

i

ENOVIA SMARTEAM

SMARTIXF LIBRARY

Programmer’s Guide

ENOVIA SmarTeam | Dassault Systémes
www.smarteam.com
www.3ds.com

SmartIXF Library

ii

Important Notice
© Dassault Systèmes, 2004, 2008. All rights reserved.
CATIA, ENOVIA, SMARTEAM and the 3DS logo are registered trademarks of Dassault
Systèmes or its subsidiaries in the US and/or other countries.

PROPRIETARY RIGHTS NOTICE: This documentation is the property of Dassault Systèmes.
This documentation shall be treated as confidential information and may only be used by
employees or contractors of the Customer in accordance with the terms of the End-User License
Agreement accepted by Customer.

Any use of the Licensed Program contained in this media or accompanying it, is subject to the
terms of the End User License Agreement accepted by Customer. The Licensed Program is
protected by international copyright laws and international treaties. Unauthorized use,
reproduction and/or distribution of any of the Licensed Program, or any part thereof, may result
in severe civil and/or criminal penalties, and will be prosecuted to the maximum extent possible
under the law. Company names and product names mentioned herein are the property of their
respective owners and certain portions of the Licensed Program contain elements subject to
copyright owned by these entities. See the Documentation CD provided with the Licensed
Program for details and/or additional terms and conditions relating to these entities.

Part Number: DVS-A2-180007

iii

Table of Contents

1 INTRODUCTION .. 1
NAMING CONVENTIONS ... 1

NCName ... 1
Class Behavior URI.. 1

2 OVERVIEW OF OBJECTS.. 2
ISMIXFSCHEMA ... 2

ISmIxfClassesBehaviors ... 4
ISmIxfClasses ... 8
ISmIxfDomainBehaviors... 17
ISmIxfInfo ... 19
Common Tasks ... 22

SMIXFINITIALIZATIONDATA .. 25
SMIXFWRITER ... 27

ISmIxfDataWriter ... 31
ISmIxfSchema ... 36
Common Tasks ... 36

SMIXFREADER ... 40
ISmIxfDataReader .. 41
ISmIxfUnderstoodInfoItems.. 44
ISmIxfSchema ... 44
Common Tasks ... 45

READING AND WRITING AN EXTERNAL SCHEMA ... 46
SmIxfExternalSchemaWriter .. 46
SmIxfExternalSchemaReader ... 46

ISMIXFSTDHELPER.. 47
Standard Behaviors .. 47
ISmIxfSchemaHelper .. 48
ISmIxfWriterHelper .. 56
ISmIxfReaderHelper ... 79

3 SAMPLE IXF APPLICATION... 88
Messaging Format.. 89
Class Behaviors .. 90
Domain Behaviors .. 90
Connectivity of Objects... 92

IMPLEMENTING THE APPLICATION ... 94
Creating the Schema... 94
Writing the Data ... 100
Reading the Data.. 105
Executing the Application... 107

SmartIXF Library

1

1 Introduction

The IXF library enables you to perform the following functions:

• Generating an iXF schema

• Processing an iXF schema

• Generating an iXF Archive File

• Processing an iXF Archive File

The IXF format created and processed by the IXF library conforms to
the format described in the “IXF Specifications 1.0” document,
available at http://www.ixfstd.org/std/docs/ixf.

For additional information on the iXF format, see the IXF Standard web
site, at http://www.ixfstd.org.

Naming Conventions
This section describes the naming conventions used in this guide.

NCName
A valid NCName must begin with a letter or an underscore (_) and
cannot contain spaces; letters, digits, and underscores are allowed after
the first character:
NCName ::= (Letter | '_') (NCNameChar)

NCNameChar ::= Letter | Digit | '.' | '-' | '_'

For example: “PartMaster”. See also
http://www.w3.org/TR/REC-xml-names/#NT-NCName.

Class Behavior URI
A valid class behavior URI must contain a namespace and a behavior
name, separated by “#” as: Class Behavior URI : : = (Namespace) (‘#’)
(Name).

For example,
“http://www.ixfstd.org/std/ns/core/classBehaviors/links/1.0#link”

http://www.ixfstd.org/std/docs/ixf�
http://www.ixfstd.org/�
http://www.w3.org/TR/REC-xml-names/#NT-NCName�
http://www.ixfstd.org/std/ns/core/classBehaviors/links/1.0#link�

SmartIXF Library

2

2 Overview of Objects

This chapter presents an overview of the main SmartIxf objects including a
description of the associated objects that are useful for the programmer:

• ISmIxfSchema Object

• SmIxfWriter Object

• SmIxfReader Object

• ISmIxfStdHelper Object

ISmIxfSchema
The ISmIxfSchema object serves to organize and refer to the components of the
iXF schema document.

The Schema is maintained wholly in memory. The Schema can be saved to a
file in two ways:

• Through SmIxfExternalSchemaWriter

• When creating an archive file using the SmIxfWriter.

The ISmIxfSchema object is not a top-level object in the object hierarchy but is
contained in the following top-level objects:

� SmIxfWriter– for writing the iXF schema document

� SmIxfReader – for reading the iXF schema document

� SmIxfExternalSchemaWriter – for writing an external iXF schema
document.

� SmIxfExternalSchemaReader– for reading an external iXF schema
document

Because of its importance, the ISmIxfSchema object is discussed separately in
this major section; refer to the sections for the above objects for information on
how the ISmIxfSchema object is included in those objects.

The schema components and their corresponding objects are shown in the
following object diagram:

3

ISmIxfSchema

ClassesBehaviors

DomainBehaviors

Attributes

ClassBehavior

Attribute

TypeDef inition

DomainBehavior

RoleClassMapping

Classes

Class

CurrentClassBehaviors

ClassBehavior

CurrentClassAttributes

Attribute

Info

InfoItem

XmlAttributeValue

ObjectReferenceType
Def inition

StringTypeDef inition

(CreateXmlAttributeValue)

(GetInfoItem)

 Figure 2-1 ISmIxfSchema Object Diagram

Properties
The ISmIxfSchema object has the following properties

SmartIXF Library

4

Property Description

Classes Collection ISmIxfClasses of schema classes.

ClassesBehaviors Collection ISmIxfClassesBehaviors of schema
ClassBehaviors

DomainBehaviors Collection ISmIxfDomainBehaviors of schema
DomainBehaviors

Info ISmIxfInfo object for holding miscellaneous information

SchemaLocation The physical location of the schema file

SchemaURI The Schema URI, which is the unique identifier of the
schema.

Obtaining the ISmIxfSchema Object
To create an ISmIxfSchema Object from the SmIxfWriter Object (to create a
SmIxfWriter object see SmIxfWriter):
IxfWriter.Schema

A Schema object can also be obtained similarly from the SmIxfReader Object,
SmIxfExternalSchemaWriter Object, and from the
SmIxfExternalSchemaReader Object.

ISmIxfClassesBehaviors
An ISmIxfClassesBehaviors object is a collection of ISmIxfClassBehavior
objects and represents all ISmIxfClassBehavior objects related to the IXF
schema.

Note: This object is not the same as the ISmIxfClassBehaviors, which represents all
ISmIxfClassBehavior objects declared by a specific class.

Adding a New ClassBehavior to the IXF Schema
You use the Add method of the ClassesBehaviors object to add a new
ClassBehavior object to the IXF Schema. Once you have added a
ClassBehavior to the ClassesBehaviors object you can declare it in a specific
class. Before using the Add method, you need to understand how a
ClassBehavior is packaged.

5

ClassBehavior Schema File
A ClassBehavior object is defined in a ClassBehavior schema file. The
ClassBehavior schema file can be packaged either embedded in or external to
the IXF Archive file as described below.

ClassBehavior Schema File Packaging State

The following table describes the packaging states of the ClassBehavior schema
file and the software constant used for each state. The packaging state of the
ClassBehavior schema file is described by the ModeTypeEnum parameter of
the Add function.

Packaging State Description ModeTypeEnum
Software Constant

Embedded The class behavior definition is
created and saved to a
ClassBehavior schema file,
which is embedded in the iXF
archive file. The ClassBehavior
schema is specified by the
namespace of the behavior.

mtEmbedded

External The class behavior was
previously defined and the
definition is in a schema file.
The ClassBehavior definition is
taken from this external
ClassBehavior schema file.

The ClassBehavior schema file
is not embedded in the iXF
package; it is specified by its
BehaviorURI.

mtExternal

SmartIXF Library

6

Add Method
The Add method is called as follows:
Set ClassBehavior = Schema.ClassesBehaviors.Add(ModeTypeEnum, BehaviorURI,
[SchemaLocation], [Load=false])

The arguments of the method are:

Argument Description

Mode Packaging state of the schema – one of ModeTypeEnum.
See table above.

BehaviorURI The Class Behavior URI

SchemaLocation The behavior schema physical location. Specified only
when the Mode is mtExternal.

Load Whether or not the behavior schema needs to be loaded.
The default is false. Can be set to true only when the Mode
argument is mtExternal.

Example
Dim IxfClassBehavior as ISmIxfClassBehavior

'Create a Class Behavior "link"

Set IxfClassBehavior = Schema.ClassesBehaviors.Add(
mtEmbedded, “http://www.ixfstd.org/std/ns/core/classBehaviors/links/1.0#link”)

See ISmIxfClassBehavior for more information on that object.

ISmIxfClassBehavior

A ClassBehavior lets you define a set of class attributes as an entity separate
from any specific class, where the entity is identified by a unique URI
reference. A ClassBehavior so defined becomes a standard set of attributes,
which can be “implemented” by one or more classes, as required. In this way, a
ClassBehavior is similar to an Interface of a programming language like
JavaTM; any class that wants to implement a ClassBehavior needs to declare the
ClassBehavior usage.

A ClassBehavior is defined in the schema separately from the class definitions
and is used in a specific class by declaring it in the class definition in the
schema (see Adding a ClassBehavior to a Class in ISmIxfClassBehaviors.) The
attribute values for attributes in the ClassBehavior are assigned in the

7

instantiation of the class in the data file, in the same way that values are
assigned to the internal attributes of the class.

Figure 2-2 shows how ClassBehaviors are used in schema class definitions. It
shows the internal attribute definitions of a class and the ClassBehavior
declarations. You can declare the same ClassBehavior in more than one class,
and you can declare more than one ClassBehavior in a single class.

SmIxfSchema Object

Class Attributes

Class1

Class Behavior1

Class Attributes

Class2

Class Behavior1

Class Attributes

Class3

Class Behavior2

Class Behavior2

Class Behavior1

Class Behavior2

Class Behavior
Attributes

Class Behavior
Attributes

Figure 2-2 Class Behaviors

SmartIXF Library

8

Properties
An ISmIxfClassBehavior object has the following properties:

Property Description

Attributes Collection ISmIxfAttributes of class behavior attributes

SchemaLocation The physical location of the ClassBehavior schema file, in
the event that the ClassBehavior was previously defined
and saved to a schema file, the definition can be obtained
(loaded) through this schema file. Otherwise, if the class
behavior is defined in the schema (and not loaded) – the
SchemaLocation parameter is an empty string.

URI The Class Behavior URI, which is the unique identifier of
the class behavior.

Adding an Attribute to a ClassBehavior
Use the Add method of the IxfClassBehavior.Attributes collection object to add
an attribute to the IxfClassBehavior.
Set IxfAttribute = IxfClassBehavior.Attributes.Add(AttributeName)

The Add method returns an object of type ISmIxfAttribute. Specify the
AttributeName as a valid NCName. For more information about Attributes, see
ISmIxfAttribute.

For an example of how to add an attribute to a ClassBehavior, see Common
Tasks, “ISmIxfSchema: Defining a ClassBehavior”.

ISmIxfClasses
An ISmIxfClasses object is a collection of ISmIxfClass objects.

Adding a Class to the IXF Schema
Use the Add method of the ISmIxfClasses object to add a class to the IXF
Schema. The Add method returns an object of type ISmIxfClass. You specify
the name of the class as a valid NCName.

The Add method is called as follows:
Set IxfClass = Schema.Classes.Add(ClassName)

Where ClassName has to be a valid NCName.

9

Once you have added the class you can specify the class properties, as in the
next section.

For an example of how to add a class to the IXF Schema, see Common Tasks,
“ISmIxfSchema: Creating a Schema with Classes and Class Attributes”.

ISmIxfClass
The following figure shows the object diagram for the ISmIxfClass Object.

ISmIxfClass

CurrentClassAttributes
(ISmIxfAttributes)

CurrentClassBehaviors
(ISmIxfClassBehaviors)

IsAbstract

Name

ParentClass

InheritedAttributes

AllAttributes

InheritedBehaviors

AllBehaviors

Figure 2-3 ISmIxfClass Object Diagram

SmartIXF Library

10

Properties
An ISmIxfClass object has the following properties:

Property Description

Name The class name must be a valid NCName.

Parent Class The parent class object

CurrentClassAttributes Collection ISmIxfAttributes of the class attributes.
Does not include the inherited class attributes.

InheritedAttributes Collection ISmIxfReadOnlyAttributes of the
inherited class attributes.

AllAttributes Collection ISmIxfReadOnlyAttributes of all the class
attributes, including inherited attributes.

CurrentClassBehaviors Collection ISmIxfClassBehaviors of class behaviors
that are supported by the class. Does not include the
class behaviors that were inherited.

InheritedBehaviors Collection ISmIxfReadOnlyClassBehaviors of the
inherited class behaviors.

AllBehaviors Collection ISmIxfReadOnlyClassBehaviors of all the
class behaviors that are supported by the class,
including inherited class behaviors.

IsAbstract Indicates whether or not the class is abstract. If it is,
it cannot be instantiated

ISmIxfAttributes
An ISmIxfAttributes object is a collection of ISmIxfAttribute objects.

The CurrentClassAttributes is a collection of ISmIxfAttributes objects, which
represent the attributes defined internally to the current class. The
ClassBehavior object also includes a collection ISmIxfAttributes, which
represents the attributes of the ClassBehavior (see ISmIxfClassBehaviors.)

Adding an Attribute to a Class
Use the Add method of the ISmIxfAttributes object to add an attribute to the
collection. The Add method returns an object of type ISmIxfAttribute. It is
called as follows:

11

Set IxfAttribute = IxfClass.CurrentClassAttributes.Add(AttributeName)

Where AttributeName must be a valid NCName.

Once you have added the attribute you can specify the attribute properties.

For an example of how to add an attribute to CurrentClassAttributes, see
Common Tasks, “ISmIxfSchema: Creating a Schema with Classes and Class
Attributes”.

ISmIxfAttribute
The ISmIxfAttribute object represents an individual class attribute or an
individual attribute of a ClassBehavior.

Properties
The ISmIxfAttribute object has the following properties:

Property Description

Name The attribute name. A valid NCName.

Default value The default value of the attribute. It is assigned as an object’s
(class or ClassBehavior) attribute value in case no value was
assigned.

IsNullAllowed True if the attribute value can be set to Null. Default is true

IsPrimary True if the attribute is part of the class primary identifier.
The default is false.

Required True if the attribute is required. If it is, it has to be assigned,
or a default value must be indicated in the Default value
property. Default is false.

TypeDefinition Returns the data type of the attribute. Returns an object of
type ISmIxfTypeDefinition.

Note: ISmIxfAttribute is only the definition of the attribute structure; the actual value of
this attribute is inserted by the SmIxfWriter object.

ISmIxfTypeDefinition
The ISmIxfTypeDefinition Object specifies the data type of the ISmIxfAttribute
object.

SmartIXF Library

12

Properties
The ISmIxfTypeDefinition object has three properties:

Property Description

ValueType The ValueType property is an Enum type
DataTypeEnum that specifies the type of the value
that can be assigned to the attribute. It is a subset of
the W3C XML Schema Data Types, as defined in
http://www.w3.org/TR/xmlschema-2/. See Table 1
for a list of data types.

ObjectReferenceType If ValueType is set to dtObjectReference, the
ObjectReferenceType property lets you specify more
information about the object reference. See below
for more information.

StringType If the ValueType is assigned to dtString then the
StringType property lets you specify more
information about the string. See below for more
details.

