

EEENNNOOOVVVIIIAAA SSSMMMAAARRRTTTEEEAAAMMM

Customizing Using Server-Side
Hooks for

Server-Based Applications

Programmer’s Guide

i

ENOVIA SmarTeam | Dassault Systémes
www.smarteam.com
www.3ds.com

Important Notice
© Dassault Systèmes, 2004, 2008. All rights reserved.
CATIA, ENOVIA, SMARTEAM and the 3DS logo are registered trademarks of Dassault
Systèmes or its subsidiaries in the US and/or other countries.

PROPRIETARY RIGHTS NOTICE: This documentation is the property of Dassault Systèmes.
This documentation shall be treated as confidential information and may only be used by
employees or contractors of the Customer in accordance with the terms of the End-User License
Agreement accepted by Customer.

Any use of the Licensed Program contained in this media or accompanying it, is subject to the
terms of the End User License Agreement accepted by Customer. The Licensed Program is
protected by international copyright laws and international treaties. Unauthorized use,
reproduction and/or distribution of any of the Licensed Program, or any part thereof, may result
in severe civil and/or criminal penalties, and will be prosecuted to the maximum extent possible
under the law. Company names and product names mentioned herein are the property of their
respective owners and certain portions of the Licensed Program contain elements subject to
copyright owned by these entities. See the Documentation CD provided with the Licensed
Program for details and/or additional terms and conditions relating to these entities.

iii

Part Number: API-A2-180007

Table of Contents
Important Notice .. iii
Table of Contents ... iv

1. Introduction .. 1-1

Script Hooks in Server-Based Applications... 1-1
Setting Server Mode for an Application .. 1-2
Using SmarTeam Hooks in Server Mode .. 1-2
SmarTeam Hooks Available in Server Mode .. 1-3

Two SmarTeam Hook Interfaces ... 1-5

2. Quick Start.. 2-1

3. Standard SMARTEAM Hook Interface... 3-1

Naming Hook Functions .. 3-1
Running a Function not Specified in SmarTeam 3-4

Hook Function Parameters ... 3-4
Library-Specific Hooks .. 3-7

Packaging the Hook Functions into an Interface Object.............................. 3-9
Integrating the COM Component... 3-9

4. Low-Level SMARTEAM Hook Interface ... 4-1

Implementing the Interface Class ISmServerHook...................................... 4-1
Hook Types .. 4-2
Init Method... 4-4
Type1HookExists Method.. 4-4
Type1Execute Method ... 4-6
Type2HookExists Method.. 4-8
Type2Execute Method ... 4-8
Running a Function not specified in SmarTeam.................................... 4-10
Naming Hook Functions .. 4-11
Hook Function Parameters ... 4-11
Packaging the Functions into an Interface Object.................................. 4-11

iv

Integrating the COM Component... 4-11

 Using SmarTeam Hooks in Server Mode

v

1. Introduction

This document describes how to use the SmarTeam API in Server Mode. In
particular, it describes interface mechanisms provided by SmarTeam to allow
you to use the SmarTeam hooks in Server Mode.

Any application that works in Server Mode uses the server-side hooks
described in this document. Examples are: SmartWeb, EmbeddedScript, and
any user application for which the ServerMode flag is set to True.

This document assumes that you are familiar with the following topics, which
are described in the documents Script Hooks and COM API Programmer’s
Guide:

� Script event hooks, on which scripts can be attached
� The two types of script hooks, generic and library-specific, and the format

of the script argument structure for each type of hook
� Recommendations on how to write a script

1-1

Script Hooks in Server-Based Applications
The mechanism by which script hooks are activated in server-based
applications is different from that of client-based applications.

In client-based applications, the scripts are registered in the Script
Maintenance facility on the client side and are invoked by the client-side
application. See the document Client-Side Hooks for Client-Based Application
for more information.

In server-based applications, the code is located on the server-side along with
the application. When the client activates an operation on the server
application that involves calling a hook, the server application calls the
relevant code.

The diagram below shows how the mechanism works.

SmartTeam
Server-Based

Product
or

User-Application

SmarTeam API User-Written Script
(DLLs)

SmarTeam
Database

Script
Maintentance
Flow Designer
Form Designer

Client

Server Side

Client Side

Figure 1 Script Hooks in SmarTeam Server-Side Applications

Setting Server Mode for an Application

An application using the SmarTeam API can initialize SmarTeam to work in
Server Mode by setting the property ServerMode of the
SmFreeThreadedEngine object to True:
SmEngine.ServerMode = True

For more information about the ServerMode property, see the SmarTeam API
documentation.

