.ISmResultItems

Set SmFile = SmFiles.Add("C:\Work\MyFile.bmp")

SmFile.FileId = "98789021101989849832832"

SmFile.AllowAutomaticDelete = True

SmFile.FileVersion = 0

SmFile.LocalState = cilsEditable

SmFile.Owner = "joe"

SmFile.PrimaryComponentName = "Default"

Set SmComponents = SmFile.Components

Set SmComponent = SmComponents.Add("Default")

Set SmReferences = SmFileCatalog.NewSmReferences

Set SmResultItems = SmFileCatalog.Update(SmFiles, SmReferences, False, True)

If (SmResultItems.HasErrors = False) Then

 Set SmResultItem = SmResultItems.Item(0)

End If

ISmResultItem

The SmResultItem object represents an individual ResultItem in the File
Catalog.

SmarTeam Object Model Programmer's Guide

 520

Properties

The ISmResultItem object has the following properties:
Property Description

ReturnCode Return error code for a specific File Item as
CatalogReturnCodeEnum.

KeyValue The value of KeyType used for this KeyValue parameter depends
which method was called:
• For a call to GetFileItems, the value of KeyType that was

used in the FileIdentifiers argument is used in
SmResultItems.

• For a call to the Update method, the value of KeyType =
cktFullName is always used in SmResultItems.

SmFile SmFile object. Returns ISmFile.

Obtaining the ISmResultItem Object

You obtain the ISmResultItem object as follows:
If (SmResultItems.HasErrors = False) Then

 Set SmResultItem = SmResultItems.Item(0)

End If

 Chapter 13, SmartFileCatalog Library

521

ISmRetrieveFilter

The SmRetrieveFilter object represents a RetrieveFilter in the File Catalog.

Properties

The ISmRetrieveFilter object has the following properties:
Property Description

RetrieveComponents Retrieve components according to setting
CatalogRetrieveFilterEnum: crfAll or crfSelected. When
crfSelected, then only the Components specified by
ComponentIdentifier in ISmFileIdentifier are returned with the
ISmFile.

RetrieveReferences True to retrieve SmReference objects.
RetrieveMasks True to retrieve SmMask objects..
RetrieveAttachedItems True to retrieve AttachedItems.

Obtaining the ISmRetrieveFilter Object

You obtain the ISmRetrieveFilter object as follows:
Dim SmRetrieveFilter As SmartFileCatalog.ISmRetrieveFilter

Set SmRetrieveFilter = SmFileCatalog.NewSmRetrieveFilter

Example

The following sets a Retrieve Filter:
Dim SmRetrieveFilter As SmartFileCatalog.ISmRetrieveFilter

Set SmRetrieveFilter = SmFileCatalog.NewSmRetrieveFilter

SmRetrieveFilter.RetrieveComponents = crfAll

SmRetrieveFilter.RetrieveMasks = True

SmRetrieveFilter.RetrieveReferences = True

 522

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks related to a File Catalog and its components.

FileCatalog Task:
Update File Item

The following example shows how to register a new SmarTeam file to
SmartFileCatalog.
Dim SmFileCatalog As SmartFileCatalog.ISmFileCatalog

Dim ClientContextService As SmartClientContextService.SmClientContextService

Set ClientContextService =
SmSession.GetService("SmartClientContextService.SmClientContextService")

Set SmFileCatalog = ClientContextService.ClientContext.FileCatalog

Dim SmFiles As SmartFileCatalog.ISmFiles

Dim SmFile As SmartFileCatalog.ISmFile

Dim SmResultItem As SmartFileCatalog.ISmResultItem

Dim SmResultItems As SmartFileCatalog.ISmResultItems

Dim SmComponent As SmartFileCatalog.ISmComponent

Dim SmComponents As SmartFileCatalog.ISmComponents

Set SmFile = SmFiles.Add("C:\Work\MyFile.bmp")

SmFile.FileId = "98789021101989849832832" ‘from Database

SmFile.AllowAutomaticDelete = True

‘prevent modification date of file from being updated

SmFile.MarkToSynchronizeWithServer = False

SmFile.FileVersion = 0 ‘from Database

SmFile.LocalState = cilsEditable

SmFile.Owner = "joe"

SmFile.PrimaryComponentName = "Default"

 Chapter 13, SmartFileCatalog Library

523

Set SmComponents = SmFile.Components

Set SmComponent = SmComponents.Add("Default")

Set SmReferences = SmFileCatalog.NewSmReferences

Set SmResultItems = SmFileCatalog.Update(SmFiles, SmReferences, False, True)

If (SmResultItems.HasErrors = False) Then

 Set SmResultItem = SmResultItems.Item(0)

 ...

End If

FileCatalog Task:
Get File Item

This example shows how to Get File Item properties registered in
SmartFileCatalog.
Dim SmFileCatalog As SmartFileCatalog.ISmFileCatalog

Dim ClientContextService As SmartClientContextService.SmClientContextService

Set ClientContextService =
SmSession.GetService("SmartClientContextService.SmClientContextService")

Set SmFileCatalog = ClientContextService.ClientContext.FileCatalog

Dim SmFile As SmartFileCatalog.ISmFile

Dim SmRetrieveFilter As SmartFileCatalog.ISmRetrieveFilter

Dim SmFileIdentifier As SmartFileCatalog.ISmFileIdentifier

Dim SmResultItem As SmartFileCatalog.ISmResultItem

Dim SmResultItems As SmartFileCatalog.ISmResultItems

Dim SmFileIdentifiers As SmartFileCatalog.ISmFileIdentifiers

 Set SmFileIdentifier = SmFileIdentifiers.Add("9237678327864690120")

Set SmRetrieveFilter = SmFileCatalog.NewSmRetrieveFilter

SmRetrieveFilter.RetrieveComponents = crfAll

SmRetrieveFilter.RetrieveMasks = True

SmRetrieveFilter.RetrieveReferences = True

SmarTeam Object Model Programmer's Guide

 524

Set SmResultItems = SmFileCatalog.GetFileItems(SmFileIdentifiers,
SmRetrieveFilter)

If (SmResultItems.HasErrors = False) Then

 Set SmResultItem = SmResultItems.Item(0)

 Set SmFile = SmResultItem.SmFile

 ...

End If

FileCatalog Task:
Get Catalog Folders

This example shows how to get Catalog folders of Current workspace
Dim SmFileCatalog As SmartFileCatalog.ISmFileCatalog

Dim ClientContextService As SmartClientContextService.SmClientContextService

Set ClientContextService =
SmSession.GetService("SmartClientContextService.SmClientContextService")

Set SmFileCatalog = ClientContextService.ClientContext.FileCatalog

Dim SmFolder As SmartFileCatalog.ISmFolder

Dim SmFolders As SmartFileCatalog.ISmFolders

Set SmFolders = SmFileCatalog.GetCatalogFolders(SmFileCatalog.CurrentWorkspace)

For i = 0 To SmFolders.Count - 1

 Set SmFolder = SmFolders.Item(i)

 ...

Next i

FileCatalog Task:
Get Temporary Files

This example shows how to use GetTemporaryFiles to retrieve the given
SmFiles from the user’s Temporary folder. Each input SmFile object uniquely
specifies a file by FileId and FileVersion.

 Chapter 13, SmartFileCatalog Library

525

Dim SmFileCatalog As SmartFileCatalog.ISmFileCatalog

Dim ClientContextService As SmartClientContextService.SmClientContextService

Set ClientContextService =
SmSession.GetService("SmartClientContextService.SmClientContextService")

Set SmFileCatalog = ClientContextService.ClientContext.FileCatalog

Dim SmFiles As SmartFileCatalog.ISmFiles

Dim SmFile As SmartFileCatalog.ISmFile

Dim SmResultItem As SmartFileCatalog.ISmResultItem

Dim SmResultItems As SmartFileCatalog.ISmResultItems

Set SmFile = SmFiles.Add("MyTempFile1.bmp") \\ Insert only file name without path

SmFile.FileId = "47298C20-8F20-406C-8962-1C11B552F5A5" \\ From database

SmFile.FileVersion = 0 \\ From database

Set SmFile = SmFiles.Add("MyTempFile2.bmp") \\ Insert only file name

SmFile.FileId = "47298C20-8F20-406C-8962-1C11B552F5A6" \\ From database

SmFile.FileVersion = 0 \\ From database

Set SmResultItems = SmFileCatalog.GetTemporaryFiles(SmFiles)

If (SmResultItems.HasErrors = False) Then

 Set SmResultItem = SmResultItems.Item(0)

 ...