Table 1 ValueType Data Types

ValueType Description Software
Constant

String Character strings in XML dtString

Boolean Binary-valued logic dtBoolean

Float IEEE single-precision 32-bit
floating point type

dtFloat

Double IEEE double-precision 64-bit
floating point type

dtDouble

Duration Duration of time dtDuration

Base64Binary Base64-encoded arbitrary binary
data

dtBase64Binary

HexBinary Arbitrary hex-encoded binary
data

dtHexBinary

AnyUri A Uniform Resource Identifier
Reference (URI).

dtAnyUri

http://www.w3.org/TR/xmlschema-2/?bcsi_scan_2260037B8D63E2AC=noyMSE2caNad3GJ7uvhDxg8AAABxNkcI�

13

Language Natural language identifiers as
defined by [RFC 1766].

dtLanguage

Int Integer between
-2147483648
and
2147483647.

dtInt

Short Integer between
-32768 and 32767

dtShort

Byte Integer between
-128 and 127

dtByte

UnsignedShort Integer between 0 and 65535 dtUnsignedShort

UnsignedByte Integer between 0 and 255 dtUnsignedByte

DateTime A specific instant of time dtDateTime

Time An instant of time that recurs
every day

dtTime

Date A calendar date dtDate

gMonth A gregorian month that recurs
every year

dtGMonth

gYear A gregorian calendar year dtGYear

ObjectReference An object dtObjectReference

XML XML text dtXML

Depending on ValueType, there can be additional options, as discussed in the
following sections.

Specifying Information about an Object Reference
If ISmIxfTypeDefinition.ValueType is set to dtObjectReference, the
ObjectReferenceType property lets you specify more information about the
object reference.

Properties
The ObjectReferenceType property returns an object of type
ISmIxfObjectReferenceTypeDefinition, which has the properties:

Property Description

http://www.w3.org/TR/xmlschema-2/#RFC1766�

SmartIXF Library

14

RestrictionType You use this property to place restrictions on the
type of object referenced through the
ObjectReferenceType property. Set to one of
ObjectReferenceRestrictionTypeEnum.

ClassName Specifies a class to which the objects referenced or
their descendants must belong. Can be accessed
only if RestrictionType has the value ortClass or
ortClassAndDescendants. See details of
ObjectReferenceType Restrictions.RestrictionType
below for more information.

BehaviorURI Specifies a behavior that the object referenced must
implement. Can be accessed only if the
RestrictionType has the value ortBehavior. See
details of ObjectReferenceType.RestrictionType
below for more information.

ObjectReferenceType Restrictions
You use the RestrictionType property to place restrictions on the type of object
that can be referenced through the ObjectReferenceType property. This helps
you tailor an attribute for special use.

The RestrictionType property is available as follows:
IxfAttribute.TypeDefinition.ObjectReferenceType.RestrictionType

15

The RestrictionType can take one of the following
ObjectReferenceRestrictionTypeEnum values:

RestrictionType Description Software
Constant

Any The reference can be to any kind of
object (the default)

ortAny

Class The reference can be to an object of
a specific class only. The class
name should be assigned to
TypeDefinition.ObjectReferenceType.
ClassName (continued).

ortClass

ClassAnd
Descendants

The reference can be to an object of
a specific class or its descendants
only. The class name should be
assigned to
TypeDefinition.ObjectReferenceType.
ClassName (continued).

OrtClassAnd
Descendants

Behavior The reference can be to an object
that implements a specific behavior
only. The behavior URI should be
assigned to
TypeDefinition.ObjectReferenceType.
BehaviorURI (continued).

ortBehavior

Example
The following code allows the attribute to reference only objects of the class
“DocumentMaster”.
IxfAttribute.TypeDefinition.ValueType = dtObjectReference

IxfAttribute.TypeDefinition.ObjectReferenceType.RestrictionType = ortClass

IxfAttribute. TypeDefinition.ObjectReference.ClassName = “DocumentMaster”

SmartIXF Library

16

String Type Options

If the ISmIxfTypeDefinition.ValueType is assigned to dtString then you can
specify a maximum length for the string by
ISmIxfTypeDefinition.StringType.MaxLength. The default for MaxLength is 0,
which means there is no restriction for the string length.

Example
The following code restricts the length of the string attribute to 50 characters.
IxfAttribute.TypeDefinition.ValueType = dtString

IxfAttribute.TypeDefinition.StringType.MaxLength = 50

ISmIxfClassBehaviors
The ISmIxfClassBehaviors Object is a collection of ISmIxfClassBehavior
objects. It represents the set of ClassBehaviors declared in a specific class.

Note: This object is not the same as the collection object ISmIxfClassesBehaviors. The
latter refers to the set of all ClassBehavior objects associated with the entire
schema and defined externally to all classes.

Adding a ClassBehavior to a Class
Once you have added a ClassBehavior to the ClassesBehaviors object (see
Adding a New ClassBehavior to the IXF Schema), you can declare the
ClassBehavior in a specific class. You use the Add method of the
ClassBehaviors object to add a ClassBehavior object to CurrentClassBehaviors.

The Add function is called as follows:
IxfClass.CurrentClassBehaviors.Add(Behavior,MustUnderstandEnum)

17

The method parameters are as follows:

Parameter Description

Behavior A ClassBehavior object that already exists in the
collection Schema.ClassesBehaviors.

MustUnderstand Denotes whether this Class Behavior, when declared
in this class, must be understood by the reading
processor. Possible values: muYes, muNo

For an example, see Common Tasks, ISmIxfSchema: Declaring usage of a class
behavior by a class.

ISmIxfDomainBehaviors
An ISmIxfDomainBehaviors object is a collection of ISmIxfDomainBehavior
objects.

Adding a DomainBehavior to DomainBehaviors
You use the Add method of the DomainBehaviors object to add a
DomainBehavior object to DomainBehaviors.

The Add function is called as follows:
Add(URI)

ISmIxfDomainBehavior
Conceptually, a Domain Behavior is composed of sets of Class Behaviors
called Roles, where the Domain Behavior also specifies the classes that declare
the Class Behaviors for each Role.

Specifically, a Domain Behavior defines a set of Roles and a set of Role-to-
Class mappings (see Section 2.5 of the IXF Specification.) Each Role is
associated with a set of Class Behaviors, which are specified by the
documentation describing the Domain Behavior. The class that is mapped to the
Role according to its Role-to-Class Mapping must declare the Role’s Class
Behaviors.

Note: It is very important to make sure that a class is mapped to a Role only if it
implements the required class behaviors, even though this is not currently
enforced by the API. The required class behaviors can be verified by consulting
the Domain Behavior documentation.

SmartIXF Library

18

Figure 2-4 shows the relationship between a Domain Behavior definition and a
schema that uses it:

ISmIxfSchema Object

Class Behavior1

Class1

Class Behavior2

Class Attributes

Class3

Class Behaviors

Role Class

Role - Class Mapping

Class AttributesRole1 Class1

Role2 Class2

Role ClassBehaviors

Role1 ClassBehavior1
ClassBehavior2

Role2 ClassBehavior3

DomainBehavior Definition

Class Behavior3

Class2

Class Attributes

Figure 2-4 Domain Behavior

Properties
An ISmIxfDomainBehavior object has the following properties:

Property Description

URI The unique identifier of the DomainBehavior

RoleClassMapping The RoleClassMapping property defines an
association between role names and ISmIxfClass
objects, whereby each role is assigned to a class.

19

ISmIxfInfo
The ISmIxfInfo Object holds miscellaneous information, which cannot be
categorized as classes or behaviors. It is a collection of ISmIxfInfoItem objects.

Methods
It has the methods:

Method Description

GetInfoItem Gets an InfoItem from the collection by Name
and Namespace. If it doesn't exist, a new
object is created and added to the collection.

Save Not used when Info accessed through Schema.

CreateXmlAttributeValue Creates an ISmIxfXmlAttributeValue object

The ISmIxfInfo Object is obtained though the ISmIxfSchema object, as
follows:
Set IxfInfo = Schema.Info

Note: ISmIxfInfo Object can also be obtained through the IxfWriter.DataWriter and
IxfReader.DataReader. When the schema is saved ISmIxfInfo is saved
automatically with the schema; in the Writer it has to be saved with the Save
function.

Adding an InfoItem to a Info Object
Use the GetInfoItem method of Info to add a new InfoItem to the Info
collection.
Set IxfInfoItem = IxfInfo.GetInfoItem(Name, Namespace)

SmartIXF Library

20

ISmIxfInfoItem
The ISmIxfInfoItem object represents a member of the ISmIxfInfo collection,
that is, a basic unit of miscellaneous information in the schema file.

Properties
The ISmIxfInfoItem object has the properties:

Property Description

Name InfoItem name

Namespace InfoItem namespace

Value InfoItem value

ValueType Value type (see Table 1)

MustUnderstand MustUnderstand flag for this InfoItem. If set to true, the
reading process stops when this InfoItem is not in the list
SmIxfReader.ISmIxfUnderstoodInfoItems, and
Reader.ValidateMustUnderstand = true.

Use the GetInfoItem (Name, Namespace) method of the ISmIxfInfo Object to
create an ISmIxfInfoItem object or to get an existing one.

For an example of how to add miscellaneous information to a ClassBehavior,
see Common Tasks, ISmIxfSchema: Adding miscellaneous information.

Note: The ISmIxfInfo object under DataWriter represents another, independent way to
write miscellaneous data, which you can use instead of or in addition to this
ISmIxfInfo object under the ISmIxfSchema object. The difference is that with the
current ISmIxfInfo object you do not need to save the object; it is saved
automatically with the Schema.

ISmIxfXmlAttributeValue
The ISmIxfXmlAttributeValue object represents the value of an InfoItem of
type “dtXML”. This object lets you insert miscellaneous information in the
form of XML text. The XML text does not need to be a complete XML
document, but it must be valid and well formed.

If the meaning of a prefix is not included in the XML text, you can provide it in
the Namespaces property.

21

To create an ISmIxfXmlAttributeValue object, use the ISmIxfInfo method
CreateXmlAttributeValue, as follows:
Set IxfXmlAttributeValue = Info.CreateXmlAttributeValue

Properties

The ISmIxfXmlAttributeValue object has the properties:

Property Description

Namespaces Returns an object ISmIxfNamespaces, a list of mappings
between prefix and namespace that represents the meaning of
each prefix that occurs in the XML string.

XML A well-formed valid XML text as a WideString.

Note: The ISmIxfXmlAttributeValue object can also be used to provide an Xml text
attribute value to a class attribute, when using the Writer object. See
ISmIxfAttributesValues for more information.

Note: The XML string might be changed by the API but the meaning will stay the
same.

Example
Dim Info As ISmIxfInfo

Dim InfoItem As ISmIxfInfoItem

Dim NameSpaces As ISmIxfNamespaces

Dim XmlAttributeValue As ISmIxfXmlAttributeValue

Dim XmlText As String

Set Info = Schema.Info

InfoItem = Info.GetInfoItem(“XmlText”, ”http://….”)

InfoItem.ValueType = dtXml

Set XmlAttributeValue = Info.CreateXmlAttributeValue

XmlText = “<p:name>John Bryce<p:name>”

XmlAttributeValue.XML = XmlText

XmlAttributeValue.NameSpaces.Add (“ns1”, “p”)

InfoItem.Value = XmlAttributeValue

SmartIXF Library

22

Common Tasks
The following sections describe methods and properties that are used to
perform common tasks related to an ISmIxfSchema.

ISmIxfSchema:
Creating a Schema with Classes and Class Attributes
The following procedure creates a basic schema file containing classes and
class attributes.

1. Get the schema property (see ISmIxfSchema.)

2. Create a class
Dim IxfClass as ISmIxfClass

‘Create a Class "documentMaster":

Set IxfClass = Schema.Classes.Add("DocumentMaster")

IxfClass.ParentClass = Null

IxfClass.IsAbstract = False

See Adding a Class to the IXF Schema, for more details.

3. Create a Class attribute
Dim IxfAttribute as ISmIxfAttribute

'Create and add attribute "DocumentName":

Set IxfAttribute = IxfClass.CurrentClassAttributes.Add("DocumentName")

‘Set properties for the attribute:

IxfAttribute.TypeDefinition.ValueType = dtString

IxfAttribute.TypeDefinition.StringType.MaxLength = 50

IxfAttribute.Required = True

IxfAttribute.IsNullAllowed = False

IxfAttribute.IsPrimary = True

'Create and add attribute "Description":

Set IxfAttribute = IxfClass.CurrentClassAttributes.Add("Description")

‘Set properties for the attribute:

IxfAttribute.TypeDefinition.ValueType = dtString

IxfAttribute.Required = False

IxfAttribute.IsNullAllowed = True

See Adding an Attribute to a Class for more information.

23

ISmIxfSchema:
Defining a ClassBehavior
In this task, you define a ClassBehavior.

1. Add a Class Behavior definition to the IXF Schema, that is, to
ClassesBehaviors
Dim IxfClassBehavior as ISmIxfClassBehavior

'Create a Class Behavior "link"

Set IxfClassBehavior = Schema.ClassesBehaviors.Add(
mtEmbedded, “http://www.ixfstd.org/std/ns/core/classBehaviors/links/1.0#link”)

See Adding a New ClassBehavior for more information.

2. Add attributes to the ClassBehavior definition
Dim IxfAttribute as ISmIxfAttribute

'add attribute "object1":

Set IxfAttribute = IxfClassBehavior.Attributes.Add("object1")

‘Set properties for the attribute:

IxfAttribute.TypeDefinition.ValueType = dtObjectReference

IxfAttribute.Required = True

IxfAttribute.IsNullAllowed = True

'add attribute "object2":

Set IxfAttribute = IxfClassBehavior.Attributes.Add("object")

‘Set properties for the attribute:

IxfAttribute.TypeDefinition.ValueType = dtObjectReference

IxfAttribute.Required = True

IxfAttribute.IsNullAllowed = True

See Adding an Attribute to a ClassBehavior for more information.

ISmIxfSchema:
Declaring usage of a Class Behavior by a class
In this task, you declare a ClassBehavior in a class.

In case the ClassBehavior has been defined separately, you can retrieve the
class behavior object by URI and declare it in a class as follows:
IxfClassBehavior = Schema.classesBehaviors.ItemByURI(

 “http://www.ixfstd.org/std/ns/core/classBehaviors/links/1.0#link”)

IxfClass = Schema.classes.Add(“myLink”)

IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

See Adding a ClassBehavior to a Class for more information.

http://www.ixfstd.org/std/ns/core/classBehaviors/links/1.0#link�

SmartIXF Library

24

ISmIxfSchema:
Defining a DomainBehavior
See example section.

ISmIxfSchema:
Adding Standard Behavior to a schema
See section ISmIxfSchemaHelper on page 48

ISmIxfSchema:
Adding miscellaneous information
To add miscellaneous information ISmIxfInfo to the schema, you use an
ISmIxfInfoItem object
Dim IxfInfo As ISmIxfInfo

Dim IxfInfoItem As ISmIxfInfoItem

‘ Get the Info object

Set IxfInfo = Schema.Info

‘Create and return an InfoItem with the indicated name and namespace:

Set IxfInfoItem = IxfInfo.GetInfoItem("transaction", "http://www.vendor.org")

 IxfInfoItem.ValueType = dtInt

 IxfInfoItem.Value = "2352"

25

SmIxfInitializationData
A SmIxfInitializationData object represents initialization of data for
SmartIXF applications.

Each creatable object has a reference to the interface ISmIxfInitializationData.

Setting Proxy Information
For the present release, the SmIxfInitializationData interface relates to the
initialization of proxy information for downloading files by an IXF Application
installed on a UNIX system (optional on Windows).

The user can obtain the current proxy value by calling the GetProxy method.

The SetProxy method should be performed when the user wants to indicate the
proxy that is about to be used.

On Unix platforms the proxy must be set if files are about to be downloaded
from the web.

On windows using this interface is optional since windows can automatically
detect and identify a proxy.

Methods
The SmIxfInitializationData has the methods

Methods Description

GetProxy Returns the value of the proxy string.

SetProxy Sets the specified string as the proxy string.

Example
In order to set a proxy after creating an object, the SetProxy method should be
called as described in the following sample code.

Public Const PROXY_STR = "123.45.678.90:8080" 'A string indicating the proxy to be
used when downloading files from the web.

Dim IxfWriter As SmIxfWriter

Dim IxfReader As SmIxfReader

Dim IxfStdHelper As SmIxfStdHelpert

Dim IxfExternalSchemaWriter As SmIxfExternalSchemaWriter

SmartIXF Library

26

Dim IxfExternalSchemaReader As SmIxfExternalSchemaReader

Dim ProxyStr As String

Set IxfWriter = CreateObject("SmartIXF1.SmIxfWriter")

IxfWriter.InitializationData.SetProxy(PROXY_STR)

Set IxfReader = CreateObject("SmartIXF1.SmIxfReader")

IxfReader.InitializationData.SetProxy(PROXY_STR)

Set IxfStdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

IxfStdHelper.InitializationData.SetProxy(PROXY_STR)

Set IxfExternalSchemaWriter = CreateObject("SmartIXF1.ExternalSchemaWriter")

IxfExternalSchemaWriter.InitializationData.SetProxy(PROXY_STR)

Set IxfExternalSchemaReader = CreateObject("SmartIXF1.ExternalSchemaReader")

IxfExternalSchemaReader.InitializationData.SetProxy(PROXY_STR)

...