1-2

Using SmarTeam Hooks in Server Mode

You use SmarTeam hooks in Server Mode differently than you do in Stand-
alone Mode in several important ways. These are listed below and detailed in
the following sections:

 Using SmarTeam Hooks in Server Mode

1-3

� The term “hook function” is used to refer to the code that is attached to a
SmarTeam hook.

� Existing BasicScripts scripts that work in non-Server Mode will not operate
in Server Mode. They need to be converted using COM-compatible
scripting language such as VBScript or into a COM-compatible
development tool such as Visual Basic.

� You can run hook functions that were not configured in SMARTEAM by
specifying the hook’s event-based name, following the convention
described in the section Naming Hook Functions.

� You cannot use any of the SmarTeam GUI-based hooks, such as hooks for
Controls and Forms Events, in Server Mode

SmarTeam Hooks Available in Server Mode

The same set of script hooks are available for use in the Server Mode as in the
non-Server Mode, except for those hooks involving a GUI.

Note: For Life-Cycle Operations 1 and 2, the scripts are hooked from
the Parent (Common) Class

The following is a list of hooks available in the Server Mode:

Table 1 1Script Hooks for SmarTeam Operations

Operation in Script Maintenance Stage

 Before After InsteadOf

Database Operations on Objects

Add X X X

Add As Copy X X X

Update X X X

Delete X X X

1 Note that a SmarTeam server application may not implement all of these Server Hooks. Check
the documentation for the server application to see which Server Hooks are implemented.

Script Hooks for Individual Life-Cycle Operations

Check Out X X X

Undo Check Out X X X

Check In X X X

Release X X X

NewRelease X X X

Obsolete X X X

Copy File X X X

Script Hooks for Group Life-Cycle Operations

Life-Cycle Stage 1 X X X

Life-Cycle Stage 2 X X

File Operations

Edit X X X

View X X X

RedLine X X X

Print X X X

Copy File X X X

Authorization Operations

OnRetrieveObjects X

OnLogin X X

CAD Operations

Object identification for CAD X X

1-4

 Using SmarTeam Hooks in Server Mode

1-5

2WorkFlow Operations
3On Receive

OnSendBefore

OnSendAfter

Two SmarTeam Hook Interfaces
SmarTeam provides two types of hook interfaces that allow you to use
SmarTeam hooks in Server Mode:

� A standard interface, which is simple and easy to use
� A low-level interface for maximum flexibility and control
In the standard interface, you only need to supply the hook functions. You
package them as COM Automation object functions, and you use a specific
function naming convention, as described in the section Naming Hook
Functions. The system executes the hook functions at the appropriate time
according to the fixed rules implemented in the
SmartServerHookStd.SmDispatch module provided by
SMARTEAM.

In the low-level interface, in addition to the hook functions, you need to supply
an object which implements the ISmServerHook interface. In the
implementation, you determine the rules by which the hook functions are
executed. Thus, this interface is useful when you require that the hook
functions execute in a different way than that provided with the standard
interface. For additional details, see the section Low-Level SmarTeam Hook
Interface.

2 See the SmarTeam Object Model Programmer's Guide for information about Workflow Task
scripts.
3 For the StartNode of a Flow Process in Server Mode, use the OnReceive hook instead of the
client-side OnOpen hook.

2. Quick Start

This section provides a quick tutorial of how to attach a function to a
SmarTeam hook in Server Mode using Visual Basic:

1. In SmarTeam, using the Script Maintenance tool, assign a dummy
script named “BeforeUpdateHook” with the generic parameter list to
the “Before Update” hook.

2. Create a new Visual Basic ActiveX DLL project.

3. Create a VB Class named “Sample”.

4. Add a reference to the libraries “SmarTeam Engine Library”
(SmApplic.DLL), “SmarTeam Record List Library”
(SmRecList.DLL), and “Smart Server Hook Library”
(SmartServerHook.TLB)

5. Add a function to the Class called “BeforeUpdateHook” (the same
name as the one assigned in Script Maintenance), with the following
function signature:
Public Function BeforeUpdateHook(

Session As SmApplic.SmSession,

ClassId As Integer,

Operation As Object,

Stage As HookStageEnum,

Str As String,

FirstPar As SmRecList.SmRecordList,

SecondPar As SmRecList.SmRecordList,

ThirdPar As SmRecList.SmRecordList) As ErrorCodeEnum

2-1

6. Add the following sample code in the function body. This example
code allows only the creator of a folder to update it:
Public Function BeforeUpdateHook(