End If

SmarTeam Object Model Programmer's Guide

 526

FileCatalog Task:
Updating a Component name

This example shows how to update a Component name in the File Catalog.
This is a complete example, showing how the object information is extracted
from the SmarTeam database and updated in the File Catalog. The example
uses a script, which is triggered by the updating of the Component name in
the SmarTeam object. The BeforeUpdate script gets the new and old
component names and the AfterUpdate script calls the routine to update the
File Catalog.
Const NM_TDM_COMPONENT_NAME = "TDM_COMPONENT_NAME"

Const NM_TDM_FILE_ID = "TDM_FILE_ID"

Const NM_GLB_COMPONENT_NAME_OLD = "SmUDGlobalUpdatedComponentNameOld"

Const NM_GLB_COMPONENT_NAME_NEW = "SmUDGlobalUpdatedComponentNameNew"

Const NM_GLB_FILE_ID = "SmUDGlobalUpdatedComponentFileId"

Const NM_GLB_OBJ_STATE = "SmUDGlobalUpdatedComponentState"

BeforeUpdate Script
Function BeforeUpdateComponent(ApplHndl As Long,Sstr As String,FirstPar As
Long,SecondPar As Long,ThirdPar As Long) As Integer

 Dim Record1 As Object

 Dim UpdatedObject As ISmObject

 Dim SmartSession As ISmSession

 Dim GlbIdx As Integer

 'Convert ApplHndl to SmSession

 Set SmartSession = SCREXT_ObjectForInterface(ApplHndl)

 'Convert record lists into COM SmRecordList objects

 CONV_RecListToComRecordList FirstPar,Record1

 If Record1.Headers.HeaderExists(NM_TDM_COMPONENT_NAME) And (Not
Record1.Headers.HeaderExists(NM_TDM_FILE_ID)) Then

 Chapter 13, SmartFileCatalog Library

527

 SmartSession.GlobalData.Value(NM_GLB_COMPONENT_NAME_NEW) =
Record1.ValueAsString(NM_TDM_COMPONENT_NAME,0)

 Set UpdatedObject =
SmartSession.ObjectStore.RetrieveObject(Record1.ValueAsInteger(NM_CLASS_ID,0),
Record1.ValueAsInteger(NM_OBJECT_ID,0))

 SmartSession.GlobalData.Value(NM_GLB_COMPONENT_NAME_OLD) =
UpdatedObject.Data.ValueAsString(NM_TDM_COMPONENT_NAME)

 SmartSession.GlobalData.Value(NM_GLB_FILE_ID) =
UpdatedObject.Data.ValueAsString(NM_TDM_FILE_ID)

 SmartSession.GlobalData.Value(NM_GLB_OBJ_STATE) =
UpdatedObject.Data.ValueAsInteger(NM_STATE)

 Else

 GlbIdx = SmartSession.GlobalData.IndexOf(NM_GLB_COMPONENT_NAME_NEW)

 If GlbIdx >= 0 Then

 SmartSession.GlobalData.Delete NM_GLB_COMPONENT_NAME_NEW

 End If

 GlbIdx = SmartSession.GlobalData.IndexOf(NM_GLB_COMPONENT_NAME_OLD)

 If GlbIdx >= 0 Then

 SmartSession.GlobalData.Delete NM_GLB_COMPONENT_NAME_OLD

 End If

 GlbIdx = SmartSession.GlobalData.IndexOf(NM_GLB_FILE_ID)

 If GlbIdx >= 0 Then

 SmartSession.GlobalData.Delete NM_GLB_FILE_ID

 End If

 GlbIdx = SmartSession.GlobalData.IndexOf(NM_GLB_OBJ_STATE)

 If GlbIdx >= 0 Then

 SmartSession.GlobalData.Delete NM_GLB_OBJ_STATE

 End If

 End If

 BeforeUpdateComponent=Err_None

SmarTeam Object Model Programmer's Guide

 528

End Function

AfterUpdate Script
Function AfterUpdateComponent(ApplHndl As Long,Sstr As String,FirstPar As
Long,SecondPar As Long,ThirdPar As Long) As Integer

 Dim SmartSession As ISmSession

 Dim GlbIdx As Integer

 AfterUpdateComponent=Err_none

 'Convert ApplHndl to SmSession

 Set SmartSession = SCREXT_ObjectForInterface(ApplHndl)

 GlbIdx = SmartSession.GlobalData.IndexOf(NM_GLB_COMPONENT_NAME_NEW)

 If GlbIdx >= 0 Then

 AfterUpdateComponent=UpdateSmartCatalog(SmartSession,
SmartSession.GlobalData.Value(NM_GLB_COMPONENT_NAME_OLD),
SmartSession.GlobalData.Value(NM_GLB_COMPONENT_NAME_NEW),
SmartSession.GlobalData.Value(NM_GLB_FILE_ID),
SmartSession.GlobalData.Value(NM_GLB_OBJ_STATE))

 End If

End Function

 Chapter 13, SmartFileCatalog Library

529

Subroutine for Updating File Catalog
Function UpdateSmartCatalog(SmartSession As Object,_

OldComponentName As String,_

NewComponentName As String,_

FileId As String,_

ObjectState As Integer) As Integer

 ' Obtaining the ISmFileCatalog Objects

 Dim SmFileCatalog As Object

 Dim ClientContextService As Object

 Set ClientContextService =
SmartSession.GetService("SmartClientContextService.SmClientContextService")

 Set SmFileCatalog = ClientContextService.ClientContext.FileCatalog

 Dim Index As Integer

 ' Create SmFileIdentitiers for the object to retrieve

 Set SmFileIdentifiers = SmFileCatalog.NewSmFileIdentifiers

 SmFileIdentifiers.KeyType = 1 ' CatalogKeyTypeEnum.cktFileId

 FileIdStr = FileId

 SmFileIdentifiers.Add FileIdStr

 ' Create SmRetrieveFilter to retrieve all components

 Set SmRetrieveFilter = SmFileCatalog.NewSmRetrieveFilter

 SmRetrieveFilter.RetrieveComponents = 0 ' CatalogRetrieveFilterEnum.crfAll

 ' Execute GetFileItems operation

 Set SmResultItems = SmFileCatalog.GetFileItems(SmFileIdentifiers,
SmRetrieveFilter)

 If SmResultItems.HasErrors = False Then

SmarTeam Object Model Programmer's Guide

 530

 ' Get the first item in the SmResultItems, you might get more the one object
if the file is checked in

 ' and there in more then one copy file in your disk

 For i=0 To SmResultItems.Count - 1

 Set SmResultItem = SmResultItems.Item(i)

 If SmResultItem Is Not Nothing Then

 Set SmFile = SmResultItem.SmFile

 If SmFile.LocalState = 1 Then ' cilsEditable

 Set SmComponents = SmFile.Components

 If SmComponents Is Not Nothing Then

 oldComponentNameStr = OldComponentName

 Index = SmComponents.IndexOf(oldComponentNameStr)

 If Index <> -1 Then

 ' Remove the old component

 intIndex = Index

 SmComponents.Remove intIndex

 ' Add the new component

 newComponentNameStr = NewComponentName

 Set SmComponent = SmComponents.Add(newComponentNameStr)