ProxyStr = IxfReader.InitializationData.GetProxy()

27

SmIxfWriter
An SmIxfWriter object is used for:

� Creating an IXF Archive file

� Creating and writing a Schema Document (schema file)

� Creating and writing an IXF Instance Document (data file)

� Packaging the schema and data files in the IXF Archive file.

Optionally, the SmIxfWriter can refer to an existing schema file.

Object Diagram
The object diagram of SmIxfWriter is shown below:

SmartIXF Library

28

SmIxfWriter

Schema

DataWriter

ObjectWriter

Info

IsmIxfObject(NewObject)

Values

AttributesValue:
OleVariant

ISmIxfXmlAttributeValue(CreateXmlAttributeValue)

IsmIxfAttributesValues(GetBehaviorValues)

Figure 2-5 SmIxfWriter Object Diagram

29

Properties
SmIxfWriter has the following properties:

Property Description

Schema Holds the definition of the data structure The schema
file describes the data model, including its classes and
behaviors.

DataWriter Writes the data file. The data file contains a set of
objects that conforms to the data model described in
the schema and miscellaneous data. [associated files
come from WriterHelper]

InitializationData Provides access to methods for initializing data for IXF
applications. Returns ISmIxfInitializationData

The schema and data files are packaged in an IXF Archive by the SmIxfWriter
object.

Methods
The SmIXfWriter has the methods

Methods Description

CreateIxfArchiveFile Creates the specified iXF Archive file.

CloseIxfArchiveFile Closes the iXF Archive file.

SetSchemaMode Sets the packaging mode of the schema in the Archive
file.

Creating the SmIxfWriter Object
To create an SmIxfWriter Object:
Dim IxfWriter As SmIxfWriter

Set IxfWriter = CreateObject("SmartIXF1.SmIxfWriter")

Creating an iXF Archive File
As described in the iXF Specification, an iXF Archive file is a zip file
containing a data file and possibly a schema file. When you use the
SmIxfWriter to write an IXF Instance file, you need to create an iXF Archive
file to contain the IXF Instance file and possibly the schema file.

SmartIXF Library

30

Specifying the Schema Packaging State
When you create an iXF Archive file, you first need to specify how the
associated schema is to be packaged, using the SetSchemaMode method of the
ISmIxfWriter.

The following table describes the packaging states of the schema file and the
software constant used for each state. The packaging state of the schema file is
described by the Mode parameter of the SetSchemaMode method.

Packaging
State

Description SchemaModeEnum
Software Constant

Embedded The schema definition is created and
saved to a schema file, which is
embedded in the iXF archive file.

mtEmbedded

External The schema file is not embedded in the
iXF package; it was previously defined
externally in a file and specified by its
SchemaURI.

mtExternal

SetSchemaMode Method
Use the SetSchemaMode method to specify the packaging state of the schema.
It is called as follows:
IxfWriter.SetSchemaMode(mode,[SchemaURI],[SchemaLocation = “”] [Load=True])

The arguments of the method are:

Argument Description

Mode Packaging state of the schema, one of SchemaModeEnum.
See table above.

SchemaURI The schema namespace. Specified only when Mode is
mtExternal.

SchemaLocation The schema physical location. Specified only when Mode
is mtExternal.

Load Whether or not the schema needs to be loaded. The default
is false. Can be set True only when Mode is mtExternal.

Note: If the Mode is mtEmbedded, or if Mode is mtExternal and Load = False (for
example, when the schema is not accessible) then the Schema object in the
ixfWriter object should be populated by hand. See ISmIxfSchema.

31

Creating the IXF Archive
To create the iXF Archive, after calling the SetSchemaMode method, use the
methods IxfWriter.CreateIxfArchiveFile and IxfWriter.CloseIxfArchiveFile.

For an example of how to create the IXF Archive, see Common Tasks,
SmIxfWriter: Creating an iXF Archive.

ISmIxfDataWriter
The ISmIxfDataWriter Object writes the object and miscellaneous data
corresponding to the schema file.

Properties
The ISmIxfDataWriter Object has the two properties:

Property Description

ObjectWriter Returns an ISmIxfObjectWriter object, used to write
objects to the data file.

Info Returns an ISmIxfInfo object. It is used for writing
miscellaneous information to the data file.

Obtaining the ISmIxfDataWriter Object
To obtain the ISmIxfDataWriter Object from the IxfWriter Object:
Dim DataWriter as ISmIxfDataWriter

Set DataWriter = IxfWriter.DataWriter

ISmIxfObjectWriter
The ISmIxfObjectWriter uses the NewObject method to create objects, which
are instantiations of the classes declared in the schema.

SmartIXF Library

32

Obtaining the ISmIxfObjectWriter Object
To obtain the ISmIxfObjectWriter object from the ISmIxfDataWriter object:
Dim ObjectWriter as ISmIxfObjectWriter

Set ObjectWriter = IxfWriter.DataWriter.ObjectWriter

Creating a New Object
Use the NewObject method to create an object, which is an instantiation of a
class defined in the Schema. Use the Class Name and provide a unique Object
Id (see next section for more details about the parameters).
Set IxfObject = ObjectWriter.NewObject(ixfClassName, ObjectId)

ISmIxfObject
The ISmIxfObject object represents an instantiation of a class in the schema.
You create it an ISmIxfObject object by specifying the class from which the
object is to be instantiated and providing an object id (see previous section).

Use the ISmIxfObject object to access class attributes and class behavior
attributes that were declared in the schema file for the object’s class.

Properties
The ISmIxfObject has the properties:

Property Description

Id Input string that uniquely identifies the object within
the IXF Instance Document. Must be a valid
NCName.

The Object ID value must follow the rules defined
for the ID Datatype in XML Schema Part 2:
Datatypes, Section 3.3.8: ID.

IxfClassName Name of class of which this object is an instantiation.

Values Returns object ISmIxfAttributesValues, which is the
set of values of the class attributes for the object’s
class.

Methods
The ISmIxfObject has the methods:

33

Method Description

GetBehaviorValues Returns object ISmIxfAttributesValues, which is the
set of the ClassBehavior attribute values for Class
Behaviors declared by the object’s class.

Save Saves object to data file. Can be used only during
iXF generation (writing)

ISmIxfAttributesValues
The ISmIxfAttributesValues object, which is returned by the Values and
GetBehaviorValues methods of an IxfObject, represents the collection of values
of class attributes or ClassBehavior attributes of the IxfObject. You refer to an
individual item of the ISmIxfAttributesValues by the name of the
corresponding ISmIxfAttribute, which was assigned in the class or
ClassBehavior definition in the schema.
IxfObject.Values.Item(AttributeName) = some variant value

Set BehaviorValues = IxfObject.GetBehaviorValues(BehaviorURI)

BehaviorValues.Item(AttributeName) = some variant value

For an example of how to assign values to class attributes, see Common Tasks,
ISmIxfDataWriter: Creating a Data File with Objects and Info.

ISmIxfXmlAttributeValue Object
If you defined the TypeDefinition.ValueType of a class attribute or
ClassBehavior attribute as dtXml in the schema definition, you can create an
ISmIxfXmlAttributeValue object and assign it as the class attribute value.
Set XmlAttributeValue = IxfObject.Values.CreateXmlAttributeValue

Note: The ISmIxfXmlAttributeValue object can also be used when using the ISmIxfInfo
object to provide an Xml text value to an InfoItem of type dtXml.

SmartIXF Library

34

Example
‘In definition of ClassAttributes in Schema, define an Xml attribute:

Set IxfAttribute = IxfClass.CurrentClassAttributes.Add("XmlText")

‘Set properties for the attribute:

IxfAttribute.TypeDefinition.ValueType = dtXml

‘When loading values into Class attributes in Writer:

Dim DataWriter As ISmIxfDataWriter

Dim ObjectWriter As ISmIxfObjectWriter

Dim IxfObject As ISmIxfObject

Dim XmlAttributeValue As ISmIxfXmlAttributeValue

Dim XmlText As String

Set IxfObject = DataWriter.ObjectWriter.NewObject

‘Create XmlAttributeValue object and give it an Xml value

XmlAttributeValue = Object.Values.CreateXmlAttributeValue

XmlText = “<p:name>John Bryce</p:name>”

XmlAttributeValue.XML = XmlText

XmlAttributeValue.NameSpaces.Add (“ns1”, “p”)

‘Put the XmlAttributeValue object into the class attribute value

IxfObject.Values.Item("XmlText") = XmlAttributeValue

Object.Save

35

ISmIxfInfo
The ISmIxfInfo object represents miscellaneous information written to the data
file. See the ISmIxfInfo object of the Schema object.

The ISmIxfInfo object holds miscellaneous information, which cannot be
categorized as classes or behaviors. It is a collection of ISmIxfInfoItem objects.

Methods
It has the methods:

Method Description

GetInfoItem Gets an InfoItem from the collection by Name
and Namespace.

Save Saves the InfoItems collection to the iXF
Instance file. Can be used only when Info is
obtained through IxfWriter.DataWriter, i.e.,
during iXF generation.

CreateXmlAttributeValue Creates an ISmIxfXmlAttributeValue object

Note: This ISmIxfInfo object under DataWriter represents an independent way to write
miscellaneous data, which you can use instead of or in addition to the ISmIxfInfo
object under the ISmIxfSchema object. The difference is that with this ISmIxfInfo
object you need to save the object, as shown below.

For an example of how to write an Info object, see Common Tasks,
ISmIxfDataWriter: Writing an Info section.

Note: The ISmIxfInfo information must be written to the data file prior to any object
information.

SmartIXF Library

36

ISmIxfSchema
The ISmIxfSchema object represents the schema file in the IXF Archive being
written. See ISmIxfSchema on page 2.

Common Tasks
The following sections describe methods and properties that are used to
perform common tasks related to a SmIxfWriter.

SmIxfWriter:
Creating an iXF Archive
As described in the iXF Specification, an iXF Archive file is a zip file
containing a data file and possibly a schema file.

To create an iXF package file:

1. Create the IxfWriter object
Dim IxfWriter As SmIxfWriter

Set IxfWriter = CreateObject("SmartIXF1.SmIxfWriter")

2. Set the schema packaging state using the method SetSchemaMode:

Examples of setting the schema packaging mode:
IxfWriter.SetSchemaMode mtEmbedded

or:
IxfWriter.SetSchemaMode mtExternal,

“http://www.vendor.org.schema”,
“c:\Schemas\MySchema.xsd”, true

or:

IxfWriter.SetSchemaMode mtExternal,

“http://www.vendor.org.schema”,
“c:\Temp\MySchema.xsd”, False

See Creating an iXF Archive File for more information.

3. Create a schema (see ISmIxfSchema)

If the ModeTypeEnum is embedded, or if ModeTypeEnum is external and Load
= False (for example, when the schema is not accessible) then the Schema
object in the ixfWriter object should be populated by hand.

http://www.vendor.org.schema/�
http://www.vendor.org.schema/�

37

4. Use the method CreateIxfArchiveFile to initialize the process of creating an
IXF Archive:
IxfWriter.CreateIxfArchiveFile ”test.ixf”

NOTE: This method can be called only after SetSchemaMode is called and the
schema object is populated.

5. Insert the data information -- Info, objects, changes and files (see next section
ISmIxfDataWriter:Creating a Data File with Objects and Info)

6. Close the iXF file:
IxfWriter.CloseIxfArchiveFile

ISmIxfDataWriter:Creating a Data File with Objects and Info
The following procedure creates a basic data file containing objects and
miscellaneous information. It is assumed that a schema has already been
created.

The data file is created automatically as part of the package. It is named
IXF_Data.xml.

In this section you create an object corresponding to a class in the schema and
assign values to the class attributes and ClassBehavior attributes for class
behaviors declared by the class.

Note: If you are writing miscellaneous (Info) information, it must be written first, before
any object information.

1. Create an object

To create an object, you need to obtain the ISmIxfObjectWriter Object as
follows:
Dim ObjectWriter As ISmIxfObjectWriter

Set ObjectWriter = IxfWriter.DataWriter.ObjectWriter

Use the NewObject method of the ISmIxfObjectWriter Object to create the new
object, where you specify the ClassName and provide a unique ObjectId. The
NewObject method returns an object of type ISmIxfObject.
‘ Create an object for the data file

Dim IxfObject as ISmIxfObject

Set IxfObject = ObjectWriter.NewObject(“DocumentMaster”, “OID_1”)

SmartIXF Library

38

2. Assign values according to the object’s class attributes

The attribute values are stored in the collection object ISmIxfAttributesValues.
This object is obtained from ISmIxfObject as follows:
AttributesValues = ixfObject.Values

You assign a value to this object.
‘ Assign values to the object’s attributes

AttributesValues. Item(“DocumentName”) = “MyDocument”

3. Assign values to the ClassBehavior attributes

To assign values to the ClassBehavior attributes, use the method
GetBehaviorValues of ISmIxfObject. The method returns the object
ISmIxfAttributesValues as in the previous step.
Dim BehaviorValues As ISmIxfAttributesValues

IxfLinkObject = IxfWriter.DataWriter.ObjectWriter.NewObject(“MyLink”,”OID_2”)

Set BehaviorValues =
IxfLinkObject.GetBehaviorValues(http://project/behavior1#link)

You assign values to this object as in the previous step.
BehaviorValues.Item(“object1”) = IxfObject1

4. Save the object.
ixfObject.Save

Note: Save each object as soon as you are finished creating it.

39

SmIxfWriter:
Creating a ISmIxfXmlAttributeValue
Dim XmlAttributeValue as ISmIxfXmlAttributeValue

Set XmlAttributeValue = IxfWriter.DataWriter.Info.CreateXmlAttributeValue

XmlAttributeValue.XML = <p:name>John Bryce<p:name>

XmlAttributeValue.Namespaces.Add 'http://www.vendor.com/ns/personalIdentity', 'p'

ISmIxfDataWriter:
Writing an Info section
'Optional "Info" section:

 Set InfoItem = Writer.DataWriter.Info.GetInfoItem("From",
"http://smarteam.com/dev/ixf/test")

 InfoItem.ValueType = dtString

 InfoItem.Value = "Ann Barkley"

 Set InfoItem = Writer.DataWriter.Info.GetInfoItem("To",
"http://smarteam.com/dev/ixf/test")

 InfoItem.ValueType = dtString

 InfoItem.Value = "Bruce Mayer"

 Set InfoItem = Writer.DataWriter.Info.GetInfoItem("Subject",
"http://smarteam.com/dev/ixf/test")

 InfoItem.ValueType = dtString

 InfoItem.Value = "iXF Example"

 DataWriter.Info.Save

Note: If you are writing Info to the data file, it must be saved to the data file before
saving any object to the data file.

SmartIXF Library

40

SmIxfReader
A SmIxfReader object is used for:

� Unpacking an IXF Archive file

� Reading a Schema Document (schema file)

� Reading an IXF Instance Document (data file)

Optionally, the SmIxfReader can refer to an external schema file.

Object Diagram
The object diagram of SmIxfReader is shown below:

SmIxfReader

UnderstoodInfoItems

DataReader

ObjectReader

Info

ISmIxfObjectIterator(GetObjectIterator)

ISmIxfObject(GetObject)

Schema

Figure 2-6 SmIxfReader Object Diagram

41

Properties
The SmIXfReader has the properties

Property Description

DataReader Reference to ISmIxfDataReader, which reads the
data file. The data file contains a set of objects and
miscellaneous data that conforms to the data
model described in the schema. [Associated files
come from Reader helper].

UnderstoodInfoItems Collection of InfoItems that the DataReader
declares as understood. Used to validate read-in
InfoItems marked as “mustUnderstand”.

Schema Reference to ISmIxfSchema, which holds the
definition of the data structure.

ValidateMustUnderstand If true, validate read-in InfoItems marked as
“mustUnderstand” against the
UnderstoodInfoItems collection.

InitializationData Provides access to methods for initializing data for
IXF applications. Returns ISmIxfInitializationData

Methods
The SmIXfReader has the methods

Methods Description

OpenIxfArchiveFile Opens the specified iXF Archive file for reading.

Close Closes the iXF Archive file for reading.

