2

ENOVIA

ENOVIA SmarTeam | Dassault Systémes
www.smarteam.com
www.3ds.com

ENOVIA SMAR | EAM

Customizing Using Server-Side
Hooks for
Server-Based Applications

Programmer’s Guide

Important Notice

© Dassault Systemes, 2004, 2008. All rights reserved.

CATIA, ENOVIA, SMARTEAM and the 3DS logo are registered trademarks of Dassault
Systemes or its subsidiaries in the US and/or other countries.

PROPRIETARY RIGHTS NOTICE: This documentation is the property of Dassault Systemes.
This documentation shall be treated as confidential information and may only be used by
employees or contractors of the Customer in accordance with the terms of the End-User License
Agreement accepted by Customer.

Any use of the Licensed Program contained in this media or accompanying it, is subject to the
terms of the End User License Agreement accepted by Customer. The Licensed Program is
protected by international copyright laws and international treaties. Unauthorized use,
reproduction and/or distribution of any of the Licensed Program, or any part thereof, may result
in severe civil and/or criminal penalties, and will be prosecuted to the maximum extent possible
under the law. Company names and product names mentioned herein are the property of their
respective owners and certain portions of the Licensed Program contain elements subject to
copyright owned by these entities. See the Documentation CD provided with the Licensed
Program for details and/or additional terms and conditions relating to these entities.

Part Number: API1-A2-180007

Table of Contents

IMPOITANT NOTICE ..o ii
Table OF CONLENTSc.veeeiie e e v

Lo INrOAUCTION ..o 1-1
Script Hooks in Server-Based Applications...........ccccovveveiinneninniencceeee 1-1
Setting Server Mode for an Applicationccccccevvvevevieiiecc e 1-2
Using SmarTeam HOOKS in Server Modecccoovveeniiiieieeneee e 1-2
SmarTeam Hooks Available in Server Modecccocovvieniiiiinniinnenn, 1-3
Two SmarTeam HOOK INtErfacescooviiriieiiiiiiiereee e 1-5
2. QUICK SEAM....cuiiiiieeieeet s 2-1
3. Standard SMARTEAM HooK Interface.........c.ccoovvveveneieneieieiieienns 3-1
Naming HOOK FUNCLIONSooiiiiiiiiiiiie e 3-1
Running a Function not Specified in SmarTeamccccoocvvivviiveresiiennn, 3-4
HOOK FUNCLION PAramMetersS..........ooviiiiieiiiie e 3-4
Library-Specific HOOKScoiiieiiiieciccc e 3-7
Packaging the Hook Functions into an Interface Object...........cccccevervenenn 3-9
Integrating the COM COMPONENT........cciiveiiiiiieiieie e 3-9

4. Low-Level SMARTEAM HoOK INterfaceccccovvevvvieeneniieseesie e 4-1
Implementing the Interface Class ISmServerHOOK...........cccocovviiviiiininnnn, 4-1
HOOK TYPES -ttt ettt sneenne s 4-2
INIEMELNOA ... s 4-4
TypelHOOKEXiStS MEethod..........cccooiiiiiiiiieciee e 4-4
TypelEXecute Methodccovveiiiieieee e 4-6
Type2HOOKEXiStS MEethod..........ccooiiiiieiiiieniecee e 4-8
Type2EXecute Methodcocoveieiieeee e 4-8
Running a Function not specified in SmarTeam.........cccccooeveeiviiennnnne 4-10
Naming HOOK FUNCLIONSc.ccoveiieiieiieie e 4-11
HOOK FUNCLION PArametersooieueiieiieiicee e 4-11
Packaging the Functions into an Interface ObjecCt..........cccccceeveviviinennnnn, 4-11
Integrating the COM COMPONENT........coiiriirieiiereeee e 4-11

Using SmarTeam Hooks in Server Mode

1. Introduction

This document describes how to use the SmarTeam API in Server Mode. In
particular, it describes interface mechanisms provided by SmarTeam to allow
you to use the SmarTeam hooks in Server Mode.

Any application that works in Server Mode uses the server-side hooks
described in this document. Examples are: SmartWeb, EmbeddedScript, and
any user application for which the ServerMode flag is set to True.

This document assumes that you are familiar with the following topics, which
are described in the documents Script Hooks and COM API Programmer’s
Guide:

Script event hooks, on which scripts can be attached

The two types of script hooks, generic and library-specific, and the format
of the script argument structure for each type of hook

Recommendations on how to write a script

Script Hooks in Server-Based Applications

The mechanism by which script hooks are activated in server-based
applications is different from that of client-based applications.