Session As SmApplic.SmSession,

ClassId As Integer,

Operation As Object,

Stage As HookStageEnum,

Str As String,

FirstPar As SmRecList.SmRecordList,

SecondPar As SmRecList.SmRecordList,

ThirdPar As SmRecList.SmRecordList) As ErrorCodeEnum

 Dim Folder As SmApplic.ISmObject

 On Local Error GoTo HandleError

 Set Folder = Session.ObjectStore.ObjectFromData(

 FirstPar.GetRecord(0), True)

 If Folder.Data.ValueAsInteger("USER_OBJECT_ID") =

 Session.UserMetaInfo.UserId Then

 BeforeUpdateHook = ecNone

 Else

 BeforeUpdateHook = ecNotOwned

 End If

 Exit Function

HandleError:

 BeforeUpdateHook = ecGen

End Function

7. Compile the code and register the DLL
Note: The physical location of a COM DLL is not important as

long as you have registered it.

8. Edit the System Configuration and add the following Key value, which
defines the CLSID of the SmartServerHookStd.SmDispatch module
provided with SMARTEAM and always has the same value:
ServerHooks.CLSID={82F7EBD2-61D9-4CEB-8FD8-535EF32DEB2C}

9. Edit the System Configuration and add the following Key value, which
defines the ProgID or CLSID of the custom ActiveX DLL and varies
with the application:
ServerHooks.Init=Project1.Sample

10. In a Server-side SmarTeam -based application that was created by the
user, set SmEngine.ServerMode = True (In Server-side
SMARTEAM applications such as SMARTEAM – Web Editor, this
parameter is already set.) Make sure you use SmFreeThreadedEngine
and not SmEngine.

2-2

The BeforeUpdateHook code will be automatically invoked whenever you
attempt to Update a Persistent Object in the database.

3. Standard SMARTEAM Hook Interface

This section describes the standard SmarTeam hook interface and includes the
following topics:

� Naming hook functions
� Running a hook function that was not specified in SmarTeam
� Hook function parameters
� Packaging the hook functions into a interface object
� Integrating the COM component into SmarTeam

 Naming Hook Functions

In the standard interface, the system recognizes the name of a hook function in
two different forms:

� The name that was specified for the function in SmarTeam
� Standard “event-based” name, which is searched for and recognized by the

system when the event occurs.

Using the name specified in SmarTeam
You can specify the name of a hook function in SMARTEAM in the following
ways:

� For a generic hook – in the Script Maintenance utility
� For a library-specific hook – using the appropriate designer, such as the

Flow Chart Designer.

Using an event-based name
If you did not specify a function name for a hook in SmarTeam, the system
looks for a function name that conforms to an “event-based” naming
convention.

There are two event-based naming conventions corresponding to the two types
of hooks:

� Generic hooks

3-1

� Library-specific hooks

Event-Based Naming for Generic Hooks
For generic hooks, you combine the stage and the SmarTeam operation into a
single event-based name in the following format:

� Before_[OperationName]
� After_[OperationName]
� Instead_[OperationName]

3-2

where OperationName is the internal name for the operation as shown in the
right column of Table 2).

Examples of event_based names are: Before_ADD, Instead_LifeCycle1.
Note: No spaces are allowed in the internal name. Replace any spaces with

underscores.

 Using SmarTeam Hooks in Server Mode

Table 2 Internal Name for SmarTeam Operations

Operation in Script Maintenance Operation Name (Internal Name)

Operations on Objects

Add ADD

Add As Copy (Optional) AddAsCopy

Update UPDATE

Delete DELETE

Scripts for Simple Life-Cycle Operations

Check Out CheckOut

Check In CheckIn

Release Approve

New Release NewRelease

Obsolete Freeze

Undo Check Out UndoCheckOut

Scripts for Advanced Life-Cycle Operations

Life-Cycle Stage 1 LifeCycle1

Life-Cycle Stage 2 LifeCycle2

Scripts for File Operations

Edit Edit

View View

RedLine RedLine

Print Print

Copy File CopyFile

Scripts for Authorization Operations

On RetrieveObjects RetrieveObjects

On Authenticate User OnAuthenticateUser

3-3

Event-Based Naming for Library-Specific Hooks

For Smart Flow event-driven scripts, the system recognizes the following
standard names:

� OnSendBefore
� OnSendAfter
� OnReceive
For a Smart Flow task, unlike a Smart Flow event, the task procedure name
must be defined in the Flow Chart Designer for the system to execute it. If no
such name is found, the system does not look for a standard name. Therefore,
for a Smart Flow task function, you can only use the function name that was
specified in the Flow Chart Designer.

