Today

Linux on IBM Power: Best Practices in Virtualized Environments
Starting at 10:00 am UK time by Dr. Michael Perzl

Smart Meeting ➔ Put questions into the Chat box or AT&T Toll Free phone for better audio
- 0800-368-0638 = UK Toll Free
- 0203-059-6451 = UK but you pay for the call
- Then 6403785# Participant Code
- Other countries see chat box for the website
- Please Mute with *6

Previous Sessions:
- Linux for AIX/IBM i guys
- PowerKVM Deep Dive
- More Tricks Power Masters
- Power8 from hands-on
- Power up your Linux
- PowerVC
- PowerVP
- SSP4
- Best Practices
- Tricks of Power Masters
- IBMi and External Storage
- Monitoring with ITM
- And more.....

Future Sessions ➔
- To be planned (HMC enhancements, IBM I Licensing, etc)
- Suggestions Welcome

Twitter:
- Gareth Coates @power_gaz
- Nigel Griffiths @mr_nmon
- Jyoti Dodhia @JyotiDodhia
- Mandie Quartly @mandieq

Website: http://tinyurl.com/PowerSystemsTechnicalWebinars
Youtube Channel: http://tinyurl.com/IBMPowerVUGYoutubeChannel
IBM Trademarks

The following are trademarks of the International Business Machines Corporation in the United States, other countries, or both.

Not all common law marks used by IBM are listed on this page. Failure of a mark to appear does not mean that IBM does not use the mark nor does it mean that the product is not actively marketed or is not significant within its relevant market.

Those trademarks followed by ® are registered trademarks of IBM in the United States; all others are trademarks or common law marks of IBM in the United States.

For a complete list of IBM Trademarks, see www.ibm.com/legal/copytrade.shtml:

* AS/400®, e business(logo)®, DBE, ESCO, eServer, FICON, IBM®, IBM (logo)®, iSeries®, MVS, OS/390®, pSeries®, RS/6000®, S/30, VM/ESA®, VSE/ESA, WebSphere®, xSeries®, z/OS®, zSeries®, z/VM®, System i, System i5, System p, System p5, System x, System z, System z9®, BladeCenter®

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.

Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.
Agenda

- Linux on Power vs. Linux on x86
- Netbooting PowerLinux
- Virtual network options for Linux clients
 - Bonding setup
 - Shared Ethernet Adapter (SEA) failover (and load sharing)
- Virtual storage options for Linux clients
 - Multipath I/O with Linux on Power
 - Software RAID with Linux
 - Device discovery with Linux on Power
 - Adding/removing disks, rescan devices
 - Resize of Linux on Power file systems
 - High availability setup with VSCSI
- Setting up a RHEL repository for YUM
- How to obtain information from within a Linux LPAR
- Change number of SMT threads
- Optimizing for Linux on Power
- Resources, Links
Linux on Power vs. Linux on x86
Linux Kernel Design

- Linux has a hardware-independent design
- Monolithic kernel with dynamically loadable extensions (same as AIX)
- APIs and look & feel consistent across all platforms
- Applications and knowledge can easily be transferred from one platform to another

![Linux Kernel Diagram]
Linux kernel statistics

- Source code lines counted with “SLOCCount” by David A. Wheeler

Linux kernel versions

<table>
<thead>
<tr>
<th>Subdirectory</th>
<th>3.12.1</th>
<th>3.10.20</th>
<th>3.4.70</th>
<th>3.2.52</th>
<th>2.6.34.14</th>
<th>2.6.32.61</th>
</tr>
</thead>
<tbody>
<tr>
<td>arch</td>
<td>2018467</td>
<td>2020376</td>
<td>1926105</td>
<td>1877804</td>
<td>1646194</td>
<td>1570168</td>
</tr>
<tr>
<td>block</td>
<td>19163</td>
<td>18465</td>
<td>18279</td>
<td>14433</td>
<td>11235</td>
<td>11065</td>
</tr>
<tr>
<td>crypto</td>
<td>61726</td>
<td>61380</td>
<td>47464</td>
<td>42645</td>
<td>38331</td>
<td>38017</td>
</tr>
<tr>
<td>Documentation</td>
<td>9162</td>
<td>9928</td>
<td>9665</td>
<td>11580</td>
<td>9943</td>
<td>9272</td>
</tr>
<tr>
<td>drivers</td>
<td>6904791</td>
<td>6455093</td>
<td>5768985</td>
<td>5622686</td>
<td>4591328</td>
<td>4323922</td>
</tr>
<tr>
<td>firmware</td>
<td>1876</td>
<td>1876</td>
<td>1876</td>
<td>1876</td>
<td>1865</td>
<td>1865</td>
</tr>
<tr>
<td>include</td>
<td>365800</td>
<td>354560</td>
<td>312358</td>
<td>302256</td>
<td>255012</td>
<td>244563</td>
</tr>
<tr>
<td>init</td>
<td>2551</td>
<td>2509</td>
<td>2446</td>
<td>2394</td>
<td>2273</td>
<td>2261</td>
</tr>
<tr>
<td>ipc</td>
<td>6365</td>
<td>6365</td>
<td>5755</td>
<td>5710</td>
<td>5478</td>
<td>5397</td>
</tr>
<tr>
<td>kernel</td>
<td>136768</td>
<td>135956</td>
<td>123350</td>
<td>121044</td>
<td>102924</td>
<td>98061</td>
</tr>
<tr>
<td>lib</td>
<td>65393</td>
<td>63180</td>
<td>55366</td>
<td>54902</td>
<td>46865</td>
<td>44553</td>
</tr>
<tr>
<td>mm</td>
<td>62654</td>
<td>60457</td>
<td>55366</td>
<td>54902</td>
<td>46865</td>
<td>44553</td>
</tr>
<tr>
<td>net samples</td>
<td>564614</td>
<td>556628</td>
<td>509430</td>
<td>494471</td>
<td>423296</td>
<td>412216</td>
</tr>
<tr>
<td>scripts</td>
<td>2050</td>
<td>1991</td>
<td>1294</td>
<td>1232</td>
<td>814</td>
<td>565</td>
</tr>
<tr>
<td>security</td>
<td>43467</td>
<td>42712</td>
<td>37699</td>
<td>37333</td>
<td>31454</td>
<td>31141</td>
</tr>
<tr>
<td>sound</td>
<td>47522</td>
<td>46418</td>
<td>44847</td>
<td>44186</td>
<td>30965</td>
<td>32059</td>
</tr>
<tr>
<td>tools</td>
<td>589127</td>
<td>580237</td>
<td>536311</td>
<td>534051</td>
<td>438668</td>
<td>413207</td>
</tr>
<tr>
<td>usr</td>
<td>95192</td>
<td>89474</td>
<td>63180</td>
<td>56199</td>
<td>28110</td>
<td>18966</td>
</tr>
<tr>
<td>virt</td>
<td>567</td>
<td>567</td>
<td>567</td>
<td>567</td>
<td>524</td>
<td>524</td>
</tr>
<tr>
<td>Total</td>
<td>1178632</td>
<td>1125669</td>
<td>1021659</td>
<td>9958955</td>
<td>8362068</td>
<td>7921133</td>
</tr>
</tbody>
</table>
Linux kernel versions

<table>
<thead>
<tr>
<th>Subdirectory</th>
<th>3.12.1</th>
<th>3.10.20</th>
<th>3.4.70</th>
<th>3.2.52</th>
<th>2.6.34.14</th>
<th>2.6.32.61</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>41188 2.04%</td>
<td>41034 2.03%</td>
<td>41758 2.17%</td>
<td>41977 2.24%</td>
<td>41693 2.53%</td>
<td>41782 2.66%</td>
</tr>
<tr>
<td>arc</td>
<td>10934 0.54%</td>
<td>11188 0.56%</td>
<td>13098 0.65%</td>
<td>13962 0.78%</td>
<td>15738 0.91%</td>
<td>16072 1.00%</td>
</tr>
<tr>
<td>arm</td>
<td>419447 20.78%</td>
<td>435873 21.57%</td>
<td>486569 25.26%</td>
<td>473688 25.23%</td>
<td>358833 21.80%</td>
<td>302182 19.25%</td>
</tr>
<tr>
<td>arm64</td>
<td>16232 0.80%</td>
<td>13098 0.65%</td>
<td>13962 0.78%</td>
<td>15738 0.91%</td>
<td>17087 1.04%</td>
<td>17031 1.08%</td>
</tr>
<tr>
<td>avr32</td>
<td>16419 0.81%</td>
<td>16483 0.82%</td>
<td>16806 0.87%</td>
<td>16932 0.90%</td>
<td>17087 1.04%</td>
<td>17031 1.08%</td>
</tr>
<tr>
<td>blackfin</td>
<td>91479 4.53%</td>
<td>91123 4.51%</td>
<td>79678 4.14%</td>
<td>79202 4.22%</td>
<td>78116 4.75%</td>
<td>79957 5.09%</td>
</tr>
<tr>
<td>c6x</td>
<td>6668 0.33%</td>
<td>6681 0.33%</td>
<td>6782 0.35%</td>
<td>6908 0.35%</td>
<td>6921 0.36%</td>
<td>6939 0.37%</td>
</tr>
<tr>
<td>cris</td>
<td>69785 3.46%</td>
<td>70005 3.46%</td>
<td>71702 3.72%</td>
<td>71748 3.82%</td>
<td>72218 4.39%</td>
<td>72416 4.61%</td>
</tr>
<tr>
<td>frv</td>
<td>18723 0.93%</td>
<td>18743 0.93%</td>
<td>19075 0.99%</td>
<td>19183 1.02%</td>
<td>19338 1.17%</td>
<td>19532 1.24%</td>
</tr>
<tr>
<td>h8300</td>
<td>78722 3.90%</td>
<td>77455 3.90%</td>
<td>79521 4.13%</td>
<td>79891 4.25%</td>
<td>80253 4.88%</td>
<td>85138 5.42%</td>
</tr>
<tr>
<td>hexagon</td>
<td>5364 0.26%</td>
<td>5399 0.27%</td>
<td>5709 0.30%</td>
<td>5730 0.31%</td>
<td>5730 0.31%</td>
<td>5730 0.31%</td>
</tr>
<tr>
<td>ia64</td>
<td>40057 1.99%</td>
<td>40101 1.98%</td>
<td>40053 2.08%</td>
<td>40183 2.14%</td>
<td>40058 2.43%</td>
<td>40113 2.65%</td>
</tr>
<tr>
<td>m32r</td>
<td>15542 0.77%</td>
<td>15504 0.77%</td>
<td>13722 0.71%</td>
<td>13476 0.72%</td>
<td>13788 0.84%</td>
<td>11434 0.73%</td>
</tr>
<tr>
<td>m68k</td>
<td>13401 0.66%</td>
<td>13570 0.67%</td>
<td>13722 0.71%</td>
<td>13476 0.72%</td>
<td>13788 0.84%</td>
<td>11434 0.73%</td>
</tr>
<tr>
<td>m68knommu</td>
<td>15542 0.77%</td>
<td>15504 0.77%</td>
<td>13722 0.71%</td>
<td>13476 0.72%</td>
<td>13788 0.84%</td>
<td>11434 0.73%</td>
</tr>
<tr>
<td>meta</td>
<td>249469 12.36%</td>
<td>247584 12.25%</td>
<td>189337 9.83%</td>
<td>164230 8.75%</td>
<td>147493 8.96%</td>
<td>139812 8.90%</td>
</tr>
<tr>
<td>microblaze</td>
<td>23202 1.15%</td>
<td>23216 1.15%</td>
<td>23450 1.22%</td>
<td>23644 1.26%</td>
<td>18009 1.09%</td>
<td>18114 1.15%</td>
</tr>
<tr>
<td>mips</td>
<td>5346 0.26%</td>
<td>5399 0.27%</td>
<td>5709 0.30%</td>
<td>5730 0.31%</td>
<td>5730 0.31%</td>
<td>5730 0.31%</td>
</tr>
<tr>
<td>mm10300</td>
<td>40057 1.99%</td>
<td>40101 1.98%</td>
<td>40053 2.08%</td>
<td>40183 2.14%</td>
<td>40058 2.43%</td>
<td>40113 2.55%</td>
</tr>
<tr>
<td>openrisc</td>
<td>15542 0.77%</td>
<td>15504 0.77%</td>
<td>13722 0.71%</td>
<td>13476 0.72%</td>
<td>13788 0.84%</td>
<td>11434 0.73%</td>
</tr>
<tr>
<td>parisc</td>
<td>15542 0.77%</td>
<td>15504 0.77%</td>
<td>13722 0.71%</td>
<td>13476 0.72%</td>
<td>13788 0.84%</td>
<td>11434 0.73%</td>
</tr>
<tr>
<td>powerpc</td>
<td>236687 11.73%</td>
<td>232959 11.53%</td>
<td>220711 11.46%</td>
<td>222123 11.78%</td>
<td>196054 11.91%</td>
<td>188949 12.03%</td>
</tr>
<tr>
<td>s390</td>
<td>54918 2.72%</td>
<td>54409 2.69%</td>
<td>48435 2.51%</td>
<td>47516 2.53%</td>
<td>43173 2.62%</td>
<td>42955 2.74%</td>
</tr>
<tr>
<td>score</td>
<td>5066 0.25%</td>
<td>5101 0.25%</td>
<td>5291 0.27%</td>
<td>5284 0.28%</td>
<td>5324 0.32%</td>
<td>5310 0.34%</td>
</tr>
<tr>
<td>sh</td>
<td>73588 3.65%</td>
<td>73692 3.65%</td>
<td>83527 4.34%</td>
<td>84448 4.50%</td>
<td>81345 4.94%</td>
<td>77166 4.91%</td>
</tr>
<tr>
<td>sparc</td>
<td>89418 4.43%</td>
<td>89447 4.43%</td>
<td>89146 4.63%</td>
<td>89579 4.77%</td>
<td>89492 5.44%</td>
<td>88569 5.64%</td>
</tr>
<tr>
<td>tile</td>
<td>39087 1.94%</td>
<td>35514 1.76%</td>
<td>30214 1.57%</td>
<td>30180 1.61%</td>
<td>24468 1.49%</td>
<td>24614 1.57%</td>
</tr>
<tr>
<td>um</td>
<td>19374 0.96%</td>
<td>19203 0.95%</td>
<td>19446 1.01%</td>
<td>19621 1.04%</td>
<td>24468 1.49%</td>
<td>24614 1.57%</td>
</tr>
<tr>
<td>unicore32</td>
<td>9224 0.46%</td>
<td>9264 0.46%</td>
<td>9717 0.50%</td>
<td>9710 0.52%</td>
<td>9710 0.52%</td>
<td>9710 0.52%</td>
</tr>
<tr>
<td>x86</td>
<td>212153 10.51%</td>
<td>210170 10.40%</td>
<td>182514 9.48%</td>
<td>176493 9.40%</td>
<td>159999 9.72%</td>
<td>154914 9.87%</td>
</tr>
<tr>
<td>xtensa</td>
<td>17163 0.85%</td>
<td>17036 0.84%</td>
<td>14851 0.77%</td>
<td>14951 0.80%</td>
<td>15121 0.92%</td>
<td>15163 0.97%</td>
</tr>
<tr>
<td>Total</td>
<td>2018467</td>
<td>2020376</td>
<td>1926105</td>
<td>1877804</td>
<td>1646194</td>
<td>1570168</td>
</tr>
</tbody>
</table>
Linux kernel statistics, hardware dependent code