 If ObjectState = 0 Or ObjectState = 2 Then ' new or checked out

 SmComponent.LocalState = 1 ' cilsEditable

 ElseIf ObjectState = 1 Or ObjectState = 3 Then ' checked in or
released

 SmComponent.LocalState = 3 ' cilsNotEditable

 Else

 SmComponent.LocalState = 0 ' cilsUndefined

 End If

 ' Create new SmFiles object

 Chapter 13, SmartFileCatalog Library

531

 Set newSmFiles = SmFileCatalog.NewSmFiles

 Set newSmFile = newSmFiles.Add(SmFile.FullName)

 newSmFile.FileId = SmFile.FileId

 Set newSmComponents = newSmFile.Components

 For j=0 To SmComponents.Count - 1

 newSmComponents.Add SmComponents.Item(j).Name

 newSmComponents.Item(j).LocalState =
SmComponents.Item(j).LocalState

 Next j

 Set newSmMasks = newSmFile.Masks

 For j=0 To SmFile.Masks.Count - 1

 newSmMasks.Add SmFile.Masks.Item(j)

 Next j

 Set SmReferences = SmFileCatalog.NewSmReferences

 ' Update the object with the new component

 Dim boolValue

 boolValue = False

 Set SmResultItems2 = SmFileCatalog.Update(newSmFiles, SmReferences,
boolValue, boolValue)

 If SmResultItems2.HasErrors = False Then

 UpdateSmartCatalog = Err_None

 End If

 End If

 End If

 End If

 End If

 Next i

 End If

End Function

SmarTeam Object Model Programmer's Guide

 532

 533

14. SmartRecordList Library

General Description

The SmartRecordList library comprises objects that enable the following
functionality:
• Allows a client to work with record list data objects that are similar to

those in the SmarTeam API

Dependencies

The SmarTeam File Catalog library has the following dependencies:
• SmarTeam Record List library
• SmarTeam Client Services.

Overview of Record List Objects

The SmartRecordList Library provides two record list types:
IMutableRecordList and IRecordList.

The purpose of these Record List objects is to allow the client to work with
record list data objects that are similar to those in the SmarTeam API (see
Chapter 4, SmarTeam Record List Library).

For example, a client can request that SmarTeam return information to him
in a Record List.

The IMutableRecordList is provided for working with and modifying the
data in the record list. The IRecordList is provided when you want to read
data while preserving it.

The two Record List objects are similar in structure. The main difference is
that you can create read-only objects from the read-write objects but not
vice versa.

SmarTeam Object Model Programmer's Guide

 534

IMutableRecordList

The following figure shows the object diagram for the MutableRecordList
Object.

MutableRecordList

RecordList

MutableColumn

DisplayName

ColumnName

ColumnType

Size

Column

MutableColumns

Figure 4 MutableRecordList Object Diagram

535

Properties

The MutableRecordList object has the following properties:
Property Description

Columns Returns the set of columns associated with the
MutableRecordList, as IMutableColumns.

RecordList Returns a read-only copy of this MutableRecordList, as
IRecordList.

Size Number of MutableRecord objects in this MutableRecordLi

Methods

The MutableRecordList object has the following methods:
Method Description

AddRecord Add a MutableRecord to the MutableRecordList. Returns
IMutableRecord.

AddRecordList
ChangeListener

Adds specified RecordListChangeListener to this
MutableRecordList.

AddRecordListValu
ChangeListener

Adds a RecordListValueChangeListener to this
MutableRecordList.

Clear Deletes all headers and nodes in this MutableRecordList
object.

CompareTo Compares this MutableRecordList to a specified
MutableRecordList. If all nodes are equal it returns 0,
otherwise it returns a non-zero value.

Create Creates MutableRecordList with the headers of a specified
of MutableColumns. All nodes are set to nil.

EnableMutableRecordListEvents Enable the MutableRecordListEvents for this
MutableRecordList.

GetFilteredIterator Returns a filtered RecordListIterator. The filtered iterator
retrieves records from the RecordList that satisfy the cond
specified by ICondition.

GetIterator Returns a simple RecordListIterator. The RecordListIterato
can be synchronized to the MutableRecord List.

GetSortedIterator Returns a sorted RecordListIterator. The sorted iterator
retrieves records from the RecordList sorted according to t
Comparator object.

RemoveRecordList
ChangeListener

Removes a RecordListChangeListener from this
MutableRecordList.

RemoveRecordListValue
ChangeListener

Removes a RecordListValueChangeListener from this
MutableRecordList.

SmarTeam Object Model Programmer's Guide

 536

IMutableColumns

Properties

The MutableColumns object has the following properties:
Method Description

Columns Retrieves a read-only object of MutableColumns. Returns
IColumns.

MutableColumn Gets a MutableColumn by index. Returns IMutableColum

Size Returns the number of MutableColumn objects in the
collection.

Methods

The IMutableColumns object has the following methods:
Method Description

AddColumn Adds a MutableColumn, specified by header name and data
type, to the collection.

AddColumnsChangeListener Add a ColumnsChangeListener to the collection.
AddPropertyChangeListener Adds a PropertyChangeListener to the collection.
Clear Clears headers and nodes of all MutableColumn objects in th

collection.
CompareTo Compares the MutableColumn objects in the collection to the

MutableColumn objects in the argument collection. Returns 0
all corresponding MutableColumn objects are equal, otherwis
returns 1. Two MutableColumns are equal if the ColumnType
DisplayName and ColumnName are equal.

EnableMutableColumnsEvents Enables or disables the events fired by the MutableColumns
object.

IndexOf Returns the index of a specified MutableColumn in the collec

RemoveColumn Removes a MutableColumn specified by position.
RemoveColumnsChangeListener Removes a ColumnsChangeListener from the collection.
RemovePropertyChangeListener Removes a PropertyChangeListener from the collection.

537

IMutableColumn

Properties

The MutableColumn object has the following properties:
Property Description

Column Retrieves a read-only object of MutableColumn. Returns
IColumn (Ref).

ColumnName Gets the header name of this MutableColumn.
ColumnType Gets the data type of this MutableColumn.
DisplayName Gets the display name for this MutableColumn.

Methods

The MutableColumn object has the following methods:
Method Description

AddPropertyChangeListener Adds a PropertyChangeListener to the MutableColumn
CompareTo Compare this MutableColumn to a specified

MutableColumn. Returns 0 if the ColumnType, DisplayN
and ColumnName are equal, otherwise returns 1.

Create Creates a MutableColumn, according to specified heade
name and data type.

RemovePropertyChangeListener Removes a PropertyChangeListener from the
MutableColumn.

IMutableRecord

Properties

The MutableRecord object has the following properties:
Property Description

Columns Returns the set of MutableColumns associated with the
MutableRecord, as IMutableColumns.

Record Returns a read-only copy of this MutableRecord as IRec

SmarTeam Object Model Programmer's Guide

 538

Methods

The MutableRecord object has the following methods:
Method Description

AddRecordChangeListener Adds a RecordChangeListener to this
MutableRecord.

Clear Clears the nodes of this MutableRecord.
CompareTo Compares this MutableRecord to a specified

MutableRecord. Returns 0 if every node value is
equal, otherwise returns a non-zero value.

EnableMutableRecordEvents Enable the MutableRecordEvents for this
MutableRecord.

GetValue(index) Returns a node value according to node index.
GetValueAs[Boolean, Byte, Double, Float, I
Long, Short, String] (index)

Returns a node value according to node index,
which casts back to simple values instead of obj
(int instead of an Integer object).

GetValueByName(ColumnName) Returns a node value according to header name

RemoveRecordChangeListener Removes a RecordChangeListener from this
MutableRecord.

SetValue(index, newVal) Sets the value of a specific location in the
MutableRecord.

SetValueAs[Boolean, Byte, Double, Float, I
Long, Short, String] (index, newVal)

Sets a value with casting of simple types to obje
(No need to cast int to Integer object)

SetValueByName(ColumnName, newVal) Sets a value in the MutableRecord according to
header name.

539

IRecordList

The following figure shows the object diagram for the RecordList Object.