In client-based applications, the scripts are registered in the Script
Maintenance facility on the client side and are invoked by the client-side
application. See the document Client-Side Hooks for Client-Based Application
for more information.

In server-based applications, the code is located on the server-side along with
the application. When the client activates an operation on the server
application that involves calling a hook, the server application calls the
relevant code.

The diagram below shows how the mechanism works.

Client

Client Side 4
—————————————— A
Server Side v
SmartTeam
Server-Based R) _
Product » SmarTeam API » User-Written Script

(DLLs)
or
User-Application

A

SmarTeam
Database

A
|
1

Script

Maintentance

Flow Designer
* Form Designer

Figure 1 Script Hooks in SmarTeam Server-Side Applications

Setting Server Mode for an Application

An application using the SmarTeam API can initialize SmarTeam to work in
Server Mode by setting the property ServerMode of the
SmFreeThreadedEngine object to True:

SmEngine.ServerMode = True

For more information about the ServerMode property, see the SmarTeam API
documentation.

Using SmarTeam Hooks in Server Mode

You use SmarTeam hooks in Server Mode differently than you do in Stand-
alone Mode in several important ways. These are listed below and detailed in
the following sections:

Using SmarTeam Hooks in Server Mode

The term “hook function” is used to refer to the code that is attached to a
SmarTeam hook.

Existing BasicScripts scripts that work in non-Server Mode will not operate
in Server Mode. They need to be converted using COM-compatible
scripting language such as VVBScript or into a COM-compatible
development tool such as Visual Basic.

You can run hook functions that were not configured in SMARTEAM by
specifying the hook’s event-based name, following the convention
described in the section Naming Hook Functions.

You cannot use any of the SmarTeam GUI-based hooks, such as hooks for
Controls and Forms Events, in Server Mode

SmarTeam Hooks Available in Server Mode

The same set of script hooks are available for use in the Server Mode as in the
non-Server Mode, except for those hooks involving a GUI.

Note: For Life-Cycle Operations 1 and 2, the scripts are hooked from
the Parent (Common) Class

The following is a list of hooks available in the Server Mode:

Table 1 'Script Hooks for SmarTeam Operations

Operation in Script Maintenance Stage

Before After InsteadOf

Database Operations on Objects

Add X X X
Add As Copy X X X
Update X X X
Delete X X X

! Note that a SmarTeam server application may not implement all of these Server Hooks. Check
the documentation for the server application to see which Server Hooks are implemented.

Script Hooks for Individual Life-Cycle Operations

Check Out X X X
Undo Check Out X X X
Check In X X X
Release X X X
NewRelease X X X
Obsolete X X X
Copy File X X X

Script Hooks for Group Life-Cycle Operations
Life-Cycle Stage 1 X X X
Life-Cycle Stage 2 X X

File Operations
Edit X X X
View X X X
RedLine X X X
Print X X X
Copy File X X X
Authorization Operations
OnRetrieveObjects X
OnLogin X X
CAD Operations

Object identification for CAD X X

1-4

Using SmarTeam Hooks in Server Mode

2\WorkFlow Operations

30n Receive

OnSendBefore

OnSendAfter

Two SmarTeam Hook Interfaces

SmarTeam provides two types of hook interfaces that allow you to use
SmarTeam hooks in Server Mode:

A standard interface, which is simple and easy to use
A low-level interface for maximum flexibility and control

In the standard interface, you only need to supply the hook functions. You
package them as COM Automation object functions, and you use a specific
function naming convention, as described in the section Naming Hook
Functions. The system executes the hook functions at the appropriate time
according to the fixed rules implemented in the
SmartServerHookStd.SmDispatch module provided by
SMARTEAM.

In the low-level interface, in addition to the hook functions, you need to supply
an object which implements the 1SmServerHook interface. In the
implementation, you determine the rules by which the hook functions are
executed. Thus, this interface is useful when you require that the hook
functions execute in a different way than that provided with the standard
interface. For additional details, see the section Low-Level SmarTeam Hook
Interface.

2 See the SmarTeam Object Model Programmer's Guide for information about Workflow Task
scripts.

® For the StartNode of a Flow Process in Server Mode, use the OnReceive hook instead of the
client-side OnOpen hook.

2. Quick Start

This section provides a quick tutorial of how to attach a function to a
SmarTeam hook in Server Mode using Visual Basic:

1.

In SmarTeam, using the Script Maintenance tool, assign a dummy
script named “BeforeUpdateHook” with the generic parameter list to
the “Before Update” hook.

Create a new Visual Basic ActiveX DLL project.
Create a VB Class hamed “Sample”.

