Note: Before using this information and the product that it supports, read the information in Notices and Trademarks on page 47.
CONTENTS

INTRODUCTION TO IBM SECURITY QRADAR HIGH AVAILABILITY
- Intended audience .. 1
- Technical documentation .. 1
- Contacting customer support .. 1
- Statement of good security practices 1

1 HIGH-AVAILABILITY OVERVIEW
- High-availability data consistency .. 3
- Real-time data synchronization .. 4
- Post-failover data synchronization 4
- High-availability clusters .. 5
 - Primary HA host ... 5
 - Secondary HA host ... 5
 - Cluster virtual IP address .. 5
 - HA wizard ... 5
- HA failovers .. 6
 - Primary HA host failure ... 6
 - Secondary HA host failure ... 6
 - Non-failover scenarios .. 6
 - HA failover event sequence ... 7
 - Network connectivity tests .. 7
 - Heartbeat ping tests .. 7
 - Primary disk failure .. 7
 - Manual failovers ... 7

2 PLAN YOUR HIGH-AVAILABILITY DEPLOYMENT
- QRadar software installations for HA and XFS file systems 9
- Appliance requirements .. 9
 - Software and virtual appliance requirements 10
- IP addressing and subnets ... 11
- Link bandwidth and latency .. 11
- Backup considerations ... 11
- Offboard storage requirements for high-availability 12

3 HIGH-AVAILABILITY MANAGEMENT
- Monitor the High-availability hosts status 13
Displaying HA cluster IP addresses .. 15
Creating an HA cluster .. 15
Disconnecting an HA cluster .. 17
 Updating the /etc/fstab file .. 17
Editing an HA cluster .. 18
Setting an HA host offline .. 18
Setting an HA host online ... 19
Switching a primary HA host to active .. 19
Partition splitting .. 21
Prepare for HA partition splitting .. 22
 Estimating partition sizes ... 22
 Partitioning a primary and secondary HA host 22
HA crossover cables .. 24
Prepare for HA crossover .. 24
 Configuring crossover cable between HA hosts 24
QRadar activation keys .. 27
QRadar build versions .. 27
Notebook hyperterminal connections 28
QRadar network connections .. 28
Recovering a secondary HA console or non-console 29
Recovering a failed primary HA appliance 30
Recovering a failed secondary HA host to QRadar 7.1 31
Recovering a failed secondary HA Host to QRadar 7.1 (MR2) 32
Recovering a failed primary HA QFlow appliance 33
Recovering QRadar on a secondary HA console or non-console system 34
Recovering QRadar on a failed primary HA console or non-console .. 36
Recovering a secondary HA host to a previous version or factory default .. 37
High-availability status overview .. 39
Verifying that the secondary HA host is operational 40
 Restoring a failed secondary HA host 40
Verifying that the primary HA host is operational 41
 Restoring a failed primary HA host 41
Verifying the status of primary and secondary hosts 43
 Identifying the recently active HA host in your HA cluster 44
Setting a primary host online .. 45
Notices ... 47
Trademarks .. 49
Privacy policy considerations .. 49
INTRODUCTION TO IBM SECURITY QRadar High Availability

This information is intended for use with IBM® Security QRadar® and provides information on how to protect your QRadar data by implementing a High Availability (HA) solution.

Unless otherwise noted, all references to QRadar refer to IBM Security QRadar SIEM and IBM Security QRadar Log Manager.

Intended audience

System administrators responsible for configuring high availability must have administrative access to IBM Security QRadar and your network devices and firewalls. The system administrator must have knowledge of your corporate network and networking technologies.