RecordList

Size

Column

DisplayName

ColumnName

ColumnType

Columns

Figure 5 RecordList Object Diagram

IRecordList and its associated interfaces are a read-only version of the
IMutableRecordList object. They are used in the same way, with the
following exceptions:

All getValue methods work as in the IMutableRecord object; the setValue
methods do not. You cannot set the values of an IRecord object; you can
only read them.

You cannot create an IMutableRecordList, IMutableRecord or
IMutableColumn from an IRecordList, IRecord or IColumn object.

SmarTeam Object Model Programmer's Guide

 540

Properties

The RecordList object has the following properties:
Property Description

Columns Returns the set of Column objects associated with this RecordL
as IColumns.

Size Returns the number of records in this RecordList.

Methods

The RecordList object has the following methods:
Method Description

AddRecord Add an Record to this RecordList. Returns IRecord.
AddRecordList
ChangeListener

Adds specified RecordListChangeListener to this RecordList.

AddRecordListValue
ChangeListener

Adds a RecordListValueChangeListener to this RecordList.

CompareTo Compares this RecordList to a specified RecordList. Returns 0
Records are equal, otherwise returns a non-zero value. Two
Records are equal if all nodes are equal.

EnableRecordListEvents Enable the RecordListEvents for this RecordList.
GetFilteredIterator Returns a filtered IRecordListIterator. The filtered iterator retrie

records from the RecordList that satisfy the condition specified
ICondition.

GetIterator Returns a simple RecordListIterator. The RecordListIterator can
synchronized to the Record List: when a record is removed from
the RecordListIterator, the corresponding record is removed fro
the RecordList (?)

GetSortedIterator Returns a sorted IRecordListIterator. The sorted iterator retriev
records from the RecordList sorted according to the Comparato
object.

RemoveRecordList
ChangeListener

Removes a RecordListChangeListener from this RecordList.

RemoveRecordListValue
ChangeListener

Removes a RecordListValueChangeListener from this RecordL

 541

IColumns

Properties

The Columns object has the following properties:
Property Description

Column Gets a Column by index. Returns IColumn.
Size Returns the number of Column objects in the collection.

Methods

The Columns object has the following methods:
Method Description

AddColumnsChangeListener Add a ColumnsChangeListener to the collection.
AddPropertyChangeListener Adds a PropertyChangeListener to the collection.
CompareTo Compares the Column objects in the collection to the Col

objects in the argument collection. Returns 0 if all
corresponding Column objects are equal, otherwise return
1. Two Columns are equal if the ColumnType, DisplayNam
and ColumnName are equal.

EnableColumnsEvents Enables or disables the events that are fired by the Colum
object.

IndexOf Returns the index of a member Column specified by
ColumnName.

RemoveColumnsChangeListener Removes a ColumnsChangeListener from the collection.
RemovePropertyChangeListener Removes a PropertyChangeListener from the collection.

 542

IColumn

Properties

The Column object has the following properties:
Property Description

ColumnName Gets the header name of this Column.
ColumnType Gets the data type in this Column.
DisplayName Gets the display name of this Column.

Methods

The Column object has the following methods:
Method Description

AddPropertyChangeListener Adds a PropertyChangeListener to the Column.
CompareTo Compare this Column to a specified Column. Returns 0

the ColumnType, DisplayName and ColumnName are eq
otherwise returns 1.

RemovePropertyChangeListener Removes a PropertyChangeListener from the Column.

IRecord

Properties

The Record object has the following properties:
Property Description

Columns Returns the set of Column objects associated with the
Record, as IColumns.

Methods

The Record object has the following methods:
Method Description

AddRecordChangeListener Adds a RecordChangeListener to this Record.
CompareTo Compares this Record to a specified Record. Returns 0

every node value is equal, otherwise returns a non-zero
value.

EnableRecordEvents Enables the RecordEvents for this Record.

543

GetValue(index) Returns a node value according to node index.
GetValueAs[Boolean, Byte, Double,
Float, Int, Long, Short, String] (inde

Returns a node value according to node index, which c
back to simple values instead of objects (int instead of
Integer object).

GetValueByName(ColumnName) Returns a node value according to column name.
RemoveRecordChangeListener Removes a RecordChangeListener from this Record.

IRecordListIterator

Methods

The IRecordListIterator object has the following methods:
Method Description

Find Moves to the next position according to the given
ICondition, Else moves to the end of the list.

FindNext Moves to the next position according to the ICondition
specified in the last Find method, Else moves to the end
the list.

HasNext Returns true if the iteration has more elements.
IsSynchronized Returns true if the Iterator is synchronized to the

IRecordList.
Next Returns the next element in the iteration.
Remove Removes from the underlying collection the last element

returned by the iterator.

IRecordListUtils

Methods

The RecordListUtils object has the following methods:
Method Description

GetGroupCount Returns the number of groups in the specified RecordLi

GetGroupName Returns the Group Name of the Column of the specified
RecordList at the specified index.

GetMutableGroupCount Returns the number of groups in the specified
MutableRecordList.

GetMutableGroupName Returns the Group Name of the Column of the specified
MutableRecordList at the specified index.

SmarTeam Object Model Programmer's Guide

 544

GetMutableRecordListByGroup Returns a sub MutableRecordList that contains only the
Column objects of the specified group. Returns
IMutableRecordList.

GetRecordListByGroup Returns a sub RecordList that contains only the Column
objects of the specified group. Returns IRecordList.

SaveToFile Save To File (not implemented).

IRecordsFactory

Methods

The RecordsFactory object has the following methods:
Method Description

CreateMutableRecord Creates an empty MutableRecord
CreateMutableRecordFromColumns Creates a MutableRecord with same Column objects

the specified MutableColumns

Events

The SmartRecordList Library has four event types:
• ColumnsChangeEvent - Fires on change of Columns object
• RecordChangeEvent - Fires on change of Record object
• RecordListChangeEvent - Fires on change of RecordList object, such

as adding a record to the RecordList
• RecordListValueChangeEvent- Fires on change of a record in a

RecordList

All events have a stop() method that can be called by the listener to
prevent the action from occurring. The event source checks the event stop
flag before executing the action.

 545

IColumnsChangeEvent

Methods

The ColumnsChangeEvent object has the following methods:
Method Description

GetColumnChanged Gets Column that was changed.
GetSource Gets the object that threw the event.
Initialize Sets the event.
IsStopped Checks if the event is stopped.
Stop Disables the event procedure.

IColumnsChangeListener

Methods

The ColumnsChangeListener object has the following methods:
Method Description

ColumnBeforeAdd Called before adding a column.
ColumnAfterAdd Called after adding a column.
ColumnBeforeRemove Called before removing a column.
ColumnAfterRemove Called after removing a column.

IRecordChangeEvent

Methods

The RecordChangeEvent object has the following methods:
Method Description

GetIndex Gets index that was changed.
GetSource Gets the object that threw the event.
Initialize Sets the event.
IsStopped Checks if the event is stopped.
Stop Disables the event procedure.

SmarTeam Object Model Programmer's Guide

 546

IRecordChangeListener

Methods

The RecordChangeListener object has the following methods:
Method Description

ValueBeforeChange Called before changing a record value.
ValueAfterChange Called after changing a record value.

IRecordListChangeEvent

Methods

The RecordListChangeEvent object has the following methods:
Method Description

GetRecordChanged Gets Record that was changed.
GetSource Gets the object that threw the event.
Initialize Sets the event.
IsStopped Checks if the event is stopped.
Stop Disables the event procedure.

IRecordListChangeListener

Methods

The RecordListChangeListener object has the following methods:
Method Description

RecordBeforeAdd Called before adding a Record
RecordAfterAdd Called after adding a Record
RecordBeforeRemove Called before removing a Record
RecordAfterRemove Called after removing a Record

 547

IRecordListValueChangeEvent

Methods

The RecordListValueChangeEvent object has the following methods:
Method Description

GetIndex Gets the index that was changed.
GetRecordChanged Gets Record that was changed.
GetSource Gets the object that threw the event.
Initialize Sets the event.
IsStopped Checks if the event is stopped.
Stop Disables the event procedure.