Power Linux kernel = Total LoC of Linux kernel
– “arch subdirectory”
+ “powerpc” subdirectory

<table>
<thead>
<tr>
<th>Linux kernel versions</th>
<th>3.12.1</th>
<th>3.10.20</th>
<th>3.4.70</th>
<th>3.2.52</th>
<th>2.6.34.14</th>
<th>2.6.32.61</th>
</tr>
</thead>
<tbody>
<tr>
<td>“arch” subdirectory</td>
<td>2018467</td>
<td>2020376</td>
<td>1926105</td>
<td>1877804</td>
<td>1646194</td>
<td>1570168</td>
</tr>
<tr>
<td>“powerpc” subdirectory</td>
<td>236687</td>
<td>232959</td>
<td>220711</td>
<td>221213</td>
<td>196054</td>
<td>188949</td>
</tr>
<tr>
<td>Total LoC of Linux kernel</td>
<td>11786332</td>
<td>11256694</td>
<td>10216569</td>
<td>9958955</td>
<td>8362068</td>
<td>7921133</td>
</tr>
<tr>
<td>Total LoC for Power Linux Kernel</td>
<td>10004552</td>
<td>9469277</td>
<td>8511175</td>
<td>8302364</td>
<td>6911928</td>
<td>6539914</td>
</tr>
<tr>
<td>Percentage hardware dependent code</td>
<td>2.37%</td>
<td>2.46%</td>
<td>2.59%</td>
<td>2.66%</td>
<td>2.84%</td>
<td>2.89%</td>
</tr>
</tbody>
</table>

Only about 2-3% of hardware dependent code for Power Linux kernel!
Linux on Power Device and Virtualization Support

- Virtual device support implemented with Linux kernel modules
 - ibmveth - virtual ethernet device driver
 - ibmvscsic - virtual SCSI client device driver
 - ibmvfc - virtual Fibre Channel client device driver
 - ibmvstgt - virtual SCSI target device driver

```
# find /lib/modules -name "ibmv*ko" -print
/lib/modules/x.x.xx/kernel/drivers/net/ibmveth.ko
/lib/modules/x.x.xx/kernel/drivers/scsi/ibmvscsi/ibmvfc.ko
/lib/modules/x.x.xx/kernel/drivers/scsi/ibmvscsi/ibmvscsic.ko
/lib/modules/x.x.xx/kernel/drivers/scsi/ibmvscsi/ibmvstgt.ko
```

- No closed source device drivers for Linux on Power, all Linux on Power device drivers for all virtual and physical devices are open source.
- All contained in the standard “vanilla“ Linux kernel (from http://kernel.org) for a long time!
Linux on Power vs. Linux on x86 commonalities

- Network configuration
 - Linux Bonding

- Storage configuration
 - Multipath I/O
 - Software RAID (MD devices and LVM2)
 - Adding/removing disks, rescan devices etc.
 - Resize of file systems (increase and shrink in size)

- Device discovery of Linux on Power
 - in order of defined devices (PowerVM and PowerKVM)

- Same management tools across platforms
 - Management tools vary depending on Linux distribution

→ **ANY** documentation can be directly applied to Linux on Power too!
Linux on Power vs. Linux on x86 differences

- **Disk partitioning**
 - Additional PReP partition holding the bootloader (= /dev/hd5 (AIX boot logical volume))
 - MBR is present, but only holds partition table

- **System firmware**
 - System Management Services (SMS)
 - Config boot order, BOOTP network boot,

- **Bootloader**
 - Yaboot (newer Linux distros now switch to GRUB2)
 - No PXE boot, network boot uses BOOTP protocol

- **Full support of Power platform features**
 - RAS capabilities
 - DLPAR capabilities
 - SMT settings

- **Package names**
 - ppc / ppc64 / ppc64le instead of x86_64

- **Additional value-add packages**
 - iprutils, powerpc-utils, ppc64-utils, servicelog: to better exploit POWER features
 - IBM Software Development Kit: for optimizing source code on POWER
 - IBM Advance Toolchain: optimized GCC and collection of optimized libraries
Netbooting PowerLinux
Linux on Power installation methods

Installation via
- Physical DVD device
- Virtual optical device (virtual DVD/CD-ROM)
- Network based → Netbooting PowerLinux
Netbooting Linux on Power

Netbooting Linux on Power uses – same as AIX – the following protocols:

- BOOTP is an IP protocol that informs a computer of its IP address and where on the network to obtain a boot image.
- The TFTP (Trivial File Transfer Protocol) is used to serve the boot image to the client.

Two basic approaches:

1) AIX NIM server
 - Use a directed bootp request
 - Does not require you to know the MAC address of the network boot adapter

2) (Linux) DHCP server
 - Use a broadcast bootp request
 - DHCP server must support BOOTP protocol
 - Requires you to know the MAC address of the network boot adapter
Directed BOOTP vs. broadcast BOOTP request

Directed BOOTP request

Linux LPAR → Directed BOOTP request → AIX NIM server (running bootp server) → TFTP transfer of boot image → Linux LPAR

Broadcast BOOTP request

Linux LPAR → Broadcast BOOTP request → DHCP server (running bootp) → TFTP transfer of boot image → Linux LPAR

BOOTP

DHCP
Netbooting PowerLinux – TFTP resources
Red Hat Linux boot images

- Setup of TFTP resources in /tftpboot
- Same for AIX NIM server and Linux DHCP server (for installation via a Linux network install image)

```
root@nim:/tftpboot> ls -l rhel*-netboot.img
-rw-r--r-- 1 root root 6220088 Mar 14  2013 rhel4u3-netboot.img
-rw-r--r-- 1 root root 6355144 Mar 14  2013 rhel4u4-netboot.img
-rw-r--r-- 1 root root 6531312 Mar 14  2013 rhel4u5-netboot.img
-rw-r--r-- 1 root root 6932160 Mar 14  2013 rhel4u6-netboot.img
-rw-r--r-- 1 root root 7218492 Mar 14  2013 rhel4u7-netboot.img
-rw-r--r-- 1 root root 7614464 Mar 14  2013 rhel4u8-netboot.img
-rw-r--r-- 1 root root 8022120 Mar 14  2013 rhel5-netboot.img
-rw-r--r-- 1 root root 8546364 Mar 14  2013 rhel5u1-netboot.img
-rw-r--r-- 1 root root 9139304 Mar 14  2013 rhel5u2-netboot.img
-rw-r--r-- 1 root root 9900620 Mar 14  2013 rhel5u3-netboot.img
-rw-r--r-- 1 root root 10537016 Mar 14  2013 rhel5u4-netboot.img
-rw-r--r-- 1 root root 11333732 Mar 14  2013 rhel5u5-netboot.img
-rw-r--r-- 1 root root 11612524 Mar 14  2013 rhel5u6-netboot.img
-rw-r--r-- 1 root root 15006880 Mar 14  2013 rhel5u7-netboot.img
-rw-r--r-- 1 root root 16072024 Mar 14  2013 rhel5u8-netboot.img
-rw-r--r-- 1 root root 16289260 Mar 14  2013 rhel5u9-netboot.img
-rw-r--r-- 1 root root 36020177 Mar 14  2013 rhel6-netboot.img
-rw-r--r-- 1 root root 38134533 Mar 14  2013 rhel6u1-netboot.img
-rw-r--r-- 1 root root 31051305 Mar 14  2013 rhel6u2-netboot.img
-rw-r--r-- 1 root root 32181745 Mar 14  2013 rhel6u3-netboot.img
-rw-r--r-- 1 root root 32791785 Mar 14  2013 rhel6u4-netboot.img
-rw-r--r-- 1 root root 33237149 Dec  3  2013 rhel6u5-netboot.img
-rw-r--r-- 1 root root 33257321 Nov 18 18:37 rhel6u6-netboot.img
-rw-r--r-- 1 root root 39647370 Nov 18 18:38 rhel7-netboot.img
```
Netbooting PowerLinux – TFTP resources
SUSE Linux boot images

