ENOVIA

ENOVIA SmarTeam | Dassault Systémes
WWW.Smarteam.com
www.3ds.com

ENOVIA SmarTeam

SMARTEAM I-PLATFORM SDK

Programmer’s Guide

Copyright

Copyright

© Dassault Systemes, 2004, 2008. All rights reserved.

CATIA, ENOVIA, SMARTEAM and the 3DS logo are registered trademarks of Dassault
Systemes or its subsidiaries in the US and/or other countries.

PROPRIETARY RIGHTS NOTICE: This documentation is the property of Dassault Systémes.
This documentation shall be treated as confidential information and may only be used by
employees or contractors of the Customer in accordance with the terms of the End-User License
Agreement accepted by Customer.

Any use of the Licensed Program contained in this media or accompanying it, is subject to the
terms of the End User License Agreement accepted by Customer. The Licensed Program is
protected by international copyright laws and international treaties. Unauthorized use,
reproduction and/or distribution of any of the Licensed Program, or any part thereof, may result
in severe civil and/or criminal penalties, and will be prosecuted to the maximum extent possible
under the law. Company names and product names mentioned herein are the property of their
respective owners and certain portions of the Licensed Program contain elements subject to
copyright owned by these entities. See the Documentation CD provided with the Licensed
Program for details and/or additional terms and conditions relating to these entities.

Part Number: DVS-A3-180007

About this Guide

About this Guide

This document describes the SmarTeam i-Platform SDK and how to use
it. It primarily intended for developers of client applications that use the
services of the SmarTeam i-Platform Server.

This manual is intended to be used with the “SmarTeam i-Platform Client
Library Reference Guide” provided with the product.

For more information, see the SmarTeam Object Model Programmer’s
Guide and SmarTeam Corporation’s web site site (www.smarteam.com).

It is assumed that the reader is familiar with Java™ and JavaScript
(ECMAScript 262 Edition 3).

JavaScript is documented by Microsoft at:
<http://msdn.microsoft.com/scripting>.

The ECMAScript documentation is at:
http://www.ecma-international.org/publications/standards/Ecma-262.htm.

Familiarity with XML is helpful but not essential (due to the
encapsulation provided by the client library.)

http://msdn.microsoft.com/scripting

Table of Contents

Table of Contents

Copyright i
About this Guide

1 INTRODUCTION 1
Overview of SDK Components 1
Embedded-Scripts Client Library 2
SmarTeam i-Platform Application Server 2
SmartinetUtils Library 3
Network Architecture 4

2 EMBEDDED-SCRIPTS CONNECTION PACKAGE 5
Overview of Objects and Interfaces 5

IConnectionModel Interface 5
Using the IConnectionModel 7
Uploading and Downloading Files 9

Uploading an Attached File 9

SmartinetUtils.SmDownloadManager 10

3 WRITING A SCRIPT 12
Scripts 12
The Context Object 13

Common Tasks 15
Using Parameters in a Script 16
Supported Data Types 17

4 RECORD LIST PACKAGE 18

Record List Objects 18

IMutableRecordList 19

IMutableRecord 21

IRecordList 22

Package Events 23

SmarTeam i-Platform SDK

Common Tasks

A EMBEDDED-SCRIPTS ENGINE

Embedded-Scripts Engine
Examples

Context Expiry

25

27

27
28

35

SmarTeam I-PLATFORM SDK Programmer’s Guide

1 Introduction \

The SmarTeam i-Platform SDK provides client applications with the
ability to access SmarTeam functionality provided by the SmarTeam i-
Platform Server. This functionality includes database operations, data
structures including record lists and objects, performing queries, and
managing workflow, as well as most operations available through the
SmarTeam API.

The SmarTeam functionality is accessed through short scripts (referred
to in this guide as embedded scripts) that are embedded in requests sent
by the client application to the SmarTeam i-Platform and executed on
the server.

Overview of SDK Components

The three major components provided by the SDK are:

e SmarTeam i-Platform Application Server — a server application
providing SmarTeam services via a variety of protocols and
communication methods. This package includes the Embedded-
Scripts Engine — a Web Service for executing scripts sent by the
client and returning results to the client.

e Embedded-Scripts Client Library — a Java-based client side library
for generating, encoding and sending client requests to the server
and receiving results. This library contains the Embedded-Scripts
Connection Package and the Record List Package.

e SmartlnetUtils Library — a server-side library providing support for
operations related to Internet protocols, such as file uploading and
downloading.

The primary function of this document is to describe how to use these
three components.

This chapter provides a brief overview of the SDK components and the
architecture used.

Chapter 2 Embedded-Scripts Connection PackageEmbedded-Scripts
Connection PackageEmbedded-Scripts Connection PackageEmbedded-
Scripts Connection PackageEmbedded-Scripts Connection

SmarTeam |-PLATFORM SDK Programmer’s Guide

Packageprovides a description of the Embedded-Scripts Connection
Package of the Embedded-Scripts Client Library and also includes the
SmartlnetUtils Library.

Chapter 3 describes how to write client scripts.

Chapter 4 describes the Record List Package of the Embadded-Scripts
Client Library.

Appendix A details objects of the SmarTeam i-Platform Application
Server.

Embedded-Scripts Client Library

The Embedded-Scripts Client Library is a collection of Java packages
that includes the following main packages:

e Embedded-Scripts Connection Package

e Record List Package

Embedded-Scripts Connection Package

The Embedded-Scripts Connection Package provides all client-server
connection functionality, including encoding client requests using
SOAP. The Embedded-Scripts Connection Package is described in
Chapter 2.