IRecordListValueChangeListener

Methods

The RecordListValueChangeListener object has the following methods:
Method Description

ValueBeforeChange Called before changing a specified Record value in the
RecordList.

ValueAfterChange Called after changing a specified Record value in the
RecordList.

 548

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks in client applications.

IMutableRecordList:
Creating and setting values
Dim RecList As MutableRecordList

Dim MutableColumns As IMutableColumns

Dim Column As IMutableColumn

// Create new record list object

Set RecList = New MutableRecordList

// Set the columns for the new record list

Set MutableColumns = RecList.Columns

Set Column = MutableColumns.AddColumn("ID", rldtShort)

Column.DisplayName = "worker ID"

// Add record

Dim Record As IMutableRecord

Set Record = recList.AddRecord

Record.SetValueByName "ID", 101

...

IMutableRecordList:
Usage of ICondition interface and filtered iterators
Implements ICondition

549

Private Function ICondition_Evaluate(ByVal pRecVal As
SmartRecordList.IMutableRecord) As Boolean

End Function

Dim Cond As New Class1

Dim RecList As MutableRecordList

Dim Iterator As IRecordListIterator

Set Iterator = RecList.GetFilteredIterator(Cond, True)

Do While (Iterator.HasNext())

 Set TmpRecord = Iterator.Next()

 Dim i As Integer

 For i = 0 To TmpRecord.Columns.Size

 Dim tmp As Integer

 tmp = TmpRecord.GetValueAsShort(i)

 Next i

Loop

 550

IMutableRecordList:
Adding a RecordListChangeListener

The following example adds a RecordListChangeListener to a
MutableRecordList.
Implements IRecordListChangeListener

Private Sub IRecordListChangeListener_RecordAfterAdd(ByVal pVal As
SmartRecordList.IRecordListChangeEvent)

End Sub

Private Sub IRecordListChangeListener_RecordAfterRemove(ByVal pVal As
SmartRecordList.IRecordListChangeEvent)

End Sub

Private Sub IRecordListChangeListener_RecordBeforeAdd(ByVal pVal As
SmartRecordList.IRecordListChangeEvent)

End Sub

Private Sub IRecordListChangeListener_RecordBeforeRemove(ByVal pVal As
SmartRecordList.IRecordListChangeEvent)

End Sub

Dim RecList As MutableRecordList

Dim Listener As New Class2

Set RecList = New MutableRecordList

RecList.AddRecordListChangeListener Listener

551

AAppppeennddiixx AA - Tips for Writing Scripts

A script is program code that can be executed in the SmarTeam system,
usually in response to an event.

With scripts, the user can customize and enhance the SmarTeam family of
products.

Scripts can be attached to a variety of SmarTeam events and executed in a
number of ways. Scripts can be attached either to system operations or to
specified SmarTeam events.

Scripts should be written in Basic with the Smart BasicScript editor. The
scripts should be located within the script directory specified in the System
Configuration Editor under “Miscellaneous Configuration/Directory
Structure”, key “ScriptDirectory”. The script directory can be, for example,
c:\Program Files\SmarTeam\Script. A script file name should not exceed
50 characters.

Script argument structures can differ from one event to another. The script
programmer should be familiar with the script interface at the particular
event hook before beginning to write code.

In SmarTeam there are two types of the interfaces between main
application and embedded script:
• Procedural API interface
• COM interface; all new script hooks, mainly event hooks of WorkFlow.

The following description shows how to switch to COM API within API
procedural interface and how to use procedural API within script invoked
through COM interface.

How to switch to COM API within procedural script interface

In order to work with SmarTeam object model from within the script that
was invoked through a procedural API interface, you need to get the
current Session object and convert procedural record lists to COM
representation. In some script hooks, second or third record lists are used
for transferring data to main applications. You have two options to
implement that:

SmarTeam Object Model Programmer's Guide

 552

• Use CONV_RecListToComRecordList to convert procedural
record list, obtained as the parameter of the script, to COM
representation, fill the resulting list with values and copy it back to
procedural representation using function
ComRecListToRecordList. The example below show how to
implement this approach.

• Use procedural record list API functions in order to fill values directly
to the procedural record list, received as the parameter of the script.

Example

'**

' Template for writing scripts

' ApplHndl - application handle

' FirstPar - record list usually contains attributes of the selected
object(s)

' SecondPar - record list usually used for transfer of service data between

' script and application

' ThirdPar - record list usually for transfer of data from the script to the
application

'**

Declare Sub CONV_RecListToComRecordList Lib "SmTdm32" (ByVal RecList As
Long,ByRef COMRecList As ISmRecordList)

Declare Sub CONV_ComRecListToRecordList Lib "SmTdm32" (ByVal ComRecList As
ISmRecordList,ByRef RecList As Long)

Function TemplateFunc (ApplHndl As Long,Sstr As String,FirstPar As
Long,SecondPar As Long,ThirdPar As Long) As Integer

 Dim SmSession As ISmSession

 Dim COMFirstList As ISmRecordList

 Dim COMSecondList As ISmRecordList

 Dim COMThirdList As ISmRecordList

 ‘ Get Session from Application handle

 Set SmSession = SCREXT_ObjectForInterface(ApplHndl)

553

 ‘ Convert Record lists to COM representation

 CONV_RecListToComRecordList FirstPar,COMFirstList

 CONV_RecListToComRecordList SecondPar,COMSecondList

 CONV_RecListToComRecordList ThirdPar,COMThirdList

 …

 <Body of the script>

 ‘ Copy values from COM Record List to procedural record lists that must be
returned to main application

 CONV_ComRecListToRecordList COMThirdList,ThirdPar

End Function

How to use procedural API functions in COM interface script

In order to work with functions of procedural API you need to have
Application handle. Use function SCREXT_ObjectForInterface to get
ApplHndl from the Session object as shown in the following example.
Function AfterSendReject(FlowSession As Object, FlowProcess As Object, Node As
Object, Response As Object) As Integer

 Dim ApplHndl As Long

 ApplHndl = SCREXT_ObjectForInterface(FlowSession.FlowStore.Session)

 AfterSendReject = ERR_NONE

End Function

SmarTeam Object Model Programmer's Guide

 554

Programming Constants

The SmarTeam API provides the SmartConstants object, which allows
developers writing in scripting languages, such as VBScript and JScript, to
use constants (enumerations) without using their actual numeric value, or
having to redeclare them in their own code. SmartConstants provides easy
access to these constants. The SmartConstants constants are described in
the reference guide, for each type library.

Following are some VBScript code samples that demonstrate the use of
SmartConstants.

Example

Set Constants = CreateObject("SmartConstants.SmConstants")

RecordList.AddHeader "Header1", 255, Constants.SmRecList.sdtChar

Once you have established a reference to the SmConstants object, the
syntax is Constants.library-name.constant-name. You can also
use the same instance of the object to access several libraries.

Example

Set Constants = CreateObject("SmartConstants.SmConstants")

RecordList.AddHeader "Header1", 255, Constants.SmRecList.sdtChar

Set B = Session.ObjectStore.DefaultBehavior.Clone

B.ConfirmOperations = Constants.SmApplic.coYesToAll

You can also keep a reference to the library specific instance:

Example

Set Constants = CreateObject("SmartConstants.SmConstants")

Set C2 = Constants.SmRecList

RecordList.AddHeader "Header1", 255, C2.sdtChar

555

To make this a bit more convenient, we've added library specific shortcuts
from some of the main objects. So RecordList.Constants is a short cut to
the constants object for the SmRecList TLB, and Session.Constants /
Engine.Constants are shortcuts to the constants object for the SmApplic
TLB. So the above code can also be written without creating the Constants
object, in the following manner:

Example

RecordList.AddHeader "Header1", 255, RecordList.Constants.sdtChar

Set B = Session.ObjectStore.DefaultBehavior.Clone

B.ConfirmOperations = Session.Constants.coYesToAll

Currently, the objects that support these shortcuts are RecordList, Record,
Engine and Session, with more to follow.