ISmIxfDataReader
The ISmIxfDataReader object reads the object and miscellaneous data from the
data file corresponding to the schema file. The ISmIxfDataReader object
includes the ObjectReader property, which is used to read objects from the data
file by iteration, using the ObjectsIterator property.

SmartIXF Library

42

Properties
The ISmIxfDataReader Object has the two properties:

Property Description

ObjectReader Returns an ISmIxfObjectReader object

Info Miscellaneous (Info) information read from the data file.

Obtaining the ISmIxfDataReader Object
To obtain the ISmIxfDataReader Object from the ixfReader Object:
Dim DataReader As ISmIxfDataReader

Set DataReader = IxfReader.DataReader

ISmIxfObjectReader
The ISmIxfObjectReader object reads objects from the data file. It has one
method GetObjectIterator, which returns the object ISmIxfObjectIterator.

Obtaining the ISmIxObjectReader Object
To obtain the ISmIxfObjectReader Object:
Dim IxfObjectReader as ISmIxfReader

Set IxfObjectReader = DataReader.ObjectReader

ISmIxfObjectIterator
The ISmIxfObjectIterator reads the objects one-by-one from the data file.

Use the GetObjectIterator method to get an ISmIxfObjectIterator from the
ObjectReader as follows:
Set ObjectIterator = IxfReader.DataReadet.ObjectReader.GetObjectIterator

43

Properties and Methods
The ISmIxfObjectIterator has one property and three functions:

Property Description

AtEnd Indicates whether the iterator has reached the end of the
collection.

Method Description

GetObject Returns the object to which the iterator is currently pointing.

Next Sets the iterator to read the next object in the collection

ISmIxfObject
The object represents an individual object read from the data file. See
ISmIxfObject under ISmIxfObjectWriter.

Use the GetObject method to get an ISmIxfObject from the ObjectIterator as
follows:
IxfObject = ObjectIterator.GetObject

For an example of how to use the ObjectIterator to read objects, see Common
Tasks, SmIxfReader: Reading an iXF Package.

ISmIxfInfo
The ISmIxfInfo object represents miscellaneous information read from the data
file. See ISmIxfInfo on page 19.

Note: The ISmIxfInfo information in the IXF Instance file, if it exists, must be read
before all object information.

For an example of how to read ISmIxfInfo objects, see Common Tasks,
SmIxfReader: Reading an iXF Package.

SmartIXF Library

44

ISmIxfUnderstoodInfoItems
ISmIxfUnderstoodInfoItems is a collection object, prepared by the user of the
ISmIxfReader object, of items of type ISmIxfUnderstoodInfoItem, which
denote InfoItems that are required to be understood.

The ISmIxfUnderstoodInfoItems corresponds to a list that specifies those
InfoItems that he declares he understands. When the InfoItems are read by the
ISmIxfReader, the MustUnderstand property of each InfoItem is matched with
the corresponding InfoItem entry in the ISmIxfUnderstoodInfoItems list. If the
MustUnderstand property of an InfoItem is true and the corresponding InfoItem
entry is not found in ISmIxfUnderstoodInfoItems, the reading process is
stopped.

Properties
The ISmIxfUnderstoodInfoItem Object has the two properties:

Property Description

Name Name of the understood item.

Namespace Namespace of the understood item.

ISmIxfSchema
The SmIxfSchema object represents the schema file in the package being read.
See ISmIxfSchema on page 2.

45

Common Tasks
The following sections describe methods and properties that are used to
perform common tasks related to a SmIxfReader.

SmIxfReader:
Reading an iXF Package
As described in the IXF Specification, an iXF Archive file is a zip file
containing a data file and possibly a schema file. In order to read an iXF archive
file proceed as follows.

1. Create an IxfReader Object
Dim IxfReader as ISmIxfReader

Set IxfReader = CreateObject("SmartIxf1.SmIxfReader")

2. Open an Ixf archive file:
IxfReader.OpenIxfArchiveFile “test.ixf”, True

3. Read Info (if it exists)
Dim Info as ISmIxfInfo

Dim SenderName, ReceiverName, Subject as Variant

Set Info = IxfReader.DataReader.Info

Set InfoItem = Info.GetInfoItem("From", "http://smarteam.com/dev/ixf/test")

SenderName = InfoItem.Value

Set InfoItem = Info.GetInfoItem("To", "http://smarteam.com/dev/ixf/test")

ReceiverName = InfoItem.Value

Set InfoItem = Info.GetInfoItem("Subject", "http://smarteam.com/dev/ixf/test")

Subject = InfoItem.Value

4. Read Objects:
Dim ObjectIterator as ISmIxfObjectIterator

Dim IxfObject as ISmIxfObject

Set ObjectIterator = IxfReader.DataReadet.ObjectReader.GetObjectIterator

While ObjectIterator.AtEnd = False

 Set IxfObject = ObjectIterator.GetObject

 …..

 ObjectIterator.Next

Wend

5. Close the reader object:
IxfReader.Close

SmartIXF Library

46

Reading and Writing an External Schema
The SmartIxf library provides two objects for reading and writing an external
schema.

SmIxfExternalSchemaWriter
The SmIxfExternalSchemaWriter has the three properties:

Property Description

Schema Returns object ISmIxfSchema containing the external schema
information.

SchemaURI URI of external schema file.

Initialization
Data

Provides access to methods for initializing data for IXF
applications. Returns ISmIxfInitializationData

The SmIxfExternalSchemaWriter has one method, Save(FileName), which
saves the schema to the file FileName.

See ISmIxfSchema on page 2, for more information.

SmIxfExternalSchemaReader
The SmIxfExternalSchemaReader handles reading an external iXF schema
document

The SmIxfExternalSchemaReader has one method:

Load(SchemaLocation), which loads the external schema with the specified
SchemaLocation into the ISmIxfSchema object.

and one property:

InitializationData, which provides access to methods for initializing data for
IXF applications. Returns ISmIxfInitializationData

See ISmIxfSchema on page 2, for more information.

47

ISmIxfStdHelper
IXF Standard Behaviors, as defined in the IXF Specification, Section 4, are a
set of Class Behaviors and Domain Behaviors, which provide common
functionality required by many IXF-enabled applications.

The ISmIxfStdHelper object provides methods to simplify and facilitate the
usage of IXF Standard Behaviors in the following main functional areas:

� ISmIxfSchemaHelper – Adding Standard Behavior definitions to a schema

� ISmIxfWriterHelper – Using Standard Behaviors while writing IXF
documents

� ISmIxfReaderHelper – Using Standard Behaviors while reading IXF
documents

Methods
The ISmIxfStdHelper object provides the following methods:

Method Description

CreateReaderHelper Creates a reader Helper for using Standard
Behaviors while reading IXF documents:

CreateSchemaHelper Creates a schema Helper for adding
Standard Behavior definitions to a schema.

CreateWriterHelper Creates a writer Helper for using Standard
Behaviors while writing IXF
documents.xxx

InitializationData Provides access to methods for initializing
data for IXF applications. Returns
ISmIxfInitializationData.

Obtaining the SmIxfStdHelper Object
Dim StdHelper as IsmIxfStdHelper

StdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

Standard Behaviors
The SmartIxf Library supports the following mechanisms, which are defined in
the iXF standard:

� Time Stamping – provides the ability to time-stamp IXF Objects.

SmartIXF Library

48

� Change Tracking – provides a standard mechanism for tracking changes in
an IXF Instance Document

� File Association – provides a standard mechanism for:

o Storing file information in the IXF Instance file

o Embedding files in an IXF Archive file

o Associating IXF Objects with files.

� Versioning – provides the ability to tag iXF Objects with versioning
information.

� Links – to formalize and classify the relationships between objects in an
IXF Instance Document.

ISmIxfSchemaHelper
The ISmIxfSchemaHelper object provides methods to support defining
Standard Behaviors in a schema.

The ISmIxfSchemaHelper object uses the following naming convention to
describe its methods:

Method Description

Add[std-behavior-name]Support Adds the classes, class behaviors, and
domain behaviors required to support
the Standard Behavior to the schema.

Note that all implementation details
regarding the Classes, which are
added by this method to the schema,
may change in subsequent versions of
this API.

Enable[std-behavior-name]ForClass Enables standard behavior
functionality in a specific user-defined
class.

Is[std-behavior-name]Enabled Tests a user-defined class to see if it is
associated with a Standard Behavior.

Change-Tracking Standard Behavior
The SmartIxf Library provides an implementation of the Change-Tracking
Standard Behavior to provide a standard mechanism for tracking changes on

49

objects in an IXF Instance Document, including object creation, object deletion,
and attribute value modification.

Methods
The ISmIxfSchemaHelper object provides the following methods to support
defining the Change Tracking Standard Behavior in a schema:

Method Description

AddDefaultChangesSupport Adds the Change-Tracking Standard
Behavior to the schema as shown in
Change-Tracking Standard Behavior.

EnableChangeTrackingForClass Add the TrackChanges Class Behavior to
the specified user-defined class, enabling
the class to be change-tracked.

IsChangeTrackingEnabled Returns true if the specified user-defined
class supports the Change Tracking
Standard Behavior.

SmartIXF Library

50

Behaviors
The following table shows the domain and class behaviors added to the schema
that support the implementation of the Change Tracking Standard Behavior:

Domain Behavior

Name URI

Change Tracking <ixfstdns>/domainBehaviors/changeTracking/1.0

Class Behaviors

Name URI

change <ixfstdns-
c>/changeTracking/1.0#change

objectDeleted <ixfstdns-
c>/changeTracking/1.0#objectDeleted

objectValue Modified <ixfstdns-c>
/changeTracking/1.0#objectValueModif
ied

objectCreated <ixfstdns-
c>/changeTracking/1.0#objectCreated

transaction <ixfstdns-
c>/changeTracking/1.0#transaction

Note: An object can be change-tracked only if it instantiates a class that is enabled for
change-tracking.

51

File Association Standard Behavior
The SmartIxf Library provides an implementation of the File Association
Standard Behavior to provide a standard mechanism for:

� Storing file information in an IXF Instance file, including

o File Name

o Physical Location

o MIME Content Type

• Associating an IXF Object with a specific file

• Distinguishing between main and secondary files

� Embedding files in an IXF Archive file

Methods
The ISmIxfSchemaHelper object provides the following methods to support
defining the File Association Standard Behavior in a schema:

Method Description

AddDefaultFilesSupport Adds the Files Standard Behavior to the
schema as shown in File Association
Standard Behavior, including the Class
Behaviors:

EnableFileAssociationForClass Add the File Association Class Behavior to
the specified user-defined class.

IsFileAssociationEnabled Returns true if the specified user-defined
class supports the Files Standard Behavior.

SmartIXF Library

52

Behaviors

The following table shows the domain and class behaviors added to the schema
that support the implementation of the File Association Standard Behavior:

Domain Behavior

Name URI

Files <ixfstdns-d>/domainBehaviors/files/1.0

Class Behaviors

Name URI

File Association <ixfstdns-c>/files/1.0#fileAssociation

File Description <ixfstdns-c>/files/1.0#fileDescription

Main File ixfstdns-c>/files/1.0#mainFile

Secondary File <ixfstdns-c>/files/1.0#secondaryFile

Transaction <ixfstdns-
c>/changeTracking/1.0#transaction

Note: An object can be associated with a file only if it instantiates a class that is
enabled for File Association.

Versioning Standard Behavior
The SmartIxf Library provides an implementation of the Versioning Standard
Behavior to provide the ability to tag IXF Objects with versioning information,
enabling you to identify successive revisions of the same master entity.

The versioning information for an object includes the version identifier of the
current version of the object and the version identifier of its previous version.

The Versioning Standard Behavior is different from the Change-Tracking
Standard Behavior: it just assigns version numbers without tracking the changes
between versions.

53

Methods
The ISmIxfSchemaHelper object provides the following methods to support
defining the Versioning Standard Behavior in a schema:

Method Description

AddDefaultVersioningSupport Adds the Versioning Standard Behavior
to the schema.

EnableVersioningForClass Add the Versioning Class Behavior to
the specified user-defined class.

IsVersioningEnabled Returns true if the specified user-defined
class supports the Versioning Standard
Behavior.

Behaviors
The following table shows the class behaviors added to the schema that support
the Versioning Standard Behavior:

Class Behaviors

Name URI

Versioning <ixfstdns-
c>/versioning/1.0#version

Note: An object can be versioned only if it instantiates a class that is enabled for
Versioning.

SmartIXF Library

54

TimeStamp Standard Behavior
The SmartIxf Library provides an implementation of the TimeStamp Standard
Behavior to provide the ability to tag IXF Objects with TimeStamp
information, enabling you to mark the time of object creation.

Methods
The ISmIxfSchemaHelper object provides the following methods to support
defining the TimeStamp Standard Behavior in a schema:

Method Description

AddDefaultTimeStampSupport Adds the TimeStamp Standard Behavior
to the schema, as shown in TimeStamp
Standard Behavior.

EnableTimeStampForClass Add the enabler TimeStamp Class
Behavior to the specified user class.

IsTimeStampEnabled Returns true if the specified user class
supports the TimeStamp Standard
Behavior.

Behaviors
The following table shows the class behaviors added to the schema that support
the TimeStamp Standard Behavior:

Class Behaviors

Name URI

Time Stamping <ixfstdns-c>
/timeStamp/1.0#timeStamp

Note: An object can be time stamped only if it instantiates a class that is enabled for
TimeStamp.

Obtaining the ISmIxfSchemaHelper Object
To create an ISmIxfSchemaHelper Object:
Dim SchemaHelper as ISmIxfSchemaHelper

 ‘Create Schema Helper:

Set SchemaHelper = StdHelper.CreateSchemaHelper(Schema)

55

Common Tasks
The following sections describe methods and properties that are used to
perform common tasks related to a ISmIxfSchemaHelper.

ISmIxfSchemaHelper:
Add supported standard behaviors to the schema
1. Write basic schema, see Common Tasks in ISmIxfSchema section.

2. Get SchemaHelper object
Dim StdHelper as ISmIxfStdHelper

Dim SchemaHelper as ISmIxfSchemaHelper

‘Create stdHelper:

StdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

‘Create Schema Helper:

Set SchemaHelper = StdHelper.CreateSchemaHelper(Schema)

3. Add support for standard behaviors to the schema:
 ‘Add support for Standard Behaviors:

SchemaHelper.AddDefaultChangesSupport

SchemaHelper.AddDefaultFilesSupport

SchemaHelper.AddDefaultVersioningSupport

SchemaHelper.AddDefaultTimeStampSupport

4. Enable a user-defined class to support standard behaviors
SchemaHelper.EnableFileAssociationForClass (IxfClass)

SchemaHelper.EnableChangeTrackingForClass (IxfClass)

SchemaHelper.EnableTimeStampForClass (IxfClass)

SmartIXF Library

56

ISmIxfWriterHelper
The ISmIxfWriterHelper object supports writing Standard Behaviors attribute
information when writing a data file.

Object Diagram
The object diagram of ISmIxfWriterHelper is shown below:

ISmIxfWriterHelper

FileWriter

ChangeWriter

ISmIxfFile

VersioningWriter

ISmIxfVersioning

(NewFile)

ISmIxfSecondaryFile(NewSecondaryFile)

ISmIxfChangeTransaction(NewTransaction)

ISmIxfChange(NewChange)

(CastToVersioning)

TimeStampWriter

ISmIxfTimeStamp(CastToTimeStamp)

Figure 2-7 ISmIxfWriterHelper Object Diagram

57

Properties
Four WriterHelper properties are provided corresponding to the supported
Standard Behaviors:

Property Description

ChangeWriter Provides methods for writing Change-Tracking
information

FileWriter Provides methods for writing File Association
information

VersioningWriter Provides methods for writing Versioning information

TimeStampWriter Provides methods for writing TimeStamp
information

Obtaining the ISmIxfWriterHelper Object
To create an ISmIxfWriterHelper Object:
Dim WriterHelper as ISmIxfWriterHelper

 ‘Create Writer Helper:

Set WriterHelper = StdHelper.CreateWriterHelper(IxfWriter)

ISmIxfChangeWriter
The ISmIxfChangeWriter writes change-tracking information to the data file.