Record List Package

The Record List Package is a Java package, which allows the client to
work with a record list data type similar to that of SmarTeam. The
Record List Package is described in 4 Chapter 4.

SmarTeam i-Platform Application Server

The SmarTeam i-Platform Application Server is a server application
that provides SmarTeam services via a variety of protocols and
communication methods. This package includes the Embedded-Scripts
Engine — a Web Service for executing scripts sent by the client and
returning results to the client. The SmarTeam i-Platform Server is
described in OAppendix A.

Chapter 1: Introduction

SmartinetUtils Library

The SmartlnetUTtils Library on the server side includes uploading and
downloading functionality, including:

Managing the uploading of a file to the server. The section
“Uploading an Attached File” on page 9 describes how to upload
files using a script. The upload object in SmartinetUtils Library is
not used directly by the user and therefore is not described in this
document.

Managing the downloading of a file from the server. The download
object SmartiInetUtils.SmDownloadManager is normally used
by the SmarTeam Life Cycle mechanism, but can also be used
directly by the user. This object is described on page 10.

SmarTeam |-PLATFORM SDK Programmer’s Guide

Network Architecture

The network architecture of the SmarTeam i-Platform SDK components
is illustrated in Figure 1.

O [—
)
o Firey
[
| [T ot
Client oooooo i-Platform
Server
- Client Requests—»| -~ SMARTEAM
i-Platform Application
Embedded Scripts [« Results Server)
Client Library .
) -- SmartinetUtils SmSgssmn
< Files > Library Object
A
A
SMARTEAM Object
))] Model
Client Side Server Side

Figure 1 SmarTeam i-Platform SDK Components

SmarTeam I-PLATFORM SDK Programmer’s Guide

2 Embedded-Scripts Connection

Package

This chapter describes the Connection Package of the Embedded-Scripts
Client Library and how to use it to send an embedded script to the
SmarTeam i-Platform Server.

Overview of Objects and Interfaces

This section describes the objects and interfaces used to connect to the
server.

IConnectionModel Interface

The IConnectionModel interface is the main interface used to connect to
the server. This interface abstracts the actual protocol used to connect
the client with the server.

The interface includes the methods:

Method Description

createContext Creates a context (session) for the client to
(connectionString) work with SmarTeam

execute Encodes and sends a script to SmarTeam with

(scriptLang, script, params) parameters. A file can be uploaded as a
parameter using the AttachedFile class.

releaseContext() Releases the context

Note: If the Context is not released by the
releaseContext method, it will terminate
automatically after its expiry period (See

Appendix A).

SmarTeam |-PLATFORM SDK Programmer’s Guide

Method Description

setContextlD (contextlID) Set Smarteam Context ID.

Use this method if you have already created
a context, or have a context ID from a
different source.

Note: These commands execute in synchronous mode: program execution waits for
server response and method return before continuing. Invoking these commands
from the main user interface thread may require using threads, or another
mechanism for implementing an asynchronous mode, to prevent the main thread
from blocking. For an example, see the Session class in the
EnbeddedScriptsClientDemo package.

SOAP-Based Implementation

An implementation of the 1ConnectionModel Interface using SOAP
is provided in the class ConnectionModel in the package
com.smarteam.client.api.embeddedscripts.soap.

The SOAP-based implementation complies with the SOAP Schema.

For information about the SOAP schema, see
http://schemas.xmlsoap.org/soap/envelope/.

For the SOAP specification, see
http://schemas.xmlsoap.org/soap/encoding/.

The SOAP-based implementation is useful when client and server
communicate over the network using HTTP. Using HTTP allows client
and server to communicate even over a firewall.

In addition to supporting the HTTP protocol, the SOAP implementation
also supports the Secure Sockets Layer (SSL) using the HTTPS protocol
for communicating with the server in a secure manner.

Implementations of the IConnectionModel Interface that cover
additional scenarios will be provided in future releases of this SDK. In
addition, you can create your own implementation of this interface.

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/

Chapter 2: Embedded Scripts Connection Package

Using the IConnectionModel

This section describes how to use the SOAP-based implementation of
IConnectionModel to send scripts to the SmarTeam i-Platform Server.

Step 1 — Creating a Connection String
Using the class SmarTeamConnectionString:

//creating a new connection string object

SmarTeamConnectionString conString = new SmarTeamConnectionString();
//initiating the connection string object
conString.setUserName(userName) ;
conString.setUserPassword(userPassword) ;

// Database details can also be set using the method setDatabaselD or
// setDatabaseName

conString.setReplicalD(replicalD);

Step 2 — Creating a Connection Model

Using the class ConnectionModel, the implementation of the
IConnectionModel interface:

String targetURL = "‘http://ww.myserver.com'';
IConnectionModel connectionModel = new ConnectionModel (targetURL);
String context = connectionModel .CreateContext(conString.toString());

Remarks:

1.

If you need to connect using HTTPS in a secure manner, change
http in targetURL to https.

If you need to connect to a different port, add [PortNumber] to the
end of targetURL , for example, http://ww.myserver .com:667
connects to port 667 using HTTP.

SmarTeam |-PLATFORM SDK Programmer’s Guide

Step 3 — Executing a Script

String scriptLang = "'javascript’’;

//A short script that retrieves the Database name

String script = "var DatabaseName = Context.SmSession.Database_Name;\n'+
""Context.Result = DatabaseName;\n'';

Parameter[] params = null;

Object result = connectionModel .execute(scriptlLang, script, params);

System.out.printin(“Database name is: “ + (String)result);

See Uploading an Attached File on page 9 for an example of how to
execute a script with parameters.