Running a Function not Specified in SmarTeam

Event-based naming lets you run a hook function that was not specified in
SmarTeam. As mentioned above, you do that by including a function in the
COM object with a standard event-based name that denotes the hook event for
which you want the hook function to run. When any hook event occurs,
SmarTeam looks for a hook function with the standard event-based name for
that hook. If you have provided such a function, SmarTeam runs it.

If you want to disable such a hook function so that it doesn’t run when the
event occurs, you need to remove it from the component you have added (or
rename it) and then re-compile and re-register the component.

Note: If you have specified both a name for the hook function in
SmarTeam and also an event-based name, the hook function
with the name specified in SmarTeam is run instead of the
function with the event-based name.

Hook Function Parameters
In the standard interface, the hook function parameters depend on the type of
SmarTeam hook: Generic hooks or library-specific hooks.

Generic Hooks

3-4

For the generic hooks, you use the following COM-based parameters for a
hook function. These parameters are used in Server Mode instead of the
parameters you use in the generic procedural-based hooks that are described in
the Script Hooks document.

 Using SmarTeam Hooks in Server Mode

Table 3 Hook Function Parameters

Parameter Type Description

Session SmApplic.SmSession Current SMARTEAM session

ClassId Integer Class ID under which hook is defined, for example Folders.

Operation SmOperation Operation associated with hook, for example, ADD,
UPDATE

Stage HookStageEnum Stage of hook:

 hsAfter

 hsBefore

 hsInstead

Str String Name of operation

FirstPar SmRecList.SmRecordList Input (see Script Hooks)

SecondPar SmRecList.SmRecordList Input/Output (see Script Hooks)

ThirdPar SmRecList.SmRecordList Output (see Script Hooks)

Return Value ErrorCodeEnum Return value

3-5

Example

This example shows how to use a generic hook function that was defined in
Script Maintenance. It assumes that the function UserIsCreator was defined in
Script Maintenance for the Before Update SmarTeam hook.

UserIsCreator determines if the current user is the creator of the folder being
updated. It can be used to allow the folder to be updated only by its creator.
Public Function UserIsCreator(

Session As SmApplic.SmSession,

ClassId As Integer,

Operation As Object,

Stage As HookStageEnum,

Str As String,

FirstPar As SmRecList.SmRecordList,

SecondPar As SmRecList.SmRecordList,

ThirdPar As SmRecList.SmRecordList) As ErrorCodeEnum

 Dim Folder As SmApplic.ISmObject

 On Local Error GoTo HandleError

 Set Folder = Session.ObjectStore.ObjectFromData(

 FirstPar.GetRecord(0), True)

 If Folder.Data.ValueAsInteger("USER_OBJECT_ID") =

 Session.UserMetaInfo.UserId Then

 UserIsCreator = ecNone

 Else

 UserIsCreator = ecNotOwned

 End If

 Exit Function

HandleError:

 UserIsCreator = ecGen

3-6

End Function

 Using SmarTeam Hooks in Server Mode

Example

This example illustrates how you can use the naming convention to cause a
script to execute even when the user did not define it in Script Maintenance.
This example assumes that the function After_Approve was not defined in
Script Maintenance. It is named with a standard event-based name and
executes each time the hook event After_Approve occurs.
' This function executes in Server Mode on the After_Approve hook

' It prints the list of objects and attributes to the log file

Public Function After_Approve(

Session As SmApplic.SmSession,

ClassId As Integer,

Operation As Object,

Stage As HookStageEnum,

Str As String,

FirstPar As SmRecList.SmRecordList,

SecondPar As SmRecList.SmRecordList,

ThirdPar As SmRecList.SmRecordList) As ErrorCodeEnum

 FirstPar.PrintToFile "Approved objects list", "C:\Approved.log"

 After_Approve = ecNone

End Function

3-7

Library-Specific Hooks

For the library-specific hooks you use exactly the same parameters that you
use for each type of script hook, for example, in Smart Flow (see the document
COM API Programmer’s Guide for the parameters of the SmarTeam Flow
hooks).

3-8

Example

The example illustrates how you can use the naming convention to cause a
library-specific hook script to execute even when the user did not define it in
the Flow Chart Designer. This example assumes that the function OnSendAfter
was not defined in the Flow Chart Designer. It is named using the standard
event-based naming described above and executes each time the hook event
occurs. The function is written with the same parameter list used for the
OnSendAfter script hook functions.

