Note: Before using this information and the product that it supports, read the information in Notices and Trademarks on page 35.
CONTENTS

INTRODUCTION TO IBM SECURITY QRADAR TUNING
- Intended audience ... 1
- Technical documentation .. 1
- Contacting customer support 1
- Statement of good security practices 1

1 OVERVIEW

2 THE DEPLOYMENT PHASE
- VA scanners ... 5
- DSM updates ... 6
 - Updating DSMs automatically 6
 - Updating DSMs manually 6
- Log source detection ... 7
 - Displaying log sources 7
 - Adding log sources manually 7
- Establish and configure flow sources 8
 - QFlow Collectors ... 8
 - NetFlow data collection 8
 - Verifying QFlow Collector data collection 9
 - Configuring QFlow Collector devices 9
 - Verifying NetFlow data collection 10
 - Disabling NetFlow log messages 10
- Asset profile configuration 11
 - Import assets in CSV format 11

3 THE TUNING PHASE
- Server discovery .. 13
 - Discovering servers .. 14
- QRadar rules and offenses 15
- CRE ... 15
 - Rules .. 15
 - Offenses ... 15
 - Viewing the current CRE configuration 15
 - Investigating offenses 16
- QRadar building blocks .. 16
INTRODUCTION TO IBM SECURITY QRadar Tuning

This information is intended for use with IBM® Security QRadar® and provides information on how to tune your QRadar deployment.

Intended audience
System administrators responsible for tuning must have administrative access to IBM Security QRadar and your network devices and firewalls. The system administrator must have knowledge of your corporate network and networking technologies.

Technical documentation
For information on how to access more technical documentation, technical notes, and release notes, see the Accessing IBM Security QRadar Documentation Technical Note.
(http://www.ibm.com/support/docview.wss?rs=0&uid=swg21612861)

Contacting customer support
For information on contacting customer support, see the Support and Download Technical Note.
(http://www.ibm.com/support/docview.wss?rs=0&uid=swg21612861)

Statement of good security practices
IT system security involves protecting systems and information through prevention, detection and response to improper access from within and outside your enterprise. Improper access can result in information being altered, destroyed, misappropriated or misused or can result in damage to or misuse of your systems, including for use in attacks on others. No IT system or product should be considered completely secure and no single product, service or security measure can be completely effective in preventing improper use or access. IBM systems, products and services are designed to be part of a comprehensive security approach, which will necessarily involve additional operational procedures, and may require other systems, products or services to be most effective. IBM DOES NOT WARRANT THAT ANY SYSTEMS, PRODUCTS OR SERVICES ARE IMMUNE FROM, OR WILL MAKE YOUR ENTERPRISE IMMUNE FROM, THE MALICIOUS OR ILLEGAL CONDUCT OF ANY PARTY.

IBM Security QRadar SIEM Tuning Guide
1 OVERVIEW

This document provides an overview of the steps to setup and tune IBM Security QRadar SIEM software.

It assumes that your QRadar SIEM system is installed and functional. For more information on installing QRadar SIEM, see the IBM Security QRadar SIEM Installation Guide.

Tuning your QRadar SIEM system is completed in two phases; deployment and tuning. Table 1-1 describes the tasks required to complete each phase.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Task</th>
<th>Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deployment</td>
<td>Create your network hierarchy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optional. Configure VA Scanners.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Update your Device Support Modules (DSMs).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detecting Log Sources.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Establish and configure flow sources.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Configure your Asset Profile.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For more information, see The Deployment Phase.</td>
<td></td>
</tr>
<tr>
<td>Tuning</td>
<td>Discover and validate servers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Understanding and using rules and offenses.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Populating building blocks.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tuning false positives.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimize Custom Rules</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cleaning the SIM model.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For more information, see The Tuning Phase.</td>
<td></td>
</tr>
</tbody>
</table>

For assistance with tuning your QRadar SIEM system, contact Customer Support.
In the deployment phase you configure essential network, scanner, log source, and asset configurations that are required to effectively tune QRadar SIEM.

The network hierarchy is used to determine which hosts are local or remote and monitor specific logical groups or services in your network, such as marketing, Demilitarized Zones (DMZs), or Voice Over IP (VOIP).

You must ensure that all internal address spaces, both routable and non-routable, are defined within your network hierarchy. Failure to do so can result in QRadar SIEM generating an excessive number of false positives.

Administrators must define the following top-level objects:

- **DMZ**: Internet facing IP address.
- **Virtual Private Network (VPN)**: IP addresses used for remote access.
- **Data centers and server networks**.
- **Network management and network devices**.
- You must configure a weight value 1 - 100 for each network component. A weight enables QRadar SIEM to determine the severity of the same event interacting with two different hosts.

Note: Assign higher weight values to servers that contain critical information.

For more information about creating your network hierarchy, see the *IBM Security QRadar SIEM Administration Guide*.

VA scanners

QRadar SIEM user vulnerability assessment (VA) information to determine offense threat levels and remove false positives, by correlating event data, network activity, and behavioral changes.

To schedule scans and maintain your VA data, you can integrate QRadar SIEM with VA tools such as third-party scanners. Depending on the scanner type, QRadar SIEM imports scan results from the scanner server or remotely initiates a scan.
The results of a scan provide the system and version of each Classless Inter-Domain Routing (CIDR), server, and port. Scan information describes the ports that are open and the vulnerabilities on the system.

Ensure that you download and apply the latest scanner plug-ins from the following location: http://www.ibm.com/support

For more information about configuring VA scanners, see the Vulnerability Assessment Configuration Guide.

DSM updates

QRadar SIEM uses Device Support Modules (DSMs) to log and correlate the data that is collected from external log sources, such as firewalls, switches, or routers. DSMs are regularly updated to ensure QRadar SIEM can correctly interpret and parse security event information that is provided by external devices. DSMs can be updated both automatically and manually. For more information see, Updating DSMs automatically and Updating DSMs manually.

Although most QRadar SIEM automatically detects most devices, some devices require manual or additional configuration. For a list of supported devices and their specification configuration, see the Configuring DSMs Guide.

Updating DSMs automatically

You can automatically download and install DSM updates to QRadar SIEM.

Procedure

1. Click the **Admin** tab.
2. On the navigation menu, click **System Configuration**.
3. Click the **Auto Update** icon.
4. On the navigation menu, click **Change Settings**.
5. From the **Auto Update Schedule** pane, select the DSM update frequency:
 - **Frequency** - Select the frequency that you want to receive updates.
 - **Hour** - Select the time of day that you want to receive updates.
 - **Week Day** - Select this option if you select **Weekly** as the update frequency.
 - **Day of the Month** - Select this option if you select **Monthly** as the update frequency.
6. From the **Update Types** pane, select **Auto Install** from the **DSM, Scanner, Protocol Updates** list box.
7. Click **Save**.

For more information about configuring DSM updates, see the IBM Security QRadar SIEM Administration Guide.