Add a reference to the libraries “SmarTeam Engine Library”
(SmApplic.DLL), “SmarTeam Record List Library”
(SmRecList.DLL), and “Smart Server Hook Library”
(SmartServerHook.TLB)

Add a function to the Class called “BeforeUpdateHook” (the same
name as the one assigned in Script Maintenance), with the following
function signature:
Public Function BeforeUpdateHook(

Session As SmApplic.SmSession,

Classld As Integer,

Operation As Object,

Stage As HookStageEnum,

Str As String,

FirstPar As SmRecList.SmRecordList,

SecondPar As SmRecList.SmRecordList,

ThirdPar As SmRecList.SmRecordList) As ErrorCodeEnum

Add the following sample code in the function body. This example
code allows only the creator of a folder to update it:

Public Function BeforeUpdateHook(
Session As SmApplic.SmSession,
Classld As Integer,

Operation As Object,

Stage As HookStageEnum,

Str As String,

FirstPar As SmRecList.SmRecordList,
SecondPar As SmRecList.SmRecordList,

2-1

ThirdPar As SmRecList.SmRecordList) As ErrorCodeEnum
Dim Folder As SmApplic.1SmObject

On Local Error GoTo HandleError
Set Folder = Session.ObjectStore.ObjectFromData(
FirstPar _GetRecord(0), True)
IT Folder.Data.ValueAsInteger("'USER_OBJECT_ID™) =
Session.UserMetalnfo.Userld Then
BeforeUpdateHook = ecNone
Else
BeforeUpdateHook = ecNotOwned
End IF
Exit Function
HandleError:
BeforeUpdateHook = ecGen
End Function

7. Compile the code and register the DLL

Note: The physical location of a COM DLL is not important as
long as you have registered it.

8. Edit the System Configuration and add the following Key value, which
defines the CLSID of the SmartServerHookStd.SmDispatch module
provided with SMARTEAM and always has the same value:

ServerHooks . CLS1D={82F7EBD2-61D9-4CEB-8FD8-535EF32DEB2C}

9. Edit the System Configuration and add the following Key value, which
defines the ProglID or CLSID of the custom ActiveX DLL and varies
with the application:

ServerHooks. Init=Projectl._Sample

10. In a Server-side SmarTeam -based application that was created by the
user, set SmEngine.ServerMode = True (In Server-side
SMARTEAM applications such as SMARTEAM — Web Editor, this
parameter is already set.) Make sure you use SmFreeThreadedEngine
and not SmEngine.

The BeforeUpdateHook code will be automatically invoked whenever you
attempt to Update a Persistent Object in the database.

3. Standard SMARTEAM Hook Interface

This section describes the standard SmarTeam hook interface and includes the
following topics:

Naming hook functions

Running a hook function that was not specified in SmarTeam

Hook function parameters

Packaging the hook functions into a interface object

Integrating the COM component into SmarTeam

Naming Hook Functions
In the standard interface, the system recognizes the name of a hook function in
two different forms:

The name that was specified for the function in SmarTeam
Standard “event-based” name, which is searched for and recognized by the

system when the event occurs.
Using the name specified in SmarTeam

You can specify the name of a hook function in SMARTEAM in the following
ways:

For a generic hook — in the Script Maintenance utility

For a library-specific hook — using the appropriate designer, such as the

Flow Chart Designer.
Using an event-based name

If you did not specify a function name for a hook in SmarTeam, the system
looks for a function name that conforms to an “event-based” naming
convention.

There are two event-based naming conventions corresponding to the two types
of hooks:

Generic hooks
Library-specific hooks

3-1

Event-Based Naming for Generic Hooks
For generic hooks, you combine the stage and the SmarTeam operation into a
single event-based name in the following format:

Before_[OperationName]

After_[OperationName]

Instead_[OperationName]
where OperationName is the internal name for the operation as shown in the
right column of Table 2).

Examples of event_based names are: Before_ ADD, Instead LifeCyclel.

Note: No spaces are allowed in the internal name. Replace any spaces with
underscores.

Using SmarTeam Hooks in Server Mode

Table 2 Internal Name for SmarTeam Operations

Operation in Script Maintenance Operation Name (Internal Name)
Operations on Objects

Add ADD

Add As Copy (Optional) AddAsCopy

Update UPDATE

Delete DELETE
Scripts for Simple Life-Cycle Operations

Check Out CheckOut

Check In Checkin

Release Approve

New Release NewRelease

Obsolete Freeze

Undo Check Out UndoCheckOut

Scripts for Advanced Life-Cycle Operations
Life-Cycle Stage 1 LifeCyclel
Life-Cycle Stage 2 LifeCycle2
Scripts for File Operations

Edit Edit

View View

RedLine RedLine

Print Print

Copy File CopyFile
Scripts for Authorization Operations

On RetrieveObjects RetrieveObjects

On Authenticate User OnAuthenticateUser

Event-Based Naming for Library-Specific Hooks

3-3

For Smart Flow event-driven scripts, the system recognizes the following
standard names:

OnSendBefore
OnSendAfter
OnReceive

For a Smart Flow task, unlike a Smart Flow event, the task procedure name
must be defined in the Flow Chart Designer for the system to execute it. If no
such name is found, the system does not look for a standard name. Therefore,
for a Smart Flow task function, you can only use the function name that was
specified in the Flow Chart Designer.