A few more things to note:
• Delphi, Visual Basic and C++ developers do not need to use these

objects. It is much more efficient to use the constants defined in the
_TLB.pas and .H files.

• The SmConstants object loads the type-library information
dynamically, so there is no need to recompile it when new libraries are
added or new values are added to an existing library.

SmartScript Editor Workarounds

The following workarounds are used in the following conditions:
• Using the SmartScript Editor with the SmarfFileCatalog library, objects

such as, ISmFolder, and ISmFileIdentifier, error "type mismatch" is
displayed

To avoid this error, use the following workaround:
• The variables for the SmarTFileCatalog library Objects should not be

defined as an exact data type but as a Variant type.
• In the SmartScript Editor while using properties with arguments, such

as, Property Value (HeaderName,RecordIndex). The following error
message is displayed, "...Too many parameters encountered".

To avoid this error use either of the following workarounds:
• When using a SmRecordList/SmRecord object(s), their variables need

to be defined as generic OLE Object:

 Dim SmRecList as Object

SmarTeam Object Model Programmer's Guide

 556

 _

 SmRecList.Value("TDM_ID",0) = "test"
• When working with the ISmObject object, use either of the following

workarounds:
a. Define the variable as its exact data type ISmObject, but call for

the Property Value via another Property Data:

 Dim FolderObject as ISmObject

 FolderObject.Data.Value("TDM_ID")="1111"
b. Define variable as OLE Object:

 Dim FolderObject as Object

 FolderObject.Value("CN_ID")="1111".

ISM Objects Workaround

The following are specific Conditions that are disregarded in ISM Objects:

• ISMObject.RetrieveParentsAndLinks
• ISMObject.RetrieveParentsAndLinksEx
• ISMObject.RetrieveChildrenAndLinks
• ISMObject.RetrieveChildrenAndLinksEx
• ISMObject.RetrieveRelationsAndLinks
• ISMObject.RetrieveRelationsAndLinksEx
• ISMObject.RetrieveParents
• ISMObject.RetrieveParentsEx
• ISMObject.RetrieveChildren
• ISMObject.RetrieveChildrenEx
• ISMObject.RetrieveRelations
• ISMObject.RetrieveRelationsEx

CAD Integration
Integration Name Integration Class Integration_Behavior
CATIA CATIA_PART TDM_CATIA_PART
" " "

557

AAppppeennddiixx BB - SmarTeam Add-In
Services

The following is a list of SmarTeam add-in services libraries:
SmarTeam Library Name ProgId

GUI Services SmGUISrv.SmCommonGUI
Utilities SmUtil.SmSessionUtil
SmartFlow SmartFlow.SmFlowStore
SmartMessages SmartMessages.SmMessageStore
Integration Tools SmIntegrationTool.SmIntegrationStore
CAD Interface SmCad.SmCADInterface

 558

559

AAppppeennddiixx CC - Writing Server
Applications

This appendix describes how to use the SmarTeam COM API to create
server-type applications.

Requirements

The requirements of a server-type application are normally as follows:
1. The application should be able to handle multiple concurrent requests

from several clients

2. The application should not display a user interface while running.

Guidelines

The following guidelines help you to use the SmarTeam API to create
server applications that meet the above requirements and that function in a
correct and efficient manner:

Guideline 1: Use SmApplic.SmFreeThreadedEngine instead of
SmApplic.SmEngine.

SmFreeThreadedEngine is almost identical to SmEngine. The main
difference between the two objects is the threading model: SmEngine is
marked as “Both”, while SmFreeThreadedEngine is marked as “Free”. The
“Both” threading model used by SmEngine can result in significantly
slower performance, and even in deadlocks. These problems do not occur
when using SmFreeThreadedEngine.

You can use SmFreeThreadedEngine exclusively. SmEngine and its old
threading model are retained only for backward compatibility and continue
to work well for single-threaded applications. However, you must use
SmFreeThreadedEngine in multi-threaded applications.

SmarTeam Object Model Programmer's Guide

 560

Guideline 2: Create SmSession objects explicitly; do not use
SmEngine.CreateSession

Using the old SmEngine.CreateSession to create a SmSession object causes
the object to be created in the Engine apartment. This is not the correct
behavior in a multi-threaded application. Instead, you should create the
SmSession object explicitly, using the mechanism appropriate for your
environment: CreateObject in Visual Basic, Server.CreateObject in ASP
applications, and CoCreateInstance in C, and so on.

After creating the session, SmSession.Init must be called to associate the
new session with the SmEngine object.

Code that that was written using CreateSession will continue to work. New
code should use the new style, and multi-threaded applications must use the
new style.

Guideline 3: Set SmEngine.ServerMode to True

Setting the property SmEngine.ServerMode to True right after the
initialization stage (SmEngine.Init) prevents the SmarTeam API from
displaying message dialog boxes on the screen. Displaying a dialog box has
the effect of suspending a server application since no operator is available
to respond to it.

Guideline 4: Call SmSession.Close when the session is no longer
required

Call the SmSession.Close method as soon as the session is not
required to release the server resources for other sessions. Failing to call
this method can result in errors during the SmEngine.Terminate
method.

Guideline 5: Follow the rules of creating Win32 multi-threaded COM
applications

Check the MSDN and other Microsoft documentation for a description of
the rules that apply when creating Win32 multi-threaded applications.

 561

AAppppeennddiixx DD - SmarTeam Integration
and Integration Link Behaviors

SmarTeam Integration Behavior and Integration Link Behavior refer to a
common functionality that can be imposed on an object.

SmarTeam Integration_Behaviors

The following is a list of SmarTeam Integration_Behaviors:
Integration Integration Behavior Description

CATIA TDM_UG_ASSEMBLY UG Assembly
CATIA TDM_CATIA_DESIGN_TABLE CATIA Design Table
CATIA TDM_CATIA_ANAL CATIA Analysis
CATIA TDM_CATIA_CATALOG CATIA Catalog
CATIA TDM_CATIA_DRAWING CATIA Drawing
CATIA TDM CATIA MATERIAL CATIA Material
CATIA TDM_CATIA_MODEL CATIA Model
CATIA TDM_CATIA_PART CATIA Part
CATIA TDM_CATIA_PRODUCT CATIA Product
CATIA TDM_CATIA_PROCESS CATIA Process
CATIA TDM_CATIA_SHEET CATIA Sheet
CATIA TDM_CATIA_INTCOM CATIA Internal Component
CATIA TDM_CATIA_RESULTDOC CATIA Result Document
CATIA TDM_CATIA_DOCUMENT CATIA Document
CATIA TDM_CATIA_REPRESENT CATIA Representation
CATIA TDM_CATIA_AN ALCOMP CATIA Analysis Computations
CATIA TDM_CATIA_ANALINPUT CATIA Analysis Input
CATIA TDM_NC_DOCUMENT NC
CATIA TDM_CAD_DOCUMENT CAD Document
CATIA TDM_CATIA_ANALRESULT CATIA Analysis Results
CATIA TDM_CATIA_CADAM CATIA CADAM
CATIA TDM_CATIA_PROCESS_LIB CATIA Process Library
CATIA TDM_CATIA_SYSTEM CATIA System
CATIA TDM_CATIA_FEATURE_DIC CATIA Feature Dictionary
CATIA TDM_UG_PART UG Part
Microsoft Excel TDM_EXCEL_DOCUMENT Excel Document

SmarTeam Object Model Programmer's Guide

 562

AutoCAD TDM_ACAD_DOCUMENT ACAD Document
Inventor TDM_INV_ASSEMBLY Inventor Assembly
Inventor TDM_INV_PART Inventor Part
Inventor TDM_INV_PRESENTATION Inventor Presentation
Inventor TDM_INV_DRAWING Inventor Drawing
Autodesk Mechanical
Desktop