- Setup of TFTP resources in /tftpboot
- Same for AIX NIM server and Linux DHCP server (for installation via a Linux network install image)

```
root@nim:/tftpboot> ls -l sles*
-rw-r--r-- 1 root root 5714106 Mar 13 20:23 sles9-sp3-install
-rw-r--r-- 1 root root 8087775 Mar 13 20:23 sles10-inst32
-rw-r--r-- 1 root root 8718463 Mar 13 20:23 sles10-inst64
-rw-r--r-- 1 root root 8382855 Mar 13 20:23 sles10-sp1-inst32
-rw-r--r-- 1 root root 9222971 Mar 13 20:23 sles10-sp1-inst64
-rw-r--r-- 1 root root 8717759 Mar 13 20:23 sles10-sp2-inst32
-rw-r--r-- 1 root root 9790331 Mar 13 20:23 sles10-sp2-inst64
-rw-r--r-- 1 root root 9512595 Mar 13 20:23 sles10-sp3-inst32
-rw-r--r-- 1 root root 10682935 Mar 13 20:23 sles10-sp3-inst64
-rw-r--r-- 1 root root 10082439 Mar 13 20:23 sles10-sp4-inst32
-rw-r--r-- 1 root root 11307427 Mar 13 20:23 sles10-sp4-inst64
-rw-r--r-- 1 root root 19809567 Mar 13 20:23 sles11-inst64
-rw-r--r-- 1 root root 23733099 Mar 13 20:23 sles11-sp1-inst64
-rw-r--r-- 1 root root 30475691 Mar 13 20:23 sles11-sp2-inst64
-rw-r--r-- 1 root root 32244849 Mar 13 20:23 sles11-sp3-inst64
```
Two images can be used for netbooting:

- **Linux network install image**
 - Combined image of Linux kernel and initial ramdisk (containing installer)
 - Works up to a size of ~12 MB of the Linux network install image (limit of the Power Open Firmware TFTP buffer size)

- **The standard Linux boot loader `yaboot`**
 - For Linux network install images larger than 12 MB
 - Two-step boot process:
 1. Boot the yaboot boot loader (size less than 400 kB)
 2. Yaboot then boots the Linux kernel and initial ramdisk
 → thus circumventing the Open Firmware TFTP buffer size limitation
Netbooting yaboot (1/2)

1. **DHCP/BOOTP request** from Linux LPAR to **DHCP server**
2. **TFTP transfer of boot image (= yaboot binary)** from TFTP server to Linux LPAR
3. **TFTP request of yaboot.conf** from Linux LPAR to **TFTP server**
4. **TFTP transfer of yaboot.conf** from TFTP server to Linux LPAR
5. **TFTP request of yaboot message file** from Linux LPAR to **TFTP server**
6. **TFTP transfer of yaboot message file** from TFTP server to Linux LPAR
7. **TFTP request of boot image file(s)** from Linux LPAR to **TFTP server**
8. **TFTP transfer of boot image file(s)** from TFTP server to Linux LPAR
9. **Boot** to **Linux**
Netbooting yaboot (2/2)

- Linux LPAR sends out directed BOOTP or broadcast DHCP request.
- DHCP server answers BOOTP/DHCP request and transfers boot image back to Linux LPAR via TFTP.
- Linux LPAR executes transferred boot image (= yaboot binary).
- Yaboot now requests via TFTP its config file `yaboot.conf`:
 - Depending on Linux distribution client-specific `yaboot.conf` can be located in different locations (i.e., directories).
- TFTP server transfers `yaboot.conf` back to Linux LPAR.
- If `yaboot.conf` contains a statement `message=yaboot.txt` then the yaboot message file is requested via TFTP and transferred back from the TFTP server.
- Linux LPAR now requests the boot image file(s).
- TFTP server transfers boot image files(s) back to Linux LPAR.
Netbooting PowerLinux – AIX NIM bootp setup

/etc/bootptab:
Legend:
first field -- hostname (may be full domain name and probably should be)
hd -- home directory
bf -- bootfile
sa -- server IP address to tftp bootfile from
gw -- gateways
ha -- hardware address
ht -- hardware type
ip -- host IP address
sm -- subnet mask
tc -- template host (points to similar host entry)
hn -- name switch
bs -- boot image size
dt -- old style boot switch
js21-5-rhel5:bf=/tftpboot/js21-5-rhel5:ip=10.0.21.52:ht=ethernet:sa=10.0.0.8:sm=255.255.0.0:
sjs21-6-sles10:bf=/tftpboot/js21-6-sles10:ip=10.0.21.62:ht=ethernet:sa=10.0.0.8:sm=255.255.0.0:

root@nim:/tftpboot> ls -la js*
lrwxrwxrwx 1 root system 19 Mar 03 2013 js21-5-rhel5 -> rhel5u8-netboot.img
lrwxrwxrwx 1 root system 14 Mar 02 2013 js21-6-sles11 -> sles11-sp2-inst64

Don’t forget afterwards to activate the changes:

- `refresh –s inetd`
Netbooting PowerLinux – Linux DHCP server

```
[root@ppclinux:/tftpboot]# ls -al
drwxr-xr-x  14 root root    640 Apr 19 00:29 .
drwxr-xr-x  26 root root    888 Apr 16 21:32 ..
lrwxrwxrwx  1 root root    10 Apr  7 13:32 LPAR00001 -> yaboot.RHEL65
drwxr-xr-x  2 root root    104 Apr  7 14:09 RHEL6U5
-rw-r--r--  1 root root    2916 Apr  7 14:40 yaboot.conf
lrwxrwxrwx  1 root root    10 Apr  7 13:32 yaboot.conf-36-9a-c0-00-40-0b -> yaboot.conf
-rw-r--r--  1 root root   263760 Apr  7 13:27 yaboot.RHEL65
-rw-r--r--  1 root root    213 Apr  7 13:58 yaboot.txt

[root@ppclinux:/tftpboot]# ls -al RHEL6U5
./RHEL6-U5:
-rw-r--r--  1 root root 28205108 Apr  7 14:09 initrd.img
-rwrxr-xr-x  1 root root 17020184 Apr  7 14:09 vmlinuz
```
Netbooting PowerLinux – Linux DHCP server

```
/etc/dhcpd.conf:

option domain-name "munich.de.ibm.com";
option domain-name-servers 10.0.0.8;
option routers 10.0.0.1;
option ntp-servers 10.0.0.8;
ddns-update-style none;
ignore unknown-clients;
allow bootp;
subnet 10.0.0.0 netmask 255.255.0.0 {
    range 10.0.56.230 10.0.56.250;
    default-lease-time 86400;
    max-lease-time 604800;
}
host LPAR00001 {
    hardware ethernet 36:9A:C0:00:40:0B;
    filename "LPAR00001";
    fixed-address 10.0.56.4;
    next-server 10.0.0.51;
}
```
Netbooting PowerLinux – Linux DHCP server

[root@dhcp-server:/tftpboot]# cat yaboot.conf
This yaboot.conf is for netbooting different Linux distributions

message=yaboot.txt

timeout=100

default=sles11-sp3

image[64bit]=sles11-sp3-inst64
 label=sles11-sp3
 append="quiet systrq=1 insmod=sym53c8xx insmod=ipr install=nfs://10.0.0.51/export/PPC/SLES11-SP3"

image[64bit]=sles11-sp2-inst64
 label=sles11
 append="quiet systrq=1 insmod=sym53c8xx insmod=ipr install=nfs://10.0.0.51/export/PPC/SLES11-SP2"

image=/RHEL6-U5/vmlinuz
 label=rhel6-u5
 initrd=/RHEL6-U5/initrd.img
 append="ks=nfs:10.0.0.51:/export/RHEL_Kickstart/kickstart.cfg ksdevice=eth0"
 read-only

....
Netbooting PowerLinux – Linux DHCP server

To successfully netboot RHEL 5/6/7
- You need to use the yaboot that comes with RHEL 5/6/7

To successfully netboot SLES 11
- You need to use the yaboot that comes with SLES 11
Virtual network options for Linux clients
Complex network setup example

- Setup of four different networks
 - VLAN 110: Management network
 - VLAN 112: Install network
 - VLAN 750: SAP/DB production network
 - VLAN 751: SAP/DB development network

- Each LPAR has connections to the following VLANs:
 - VLAN 110
 - VLAN 112
 - VLAN 750 or VLAN 751

Next: Comparison of Linux bonding vs. SEA failover setup
Bonding setup
How does bonding work?

- Ethernet bonding on the client works like Etherchannel in NIB (Network Interface Backup) mode with AIX.

- **Difference:**
 - Linux bonding uses ARP ping instead of ICMP ping to check for network path availability.

- A ping target outside of the machine is required, typically the gateway for the specific network is used.
Virtual I/O Server setup for bonding

Virtual I/O Server #1

VLAN 110
ent0
SE A #1, ent8

VLAN 112
ent1
SE A #2, ent9

VLAN 750
ent2
SE A #3, ent10

VLAN 751
ent3
SE A #4, ent11

Veth #1, ent4
PVID 1

Veth #2, ent5
PVID 3

Veth #3, ent6
PVID 5

Veth #4, ent7
PVID 7

Virtual I/O Server #2

VLAN 110
ent0
SE A #1, ent8

VLAN 112
ent1
SE A #2, ent9

VLAN 750
ent2
SE A #3, ent10

VLAN 751
ent3
SE A #4, ent11

Veth #1, ent4
PVID 2

Veth #2, ent5
PVID 4

Veth #3, ent6
PVID 6

Veth #4, ent7
PVID 8
Linux client setup with bonding
Virtual ethernet – VLAN 110 – bonding setup
Virtual ethernet – VLAN 112 – bonding setup

VIO Server #1
- ent9 (if)
 - ent9 (SEA)
 - ent1 (Phy)
 - ent5 (Vir)

VIO Server #2
- ent9 (if)
 - ent9 (SEA)
 - ent5 (Vir)
 - ent1 (Phy)

Linux LPAR #1
- bond1 (if)
 - eth2 (Vir)
 - eth3 (Vir)

Linux LPAR #2
- bond1 (if)
 - eth2 (Vir)
 - eth3 (Vir)

Ethernet Switch
- PVID 3
- Untagged

Hypervisor
- PVID 4

VLAN 3
- Active
- Passive

VLAN 4
- Active
- Passive

Ethernet Switch
- Untagged
Virtual ethernet – VLAN 750 – bonding setup
Virtual ethernet – VLAN 751 – bonding setup

VIO Server #1

VIO Server #2

Linux LPAR #1

Linux LPAR #2

Hypervisor

Ethernet Switch

Untagged

Ethernet Switch

Untagged

VLAN 7

VLAN 8

PVID

PVID

PVID

PVID

bond3

bond3

bond3

bond3

ent3 (SEA)

ent7 (Vir)

ent7 (Vir)

ent3 (Vir)

ent3 (Phy)

ent11 (if)

ent11 (SEA)

ent11 (if)

ent11 (SEA)

eth6 (Vir)

eth7 (Vir)

eth6 (Vir)

eth7 (Vir)

VLAN 7

VLAN 8

Active

Passive

Virtual ethernet – VLAN 751 – bonding setup
Bonding configuration details

- `/etc/modprobe.conf`:

```
alias bond0 bonding
options bond0 mode=active_backup arp_interval=2000 arp_ip_target=X.X.X.X \ arp_validate=all
```

- `/etc/sysconfig/network-scripts/ifcfg-bond0`

- `/etc/sysconfig/network-scripts/ifcfg-eth0`

- `/etc/sysconfig/network-scripts/ifcfg-eth1`

```
DEVICE=bond0
BOOTPROTO=static
IPADDR=10.186.38.163
NETMASK=255.255.255.0
ONBOOT=yes
TYPE=Ethernet
```

```
DEVICE=eth0
BOOTPROTO=none
ONBOOT=yes
MASTER=bond0
SLAVE=yes
USERCTL=no
TYPE=Ethernet
```

```
DEVICE=eth1
BOOTPROTO=none
ONBOOT=yes
MASTER=bond0
SLAVE=yes
USERCTL=no
TYPE=Ethernet
```
Ethernet bonding on the client works like Etherchannel in NIB (network interface backup) mode with AIX

Linux bonding uses ARP ping instead of ICMP ping to check for network path availability

A ping target outside of the machine is required, typically the gateway for the specific network is used

Requires a feature (arp_validate) only present since Linux kernel v2.6.19
 – Being backported to Linux distributions

Setup works for
 – Red Hat Enterprise Linux 4 Update 6 and higher
 – Red Hat Enterprise Linux 5 Update 1 and higher
 – Red Hat Enterprise Linux 6 and higher
 – SUSE Linux Enterprise Server 9 SP 4
 – SUSE Linux Enterprise Server 10 SP 2 and higher
 – SUSE Linux Enterprise Server 11 and higher
Bonding summary (2/2)

- For IVE (EHEA) adapter bonding with link detection can work with new option:
 - `prop_carrier_state` (propagates carrier state of physical port to stack)

- VLAN tagging would be possible but more tedious to set up properly!