Updating DSMs manually

You can manually install DSM updates at any time irrespective of the automatic update schedule.
Log source detection

Procedure

Step 1 Click the **Admin** tab.

Step 2 On the navigation menu, click **System Configuration**.

Step 3 Click the **Auto Update** icon.

Step 4 On the navigation menu, click **Check for Updates**.

Step 5 From the toolbar, select **Install > DSM, Scanner, Protocol Updates**.

Step 6 Click **OK**.

Log source detection

QRadar SIEM attempts to automatically detect log sources that send syslog messages to an Event Collector.

For more information about which devices support automatic detection, see the **DSM Configuration Guide**.

Log sources are detected when QRadar SIEM receives a specific number of identifiable syslog messages. A Traffic Analysis function processes syslog messages. The Traffic Analysis function identifies the DSMs installed on the system and assigns the appropriate DSM to the log source. Automatically discovered log sources are displayed in the Log Sources window. For more information, see **Displaying log sources**.

QRadar SIEM might not automatically detect log sources with low activity levels. These devices must be added manually. For more information, see **Adding log sources manually**.

Note: DSMs are used to interpret log source data. To receive log source data, you must ensure that the correct DSMs are installed in QRadar SIEM. For more information, see **DSM updates**.

For more information about automatically detecting log sources, see the **DSM Configuration Guide**.

Displaying log sources

You can display the log sources that are automatically discovered.

Procedure

Step 1 Click the **Admin** tab.

Step 2 On the navigation menu, click **Data Sources**.

Step 3 Click the **Log Sources** icon.

Adding log sources manually

You can manually add log sources that QRadar SIEM does not detect automatically.
Establish and configure flow sources

Flow information is used to detect threats and activity that would otherwise be missed by relying only on event information.

Flows provide network traffic information and can be sent simultaneously to QRadar SIEM in various formats, including flowlog files, NetFlow, J-Flow, sFlow, and Packeteer.

NetFlow, J-Flow, and sFlow are protocols that collect flow data from network devices, such as routers, and send this data to QRadar SIEM. NetFlow, J-Flow, and sFlow are configured in a similar way, but each is deployed according to the protocol that each network device supports.

Note: If you are collecting NetFlow, J-Flow, or sFlow data, verify that QRadar SIEM is collecting complete flow sets. Incomplete or missing flows can make it difficult to analyze network activity.

QFlow Collectors

QRadar SIEM captures traffic from mirror, span, or tap ports within your network by using an IBM Security QRadar QFlow Collector.

The QFlow Collector is enabled by default, while the mirror, span, or tap port is connected to a monitoring interface on your QRadar SIEM appliance. Common mirror port locations include core, DMZ, server, and application switches.

The QFlow Collector provides full application detection of network traffic regardless of the port on which the application is operating. For example, if the Internet Relay Chat (IRC) protocol is communicating on port 7500 TCP, the QFlow Collector identifies the traffic as IRC and provides a packet capture of the beginning of the conversation. This differs from NetFlow and J-Flow, which indicate that there is traffic on port 7500 TCP without identifying the protocol.

NetFlow data collection

NetFlow must be configured to send data to the nearest QFlow Collector or Flow Processor appliance.

You must configure NetFlow to send data as quickly as possible by configuring the external network device’s ip-cache flow timeout value to one. Ensure that ingress
and egress traffic is forwarded from the router (not all routers can do this). If you are configuring a router that only provides a sample of data, then configure the router to use the lowest possible sampling rate, without increasing the load on the switch. When sampling is used, the whole conversation is not tracked. Use sampling only for initial testing.

To ensure your NetFlow configuration is functioning correctly, you must validate your QRadar SIEM NetFlow Data. For more information, see Verifying NetFlow data collection.

Verifying QFlow Collector data collection

You can verify that your QFlow Collector is receiving network flow data.

Procedure

Step 1 Click the Network Activity tab.
Step 2 From the Network Activity toolbar, select Search > New Search.
Step 3 In the Search Parameters pane, add a flow source search filter:
 a From the first list down, select Flow Source.
 b From the third list box, select your QFlow interface name.
Step 4 Click Add Filter.
Step 5 In the Search Parameters pane, add a protocol search filter.
 a From the first list box, select Protocol.
 b From the third list box, select TCP.
Step 6 Click Add Filter.
Step 7 Click Filter.

What to do next

If the Source Bytes or Destination Bytes column displays a large volume of results with zero bytes, your network tap or span port might not be correctly configured. You must verify your QFlow configuration. For more information, see Configuring QFlow Collector devices.

Configuring QFlow Collector devices

You can verify that your QFlow Collector is operational.

About this task

If you are running dynamic routing protocols, traffic might follow different paths to and from a host. If you have more than one traffic path or route at the locations where you are collecting flow data, check with your network administrator to ensure that you are collecting flows from all routers that the traffic can traverse.
Procedure
1 Ensure that span or tap ports are configured correctly to process both received and transmitted packets.
2 To ensure visibility into both sides of any asymmetric routes, select the Enable Asymmetric Flows check box on the flow source configuration.

Verifying NetFlow data collection
To ensure your NetFlow configuration is functioning correctly, you must validate your QRadar SIEM NetFlow Data. Netflow should be configured to send data to the nearest QFlow Collector or Flow Processor appliance.

About this task
By default, QRadar SIEM listens on the management interface for NetFlow traffic on port 2055 UDP. You can assign additional NetFlow ports if necessary.

Procedure
Step 1 Click the Network Activity tab.
Step 2 From the Network Activity toolbar, select Search > New Search.
Step 3 In the Search Parameters pane, add a flow source search filter.
 a From the first list box, select Flow Source.
 b From the third list box, select your NetFlow router’s name or IP address.
 Note: If your NetFlow router is not displayed in the third list box, QRadar SIEM might not detect traffic from the router. For further assistance, contact Customer Support.
Step 4 Click Add Filter.
Step 5 In the Search Parameters pane, add a protocol search filter.
 a From the first list box, select Protocol.
 b From the third list box, select TCP.
Step 6 Click Add Filter.
Step 7 Click Filter.

What to do next
Locate the Source Bytes and Destination Bytes columns. If either column displays a large volume of results with zero bytes, your NetFlow configuration might be incomplete. You must verify your NetFlow configuration.

Disabling NetFlow log messages
You can disable NetFlow log messages to prevent them from consuming log file space.

About this task
If your NetFlow router is configured to sample flows, the following message can be logged in your QRadar SIEM log file. This message indicates that the sequence
number on the packet was missed. If the number of missed flows is consistent with your sampling rate then, you can ignore this message.

Nov 3 16:01:03 qflowhost \[11519\] qflow115: \[WARNING\] default_Netflow: Missed 30 flows from 10.10.1.1 (2061927611, 2061927641)

Procedure

Step 1 Click the **Admin** tab.

Step 2 On the Admin toolbar, click **Deployment Editor**.