Running a Function not Specified in SmarTeam

Event-based naming lets you run a hook function that was not specified in
SmarTeam. As mentioned above, you do that by including a function in the
COM object with a standard event-based name that denotes the hook event for
which you want the hook function to run. When any hook event occurs,
SmarTeam looks for a hook function with the standard event-based name for
that hook. If you have provided such a function, SmarTeam runs it.

If you want to disable such a hook function so that it doesn’t run when the
event occurs, you need to remove it from the component you have added (or
rename it) and then re-compile and re-register the component.

Note: If you have specified both a name for the hook function in
SmarTeam and also an event-based name, the hook function
with the name specified in SmarTeam is run instead of the
function with the event-based name.

Hook Function Parameters

In the standard interface, the hook function parameters depend on the type of
SmarTeam hook: Generic hooks or library-specific hooks.

Generic Hooks

For the generic hooks, you use the following COM-based parameters for a
hook function. These parameters are used in Server Mode instead of the
parameters you use in the generic procedural-based hooks that are described in
the Script Hooks document.

Using SmarTeam Hooks in Server Mode

Table 3 Hook Function Parameters

Parameter Type Description
Session SmApplic.SmSession Current SMARTEAM session
Classld Integer Class ID under which hook is defined, for example Folders.
Operation SmOperation Operation associated with hook, for example, ADD,
UPDATE
Stage HookStageEnum Stage of hook:
= hsAfter
= hsBefore
= hslnstead
Str String Name of operation
FirstPar SmRecList.SmRecordList Input (see Script Hooks)
SecondPar SmRecList.SmRecordList Input/Output (see Script Hooks)
ThirdPar SmRecList.SmRecordList Output (see Script Hooks)
Return Value ErrorCodeEnum Return value

3-5

Example

This example shows how to use a generic hook function that was defined in
Script Maintenance. It assumes that the function UserlsCreator was defined in
Script Maintenance for the Before Update SmarTeam hook.

UserlsCreator determines if the current user is the creator of the folder being
updated. It can be used to allow the folder to be updated only by its creator.

Public Function UserlsCreator(

Session As SmApplic.SmSession,

Classld As Integer,

Operation As Object,

Stage As HookStageEnum,

Str As String,

FirstPar As SmRecList.SmRecordList,

SecondPar As SmRecList.SmRecordList,

ThirdPar As SmRecList.SmRecordList) As ErrorCodeEnum
Dim Folder As SmApplic.1SmObject

On Local Error GoTo HandleError
Set Folder = Session.ObjectStore.ObjectFromData(
FirstPar _GetRecord(0), True)
IT Folder.Data.ValueAsInteger("'USER_OBJECT_ID™) =
Session.UserMetalnfo.Userld Then
UserlsCreator = ecNone
Else
UserlsCreator = ecNotOwned
End IF
Exit Function
HandleError:
UserlsCreator = ecGen
End Function

3-6

Using SmarTeam Hooks in Server Mode

Example

This example illustrates how you can use the naming convention to cause a
script to execute even when the user did not define it in Script Maintenance.
This example assumes that the function After_Approve was not defined in
Script Maintenance. It is named with a standard event-based name and
executes each time the hook event After_Approve occurs.

" This function executes in Server Mode on the After_Approve hook

" It prints the list of objects and attributes to the log file

Public Function After_Approve(

Session As SmApplic.SmSession,

Classld As Integer,

Operation As Object,

Stage As HookStageEnum,

Str As String,

FirstPar As SmRecList.SmRecordList,

SecondPar As SmRecList.SmRecordList,

ThirdPar As SmRecList.SmRecordList) As ErrorCodeEnum
FirstPar .PrintToFile "Approved objects list", "C:\Approved.log"
After_Approve = ecNone

End Function

Library-Specific Hooks

For the library-specific hooks you use exactly the same parameters that you
use for each type of script hook, for example, in Smart Flow (see the document
COM API Programmer’s Guide for the parameters of the SmarTeam Flow
hooks).

