PowerVM Processors

Gareth Coates
gaz@uk.ibm.com
IBM Power Systems
Advanced Technology Support, EMEA

© 2011 IBM Corporation
Message to presenter

- Remember to start recording
Properties of the VM or LPAR

Partition Properties - black7_gaz

- Name: black7_gaz
- ID: 57
- Environment: AIX or Linux
- State: Running
- Attention LED: Off
- Resource configuration: Configured
- OS version: AIX 7.1 7100-00-01-1037
- Current profile: normal
- System: 9119-FHB*02C5FF1

- Allow this partition to be suspended.

Processing Units
- Minimum: 1.00
- Assigned: 1.00
- Maximum: 32.00
- Sharing mode: Capped
- Shared processor pool: DefaultPool (0)

Virtual Processors
- Minimum: 1.0
- Assigned: 2.0
- Maximum: 32.0

Processor Compatibility Mode
- Compatibility mode: POWER7
Properties of the profile

- **Processing mode**
 - [X] Dedicated
 - [] Shared

- **Processing units**
 - Total managed system processing units: 64.00
 - Minimum processing units: 1.0
 - Desired processing units: 4.0
 - Maximum processing units: 32.0
 - Shared processor pool: DefaultPool (0)

- **Virtual processors**
 - Minimum processing units required for each virtual processor: 0.10
 - Minimum virtual processors: 1.0
 - Desired virtual processors: 8.0
 - Maximum virtual processors: 32.0

- **Sharing mode**
 - [X] Uncapped
 - Weight: 100

- **Processor compatibility mode**: default
Processor

- During Virtual Machine Start up
 - Minimum - If less than this available = do not start
 - Desired - What you really would like
 - Maximum – Ignored

- Hopefully, you get Desired but might get less
- Minimum used to stop VM starting with so little CPU time that is would cause problems
- Once running what you got is called Entitlement = how much CPU the LPAR is entitled to use.
Processor

- Virtual Machine + Dynamic Online Changes
 - Minimum - Entitlement can’t go lower than this
 - Desired - Ignored
 - Maximum – Entitlement can’t go higher than this

- Sanity checks
 so operators can’t do too much damage!!

- Often a “pain in the #&$%”
 as you can’t change it while running
Processor Pool

- Used to sub divide all the CPUs
 - ROT: less than 8 CPUs not used much – use Default Pool

- Why?
 - License control – only pay for pool’s CPU for software
 - 4 CPUs for VIOS
 - 30 CPU for 4 DB2 VMs – only pay for 30 licenses
 - 30 CPU for 2 Oracle VMs – only pay for 30 licenses
 - 64 CPU for 16 WAS VMs – only pay for 64 licenses

- Prioritise CPUs for important production VMs
 - 48 CPUs for production
 - 8 CPUs for dev/test
Virtual Processor

- A major confusion to many
 - Physical, logical and now virtual CPUs!!

- If it was called “spreading factor” it would help
 - The Entitlement CPU cycles are spread across the VP

\[E = 2.5 \text{ spread across 3 VP} \]

\[E = 2.5 \text{ spread across 6 VP} \]
Virtual Processor

- VP must be same or higher than Entitlement
 - Entitlement=2.5 CPU
 - Obviously can’t run on just 2 CPUs
 - So VP must be 3 or more

- Must have 0.1 of a CPU or more for every VP
 - Mandatory and good for efficiency

- Have a physical CPU for every VP in the pool/box
 - More is dumb!
To cap or not to cap

- **Capped**
 - The VM can’t use more than Entitlement, unused cycles go in the pool for other VM’s or are wasted
 - Can be used for SW license control

E=2.5 on 3 VP

E=2.5 on 6 VP
Cap or uncap

- **Capped**
 - The VM can’t use more than Entitlement, unused cycles go in the pool for other VM’s or are wasted
 - Can be used for SW license control

- **Uncapped**
 - This VM competes for spare pool CPU cycles and can get more work done
 - Entitlement = 2.5
 - VP=3 up to 3 CPU
 - VP=6 up to 6 CPU

E=2.5 on 3 VP

E=2.5 on 6 VP
Weight factor

- 0 to 255 (0 ≡ capped)
 - but you can tweak it dynamically
 - Toggling Capped/Uncapped requires a VM restart

- How much of the "spare" can each VM get?
 - The weights of all VM's who have had their entitlement are compared and unused resource is shared accordingly