- Bonding works fine with physical network adapters
 - this is what you use for instance for PowerKVM hosts to increase availability and throughput

Recommendation: For VIOS setups use SEA failover (with load sharing)!
Shared Ethernet Adapter (SEA) failover (and load sharing) setup
How does SEA failover work?
Shared Ethernet Adapter failover

* Picture taken from Nigel Griffiths' AIXpert blog on this topic.
Shared Ethernet Adapter failover with load sharing

* Picture taken from Nigel Griffiths’ AIXpert blog on this topic.
Virtual ethernet – VLAN 110 – SEA failover

VIO Server #1

Primary

VIO Server #2

Backup

Linux LPAR #1

Linux LPAR #2

Virtual ethernet – VLAN 110 – SEA failover

VLAN 1

Primary

en12 (if)
ent12 (SEA)
ent8 (Vir)
ent0 (Phy)
ent4 (Vir)

Backup

en12 (if)
ent8 (Vir)
ent12 (SEA)
ent4 (Vir)
ent0 (Phy)

eth0 (Vir)

Passive

PVID 1

PVID 1

PVID 1

PVID 1

Untagged

Active

Ethernet Switch

Ethernet Switch
Virtual ethernet – VLAN 112 – SEA failover

VIO Server #1

VIO Server #2

Linux LPAR #1

Linux LPAR #2

Hypervisor

Untagged

Ethernet Switch

Parent PVID = 112

VLAN 2

Active

Passive

Untagged

Ethernet Switch
Virtual ethernet – VLAN 750 – SEA failover

- **VIO Server #1**
 - Primary
 - en14 (if)
 - ent14 (SEA)
 - ent2 (Phy)
 - ent6 (Vir)

- **VIO Server #2**
 - Backup
 - en14 (if)
 - ent10 (Vir)
 - ent6 (Vir)
 - ent10 (Vir)
 - ent14 (SEA)

- **Linux LPAR #1**
 - eth2 (Vir)
 - eth2 (if)

- **Linux LPAR #2**
 - eth2 (Vir)

- **Hypervisor**
 - PVID = 750
 - Untagged

- **Ethernet Switch**
 - PVID = 750
 - VLAN 3
 - Uplink

- **VLAN 3**
 - Active
 - Passive
Virtual ethernet – VLAN 751 – SEA failover

VIO Server #1

Backup

VIO Server #2

Primary

Linux LPAR #1

Linux LPAR #2

Ethernet Switch

Untagged

Ethernet Switch

Untagged

Hypervisor

PVID=751

PVID=4

PVID=4

PVID=4

Primary

Active

Passive
SEA failover (and load sharing) remarks

- VLAN tagging can easily be implemented
- For VLAN tagging the SEA control channels for the examples would have a different PVID as the VLAN ID would then be assigned to the virtual adapter PVID.
- Works with any Linux distribution and level!
- SEA failover setup with load sharing requires at least VIOS version 2.2.1.0.
- More details here:
 - Nigel Griffiths‘ AIXpert blog on this topic.
Network summary

- Network configuration with SEA failover/load sharing is very simple for the client and more complex on the VIOS side and works reliable.
- Network configuration using bonding on the client is more complex and simple on the VIOS side, however, it requires a recent Linux kernel feature.
- Static load balancing can be provided by both while SEA with load sharing does this automatically.
- Both variants do not require user intervention after single VIOS failure or reboot.
- Recommended setup variant however is SEA failover with load sharing.
Virtual storage options for Linux clients
Dual VIOS Server Redundancy: VSCSI
Dual VIOS Server Redundancy: NPIV/VFC

- **Virtual Resources**
- **Physical Resources**

- Client Partition
 - hdisk
 - MPIO

- VIO Server 1
 - vFC Server Adapter
 - Physical FC Adapter
 - SAN Switch

- VIO Server 2
 - vFC Server Adapter
 - Physical FC Adapter
 - SAN Switch

- LUN x
Multipath I/O with Linux on Power
Simple Multipath I/O example with Linux on Power

Single LUN for OS/data provided by each VIOS from same storage subsystem
The module `dm_multipath` must be loaded to detect multipath devices in the system.

The round-robin algorithm is used for load balancing, making the I/O operations to be split among the paths.

Multipath devices are named as `mpath0`, `mpath1`, and so on.

Although there are no special considerations to implement a multipath solution on Linux on Power, certain requirements must be observed:

- The `ibmvscsic` driver must be loaded when using virtual SCSI.
- The `ibmvfc` driver must be loaded when using virtual Fibre Channel.
- The `dm_multipath` module must be loaded.
- The `/etc/multipath.conf` must be edited accordingly.
- The `multipathd` daemon must be started.
- The `multipath` command must be used for tracing.

Configuring MPIO on Linux on Power is identical to Linux on x86!
Example for /etc/multipath.conf file

defaults {
 find_multipaths yes
 user_friendly_names yes
}

blacklist {
}

multipaths {
 multipath {
 wwid "3600a0b80002644360000bee053b57897"
 alias lun_rhel65
 }
 multipath {
 wwid "3600a0b80002644040000a9f952b1a3c3"
 alias lun_rhel70
 }
 multipath {
 wwid "3600a0b80002644360000bef553bcf790"
 alias lun_fedora20
 }
 multipath {
 wwid "3600a0b80002644040000aaac53b56d22"
 alias lun_sles11sp3
 }
 multipath {
 wwid "3600a0b80002644360000c0575421a23a"
 alias lun_ubuntu1404
 }
}

VIOS VSCSI settings for MPIO for AIX and Linux clients

- **hdisk devices in client**
 - algorithm=failover
 - reserve_policy=no_reserve
 - hcheck_mode=nonactive
 - hcheck_interval=60
 - queue_depth=xxx

- **vscsi devices in client**
 - vscsi_path_io=30
 - vscsi_err_recover=fast_fail

- **hdisk devices on VIOS**
 - algorithm=load_balance
 - reserve_policy=no_reserve
 - hcheck_mode=nonactive
 - hcheck_interval=60

- **fcsdi devices on VIOS**
 - dyntrk=yes
 - fc_err_recov=fast_fail
VIOS VSCSI settings for MPIO for Linux clients

Equivalent to AIX parameter “vscsi_path_to”:
- Linux will time every command that gets sent to a VSCSI disk and enter error recovery if a command times out, first attempting to issue aborts and ultimately breaking the CRQ as a last resort.
- You can tune the read/write timeout per disk via sysfs.
- The following will set the read write timeout to 30 seconds.

```
echo 30 > /sys/block/sda/device/timeout
```

Linux equivalent to AIX parameter “vscsi_err_recov”:
- The recommendation is to enable fast_fail.
- It is enabled by default in the Linux VSCSI client driver.
- You can force it off via the `fast_fail` module parameter if you want it disabled for some reason.

Lab recommendation:
- We have already tuned the default settings for VSCSI, so we wouldn't expect customers to typically need to do anything here.
Virtual adapter/device settings for Linux clients

- You can find all settable parameters for virtual SCSI and virtual Fibre Channel adapters with these commands:
 - Virtual SCSI: `modinfo ibmvscsic`
 - Virtual Fibre Channel: `modinfo ibmvfc`

- Each block device has its individual "queue_depth" and "nr_requests" parameter:

```
# find /sys -name nr_requests | grep sd
/sys/devices/vio/30000002/host0/target0:0:1/0:0:1:0/block/sda/queue/nr_requests

# find /sys -name queue_depth
/sys/devices/vio/30000002/host0/target0:0:1/0:0:1:0/queue_depth
```

- The default value on all Linux versions (SLES 11, RHEL 6, Debian, etc.) is:

 - `nr_requests = 128`
 - `queue_depth = 16`
Software RAID with Linux
RAID1 comparison between AIX and Linux

AIX Logical Volume Manager

- LP8
- LP9
- lvmirror
- PP18
- PP45
- /dev/sda3
- /dev/sda
- /dev/sda2
- /dev/sda1
- /dev/sdb

Linux MD Devices + LVM1/2

- /dev/sda
- /dev/sda1
- /dev/sda2
- /dev/sda3
- /dev/md0

LVM physical volume

LP = Logical Partition
PP = Physical Partition
Linux LVM2 (recent versions of RHEL and SLES) → not recommended for /boot file system (RHEL only)

```
pvcreate /dev/sdb
pvcreate /dev/sdc
vgcreate datavg /dev/sdb /dev/sdc
lvcreate --type raid1 -m 1 -L 5G -n \ lvmdir /dev/sdb
lvcreate --type raid1 -m 1 -L 5G -n \lvmdir /dev/sdc
```

LE = Logical Extent

PE = Physical Extent
Simplest software RAID1 with Linux md devices

Single LUN for OS/Data provided by each VIOS from separate storage subsystem
Simplest software RAID1 with Linux LVM V2

Single LUN for OS/Data provided by each VIOS from separate storage subsystem
Set the sync speed of Linux MD devices

Change the sync speed of MD devices

```
    echo  50000 > /proc/sys/dev/raid/speed_limit_min
    echo 200000 > /proc/sys/dev/raid/speed_limit_max
```

or use `sysctl` (edit `/etc/sysctl.conf` for permanent settings)

```
    sysctl -w dev.raid.speed_limit_min=50000
    sysctl -w dev.raid.speed_limit_max=200000
```
Linux mdadm RAID1 for root

- Software RAID implementation on Power slightly different compared to x86
 - PPC PReP Boot partition (type 0x41) used instead of boot sector
 - PPC PReP Boot partition (type 0x41) = AIX LV "/dev/hd5" = boot logical volume

- yaboot (yet another boot loader) is used to boot PowerLinux

- Software RAID partitioning and setup different for SUSE and Red Hat
 - SUSE changes PPC PReP Boot partition to FAT and puts /etc/yaboot.cnf there
 - Red Hat requires a separate /boot partition (can be on mirrored device, e.g., /dev/md0)
Disk partitioning for SUSE Linux: mdadm RAID-1 setup

/dev/sda2
PReP boot (0x41)
Linux Software RAID (0xFD)
/dev/sda2
/dev/sda

manual mirroring through dd

/dev/md0
LVM physical volume

/dev/sdb2
/dev/sdb

/dev/sdb1
PReP boot (0x41)