Note: In order to use the methods of the ISmIxfChangeWriter you need to have added
the ChangeTracking Standard Behavior support in the schema, using the
SchemaHelper method AddDefaultChangesSupport. In addition, in order to use
Change-Tracking on a specific IxfObject, you need to have enabled the
ChangeTracking Standard Behavior support for the class that this object
instantiates, using the SchemaHelper method EnableChangeTrackingForClass
(see Change-Tracking Standard Behavior)

Obtaining the ISmIxfChangeWriter Object
Dim ChangeWriter as ISmIxfChangeWriter

Set ChangeWriter = WriterHelper.ChangeWriter

SmartIXF Library

58

Methods

The ISmIxfChangeWriter object provides the following methods to write
Change-Tracking information to the data file:

Method Description

NewChange Creates an ISmIxfChange object

NewTransaction Creates an ISmIxfChangeTransaction

ISmIxfChangeTransaction
The ISmIxfChangeTransaction Object is a container object that represents a
group of changes, where each change is represented by a ISmIxfChange object.
An ISmIxfChange object is linked to an ISmIxfChangeTransaction Object by
its Transaction Id property.

Obtaining a ISmIxfChangeTransaction Object
To create a ISmIxfChangeTransaction Object:
Dim Transaction as ISmIxfChangeTransaction

Set Transaction = ChangeWriter.NewTransaction(Id)

Note: ISmIxfChangeTransaction objects can also be obtained through
ISmIxfChangeReader Object. See ChangeReader.

Save a ChangeTransaction to the data file as follows:
ChangeTransaction.Save

59

Properties
The ISmIxfChangeTransaction Object has the properties

Property Description

Id Object Id of the SmIxfChangeTransaction object.
Has to be a valid NCName.

ParentTransactionId Object Id of parent SmIxfChangeTransaction
object in the file, if it exists

PreviousTransactionId Object Id of the previous SmIxfChangeTransaction
object in the file, if it exists.

Methods
The ISmIxfChangeTransaction Object has the methods

Property Description

Save Saves the ChangeTransaction to the data file.

ISmIxfChange
The ISmIxfChange object represents an individual change on an object, and
includes change-tracking information. Each ISmIxfChange object is associated
with some ISmIxfChangeTransaction object by the Transaction Id property.
Therefore, an ISmIxfChangeTransaction object needs to be created first.

Three types of changes are tracked: object creation, object deletion and object
modification. The actual changes for each type are represented by three separate
objects, which are returned as properties of ISmIxfChange:

• ISmIxfObjectCreated – which contains the Object Id of the created
object

• ISmIxfObjectDeleted – which contains a reference to the deleted object

• ISmIxfObjectValueModified – This contains the Id of the modified
object and contains a list of the object attributes that were changed,
including their previous values.

Object Diagram
The object diagram of ISmIxfChange is shown below:

SmartIXF Library

60

ISmIxfChange

ObjectDeleted

ObjectCreated

ObjectValueModif ied

ISmIxfAttributesValuesGroups(New OldValues,
GetOldValues)

Values

ISmIxfAttributesValues(GetBehaviorValues)

ISmIxfObject(GetDeletedObject)

CreatedObjectRef

Modif iedObjectRef

ixfClassName

Figure 2-8 ISmIxfChange Object Diagram

Obtaining a ISmIxfChange Object
To create a ISmIxfChange Object:
Dim Change as ISmIxfChange

Set Change = ChangeWriter.NewChange(Id, ChangeType, TransactionId)

Note: ISmIxfChange objects can also be obtained through ISmIxfChangeReader
Object. See ChangeReader.

SmartIXF Library

61

Properties
The ISmIxfChange object has the properties:

Property Description

Id Object Id of ISmIxfChange object. Has to be a valid
NCName.

TransactionId Object Id of ISmIxfChangeTransaction to which this
change belongs

ChangeType The type of the SmIxfChange, one of
ChangeTypeEnum, with the following possible
values:
- ctObjectCreated
- ctObjectDeleted
- ctObjectValueModified

ObjectCreated Returns ISmIxfObjectCreated object (see below.)
Can be accessed only when the Change is of type
ctObjectCreated.

ObjectDeleted Returns ISmIxfObjectDeleted object (see below.)
Can be accessed only when the Change is of type
ctObjectDeleted.

ObjectValueModified Returns ISmIxfObjectValueModified object (see
below.) Can be accessed only when the Change is of
type ctObjectValueModified.

PreviousChangeId The Object Id of the previous SmIxfChange in time.

PreviousChangeIdPer
Object

The Object Id of the previous SmIxfChange on the
same object.

IxfObject Pointer to the ISmIxfObject that is wrapped by the
current ISmIxfChange object

SmartIXF Library

62

Methods
The ISmIxfChange Object has the methods

Property Description

Save Saves the Change to the data file.

ISmIxfObjectCreated
The ISmIxfObjectCreated represents a change of type ctObjectCreated. This
change is meant to point to a new object that was created and added to an
already existing set of objects.

Obtaining a ISmIxfObjectCreated Object
ISmIxfObjectCreated object is obtained through ISmIxfChange object of type
ctObjectCreated:
Dim Change as ISmIxfChange

Dim ObjectCreated as ISmIxfObjectCreated
Set Change = ChangeWriter.NewChange(Id, ctObjectCreated, TransactionId)

Set ObjectCreated = Change.ObjectCreated

The ISmIxfObjectCreated object has the properties:

Property Description

CreatedObjectRef The Id of the created object

Example
ObjectCreated.CreatedObjectRef = “1”

ISmIxfObjectDeleted
The ISmIxfObjectDeleted represents a change of type ctObjectDeleted. This
change is meant to hold the information of an object that was deleted from the
data objects set.

63

Obtaining a ISmIxfObjectDeleted Object
ISmIxfObjectDeleted object is obtained through ISmIxfChange object of type
ctObjectDeleted:
Dim Change as ISmIxfChange

Dim ObjectDeleted as ISmIxfObjectDeleted
Set Change = ChangeWriter.NewChange(Id, ctObjectDeleted, TransactionId)

Set ObjectDeleted = Change.ObjectDeleted

Methods
The ISmIxfObjectDeleted object has the methods:

Method Description

SetDeletedObject Sets the deleted object as the object referenced
by the SmIxfChange

GetDeletedObject Returns an ISmIxfObject, which is the deleted
object.

Example
ObjectDeleted.SetDeletedObject(IxfObject)

IsmIxfObjectValueModified
The ISmIxfObjectValueModified represents a change of type
ctObjectValueModified; it contains the previous values of object attributes that
were modified, including both class attributes and behavior attributes.

You do not load individual previous object attribute values directly into the
ISmIxfObjectValueModified change object. Instead, you load the previous
object attribute values, for the attributes that changed, into the intermediate
object ISmIxfAttributesValuesGroups and then map this object to the
ISmIxfObjectValueModified object using the method SetOldValues, as
described below.

Similarly, when you want to access the previous object attribute values in a
ISmIxfObjectValueModified change object, you use the GetOldValues method
to extract the information into a ISmIxfAttributesValuesGroups object.

An empty intermediate ISmIxfAttributesValuesGroups object can be created
from the ISmIxfObjectValueModified object using the method NewOldValues.

SmartIXF Library

64

Obtaining a ISmIxfObjectValueModified Object
ISmIxfObjectValueModified object is obtained through ISmIxfChange object
of type ctObjectValueModified:
Dim Change as ISmIxfChange

Dim ObjectDeleted as ISmIxfObjectValueModified
Set Change = ChangeWriter.NewChange(Id, ctObjectValueModified, TransactionId)

Set ObjectValueModified = Change.ObjectValueModified

Properties and Methods
The ISmIxfObjectValueModified object has the following properties and
methods:

Property Description

ModifiedObjectRef The Object Id of the modified object

IxfClassName The name of the class that the modified object
instantiates

Method Description

NewOldValues Creates and returns an
ISmIxfAttributesValuesGroups object – an
empty collection of attribute values to be filled
by the user with the values of the modified
object prior to the change (old values)

SetOldValues Sets the old values of the
SmIxfObjectValueModified object to be the
values specified in the OldValues argument
collection, where OldValues was filled in by the
user.

GetOldValues Returns the collection of attribute values of the
modified object prior to the change represented
by SmIxfObjectValueModified

ISmIxfAttributesValuesGroups
Collection of ISmIxfAttributesValues objects; where each
ISmIxfAttributesValues object is a group of either class attributes or behavior
attributes.

65

Properties and Methods
The ISmIxfAttributesValuesGroups object has the following properties and
methods:

Property Description

Values A SmIxfAttributesValues object that
represents class attributes values (see
ISmIxfAttributesValues.)

Method Description

GetBehaviorValues A SmIxfAttributesValues object that
represents ClassBehavior attributes values (see
ISmIxfAttributesValues.)

Example
Dim OldValues as ISmIxfAttributesValuesGroups

ObjectValueModified.ModifiedObjectRef = “1”

ObjectValueModified.IxfClassName = “DocumentMaster”

Set OldValues = ObjectValueModified.NewOldValues
‘Inserting an old value for a class attribute that was modified:

OldValues.Values.Item("DocumentName") = “MyDocument”

ObjectValueModified.SetOldValues(OldValues)

When you finish creating the change, you need to call the Save method of the
ISmIxfChange object for all the change details to be saved to the data file:
Change.Save
For an example of writing a change, see Common Tasks,
ISmIxfChangesWriter: Writing a change.

SmartIXF Library

66

ISmIxfFileWriter
The FileWriter lets you include a file as part of the IXF data. In order to include
a file, you must create a ISmIxfFile object to represent it. The ISmIxfFile object
contains detailed information about the file, such as its name and location.

The physical file, which is represented by the ISmIxfFile object, can be
embedded into the iXF Archive file, using the EmbedFile method.

In addition, you can associate the file with an existing IxfObject such as a
Document.

Note: In order to use the methods of the ISmIxfFileWriter you need to have added the
File Association Standard Behavior support in the schema. Specifically you
should include the AddDefaultFilesSupport method in the schema (see File
Association Standard Behavior.) If you want to use the FileAssociation capability
you need to include additional methods, as described below.

Object Diagram
The object diagram of ISmIxfFileWriter is shown below:

67

ISmIxfFileWriter

ISmIxfSecondaryFile

ISmIxfFile

ISmIxfFileAssociation

Location

ComputerName

Id

ContentType

FileName

Embedded

CreationTime

ModificationTime

IxfObject

Source

Properties of ISmIxfFile
(above)

PreviousSibling

(New File)

(New SecondaryFile)

(CastToFileAssociation)

FileId

Figure 2-9 ISmIxfFileWriter Object Diagram

SmartIXF Library

68

Obtaining the ISmIxfFileWriter Object
Create a ISmIxfFileWriter object as follows:
Dim FileWriter as ISmIxfFileWriter

Set FileWriter = WriterHelper.FileWriter

Methods

The ISmIxfFileWriter object provides methods to write file information to the
data file:

Method Description

NewFile Creates a new ISmIxfFile object

NewSecondaryFile Creates a new ISmIxfSecondaryFile object

EmbedFile Embeds a file in an IXF Archive file.

EmbedSecondaryFile Embeds an associated file in an IXF Archive
file.

CastToFile Converts a SmIxfObject to a SmIxfFile object.

The SmIxfObject to be associated with a file
must support the File Association Standard
Behavior, otherwise the method returns null.

CastToSecondaryFile Converts a SmIxfObject to a
SmIxfSecondaryFile object.

The SmIxfObject to be associated with a file
must support the File Association Standard
Behavior, otherwise the method returns null.

CastToFileAssociation Converts an SmIxfObject to a
SmIxfFileAssociation object, which is used to
associate the object with a file.

The SmIxfObject to be associated with a file
must support the File Association Standard
Behavior, otherwise the method returns null.

Note: In order to use the methods CastTo… you need to have enabled the File
Association Standard Behavior support for the class that the IxfObject
instantiates, by using the method EnableFileAssociationForClass (see File
Association Standard Behavior.)

69

ISmIxfFile
An ISmIxfFile object represents a primary IXF file and contains its information
(see also ISmIxfSecondaryFile).

Obtaining a ISmIxfFile Object
To create a new ISmIxfFile object:
Dim File as ISmIxfFile

Set File = FileWriter.NewFile(Id)

Note: ISmIxfFile object can also be obtained through ISmIxfFileReader Object. See
FileReader.

Save the file object to the data file after creating it, optionally embedding the
physical file into the IXF Archive:
FileWriter.EmbedFile(File)

File.Save

where, if used, the EmbedFile method needs to be called prior to the Save
method. The File parameter is an existing ISmIxfFile object.

Note: The Save action itself does not embed the physical file to the iXF Archive file.

For an example of how to write and embed a file, see Common Tasks,
ISmIxfFileWriter: Writing and embedding a file

SmartIXF Library

70

Properties

The ISmIxfFile object has the properties:

Property Description

Id Input string that uniquely identifies the file object
within the IXF Instance Document. Must be a
valid NCName.

FileName Specifies the name of the file

ContentType The file MIME content type

CreationTime The file creation time (TDateTime)

ModificationTime The file last modification time (TDateTime)

Embedded Indicates whether or not the file is embedded in
the iXF archive

IxfObject Pointer to the ISmIxfObject that is wrapped by the
current ISmIxfFile object

Source The physical location of the file (ISmIxfSource)

ISmIxfSecondaryFile
The ISmIxfSecondaryFile object is provided to handle sequences of files. It
represents any member of a sequence of files that is not the first file. The
position of a ISmIxfSecondaryFile object in the sequence is determined by its
“PrevousSibling “property, which is the Id of the previous file in the sequence.

The ISmIxfSecondaryFile object has the same set of properties as the
ISmIxfFile object, shown above, except for the addition of the
“PrevousSibling“ property.

For example, a sequence of three files might be used to contain the information
from one scanned picture.
File1 (ISmIxfFile) – PreviousSibling = “”

File2 (ISmIxfSecondaryFile) – PreviousSibling = “File1”

File3 (ISmIxfSecondaryFile) – PreviousSibling = “File2”

The ISmIxfSecondaryFile object represents the information about a secondary
file that is written to the data file.

71

Creating a New Secondary File:
Dim SecondaryFile as ISmIxfSecondaryFile

Set SecondaryFile = FileWriter.NewSecondaryFile(Id, PreviousSibling)

Note: ISmIxfSecondaryFile object can also be obtained through ISmIxfFileReader
Object. See FileReader.

The file object has to be saved to the data file after finished creating it:
FileWriter.EmbedSecondaryFile(SecondaryFile)

SecondaryFile.Save

where you need to call the EmbedSecondaryFile method prior to calling the
Save method; the file parameter is an existing ISmIxfSecondaryFile object.

Note: The save action does not embed the physical file to the iXF Archive file.

ISmIxfFileAssociation
The ISmIxfFileAssociation object represents an iXF File Association class
behavior, which supports associating an IXF Object, such as a Document with a
specific file.

The association between file and object is established between a
FileAssociation object, which is created from the IxfObject, and the ISmIxfFile
object that represents the file.

The object that is to be associated with a file is cast into an object of type
ISmIxfFileAssociation using the FileWriter method CastToFileAssociation.
The link from object to file is provided through the FileId property of the
ISmIxfFileAssociation object, which is set to the Id of the ISmIxfFile object.

Obtaining a FileAssociation Object
Dim FileAssociation as ISmIxfFileAssociation

Set FileAssociation = FileWriter.CastToFileAssociation(IxfObject)

Properties
The ISmIxfFileAssociation object has one property: the Id of the associated file
object, which provides the association between object and file.

For an example of writing a file, see Common Tasks, ISmIxfFileWriter:
Writing and embedding a file

SmartIXF Library

72

ISmIxfVersioningWriter
The ISmIxfVersioningWriter provides the ability to add versioning information
to an ISmIxfObject. The ISmIxfVersioningWriter is useful when you need to
identify successive revisions of the same entity, for example, successive
versions of the same document.

The versioning information itself is represented by an ISmIxfVersioning object,
which is obtained from the ISmIxfObject for which versioning is desired by the
VersioningWriter method CastToVersioning. The ISmIxfVersioning object
includes the version identifiers of the current version and previous version of
the entity.

The ISmIxfVersioningWriter has one method: CastToVersioning, which
converts an ISmIxfObject to ISmIxfVersioning

Note: In order to use the methods of the ISmIxfVersioningWriter you need to have
added the Versioning Standard Behavior support in the schema, using the
SchemaHelper method AddDefaultVersioningSupport (see Versioning Standard
Behavior)

Obtaining the ISmIxfVersioningWriter Object
Dim VersioningWriter as ISmIxfVersioningWriter

Set VersioningWriter = WriterHelper.VersioningWriter

ISmIxfVersioning
The ISmIxfVersioning object represents the versioning information for the
IxfObject from which it was cast.