3-7

Example

The example illustrates how you can use the naming convention to cause a
library-specific hook script to execute even when the user did not define it in
the Flow Chart Designer. This example assumes that the function OnSendAfter
was not defined in the Flow Chart Designer. It is named using the standard
event-based naming described above and executes each time the hook event
occurs. The function is written with the same parameter list used for the
OnSendAfter script hook functions.

" This function notifies users that a new process is waiting
“ in the SmartBox
Public Function OnSendAfter(
FlowSession As SmartFlow.SmFlowSession,
FlowProcess As SmartFlow.SmFlowProcess,
Node As SmartFlow.SmNode,
Response As SmartFlow.SmResponse) As ErrorCodeEnum
Dim Nodes As SmartFlow.SmNodes
Dim 1 As Integer
Dim J As Integer
Dim Mail As SmartlMessages.SmExternalMessage
Dim MessageStore As SmartMessages.SmMessageStore
Set MessageStore = FlowProcess.FlowStore.Session.GetService(
"'SmartMessages. SmMessageStore™)
Set Mail = MessageStore.NewExternalMessage

Set Nodes = Node.GetOutgoingNodes(Response)
For 1 = 0 To Nodes.Count - 1
For J = 0 To Nodes(l).Users.Count - 1
Mail _.AddRecipient Nodes(l).Users.GetUsers(J).
Data.ValueAsString("'USER_EMAIL'), mrTo
Next
Next
Mail.Send False
OnSendAfter = ecNone
End Function

3-8

Using SmarTeam Hooks in Server Mode

Packaging the Hook Functions into an
Interface Object

The hook functions need to be packaged into an Automation-compatible COM
object. This COM object is required in addition to the
SmartServerHookStd.SmDispatch module provided by SmarTeam, which
controls the execution of the hook functions.

The COM object can be implemented by one of the following methods

You can continue to use a scripting language like VBScript to produce
a Windows Script Component

You can implement hook functions using a COM-compatible
development tool such as Visual Basic or Visual C++ and then compile
them to produce a COM component.

For more information about using VBScript to write Windows Script
Components, see http://msdn.microsoft.com/scripting.

Integrating the COM Component

To integrate the COM component you have produced into SmarTeam:

1. Register the COM component you have produced in the Windows Registry

2. Get the CLSID or ProgID for the COM component from the Windows
Registry.

3. Edit System Configuration and add the following Key value, which
defines the CLSID of the SmartServerHookStd.SmDispatch module
provided with SMARTEAM and always has the same value:

ServerHooks . CLS1D={82F7EBD2-61D9-4CEB-8FD8-535EF32DEB2C}

4. Edit System Configuration and add the following section, which defines

the ProgID or CLSID of the of the COM component you have produced:
ServerHooks. Init=ProglID or CLSID
Example

This example assumes that the ProglD of the COM object you created is
“SampleServerHook. WSC”:

In System Configuration, the Key values are:

ServerHooks . CLS1D={82F7EBD2-61D9-4CEB-8FD8-535EF32DEB2C}
ServerHooks. Init=SampleServerHook.WSC

3-9

http://msdn.microsoft.com/scripting

4. Low-Level SmarTeam Hook Interface

In addition to the standard SmarTeam hook interface described above,
SmarTeam provides a low-level SmarTeam hook interface in Server Mode.

The low-level interface has the following advantages:

Flexible hook function naming

Flexible control — enable and disable hook function execution, determine
execution rules of event-based hook functions and SmarTeam hook
functions

Higher performance

Note: Since the standard interface meets most requirements, the low-
level interface is usually not required. Using the low-level
interface requires experience in creating COM objects.

This section describes the low-level SmarTeam hook interface and includes the
following topics:

Implementing the interface 1ISmServerHook

Naming SmarTeam hook functions

Running a hook function that was not specified in SmarTeam

Hook function parameters

Packaging the functions into a interface object

Integrating the COM component into SmarTeam

Implementing the Interface Class
ISmServerHook

The interface ISmServerHook is located in the library SmartServerHook:.tlb.
You need to implement the five control methods:
= |nit — Executes optional user functions prior to executing event hook

functions.

» TypelHookEXxists — Determines if hook functions are available for
execution for this Typel hook

» TypelExecute — Executes the Type 1 hook functions

» Type2HookEXxists — Determines if hook functions are available for
execution for this Type2 hook.

= Type2Execute — Executes the Type 2 hook functions
Hook Types

The above methods are divided into Typel methods and Type2 methods
corresponding to the two types of hooks:

= Typel hooks — Generic hooks. These can be defined in Script
Maintenance.