TDM_MDT_ASSEMBLY MDT Assembly

Autodesk Mechanical
Desktop

TDM_MDT_PART MDT Part

Microsoft Word TDM_WORD_DOCUMENT Word Document
SolidEdge TDM_SE_ASSEMBLY Solid Edge Assembly
SolidEdge TDM_SE_PART Solid Edge Part
SolidEdge TDM_SE_SHEETMETAL Solid Sheet Metal
SolidEdge TDM_SE_WELDMENT Solid Edge Weldment
SolidEdge TDM_SE_DRAFT Solid Edge Draft
SolidWorks TDM_SW_ASSEMBLY SolidWorks Assembly
SolidWorks TDM_SW_PART SolidWorks Part
SolidWorks TDM_SW_DRAWING SolidWorks Drawing
SolidWorks TDM_SW_PRESENTATION eDrawing
Pro/ENGINEER TDM_PROE_REPORT ProE Report
Pro/ENGINEER TDM_PROE_MARKUP ProE Markup
Pro/ENGINEER TDM_PROE_DIAGRAM ProE Diagram
Pro/ENGINEER TDM_PROE_FORMAT ProE Format
Pro/ENGINEER TDM_PROE_GROUP ProE Group
Pro/ENGINEER TDM_PROE_PART_IAC ProE Part iAccelerator
Pro/ENGINEER TDM_PROE_ASSEMBLY_IAC ProE Assembly iAccelerator
Pro/ENGINEER TDM_PROE_ASSEMBLY ProE Assembly
Pro/ENGINEER TDM_PROE_PART ProE Part
Pro/ENGINEER TDM_PROE_DRAWING ProE Drawing
Pro/ENGINEER TDM_PROE_MANUFACTURING ProE Manufacturing
Pro/ENGINEER TDM_PROE_LAYOUT ProE Layout
MicroStation TDM_MI_DOCUMENT Microstation Document

SmarTeam Integration_Link_Behaviors
The following is a list of SmarTeam Integration_Link_Behaviors:

Integration Integration_Link Behavior Description

CATIA TDM_CATIA_COMPOSEDOF CATIA Composed of
CATIA TDM_CAT_PRODUCT_LNK CATIA Product
CATIA TDM_CAT_DESIGN_LNK CATIA Design
CATIA TDM_CAT_RULEBASE_LNK CATIA Rule Base
CATIA TDM_CAT_DESIGNTABLE_LNK CATIA Design Table
CATIA TDM_CAT_DNSTR_LNK CATIA Downstream Application
CATIA TDM_CAT_REF_LNK CATIA Reference

563

CATIA TDM_CAT_CONTXT_LNK CATIA Contextual
CATIA TDM_CAT_RESULT_LNK CATIA Result
AutoCAD TDM_ACAD_COMPOSEDOF AutoCAD Composed of
AutoCAD TDM_ACAD_IMAGE_LNK Image
AutoCAD TDM_ACAD_OVERLAY_LNK AutoCAD Overlay
Inventor TDM_INV_COMPOSEDOF Inventor Composed of
Inventor TDM_INV_DRAWINGOF Inventor Drawing of
Autodesk Mechanical
Desktop

TDM_MDT_COMPOSEDOF MDT Composed of

Autodesk Mechanical
Desktop

TDM_MDT_TABLE_LNK MDT Driven table

SolidEdge TDM_SE_COMPOSEDOF Solid Edge Composed of
SolidEdge TDM_SE_DRAFTOF Solid Edge Draft of
SolidWorks TDM_SW_COMPOSEDOF SolidWorks Composed of
SolidWorks TDM_SW_DRAWINGOF SolidWorks Drawing of
SolidWorks TDM_SW_INCONTEXT SolidWorks In Context
SolidWorks TDM_SW_DERIVEDPART SolidWorks Derived Part
SolidWorks TDM_SW_RAPIDDRAFT SolidWorks RapidDraft
SolidWorks TDM_SW_EDRAWING eDrawing Of
Pro/ENGINEER TDM_PROEHL_ATTRIBUTES ProE Attributes
Pro/ENGINEER TDM_PROE_COMPOSEDOF ProE Composed of
Pro/ENGINEER TDM_PROE_DRAWINGOF ProE Drawing of
Pro/ENGINEER TDM_PROE_DEPENDENTOF ProE Dependents

Pro/ENGINEER
TDM_PROE_MANUFACTURINGOF

ProE Manufacturing of
Pro/ENGINEER TDM_PROELL_ATTRIBUTES ProE Attributes
Pro/ENGINEER TDM_PROE_LAYOUTOF ProE Layouts
Pro/ENGINEER TDM_PROEL_INSTANCE ProE Instances
Pro/ENGINEER TDM_PROEL_SKELETON ProE Skeleton of
Pro/ENGINEER TDM_PROEL_EXTREFERENCE ProE External References
Pro/ENGINEER TDM_PROEL_MEMBER ProE Member of
Pro/ENGINEER TDM_PROEL_SHAREDDRAWING ProE Shared Drawings
Pro/ENGINEER TDM_PROEL_DIAGRAM ProE Diagrams
Pro/ENGINEER TDM_PROEL_REPORT ProE Report of
Pro/ENGINEER TDM_PROEL_MARKUP ProE Markup of
Pro/ENGINEER TDM_PROEL_FORMAT ProE Formats
Pro/ENGINEER TDM_PROEL_SIMPLIFIEDREP ProE Simplified Reps
Pro/ENGINEER TDM_PROEL_GROUP ProE Groups
Pro/ENGINEER TDM_PROEL_GROUPMODEL ProE Group Model
Pro/ENGINEER TDM_PROEL_IACCELERATOR ProE iAccelerator
MicroStation TDM_MI_REFDOC Microstation Reference Document

=]

	1. Introduction
	What is the SmarTeam Object Model?
	Language-Independence
	Standard Programming Paradigms and Naming Conventions
	Flexibility
	Basic Libraries and Service Libraries
	Engine and Session Objects
	Persistent Objects and Classes
	Accessing Objects

	Additional Conventions

	2. Using SmarTeam COM Objects
	Creating a Creatable Object
	Obtaining a Non-Creatable Object
	Working with Collection Objects
	Using Scripts
	Using the SmarTeam Object Model in another Application
	Add-In Services

	3. SmarTeam COM Libraries Overview
	SmarTeam Record List Library
	SmarTeam Engine Library
	SmarTeam GUI Services Library
	SmarTeam Utilities Library
	SmarTeam - Workflow Library
	SmartMessages Library
	SmarTeam CAD Interface Library
	SmarTeam Integration Tools Library
	SmartIXF Library
	SmartClientContextService Library
	SmartFileCatalog Library
	SmartRecordList Library

	4. SmarTeam Record List Library
	General Description
	Dependencies

	Overview of Record Lists
	Overview of Objects
	SmRecordList Object
	Example
	Indexed Searches of RecordLists
	Example

	SmRecord Object
	SmRecordListHeaders Object
	SmRecordListHeader Object
	Grouping Columns in a Record List
	Grouping Nodes in a Record
	Example

	5. SmarTeam Engine Library
	General Description
	Dependencies
	Persistent Objects and Classes

	Overview of Objects
	SmEngine
	SmSession Object
	SmDatabase Object
	SmConfig Object
	Configuration Types
	Accessing ISmConfig
	Accessing Configuration Data
	ExpandValue Property
	Properties and Methods for Editing Configuration Data

	Metadata Management Objects
	SmMetaInfo Object
	SmClasses and SmClass Objects
	SmClassAttributes and SmClassAttribute Objects
	Reference to Class
	SmObjectTree Object
	Class Behaviors
	Class-Level Behavior
	Optional Class-Level Behavior
	Link Composition
	Permissible Compositions
	Class Composition
	API Methods