Step 4 — Release Connection Model
connectionModel . releaseContext() ;

In a typical client-server interaction, steps 1 and 2 are executed once to
initiate the session, step 3 is executed as many times as necessary in the
session and step 4 is executed once to release the session.

You must call releaseContext to release the session; otherwise it will
continue to exist and successive sessions can accumulate on the server.

Note: If the Context is not released by the releaseContext method, it will terminate
automatically after its expiry period, normally 30 minutes (See Embedded-Scripts

Engine).

Chapter 2: Embedded Scripts Connection Package

Uploading and Downloading Files

This section discusses uploading and downloading files. The ability to
upload files together with the request to the server, and to download
files from the server, is important for many scenarios, such as
performing life-cycle operations on documents.

Uploading an Attached File

You upload a file attached to a SmarTeam object by using the client
AttachedFile object as a parameter in a client script, as shown in the
example below.

Example — Checking in an Object with an Attached File at the Client:

The following client Java program sends a script to instruct the life-
cycle mechanism on the server to check in an object, where the object’s
attached file is to be uploaded from the client site and placed in the
server vault. The program defines the attached file as a script parameter,
using the AttachedFile object. The script invokes the server-side life-
cycle sample object ChecklIn function, using the attached file parameter
as the file parameter in the ChecklIn function.

The example uses the class Parameter, which represents a pair:
(parameter name, parameter value). For more information, see Using
Parameters in a Script on page 16.

String scriptLang = "javascript’;

String fileToUpload = “‘c:\\mywork\\workfile_ext”;
Parameter[] params = new Parameter[4];

params[0] = new Parameter('CLASS_ID", 356);
params[1] = new Parameter(*'OBJECT_ID", 8225);

// The following parameter uses AttachedFile to cause the file to
uploaded to the server

params[2] = new Parameter(*'uploaded File'",
new AttachedFile(fileToUpload));
params[3] = new Parameter("'NOTE", "Any notes for the new revision');
String script = "var LCHelper =
Context.CreateObject("SmartLifecycleDemo.SmLifecycleHelper®);\n" +
""LCHelper . Init(Context.SmSession);\n'" +
"'LCHelper .CheckIn(Context.Params("CLASS_ID"),
Context.Params("OBJECT_ID"), Context.Params(“uploaded_file"),

SmarTeam |-PLATFORM SDK Programmer’s Guide

Context.Params(*NOTE"));\n"";
// The script does not return a result
connectionModel .execute(scriptLang, script, params);

Note: To prevent malicious scripts from performing unauthorized operations on the
server, a client script cannot take any direct actions on an uploaded file other
than to retrieve its relative file name. However, the client script can invoke
components installed on the server side, which are authorized to manipulate an
uploaded file, for example, SmLifecycleHelper as in the above program.
SmLifecycleHelper is installed in the SmartLifecycleDemo package.

SmartinetUtils.SmDownloadManager
This object manages downloading a file from the server.

It has the following methods

Method

Description

Copy(FullPath, LifeTime)

Copies the file specified by FullPath to a temporary
location, and returns a valid URL for accessing the file.

The temporary location and the file copy are
automatically removed at the end of the session. To
discard the file before the session end, use the Discard
method.

Discard(URL)

Notifies the server that the file or folder tree indicated
by the specified URL are no longer needed and may be
deleted. The URL must have been created through a
call to Copy or CreateLocation.

CreateLocation(LifeTime)

Creates a temporary location on the server and a URL
pointing to that location.

Files placed in the specified location are accressible
through the URL by appending the file name at the end
of the URL. The filename must be URL-encoded,
using, for example, EncodeURL.

EncodeURL(URL)

Encodes URL

10

Chapter 2: Embedded Scripts Connection Package

ISmDownloadInfo
This object provides destination download information:
It has the following properties

Properties Description

URL URL by which the client accesses the local server
download file directory. The URL includes the final
“/”character.

FullPath Full path of the local server download file directory

Examples

The following script example directs SmarTeam to copy a file from the
vault to a local server download file directory. The URL of the
download directory is passed to the client as a result. The client, who
now has the URL, can download the file at his discretion.

// Note: WorkingObject is a file-managed I1SmObject
var SmDownloadVanager, SmDownLoadlInfo;
// create SmDownloadManager object

SmDownloadManager =
Context.SmSession.GetService(“SmartINetUti ls_SmDownloadManager?) ;

// create local server download directory that has the session lifetime
SmDownLoadInfo = SmDownloadManager -CreatelLocation(0)

var Directory = SmDownLoadInfo._FullPath;

//Retrieve the file name from the working object

FileName = WorkingObject.Data.ValueAsString(“FILE_NAVE™);

//Copy file to download directory

WorkingObject.CopyFi leFromVault(FileName, Directory);

var EncodedFileName = SmDownloadManager .EncodeURL(FileName) ;

//Return URL of download directory to client

Context.Result = SmDownLoadInfo.URL + EncodedFileName;

11

SmarTeam I-PLATFORM SDK Programmer’s Guide

3 Writing a Script \

This chapter describes the following topics:

e Writing a script

e Using Context properties and methods in a script
e Using Parameters in a script

e Data types returned from a script

Scripts

A client application can access the functionality of SmarTeam on a server by
submitting a script, which is run by the SmarTeam i-Platform Server in the
SmarTeam Sandbox.

Scripts can be written in JavaScript version 3 (ECMAScript 262 Edition 3).
JavaScript is recommended because it is standardized (by ECMA).

JavaScript is documented by Microsoft at:
<http://msdn.microsoft.com/scripting>.

The ECMASCcript documentation is at:
< http://www.ecma-international.org/publications/standards/ECMA-262.HTM>.