Obtaining a Versioning object
Dim Versioning as ISmIxfVersioning

Set Versioning = VersioningWriter.CastToVersioning(IxfObject)

Note: In order to use the method CastToVersioning on an IxfObject, you need to have
enabled the Versioning Standard Behavior support for the class that IxfObject
instantiates, using the SchemaHelper method EnableVersioningForClass (see
Versioning Standard Behavior)

73

Properties
The ISmIxfVersioning object has two properties:

Property Description

PreviousVersion The previous version identifier of the IxfObject
from which this SmIxfVersioning object was cast.

Version The current version identifier of the IxfObject from
which this SmIxfVersioning object was cast

For an example of writing a change, see Common Tasks,
ISmIxfVersioningWriter: Versioning an object

ISmIxfTimeStampWriter
The ISmIxfTimeStampWriter provides the ability to add TimeStamp
information to an IxfObject, enabling you to mark the time of object creation
and modification.

The TimeStamp information itself is represented by an ISmIxfTimeStamp
object, which is obtained from the ISmIxfObject for which time-stamping is
desired by the TimeStampWriter method CastToTimeStamp. The
ISmIxfTimeStamp object includes the creation time and modification time of
the ISmIxfObject.

Note: In order to use the methods of the ISmIxfTimeStampWriter you need to have
added the TimeStamp Standard Behavior support in the schema, using the
SchemaHelper method AddDefaultTimeStampSupport (see TimeStamp
Standard Behavior)

Methods
The ISmIxfTimeStampWriter object has one method: CastToTimeStamp,
which converts an ISmIxfObject to ISmIxfTimeStamp

Obtaining the ISmIxfTimeStampWriter Object
Dim TimeStampWriter as ISmIxfTimeStampWriter

Set TimeStampWriter = WriterHelper.TimeStampWriter

ISmIxfTimeStamp
The ISmIxfTimeStamp object represents the TimeStamp information for the
IxfObject from which it was cast.

SmartIXF Library

74

Obtaining a ISmIxfTimeStamp Object
Dim TimeStamp as ISmIxfTimeStamp

Set TimeStamp = TimeStampWriter.CastToTimeStamp(IxfObject)

Note: In order to use the method CastToTimeStamp you need to have enabled the
TimeStamp Standard Behavior support for the class that IxfObject instantiates,
using the SchemaHelper method EnableTimeStampForClass (see TimeStamp
Standard Behavior)

Properties
The ISmIxfTimeStamp object has two properties:

Property Description

CreationTime Time of creation of IxfObject.

ModificationTime Time of modification of IxfObject.

For an example of writing a change, see Common Tasks,
ISmIxfTimeStampWriter: Time-stamping an object

75

Common Tasks
The following sections describe methods and properties that are used to
perform common tasks related to the Standard Behavior writers.

ISmIxfChangesWriter:
Writing a change
Dim StdHelper as ISmIxfStdHelper

Dim WriterHelper as ISmIxfWriterHelper

Dim ChangeWriter as ISmIxfChangeWriter

Dim DocumentObject as Object

‘Create stdHelper:

StdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

‘Create Writer Helper:

Set WriterHelper = StdHelper.CreateWriterHelper(IxfWriter)

‘Create Change Writer:

Set ChangeWriter = WriterHelper.ChangeWriter

‘Create ChangeTransaction:

Set Transaction = ChangeWriter.NewTransaction(“1”)

Transaction.Save

‘Create a new object:

Set IxfObject = IxfWriter.DataWriter.ObjectWriter.NewObject(“Document”,“3”);

…

IxfObject.Save;

‘Create a Change for the created object:

Set Change = ChangeWriter.NewChange(“2”; ctObjectCreated; “1”)

Set Change.ObjectCreated.CreatedObjectRef = “3”

Change.Save

SmartIXF Library

76

ISmIxfFileWriter:
Writing and embedding a file
Dim StdHelper as ISmIxfStdHelper

Dim WriterHelper as ISmIxfWriterHelper

Dim IxfWriter as ISmIxfWriter

Dim FileWriter as ISmIxfFileWriter

Dim File as ISmIxfFile

‘Create stdHelper:

StdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

‘Create a writer:

IxfWriter = CreateObject("SmartIXF1.SmIxfWriter")

‘Create Writer Helper:

Set WriterHelper = StdHelper.CreateWriterHelper(IxfWriter)

‘Create File Writer:

Set FileWriter = WriterHelper.FileWriter

‘Create File:

Set File = FileWriter.NewFile(“1”)

File.FileName = “design.doc”

File.SetSource = “c:\MyDocuments\design.doc”

FileWriter.EmbedFile(File)

File.Save

ISmIxfFileWriter:
Associating an object with a file
Dim FileAssociation as ISmIxfFileAssociation

Dim DocumentObject as ISmIxfObject

‘Create a user-defined object:

Set DocumentObject = IxfWriter.DataWriterObjectWriter.newObject(“DocumentMaster”,
“2”)

……….

‘Cast the user-defined object to a file association object:

FileAssociation = FileWriter.CastToFileAssociation(DocumentObject)

FileAssociation.FileId = “1”

77

ISmIxfVersioningWriter:
Versioning an Object
Dim StdHelper as ISmIxfStdHelper

Dim WriterHelper as ISmIxfWriterHelper

Dim IxfWriter as ISmIxfWriter

Dim VersioningWriter as ISmIxfVersioningWriter

Dim Versioning as ISmIxfVersioning

Dim DocumentObject as ISmIxfObject

‘Create stdHelper:

StdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

‘Create a writer:

IxfWriter = CreateObject("SmartIXF1.SmIxfWriter")

‘Create Writer Helper:

Set WriterHelper = StdHelper.CreateWriterHelper(IxfWriter)

‘Create Versioning Writer:

Set VersioningWriter = WriterHelper.VersioningWriter

‘Create a user-defined object:

Set DocumentObject = IxfWriter.DataWriterObjectWriter.NewObject(“DocumentMaster”,
“4”)

……….

‘Cast the user-defined object to versioning object:

Versioning = VersioningWriter.CastToVersioning(DocumentObject)

Versioning.Version = “2.0”

Versioning.PreviousVersion = “1.0”

ISmIxfTimeStampWriter:
Time-stamping an object
Dim StdHelper as ISmIxfStdHelper

Dim WriterHelper as ISmIxfWriterHelper

Dim TimeStampWriter as ISmIxfTimeStampWriter

‘Create stdHelper:

StdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

‘Create Writer Helper:

Set WriterHelper = StdHelper.CreateWriterHelper(IxfWriter)

Set TimeStampWriter = WriterHelper.TimeStampWriter

‘Create TimeStamp:

TimeStamp = TimeStampWriter.CastToTimeStamp(DocumentObject)

SmartIXF Library

78

TimeStamp.CreationTime = now

79

ISmIxfReaderHelper
The ISmIxfReaderHelper object supports reading Standard Behaviors
information from a data file.

Identifying and Restoring Read-In Objects
The Standard Behaviors object data is written by the DataWriter to the IXF
Instance data file as the original object types such as ISmIxfChange,
ISmIxfFile, ISmIxfVersioning, as described in the section on the
ISmIxfWriterHelper.

However, the same object data is read by the DataReader from the IXF Instance
data file as generic ISmIxfObject objects rather than as the object types that
were originally written to the data file. To identify and restore the original
object types, the ReaderHelper provides methods for casting the ISmIxfObject
objects read from the data file back to the same type of objects that were
written.

For each object read in, you need to run all the cast methods on it successively.
When a specific cast method returns a non-null result, you have identified and
restored the object.

Object Diagram
The object diagram of ISmIxfReaderHelper is shown below:

SmartIXF Library

80

ISmIxfReaderHelper

FileReader

ChangeReader

ISmIxfFile

VersioningReader

ISmIxfVersioning

(CastToFile)

ISmIxfSecondaryFile(CastToSecondaryFile)

ISmIxfChangeTransaction(CastToTransaction)

ISmIxfChange(CastToChange)

(CastToVersioning)

TimeStampReader

ISmIxfTimeStamp(CastToTimeStamp)

ISmIxfFileAssociation(CastToFileAssociation)

Figure 2-10 ISmIxfReaderHelper Object Diagram

81

Properties
Four ReaderHelper properties are provided corresponding to the supported
Standard Behaviors:

Property Description

ChangeReader Provides methods for reading Change-Tracking objects

FileReader Provides methods for reading File Association objects

VersioningReader Provides methods for reading Versioning objects

TimeStampReader Provides methods for reading TimeStamp objects

Obtaining the ISmIxfReaderHelper Object
To obtain an ISmIxfReaderHelper Object:
Dim ReaderHelper as ISmIxfReaderHelper

Set ReaderHelper = StdHelper.CreateReaderHelper(IxfReader)

ChangeReader
The ChangeReader helps to read the change-tracking objects ISmIxfChange
and ISmIxfChangeTransaction from the Ixf Archive data file. The
ChangeReader identifies and restores the original object types, by casting the
ISmIxfObject objects read from the Ixf Archive data file back to the same type
of objects that were written.

Obtaining the ISmIxfChangeReader Object
Dim ChangeReader as ISmIxfChangeReader

Set ChangeReader = ReaderHelper.ChangeReader

SmartIXF Library

82

Methods
The ISmIxfChangeReader object provides the following methods to read
Change-Tracking information from the data file.

Method Description

CastToChange Converts an ISmIxfObject to ISmIxfChange

CastToTransaction Converts an ISmIxfObject to ISmIxfChangeTransaction

Note: In order to use these methods, you need to have added the Change-Tracking
Standard Behavior support in the schema, using the SchemaHelper method
AddDefaultChangesSupport (see Change-Tracking Standard Behavior

ISmIxfChangeTransaction
To cast an object to a ChangeTransaction object:
Dim Transaction as ISmIxfChangeTransaction

Set Transaction = ChangeReader.CastToTransaction(IxfObject)

See ISmIxfChangeTransaction section under ISmIxfChangeWriter for details
about the ISmIxfChangeTransaction properties.

ISmIxfChange
To cast an object to a Change object:
Dim Transaction as ISmIxfChangeTransaction

Set Transaction = ChangeReader.CastToTransaction(IxfObject)

See ISmIxfChange section under ISmIxfChangeWriter section for details about
the ISmIxfChange properties.

For an example of how to use ISmIxfReaderHelper to read Change objects, see
Common Tasks, Reading and Casting objects to File and to Change objects

83

FileReader
The FileReader helps to read the File Association objects ISmIxfFile,
ISmIxfSecondaryFile and ISmIxfFileAssociation from the Ixf Archive data file.
The FileReader identifies and restores the original object types, by casting the
ISmIxfObject objects read from the Ixf Archive data file back to the same type
of objects that were written.

Obtaining the ISmIxfFileReader Object
To obtain the ISmIxfFileReader object:
Dim FileReader as ISmIxfFileReader

Set FileReader = ReaderHelper.FileReader

Methods
The ISmIxfFileReader object provides the following methods for reading file
information from the data file:

Method Description

CastToFile Converts an ISmIxfObject to ISmIxfFile

CastToSecondaryFile Converts an ISmIxfObject to ISmIxfSecondaryFile

CastToFileAssociation Converts an ISmIxfObject to an
ISmIxfFileAssociation object

Note: In order to use these methods, you need to have added the File Association
Standard Behavior support in the schema by including the
AddDefaultFilesSupport method in the schema (see File Association Standard
Behavior.) In addition, you need to have enabled the File Association Standard
Behavior support for the class that IxfObject instantiates, by including the
method EnableFileAssociationForClass (see File Association Standard
Behavior.)

SmartIXF Library

84

ISmIxfFile
The ISmIxfFile object represents a primary IXF file and contains the file
information.

To cast an object to File object:
Dim File as ISmIxfFile

Set File = FileReader.CastToFile(IxfObject)

See ISmIxfFile section for details about the ISmIxfFile properties.

In order to extract an embedded file from the iXF Archive file, you can use one
the following methods of ISmIxfFile object:
File.Extract(RootFolder)

File.ExtractToFile(NewFileName)

See the reference guide for more details about those functions.

For an example of how to use ISmIxfReaderHelper to read File objects, see
Common Tasks, Reading and Casting objects to File and to Change objects

ISmIxfSecondaryFile
To cast an object to a SecondaryFile object:
Dim SecondaryFile as ISmIxfSecondaryFile

Set SecondaryFile = FileReader.CastToSecondaryFile(Id, PreviousSibling)

See ISmIxfFile section for details about the ISmIxfSecondaryFile properties.

ISmIxfFileAssociation
To cast an object to a FileAssociation object:
Dim FileAssociation as ISmIxfFileAssociation

Set FileAssociation = FileWriter.CastToFileAssociation(IxfObject)

See ISmIxfFileAssociation for information about the ISmIxfFileAssociation
properties.

VersioningReader
The VersioningReader helps to read ISmIxfVersioning objects from the Ixf
Archive data file. The VersioningReader identifies and restores the original
object types, by casting the ISmIxfObject objects read from the Ixf Archive
data file back to the same type of objects that were written.

85

Obtaining the ISmIxfVersioningReader Object
To obtain a ISmIxfVersioningReader Object:
Dim VersioningReader as ISmIxfVersioningReader

Set VersioningReader = ReaderHelper.VersioningReader

Methods
The ISmIxfVersioningReader has one method: CastToVersioning, which
converts an ISmIxfObject to a ISmIxfVersioning object.

Note: In order to use this method, you need to have added the Versioning Standard
Behavior support in the schema, using the SchemaHelper method
AddDefaultVersioningSupport (see Versioning Standard Behavior). In addition,
to use CastToVersioning on an IxfObject, you need to have enabled the
Versioning Standard Behavior support for the class that IxfObject instantiates, by
including the method EnableVersioningForClass (see File Association Standard
Behavior.)

ISmIxfVersioning
See the ISmIxfVersioning section under ISmIxfVersioningWriter for
information about this object.

TimeStampReader
The TimeStampReader helps to read ISmIxfTimeStamp objects from the Ixf
Archive data file. The TimeStampReader identifies and restores the original
object types, by casting the ISmIxfObject objects read from the Ixf Archive
data file back to the same type of objects that were written.

Obtaining the ISmIxfTimeStampReader Object
Dim TimeStampReader as ISmIxfTimeStampReader

Set TimeStampWriter = WriterHelper.TimeStampReader

SmartIXF Library

86

Methods
The ISmIxfTimeStampReader object has one method: CastToTimeStamp,
which converts an ISmIxfObject to a ISmIxfTimeStamp object.

Note: In order to use this method, you need to have added the TimeStamp Standard
Behavior support in the schema, using the SchemaHelper method
AddDefaultTimeStampSupport (see TimeStamp Standard Behavior). In addition,
to use CastToTimeStamp on an IxfObject, you need to have enabled the
TimeStamp Standard Behavior support for the class that IxfObject instantiates,
by including the method EnableTimeStampForClass (see TimeStamp Standard
Behavior)

ISmIxfTimeStamp
See IsmIxfTimeStamp section under the ISmIxfTimeStampWriter object for
information about this object.

Common Tasks
The following sections describe methods and properties that are used to
perform common tasks related to an ISmIxfReaderHelper.

ISmIxfReaderHelper:
Reading and Casting objects to File and to Change objects
Dim StdHelper as ISmIxfStdHelper

Dim ReaderHelper as ISmIxfReaderHelper

Dim ObjectIterator As ISmIxfObjectIterator

Dim IxfObject Ss ISmIxfObject

Dim Change As ISmIxfChange

Dim ChangeId, CreatedObjectId As Sting

Dim File As ISmIxfFile

‘Create stdHelper:

StdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

‘Create Reader Helper:

Set ReaderHelper = StdHelper.CreateReaderHelper(IxfReader)

‘Create ObjectIterator:

Set ObjectIterator = IxfReader.DataReader.ObjectReader.GetObjectIterator

While ObjectIterator.AtEnd = False

 Set IxfObject = ObjectIterator.GetObject

87

 ‘Read Change

 Change = ReaderHelper.ChangeReader.CastToChange(IxfObject)

 If Not (Change Is Nothing) Then

 ChangeId = Change.Id

 If Change.ChangeType = ctObjectCreated Then

 CreatedObjectId = Change.ObjectCreated.CreatedObjectRef

 End If

 …

 End If

 ‘Read File

 File = ReaderHelper.FileReader.CastToFile(IxfObject)

 If Not (File Is Nothing) Then

 FileName = File.FileName
 File.Extract(“Ixf Sample”)

 …

 End If

 ObjectIterator.Next

Wend

SmartIXF Library

88

3 Sample IXF Application

This chapter presents a sample iXF application, which demonstrates
many of the objects, properties and methods described above.