/ /usr
/var
/tmp
/opt
/home
/swap etc.
Disk partitioning for Red Hat Linux: mdadm RAID-1 setup

- PReP boot $(0x41)$
- Linux Software RAID $(0xFD)$
- /dev/sda1
- /dev/sda2
- /dev/sda3
- /dev/sda

- /dev/sdb1
- /dev/sdb2
- /dev/sdb3
- /dev/sdb

- manual mirroring through `dd`
- LVM physical volume

- /dev/md0
- /dev/md1

- /boot
- /usr
- /var
- /tmp
- /opt
- /home
- /swap
e etc.
Software RAID1 with mdadm repair action

Example: /dev/md2 with /dev/sda4 and /dev/sdb4

/dev/sda4 (of /dev/md2) is faulty
mdadm --manage --set-faulty /dev/md2 /dev/sda4
mdadm --manage --remove /dev/md2 /dev/sda4

explanation of the "funny numbers":
<SCSI-Adapter>:<Channel(bus)>:<Target>:<Lun>
we rescan the whole "/dev/sda" disk here, not just /dev/sda4

rescan of SCSI device
echo 1 > /sys/class/scsi_device/0:0:1:0/device/rescan

hot-add device again
mdadm --manage --add /dev/md2 /dev/sda4
Important files for Linux mdadm

- `/proc/mdstat`
 - Shows the status of all currently active MD devices
 - Usage: "cat /proc/mdstat"

- `/sbin/mdadm`
 - Manage Linux MD devices

- `/etc/mdadm.conf`
 - Configuration file for mdadm
Device discovery of Linux on Power
Device discovery of Linux on Power (1/3)

How does Linux discover its devices?

- It scans all device drivers in the order in which they are defined in the LPAR profile and discovers all devices attached/mapped to the device driver.
- All discovered VIOS SCSI disk are then numbered consecutively, starting with /dev/sda, /dev/sdb etc.
- This default disk labeling (/dev/sd?) scheme should be avoided and different disk labeling schemes be used instead:
 - /dev/disk/by-id
 - /dev/disk/by-label
 - /dev/disk/by-path
 - /dev/disk/by-uuid
Device discovery example with VSCSI devices:
1. All devices attached to VSCSI (slot #2)
2. All devices attached to VSCSI (slot #3)

Device discovery example with VFC devices:
1. All devices attached to VFC (slot #4)
2. All devices attached to VFC (slot #5)
Device discovery example with mixed (VSCSI + VFC) device types:
1. All devices attached to VSCSI (slot #2)
2. All devices attached to VSCSI (slot #3)
3. All devices attached to VFC (slot #4)
4. All devices attached to VFC (slot #5)

Possible problem:
- After adding some virtual disks to a VIOS adapter and a Linux rescan the device order might/will change.
- This can be avoided by using different disk labeling schemes than /dev/sd?, for instance:
 - /dev/disk/by-id
 - /dev/disk/by-label
 - /dev/disk/by-path
 - /dev/disk/by-uuid
“Real life setup“ VSCSI

Single LUN for OS/data
"Real life setup" NPIV

Single LUN for OS/data
“Real life setup“: VSCSI for rootvg, NPIV for data

Single LUN for OS, single LUN for data
“Real life setup“: VSCSI for rootvg, NPIV for data
“Real life setup“: VSCSI for rootvg, NPIV for data

```
#4
vscsi
sdc
vfc0
sdd = sdc
vfc1
sde
vfc2
sdf = sde
vfc3
sdk = sde
sdi = sde
sdl = sde
```

```
#2
vscsi
sda
vfc0
sdb = sda
dm_mp
sdc = sdb
dm_mp
sdd = sdc
dm_mp
sde
dm_mp
sdf = sde
dm_mp
sdk = sde
dm_mp
sdi = sde
dm_mp
sdl = sde
```

```
#1
vscsi
sda
vfc0
sdb = sda
dm_mp
sdc = sdb
dm_mp
sdd = sdc
dm_mp
sde
```

```
/dev/md0
mdadm
raid1
LVM
```

```
LVM
```
Adding/removing disks, rescan devices
Adding/removing disks, rescan devices

Please note:
- This is generic Linux and not specific to Power! (same on x86 Linux)

- List of all SCSI host adapters:

  ```
  cd /sys/class/scsi_host
  ls -l host*
  ```

- `host0`, `host1`, etc. then point as a symlink to the real host devices. For Virtual I/O Server devices those are located in:

 `/sys/devices/vio`

- There you find for each virtual device a directory named as follows:

 `300000<xy>`

 where `<xy>` represents the virtual slot number in hexadecimal notation
SCSI Device Addressing

A four-part addressing scheme is used to define the location of SCSI devices:

0:0:1:0

- **Host**: Instance of host adapter to which device is attached
- **Bus**: SCSI Bus or Channel on the host adapter
- **Target**: SCSI ID assigned to an individual device
- **LUN**: Logical unit number on the device

lsscsi

- [0:0:1:0] disk AIX VDASD 0001 /dev/sda
- [0:0:2:0] cd/dvd AIX VOPTA /dev/sr0
- [0:0:3:0] disk AIX VDASD 0001 /dev/sdb
- [0:0:4:0] disk AIX VDASD 0001 /dev/sdc
sysfs /sys/class/scsi_host/ (2.6 kernel)

- The 2.6 (and higher) kernel provides the /sys (sysfs) interface for interacting and managing system devices.
- In the case of SCSI devices, the /sys/class/scsi_host/ interface can be used to dynamically rescan a host adapter, as well as add or remove specific devices.

- To rescan a host adapter:

```bash
echo '- - - -' > /sys/class/scsi_host/host<X>/scan
```

 where **host<X>** refers to the host adapter or the instance of host adapter where multiple (of the same type) exist on the system.

- To rescan an individual device (replace 0:0:4:0 with your parameters):

```bash
echo "1" > /sys/class/scsi_device/0:0:4:0/device/rescan
```
Virtual devices example

```
# find /sys -name scan
/sys/devices/vio/30000002/host0/scsi_host/host0/scan
/sys/module/scsi_mod/parameters/scan

# find /sys -name rescan
/sys/devices/vio/30000002/host0/target0:0:1/0:0:1:0/rescan
/sys/devices/vio/30000002/host0/target0:0:2/0:0:2:0/rescan
/sys/devices/vio/30000002/host0/target0:0:3/0:0:3:0/rescan
/sys/devices/vio/30000002/host0/target0:0:4/0:0:4:0/rescan
/sys/bus/pci/rescan
```
Removing disk example

lsscsi

[0:0:1:0] disk AIX VDASD 0001 /dev/sda
[0:0:2:0] cd/dvd AIX VOPTA /dev/sr0
[0:0:3:0] disk AIX VDASD 0001 /dev/sdb
[0:0:4:0] disk AIX VDASD 0001 /dev/sdc

- To remove disk /dev/sdc

 echo 1 > /sys/block/sdc/device/delete

- or to remove a specific device (again /dev/sdc):

 echo 1 > /sys/class/scsi_host/host0/device/target0:0:4/0:0:4:0/delete
Adding disks / rescan devices

- **RHEL/Fedora and SLES/openSUSE** (need to install package `sg3_utils`)

  ```
  /usr/bin/rescan-scsi-bus.sh [-r]
  ```

- **Ubuntu/Debian** (need to install package `sg3_utils`)

  ```
  /sbin/rescan-scsi-bus.sh [-r]
  ```

- **Direct access** – for the “hard core Linux guys”

  ```
  # <Host adapter>:<Bus>:<Target>:<LUN>
  echo 1 > /sys/class/scsi_device/0:0:1:0/device/rescan
  ```
Resize of Linux on Power file systems
Supported file systems for Linux on Power (1/2)

<table>
<thead>
<tr>
<th>File System</th>
<th>RHEL 6.5</th>
<th>RHEL 7.0</th>
<th>SLES 11 SP3, SLES 12</th>
<th>Fedora 20</th>
<th>Debian 7, Ubuntu 14.04, Debian 14.10</th>
<th>openSUSE 13.1, openSUSE 13.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ext2</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>ext3</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>ext4</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>reiserfs</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>xfs</td>
<td>partial *</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>btrfs</td>
<td>not yet</td>
<td>not yet</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>fat/vfat/msdos</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>ntfs</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

partial *: Please check the notes on the next slide.
Supported file systems for Linux on Power (2/2)

SLES 11 SP3
- Btrfs supported since SLES 11 SP2 (not for /boot).
 - Btrfs is supported on top of MD (multiple devices) and DM (device mapper) configurations.
 - Please use the YaST partitioner to achieve a proper setup.
 - Multivolume/RAID with btrfs is not supported yet and will be enabled with a future maintenance update.
- XFS is supported since the release of SLES 8.

SLES 12
- Btrfs is now the default file system (and not XFS).

RHEL 6.5
- "Btrfs is not a production quality file system at this point."
 - With Red Hat Enterprise Linux 6 it is at a technology preview stage and as such is only being built for Intel 64 and AMD64.
- XFS is an addon product and not supported as a root file system.

RHEL 7.0
- XFS is the default file system (instead of ext4)
- BTRFS is a Technology Preview in Red Hat Enterprise Linux 7.
File system size change support for Linux on Power

<table>
<thead>
<tr>
<th>File System</th>
<th>Utility</th>
<th>Increase Size (Grow)</th>
<th>Decrease Size (Shrink)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ext2</td>
<td>resize2fs</td>
<td>Offline only</td>
<td>Offline only</td>
</tr>
<tr>
<td>ext3</td>
<td>resize2fs</td>
<td>Online or offline</td>
<td>Offline only</td>
</tr>
<tr>
<td>ext4</td>
<td>resize2fs</td>
<td>Offline only</td>
<td>Offline only</td>
</tr>
<tr>
<td>reiserfs</td>
<td>resize_reiserfs</td>
<td>Online or offline</td>
<td>Offline only</td>
</tr>
<tr>
<td>xfs</td>
<td>xfs_growfs</td>
<td>Online or offline</td>
<td>Not possible *</td>
</tr>
<tr>
<td>btrfs</td>
<td>btrfs filesystem resize</td>
<td>Online or offline</td>
<td>Online or offline</td>
</tr>
</tbody>
</table>

* You can NOT make a XFS partition smaller online. The only way to shrink is to do a complete dump, mkfs and restore.

And the clear winner (in my opinion) is/will be… btrfs
Resize file system considerations (1/2)

Resize file system scenarios
1) Resize a fdisk partition
2) Resize a logical volume

Resize file system operations
a) Increase size (grow) → Easier to do
b) Decrease size (shrink) → Much harder to do
Resize file system considerations (2/2)

Increase the size of a file system on a fdisk partition:
1) Increase the size of the underlying fdisk partition.
2) Increase the size of the file system.
→ Can be done online if supported by file system.

Shrink the size of a file system on a fdisk partition:
1) Shrink the size of the file system.
2) Shrink the size of the underlying fdisk partition.
→ Can be rather dangerous!
→ Data loss possible!

Increase the size of a file system on a logical volume:
1) Increase the size of the underlying logical volume.
2) Increase the size of the file system.
→ Can be done online if supported by file system.