Step 3 Right-click the component that is specified in the error message and select **Configure**.

Step 4 On the toolbar, click **Advanced**.

Step 5 From the **General Settings** expansion list, identify the **Verify NetFlow Sequence Numbers** field, and select **No** from the list box.

Step 6 Click **Save**.

Step 7 Click the **Saves recent changes and closes editor** icon to close the Deployment Editor.

Step 8 Click **Deploy Changes**.

Asset profile configuration

QRadar SIEM automatically discovers the assets on your network, which are based on passive QFlow data and vulnerability data. QRadar SIEM then builds an asset profile that displays the services running on each asset.

Asset profile data is used for correlation purposes to help reduce false positives. For example, if an attack attempts to exploit a specific service running on a specific asset, QRadar SIEM determines if the asset is vulnerable to this attack by correlating the attack against the asset profile.

Note: Log sources, flow data or VA scanners must be configured for asset profiles to be displayed in the user interface.

You can define specific IP addresses (servers) as assets by importing existing assets in Comma-Separated Value (CSV) format. For more information, see **Import assets in CSV format**. Adding an asset profile enables you to identify an IP address by name and provide a description and weight for the asset.

For more information about managing assets, see the **IBM Security QRadar SIEM Administration Guide**.

Import assets in CSV format

You can import asset profile data in CSV format.

When you import asset profile data in CSV format, the file must be in the following format:
The following table describes the parameters that you must configure:

Table 2-2 Asset profile import CSV format parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>Specifies any valid IP address in the dot decimal format. For example, 192.168.5.34.</td>
</tr>
<tr>
<td>Name</td>
<td>Specifies the name of the asset up to 255 characters in length. Commas are not valid in this field and invalidate the import process. For example, WebServer01.</td>
</tr>
<tr>
<td>Weight</td>
<td>Specifies a number from 0 to 10, which indicates the importance of the asset on your network. A value of 0 denotes low importance, while 10 denotes a very high importance.</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies a textual description for this asset up to 255 characters in length. This value is optional.</td>
</tr>
</tbody>
</table>

Examples of Acceptable CSV Entries

The following entries can be included in a CSV file:

- 192.168.5.34,WebServer01,5,Main Production Web Server
- 192.168.5.35,MailServ01,0,

The CSV import process merges any asset profile information that is stored in your QRadar SIEM system.

For more information about configuring assets, see the *IBM Security QRadar SIEM Administration Guide*.
In the tuning phase, you discover servers, investigate offenses, modify building blocks, tune false positives, optimize custom rules, and improve search performance. Before you tune QRadar SIEM, you must wait 24 hours to enable QRadar SIEM to detect the servers on the network, store events and flows, and create offenses based on existing rules.

Server discovery

QRadar SIEM automatically discovers and classifies servers in your network, providing a faster initial deployment and easier tuning when network changes occur.

The Server Discovery function uses the asset profile database to discover many types of servers on your network. This function lists automatically discovered servers and enables you to select which servers you want to include in building blocks. For more information, see [QRadar building blocks](#).

For more information on server discovery, see the *IBM Security QRadar SIEM Administration Guide*.

Note: To discover servers, QRadar SIEM must receive vulnerability assessment (VA) scanner data or flow traffic. Server Discovery uses this data to configure port mappings in the asset profile. For more information on VA, see the *Vulnerability Assessment Configuration Guide*.

QRadar SIEM uses building blocks to tune the system and allow additional correlation rules to be enabled. This reduces the number of false positives detected by QRadar SIEM, and helps you to identify business critical assets. For more information on false positives, see [Tuning false positives](#).

Administrators must determine which servers to discover.

Authorised servers

You can enable the Server Discovery function to add authorized infrastructure servers to a selected building block. The Server Discovery function selects the correct building block or rule for discovered servers and enables QRadar SIEM to monitor these servers while suppressing false positives that are specific to the server category.
Multiple building blocks
Servers might be present in multiple categories. You must enable QRadar SIEM to place these servers in multiple building blocks. For example, active directory domain controllers might be identified as both Windows and DNS servers.

Identify authorised servers
After reviewing the server discovery list, not all the servers displayed in the list might be familiar to you. These servers might be located in another business unit or operate within a testing or staging environment. If you identify these servers as authorized, then add them to the building block. For more information, see QRadar building blocks.

Categorize servers
You can enable QRadar SIEM to categorize unauthorized servers or servers running unauthorized services into a related building block. For more information, see Table 3-1. If categorizing servers generates an excessive number of offenses, then use the Server Discovery function to place the servers in a building block.

Discovering servers
The server discovery function uses the QRadar SIEM Asset Profile database to discover different server types based on port definitions.

About this task
Server discovery enables you to select which servers to add to a server type building block. This feature makes the discovery and tuning process simpler and faster by providing a fast mechanism to insert servers into building blocks.

Procedure
Step 1 Click the Assets tab.
Step 2 On the navigation menu click Server Discovery.
Step 3 From the Server Type drop-down list box, select the server type you want to discover. The default is Database Servers.
Step 4 Select the option to determine the servers you want to discover:
 • All - Search all servers in your deployment with the currently selected server type.
 • Assigned - Search servers in your deployment that have been previously assigned to the currently selected server type.
 • Unassigned - Search servers in your deployment that have not been previously assigned.
Step 5 From the Network list box, select the network you want to search.
Step 6 Click Discover Servers.
Step 7 Click Approve Selected Servers.
Step 8 In the Matching Servers table, select the check box or boxes of all the servers you want to assign to the server role.
What to do next
If you want to modify the search criteria, click either Edit Ports or Edit Definition.

For more information on discovering servers, see the IBM Security QRadar SIEM Administration Guide.

<table>
<thead>
<tr>
<th>QRadar rules and offenses</th>
<th>The configuration rule that is defined in the Custom Rules Engine (CRE) is used to generate offenses.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRE</td>
<td>The CRE displays the rules and building blocks that are used by QRadar SIEM. Rules and building blocks are stored in two separate lists, because they function differently. The CRE provides information about how the rules are grouped, the types of tests the rule performs, and the responses each rule generates. For more information on viewing your CRE configuration, see Viewing the current CRE configuration. For more information on Rules and Offenses, see the IBM Security QRadar SIEM Users Guide.</td>
</tr>
<tr>
<td>Rules</td>
<td>A rule is a collection of tests that perform an action when certain conditions are met. Each rule can be configured to capture and respond to a specific event, sequence of events, flow sequence, or offense. The actions that can be triggered can include sending an email or generating a syslog message. A rule can reference multiple building blocks by using the tests found in the function sections of the test groups within the Rule Editor. For more information on building blocks, see QRadar building blocks.</td>
</tr>
<tr>
<td>Offenses</td>
<td>As event and flow data passes through the CRE, it is correlated against the rules that are configured and an offense is generated based on this correlation. Offenses are displayed using the Offenses tab. For more information on offenses, see Investigating offenses.</td>
</tr>
<tr>
<td>Viewing the current CRE configuration</td>
<td>You can view the rules that are deployed in your QRadar SIEM. About this task Double-click any rule to display the Rule Wizard. This displays the tests associated with each rule and enables you to configure the response to each rule.</td>
</tr>
</tbody>
</table>

Procedure
Step 1 Click the Offenses tab.
Step 2 On the navigation menu click Rules.
THE TUNING PHASE

For more information on your CRE configuration, see the IBM Security QRadar SIEM Users Guide.