' This function notifies users that a new process is waiting

‘ in the SmartBox

Public Function OnSendAfter(

FlowSession As SmartFlow.SmFlowSession,

FlowProcess As SmartFlow.SmFlowProcess,

Node As SmartFlow.SmNode,

Response As SmartFlow.SmResponse) As ErrorCodeEnum

 Dim Nodes As SmartFlow.SmNodes

 Dim I As Integer

 Dim J As Integer

 Dim Mail As SmartMessages.SmExternalMessage

 Dim MessageStore As SmartMessages.SmMessageStore

 Set MessageStore = FlowProcess.FlowStore.Session.GetService(

 "SmartMessages.SmMessageStore")

 Set Mail = MessageStore.NewExternalMessage

 Set Nodes = Node.GetOutgoingNodes(Response)

 For I = 0 To Nodes.Count - 1

 For J = 0 To Nodes(I).Users.Count - 1

 Mail.AddRecipient Nodes(I).Users.GetUsers(J).

 Data.ValueAsString("USER_EMAIL"), mrTo

 Next

 Next

 Mail.Send False

 OnSendAfter = ecNone

End Function

 Using SmarTeam Hooks in Server Mode

Packaging the Hook Functions into an
Interface Object

The hook functions need to be packaged into an Automation-compatible COM
object. This COM object is required in addition to the
SmartServerHookStd.SmDispatch module provided by SmarTeam, which
controls the execution of the hook functions.

The COM object can be implemented by one of the following methods
� You can continue to use a scripting language like VBScript to produce

a Windows Script Component
� You can implement hook functions using a COM-compatible

development tool such as Visual Basic or Visual C++ and then compile
them to produce a COM component.

For more information about using VBScript to write Windows Script
Components, see http://msdn.microsoft.com/scripting.

Integrating the COM Component
To integrate the COM component you have produced into SmarTeam:

1. Register the COM component you have produced in the Windows Registry

2. Get the CLSID or ProgID for the COM component from the Windows
Registry.

3. Edit System Configuration and add the following Key value, which
defines the CLSID of the SmartServerHookStd.SmDispatch module
provided with SMARTEAM and always has the same value:

ServerHooks.CLSID={82F7EBD2-61D9-4CEB-8FD8-535EF32DEB2C}

4. Edit System Configuration and add the following section, which defines
the ProgID or CLSID of the of the COM component you have produced:

 ServerHooks.Init=ProgID or CLSID

3-9

Example

This example assumes that the ProgID of the COM object you created is
“SampleServerHook.WSC”:
In System Configuration, the Key values are:

ServerHooks.CLSID={82F7EBD2-61D9-4CEB-8FD8-535EF32DEB2C}

ServerHooks.Init=SampleServerHook.WSC

http://msdn.microsoft.com/scripting

4. Low-Level SmarTeam Hook Interface

In addition to the standard SmarTeam hook interface described above,
SmarTeam provides a low-level SmarTeam hook interface in Server Mode.

The low-level interface has the following advantages:

� Flexible hook function naming
� Flexible control – enable and disable hook function execution, determine

execution rules of event-based hook functions and SmarTeam hook
functions

� Higher performance
Note: Since the standard interface meets most requirements, the low-

level interface is usually not required. Using the low-level
interface requires experience in creating COM objects.

This section describes the low-level SmarTeam hook interface and includes the
following topics:

� Implementing the interface ISmServerHook
� Naming SmarTeam hook functions
� Running a hook function that was not specified in SmarTeam
� Hook function parameters
� Packaging the functions into a interface object
� Integrating the COM component into SmarTeam

Implementing the Interface Class
ISmServerHook

The interface ISmServerHook is located in the library SmartServerHook.tlb.

You need to implement the five control methods:

 Init – Executes optional user functions prior to executing event hook
functions.

 Type1HookExists – Determines if hook functions are available for
execution for this Type1 hook

 Type1Execute – Executes the Type 1 hook functions

4-1

 Type2HookExists – Determines if hook functions are available for
execution for this Type2 hook.

 Type2Execute – Executes the Type 2 hook functions

Hook Types

The above methods are divided into Type1 methods and Type2 methods
corresponding to the two types of hooks:

 Type1 hooks – Generic hooks. These can be defined in Script
Maintenance.

 Type2 hooks – Library-specific hooks. These can be defined, for example,
in the Flow Chart Designer

The system runs the Type1Execute and Type1HookExists methods when
Type1 hook events occur. The system runs the Type2Execute and
Type2HookExists methods when Type2 hook events occur.