	Persistent Object Management
	SmObjectStore Object
	 SmObject and SmObjects Objects
	Creating a New Persistent Object via the SmarTeam Object Model
	Retrieving an Existing Persistent Object
	Creating an SmObject
	Connected and Disconnected Objects
	Additional SmObject Functionality
	SmObjects Object
	Accessing SmObject
	SmBehavior Object
	SmMultiObjects Object
	SmCompositeObjects and SmCompositeObject Objects
	SmLookUpObjects and SmLookUpObject Objects
	SmClassReferenceObjects and SmClassReferenceObject Objects
	Managing Transactions in the Database

	SmQuery Object
	Examples
	ISmSimpleQuery function

	6. SmarTeam GUI Services Library
	General Description
	Dependencies

	GUI Concepts
	The SmarTeam View
	SmarTeam Dialogs

	Overview of Objects—ISmCommonGUI
	The Views Property
	ISmView
	ISmViewWindow
	ISmGUIComponent
	ISmTreeComponent and ISmGridComponent

	Specifying Contents for a Standard View
	ISmActiveWindow
	Using ISmView and ISmViewWindow
	ISmDialogs
	Basic Dialogs
	Select Database Dialog
	Select Class Dialog
	ExecuteSelectFromQueryResult Dialog
	ExecuteQueryByAttributes Dialog

	ISmSaveAsDialog.ControlProperties
	ISmSaveAsDialog.OptionsProperties
	ISmLocalFilesExplorer
	ISmWindowProperties

	ISmSaveAsDialog
	ISmGUIProperties
	ISmGUIProperty

	ISmOpenDialog

	7. SmarTeam Utilities Library
	General Description
	Dependencies

	Overview of Objects
	SmSessionUtil Object
	Object Functionality
	File Vault Operations
	Copied-File Registration
	Common Tasks

	Lifecycle Operations
	Individual Operations
	Group Life-Cycle Operations
	Understanding Group Life-Cycle Operations
	Lifecycle Authorization Operations
	Mask Operations
	Miscellaneous Utilities

	SmMiscUtil Object
	SmConvert and SmSessionConvert Objects
	SmConvert Object
	SmSessionConvert Object

	8. SmarTeam - Workflow Library
	General Description
	Overview of Objects
	SmFlowProcess Object
	SmFlowChart Object
	SmFlowSession Object
	SmWorkflowView Object
	SmFlowStore Object

	Overview of the SmartMessage Library Objects
	SmMessageSession Object
	SmMessageQueue Object
	SmMessageStore Object

	Using the SmarTeam - Workflow Library
	Writing SmarTeam - Workflow Applications
	Writing Run-Time Scripts
	Task-Driven Scripts
	Event-Driven Scripts

	9. SmarTeam CAD Interface Library
	General Description
	SmarTeam CAD Integration
	Integration Data Model
	SmarTeam CAD Interface
	Dependencies

	Overview of Objects
	SmCADInterface Object
	SmCADInterface Properties
	SmCADInterface Methods

	10. SmIntegrationTool Library
	Introduction
	SmarTeam CAD Integration

	ISmIntegrationStore
	ISmSpecificIntegrationStore

	ISmCadFileTypes
	ISmCadFileType
	ISmManagedClasses
	ISmManagedClass

	ISmPropertyGroupTypes
	ISmPropertyGroupType
	ISmPropertyGroups
	ISmPropertyGroup

	ISmGroupProperties
	ISmGroupProperty

	ISmClassesMappings
	ISmClassMapping

	ISmIntegrationGUIStore
	ISmPropertiesGroupsGUIService

	11. SmartIXF Library
	Introduction
	Naming Conventions
	NCName
	Class Behavior URI

	Overview of Objects
	ISmIxfSchema
	ISmIxfClassesBehaviors
	ISmIxfClassBehavior

	ISmIxfClasses
	ISmIxfClass
	ISmIxfAttributes
	ISmIxfAttribute
	ISmIxfClassBehaviors

	ISmIxfDomainBehaviors
	ISmIxfDomainBehavior

	ISmIxfInfo
	ISmIxfInfoItem
	ISmIxfXmlAttributeValue

	Common Tasks

	SmIxfInitializationData
	Setting Proxy Information

	SmIxfWriter
	Creating an iXF Archive File
	ISmIxfDataWriter
	ISmIxfObjectWriter
	ISmIxfObject
	ISmIxfAttributesValues
	ISmIxfInfo

	ISmIxfSchema
	Common Tasks

	SmIxfReader
	ISmIxfDataReader
	ISmIxfObjectReader
	ISmIxfObjectIterator
	ISmIxfObject
	ISmIxfInfo

	ISmIxfUnderstoodInfoItems
	ISmIxfSchema
	Common Tasks

	Reading and Writing an External Schema
	SmIxfExternalSchemaWriter
	SmIxfExternalSchemaReader

	ISmIxfStdHelper
	Standard Behaviors
	ISmIxfSchemaHelper
	Change-Tracking Standard Behavior
	File Association Standard Behavior
	Versioning Standard Behavior
	TimeStamp Standard Behavior
	Common Tasks

	ISmIxfWriterHelper
	ISmIxfChangeWriter
	ISmIxfFileWriter
	ISmIxfVersioningWriter
	ISmIxfTimeStampWriter
	Common Tasks

	ISmIxfReaderHelper
	Identifying and Restoring Read-In Objects
	ChangeReader
	FileReader
	VersioningReader
	TimeStampReader
	Common Tasks

	An IXF Messaging Application
	Messaging Format
	Class Behaviors
	Domain Behaviors
	Domain Behavior Definition
	Role-to-Class Mapping

	Connectivity of Objects
	Associating Files with Messages

	Implementing the Application
	Creating the Schema
	Adding Class Behaviors
	Adding Classes
	Adding Domain Behaviors

	Writing the Data
	Basic Objects
	Link Objects

	Reading the Data
	Executing the Application

	12. SmarTeam Client Libraries Overview
	SmartClientContext Library
	ISmClientContext

	SmartClientContextService Library
	ISmClientContextService

	SmartClientServices Library
	ISmClientServices
	ISmClientDictionary
	ISmDictionaryGroup
	ISmDictionaryProperty

	SmartClientConfiguration Library
	ISmClientConfiguration
	ISmConfigurationValueList

	SmartInet Library
	IHttpConnection
	IHttpContext
	IHttpUtils

	SmartFileCatalog Library
	SmartRecordList Library
	SmartIntegrationServices Library
	SmartGUIServices Library
	SmartEmbeddedScripts Library

	13. SmartFileCatalog Library
	General Description
	Dependencies

	Overview of File Catalog Library
	File Catalog Object Organization
	File Catalog in a Shared Workspace
	File Catalog with Private Files
	Relation to SmarTeam Processes
	SmFile Attributes

	Overview of Objects—ISmFileCatalog
	ISmFiles
	ISmFile
	ISmReferences
	ISmReference
	ISmComponents
	ISmComponent
	ISmMasks

	ISmFileIdentifiers
	ISmFileIdentifier
	ISmComponentIdentifiers

	ISmFolders
	ISmFolder
	ISmFolderIdentifiers

	ISmWorkspaces
	ISmWorkspace
	ISmResultItems
	ISmResultItem
	ISmRetrieveFilter
	Common Tasks

	14. SmartRecordList Library
	General Description
	Dependencies

	Overview of Record List Objects
	IMutableRecordList
	IMutableColumns
	IMutableColumn
	IMutableRecord
	IRecordList
	IColumns
	IColumn
	IRecord
	IRecordListIterator
	IRecordListUtils
	IRecordsFactory

	Events
	IColumnsChangeEvent
	IColumnsChangeListener
	IRecordChangeEvent
	IRecordChangeListener
	IRecordListChangeEvent
	IRecordListChangeListener
	IRecordListValueChangeEvent
	IRecordListValueChangeListener

	Common Tasks
	CAD Integration
	Requirements
	Guidelines

	SmarTeam Integration_Behaviors
	SmarTeam Integration_Link_Behaviors