What to do next
To determine which rules are most active in generating offenses, from the rules page click Offense Count to reorder the column. This displays the rules which are generating offenses in descending order.

Investigating offenses
QRadar SIEM generates offenses by testing event and flow conditions. To investigate QRadar SIEM offenses you must view the rules that created the offense.

Procedure
Step 1 Click the Offenses tab.
Step 2 On the navigation menu click All Offenses.
Step 3 Double-click the offense you are interested in.
Step 4 From the All Offenses Summary toolbar, select Display > Rules.
Step 5 From the List of Rules Contributing to Offense pane, double-click the Rule Name you are interested in.

Note: The All Offenses Rules pane can display multiple Rule Names, since the offense generated by QRadar SIEM might have been triggered by a series of different tests.

For more information on investigating offenses, see the IBM Security QRadar SIEM Users Guide.

QRadar building blocks
Building blocks group commonly used tests, to build complex logic, so they can be used in rules.

Building blocks use the same tests as rules, but have no actions associated with them and are often configured to test groups of IP addresses, privileged usernames, or collections of event names. For example, you might create a building block that includes the IP addresses of all mail servers in your network, then use that building block in another rule, to exclude those hosts. The building block defaults are provided as guidelines, which should be reviewed and edited based on the needs of your network.

You can configure the host definition building blocks (BB:HostDefinition) to enable QRadar SIEM to discover and classify additional servers on your network. If a particular server is not automatically detected, you can manually add the server to its corresponding host definition building block. This ensures that the appropriate rules are applied to the particular server type. You can also manually add entire address ranges as opposed to individual devices.
Commonly edited building blocks

You can reduce the number of offenses generated by high volume traffic servers, such as proxy servers and virus servers. For more information, see Building block tuning.

To reduce the number of offenses, administrators must edit the following building blocks:

- BB:HostDefinition: VA Scanner Source IP
- BB:HostDefinition: Network Management Servers
- BB:HostDefinition: Virus Definition and Other Update Servers
- BB:HostDefinition: Proxy Servers
- BB:NetworkDefinition: NAT Address Range
- BB:NetworkDefinition: TrustedNetwork

Building block tuning

You can edit building blocks to reduce the number of false positives generated by QRadar SIEM. For more information on false positives, see Tuning false positives.

You can edit building blocks if you have certain server types present on the networks that you want to monitor. If you do not have these server types on the networks, then you can choose to skip this step. For more information, see Editing a Building Block.

To edit building blocks, you must add the IP address or IP addresses of the server or servers into the appropriate building blocks.

For more information, see the IBM Security QRadar SIEM Administration Guide. Also, see Identifying Network Assets.

Table 3-1 provides the list of building blocks that you can edit.

Table 3-1 List of recommended building blocks to edit.

<table>
<thead>
<tr>
<th>Building Block</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB:NetworkDefinition: NAT Address Range</td>
<td>Edit the and where either the source or destination IP is one of the following test to include the IP addresses of the Network Address Translation (NAT) servers. Only edit this building block if you have detection in the non-NATd address space. Editing this building block means that offenses are not created for attacks targeted or sourced from this IP address range.</td>
</tr>
</tbody>
</table>
Network management systems create traffic, such as ICMP (Internet Control Message Protocol) sweeps, to discover hosts. QRadar SIEM might consider this threatening traffic. To ignore this behavior and define network management systems, edit the **and when either the source or destination IP is one of the following** test to include the IP addresses of the following servers:

- Network Management Servers (NMS).
- Other hosts that normally perform network discovery or monitoring.

Proxy Servers

Edit this building block if you have sufficient detection on the proxy server. Editing this building block prevents offense creation for attacks targeted or sourced from the proxy server. This is useful when hundreds of hosts use a single proxy server and that single IP address of the proxy server may be infected with spyware.

Scanner Source IP

Vulnerability assessment products launch attacks that can result in offense creation. To avoid this behavior and define vulnerability assessment products or any server that you want to ignore as a source, edit the **and when the source IP is one of the following** test to include the IP addresses of the following scanners:

- VA Scanners
- Authorized Scanners

Virus Definition and Other Update Servers

Edit this building block if you want to prevent communication from virus protection and update function servers.

Countries with no Remote Access

Edit the **and when the source is located in** test to include geographic locations which should be prevented from accessing your network. This enables the use of rules, such as **anomaly: Remote Access from Foreign Country** to create an offense when successful logins have been detected from remote locations.

GLBA Servers

Edit the **and when either the source or destination IP is one of the following** test to include the IP addresses of servers used for GLBA (Gramm-Leach-Bliley Act) compliance. By populating this building block you can use rules such as **Compliance: Excessive Failed Logins to Compliance IS**, which create offenses for compliance and regulation based situations.

Table 3-1 List of recommended building blocks to edit.

<table>
<thead>
<tr>
<th>Building Block</th>
<th>Description</th>
</tr>
</thead>
</table>
| BB:HostDefinition: Network Management Servers | Network management systems create traffic, such as ICMP (Internet Control Message Protocol) sweeps, to discover hosts. QRadar SIEM might consider this threatening traffic. To ignore this behavior and define network management systems, edit the **and when either the source or destination IP is one of the following** test to include the IP addresses of the following servers:
- Network Management Servers (NMS).
- Other hosts that normally perform network discovery or monitoring. |
| BB:HostDefinition: Proxy Servers | Edit the **and when either the source or destination IP is one of the following** test to include the IP addresses of the proxy servers.
Edit this building block if you have sufficient detection on the proxy server. Editing this building block prevents offense creation for attacks targeted or sourced from the proxy server. This is useful when hundreds of hosts use a single proxy server and that single IP address of the proxy server may be infected with spyware. |
| BB:HostDefinition: VA Scanner Source IP | Vulnerability assessment products launch attacks that can result in offense creation. To avoid this behavior and define vulnerability assessment products or any server that you want to ignore as a source, edit the **and when the source IP is one of the following** test to include the IP addresses of the following scanners:
- VA Scanners
- Authorized Scanners |
| BB:HostDefinition: Virus Definition and Other Update Servers | Edit the **and when either the source or destination IP is one of the following** test to include the IP addresses of virus protection and update function servers. |
| BB:Category Definition: Countries with no Remote Access | Edit the **and when the source is located in** test to include geographic locations which should be prevented from accessing your network. This enables the use of rules, such as **anomaly: Remote Access from Foreign Country** to create an offense when successful logins have been detected from remote locations. |
| BB:ComplianceDefinition: GLBA Servers | Edit the **and when either the source or destination IP is one of the following** test to include the IP addresses of servers used for GLBA (Gramm-Leach-Bliley Act) compliance. By populating this building block you can use rules such as **Compliance: Excessive Failed Logins to Compliance IS**, which create offenses for compliance and regulation based situations. |
Table 3-1 List of recommended building blocks to edit.