Function Parameters
These control functions parameters are described in the following table:

Table 4 ISmServerHook Functions

4-2

Function Parameter Type Description

Init None

Type1HookExists Session SmSession Current session

 ClassId Integer Class ID for class under which hook is
defined

 Operation ISmOperation Operation associated with hook, for
example, ADD, UPDATE

 Stage HookStageEnum Stage of hook:

 hsAfter

 hsBefore

 hsInstead

 FunctionName String Name of hook function in Script
Maintenance if it exists there.

 Return Value Boolean If true, SmarTeam runs Type1Execute,
Else
it doesn’t.

 Using SmarTeam Hooks in Server Mode

4-3

Type1Execute Session SmSession Current session

 ClassId Integer Class ID for class under which hook is
defined

 Operation ISmOperation Operation associated with hook, for
example, ADD, UPDATE

 Stage HookStageEnum Stage of hook:

 hsAfter

 hsBefore

 hsInstead

 FunctionName String Name of hook function in Script
Maintenance if it exists there.

 Str String Name of operation

 FirstPar SmRecordList Input (see Script Hooks)

 SecondPar SmRecordList Input, Output (see Script Hooks)

 ThirdPar SmRecordList Output (see Script Hooks)

 Return Value ErrorCodeEnum Error code

Type2HookExists Session SmSession Current SmarTeam session

 HookName String Hook name in Flow Chart Designer or
other Designer:

 OnSendBefore

 OnSendAfter

 OnReceive

 FunctionName String Hook function name in Flow Chart
Designer or other Designer

 Return Value Boolean If true, SmarTeam runs Type2Execute,
Else
it doesn’t.

Type2Execute Session SmSession Current SmarTeam session

 HookName String Hook name in Flow Chart Designer or
other Designer:

 OnSendBefore

 OnSendAfter

 OnReceive

 FunctionName String Hook function name in Flow Chart
Designer or other Designer

 Parameters SmRecord Parameters for this Smart Flow hook
function, packaged into a record (see
COM API Programmer’s Guide)

 Return Value ErrorCodeEnum Error code

The following sections describe the use of these methods.

Init Method

The Init method is executed prior to the hook functions. Put into the Init
method all user functions that need to execute prior to the hook functions.

This example illustrates the use of the Init method

Sub ISmServerHook_Init(ByVal Param As String)

 'MsgBox "Initialize server hooks"

End Sub

When ISmServerHook_Init is called by SMARTEAM, it passes the parameter
Param to the subroutine. The value of Param is the value of the System
Configuration Key ServerHooks.Init.

For example, if the Key value is:
ServerHooks.Init=Project1.Sample

then Param = Project1.Sample.

4-4

Type1HookExists Method

The purpose of the Type1Exists method is to determine whether a hook
function is available to execute for the current event hook. If one is found, the
system runs the Type1Execute Method to execute the function.

 Using SmarTeam Hooks in Server Mode

When the Method is Called
The system calls this method every time any one of the Type1 hook events
occurs. The method parameter FunctionName passes any function name that
has been associated with the current hook event in Script Maintenance. For
example, if the hook function UserIsCreator was defined for the hook event
After_Approve in Script Maintenance, the parameter FunctionName passes
UserIsCreator every time the After_Approve event occurs.

Hook Function Execution Logic

4-5

The function compares FunctionName with a hook function name that is
known by the script writer to have been defined in Script Maintenance. If the
comparison succeeds, the method returns true and the system runs the
Type1Execute method, which executes the function.

If the known hook function name is not identified, the method identifies the
current hook by operation name and event stage. In case an event-based hook
function is available for execution, the script writer has the method set the
return value true. Then, the event-based hook function is run by the
Type1Execute method, as shown below.

By the default program logic, the method searches first for an actual hook
function name and, if not found, it then asks if the current hook is a desired
hook.

However, you can control hook function execution logic by reprogramming
this method. For example, you can have the method always return false and the
hook functions will not execute even if they exist. You do not need to remove
the hook functions themselves from the module.

Example

This example illustrates the use of the Type1Exists method.
Function ISmServerHook_Type1HookExists(

ByVal Session As SmSession,

ByVal ClassId As Integer,

ByVal Operation As ISmOperation,

ByVal Stage As HookStageEnum,

ByVal FunctionName As String) As Boolean

 ‘Check if function name exists in Script Maintenance

 If StrComp(FunctionName, "UserIsCreator") = 0 Then

 ISmServerHook_Type1HookExists = True

 Else

 ‘Check if calling hook is After_Approve

 If StrComp(Operation.Name, "APPROVE") = 0 And Stage = hsAfter Then

 ISmServerHook_Type1HookExists = True

 End If

 End If

End Function

Type1Execute Method

This method is called by the system when the method Type1Exists returns
true. It passes the Type1 hook parameters and executes the hook functions.