Technical documentation

For information on how to access more technical documentation, technical notes, and release notes, see the Accessing IBM Security QRadar Documentation Technical Note.
(http://www.ibm.com/support/docview.wss?rs=0&uid=swg21612861)

Contacting customer support

For information on contacting customer support, see the Support and Download Technical Note.
(http://www.ibm.com/support/docview.wss?rs=0&uid=swg21612861)

Statement of good security practices

IT system security involves protecting systems and information through prevention, detection and response to improper access from within and outside your enterprise. Improper access can result in information being altered, destroyed, misappropriated or misused or can result in damage to or misuse of your systems, including for use in attacks on others. No IT system or product should be considered completely secure and no single product, service or security measure can be completely effective in preventing improper use or access. IBM systems, products and services are designed to be part of a comprehensive security approach, which will necessarily involve additional operational procedures, and may require other systems, products or services to be most effective. IBM DOES NOT WARRANT THAT ANY SYSTEMS, PRODUCTS OR
SERVICES ARE IMMUNE FROM, OR WILL MAKE YOUR ENTERPRISE IMMUNE FROM, THE MALICIOUS OR ILLEGAL CONDUCT OF ANY PARTY.
If your hardware or network fails, then IBM Security QRadar continues to collect, store, and process event and flow data, by using high-availability (HA) appliances.

To enable HA, QRadar connects a primary HA host with a secondary HA host to create an HA cluster. For more information, see **High-availability clusters**.

If a primary HA host fails, then the secondary HA host maintains access to the same data as the primary by using data synchronization or shared external storage. For information, see **High-availability data consistency**.

For more information about using shared external storage with HA, for example iSCSI, Fibre Channel, or NFS, see the *IBM Security QRadar Offboard Storage Guide*.

Unless otherwise noted, all references to QRadar refer to IBM Security QRadar SIEM and IBM Security QRadar Log Manager.

<table>
<thead>
<tr>
<th>High-availability data consistency</th>
<th>When there is an HA failover, QRadar ensures the consistency of your data. The type of storage that you use determines how HA data consistency is maintained. If you configure HA with external storage, data consistency is maintained by using a component such as an iSCSI or Fibre Channel external storage device. For more information, see Offboard storage requirements for high-availability. If you do not use external storage devices, then QRadar HA maintains data consistency between a primary and secondary HA host by using Distributed Replicated Block Device (DRBD). DRBD is not enabled by default for IBM Security QRadar QFlow Collectors. To synchronize QRadar QFlow data, you must configure an HA cluster by using the console or managed host that is collecting QRadar QFlow data. In an HA environment, data synchronization is performed in the following situations:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• When you initially configure an HA cluster.</td>
</tr>
</tbody>
</table>
• When a primary HA host is restored after a failover.
• During normal HA operation, data is synchronized in real-time between the primary and secondary host.

Note: The Asset Profiler can impact the speed of DRBD synchronization if the asset profiler is running a large number of assets. If DRBD synchronization is slow, stop both event and flow traffic that generate assets.

Real-time data synchronization

When you configure an HA cluster, the /store file system on the primary HA host is automatically synchronized with the /store partition on the secondary HA host by using DRBD.

Depending on the size of the primary /store partition and performance, disk synchronization can take an extended time period. Ensure that the connection between the primary and secondary HA host has a minimum bandwidth of 1 gigabits per second (Gbps). It might take 24 hours or more for the data on the primary HA host /store partition to initially synchronize with the secondary HA host.

If the primary HA host fails over, the /store file system on the secondary HA host is automatically mounted to its local disk, where it continues to read from and write to the data received by the primary HA host before the failover.

After synchronization is complete, the secondary HA host assumes a status of standby. For more information about the status of the hosts in your HA cluster, see [Monitor the High-availability hosts status](#).

Post-failover data synchronization

Data that is collected by a primary HA host up to the point of failover is maintained virtually, in real time, by the secondary HA host by using DRBD.

When restored from a failover, the primary HA host assumes a status of offline. You must set the primary HA host to the online state before it becomes the active host. Disk replication with the secondary HA host is enabled while the primary HA host remains offline. For more information about setting the primary HA host online, see [Setting an HA host online](#).

When the primary HA host is restored, only the data that is collected by the secondary HA host in the intervening period is synchronized with the primary HA host. Therefore, post-failover disk synchronization is faster than initial disk synchronization, unless the disk on the primary HA host was replaced or reformatted when the host was manually repaired.
High-availability clusters

An HA cluster consists of a primary HA host, a secondary HA host, and cluster virtual IP address.