<table>
<thead>
<tr>
<th>Building Block</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB:ComplianceDefinition: HIPAA Servers</td>
<td>Edit the and when either the source or destination IP is one of the following test to include the IP addresses of servers used for HIPAA (Health Insurance Portability and Accountability Act) Compliance. By populating this building block, you can use rules, such as Compliance: Excessive Failed Logins to Compliance IS, which creates offenses for compliance and regulation based situations.</td>
</tr>
<tr>
<td>BB:ComplianceDefinition: SOX Servers</td>
<td>Edit the and when either the source or destination IP is one of the following test to include the IP addresses of servers used for SOX (Sarbanes-Oxley Act) Compliance. By populating this building block, you can use rules, such as Compliance: Excessive Failed Logins to Compliance IS, which creates offenses for compliance and regulation based situations.</td>
</tr>
<tr>
<td>BB:ComplianceDefinition: PCI DSS Servers</td>
<td>Edit the and when either the source or destination IP is one of the following test to include the IP addresses of servers used for PCI DSS (Payment Card Industry Data Security Standards) Compliance. By populating this building block, you can use rules such as Compliance: Excessive Failed Logins to Compliance IS, which creates offenses for compliance and regulation based situations.</td>
</tr>
<tr>
<td>BB:NetworkDefinition: Broadcast Address Space</td>
<td>Edit the and when either the source or destination IP is one of the following test to include the broadcast addresses of your network. This removes false positive events that might be caused by the use of broadcast messages.</td>
</tr>
<tr>
<td>BB:NetworkDefinition: Client Networks</td>
<td>Edit the and when the local network is test to include workstation networks that users are operating.</td>
</tr>
<tr>
<td>BB:NetworkDefinition: Server Networks</td>
<td>Edit the when the local network is test to include any server networks.</td>
</tr>
<tr>
<td>BB:NetworkDefinition: Darknet Addresses</td>
<td>Edit the and when the local network is test to include the IP addresses that are considered a Darknet. Any traffic or events directed towards a Darknet is considered suspicious as no hosts should be on the network.</td>
</tr>
<tr>
<td>BB:NetworkDefinition: DLP Addresses</td>
<td>Edit the and when the any IP is a part of any of the following test to include the remote services that might be used to obtain information from the network. This can include services, such as webmail hosts or file sharing sites.</td>
</tr>
<tr>
<td>BB:NetworkDefinition: DMZ Addresses</td>
<td>Edit the and when the local network test to include networks that are considered to be part of the network’s DMZ.</td>
</tr>
<tr>
<td>BB:PortDefinition: Authorized L2R Ports</td>
<td>Edit the and when the destination port is one of the following test to include common ports that are allowed outbound on the network.</td>
</tr>
<tr>
<td>BB:NetworkDefinition: Watch List Addresses</td>
<td>Edit the and when the local network is to include the remote networks that are considered to be on a watch list. This enables you to identify when events occur with hosts of interest.</td>
</tr>
</tbody>
</table>
THE TUNING PHASE

Table 3-1 List of recommended building blocks to edit.

<table>
<thead>
<tr>
<th>Building Block</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB:FalsePositive: User Defined Server Type False Positive Category</td>
<td>Edit this building block to include any categories you want to consider false positives for hosts defined in the BB:HostDefinition: User Defined Server Type building block.</td>
</tr>
<tr>
<td>BB:FalsePositive: User Defined Server Type False Positive Events</td>
<td>Edit this building block to include any events you want to consider false positives for hosts defined in the BB:HostDefinition: User Defined Server Type building block.</td>
</tr>
<tr>
<td>BB:HostDefinition: User Defined Server Type</td>
<td>Edit this building block to include the IP address of your custom server type. After you have added the servers you must add any events or categories that you want to consider false positives to this server as defined in the BB:FalsePositives: User Defined Server Type False Positive Category or the BB:FalsePositives: User Defined Server Type False Positive Events building blocks.</td>
</tr>
</tbody>
</table>

Note: You can include a CIDR range or subnet in any of the building blocks instead of listing the IP addresses. For example: 192.168.1/24 includes addresses 192.168.1.0 to 192.168.1.255. You can also include CIDR ranges in any of the BB:HostDefinition building blocks.

Editing a Building Block

You can edit a building block

Procedure

Step 1 Click the Offenses tab.
Step 2 On the navigation menu, click Rules.
Step 3 From the Display drop-down list box, select Building Blocks.
Step 4 Double-click the building block you want to edit. See Table 3-1 for a list of building blocks that you can populate with your network information.
Step 5 Update the building block as required.
Step 6 Click Finish.

Tuning Methodology

How you tune QRadar SIEM depends on different scenarios and whether you have one target or many targets within your network.

To ensure reliable system performance, administrators must consider the following best practice guidelines:

• Disable rules that produce numerous unwanted offenses.
• To tune CRE rules, increase the rule threshold by doubling the numeric parameters and time interval.
• Consider modifying rules to consider local rather than remote network context.
Tuning Methodology

- When you edit a rule with the **attach events for the next 300 seconds** option enabled, wait 300 seconds before closing the related offenses.

For more information, see the *IBM Security QRadar SIEM Users Guide*.

The following table provides information on how to tune false positives according to these differing scenarios:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>One Target</th>
<th>Many Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>One attacker, one event</td>
<td>Use the False Positive Wizard to tune this specific event.</td>
<td>Use the False Positive Wizard to tune specific event.</td>
</tr>
<tr>
<td>Many attackers, event</td>
<td>Use the False Positive Wizard to tune the category.</td>
<td>Use the False Positive Wizard to tune the category.</td>
</tr>
<tr>
<td>Many attackers, one event</td>
<td>Use the False Positive Wizard to tune the specific event.</td>
<td>Edit building blocks using the Custom Rules Editor to tune specific event.</td>
</tr>
<tr>
<td>Many attackers, many events in</td>
<td>Use the False Positive Wizard to tune the category.</td>
<td>Edit building blocks using the Custom Rules Editor to tune the category.</td>
</tr>
<tr>
<td>the same category</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One attacker, many unique</td>
<td>Investigate the offense and determine the nature of the attacker. If the</td>
<td>Investigate the offense and determine the nature of the attacker. If the</td>
</tr>
<tr>
<td>events in different categories</td>
<td>offense or offenses can be tuned out, edit building blocks using the Custom</td>
<td>offense or offenses can be tuned out, edit building blocks using the Custom</td>
</tr>
<tr>
<td></td>
<td>Rules Editor to tune categories for the host IP.</td>
<td>Rules Editor to tune categories for the host IP.</td>
</tr>
<tr>
<td>Many attackers, many unique</td>
<td>Edit building blocks using the Custom Rules Editor to tune the categories.</td>
<td>Edit building blocks using the Custom Rules Editor to tune the categories.</td>
</tr>
<tr>
<td>events in different categories</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tuning false positives
You can tune false positive events and flows to prevent them from creating offenses.