12

http://msdn.microsoft.com/scripting
http://www.ecma-international.org/publications/standards/ECMA-262.HTM

Chapter 3: Writing a Script

The Context Object

The Context object provides the script with access to SmarTeam
functionality. The Context object is exposed to the script as a global object.
You access the properties and methods of the Context object in the script in
the form:

Context. [Context property or object]
For example:

Context.SmSession
Context.Params

Context Properties
The following Context properties are available:

Property Description
SmSession Refers to the SmSession associated with the Context.
Example:

Context.SmSession.ObjectStore.ObjectsFromData(query.
QueryResult, true);

Params This is a Windows Scripting Dictionary object.
Therefore, the two member function obj.Keys() and
obj.ltems return arrays which VBArrays.

To use them in JavaScript, you have to convert them
to JavaScript arrays with the toArray() call.
Example:

/lget javascript array from VBArray
var keys=Context.Params.Keys().toArray();

var items=Context.Params.ltems().toArray();

Result Used to return the script result to the client.

Example:
Context.Result = objsData

13

SmarTeam |-PLATFORM SDK Programmer’s Guide

NullObject

Equivalent to a null interface. This is useful in languages,
such as JavaScript, that do not provide an equivalent to
“Nothing”.

For such languages, the value of this property can be used
as a parameter to methods that require it as a parameter.

Constants

Provides access to the SmarTeam API constant values for
use by scripts. The Constants object provides property-
based access to the different SmarTeam libraries, and
from there to the actual constant value, in the following
manner:

Context.Constants.constant-name

For example:

Context.Result=Context.Constants.coNo;

Context Methods
The following Context methods are available:

Method Description
Log Writes a log entry to the server events log.
CreateObject Creates a COM Automation object.

Example:
Context.CreateObject('SmRecList.SmRecordList");

Note: This CreateObject context method is the only way
you can create a COM Automation object in the
script. The built-in support in the scripting language
for creating such objects (JavaScript's
ActiveXObject) is disabled to prevent malicious
scripts from performing unauthorized operations on
the server.

14

Chapter 3: Writing a Script

Common Tasks
The following example shows the use of the Context properties and methods.

Context:
Using Context properties and methods in a an embedded-script

The following is an example of a Javascript-based script sent to the server for
execution

var query = Context.SmSession.ObjectStore._NewQuery();
var gDef = query.QueryDefinition;

var role = "F";

gbef.Roles.Add(1, role);

gbef.Select.Add("CLASS ID", role, false);
gbef.Select.Add("OBJECT_ID", role, false);
gbef.Select.Add("STATE", role, false);

query.-RunQ;

//Creates an object within the context

var objsData = Context.CreateObject("SmRecList.SmRecordList");
//Refers to the SmSession created by the context

var objs =
Context.SmSession.ObjectStore.ObjectsFromData(query -QueryResult,true);

var 1, n;

var o;

for (i = 0; i < objs-Count; i++) {
0 = objs.item(i)-Clone(Q;
o-AddAlIAttributes();
o-RetrieveAttributes();
n = objsbData.AddRecord();
objsData.CopySmRecord(o-data, n);

}

//Tells the system to return objsData to the client in the ExecuteResponse
method.

Context.Result = objsData;

15

SmarTeam |-PLATFORM SDK Programmer’s Guide

Using Parameters in a Script

A client can provide parameter values to a script running on the server,
similar to using arguments in a function call.

The IConnectionModel . execute method packages the parameters
specified by its params argument and sends them together with the script to
the server.

The client creates the params argument using the class Parameter. The class
Parameter encapsulates the actual parameter object and its name as a pair. The
constructor of the Parameter class accepts the parameter name and the
parameter value, which is of type Object (you can pass primitive types by
casting them to an Object first.) The params argument is an array of
Parameter objects, one item for each parameter required.

The script accesses a parameter value through the Context method Params,
which takes a parameter name as an argument. For example:

Date = Context.Params("DateParam™);

The method returns the value of the parameter corresponding to the parameter
name DateParam and can be used anywhere in the script.

Parameters can have all supported data types except the URL, RecordList and
XML types (see Table 1 for supported data types).

Example:

// simple script with parameters example
Parameter[] params = new Parameter[2];

// create parameter with name “A” and value 5
params[0] = new Parameter(’'A", new Integer(5));
params[1] = new Parameter(*'B", new Integer(5));

String script = "var sum;\n"'+
“'sum = Context.Params(“A”) + Context.Params(“B”);\n"+
""Context.Result = sum;\n"";

16

Chapter 3: Writing a Script

Supported Data Types

A script can return a value to the calling client by assigning the value to the
Result property of the Context object.

For example:
Context.Result = 7
The client receives the value 7 as a response to the script execution request.

The following table lists the server-side value types that can be assigned to
the Result property, and their equivalent Java types as received by the client.

Table 1 Supported Return Data Types

Server Type Client Java Type

Integer java.lang.Integer

Short java.lang.Short

Byte java.lang.Byte

Float java.lang.Float

Double java.lang.Double

Boolean java.lang.Boolean

Date java.sgl.Date

Time java.sql.Time

Datetime java.sgl. Timestamp

String java.lang.String

URL com.smarteam.client.api.URL (URL and caption)
Record list com.smarteam.client.api.IMutableRecordList
XML org.w3c.dom.NodeL.ist

17

SmarTeam I-PLATFORM SDK Programmer’s Guide

4 Record List Package \

This chapter describes the Record List Package of the Embedded-
Scripts Client Library.

The major objects are:

e RecordList

e Record
e Columns
e Column

Each of these objects is read-only, but each has a corresponding mutable
(read/write) object, designated by the prefix Mutable.