Shrink the size of a file system on a logical volume:
1) Shrink the size of the file system.
2) Shrink the size of the underlying logical volume.
→ Can be done online if supported by file system.
File system size changes examples (only LVs)

Increase file system examples
- Increase ext3 file system
- Increase ext2/ext4 file system
- Increase reiserfs file system
- Increase xfs file system
- Increase btrfs file system

Shrink file system examples
- Shrink ext3 file system
- Shrink ext2 or ext4 file system
- Shrink reiserfs file system
- Shrink xfs file system
- Shrink btrfs file system

Use always the following settings:

```
# fdisk -l | grep Disk | grep sd | sort
Disk /dev/sda: 30 GiB, 32212254720 bytes, 62914560 sectors
Disk /dev/sdb: 10 GiB, 10737418240 bytes, 20971520 sectors
Disk /dev/sdc: 10 GiB, 10737418240 bytes, 20971520 sectors
```
Increase file system size for simple LV

```
# pvcreate /dev/sdb
# vgcreate testvg /dev/sdb
# lvcreate -L 5G -n lvtest testvg

# pvs --segments -o+lv_name,seg_start_pe,segtype
# lvs -a -o +devices,stripes,stripesize,seg_pe_ranges --segments

# mkfs.<FS> -f /dev/testvg/lvtest    # <FS>=ext2,ext3,ext4, reiserfs,xfs,btrfs
# mkdir -p /testfs
# mount /dev/testvg/lvtest /testfs
# df -k | grep testfs

# lvextend -L 8G /dev/testvg/lvtest
# lvs -a -o +devices,stripes,stripesize,seg_pe_ranges -segments

# fsadm resize /dev/testvg/lvtest    # ext2,ext3,ext4,xfs
    resize_reiserfs /dev/testvg/lvtest    # reiserfs
    btrfs filesystem resize max /testfs    # btrfs
# df -k | grep testfs
```
Increase file system size for mirrored LV (LVM2)

```bash
# pvcreate /dev/sdb /dev/sdc
# vgcreate testvg /dev/sdb /dev/sdc
# lvcreate --type raid1 -m 1 -L 5G -n lvtest testvg

# pvs --segments -o+lv_name,seg_start_pe,segtype
# lvs -a -o +devices,stripes,stripesize,seg_pe_ranges --segments

# mkfs.<FS> -f /dev/testvg/lvtest       # <FS>=ext2,ext3,ext4,
                                reiserfs,xfs,btrfs

# mkdir -p /testfs
# mount /dev/testvg/lvtest /testfs
# df -k | grep testfs

# lvextend -L 8G /dev/testvg/lvtest
# lvs -a -o +devices,stripes,stripesize,seg_pe_ranges -segments

# fsadm resize /dev/testvg/lvtest       # ext2,ext3,ext4,xfs
   resize_reiserfs /dev/testvg/lvtest   # reiserfs
   btrfs filesystem resize max /testfs   # btrfs
# df -k | grep testfs
```
Shrink file system size for (mirrored) LV

```sh
# umount /testfs                        # not for btrfs

# fsadm resize /dev/testvg/lvtest 4G
   resize_reiserfs -s 4G /dev/testvg/lvtest
   btrfs filesystem resize 4G /testfs

# lvreduce -f -L 4G /dev/testvg/lvtest
# lvs -a -o +devices,stripes,stripesize,seg_pe_ranges --segments

# mount /dev/testvg/lvtest /testfs       # not for btrfs
# df -k | grep testfs
```
High availability setup with VSCSI
Putting it all together… – high availability setup (1/4)

- Single LUN for OS, multiple LUNs for data provided by each VIOS from separate storage subsystems
- A complete VIOS failure will cause only loss of one path to disks but nothing else!
Putting it all together... – high availability setup (2/4)

- Single LUN for OS, multiple LUNs for data provided by each VIOS from separate storage subsystems
- A complete VIOS failure will cause only loss of one path to disks but nothing else!

![Diagram showing high availability setup](image)
Putting it all together... – high availability setup (3/4)

- Single LUN for OS, multiple LUNs for data provided by each VIOS from separate storage subsystems
- A complete VIOS failure will cause only loss of one path to disks but nothing else!
Putting it all together... – high availability setup (4/4)

- Single LUN for OS, multiple LUNs for data provided by each VIOS from separate storage subsystems
- A complete VIOS failure will cause only loss of one path to disks but nothing else!
Example: Activation and stopping of resources

Activation involves the following steps:
- Assembly of RAID array
- Import and activation of volume group
- Mount of file system

Stopping involves the following steps:
- Unmount of file system
- Stop and export of volume group
- Stop of RAID array

Variable definitions for this example:

```
MD="/dev/md1"
MDDEV1="/dev/mapper/A_DATA01-part1"
MDDEV2="/dev/mapper/B_DATA01-part1"
VG="vgdata"
LV="lvdata"
FS="/data"
MDADM="/sbin/mdadm"
VGIMPORT="/sbin/vgimport"
VGCHANGE="/sbin/vgchange"
LVCHANGE="/sbin/lvchange"
MOUNT="/bin/mount"
UMOUNT="/bin/umount"
VGEXPORT="/sbin/vgexport"
```

Activation of resources:
```
# starting RAID array ${MD}
${MDADM} --assemble ${MD} ${MDDEV1} ${MDDEV2}
# importing volume group ${VG}
${VGIMPORT} ${VG}
# activating volume group ${VG}
${VGCHANGE} -ay ${VG}
${LVCHANGE} --refresh ${VG}/${LV}
# mounting file system ${FS}
${MOUNT} ${FS}
```

Stopping of resources:
```
# unmount file system ${FS}
${UMOUNT} ${FS}
# stop volume group ${VG}
${VGCHANGE} -an ${VG}
${VGEXPORT} ${VG}
# stop RAID array ${MD}
${MDADM} --stop ${MD}
```
Setting up a RHEL repository for YUM
Setting up a RHEL repository for YUM (1/2)

- NFS server provides the contents of the RHEL DVD, for instance RHEL 6.5

```bash
<nfs-server>:/export/linux/ppc/RHEL6U5
```

- Create a RHEL base software repository for YUM

```bash
[root@rhel65 /]# cat /etc/yum.repos.d/rhel-base.repo
[rhel-base]
name=Red Hat Enterprise Linux $releasever - $basearch
baseurl=file:///misc/yum/Server
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
```
Setting up a RHEL repository for YUM (2/2)

- Enable automounter

```
[root@rhel65 /]# chkconfig --list | grep autofs
autofs       0:off 1:off 2:off 3:on 4:on 5:on 6:off
[root@rhel65 /]# chkconfig autofs on
```

- Add this line at the end of `/etc/auto.misc` (config file of automounter)

```
yum -ro,soft,intr,vers=3 <nfs-server>:/export/linux/RHEL6U5
```

- Restart the automounter

```
/etc/init.d/autofs restart
```

Now you can use YUM with this new repository…
How to obtain information from within a Linux LPAR
/proc/ppc64/lparcfg (virtual file)

- `/proc/ppc64/lparcfg`
 - Details can be found here

Description
- The lparcfg file is a virtual file which contains information related to an IBM Power Logical Partition.
- The AIX command "lparstat" is also available for Linux (using `/proc/ppc64/lparcfg`).

Options
- The fields displayed in the lparcfg file are sorted below according to the version of the lparcfg file. Generally, fields are only added and not removed (unless otherwise noted), so the latest version of lparcfg contains all fields in all previous versions of the file as well.

Linux distribution version mapping
- SLES 9 lparcfg 1.6
- SLES 10 lparcfg 1.7
- SLES 11 lparcfg 1.8 ← addition of Active Memory Sharing
- SLES 11 SP1 lparcfg 1.9
- RHEL 4 lparcfg 1.6
- RHEL 5 lparcfg 1.7
- RHEL 6 lparcfg 1.9
- RHEL 7 lparcfg 1.9
/proc/ppc64/lparcfg 1.6 based values (1/5)

- `serial_number` - The serial number of the physical system in which the partition resides.
- `system_type` - The machine,type-model of the physical system in which the partition resides.
- `partition_id` - The numeric partition ID.
- `R4` - The hexadecimal representation of `partition_entitled_capacity`. This field is deprecated and not displayed on more recent versions of the Linux kernel (lparcfg 1.8 or greater). The definition is only provided for historical purposes.
- `R5` - The hexadecimal representation of `unallocated_capacity`. Not displayed on more recent versions of the Linux kernel. This field is deprecated and not displayed on more recent versions of the Linux kernel (lparcfg 1.8 or greater). The definition is only provided for historical purposes.
- `R6` - This is a hexadecimal value representing both the group and pool. This field is deprecated and not displayed on more recent versions of the Linux kernel (lparcfg 1.8 or greater). The definition is only provided for historical purposes.
- `R7` - This is a hexadecimal value representing `capped, capacity_weight, unallocated_capacity_weight, pool_capacity, and system_active_processors`. This field is deprecated and not displayed on more recent versions of the Linux kernel (lparcfg 1.8 or greater). The definition is only provided for historical purposes.
- `BoundThrds` - For virtual processor dispatches, if the hypervisor always dispatches a set of virtual threads together on a physical processor, the threads are said to be bound. This allows an operating system to make scheduling decisions based on cache affinity and work load. Set to 1 if threads are bound, 0 otherwise. This value is informational and is not a tunable value.
/proc/ppc64/lparcfg 1.6 based values (2/5)

- **CapInc**

 This defines the delta by which the entitled capacity of a partition can be incremented or decremented by DLPAR/WLM. The capacity increment is expressed as a percentage of a physical processor. This value is informational and is not a tunable value.

- **DisWheRotPer**

 The duration of the hypervisor's scheduling window. The time over which the entitled capacity of a virtual processor has to be utilized by the partition. At the start of a dispatch wheel rotation period, each virtual processor is eligible for CPU time corresponding to its entitled capacity. If the entire entitled capacity of a virtual processor is not utilized during a dispatch wheel rotation period, the unused entitled capacity is lost. The dispatch wheel rotation period is expressed as N number of time base ticks. The dispatch wheel duration of a partition with a capacity increment of 100 is 0. This value is informational and is not a tunable value.

- **MinEntCap**

 The minimum entitled capacity that is needed to boot the partition. The capacity is expressed as a percentage of a physical processor. The minimum entitled capacity is set by the system administrator in the partition definition. DLPAR cannot take the entitled capacity below the minimum entitled capacity. A change in the minimum entitled capacity takes effect on the next reboot of the partition. Linux running in a partition can give up its entitled capacity to be below the minimum entitled capacity, but this is generally not recommended.

- **MinEntCapPerVP**

 The minimum entitled capacity that the platform requires for a virtual processor of any partition on the platform. The minimum capacity per virtual processor is enforced by the HMC in the partition definition and by the hypervisor. A change in the minimum entitled capacity per virtual processor takes effect on the next reboot of the partition. This is a physical system setting and is not considered a Linux partition tunable.

- **MinMem**

 The minimum amount of main store that is needed to boot the partition. Minimum memory is expressed in MB of storage. The minimum memory is set by the system administrator in the partition definition. DLPAR cannot take the partition memory below the minimum memory. A change in the minimum memory takes effect on the next reboot of the partition. Linux running in a partition can always give up its memory to go below the minimum memory.

- **MinProcs**

 The minimum number of virtual processors that are needed to boot the partition. The minimum number of virtual processors is set by the system administrator in the partition definition. DLPAR cannot take the number of virtual processors below the minimum number of processors. A change in the minimum number of processors takes effect on the next reboot of the partition. A partition can always give up its virtual processors to go below the minimum number of processors. The number of virtual processors is a simulated physical core view. Additional logical CPUs are defined in the Linux partition to account for the possible hardware threads.
/proc/ppc64/lparcfg 1.6 based values (3/5)

- **partition_max_entitled_capacity**
 - The maximum entitled capacity currently that can be assigned to the partition through DLPAR/WLM. The capacity is expressed as a percentage of a physical processor. The Maximum entitled capacity is set up by the system administrator in the partition definition. A change in the maximum entitled capacity maximum takes effect on the next reboot of the partition.