About this task
You must have appropriate permissions for creating customized rules to tune false positives. For more information on roles and permissions, see the *IBM Security QRadar SIEM Administration Guide*.

Procedure

Step 1 Click the **Log Activity** tab, or alternatively click the **Network Activity** tab.

Step 2 Select the event or flow you want to tune.

Step 3 Click **False Positive**.

Note: If you are viewing events or flows in streaming mode, you must pause streaming before you click **False Positive**.
Step 4 Select one of the following Event or Flow Property options:

- Event/Flow(s) with a specific QID of <Event>
- Any Event/Flow(s) with a low-level category of <Event>
- Any Event/Flow(s) with a high-level category of <Event>

Step 5 Select one of the Traffic Direction options:

- <Source IP Address> to <Destination IP Address>.
- <Source IP Address> to Any Destination
- Any Source to <Destination IP Address>
- Any Source to any Destination

Step 6 Click **Tune**.

Note: QRadar SIEM prevents you from selecting Any Events/Flow(s) and Any Source To Any Destination. This creates a custom rule and prevents QRadar SIEM from creating offenses.

For more information on tuning false positives, see the *IBM Security QRadar SIEM Users Guide*.

False positive rule chains

The rule **FalsePositive: False Positive Rules and Building Blocks** is the first rule to execute in the CRE. When it loads, all of its dependencies are loaded and tested.

If the rule is successfully matched in QRadar SIEM, the rule drops the detected event or flow. This stops the event or flow from progressing through the CRE and prevents the flow or event from creating an offense.

When creating false positive building blocks within QRadar SIEM, administrators must review the following information.

Naming conventions

Use a methodology similar to the default rule set, by creating new building blocks with the following naming convention:

<CustomerName>-BB:False Positive: All False Positive Building Blocks.

Where: <CustomerName> is a name that you assign to the false positive building block.

False positive building blocks

Building blocks must contain the test **and when a flow or an event matches any of the following rules.** This test is a collection point for false positive building blocks and enables you to quickly find and identify customizations.
When the `<CustomerName>-BB:False Positive: All False Positive Building Block` is created, add it to the test in the rule `FalsePositive: False Positive Rules and Building Blocks`.

When the new false positive building block is created, you can create new building blocks to match the traffic that you want to prevent from creating offenses. Add these building blocks to the `<CustomerName>-BB:False Positive: All False Positive Building block`.

Note: To prevent events from creating offenses, you must create a new building block that matches the traffic that you are interested in. Save this as a building block `<CustomerName>-BB:False Positive: <name of rule>`, then edit `<CustomerName>-BB:False Positive: All False Positive building blocks`, to include the rule that you created.

CAUTION: If you add a rule or building block that includes a rule to the `FalsePositive: False Positive Rules and Building Blocks` rule, the rule you have added will execute before the event is dropped by the CRE and could create offenses by overriding the false positive test.

Optimize custom rules

When building custom rules, you must optimize the order of the testing to ensure that the rules do not impact CRE performance.

The tests in a rule are executed in the order in which they are displayed in the user interface. The most memory intensive tests for the CRE are the payload and regular expression searches. To ensure that these tests run against a smaller subset of data and execute faster, you must first include one of the following tests:

- when the event(s) were detected by one or more of these log source types
- when the event QID is one of the following QIDs
- when the source IP is one of the following IP addresses
- when the destination IP is one of the following IP addresses
- when the local IP is one of the following IP addresses
- when the remote IP is one of the following IP addresses
- when either the source or destination IP is one of the following IP addresses
- when the event(s) were detected by one of more of these log sources

Note: You can further optimize QRadar SIEM by exporting common tests to building blocks. Building Blocks execute per event as opposed to multiple times if tests are individually included in a rule.

For more information on optimizing custom rules, see the *IBM Security QRadar SIEM Users Guide*.
Creating an OR condition within the CRE

You can create a conditional OR test within the CRE.

About this task

As you add more tests to a rule, each test can only be an AND or AND NOT conditional test. To create an OR condition within the CRE you must place each separate set of conditions into a building block and then create a new rule or building block that utilizes the **And When An Event Matches Any Of The Following Rules** rule. This ensures that both Building Blocks are loaded when the test is applied.

Procedure

Step 1 Click the **Offenses** tab.

Step 2 On the navigation menu, click **Rules**.

Step 3 From the Actions list box, select one of the following options:

- **New Event Rule** - Select this option to configure a rule for events.
- **New Flow Rule** - Select this option to configure a rule for flows.
- **New Common Rule** - Select this option to configure a rule for events and flows.
- **New Offense Rule** - Select this option to configure a rule for offenses.

Step 4 Read the introductory text. Click **Next**.

You are prompted to choose the source from which you want this rule to apply. The default is the rule type you selected on the **Offenses** tab.

Step 5 If required, select the rule type you want to apply to the rule. Click **Next**.

Step 6 Locate the **when an event matches any/all of the following rules** test and click the + icon beside the test.

Step 7 On the **and when an event matches any of the following rules** test, click **rules**.

Step 8 From the **Select the rule(s) to match and click ‘Add’** field, select multiple building blocks by holding down the Ctrl key and click **Add +**.

Step 9 Click **Submit**.
Improving search performance

When you are searching Event or Flow information, you can improve performance by adding filters to search indexed fields.

About this task

Table 3-3 provides information about the fields that are indexed:

Table 3-3 Log Viewer and Flow Viewer Indexed Fields

<table>
<thead>
<tr>
<th>QRadar SIEM Tab</th>
<th>Indexed Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Activity tab (Events)</td>
<td>Username</td>
</tr>
<tr>
<td></td>
<td>Source or Destination IP</td>
</tr>
<tr>
<td></td>
<td>Destination Port</td>
</tr>
<tr>
<td></td>
<td>Has Identity</td>
</tr>
<tr>
<td></td>
<td>Device Type</td>
</tr>
<tr>
<td></td>
<td>Device ID</td>
</tr>
<tr>
<td></td>
<td>Category</td>
</tr>
<tr>
<td></td>
<td>Matches Custom Rule</td>
</tr>
<tr>
<td>Network Activity tab (Flows)</td>
<td>Application</td>
</tr>
<tr>
<td></td>
<td>Source or Destination IP</td>
</tr>
<tr>
<td></td>
<td>Destination Port</td>
</tr>
</tbody>
</table>

Note: You can monitor the performance of your search by expanding the Current Statistics option on the Search page. This displays the volume of data loading from data files and indexes. If your search does not display a count in the index file count then add an indexed filter to the search. For more information, see Adding Indexed Filters.