Record List Objects

The JavaClient package provides two record list types:
IMutableRecordList and IRecordList.

The purpose of these Record List objects is to allow the client to work
with record list data objects that are similar to those in the SmarTeam
API (see SmarTeam Object Model Programmer’s Guide for information
about the RecordL.ist data type in SmarTeam).

For example, a client can request that SmarTeam return information to
him in a Record List (see the Examples in Embedded-Scripts Engine.)

The IMutableRecordList is provided for working with and modifying
the data in the record list. The IRecordList is provided when you want
to read data while preserving it.

The two Record List objects are similar in structure. The main
difference is that you can create read-only objects from the read-write
objects but not vice versa.

18

Chapter 4: Record List Package

IMutableRecordList

The following figure shows the object diagram for the
IMutableRecordList Object.

IMutableRecordList

IRecordListlterator

IMutableRecord

IMutableColumns

IRecord

IMutableColumns

IMutableColumn

DisplayName

Name

Type

IColumn

IRecordList

Figure 2 IMutableRecordList Object Diagram

19

SmarTeam |-PLATFORM SDK Programmer’s Guide

The following objects can be obtained from the IMutableRecordList

object:

Object

Description

IRecordListlterator

You obtain a IRecordListlterator by one of the
four methods:

e iterator

e (etlterator

e getFilteredlterator
e getSortedlterator

The iterator returns IMutableRecord objects.

IMutableColumns

The getColumns() method returns the set of
columns associated with the record list.

IRecordList The getRecordList() method returns a copy of
the current record list as a (read-only)
IRecordList.

Methods

The IMutableRecordList object has the following methods:

Method Description

addRecord() Add an IMutableRecord to the record list.

Size() Number of records

iterator() Returns an Iterator

getlterator(boolean
synchronize)

Returns a simple IRecordListlterator

getFilteredlterator
(ICondition condition,
boolean synchronize)

Returns a filtered IRecordListlterator. The
filtered iterator retrieves records from the

RecordList that satisfy the condition specified by

ICondition.

getSortedlterator
(Comparator comparator,
boolean synchronize)

Returns a sorted IRecordListlterator. The sorted
iterator retrieves records from the RecordList
sorted according to the Comparator object.

20

Chapter 4: Record List Package

IMutableRecord
The following objects can be obtained from the IMutableRecord object:

Object Description

IMutableColumns The getColumns() method returns the set of columns
associated with the record list.

IRecord The getRecordList() method returns a copy of the
current record as a (read-only) IRecord.

Setting and Getting Record Values

The IMutableRecord object has the following methods for setting and
getting values of the record:

Method Description
setValue(index, newValue) Sets the value of a specific location in the
record.

setValueByName(columnName, | Sets a value in the record according to the

newValue) attribute’s name

setValueAs[Boolean, Byte, Sets a value with casting of simple types to

Double, Float, Int, Long, Short] | objects. (No need to cast int to Integer

(index, newValue) object)

getValue(index) Returns the value of the attribute in this
location

getValueByName(columnName) | Returns the value of the attribute with this

name
getValueAs[Boolean, Byte, Returns the value, which casts back to
Double, Float, Int, Long, Short] | simple values instead of objects (int instead
(index) of an Integer object)

21

SmarTeam [-PLATFORM SDK Programmer’s Guide

IRecordList

The following figure shows the object diagram for the IRecordList
Object.

IRecordList

IRecordListlterator

IRecord

L IColumns

L IColumns

IColumn

DisplayName

Name

Type

Figure 3 IRecordList Object Diagram

IRecordList and its associated interfaces are a read-only version of the
IMutableRecordL.ist object. They are used in the same way, with the
following exceptions:

e All getValue methods work as in the IMutableRecord object; the
setValue methods do not. You cannot set the values of an IRecord
object; you can only read them.

e You cannot create an |MutableRecordList, IMutableRecord or
IMutableColumn from an IRecordList, IRecord or IColumn object.

22

Chapter 4: Record List Package

Package Events
The package has four event types:

ColumnsChangeEvent - Fires on change of Columns object
RecordChangeEvent - Fires on change of Record object

RecordListChangeEvent - Fires on change of RecordList
object, such as adding a record to the RecordL.ist

RecordListValueChangeEvent - Fires on change of a record in
a RecordList

All events have a stop () method that can be called by the listener to
prevent the action from occurring. The event source checks the event
stop flag before executing the action.

ColumnsChangeEvent

Creation
ColumnsChangeEvent(Object source, Object columnChanged)

Listener methods:

Method Description

columnBeforeAdd Called before adding a column
columnAfterAdd Called after adding a column
columnBeforeRemove Called before removing a column
columnAfterRemove Called after removing a column

23

SmarTeam |-PLATFORM SDK Programmer’s Guide

RecordChangeEvent

Creation:
RecordChangeEvent(Object source, int index)

Listener methods:

Method Description
valueBeforeChange Called before changing a record value
valueAfterChange Called after changing a record value

RecordListChangeEvent

Creation:
RecordListChangeEvent(Object source, Object recordChanged)

Listener methods:

Method Description

recordBeforeAdd Called before adding a record
recordAfterAdd Called after adding a record
recordBeforeRemove Called before removing a record
recordAfterRemove Called after removing a record

RecordListValueChangeEvent

Creation:

RecordListValueChangeEvent(Object source, Object recordChanged,
int index)

24

Chapter 4: Record List Package

Listener methods:

Method Description

valueBeforeChange Called before changing a record value in the
record list

valueAfterChange Called after changing a record value in the record
list

Common Tasks

The following sections describe methods and properties that are used to
perform common tasks in client applications.