- **system_potential_processors**
 - The maximum number of physical processors that can be active on the platform. A change in the maximum platform processors takes effect on the next reboot of the partition.

- **DesEntCap**
 - The desired entitled capacity is the number of processing units, expressed as a percentage of a physical processor, which is desired for a logical partition. The desired entitled capacity is the same as the desired processing units on the HMC. If the system has at least the desired number of processing units available when you activate the partition, then the system commits the desired number of processing units to the logical partition. If the desired number of processing units is not available, but at least the minimum number of processing units is available, then the system activates the logical partition with the processing units it has.

- **DesMem**
 - The desired memory set by the system administrator in the partition definition. The desired memory is expressed in MB of storage. The desired memory can change without a reboot of the partition. The desired memory that the partition is currently using may differ from the desired memory because of WLM actions or because of failed system memory.

- **DesProcs**
 - The desired number of virtual processors set by the system administrator in the partition definition. The desired number of processors can change without a reboot of the partition. The number of processors that the partition is currently using may differ from the desired number of processors because of WLM actions or because of failed system processors.

- **DesVarCapWt**
 - The desired variable capacity weight set by the system administrator in the partition definition. The desired variable capacity weight is a number between 0 and 255. The desired variable capacity weight can change without a reboot of the partition. The variable capacity weight that the partition is currently using may differ from the desired variable capacity because of WLM actions.

- **DedDonMode**
 - For a partition with a capacity increment of 100, the platform uses a dedicated CPU to actualize a virtual processor of the partition. For such a partition, the platform can increase the capacity of the shared processor pool by utilizing the unused processor capacity of the partition. If the platform supports the dedicated donate function, it can be enabled by the system administrator in the partition definition. The value of this characteristic can change without a reboot of the partition. The values for this field are 0 and 1.
partition_entitled_capacity
 - Entitled Processor Capacity Percentage. The percentage of a physical processor that the hypervisor guarantees to be available to the partition's virtual processors (distributed in a uniform manner among the partition's virtual processors -- thus the number of virtual processors affects the time slice size) each dispatch cycle. Capacity ceded or conferred from one partition virtual processor extends the time slices offered to other partition processors. Capacity ceded or conferred after all of the partition's virtual processors have been dispatched is added to the variable capacity kitty. The initial, minimum and maximum constraint values of this parameter are determined by the partition configuration definition. The OS can set this parameter within the constraints imposed by the partition configuration definition minimum and maximums plus constraints imposed by partition aggregation. To change this value, echo the new partition_entitled_capacity into /proc/ppc64/lparcfg like this:

group
 - LPAR group number of the partition

system_active_processors
 - The number of processors active on the underlying physical system.

pool
 - The pool number of the shared processor pool for the partition. This field is not displayed in the case of a dedicated processor partition.

pool_capacity
 - The number of physical processors active in the partition's processor pool. This field is not displayed in the case of a dedicated processor partition. This value is expressed as a percentage so is 100* the number of active physical processors.

pool_idle_time
 - If no virtual processor is ready to run, the pool_idle_count is incremented the total number of idle processor cycles in the physical processor pool. This field contains the total number of idle processor cycles up to the current point in time. If unsupported or if performance information collection is not enabled for the partition on the HMC, this will report 0. This field is not displayed in the case of a dedicated processor partition. pool_num_procs
 - The number of physical processors in the partition's processing pool. This field is not displayed in the case of a dedicated processor partition.

unallocated_capacity_weight
 - Unallocated Variable Processor Capacity Weight. The amount of variable processor capacity weight that is currently available within the constraints of the partition's current environment for allocation to the partition's variable processor capacity weight.
capacity_weight
- Variable Processor Capacity Weight. The unitless factor that the hypervisor uses to assign processor capacity in addition to the Entitled Processor Capacity Percentage. This factor may take the values 0 to 255. In the case of a dedicated processor partition this value is 0. A virtual processor's time slice may be extended to allow it to use capacity unused by other partitions, or not needed to meet the Entitled Processor Capacity Percentage of the active partitions. A partition is offered a portion of this variable capacity kitty equal to: (Variable Processor Capacity Weight for the partition) / (summation of Variable Processor Capacity Weights for all competing partitions). The initial value of this parameter is determined by the partition configuration definition. The OS can set this parameter within the constraints imposed by the partition configuration definition maximum. Certain partition definitions may not allow any variable processor capacity allocation. To change this value, echo the new capacity_weight into /proc/ppc64/lparcfg like this:

capped
- The partition's virtual processor(s) are capped at their entitled processor capacity percentage if this is 1. If capped=0, the partition is uncapped, and can use processor capacity from the uncapped pool, if available and according to the weighted values. In the case of dedicated processors this bit is set.

unallocated_capacity
- Unallocated Processor Capacity Percentage. The amount of processor capacity that is currently available within the constraints of the partition's current environment for allocation to Entitled Processor Capacity Percentage.

purr
- The Processor Utilization of Resources Register. Summation of the PURR value for all of the partition's virtual processors.

partition_active_processors
- The total number of virtual processors assigned to the partition. This does not include the potential SMT threads. For dedicated processor partitions, this is the number of physical processors assigned to the partition. Linux will define virtual CPUs for the possible SMT threads across all of the virtual processors defined here.

partition_potential_processors
- The maximum number of virtual processors that can be assigned to the partition. This does not include SMT threads. For dedicated processor partitions, this is the maximum number of physical processors that can be assigned to the partition.

shared_processor_mode
- This is set to 1 if the partition is running with shared processors. This is set to 0 for dedicated processor partitions.
/proc/ppc64/lparcfg 1.7 additional values

- **slb_size**
 - The total number of entries in the Segment Lookaside Buffer (SLB). This is an attribute of the underlying processor architecture and is provided for informational purposes. The Linux OS uses this when determining the ability to perform Live Partition Migration with differing processor families.
/proc/ppc64/lparcfg 1.8 additional values (1/2)

- `entitled_memory`
 - The number of bytes of main storage that the partition is entitled to DMA for virtual I/O devices. In the case of a dedicated memory partition this is the size of the partition's logical address space.

- `mapped_entitled_memory`
 - The number of bytes of main storage that the partition has DMA mapped. In the case of a dedicated memory partition this is not displayed.

- `entitled_memory_group_number`
 - Entitled Memory Group Number.

- `entitled_memory_pool_number`
 - Entitled memory pool number. In the case of a dedicated memory partition, this is 65535.

- `entitled_memory_weight`
 - The partition's shared memory weight. In the case of a dedicated memory partition this is 0.

- `unallocated_entitled_memory_weight`
 - The unallocated shared memory weight for the calling partition's aggregation. In the case of a dedicated memory partition this is 0.

- `unallocated_io_mapping_entitlement`
 - The unallocated I/O mapping entitlement for the calling partition's aggregation divided by 4096. In the case of a dedicated memory partition this is 0.

- `entitled_memory_loan_request`
 - The signed difference between the number of bytes of logical storage that are currently on loan from the calling partition and the partition's overage allotment (a positive number indicates a request to the partition to loan the indicated number of bytes else they will be expropriated as needed). In the case of a dedicated memory partition this is 0. In the case of a shared memory partition, when running the Collaborative Memory Manager (cmm module), this will typically be 0, as the CMM will monitor and fulfill the hypervisor's loan requests.
/proc/ppc64/lparcfg 1.8 additional values (2/2)

- **backing_memory**
 - The number of bytes of main storage that is backing the partition logical address space. In the case of a dedicated memory partition this is the size of the partition's logical address space.

- **cmo_enabled**
 - If Active Memory Sharing is enabled for the partition, this is set to 1. For dedicated memory partitions, this is 0.

- **cmo_faults**
 - Displayed only for shared memory partitions. Indicates the total number of times the partition has accessed a page in memory which was paged out to disk by firmware, requiring it to be paged back in. If the Collaborative Memory Manager is disabled, this value may be large. If it is enabled (default setting for most Linux distributions), this number is typically small. If this value is large and is increasing, it may be an indication that the partition's shared memory pool has too high of an overcommit ratio, in which case you may need to assign additional physical memory to the shared memory pool.

- **cmo_fault_time_usec**
 - Displayed only for shared memory partitions. Indicates the total amount of time in microseconds the partition has had a virtual processor blocked in order for firmware to page in data. Directly related to cmo_faults.

- **cmo_primary_psp**
 - Displayed only for shared memory partitions. Partition ID of the primary paging VIOS.

- **cmo_secondary_psp**
 - Displayed only for shared memory partitions. Partition ID of the secondary paging VIOS. If there is no secondary paging VIOS, this will be set to 65535.

- **cmo_page_size**
 - Displayed only for shared memory partitions. Physical page size in bytes.
/proc/ppc64/lparcfg 1.9 based values

- **physical_procs_allocated_to_virtualization**
 - The number of physical platform processors allocated to processor virtualization. This is a physical system attribute and has no bearing on the Linux partition.

- **max_proc_capacity_available**
 - The maximum processor capacity percentage that is available to the partition's shared processor pool.

- **entitled_proc_capacity_available**
 - The entitled processor capacity percentage available to the partition's pool.

- **dispatches**
 - Virtual Processor Dispatch Counter. Counter that is incremented each time a virtual processor is dispatched/preempted.

- **dispatch_dispersions**
 - Virtual Processor Dispatch Dispersion Accumulator. Incremented on each virtual processor dispatch if the physical processor differs from that of the last dispatch.
Change number of SMT threads
Turn SMT on/off from Linux

- SMT can be disabled at boot time by adding this command to the append string of the kernel boot parameters:

smt-enabled=off

- To determine the current SMT state:

 ppc64_cpu -smt

- To set the SMT state dynamically:

 - ppc64_cpu --smt={on|off}
 - ppc64_cpu --smt=<number>

 - Possible settings for <number>
 - Power6: 1, 2
 - Power7: 1, 2, 4
 - Power8: 1, 2, 4, 8

- ppc64_cpu is part of the "powerpc-utils" RPM package (installed by default)
Optimizing for Linux on Power
GCC versions for RHEL, SLES and Ubuntu

Facts:
- Linux distributors select a base GCC version as their “default” version.
- During the lifetime of that Linux enterprise distribution version they typically stick with that specific GCC version.
- Unfortunately, GCC development keeps going at a fast pace.
- Newer GCC technology and features mostly only available with latest version of GCC.
- Selective new GCC features and bug fixes from the current GCC development version are being backported to their base GCC versions.