- Let's do the arithmetic
Weight factor

\[
\text{AdditionalCapacityShare} = UCk \times \frac{WPn}{\sum We} \times \frac{1}{rP}
\]

Where:

- **AdditionalCapacityShare**
 Share of unused processing capacity to be allocated to a particular partition (in processor units x 100)

- **UCk**
 Unused processor capacity available in their Shared-Processor Pool for the dispatch window (in processor units)

- **WPn**
 Uncapped weight of the particular uncapped micro-partition

- **rP**
 The number of runnable (eligible) micro-partitions for this dispatch window

- **\(\sum We \)**
 Sum of the uncapped weights of all runnable uncapped micro-partitions
Weight factor

- Consider 3 VMs

<table>
<thead>
<tr>
<th>8 physical CPUs Installed and activated</th>
<th>CE</th>
<th>VP</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD</td>
<td>6.0</td>
<td>8</td>
<td>255</td>
</tr>
<tr>
<td>TEST</td>
<td>1.0</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>DEV</td>
<td>1.0</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

- If PROD is idle, DEV and TEST can use all of the 8 CPUs between them and have equal shares

- If PROD becomes busy, it will take its CE up to 6.0 and if eg: TEST is idle and DEV is busy, it will get nearly all of TEST's entitlement, DEV getting very little.
Properties of the VM or LPAR

Partition Properties - black7_gaz

General
- Name: black7_gaz
- ID: 57
- Environment: AIX or Linux
- State: Running
- Attention LED: Off

Resource configuration: Configured
OS version: AIX 7.1 7100-00-01-1037
Current profile: normal
System: 9119-FHB*02C5FF1

Allow this partition to be suspended.

Hardware

Processors
- Minimum: 1.00
- Assigned: 1.00
- Maximum: 32.00
- Sharing mode: Capped
- Shared processor pool: DefaultPool

Virtual Processors
- Minimum: 1.0
- Assigned: 2.0
- Maximum: 32.0

Processor Compatibility Mode
- Compatibility mode: POWER7
Properties of the profile

Processing mode
- Dedicated
- Shared

Processing units
- Total managed system processing units: 64.00
- Minimum processing units: 1.0
- Desired processing units: 4.0
- Maximum processing units: 32.0
- Shared processor pool: DefaultPool (0)

Virtual processors
- Minimum processing units required for each virtual processor: 0.10
- Minimum virtual processors: 1.0
- Desired virtual processors: 8.0
- Maximum virtual processors: 32.0

Sharing mode
- Uncapped
- Weight: 100

Processor compatibility mode: default
What can be changed Dynamically

- Lots of things – to make your life easy

- Capacity Entitlement
 - +/- 0.01 between MIN and MAX

- Virtual Processors
 - integers between MIN and MAX

- Uncapped Weight
 - integers between 0 and 255

- Memory
 - LMBs between MIN and MAX

LMB=Logical Memory Block
The granularity that the hardware uses for allocating memory.
Between 16 and 256MB.
lparstat -i

Node Name : mantova
Partition Name : purple3-hpc
Partition Number : 13
Type : Dedicated-SMT-4
Mode : Capped
Entitled Capacity : 17.00
Partition Group-ID : 32781
Shared Pool ID : -
Online Virtual CPUs : 17
Maximum Virtual CPUs : 32
Minimum Virtual CPUs : 1
Online Memory : 32768 MB
Maximum Memory : 131072 MB
Minimum Memory : 2048 MB
Variable Capacity Weight : -
Minimum Capacity : 1.00
Maximum Capacity : 32.00
Capacity Increment : 1.00
Maximum Physical CPUs in system : 64
Active Physical CPUs in system : 32
Active CPUs in Pool : -
Shared Physical CPUs in system : 0
Maximum Capacity of Pool : 0
Entitled Capacity of Pool : 0
Unallocated Capacity : -
Physical CPU Percentage : 100.00%
Unallocated Weight : -
Memory Mode : Dedicated
Total I/O Memory Entitlement : -
Variable Memory Capacity Weight : -
Memory Pool ID : -
Physical Memory in the Pool : -
Hypervisor Page Size : -
Unallocated Variable Memory Capacity Weight : -
Unallocated I/O Memory entitlement : -
Memory Group ID of LPAR : -
Desired Virtual CPUs : 17
Desired Memory : 32768 MB
Desired Variable Capacity Weight : -
Desired Capacity : 17.00
Target Memory Expansion Factor : -
Target Memory Expansion Size : -
Power Saving Mode : Disabled
lparstat -i