For more information about creating an HA cluster, see Creating an HA cluster.

Primary HA host

The primary HA host is any console or managed host in your QRadar deployment that requires protection from data loss in the event of a failure.

When you create an HA cluster, the IP address of the primary HA host is automatically reassigned to a cluster virtual IP address. Therefore, you must assign an unused IP address to the primary HA host. For more information, see Creating an HA cluster.

The primary HA host can act as a standby system for the secondary HA host. For example, if the primary HA host is repaired after a failover, it assumes a standby status. For more information, see Primary HA host failure.

Secondary HA host

The secondary HA host is the standby system for the primary HA host.

If the primary HA host fails, the secondary HA host automatically assumes all the responsibilities of the primary HA host.

Cluster virtual IP address

When you create an HA cluster, the cluster virtual IP address assumes the IP address of the primary HA host.

The cluster virtual IP address is used by the host in your HA deployment that has a status of active. For more information, see Monitor the High-availability hosts status.

HA wizard

Use the HA wizard to configure the primary host, secondary host, and cluster virtual IP address.

For more information about creating an HA cluster, see Creating an HA cluster.

The following validation is performed by the HA wizard:

• Verification that the secondary HA host has a valid HA activation key.
• Verification that the secondary HA host is not part of another HA cluster.
• Verification that the software versions on the primary and secondary HA hosts are the same.
• Detects if the primary HA host is configured with an external storage device. If successful, the HA wizard attempts to verify that the secondary HA host is configured to access the same external storage device.
• Verifies that the primary and secondary HA hosts support the same Device Support Module (DSM), scanner, and protocol RPMs.
HA failovers

When a primary or secondary HA host fails, QRadar maintains data consistency.

Scenarios that cause failover include:

- A power supply failure.
- A network failure that is detected by network connectivity tests, see Network connectivity tests.
- An operating system malfunction that delays or stops the heartbeat ping tests, see Heartbeat ping tests.
- A complete Redundant Array of Independent Disks (RAID) failure on the primary HA host.
- A manual failover. For more information, see Manual failovers.
- A management interface failure on the primary HA host.

Primary HA host failure

If the secondary HA host detects a primary failure, it automatically assumes the responsibilities of the primary HA host and becomes the active system.

When a primary HA host is recovered from a failover, it does not automatically assume the active status in the HA cluster. Instead, the secondary HA host remains the active system and the primary host acts as the standby system.

You must switch the primary back to the active status, after successfully recovering from a primary failure. For more information, see Switching a primary HA host to active.

Secondary HA host failure

If the primary HA host detects a secondary failure, it automatically assumes the responsibilities of the secondary HA host and becomes the active system.

Non-failover scenarios

HA failover is not performed when QRadar detects software errors or disk capacity issues.

The following scenarios do not cause an automatic HA failover:

- If a QRadar process develops an error, stops functioning, or exits with an error.
- If a disk on your primary HA host reaches 95% capacity, QRadar data collection stops, but the primary HA host continues to function.
HA failover event sequence

QRadar initiates a sequence of events when a primary HA host fails.

During failover, the secondary HA host assumes the responsibilities of the primary HA host by performing the following actions in sequence:

1. If configured, external shared storage devices are detected and the file systems are mounted. For more information, see the IBM Security QRadar Offboard Storage Guide.
2. A management interface network alias is created. For example, the network alias for eth0 is eth0:0.
3. The cluster virtual IP address is assigned to the network alias.
4. All QRadar services are started.
5. The secondary HA host connects to the console and downloads configuration files.

Network connectivity tests

To test network connectivity, the primary HA host automatically pings all existing managed hosts in your QRadar deployment.

If the primary HA host loses network connectivity to a managed host, but the connection to the secondary HA host remains intact, the secondary HA host performs another network connectivity test with the managed hosts. If the test succeeds, the primary HA host performs a controlled failover to the secondary HA host. If the test fails, HA failover is not performed because the secondary HA host might also be experiencing network connectivity problems.