The sample application includes generating and processing an iXF
package for a messaging application, using the basic SmartIxf1.0 API
functionality. This example is included in the SDK under
Samples/SmartIxf/Vb/Sample1.

A simple messaging format is defined, which includes the basic
messaging entities: message, attachment and folder.

89

Messaging Format
Entity Attributes

Message - From

- To

- Subject

- Body

- Importance

- Time of sending

Folder - Name

- Creation time

Attachment - File reference

FolderLink - Parent folder

- Child folder

FolderMessageLink - Parent folder

- Child message

MessageAttachmentLink - Parent message

- Child attachment

SmartIXF Library

90

Class Behaviors
The following table lists the ClassBehaviors.

ClassBehavior URI Attributes

Message <examplens-c>
/messaging#message

From: String, required

To: String, required

Subject: String, not required

Body: String, not required

Importance: Integer, not
required, default value = 0

Folder <examplens-c>
/messaging#folder

Name: String, required

Link <ixfstdns-c>
/links/1.0#link

Object1, Object2

Directed Link <ixfstdns-c>
/links/1.0#directedLink

Object1, Object2

Directed from Object1 to
Object2

Tree Link <ixfstdns-c>
/links/1.0#treeLink

Object1, Object2

Object1 is the only parent of
Object2

TimeStamp <ixfstdns-c>
/timeStamp/1.0#timeS
tamp

creationTime

modificationTime

FileAssociation <ixfstdns-c>
/files/1.0#fileAssociation

file

The following abbreviations are used in the table:

<examplens-c> http://example.com/classBehaviors

<ixfstdns-c> http://www.ixfstd.org/std/ns/core/classBehaviors

Domain Behaviors
This section describes the Domain Behavior defined for the messaging
application. The URI for the Domain Behavior is:
http://example.com/domainBehaviors/messaging.

http://example.com/classBehaviors�
http://www.ixfstd.org/std/ns/core/classBehaviors�
http://example.com/domainBehaviors/messaging�

91

Domain Behavior Definition
The following table defines the Roles and, for each Role, the Class
Behaviors that must be implemented by the class, which is mapped to
the role. The timeStamp Standard Behavior is only included in the
Message and Folder Roles.

Role Required Class Behaviors

Message <examplens-c>/messaging#message

<ixfstdns-c>/timeStamp/1.0#timeStamp

Folder <examplens-c>/messaging#folder

<ixfstdns-c>/timeStamp/1.0#timeStamp

FolderLink <ixfstdns-c>/links/1.0#link

<ixfstdns-c>/links/1.0#directedLink

<ixfstdns-c>/links/1.0#treeLink

Informal restriction: must point to folder-behavior objects

Attachment <ixfstdns-c>/files/1.0#fileAssociation

MessageAttachmentLink

<ixfstdns-c>/links/1.0#link

<ixfstdns-c>/links/1.0#directedLink

informal restriction: parent = message, child = attachment

FolderMessageLink <ixfstdns-c>/links/1.0#link

<ixfstdns-c>/links/1.0#directedLink

informal restriction: parent = folder, child = message

SmartIXF Library

92

Role-to-Class Mapping
The Role-to-Class mapping for the Domain Behavior is:

Role Class

Message Message

Folder Folder

FolderLink FolderLink

Attachment Attachment

AttachmentLink AttachmentLink

FolderMessageLink FolderMessageLink

Connectivity of Objects
The following diagram shows the connectivity of the basic object and
the link objects in the example.

Associating Files with Messages
Note that although the file is associated with the message, the File
object is not associated directly to the Message object, but rather
through an Attachment object. The File is associated with the
Attachment object through the FileAssociation Standard Behavior and
the attachment object is linked to the message object with the
MessageAttachmentLink.

The reason it is done this way is that the FileAssociation Standard
Behavior allows you to associate at most one file with an object enabled
for FileAssociation. Thus, to allow for the possibility of associating
more than one file to a message, the messaging application has been
designed with the intermediate Attachment object and the
MessageAttachmentLink object. For each file you want to associate
with a message, you create a separate Attachment object and a
corresponding MessageAttachmentLink object and follow the procedure
of the example.

The figure below shows how you would associate more than one file to
the message.

93

Id: OID_5
Name: development

Folder

Id: OID_6
Name: iXF

Id: OID_7
Name: Sample1

Id: OID_1
From: Bruce Mayer

To: David Stein
Subject: ReadMe file

Folder

Folder

Message

Id: OID_3
File: OID_2

Attachment

Id: OID_2
Filename:Sample1.doc
ContentType: text/xml

File

Folder Link

Folder Link

FolderMessageLink

MessageAttachmentLink

FileAssociation

Id:
File:

Attachment1

Id:
Filename:

ContentType:

File1

FileAssociation

Id:
File:

Attachment2

Id:
Filename:

ContentType:

File2

FileAssociation

MessageAttachmentLink1 MessageAttachmentLink2

Associating Additional Files

SmartIXF Library

94

Implementing the Application
This section shows code examples of how the messaging application is
implemented. This section does not include all the code in the example,
but rather the code needed to illustrate and explain the implementation.
For the full code, see the example included in:
SDK/Samples/SmartIxf/Vb/Sample1/Sample1.vbp

Creating the Schema
This section shows how to create the schema for the application and
includes the topics:

• Adding Class Behaviors

• Adding Classes

• Adding Domain Behaviors

Adding Class Behaviors
The following functions add the required Class Behaviors to the
schema:

Add API-Supported ClassBehaviors
Private Sub (Schema As ISmIxfSchema, SchemaHelper As ISmIxfSchemaHelper)

 ‘Add iXF TimeStamp Standard Class Behavior

 SchemaHelper.AddDefaultTimeStampSupport

 ‘Add iXF FileAssociation Standard Class Behavior

 SchemaHelper.AddDefaultFilesSupport

End Sub

Add Message ClassBehavior
Private Sub AddMessageClassBehavior(Schema As ISmIxfSchema)

 Dim IxfClassBehavior As ISmIxfClassBehavior

 Dim IxfAttribute As ISmIxfAttribute

 ‘Add Message ClassBehavior to Schema ClassesBehaviors

 Set IxfClassBehavior = Schema.ClassesBehaviors.Add(mtEmbedded,
CB_MESSAGE_URI)

 ‘Add “from” attribute to Message ClassBehavior

95

 Set IxfAttribute = IxfClassBehavior.Attributes.Add("from")

 IxfAttribute.TypeDefinition.ValueType = dtString

 IxfAttribute.Required = True

 ‘Add “to” attribute to Message ClassBehavior

 Set IxfAttribute = IxfClassBehavior.Attributes.Add("to")

 IxfAttribute.TypeDefinition.ValueType = dtString

 IxfAttribute.Required = True

 ‘Add “subject” attribute to Message ClassBehavior

 Set IxfAttribute = IxfClassBehavior.Attributes.Add("subject")

 IxfAttribute.TypeDefinition.ValueType = dtString

 IxfAttribute.Required = False

 ‘Add “body” attribute to Message ClassBehavior

 Set IxfAttribute = IxfClassBehavior.Attributes.Add("body")

 IxfAttribute.TypeDefinition.ValueType = dtString

 IxfAttribute.Required = False

 ‘Add “importance” attribute to Message ClassBehavior

 Set IxfAttribute = IxfClassBehavior.Attributes.Add("importance")

 IxfAttribute.TypeDefinition.ValueType = dtInt

 IxfAttribute.Required = False

 IxfAttribute.DefaultValue = 0

End Sub

Add Folder ClassBehavior
Private Sub AddFolderClassBehavior(Schema As ISmIxfSchema)

 Dim IxfClassBehavior As ISmIxfClassBehavior

 Dim IxfAttribute As ISmIxfAttribute

 ‘Add Folder ClassBehavior to Schema ClassesBehaviors

 Set IxfClassBehavior = Schema.ClassesBehaviors.Add(mtEmbedded,
CB_FOLDER_URI)

 ‘Add “name” attribute to Folder ClassBehavior

 Set IxfAttribute = IxfClassBehavior.Attributes.Add("name")

 IxfAttribute.TypeDefinition.ValueType = dtString

 IxfAttribute.Required = True

End Sub

Add Link ClassBehavior
Private Sub AddLinkClassBehavior(Schema As ISmIxfSchema)

SmartIXF Library

96

 Dim IxfClassBehavior As ISmIxfClassBehavior

 Dim IxfAttribute As ISmIxfAttribute

 ‘Add IXF Standard ClassBehavior “Link” to Schema ClassesBehaviors

 Set IxfClassBehavior = Schema.ClassesBehaviors.Add(mtEmbedded,
CB_LINK_URI)

 ‘Add “object1” attribute to Link ClassBehavior

 Set IxfAttribute = IxfClassBehavior.Attributes.Add("object1")

 IxfAttribute.TypeDefinition.ValueType = dtObjectReference

 IxfAttribute.Required = True

 ‘Add “object2” attribute to Link ClassBehavior

 Set IxfAttribute = IxfClassBehavior.Attributes.Add("object2")

 IxfAttribute.TypeDefinition.ValueType = dtObjectReference

 IxfAttribute.Required = True

End Sub

To add Directed Link, Tree Link, and TimeStamp Class Behaviors, see
source files.

Execute Functions
Public Sub AddClassBehaviorsDefinitionsToSchema(Schema As ISmIxfSchema,
SchemaHelper As ISmIxfSchemaHelper)

 AddAPISupportedClassBehaviors Schema, SchemaHelper

 AddMessageClassBehavior Schema

 AddFolderClassBehavior Schema

 AddLinkClassBehavior Schema

 AddDirectedLinkClassBehavior Schema

 AddTreeLinkClassBehavior Schema

End Sub

Adding Classes
The following functions add the required classes to the schema:

Add Message Class
Private Sub AddMessageClass(Schema As ISmIxfSchema, SchemaHelper As
ISmIxfSchemaHelper)

 Dim IxfClass As ISmIxfClass

 Dim IxfClassBehavior As ISmIxfClassBehavior

 ‘Add class “message” to Schema Classes

 Set IxfClass = Schema.Classes.Add("message")

97

 ‘Enable IXF TimeStamp Standard Behavior for message class as
required

 ‘by DB_MESSAGING_URI Domain Behavior

 SchemaHelper.EnableTimeStampForClass IxfClass

 ‘Declare CB_MESSAGE_URI ClassBehavior in message class as required

 ‘by DB_MESSAGING_URI Domain Behavior

 Set IxfClassBehavior =
Schema.ClassesBehaviors.ItemByURI(CB_MESSAGE_URI)

 IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

End Sub

Add Folder Class
Private Sub AddFolderClass(Schema As ISmIxfSchema, SchemaHelper As
ISmIxfSchemaHelper)

 Dim IxfClass As ISmIxfClass

 Dim IxfClassBehavior As ISmIxfClassBehavior

 ‘Add class “folder” to Schema Classes

 Set IxfClass = Schema.Classes.Add("folder")

 ‘Enable IXF TimeStamp Standard Behavior for folder class as required

 ‘by DB_MESSAGING_URI Domain Behavior

 SchemaHelper.EnableTimeStampForClass IxfClass

 ‘Declare CB_FOLDER_URI ClassBehavior in folder class as required

 ‘by DB_MESSAGING_URI Domain Behavior

 Set IxfClassBehavior =
Schema.ClassesBehaviors.ItemByURI(CB_FOLDER_URI)

 IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

End Sub

Add FolderLink Class
Private Sub AddFolderLinkClass(Schema As ISmIxfSchema)

 Dim IxfClass As ISmIxfClass

 Dim IxfClassBehavior As ISmIxfClassBehavior

 ‘Add class “folderLink” to Schema Classes

 Set IxfClass = Schema.Classes.Add("folderLink")

 ‘Declare CB_LINK_URI, CB_DIRECTEDLINK_URI, and CB_TREELINK_URI

 ‘ClassBehaviors in folderLink class as required

 ‘by DB_MESSAGING_URI Domain Behavior. When writing the object, only

SmartIXF Library

98

 ‘the CB_LINK_URI is used. (The presence of the CB_DIRECTEDLINK_URI,

 ‘and CB_TREELINK_URI ClassBehaviors cause the CB_LINK_URI to be

 ‘interpreted as a directed parent-son tree link.)

 Set IxfClassBehavior = Schema.ClassesBehaviors.ItemByURI(CB_LINK_URI)

 IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

 Set IxfClassBehavior =
Schema.ClassesBehaviors.ItemByURI(CB_DIRECTEDLINK_URI)

 IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

 Set IxfClassBehavior =
Schema.ClassesBehaviors.ItemByURI(CB_TREELINK_URI)

 IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

End Sub

Add Attachment Class
Private Sub AddAttachmentClass(Schema As ISmIxfSchema, SchemaHelper As
ISmIxfSchemaHelper)

 Dim IxfClass As ISmIxfClass

 ‘Add class “attachment” to Schema Classes

 Set IxfClass = Schema.Classes.Add("attachment")

 ‘Enable IXF FileAssociation Standard Behavior for folder class as

 ‘required by DB_MESSAGING_URI Domain Behavior

 SchemaHelper.EnableFileAssociationForClass IxfClass

End Sub

Add MessageAttachmentLink Class
Private Sub AddMessageAttachmentLinkClass(Schema As ISmIxfSchema)

 Dim IxfClass As ISmIxfClass

 Dim IxfClassBehavior As ISmIxfClassBehavior

 ‘Add class “messageAttachmentLink” to Schema Classes

 Set IxfClass = Schema.Classes.Add("messageAttachmentLink")

 ‘Declare CB_LINK_URI, and CB_DIRECTEDLINK_URI ClassBehaviors in

 ‘messageAttachmentLink class as required by DB_MESSAGING_URI Domain

 ‘Behavior

 Set IxfClassBehavior = Schema.ClassesBehaviors.ItemByURI(CB_LINK_URI)

 IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

 Set IxfClassBehavior =
Schema.ClassesBehaviors.ItemByURI(CB_DIRECTEDLINK_URI)

 IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

End Sub

99

Add FolderMessageLink Class
Private Sub AddFolderMessageLinkClass(Schema As ISmIxfSchema)

 Dim IxfClass As ISmIxfClass

 Dim IxfClassBehavior As ISmIxfClassBehavior

 ‘Add class “folderMessageLink” to Schema Classes

 `Set IxfClass = Schema.Classes.Add("folderMessageLink")

 ‘Declare CB_LINK_URI, and CB_DIRECTEDLINK_URI ClassBehaviors in

 ‘folderMessageLink class as required by DB_MESSAGING_URI Domain

 ‘Behavior

 Set IxfClassBehavior = Schema.ClassesBehaviors.ItemByURI(CB_LINK_URI)

 IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

 Set IxfClassBehavior =
Schema.ClassesBehaviors.ItemByURI(CB_DIRECTEDLINK_URI)

 IxfClass.CurrentClassBehaviors.Add IxfClassBehavior

End Sub

Execute Functions
Public Sub AddClassesDefininitionsToSchema(Schema As ISmIxfSchema,
SchemaHelper As ISmIxfSchemaHelper)

 AddMessageClass Schema, SchemaHelper

 AddFolderClass Schema, SchemaHelper

 AddFolderLinkClass Schema

 AddAttachmentClass Schema, SchemaHelper

 AddMessageAttachmentLinkClass Schema

 AddFolderMessageLinkClass Schema

End Sub

Adding Domain Behaviors
The following functions add the required Domain Behavior to the
schema:

Add Messaging Domain Behavior
Private Sub AddMessagingDomainBehavior(Schema As ISmIxfSchema)

 Dim IxfDomainBehavior As ISmIxfDomainBehavior

 Dim IxfClass As ISmIxfClass

 ‘Add Domain Behavior DB_MESSAGING_URI” to Schema DomainBehaviors

 Set IxfDomainBehavior = Schema.DomainBehaviors.Add(DB_MESSAGING_URI)

 ‘Assign the Domain Behavior Roles to their corresponding classes

 Set IxfClass = Schema.Classes.ItemByName("message")

SmartIXF Library

100

 IxfDomainBehavior.RoleClassMapping("message") = IxfClass

 Set IxfClass = Schema.Classes.ItemByName("folder")

 IxfDomainBehavior.RoleClassMapping("folder") = IxfClass

 Set IxfClass = Schema.Classes.ItemByName("folderLink")

 IxfDomainBehavior.RoleClassMapping("folderLink") = IxfClass

 Set IxfClass = Schema.Classes.ItemByName("attachment")