= Type2 hooks — Library-specific hooks. These can be defined, for example,
in the Flow Chart Designer

The system runs the TypelExecute and TypelHookEXxists methods when

Typel hook events occur. The system runs the Type2Execute and
Type2HookExists methods when Type2 hook events occur.

Function Parameters

These control functions parameters are described in the following table:

Table 4 ISmServerHook Functions

Function Parameter Type Description
Init None
TypelHookExists Session SmSession Current session
Classld Integer Class ID for class under which hook is
defined
Operation ISmOperation Operation associated with hook, for

example, ADD, UPDATE

Stage HookStageEnum Stage of hook:
= hsAfter
= hsBefore
= hsinstead
FunctionName String Name of hook function in Script

Maintenance if it exists there.

Return Value Boolean If true, SmarTeam runs TypelExecute,
Else
it doesn't.

4-2

Using SmarTeam Hooks in Server Mode

TypelExecute

Type2HookEXxists

Type2Execute

Session

Classld

Operation

Stage

FunctionName

Str

FirstPar
SecondPar
ThirdPar
Return Value
Session

HookName

FunctionName

Return Value

Session

HookName

SmSession

Integer

ISmOperation

HookStageEnum

String

String
SmRecordList
SmRecordList
SmRecordList
ErrorCodeEnum
SmSession

String

String

Boolean

SmSession

String

Current session

Class ID for class under which hook is
defined

Operation associated with hook, for
example, ADD, UPDATE

Stage of hook:
= hsAfter

= hsBefore
= hsinstead

Name of hook function in Script
Maintenance if it exists there.

Name of operation

Input (see Script Hooks)

Input, Output (see Script Hooks)
Output (see Script Hooks)

Error code

Current SmarTeam session

Hook name in Flow Chart Designer or
other Designer:

= OnSendBefore
= OnSendAfter
= OnReceive

Hook function name in Flow Chart
Designer or other Designer

If true, SmarTeam runs Type2Execute,
Else
it doesn't.

Current SmarTeam session

Hook name in Flow Chart Designer or
other Designer:

= OnSendBefore
= OnSendAfter

= OnReceive

FunctionName String Hook function name in Flow Chart
Designer or other Designer

Parameters SmRecord Parameters for this Smart Flow hook
function, packaged into a record (see
COM API Programmer’s Guide)

Return Value ErrorCodeEnum Error code

The following sections describe the use of these methods.

Init Method

The Init method is executed prior to the hook functions. Put into the Init
method all user functions that need to execute prior to the hook functions.

This example illustrates the use of the Init method

Sub 1SmServerHook Init(ByVal Param As String)
"MsgBox "Initialize server hooks"
End Sub

When ISmServerHook_Init is called by SMARTEAM, it passes the parameter
Param to the subroutine. The value of Param is the value of the System
Configuration Key ServerHooks. Init.

For example, if the Key value is:

ServerHooks. Init=Projectl.Sample
then Param = Projectl.Sample.

TypelHookExists Method

The purpose of the TypelExists method is to determine whether a hook
function is available to execute for the current event hook. If one is found, the
system runs the TypelExecute Method to execute the function.

Using SmarTeam Hooks in Server Mode

When the Method is Called

The system calls this method every time any one of the Typel hook events
occurs. The method parameter FunctionName passes any function name that
has been associated with the current hook event in Script Maintenance. For
example, if the hook function UserlsCreator was defined for the hook event
After_Approve in Script Maintenance, the parameter FunctionName passes
UserlsCreator every time the After_Approve event occurs.

Hook Function Execution Logic

The function compares FunctionName with a hook function name that is
known by the script writer to have been defined in Script Maintenance. If the
comparison succeeds, the method returns true and the system runs the
TypelExecute method, which executes the function.

If the known hook function name is not identified, the method identifies the
current hook by operation name and event stage. In case an event-based hook
function is available for execution, the script writer has the method set the
return value true. Then, the event-based hook function is run by the
TypelExecute method, as shown below.

By the default program logic, the method searches first for an actual hook
function name and, if not found, it then asks if the current hook is a desired
hook.

However, you can control hook function execution logic by reprogramming
this method. For example, you can have the method always return false and the
hook functions will not execute even if they exist. You do not need to remove
the hook functions themselves from the module.

Example

This example illustrates the use of the TypelEXxists method.