For information about configuring HA network connectivity tests, see Creating an HA cluster.

Heartbeat ping tests

You can test the operation of the primary HA host by configuring the time interval of heartbeat ping tests.

If the secondary HA host does not receive a response from the primary HA host within a preconfigured time period, automatic failover to the secondary HA host is performed. For information about configuring heartbeat ping time intervals, see Creating an HA cluster.

Primary disk failure

If RAID completely fails and all disks are unavailable, the primary HA host performs a shutdown and fails over to the secondary HA host.

After a failover, the primary HA host assumes a status of Failed. For information about the status of the hosts in your HA cluster, see Monitor the High-availability hosts status.

Manual failovers

You can manually force a failover from a primary HA host to a secondary HA host.
This is useful for planned hardware maintenance on a console or managed host. Before you perform a manual failover, you must ensure that:

- The primary and secondary HA hosts are synchronized.
- The secondary HA host has a status of standby.

To perform hardware maintenance on a primary and secondary HA host while the secondary HA host is in standby, set the secondary HA host offline and power off the primary HA host. If the primary and secondary HA hosts are synchronizing, power off the primary.

For more information about manual failovers, see Setting an HA host offline.

Attention: Do not manually force a failover on a primary HA host when you install patches or perform software upgrades. For more information, see the IBM Security QRadar SIEM Upgrade Guide or the IBM Security QRadar Log Manager Upgrade Guide.
PLAN YOUR HIGH-AVAILABILITY DEPLOYMENT

Before you implement high-availability (HA), you must review all the requirements in this section to understand and prepare your IBM Security QRadar deployment.

QRadar software installations for HA and XFS file systems

As part of configuring high availability (HA), the QRadar installer requires a minimal amount of free space in the storage file system, /store/, for replication processes. Space must be allocated in advance because XFS file systems cannot be reduced in size after they are formatted.

For more information, see the *IBM Security QRadar Installation Guide*.

Appliance requirements

Before you add a secondary host to your QRadar Console, you must review the hardware configuration differences between your primary and secondary appliances.

Appliances that you order as primary and secondary HA pairs are matched to ensure compatibility. However, replacing an appliance or adding HA to an older Console with a different hardware configuration can lead to data replication issues. This can occur when you replace end-of-life hardware or create primary and secondary HA pairs using appliances from different manufacturers.

High-availability appliance requirements:

- The file system of the /store partition must match between your primary and secondary host.
 For example, if the /store partition on the primary uses ext-3 as the file system, then your secondary must also use ext-3 for /store. A mismatch of the file system for the /store partition is not allowed.

- The size of the /store partition on the secondary must be equal to or larger than the /store partition of the primary.
 For example, do not pair a primary host that uses a 3 TB /store partition to a secondary host that has a 2 TB /store partition.

Storage requirements when you replace an appliance:

- Ensure the replacement appliance includes storage capacity equal to or greater than the original hardware you replace.
- Secondary replacement appliances can have larger storage capacity than the primary appliance. When this occurs, partitions on the secondary are resized to match the storage capacity of the primary appliance when you configure the HA pair.

- Primary replacement appliances can have larger storage capacity than the secondary appliance. When this occurs, partitions on the primary are resized to match the storage capacity of the secondary appliance when you configure the HA pair.

- If you replace both primary and secondary appliances, then the system resizes the storage partition based on the appliance with the smallest capacity.

- The primary host should not contain more physical interfaces than the secondary.

In the event of a failover, the network configuration of the primary is replicated to the secondary host. If the primary is configured with more interfaces, any additional interfaces cannot be replicated to the secondary during a failover.

- The secondary host must use the same management interface as the primary HA host.

For example, if the primary HA host uses ETH0 as the management interface, the secondary HA host must also use ETH0.

- The management interface supports one cluster virtual IP address.

- TCP port 7789 must be open and allow communication between the primary and secondary for Distributed Replicated Block Device (DRBD) traffic.