Hook Function Execution Logic
By the default program logic, the method searches first for an actual hook
function name and, if not found, then for an event-based name.

However, you can change the hook function execution logic by implementing
this method differently. You can even have both hook functions execute. If
you do change the program logic, you need to coordinate with the program
logic of the Type1Exists method.

Hook Function Naming

4-6

In this low-level interface, the hook function is called explicitly by the method
in the framework of the program logic. Hence, the name of the hook function
that executes doesn’t need to be the same as the name of the hook function in
Script Maintenance, as it does in the standard interface.

The same is true for event-based naming. The event-based hook function is
called explicitly by the method according to the program logic.

Example

This example illustrates the use of the Type1Execute method
Function ISmServerHook_Type1Execute(

ByVal Session As SmSession,

ByVal ClassId As Integer,

ByVal Operation As ISmOperation,

ByVal Stage As HookStageEnum,

ByVal FunctionName As String,

ByVal Str As String,

ByVal FirstPar As SmRecordList,

ByVal SecondPar As SmRecordList,

 Using SmarTeam Hooks in Server Mode

4-7

ByVal ThirdPar As SmRecordList) As ErrorCodeEnum

 Dim Res As ErrorCodeEnum

 Res = ecNone

 If StrComp(FunctionName, "UserIsCreator") = 0 Then

 ' Execute function by function name

 Res = UserIsCreator(Session, ClassId, Operation, Stage, Str,

 FirstPar, SecondPar, ThirdPar)

 Else

 If StrComp(Operation.Name, "APPROVE") = 0 And Stage = hsAfter Then

 'Execute function by hook name

 Res = After_Approve(Session, ClassId, Operation, Stage, Str,

 FirstPar, SecondPar, ThirdPar)

 End If

 End If

 ISmServerHook_Type1Execute = Res

End Function

Type2HookExists Method

The purpose of the Type2Exists method is to determine whether a hook
function is available to execute for the current event hook. If one is found, the
system runs the Type2Execute Method to execute the function.

See the introductory comments to the Type1HookExists method.

Example
Function ISmServerHook_Type2HookExists(

ByVal Session As SmSession,

ByVal HookName As String,

ByVal FunctionName As String) As Boolean

 If StrComp(FunctionName, "BeforeSendFunction") = 0 Or

 StrComp(FunctionName, "ScriptTasks") = 0 Then

 ISmServerHook_Type2HookExists = True

 Else

 If StrComp(HookName, "OnSendAfter") = 0 Then

 ISmServerHook_Type2HookExists = True

 End If

 End If

End Function

4-8

Type2Execute Method

This method is called by the system when the method Type2Exists returns
true. It passes the Type2 hook parameters and executes the hook functions.

For more information, see the introductory section for the Type1Execute
method.

See the notes at the end of the example for specific information about passing
parameters for this method.

Example

This example shows how to execute the Type2 hook functions.
Function ISmServerHook_Type2Execute(

ByVal Session As SmSession,

ByVal HookName As String,

ByVal FunctionName As String,

ByVal Parameters As SmRecord) As ErrorCodeEnum

 Using SmarTeam Hooks in Server Mode

4-9

 Dim Res As ErrorCodeEnum

 Dim ActiveProcess As SmartFlow.SmActiveProcess

 Dim Response As SmartFlow.SmResponse

 Dim Task As Object

 Dim MultiObjects As Object

 Dim FlowSession As SmartFlow.SmFlowSession

 Dim FlowProcess As SmartFlow.SmFlowProcess

 Dim Node As SmartFlow.SmNode

 'Dim Response As SmartFlow.SmResponse

 Res = ecNone

 ‘Check if function name exists in Flow Chart Designer

 If StrComp(FunctionName, "BeforeSendFunction") = 0 Then

 ' Extract hook function parameters from record Parameters

 Set ActiveProcess = Parameters.ValueAsObjectByIndex(1)

 Set Response = Parameters.ValueAsObjectByIndex(2)

 ' Execute hook function with parameters

 Res = BeforeSendFunction(ActiveProcess, Response)

 Res = ecNone

 Else

 ‘Check if current hook is OnSendAfter

 If StrComp(HookName, "OnSendAfter") = 0 Then

 ' Extract hook function parameters from record Parameters

 Set FlowSession = Parameters.ValueAsObjectByIndex(1)

 Set FlowProcess = Parameters.ValueAsObjectByIndex(2)

 Set Node = Parameters.ValueAsObjectByIndex(3)