Node Name : mantova
Partition Name : purple3-hpc
Partition Number : 13
Type : Shared-SMT-4
Mode : Uncapped

Entitled Capacity : 6.00
Partition Group-ID : 32781
Shared Pool ID : 0
Online Virtual CPUs : 8
Maximum Virtual CPUs : 30
Minimum Virtual CPUs : 2
Online Memory : 32768 MB
Maximum Memory : 131072 MB
Minimum Memory : 2048 MB
Variable Capacity Weight : 128
Minimum Capacity : 2.00
Maximum Capacity : 24.00
Capacity Increment : 0.01
Maximum Physical CPUs in system : 64
Active Physical CPUs in system : 32
Active CPUs in Pool : 32
Shared Physical CPUs in system : 32
Maximum Capacity of Pool : 3200
Entitled Capacity of Pool : 1763
Unallocated Capacity : 0.00
Physical CPU Percentage : 75.00%
Unallocated Weight : 0
Memory Mode : Dedicated
Total I/O Memory Entitlement: -
Variable Memory Capacity Weight: -
Memory Pool ID : -
Physical Memory in the Pool : -
Hypervisor Page Size : -
Unallocated Variable Memory Capacity Weight: -
Unallocated I/O Memory entitlement : -
Memory Group ID of LPAR : -
Desired Virtual CPUs : 8
Desired Memory : 32768 MB
Desired Variable Capacity Weight : 128
Desired Capacity : 6.00
Target Memory Expansion Factor : -
Target Memory Expansion Size: -
Power Saving Mode : Disabled
SMT & Logical CPUs

- Simultaneous Multi-Threading
- The ability to run more than one thread
 - on the same core
 - at the same time
 - really, the same time, ie: in the same clock cycle!
Processor terminology

- Shared processor partition SMT Off
- Shared processor partition SMT2 On
- Dedicated processor partition SMT Off

- Logical (SMT)
- Virtual
- Shared
- Dedicated
- Inactive (CUoD)
- Deconfigured
- Installed physical processors

Entitled capacity
Multi-threading Evolution

Single thread Out of Order

- FX0
- FX1
- FP0
- FP1
- LS0
- LS1
- BRX
- CRL

- No Thread Executing
- Thread 0 Executing
Multi-threading Evolution

Single thread Out of Order
- FX0: [] [] [] [] [] [] []
- FX1: [] [] [] [] [] []
- FP0: [] [] [] [] [] []
- FP1: [] [] [] [] [] []
- LS0: [] [] [] [] [] []
- LS1: [] [] [] [] [] []
- BRX: [] [] [] [] [] []
- CRL: [] [] [] [] [] []

S80 HW Multi-thread
- FX0: [] [] [] [] [] []
- FX1: [] [] [] [] [] []
- FP0: [] [] [] [] [] []
- FP1: [] [] [] [] [] []
- LS0: [] [] [] [] [] []
- LS1: [] [] [] [] [] []
- BRX: [] [] [] [] [] []
- CRL: [] [] [] [] [] []

[] No Thread Executing [] Thread 0 Executing [] Thread 1 Executing
Multi-threading Evolution

Single thread Out of Order

- FX0
- FX1
- FP0
- FP1
- LS0
- LS1
- BRX
- CRL

No Thread Executing

S80 HW Multi-thread

- FX0
- FX1
- FP0
- FP1
- LS0
- LS1
- BRX
- CRL

No Thread Executing

POWER5 2 Way SMT

- FX0
- FX1
- FP0
- FP1
- LS0
- LS1
- BRX
- CRL

No Thread Executing Thread 0 Executing Thread 1 Executing
Multi-threading Evolution

Single thread Out of Order

POWER5 2 Way SMT

POWER7 4 Way SMT

S80 HW Multi-thread

- No Thread Executing
- Thread 0 Executing
- Thread 1 Executing
- Thread 2 Executing
- Thread 3 Executing
SMT & Logical CPUs

- Historically, applications have used homogeneous systems
- In reality, different pieces of code have different needs of performance
- POWER7 offers different SMT modes to provide varying level of throughput and thread performance

SMT Modes are dynamically changeable and may be set by partition.

- OS may also dynamically change SMT levels based on thread availability
Demonstration