 DRBD traffic is responsible for disk replication and is bidirectional between the primary and secondary host.

- You must ensure the QRadar software version is identical between the primary and secondary host before you pair a primary to a secondary appliance for the first time.

For example, a primary host with QRadar software 7.1.0.495292 can only be paired to a secondary host with QRadar 7.1.0.495292 installed. If the QRadar version between your primary and secondary differ, you must patch either the primary or secondary appliance to ensure both appliances use the same software version.

After the primary and secondary appliances are paired together, disk replication ensures any additional software updates are also applied to the secondary.

- Ensure the secondary host has a valid HA activation key.

Software and virtual appliance requirements
If you install QRadar software on your own hardware or use virtual appliances, you must review the following requirements before you attempt to configure HA.
To configure HA, you must consider the subnet that is used by the secondary HA host and the virtual IP address.

Administrators must ensure that:

- The secondary host is in the same subnet as the primary host.
- When the IP address of the primary host is reassigned as a cluster virtual IP, the new IP address that you assign to the primary must be in the same subnet.

For more information about HA virtual clusters, see High-availability clusters.

- The secondary HA host that you want to add to the HA cluster is not a component in another HA cluster.

To configure HA, you must consider the bandwidth and latency between the primary and secondary HA hosts.

If your HA cluster is using disk synchronization, ensure that:

- The connection between the primary and secondary HA host has a minimum bandwidth of 1 gigabits per second (Gbps).
- The latency between the primary and secondary HA host is less than 2 milliseconds (ms).

For more information about disk synchronization, see High-availability data consistency.

Note: If your HA solution uses a wide area network (WAN) to geographically distribute the hosts in your cluster, latency increases with distance. If latency rises above 2 ms, then system performance is affected.

This section contains considerations for data backup before you configure hosts for HA.

If a backup archive originates on an HA cluster, click **Deploy Full Configuration** to restore the HA cluster configuration after the restore is complete. If disk replication is enabled, the secondary HA host immediately synchronizes data after the system is restored.
If the secondary HA host is removed from the deployment after a backup is performed, the secondary HA host displays a Failed status on the System and License Management window.

For more information about restoring backup archives in an HA environment, see the *IBM Security QRadar SIEM Administration Guide*.

Offboard storage requirements for high-availability

You can implement HA when the QRadar /store partition is mounted to an external storage solution, such as an iSCSI or Fibre Channel device.

If you implement an external storage solution, the data that is received by the primary HA host is automatically migrated to the external device, but remains accessible for searching and reporting.

If a failover occurs, the /store partition on the secondary HA host is automatically mounted to the external device, where it continues to read and write to the data received by the primary HA host before failover.

For more information about configuring shared external storage with HA, see the *IBM Security QRadar Offboard Storage Guide*.

Administrators must review the following HA requirements before implementing an offboard storage device:

- The primary HA host must be configured to communicate with the external device and the data in the /store partition of the local disk must be migrated to the external storage device.
- The secondary HA host must be configured to communicate with the external device, so that when a primary HA host fails over, the secondary HA host can detect the external storage device.
- You must create an HA cluster only after the secondary HA host is configured to access the same external storage device.
- If you have to reconfigure your external storage device or HA cluster settings, you must remove the HA cluster between the primary and secondary HA host. For more information, see *Disconnecting an HA cluster*.
- Ensure that there is at least a 1 Gbps connection between each HA host and your external device.

Important: During an upgrade to QRadar, you must reconfigure the external storage device connections to the hosts in your HA cluster. For more information, see the *Reconfiguring Offboard Storage During a QRadar Upgrade Technical Note*.
If you are required to tune, troubleshoot, or update your HA settings, you have to use the System and License Management window on the IBM Security QRadar Admin tab.

Administrators can use the System and License management window to perform the following HA tasks:

- Monitor the state of an HA cluster.
- Force the manual failover of a primary HA host to perform maintenance on the primary host.
- Disconnect an HA cluster to alter the partitions of the primary and secondary HA hosts.
- Configure the ping test time period after which automatic failover to a secondary HA host occurs.
- Modify the HA cluster settings that are used to control network connectivity testing.