Function 1SmServerHook TypelHookExists(
ByVal Session As SmSession,
ByvVal Classld As Integer,
ByVal Operation As ISmOperation,
ByVal Stage As HookStageEnum,
ByVal FunctionName As String) As Boolean
“Check iIf function name exists in Script Maintenance
IT StrComp(FunctionName, "UserlsCreator') = O Then
1SmServerHook_TypelHookExists = True
Else
“Check if calling hook is After_Approve

IT StrComp(Operation_Name, "APPROVE'") = O And Stage = hsAfter Then
1SmServerHook_TypelHookExists = True
End If
End IF
End Function

TypelExecute Method

This method is called by the system when the method TypelEXxists returns
true. It passes the Typel hook parameters and executes the hook functions.

Hook Function Execution Logic

By the default program logic, the method searches first for an actual hook
function name and, if not found, then for an event-based name.

However, you can change the hook function execution logic by implementing
this method differently. You can even have both hook functions execute. If
you do change the program logic, you need to coordinate with the program
logic of the TypelExists method.

Hook Function Naming

In this low-level interface, the hook function is called explicitly by the method
in the framework of the program logic. Hence, the name of the hook function
that executes doesn’t need to be the same as the name of the hook function in
Script Maintenance, as it does in the standard interface.

The same is true for event-based naming. The event-based hook function is
called explicitly by the method according to the program logic.

Example

This example illustrates the use of the TypelExecute method

Function 1SmServerHook TypelExecute(
ByVal Session As SmSession,

ByVal Classld As Integer,

ByVal Operation As ISmOperation,
ByVal Stage As HookStageEnum,

ByVal FunctionName As String,

Byval Str As String,

ByVal FirstPar As SmRecordList,
ByVal SecondPar As SmRecordList,

Using SmarTeam Hooks in Server Mode

ByVal ThirdPar As SmRecordList) As ErrorCodeEnum
Dim Res As ErrorCodeEnum
Res = ecNone

IT StrComp(FunctionName, "UserlsCreator') = 0 Then
" Execute function by function name
Res = UserlsCreator(Session, Classld, Operation, Stage, Str,
FirstPar, SecondPar, ThirdPar)
Else
IT StrComp(Operation_Name, "APPROVE'") = 0 And Stage = hsAfter Then
"Execute function by hook name
Res = After_Approve(Session, Classld, Operation, Stage, Str,
FirstPar, SecondPar, ThirdPar)
End If
End If
I1SmServerHook_TypelExecute = Res
End Function

4-7

Type2HookExists Method

The purpose of the Type2Exists method is to determine whether a hook
function is available to execute for the current event hook. If one is found, the
system runs the Type2Execute Method to execute the function.

See the introductory comments to the TypelHookExists method.
Example

Function ISmServerHook Type2HookExists(
ByVal Session As SmSession,
ByVal HookName As String,
ByVal FunctionName As String) As Boolean
IT StrComp(FunctionName, '‘BeforeSendFunction'”) = 0 Or
StrComp(FunctionName, "‘ScriptTasks'”) = 0 Then
1SmServerHook_Type2HookExists = True
Else
IT StrComp(HookName, '‘OnSendAfter') = 0 Then
1SmServerHook Type2HookExists = True
End If
End I
End Function

Type2Execute Method

This method is called by the system when the method Type2EXxists returns
true. It passes the Type2 hook parameters and executes the hook functions.

For more information, see the introductory section for the TypelExecute
method.

See the notes at the end of the example for specific information about passing
parameters for this method.

Example

This example shows how to execute the Type2 hook functions.

Function ISmServerHook Type2Execute(

ByVal Session As SmSession,

ByVal HookName As String,

ByVal FunctionName As String,

ByVal Parameters As SmRecord) As ErrorCodeEnum

Using SmarTeam Hooks in Server Mode

Dim Res As ErrorCodeEnum

Dim ActiveProcess As SmartFlow.SmActiveProcess
Dim Response As SmartFlow.SmResponse