IMutableRecordList:

Creating and setting values

// Create new record list object

IMutableRecordList recordList = new MutableRecordList();
// Set the columns for the new record list
IMutableColumns mutableColumns = recordList.getColumns();
IMutableColumn column;

column = mutableColumns.addColumn(**ID"", Integer.class);
column_setDisplayName(*'worker 1D');

// Add record
IMutableRecord record;
record = recordList.addrRecord();
// Fill values to the newly added record
try {
record.setValueByName(*'ID"*, integerObject);
} catch (MutableRecordException €) {
// integerObject is not of type Integer ...

}

25

SmarTeam |-PLATFORM SDK Programmer’s Guide

IMutableRecordList:
Usage of ICondition interface and filtered iterators

// A condition class to find all records with Age column greater than
two.

public class GreaterThenTwo implements com.smarteam.client._util._ICondition

{
public boolean evaluate(Object object) {

IMutableRecord record = (IRecord)object;
return ((Integer)record.getValueByName(''Age'")) - intValue() > 2;

}
}

com.smarteam.client_util._ICondition condition = new GreaterThenTwo();
// Obtain a disconnected filtered iterator from the RecordList

IRecordListlterator iterator = recordList.getFilteredlterator(condition,
false);

IMutableRecord tmpRecord = null;
// Loop all records
while (iterator._hasNext()) {
// Get record and change it’s value
tmpRecord = (IMutableRecord)iterator.next();
tmpRecord. setValueByName(*'someField”, newvalueForAllRecords);

}

26

SmarTeam I-PLATFORM SDK Programmer’s Guide

A Embedded-Scripts Engine

This appendix describes the SmarTeam i-Platform Application Server
and covers the topics:

e Embedded-Scripts Engine
e Context Expiry

Embedded-Scripts Engine

The Embedded-Scripts Engine object creates a client context and
executes a client script in the context.

The Embedded-Scripts Engine Web Service has the following methods:

Method Description

CreateContext Opens a Context in SmarTeam in which the client

(ConnectionString) can work. Returns a ContextHandle that specifies the
context in method CreateContextResponse

Execute Executes a script in the Context specified by the

(ContextHandle, ContextHandle. Parameter values are passed to the

ScriptLanguage, Script, | script through Params. Returns an execution result in

Params) method ExecuteResponse

ReleaseContext Releases the Context specified by the

(ContextHandle) ContextHandle.

Note: These methods are generally not accessed directly by the user. They are
activated indirectly by client requests.

The Embedded-Scripts Engine is described by the WSDL (Web Service
Description Language) document installed with the SDK. Access the
document at: http://localhost/smarteam/api/embeddedscripts/1.0/wsdl/

27

http://localhost/smarteam/api/embeddedscripts/1.0/wsdl/

SmarTeam |-PLATFORM SDK Programmer’s Guide

Passing Parameters to a Script

The Params parameter in the Context object has the server-side data
structure type IDictionary. The IDictionary structure holds data pairs,
which represent parameters in the script passed in the Script parameter
of the same Execute method call.

Each pair in the IDictionary data structure consists of a parameter key
(name) represented by a string and a parameter value. The parameter
value is accessed in the client script by using the parameter key in the
Context method params, for example:

Context.Params("DateParam®);

See the example below of how parameters are passed in the Execute
method.

For information, see the section Using Parameters in a Script on page
16.

Examples

The following sections present examples of SOAP-encoded client
requests to be executed by an Embedded-Scripts Engine and the
corresponding results.

Embedded-Scripts Engine:
Creating a Context

The following is an example of a CreateContext SOAP request. The
CreateContext method is sent together with the ConnectionString
parameter.

<SOAP-ENV:Envelope xmlns:SOAP-

ENC=""http://schemas.xmlsoap.org/soap/encoding/"" xmlns:SOAP-
ENV=""http://schemas . xmlsoap.org/soap/envelope/'*>

<SOAP-ENV:Body xmlns:xsd=""http://ww._w3.0org/2001/XMLSchema’*
xmins:xsi="http://wmw.w3.0rg/2001/XMLSchema-instance"">

<STES:CreateContext xmIns:STES="
http://ww.smarteam.com/dev/ns/iplatform/embeddedscripts'>

<ConnectionString
xsi s type=""xsd:string">Protocol=SmarTeam;DatabaseName=SmDem
0;Username=joe;UserPassword=;</ConnectionString>

</STES:CreateContext>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

28

Appendix A: Embedded Scripts Engine

The following is an example of a response to the CreateContext method
request. This method returns the ContextHandle for the Context that was
created.

<SOAP-ENV:Envelope xmlns:SOAP-

ENV=""http://schemas . xmlsoap.org/soap/envelope/'* SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" ">

<SOAP-ENV:Body>
<STES:CreateContextResponse xmIns:STES=""
http://ww_smarteam.com/dev/ns/iplatform/embeddedscripts'
xmins:xsi="http://mw.w3.0org/2001/XMLSchema—-instance™
xmIns:xsd=""http://mw.w3.org/2001/XMLSchema’ >

<STES:return xsi:type="xsd:string'>1025</STES:return>
</STES:CreateContextResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Embedded-Scripts Engine:
Executing a Script

This section contains an example of the Execute method. The
parameters ContextHandle, ScriptLanguage, and Script are sent.