Consequence:
- Best exploitation of newest Power systems not always guaranteed with older GCC versions!
GCC versions that come with RHEL, SLES and Ubuntu

Red Hat Enterprise Linux

- RHEL 6
 - gcc-4.4.4-13.el6.ppc64.rpm
- RHEL 6 Update 1
 - gcc-4.4.5-6.el6.ppc64.rpm
- RHEL 6 Update 2
 - gcc-4.4.6-3.el6.ppc64.rpm
- RHEL 6 Update 3
 - gcc-4.4.6-4.el6.ppc64.rpm
- RHEL 6 Update 4
 - gcc-4.4.7-3.el6.ppc64.rpm
- RHEL 6 Update 5
 - gcc-4.4.7-4.el6.ppc64.rpm
- RHEL 6 Update 6
 - gcc-4.4.7-11.el6.ppc64.rpm
- RHEL 7
 - gcc-4.8.2-16.el7.ppc64.rpm

SUSE Linux Enterprise Server

- SLES 11
 - gcc-4.3-62.198.ppc64.rpm
- SLES 11 Service Pack 1
 - gcc-4.3-62.198.ppc64.rpm
- SLES 11 Service Pack 2
 - gcc-4.3-62.198.ppc64.rpm
- SLES 11 Service Pack 3
 - gcc-4.3-62.198.ppc64.rpm
- SLES 12
 - gcc-4.8-6.189.ppc64le.rpm

Ubuntu

- 14.04
 - gcc-4.8_4.8.2-19ubuntu1_ppc64el.deb
- 14.10
 - gcc-4.9_4.9.1-16ubuntu6_ppc64el.deb
IBM Software Development Kit for Linux on Power

The IBM Software Development Kit for Linux on Power (SDK) is a free, Eclipse-based Integrated Development Environment (IDE) and integrates
- C/C++ source development with the Advance Toolchain
- Post-Link Optimization
- classic Linux performance analysis tools, including Oprofile, Perf and Valgrind

The IBM SDK for Linux on Power package includes:
- IBM Advance Toolchain for Linux on Power integration, Versions 7.0-5, 7.1-0, and 8.0-0
- IBM SDK for Linux on Power, Version 1.6.0
- Feedback Directed Program Restructuring (FDPR), Version 5.6.2-6b
- Pthread Monitoring tool for Linux on Power (pthread-mon), Version 0.5.10-1
- IBM SDK Java Technology Edition Version 7.1
- IBM POWER8 Functional Simulator
IBM Advance Toolchain for PowerLinux

URLs:
- PowerLinux Community wiki
- IBM Advance Toolchain for PowerLinux Documentation
- Improving performance with IBM Advance Toolchain for PowerLinux

Description:
- The IBM Advance Toolchain for PowerLinux™ provides early and easy access to libraries and the latest compiler technologies for Linux distributions.
- Over time, these libraries and latest compiler technologies are integrated into the shipping distributions.
- However, the IBM Advance Toolchain for PowerLinux contains the latest tested and supported GNU Compiler Collection (GCC) compiler versions, tailored for Power systems, and packaged together with an expanding set of processor-tuned libraries, allowing you to take advantage of the latest technology without waiting.
The value of the IBM Advance Toolchain

- RHEL 6.X GCC version V4.4.[4-7]
- RHEL 7.X GCC version V4.8.2
- Ubuntu 14.04 GCC version V4.8.2
- Ubuntu 14.10 GCC version V4.9.1
- SLES 11.X GCC version V4.3
- SLES 12.X GCC version V4.8
- IBM Advance Toolchain GCC version V4.9.2
Optimized compile of PostgreSQL V9.2.6

- Customer in Karlsruhe/Germany required optimized PostgreSQL V9.2.6 binary RPMs for production databases for RHEL 6.X.
- http://yum.postgresql.org/ provides Enterprise PostgreSQL binary RPM packages but only for x86 and x86_64 platforms.
- Idea was now to recompile those original source RPM files on RHEL 6.X for Power.

Recompile on PowerLinux:

- Recompile went very smooth and out-of-the-box, no source code changes at all required.
- Also repackaging as RPM files on PowerLinux/RHEL required no changes.

- Compilation of highly optimized binary RPMs with
 - Advance Toolchain with GCC V4.8.2
 - instead of
 - Base V4.4.7 GCC as part of RHEL 6.5

improved the run times (measured with pgbench) by 30-35%!!
MariaDB Corporation and MariaDB

- MariaDB Corporation, formerly SkySQL
 - Strong team of MariaDB/MySQL experts
 - Provides support and services for MariaDB, MySQL and derived databases
 - Strong Supporter of MariaDB Foundation

- MariaDB
 - Compatible with MySQL
 - Superior replication and scalability for cloud
 - Addresses Big Data and IoT needs
 - MariaDB is becoming the leading database platform for cloud
 - MariaDB is adopted by key open source communities
Optimizations and economic impact

- MariaDB optimized for System z and POWER8

- Power8 – Big + Little Endian architectures have been made part of the build system of MariaDB

- Preliminary benchmarking results shows that MariaDB performance on POWER8 per core is 2.2× more than on x86!

- MariaDB built with “IBM’s Advance Toolchain for POWER8”
- MariaDB makes full use of the 8 threads per core provided by POWER8:
 - 12 cores @4.x Ghz × 8 threads per core = 96 parallel processing threads
 - Intel – only 2 threads per core
Resources, Links
Where to find more information?

Power Systems Linux Portal
(Product Information)

The OpenPOWER Foundation

http://openpowerfoundation.org/

The PowerLinux Community
(developerWorks)

plus.google.com/communities/100156952249293416679

[@ibmpowerlinux](https://twitter.com/ibmpowerlinux)
Links

- **IBM Wikis:**

- **All commands for scanning and deleting virtual SCSI devices:**
 - SCSI - Hot add, remove, rescan of SCSI devices

- **RHEL 6:** [Adding/Removing a Logical Unit Through rescan-scsi-bus.sh](http://www.ibm.com/developerworks/wikis/display/LinuxP/Home)

- **SLES:** [HOWTO: Add or Resize a LUN without restarting SLES or OES Linux](http://www.ibm.com/developerworks/wikis/display/LinuxP/Home)

- **IBM PowerLinux Wiki**

- **IBM Redbook SG24-7338:**
 - *Tuning Linux OS on System p – The POWER of Innovation*

- **IBM Redbook SG24-7286:**
 - *Deploying Mission Critical Applications with Linux on POWER*

- **IBM Redbook SG24-7499:**
 - *Virtualizing an Infrastructure with System p and Linux*
Questions?

Thank you for your attention!
Endianness
Why do I care about endianness?

- Linux on Power has chosen to exploit little endian (LE) processor mode based on OpenPOWER partner feedback instead of big endian (BE).
 - Eases the migration of applications from Linux on x86.
 - Enables simple data migration from Linux on x86.
 - Simplifies data sharing (interoperability) with Linux on x86.
 - Improves Power I/O offerings with modern I/O adapters and devices, e.g. GPUs.

- Creation of an LE operating system for Linux on Power means creating a whole new software “platform” (ppc64le) (in addition to BE ppc (32-bit) and BE ppc64 (64-bit)).

- LE distributions for Linux on Power does NOT mean x86 applications magically run: applications must still be compiled for Power.

- Power8 CPU can be either big or little endian ➔ mixed endianness (big and little) on same system will be possible.
Linux distributions for Power Systems
Linux support for POWER

- **RHEL 7**
 - POWER8 (native mode) and POWER 7/7+

- **RHEL 6**
 - POWER8 supported with U5 (P7-compatibility mode)
 - Full support of POWER6 and POWER7 (native mode)

- **Fedora**
 - Fedora 16 was first release to re-launch POWER
 - Fedora 20 has POWER8 support

- **Supported add-ons**
 - JBoss
 - High Performance Network Add-on

- **SLES 12**
 - POWER8 (native mode) and POWER 7/7+

- **SLES 11**
 - POWER8 with SP3 (P7-compatibility mode)
 - POWER7+ encryption, RNG accelerators with SP3
 - Full support of POWER7 (native mode)

- **openSUSE**
 - openSUSE 12.2 re-launched for IBM POWER
 - openSUSE 13.2 includes POWER8 support

- **Ubuntu 14.10**
 - POWER8 enabled (native mode)

- **Ubuntu 14.04**
 - POWER8 enabled (native mode)
 - No official support for POWER7+ and older systems
 - No support for 32-bit applications. 64-bit only.
 - Supported in KVM only at this time

- **Supported add-ons**
 - JuJu Charms
 - MaaS (Metal as a Service)
 - Landscape

- **Debian**
 - Debian community now supports Power as of Sid release

- **Built from the same source as x86**
- **Delivered on the same schedule as x86**
- **Supported at the same time as x86**

© 2014 IBM Corporation
Linux on Power has Linux “release parity” with x86

See for more details:
- Red Hat lifecycle information - https://access.redhat.com/support/policy/updates/errata/
- SUSE lifecycle information – http://support.novell.com/inc/lifecycle/linux.htm/
- Ubuntu lifecycle information - https://wiki.ubuntu.com/Releases
Hypervisor support for endianness

<table>
<thead>
<tr>
<th></th>
<th>April 2014</th>
<th>4Q 2014</th>
<th>Strategic outlook</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerVM</td>
<td>BE BE BE</td>
<td>BE BE LE</td>
<td>BE LE BE</td>
</tr>
<tr>
<td>PowerKVM</td>
<td>BE BE BE</td>
<td>LE BE LE</td>
<td>LE BE LE</td>
</tr>
<tr>
<td>PowerKVM</td>
<td>LE LE LE</td>
<td>LE BE LE</td>
<td>LE BE LE</td>
</tr>
</tbody>
</table>

Transition to strategic state may involve multiple interim steps as product testing completes.
Migrating Linux/x86 applications to Linux on Power
Script languages and interpreted languages

- All script languages and interpreted languages should be platform-independent once they are compiled for the particular platform.
- Also compiled code should be platform-independent (e.g., Perl, Python etc.).
- Examples include:
 - Perl
 - Python
 - PHP
 - Ruby
 - Lua
 - Tcl
 - etc.
Java migrations

- Java compiled byte-code is platform-independent and thus portable across different platform if the Java specification has been adhered to, i.e., no APIs/syscalls beyond the specification have been used.
- For PowerLinux the Java JVM options are:
 - IBM JVM
 - OpenJDK
- For Linux/x86 multiple different JVMs are available.
- Differences in behavior between the IBM JVM and the Oracle JVM exist.

- Problems in migrating Java code typically arise only if Java extensions were used that are not part of the standard Java specification:
 - For instance, lots of security-relevant Java code differs between JVMs of different vendors.

- For the remainder only C/C++ code now considered!
Considered migration scenarios C/C++ (1/2)

Other Linux
(not RHEL, SLES, Ubuntu) → RHEL, SLES, or Ubuntu

RHEL → RHEL
SLES → SLES
Ubuntu → Ubuntu
Considered migration scenarios C/C++ (2/2)

Not considered here:

- Changing the address space for the application, i.e., converting it from a 32-bit to a 64-bit application
 - Might be required if porting 32-bit application to 64-bit only like Ubuntu (ppc64le)

- A 32-bit Linux/Intel application can always be recompiled as a 32-bit Linux/Power application, no need to change anything here!
 - The exception is new ppc64le platform (e.g., Ubuntu)

- Converting a 32-bit application to 64-bit address space can present a huge challenge depending on the code quality!

- Please see the redbook “AIX5L Porting Guide“ for details:
Dealing with endianness

Sources of endianness problems:

- Nonuniform data referencing
 - It is often featured by data type mismatches resulting from either data element casting, use of a union data structure, or the use and manipulation of bit fields.

- Sharing data across platforms
 - For example, a big-endian system retrieves database data stored by a little-endian system.

- Exchanging of data between devices of different endianness and devices on a network
 - For example, AIX on Power systems uses the big-endian model, but the PCI bus uses the little-endian model.
 - TCP/IP protocols requires data to be sent in network byte order, which is the big-endian model.
The IBM Software Development Kit for PowerLinux includes a Migration Advisor to help in moving Linux applications from x86 systems to Power systems.

The advisor uses the Eclipse C/C++ Development Tools code analysis tool.

The code analysis tool locates potential migration problems within a project, such as source code that might produce different results when run on Power systems.

It contains several checkers that look for code in the project that might produce a different result in Power systems.

Warnings are displayed showing the kind of problem found.
Linux/x86 to PowerLinux application migration

PowerLinux Migration Advisor checkers:
- x86-specific compiler built-in checker
- x86-specific assembly checker
- Struct with bit fields checker
- Cast with endianness issues checker
- Linux/x86-specific API checker
- Union with endianness issues checker
- Long double usage checker
- Performance degradation checker
- Syscall not available for PowerLinux checker