Dim Task As Object

Dim MultiObjects As Object

Dim FlowSession As SmartFlow.SmFlowSession

Dim FlowProcess As SmartFlow.SmFlowProcess
Dim Node As SmartFlow.SmNode

“Dim Response As SmartFlow.SmResponse

Res = ecNone
“Check if function name exists in Flow Chart Designer
IT StrComp(FunctionName, 'BeforeSendFunction'™) = 0 Then
" Extract hook function parameters from record Parameters
Set ActiveProcess = Parameters.ValueAsObjectByIndex(1)
Set Response = Parameters.ValueAsObjectByIndex(2)
" Execute hook function with parameters
Res = BeforeSendFunction(ActiveProcess, Response)
Res = ecNone
Else
“Check If current hook is OnSendAfter
IT StrComp(HookName, *‘OnSendAfter'”) = O Then
" Extract hook function parameters from record Parameters
Set FlowSession = Parameters.ValueAsObjectByIndex(1)
Set FlowProcess = Parameters.ValueAsObjectByIndex(2)
Set Node = Parameters.ValueAsObjectByIndex(3)
Set Response = Parameters.ValueAsObjectBylIndex(4)
"Execute the OnSendAFter hook function with parameters
Res = OnSendAfterFunction(FlowSession, FlowProcess, Node,
Response)
Else
“Check If task name exists in Flow Chart Designer
IT StrComp(FunctionName, *‘ScriptTasks') = 0 Then
" Execute Sub by sub name
" Extract task parameters from record Parameters
Set ActiveProcess = Parameters.ValueAsObjectByIndex(0)
Set Task = Parameters.ValueAsObjectBylIndex(1)
Set MultiObjects = Parameters.ValueAsObjectBylndex(2)
"Execute the task hook procedure with parameters

4-9

ScriptTasks ActiveProcess, Task, MultiObjects
Res = ecNone
End If
End IF
End If
I1SmServerHook_Type2Execute = Res
End Function

Notes

1. The hook function parameters need to be extracted from the SmRecord
“parameters” as shown. The type of hook dictates the parameters that are
passed (refer to the COM API Programmer’s Guide for the actual
parameters required for each event hook..) Therefore, if you execute a
hook function by the FunctionName parameter as in the first if-clause of
the above example, you need to be aware of the type of hook with which
the function is associated in Flow Chart Designer or other Designer in
order to extract the correct parameters.

2. The parameter indexing in SmRecord is different for events than for tasks.
For events, which always correspond to hook functions, the parameters
start with index 1 (Parameters.ValueAsObjectBylIndex(1)); for tasks,
which always correspond to hook procedures, the parameters start with
index O (Parameters.ValueAsObjectBylIndex(0)).

Running a Function not specified in SmarTeam

Event-based naming lets you run a hook function that was not specified in
either the SmarTeam as in the standard interface. See the description in the
standard interface.

If you want to disable such a hook function so that it doesn’t run when the
event occurs, you don’t need to remove it from the component as in the
standard interface. You can just change the program execution logic in the
control methods so that the function doesn’t run. You still need to re-compile
and re-register the component.

4-10

Using SmarTeam Hooks in Server Mode

Naming Hook Functions

In the low level interface, you have complete flexibility for naming the hook
functions themselves.

The two types of function names described in the standard interface:

Naming the function according to the name specified in SmarTeam

Naming the function according to the SmarTeam hook event for which it
runs

are used in the low-level interface in the TypelExists and Type2Exists control
methods for the logical comparisons and in TypelExecute and Type2Execute
control methods for the execution logic. See the standard interface for a
complete description of these function names.

Hook Function Parameters

In the low-level interface, the parameters you use for the SmarTeam hook
functions depend on the type of SmarTeam hook: generic hooks or library-
specific hooks, as described in the standard interface.

Packaging the Functions into an Interface Object

Normally, the SmarTeam hook functions are packaged with the
implementation of the IsmServerHook class into an Automation-compatible
COM Object. However, you can package them separately if you provide an
appropriate execution mechanism.

Integrating the COM Component

To integrate the COM component you have produced into SmarTeam:
1. Register the COM component you have produced in the Windows Registry
2. Get the CLSID for the COM component from the Windows Registry.

3. In the value of the System Configuration Key ServerHooks.CLSID,
specify the CLSID of the COM component you have produced.
Example

ServerHooks. CLSID={82F7EBD2-61D9-4CEB-8FD8-535EF32DEB2D}

4-11

	1. Introduction
	Script Hooks in Server-Based Applications
	Setting Server Mode for an Application
	Using SmarTeam Hooks in Server Mode
	SmarTeam Hooks Available in Server Mode

	Two SmarTeam Hook Interfaces

	2. Quick Start
	3. Standard SMARTEAM Hook Interface
	 Naming Hook Functions
	Using the name specified in SmarTeam
	Using an event-based name
	Running a Function not Specified in SmarTeam

	Hook Function Parameters
	Generic Hooks
	Library-Specific Hooks

	Packaging the Hook Functions into an Interface Object
	Integrating the COM Component

	4. Low-Level SmarTeam Hook Interface
	Implementing the Interface Class ISmServerHook
	Hook Types
	Function Parameters

	Init Method
	Type1HookExists Method
	When the Method is Called
	Hook Function Execution Logic

	Type1Execute Method
	Hook Function Execution Logic
	Hook Function Naming

	Type2HookExists Method
	Type2Execute Method
	Running a Function not specified in SmarTeam
	Naming Hook Functions
	Hook Function Parameters
	Packaging the Functions into an Interface Object
	Integrating the COM Component