<SOAP-ENV:Envelope xmlIns:SOAP-
ENC=""http: //schemas . xmlsoap.org/soap/encoding/** xmlns:SOAP-
ENV=""http://schemas.xmlsoap.org/soap/envelope/'>

<SOAP-ENV:Body xmlns:xsd="http://ww.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://mw.w3.0rg/2001/XMLSchema-instance'">

<STES:Execute
xmlns:STES=""http://wmww.smarteam.com/dev/ns/iplatform
/embeddedscripts"

xmlns:sof=""http://wmw. smarteam.com/dev/ns/SOF/2.0"">

<ContextHandle>513</ContextHandle>
<ScriptLanguage>JavaScript</ScriptlLanguage>
<Script>

<I[CDATA[var query =
Context.SmSession.ObjectStore.NewQuery(Q;

var gDef = query.QueryDefinition;

var role = "F";

gbef._Roles_Add(1, role);
gpef.Select.Add("CLASS ID*", role, false);
gbef._Select Add("OBJECT_ID", role, false);

29

SmarTeam |-PLATFORM SDK Programmer’s Guide

gbef._Select Add("STATE", role, false);

query.RunQ;

var objsData =
Context.CreateObject("SmRecList.SmRecordList™);

var objs =
Context.SmSession.ObjectStore.ObjectsFromData(query
-QueryResult, true);

var i, n;
var o;
for (i =0; 1 <2; i+) {
o0 = objs.item(i)-Clone(Q);
o.AddAlIAttributes();
o-RetrieveAttributes();
n = objsbata.AddRecord();
objsData.CopySmRecord(o.data, n);
}
Context.Result = objsData;
11>
</Script>
<Params SOAP-ENC:arrayType="sof:Dictionaryltem[0]"/>
</STES:Execute>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

The following is an example of the response to the Execute method
request. This method returns a result, which was requested by the
Context method Result in the previous example.

<SOAP-ENV:Envelope xmlns:SOAP-
ENV=""http://schemas . xmlsoap.org/soap/envelope/"*
xmlns:xsd=""http://mw.w3.0org/2001/XMLSchema’
xmins:xsi="http://mw.w3.org/2001/XMLSchema-instance™ SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" ">
<SOAP-ENV:Body>
<STES:ExecuteResponse xmIns:STES="http://wmw.smarteam.com/dev/ns/
iplatformvembeddedscripts"
xsi - type=""STES:ExecuteResponse""
xmIns:sof=""http://ww.smarteam.com/dev/ns/SOF/2.0"
sof:Version="1.0"">

<STES:return xsi:type="sof:RecordList'™>

30

Appendix A: Embedded Scripts Engine

<Headers>
<Header>
<Name>CLASS_ I1D</Name>
<Type>xsd:short</Type>
</Header>
<Header>
<Name>0BJECT__ID</Name>
<Type>xsd: int</Type>
</Header>
<Header>
<Name>CN_PROJECT__1D</Name>
<Type>xsd:string</Type>
</Header>
<Header>
<Name>STATE</Name>
<Type>xsd: int</Type>
</Header>
<Header>
<Name>CREATION_DATE</Name>
<Type>xsd:dateTime</Type>
</Header>
<Header>
<Name>CN_DESCRIPT ION</Name>
<Type>xsd:string</Type>
</Header>
<Header>
<Name>USER_OBJECT _ID</Name>
<Type>xsd: int</Type>
</Header>
<Header>
<Name>USER_ID_MOD</Name>
<Type>xsd: int</Type>
</Header>
<Header>
<Name>MODIFICATION_DATE</Name>
<Type>xsd:dateTime</Type>
</Header>
<Header>
<Name>CN_TARGET_DATE</Name>
<Type>xsd:date</Type>
</Header>
<Header>

<Name>CN_TOTAL_BUDGET</Name>

31

SmarTeam |-PLATFORM SDK Programmer’s Guide

<Type>xsd: int</Type>

</Header>
<Header><Name>CN_MANAGER</Name>
<Type>xsd:string</Type>

</Header>

<Header>
<Name>CN_COST</Name>
<Type>xsd:string</Type>

</Header>

<Header>
<Name>CN_START DATE</Name>
<Type>xsd:date</Type>

</Header>

<Header>
<Name>CN_PRIORITY</Name>
<Type>xsd: int</Type>

</Header>

<Header>
<Name>TDM_SF SECURE_LVL</Name>
<Type>xsd: int</Type>

</Header>

<Header>
<Name>TDM_SF_SERVICE</Name>
<Type>xsd: int</Type>

</Header>

</Headers>
<Records>

<Record>
<Value>459</Value>
<Value>2</Value>
<Value>Project-0001</Value>
<Value>0</Value>
<Value>1998-12-8T13:34:41.0Z</Value>
<Value>Snow Mobile Design - SolidWorks</Value>
<Value>1</Value>
<Value>1</Value>
<Value>2000-1-4T13:15:23.0Z</Value>
<Value>1999-6-11</Value>
<Value>800000</Value>
<Value>Natan</Value>
<Value>500000</Value>
<Value>1999-1-18</Value>
<Value>5</Value>

32

Appendix A: Embedded Scripts Engine

<Value>0</Value><Value>-2147483647</Value>

</Record>
<Record>

<Value>459</Value>

<Value>3</Value>
<Value>Project-0002</Value>
<Value>0</Value>
<Value>1998-12-8T13:43:37.0Z</Value>
<Value>Shock Pivot Plate</Value>
<Value>1</Value>

<Value>1</Value>
<Value>1999-2-16T15:25:28_0z</Value>
<Value>1999-3-18</Value>
<Value>350000</Value>
Value>Avi</Value>
<Value>300000</Value>
<Value>1999-1-11</Value>
<Value>5</Value>