 IxfDomainBehavior.RoleClassMapping("attachment") = IxfClass

 Set IxfClass = Schema.Classes.ItemByName("messageAttachmentLink")

 IxfDomainBehavior.RoleClassMapping("messageAttachmentLink") = IxfClass

End Sub

Execute Functions
Public Sub AddDomainBehaviorsToTheSchema(Schema As ISmIxfSchema)

 AddMessagingDomainBehavior Schema

End Sub

Writing the Data
This section shows how to write the data to a data file. Two types of
objects are written:

• Basic Objects

• Link Objects

Basic Objects

Write Message Object
Private Sub CreateMessageObject(DataWriter As ISmIxfDataWriter,
WriterHelper As ISmIxfWriterHelper)

 Dim IxfObject As ISmIxfObject

 Dim BehaviorValues As ISmIxfAttributesValues

 Dim TimeStamp As ISmIxfTimeStamp

 ‘Instantiate an object from the message class; give it an Id

 Set IxfObject = DataWriter.ObjectWriter.NewObject("message", "OID_1")

 ‘Assign values to CB_MESSAGE_URI BehaviorValues

 Set BehaviorValues = IxfObject.GetBehaviorValues(CB_MESSAGE_URI)

 BehaviorValues.Item("from") = "Bruce Mayer"

 BehaviorValues.Item("to") = "David Stein"

 BehaviorValues.Item("subject") = " The Sample1.doc file "

 BehaviorValues.Item("body") = " Attached is the Sample1.doc file"

101

 ‘TimeStamp the message object

 Set TimeStamp =
WriterHelper.TimeStampWriter.CastToTimeStamp(IxfObject)

 TimeStamp.CreationTime = Now

 ‘Save the message object to the data file

 IxfObject.Save

End Sub

Create and Embed the File Object
Private Sub CreateFileObjectAndEmbedFile(WriterHelper As
ISmIxfWriterHelper)

 Dim IxfFile As ISmIxfFile

 ‘Instantiate a File object and give it values

 Set IxfFile = WriterHelper.FileWriter.NewFile("OID_2")

 IxfFile.FileName = " Sample1.doc"

 IxfFile.ContentType = "text/xml"

 IxfFile.SetSource ("Sample1.doc")

 ‘Embed the File object and save it to the data file

 WriterHelper.FileWriter.EmbedFile IxfFile

 IxfFile.Save

End Sub

Write Attachment Object
Private Sub CreateAttachmentObject(DataWriter As ISmIxfDataWriter,
WriterHelper As ISmIxfWriterHelper)

 Dim IxfObject As ISmIxfObject

 Dim FileAssociation As ISmIxfFileAssociation

 ‘Instantiate an object from the attachment class; give it an Id

 Set IxfObject = DataWriter.ObjectWriter.NewObject("attachment",
"OID_3")

 ‘Associate the File object OID_2 with the attachment object

 Set FileAssociation =
WriterHelper.FileWriter.CastToFileAssociation(IxfObject)

 FileAssociation.FileId = "OID_2"

 ‘Save the attachment object

 IxfObject.Save

End Sub

SmartIXF Library

102

Write Folder Objects
Private Sub CreateFolderObjects(DataWriter As ISmIxfDataWriter,
WriterHelper As ISmIxfWriterHelper)

 Dim IxfObject As ISmIxfObject

 Dim BehaviorValues As ISmIxfAttributesValues

 Dim TimeStamp As ISmIxfTimeStamp

 ‘Development folder

 ‘Instantiate an object from the folder class; give it an Id

 Set IxfObject = DataWriter.ObjectWriter.NewObject("folder", "OID_5")

‘Get CB_FOLDER_URI ClassBehavior BehaviorValues for this folder
‘object

 Set BehaviorValues = IxfObject.GetBehaviorValues(CB_FOLDER_URI)

 ‘Name the folder “Development”

 BehaviorValues.Item("name") = "Development"

 ‘Time-stamp the “Development” folder

 Set TimeStamp =
WriterHelper.TimeStampWriter.CastToTimeStamp(IxfObject)

 TimeStamp.CreationTime = Now

 ‘Save the “Development” folder

 IxfObject.Save

 ‘iXF folder

 ‘Instantiate another object from the folder class; give it an Id

 Set IxfObject = DataWriter.ObjectWriter.NewObject("folder", "OID_6")

‘Get CB_FOLDER_URI ClassBehavior BehaviorValues for this folder
‘object and name it “iXF”

 Set BehaviorValues = IxfObject.GetBehaviorValues(CB_FOLDER_URI)

 BehaviorValues.Item("name") = "iXF"

 ‘Time-stamp the “iXF” folder

 Set TimeStamp =
WriterHelper.TimeStampWriter.CastToTimeStamp(IxfObject)

 TimeStamp.CreationTime = Now

 ‘Save the “iXF” folder

 IxfObject.Save

 ‘Sample1 folder

 ‘Instantiate another object from the folder class; give it an Id

103

 Set IxfObject = DataWriter.ObjectWriter.NewObject("folder", "OID_7")

‘Get CB_FOLDER_URI ClassBehavior BehaviorValues for this folder
‘object and name it “Sample1”

 Set BehaviorValues = IxfObject.GetBehaviorValues(CB_FOLDER_URI)

 BehaviorValues.Item("name") = "Sample1"

 ‘Time-stamp the “Sample1” folder

 Set TimeStamp =
WriterHelper.TimeStampWriter.CastToTimeStamp(IxfObject)

 TimeStamp.CreationTime = Now

 ‘Save the “Sample1” folder

 IxfObject.

End Sub

Link Objects

Write MessageAttachmentLink Object
Private Sub CreateMessageAttachmentLinkObject(DataWriter As
ISmIxfDataWriter)

 Dim IxfObject As ISmIxfObject

 Dim BehaviorValues As ISmIxfAttributesValues

 ‘Instantiate an object from the messageAttachmentLink class;

 ‘give it an Id

 Set IxfObject =
DataWriter.ObjectWriter.NewObject("messageAttachmentLink", "OID_4")

 ‘Get CB_LINK_URI ClassBehavior BehaviorValues for this object

 Set BehaviorValues = IxfObject.GetBehaviorValues(CB_LINK_URI)

 'Link between the message object and the attachment object

 BehaviorValues.Item("object1") = "OID_1"

 BehaviorValues.Item("object2") = "OID_3"

 ‘Save the messageAttachmentLink object

 IxfObject.Save

End Sub

Write FolderLink Objects
Private Sub CreateFolderLinkObjects(DataWriter As ISmIxfDataWriter)

 Dim IxfObject As ISmIxfObject

 Dim BehaviorValues As ISmIxfAttributesValues

 'Link "Development" folder as parent of "iXF" folder

SmartIXF Library

104

 Set IxfObject = DataWriter.ObjectWriter.NewObject("folderLink",
"OID_8")

 Set BehaviorValues = IxfObject.GetBehaviorValues(CB_LINK_URI)

 BehaviorValues.Item("object1") = "OID_5"

 BehaviorValues.Item("object2") = "OID_6"

 ‘Save the folderLink

 IxfObject.Save

 'Link "iXF" folder as parent of "Sample1" folder

 Set IxfObject = DataWriter.ObjectWriter.NewObject("folderLink",
"OID_9")

 Set BehaviorValues = IxfObject.GetBehaviorValues(CB_LINK_URI)

 BehaviorValues.Item("object1") = "OID_6"

 BehaviorValues.Item("object2") = "OID_7"

 ‘Save the folderLink

 IxfObject.Save

End Sub

Write FolderMessageAttachment Objects
Private Sub CreateFolderMessageAttachmentObjects(DataWriter As
ISmIxfDataWriter)

 Dim IxfObject As ISmIxfObject

 Dim BehaviorValues As ISmIxfAttributesValues

 'Link where "Sample1" folder as parent of the message with the

 'subject "The Sample1.doc file"

 Set IxfObject = DataWriter.ObjectWriter.NewObject("folderMessageLink",
"OID_8")

 Set BehaviorValues = IxfObject.GetBehaviorValues(CB_LINK_URI)

 BehaviorValues.Item("object1") = "OID_7"

 BehaviorValues.Item("object2") = "OID_1"

 ‘Save the link

 IxfObject.Save

End Sub

Execute Functions
Public Sub CreateData(Writer As ISmIxfWriter, StdHelper As SmIxfStdHelper)

 Dim WriterHelper As ISmIxfWriterHelper

 Dim DataWriter As ISmIxfDataWriter

 Set WriterHelper = StdHelper.CreateWriterHelper(Writer)

105

 CreateMessageObject Writer.DataWriter, WriterHelper

 CreateFileObjectAndEmbedFile WriterHelper

 CreateAttachmentObject Writer.DataWriter, WriterHelper

 CreateMessageAttachmentLinkObject Writer.DataWriter

 CreateFolderObjects Writer.DataWriter, WriterHelper

 CreateFolderLinkObjects Writer.DataWriter

 CreateFolderMessageAttacmentObjects Writer.DataWriter

End Sub

Reading the Data
This section shows how to use the Reader and the ReaderHelper to read
the data file.

Read Data Objects
Public Sub ReadData(Reader As ISmIxfReader, StdHelper As SmIxfStdHelper)

 Dim ReaderHelper As ISmIxfReaderHelper

 Dim ObjectIterator As ISmIxfObjectIterator

 Dim IxfObject As ISmIxfObject

 Dim IxfFile As ISmIxfFile

 Set ReaderHelper = StdHelper.CreateReaderHelper(Reader)

 Set ObjectIterator = Reader.DataReader.ObjectReader.GetObjectIterator

 While ObjectIterator.AtEnd = False

 Set IxfObject = ObjectIterator.GetObject

 ‘Read in object

 HandleObject IxfObject, Reader

 ‘See if it is File object

 Set IxfFile = ReaderHelper.FileReader.CastToFile(IxfObject)

 If Not (IxfFile Is Nothing) Then

 HandleFileObject IxfFile

 End If

 ObjectIterator.Next

 Wend

End Sub

Handle a File Object
Private Sub HandleFileObject(IxfFile As ISmIxfFile)

 If IxfFile.Embedded = True Then

 IxfFile.Extract App.Path + "\ExtractedFiles"

 End If

End Sub

SmartIXF Library

106

Read an Object
Private Sub HandleObject(IxfObject As ISmIxfObject, IxfReader As
SmIxfReader)

 Dim IxfClass As ISmIxfClass

 Dim IxfAttribute As ISmIxfAttribute

 Dim IxfClassBehavior As ISmIxfClassBehavior

 Dim Value As Variant

 Dim Values As ISmIxfAttributesValues

 Dim i, j As Integer

 Set IxfClass =
IxfReader.Schema.Classes.ItemByName(IxfObject.ixfClassName)

 frmSample1.lstObjects.ListItems.Add , , "Object Id = " + IxfObject.Id
+ ":"

 frmSample1.lstObjects.ListItems.Add , , " Class = " + IxfClass.Name

 'class attributes

 If IxfClass.AllAttributes.Count > 0 Then

 frmSample1.lstObjects.ListItems.Add , , " Attributes:"

 Set Values = IxfObject.Values

 For i = 0 To IxfClass.AllAttributes.Count - 1

 Set IxfAttribute = IxfClass.AllAttributes.Item(i)

 Set Value = Values.Item(IxfAttribute.Name)

 If Not VarType(Value) = vbNull Then

 frmSample1.lstObjects.ListItems.Add , , " " +
IxfAttribute.Name + " = " + Value

 End If

 Next

 End If

 'Behavior attributes

 If IxfClass.AllBehaviors.Count > 0 Then

 frmSample1.lstObjects.ListItems.Add , , " BehaviorAttributes:"

 For i = 0 To IxfClass.AllBehaviors.Count - 1

 Set IxfClassBehavior = IxfClass.AllBehaviors.Item(i)

 Set Values = IxfObject.GetBehaviorValues(IxfClassBehavior.URI)

 For j = 0 To IxfClassBehavior.Attributes.Count - 1

 Set IxfAttribute = IxfClassBehavior.Attributes.Item(j)

 Value = Values.Item(IxfAttribute.Name)

 If Not VarType(Value) = vbNull Then

 frmSample1.lstObjects.ListItems.Add , , " " +
IxfAttribute.Name + " = " + CStr(Value)

 End If

107

 Next

 Next

 End If

 frmSample1.lstObjects.ListItems.Add , , ""

End Sub

Executing the Application
This section shows how to execute the application.

Note: For further information, please refer to the actual sample application in
VB (sample1).

Private Sub cmdCreateIXF_Click()

 Dim IxfWriter As SmIxfWriter

 Dim IxfStdHelper As SmIxfStdHelper

 Dim IxfFileName As String

 lstObjects.ListItems.Clear

 dlgIxfFile.ShowOpen

 IxfFileName = dlgIxfFile.FileName

 If IxfFileName = vbNullString Then Exit Sub

 Set IxfWriter = CreateObject("SmartIXF1.SmIxfWriter")

 Set IxfStdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

 If btnCreateSchema.Value = True Then

 IxfWriter.SetSchemaMode mtEmbedded

 SchemaCreation.CreateSchema IxfWriter.Schema, IxfStdHelper

 Else

 IxfWriter.SetSchemaMode mtExternal,
"http://example.com/messaging", "sample1.xsd", True

 End If

 IxfWriter.CreateIxfArchiveFile IxfFileName

 DataWriting.CreateData IxfWriter, IxfStdHelper

 IxfWriter.CloseIxfArchiveFile

 MsgBox ("Done")

End Sub

Private Sub cmdReadIxf_Click()

 Dim IxfReader As SmIxfReader

 Dim IxfStdHelper As SmIxfStdHelper

SmartIXF Library

108

 Dim IxfFileName As String

 lstObjects.ListItems.Clear

 dlgIxfFile.ShowOpen

 IxfFileName = dlgIxfFile.FileName

 If IxfFileName = vbNullString Then Exit Sub

 Set IxfReader = CreateObject("SmartIXF1.SmIxfReader")

 Set IxfStdHelper = CreateObject("SmartIXF1.SmIxfStdHelper")

 IxfReader.OpenIxfArchiveFile IxfFileName, True

 DataReading.ReadData IxfReader, IxfStdHelper

 IxfReader.Close

 MsgBox ("Done")

End Sub

	1 Introduction
	Naming Conventions
	NCName
	Class Behavior URI

	2 Overview of Objects
	ISmIxfSchema
	ISmIxfClassesBehaviors
	ISmIxfClassBehavior

	ISmIxfClasses
	ISmIxfClass
	ISmIxfAttributes
	ISmIxfAttribute

	ObjectReferenceType Restrictions
	ISmIxfClassBehaviors

	ISmIxfDomainBehaviors
	ISmIxfDomainBehavior

	ISmIxfInfo
	ISmIxfInfoItem
	ISmIxfXmlAttributeValue

	Common Tasks

	SmIxfInitializationData
	Setting Proxy Information

	SmIxfWriter
	Creating an iXF Archive File
	ISmIxfDataWriter
	ISmIxfObjectWriter
	ISmIxfObject
	ISmIxfAttributesValues
	ISmIxfInfo

	ISmIxfSchema
	Common Tasks
	ISmIxfDataWriter:Creating a Data File with Objects and Info

	SmIxfReader
	ISmIxfDataReader
	ISmIxfObjectReader
	ISmIxfObjectIterator
	ISmIxfObject
	ISmIxfInfo

	ISmIxfUnderstoodInfoItems
	ISmIxfSchema
	Common Tasks

	Reading and Writing an External Schema
	SmIxfExternalSchemaWriter
	SmIxfExternalSchemaReader

	ISmIxfStdHelper
	Standard Behaviors
	ISmIxfSchemaHelper
	Change-Tracking Standard Behavior
	File Association Standard Behavior
	Versioning Standard Behavior
	TimeStamp Standard Behavior
	Common Tasks

	ISmIxfWriterHelper
	ISmIxfChangeWriter
	ISmIxfFileWriter
	ISmIxfVersioningWriter
	ISmIxfTimeStampWriter
	Common Tasks

	ISmIxfReaderHelper
	Identifying and Restoring Read-In Objects
	ChangeReader
	FileReader
	VersioningReader
	TimeStampReader
	Common Tasks

	3 Sample IXF Application
	Messaging Format
	Class Behaviors
	Domain Behaviors
	Domain Behavior Definition
	Role-to-Class Mapping
	Connectivity of Objects
	Associating Files with Messages

	Implementing the Application
	Creating the Schema
	Adding Class Behaviors
	Adding Classes
	Adding Domain Behaviors

	Writing the Data
	Basic Objects
	Link Objects

	Reading the Data
	Executing the Application