 Set Response = Parameters.ValueAsObjectByIndex(4)

 'Execute the OnSendAFter hook function with parameters

 Res = OnSendAfterFunction(FlowSession, FlowProcess, Node,

 Response)

 Else

 ‘Check if task name exists in Flow Chart Designer

 If StrComp(FunctionName, "ScriptTasks") = 0 Then

 ' Execute Sub by sub name

 ' Extract task parameters from record Parameters

 Set ActiveProcess = Parameters.ValueAsObjectByIndex(0)

 Set Task = Parameters.ValueAsObjectByIndex(1)

 Set MultiObjects = Parameters.ValueAsObjectByIndex(2)

 'Execute the task hook procedure with parameters

 ScriptTasks ActiveProcess, Task, MultiObjects

 Res = ecNone

 End If

 End If

 End If

 ISmServerHook_Type2Execute = Res

End Function

 Notes
1. The hook function parameters need to be extracted from the SmRecord

“parameters” as shown. The type of hook dictates the parameters that are
passed (refer to the COM API Programmer’s Guide for the actual
parameters required for each event hook..) Therefore, if you execute a
hook function by the FunctionName parameter as in the first if-clause of
the above example, you need to be aware of the type of hook with which
the function is associated in Flow Chart Designer or other Designer in
order to extract the correct parameters.

2. The parameter indexing in SmRecord is different for events than for tasks.
For events, which always correspond to hook functions, the parameters
start with index 1 (Parameters.ValueAsObjectByIndex(1)); for tasks,
which always correspond to hook procedures, the parameters start with
index 0 (Parameters.ValueAsObjectByIndex(0)).

4-10

Running a Function not specified in SmarTeam

Event-based naming lets you run a hook function that was not specified in
either the SmarTeam as in the standard interface. See the description in the
standard interface.

If you want to disable such a hook function so that it doesn’t run when the
event occurs, you don’t need to remove it from the component as in the
standard interface. You can just change the program execution logic in the
control methods so that the function doesn’t run. You still need to re-compile
and re-register the component.

 Using SmarTeam Hooks in Server Mode

Naming Hook Functions

In the low level interface, you have complete flexibility for naming the hook
functions themselves.

The two types of function names described in the standard interface:

� Naming the function according to the name specified in SmarTeam
� Naming the function according to the SmarTeam hook event for which it

runs
are used in the low-level interface in the Type1Exists and Type2Exists control
methods for the logical comparisons and in Type1Execute and Type2Execute
control methods for the execution logic. See the standard interface for a
complete description of these function names.

Hook Function Parameters

In the low-level interface, the parameters you use for the SmarTeam hook
functions depend on the type of SmarTeam hook: generic hooks or library-
specific hooks, as described in the standard interface.

Packaging the Functions into an Interface Object

Normally, the SmarTeam hook functions are packaged with the
implementation of the IsmServerHook class into an Automation-compatible
COM Object. However, you can package them separately if you provide an
appropriate execution mechanism.

Integrating the COM Component

To integrate the COM component you have produced into SmarTeam:

1. Register the COM component you have produced in the Windows Registry

2. Get the CLSID for the COM component from the Windows Registry.

3. In the value of the System Configuration Key ServerHooks.CLSID,
specify the CLSID of the COM component you have produced.

4-11

Example
ServerHooks.CLSID={82F7EBD2-61D9-4CEB-8FD8-535EF32DEB2D}

	1. Introduction
	Script Hooks in Server-Based Applications
	Setting Server Mode for an Application
	Using SmarTeam Hooks in Server Mode
	SmarTeam Hooks Available in Server Mode

	Two SmarTeam Hook Interfaces

	2. Quick Start
	3. Standard SMARTEAM Hook Interface
	 Naming Hook Functions
	Using the name specified in SmarTeam
	Using an event-based name
	Running a Function not Specified in SmarTeam

	Hook Function Parameters
	Generic Hooks
	Library-Specific Hooks

	Packaging the Hook Functions into an Interface Object
	Integrating the COM Component

	4. Low-Level SmarTeam Hook Interface
	Implementing the Interface Class ISmServerHook
	Hook Types
	Function Parameters

	Init Method
	Type1HookExists Method
	When the Method is Called
	Hook Function Execution Logic

	Type1Execute Method
	Hook Function Execution Logic
	Hook Function Naming

	Type2HookExists Method
	Type2Execute Method
	Running a Function not specified in SmarTeam
	Naming Hook Functions
	Hook Function Parameters
	Packaging the Functions into an Interface Object
	Integrating the COM Component