<Value>0</Value>
<Value>-2147483647</Value>

</Record>

</Records>
</STES:return>
</STES:ExecuteResponse>

</SOAP-ENV :Body></SOAP-ENV : Envelope>

Embedded-Scripts Engine:
Executing a Script with Parameters

This section contains an example of the Execute method with the
Params parameter. The Params parameter sets up the parameters for the
Runtime methods in the script. When the Runtime method Params is
invoked, it refers to the parameters set up in the Params parameter of the

Execute function.
<SOAP-ENV:Envelope xmlns:SOAP-

ENC=""http://schemas.xmlsoap.org/soap/encoding/"" xmlns:SOAP-
ENV=""http://schemas . xmlsoap .org/soap/envelope/'*>
<SOAP-ENV:Body xmlns:xsd=""http://ww._w3.0org/2001/XMLSchema’*
xmins:xsi="http://mw.w3.0org/2001/XMLSchema-instance"">
<STES:Execute xmlns:STES=""http://ww.smarteam.com/dev/ns/
iplatform/embeddedscripts’
xmlIns:sof="http://ww.smarteam.com/dev/ns/SOF/2.0"">

<ContextHandle>1537</ContextHandle>

33

SmarTeam |-PLATFORM SDK Programmer’s Guide

<ScriptlLanguage>JavaScript</ScriptlLanguage>

<Script><![CDATA[Context.Result =
Context.Params("DateParam™) ;]]></Script>

<Params SOAP-ENC:arrayType=""sof:Dictionaryltem[1]"">
<sof:Dictionaryltem>
<key xsi:type="xsd:string'>DateParam</key>
<value xsi:type="xsd:date"">2001-09-20</value>
</sof:Dictionaryltem>
</Params>
</STES:Execute>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The following is an example of the response to the Execute method.
This response returns a result which was requested by the Context
methods in the script line: Context.Result =
Context.Params(‘DateParam’)
<SOAP-ENV:Envelope xmlns:SOAP-
ENV=""http://schemas . xmlsoap.org/soap/envelope/""
xmIns:xsd=""http://ww.w3.0rg/2001/XMLSchema’"
xmIns:xsi="http://ww.w3.0rg/2001/XMLSchema-instance' SOAP-
ENV:encodingStyle=""http://schemas . xmlsoap.org/soap/encoding/"">
<SOAP-ENV:Body>
<STES:ExecuteResponse xmlns:STES="http://ww.smarteam.com/dev/ns/
iplatform/embeddedscripts’
xsi :type=""STES:ExecuteResponse"’
xmins:sof="http://wmw.smarteam.com/dev/ns/SOF/2_0"
sof:Version="1.0"">

<STES:return xsi:type="xsd:date">2001-9-20</STES: return>
</STES:ExecuteResponse>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

Embedded-Scripts Engine:
Releasing a Context

The following is an example of the ReleaseContext method. The
ReleaseContext method is sent after you have finished working with the
Context.

<SOAP-ENV:Envelope xmlns:SOAP-
ENC=""http://schemas . xmlsoap.org/soap/encoding/"" xmlns:SOAP-
ENV=""http://schemas . xmlsoap.org/soap/envelope/'>

<SOAP-ENV:Body xmlns:xsd=""http://ww._w3.0rg/2001/XMLSchema’*
xmIns:xsi="http://mw.w3.0rg/2001/XMLSchema-instance'">

34

Appendix A: Embedded Scripts Engine

<STES:ReleaseContext xmlns:STES="http://ww._smarteam.com/dev/ns/
iplatform/embeddedscripts'>

<ContextHandle xsi :type=""xsd:string'">1025</ContextHandle>
</STES:ReleaseContext>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

The following is an example of the response to the ReleaseContext
method request. This response is sent to verify that the Embedded-
Scripts Engine released the Context.

<SOAP-ENV:Envelope xmlns:SOAP-
ENV=""http://schemas . xmlsoap.org/soap/envelope/'* SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" ">
<SOAP-ENV:Body>
<STES:ReleaseContextResponse

xmIns:STES=""http://ww.smarteam.com/dev/ns/
iPlatform/EmbeddedScripts'>

</STES:ReleaseContextResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Context Expiry

A Context that has no activity — and has not been released by the
ReleaseContext method — is automatically released by the server after it
expires. This prevents Contexts accumulating on the server if the client does
not send the ReleaseContext request at the end of each session.

The expiration time is set through the Registry value

“ContextExpirationTime”, under the following Registry key:
HKEY_LOCAL_MACHINE\Software\SmarTeam\iPlatform\EmbeddedScripts\

where ContextExpirationTime is the time, in minutes, from when
activity on the Context ceases until the Context expires and is released. The
default value is 30 minutes.

When the value is set equal to 0 (zero) the expiry mechanism is disabled
and, as a result, the Context does not expire automatically.

35

	Overview of SDK Components
	Embedded-Scripts Client Library
	Embedded-Scripts Connection Package
	Record List Package

	SmarTeam i-Platform Application Server
	SmartInetUtils Library
	Network Architecture
	Overview of Objects and Interfaces
	IConnectionModel Interface
	SOAP-Based Implementation

	Using the IConnectionModel
	Uploading and Downloading Files
	Uploading an Attached File
	SmartInetUtils.SmDownloadManager
	ISmDownloadInfo
	Examples

	Scripts
	The Context Object
	Common Tasks

	Using Parameters in a Script
	Supported Data Types
	Record List Objects
	IMutableRecordList
	IMutableRecord
	IRecordList
	Package Events
	ColumnsChangeEvent
	RecordChangeEvent
	RecordListChangeEvent
	RecordListValueChangeEvent

	Common Tasks

	Embedded-Scripts Engine
	Passing Parameters to a Script
	Examples

	Context Expiry