Adding Indexed Filters

Indexed filters can be added to both log activity and network activity data.

Procedure

Step 1 Click the Log Activity tab, or alternatively click the Network Activity tab.

Step 2 On the toolbar, click Add Filter.

Step 3 From the first list box, select an index filter. See Table 3-3.

Step 4 From the second list box, select the modifier that you want to use.

Step 5 Type or select the information for your filter. The controls that are displayed depend on the index filter you selected in Step 3.

Step 6 Click Add Filter.
Enabling quick filtering

You can enable the Quick Filter property to optimize event and flow search times.

About this task

For QRadar SIEM 7.0 MR3 installations and above, you can enable Quick Filters. This option must be enabled in the System Settings page. You can use the Quick Filter option to search event and flow payloads by typing your exact free text search criteria.

Procedure

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click System Configuration.
Step 4 Click the Index Management icon.
Step 5 In the Quick Search field, type Quick Filter.
Step 6 Select the Quick Filter property you want to index.
 You can identify the event and flow Quick Filter properties using the value in the Database column.
Step 7 On the toolbar, click Enable Index.
 A green dot indicates that the payload index is enabled.
Step 8 Click Save.
Step 9 Click OK.

Results

The selected Quick Filter properties are indexed. If a list includes event or flow properties, indexed property names are appended with the following text: [Indexed].

Custom extracted properties

The Custom Extracted Properties function in QRadar SIEM is used to expand normalized fields by adding numerous custom fields for reports, searches, and the CRE. For example, to extract proxy URLs, virus names, or secondary usernames.

Administrators must review the following information:

• You must restrict your custom extracted properties to a particular log source type or individual log source.

• If your extracted property is only applicable to certain events, you can reduce the workload on QRadar SIEM by limiting the extracted property to that event type.

• By using the extracted properties function to optimize rules, reports and searches, the custom property can be used by the custom rules engine. This moves the processing of the extracted property to the time when the event is
collected, as opposed to when it is searched. By default, custom extracted properties are processed when they are searched or displayed. Enabling the optimize feature for an extracted property minimizes the search time against the property.

- The extracted property field is not indexed, but if an event matches the property, it stores an index to the offset and length of the property which reduces the amount of data that must be searched.

Cleaning the SIM model

When the tuning process is complete then clean the SIM model to ensure that QRadar SIEM only displays recent offenses.

About this task

Cleaning the SIM model ensures that offenses are based on the most current rules, discovered servers, and network hierarchy. When you clean the SIM model, all existing offenses are closed. This does not affect existing events and flows.

Note: False positive offenses might have occurred before you performed the tuning tasks. Clean the SIM model to ensure each host on the network creates new offenses based on the current configuration.

Procedure

1. **Step 1** Click the **Admin** tab.
2. **Step 2** From the Admin toolbar, select **Advanced > Clean SIM Model**.
3. **Step 3** Select the **Hard Clean** option.
4. **Step 4** Select the **Are you sure you want to reset the data model?** check box.
5. **Step 5** Click **Proceed**.
 - **Note:** This process may take several minutes, depending on the volume of data in your system.
6. **Step 6** When the SIM reset process is complete, refresh your browser.
 - **Note:** If you attempt to navigate to other areas of the user interface during the SIM reset process, an error message is displayed.
A

IDENTIFYING NETWORK ASSETS

Use this reference to identify network assets that you might want to include in building blocks.

Table 5-4 Identifying Network Assets

<table>
<thead>
<tr>
<th>Category</th>
<th>How to Identify and Examples</th>
<th>Building Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT Address</td>
<td>IP addresses and/or CIDR blocks used for Network Address Translation (NAT). These are commonly configured on firewalls and routers.</td>
<td>BB-HostDefinition: NAT Address Range.</td>
</tr>
<tr>
<td>Server Networks</td>
<td>CIDRs used by data centers or server populations.</td>
<td>BB-HostDefinition: Server Networks.</td>
</tr>
<tr>
<td>Vulnerability/Security Scanners</td>
<td>Acunetix, CyberCop Scanner, Foundstone, HackerShield, ISS Internet Scanner, Nessus, Retina, nCircle, Nmap.</td>
<td>BB-HostDefinition: VA Scanner Source ID.</td>
</tr>
</tbody>
</table>
CIDR
See Classless Inter-Domain Routing (CIDR).

Classless Inter-Domain Routing (CIDR)
Addressing scheme for the internet, which allocates and specifies internet addresses used in inter-domain routing. With CIDR, a single IP address can be used to designate many unique IP addresses.

CRE
See Custom Rules Engine (CRE)

Custom Rules Engine
The collection of rules that QRadar SIEM uses to correlate event and flow information into offenses.

Demilitarized Zone (DMZ)
A demilitarized zone, or perimeter network, is a network area located between an organization’s internal network and external network, usually the internet. It is separated by a firewall which only allows certain types of network traffic to enter or leave.

Device Support Module (DSM)
Device Support Modules (DSMs) allow you to integrate QRadar SIEM with log sources.

DNS
See Domain Name System (DNS).

Domain Name System
An online, distributed database used to map human-readable machine names into an IP address for resolving machine names to IP addresses.

DSM
See Device Support Module (DSM).

egress traffic
Network traffic that begins inside a network and proceeds to a destination somewhere outside of the network.

event
Record from a device that describes an action on a network or host.

Event Collector
Collects security events and flows from various types of devices in your network. The Event Collector gathers events and flows from local, remote, and device sources. The Event Collector then normalizes the events and flows, and sends the information to the Event Processor.
Event Processor: Processes events collected from one or more Event Collector(s). The events are bundled once again to conserve network usage. Once received, the Event Processor correlates the information from QRadar SIEM and distributed to the appropriate area, depending on the type of event.

false positive: When an event is tuned as a false positive, the event no longer contributes to custom rules. Therefore, offenses do not generate based on the false positive event. The event is still stored in the database and contributes to reports.

flow: Communication session between two hosts. Describes how traffic is communicated, what was communicated (if content capture option has been selected), and includes such details as when, who, how much, protocols, priorities, or options.

flow data: Specific properties of a flow including: IP addresses, ports, protocol, bytes, packets, flags, direction, application ID, and payload data (optional).

flow logs: Record of flows that enables the system to understand the context of a particular transmission over the network. Flows are stored in flow logs.

flow sources: Source of flows that the QFlow Collector receives. Using the deployment editor, you can add internal and external flow sources from either the System or Event Views in the deployment editor.

GLBA: See Gramm-Leach-Bliley Act (GLBA).

Gramm-Leach-Bliley Act: Also known as the Financial Services Modernization Act of 1999, GLBA allows banking, securities and insurance companies to combine investment banking, commercial banking, and insurance activities.

Health Insurance Portability and Accountability Act (HIPPA): A series of laws and regulations, organizations must comply with to demonstrate they are protecting the private health information of patients and customers.

HIPPA: See Health Insurance Portability and Accountability Act (HIPPA).

ICMP: See Internet Control Message Protocol (ICMP).

Internet Control Message Protocol (ICMP): Part of the internet protocol suite, normally used by the operating systems of networked computers to send error messages.

Ingress Traffic: Network traffic originating from outside of the network and proceeding to a destination inside of the network.

Internet Protocol (IP): The method or protocol by which data is sent from one computer to another on the Internet. Each computer (known as a host) on the Internet has at least one IP
address that uniquely identifies it from all other systems on the Internet. An IP address includes a network address and a host address. An IP address can also be divided by using classless addressing or subnetting.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Relay Chat</td>
<td>A set of scripts or an independent program that connects to internet relay chat as a client, and so appears to other IRC users as another user.</td>
</tr>
<tr>
<td>IP</td>
<td>See Internet Protocol.</td>
</tr>
<tr>
<td>IRC</td>
<td>See Internet Relay Chat (IRC).</td>
</tr>
<tr>
<td>J-Flow</td>
<td>A proprietary accounting technology used by Juniper® Networks that allows you to collect IP traffic flow statistics.</td>
</tr>
<tr>
<td>log source</td>
<td>Log sources are external event log sources such as security equipment (for example, firewalls and IDSs) and network equipment (for example, switches and routers).</td>
</tr>
<tr>
<td>NetFlow</td>
<td>A proprietary accounting technology developed by Cisco Systems® Inc. that monitors traffic flows through a switch or router, interprets the client, server, protocol, and port used, counts the number of bytes and packets, and sends that data to a NetFlow collector. You can configure QRadar SIEM to accept NDE’s and thus become a NetFlow collector.</td>
</tr>
<tr>
<td>offense</td>
<td>A message sent or event generated in response to a monitored condition. For example, an offense informs you if a policy has been breached or the network is under attack.</td>
</tr>
<tr>
<td>Packeteer</td>
<td>Packeteer devices collect, aggregate, and store network performance data. Once you configure an external flow source for Packeteer, you can send flow information from a Packeteer device to QRadar SIEM.</td>
</tr>
<tr>
<td>Payment Card Industry Data Security Standard (PCI DSS)</td>
<td>An information security standard for organizations handling payment card information. It is used to increase controls and demonstrate compliance in the handling of sensitive data.</td>
</tr>
<tr>
<td>PCI DSS</td>
<td>See Payment Card Industry Data Security Standard (PCI DSS).</td>
</tr>
<tr>
<td>QFlow Collector</td>
<td>Collects data from devices and various live or recorded data feeds, such as, network taps, span/mirror ports, NetFlow, and QRadar SIEM flow logs.</td>
</tr>
<tr>
<td>Sarbanes-Oxley (SOX)</td>
<td>Legislation that protects shareholders and the general public from accounting errors and fraudulent practice by defining rules around the storage and handling of electronic records and data.</td>
</tr>
<tr>
<td>sFlow</td>
<td>A multi-vendor and end-user standard for sampling technology that provides continuous monitoring of application level traffic flows on all interfaces simultaneously.</td>
</tr>
<tr>
<td>SOX</td>
<td>See Sarbanes-Oxley Act (SOX).</td>
</tr>
<tr>
<td>UDP</td>
<td>See User Datagram Protocol (UDP).</td>
</tr>
<tr>
<td>User Datagram Protocol</td>
<td>A connectionless transport layer protocol which provides a simple message service for transaction-oriented services.</td>
</tr>
<tr>
<td>Virtual Private Network</td>
<td>A Virtual Private Network simulates a private network over the public internet by encrypting communications between the two private end-points.</td>
</tr>
<tr>
<td>Voice Over IP</td>
<td>VOIP uses the internet protocol to transmit voice as packets over an IP network.</td>
</tr>
<tr>
<td>VOIP</td>
<td>See Voice Over IP (VOIP).</td>
</tr>
<tr>
<td>VPN</td>
<td>See Virtual Private Network (VPN).</td>
</tr>
</tbody>
</table>
NOTICES AND TRADEMARKS

What’s in this appendix:

• Notices
• Trademarks

This section describes some important notices, trademarks, and compliance information.

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

IBM Security QRadar SIEM Tuning Guide
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
170 Tracer Lane,
Waltham MA 02451, USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

<table>
<thead>
<tr>
<th>Trademarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.</td>
</tr>
</tbody>
</table>

The following terms are trademarks or registered trademarks of other companies:

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

<table>
<thead>
<tr>
<th>Privacy policy considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies or other technologies to collect product usage information, to help improve the end user experience, to tailor interactions with the end user or for other purposes. In many cases no personally identifiable information is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect personally identifiable information. If this Software Offering uses cookies to collect personally identifiable information, specific information about this offering’s use of cookies is set forth below.</td>
</tr>
</tbody>
</table>

Depending upon the configurations deployed, this Software Offering may use session cookies that collect each user’s session id for purposes of session management and authentication. These cookies can be disabled, but disabling them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect personally identifiable information from end users via cookies and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and consent.

INDEX

A
adding
indexed filters 25
asset profile
configuring 11
assets
identifying 29
importing in CSV format 11

B
best practices
tuning 13
building blocks
commonly edited 17
editing 20
tuning 17

C
configuring
asset profile 11
flow sources 8
qflow devices 9
vulnerability assessment scanners 5
custom event properties 26
custom extracted properties 26
custom flow properties 26
custom rules
optimizing 23
custom rules engine (CRE)
creating OR conditions 24
viewing configuration 15

D
detecting
log sources 7
device support modules (DSMs) 6
automatic download 6
manually installing 6
updating 6
discovering
network assets 29
downloading
DSM updates 6

E
editing
building blocks 20
establishing

flow sources 8

F
false positives
rule chains 22
tuning 21
flow sources
configuring 8

G
glossary 31

I
importing
assets 11
indexed filters
adding 25
investigating
offenses 16

L
log messages
netflow 10
log source
adding manually 7
detection 7

M
manually
adding a log source 7
installing DSMs 6

N
netflow
data validation 10
log messages 10
network assets
identifying 29

O
offenses
investigating 16
optimizing
custom rules 23
reports 26
Q
qflow
 validating data 9
qflow data collection
 validating 9
qflow devices
 configuring 9

R
report
 optimization 26
rule chains
 false positives 22

S
scanners
 configuring 5
searches
 improving performance 25
SIM model
 cleaning 27

T
tuning
 best practices 13
 building blocks 17
 false positives 21
 methodology 20

U
updating
 device support modules (DSMs) 6

V
validating
 netflow data 10
 qflow data collection 9
viewing
 custom rules engine (CRE) configuration 15
vulnerability assessment scanners
 configuring 5