Monitor the High-availability hosts status

You can review the status of the primary and secondary host in your HA cluster. The following table describes the status of each host that is displayed in the System and License Management window:

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Specifies that the host is the active system and that all services are running normally. The primary or secondary HA host can display the active status. Note: If the secondary HA host displays the active status, the primary HA host has failed.</td>
</tr>
<tr>
<td>Standby</td>
<td>Specifies that the host is acting as the standby system. In the standby state, no services are running but data is synchronized if disk replication is enabled. If the primary or secondary HA host fails, the standby system automatically becomes the active system.</td>
</tr>
</tbody>
</table>
Table 1-2 HA status descriptions (continued)

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>Specifies that the primary or secondary host has failed.</td>
</tr>
<tr>
<td></td>
<td>• If the primary HA host displays Failed, the secondary HA host assumes the responsibilities of the primary HA host and displays the Active status.</td>
</tr>
<tr>
<td></td>
<td>• If the secondary HA host displays Failed, the primary HA host remains active, but is not protected by HA.</td>
</tr>
<tr>
<td></td>
<td>A system in a failed state must be manually repaired or replaced, and then restored. For more information, see Verifying that the primary HA host is operational. In the case of a network failure, you might need access to the physical appliance.</td>
</tr>
<tr>
<td>Synchronizing</td>
<td>Specifies that data is synchronizing between hosts. For more information about data synchronization, see High-availability data consistency.</td>
</tr>
<tr>
<td></td>
<td>Note: This status is only displayed if disk replication is enabled.</td>
</tr>
<tr>
<td>Online</td>
<td>Specifies that the host is online.</td>
</tr>
<tr>
<td>Offline</td>
<td>Specifies that an administrator has manually set the HA host offline. Offline mode indicates a state that is typically used to complete appliance maintenance.</td>
</tr>
<tr>
<td></td>
<td>When an appliance indicates a status of offline:</td>
</tr>
<tr>
<td></td>
<td>• Data replication is functioning between the active and offline HA hosts.</td>
</tr>
<tr>
<td></td>
<td>• Services that process events, flows, offenses, and heartbeat ping tests are stopped for the offline HA host.</td>
</tr>
<tr>
<td></td>
<td>• Failover cannot occur until the administrator sets the HA host online.</td>
</tr>
<tr>
<td>Restoring</td>
<td>Specifies that the host is restoring. For more information, see Verifying that the primary HA host is operational.</td>
</tr>
<tr>
<td>Needs License</td>
<td>Specifies that a license key is required for the HA cluster. In this state, no processes are running.</td>
</tr>
<tr>
<td></td>
<td>For more information about applying a license key, see your Administration Guide.</td>
</tr>
<tr>
<td>Setting Offline</td>
<td>Specifies that an administrator is changing the status of an HA host to offline.</td>
</tr>
<tr>
<td>Setting Online</td>
<td>Specifies that an administrator is changing the status of an HA host to online.</td>
</tr>
<tr>
<td>Needs Upgrade</td>
<td>Specifies that the secondary HA host requires a software upgrade.</td>
</tr>
<tr>
<td></td>
<td>When the Needs Upgrade status is displayed, the primary remains active, but is not protected against failover. Disk replication of events and flows continues between the primary and the secondary HA hosts.</td>
</tr>
</tbody>
</table>
Displaying HA cluster IP addresses

You can display the IP addresses of all the components in your HA cluster.

Procedure

Step 1 Click the Admin tab.

Step 2 On the navigation menu, click System Configuration.

Step 3 Click the System and License Management icon.

Step 4 Identify the QRadar primary console.

Step 5 Hover your mouse over the host name field.

Creating an HA cluster

An HA Cluster is created when a primary (console or non-console) host, secondary HA host, and a virtual IP address are paired by using the QRadar user interface.

Before you begin

If a primary HA host is configured with external storage, you must configure the secondary HA host with the same external storage options before you attempt to establish an HA cluster. For more information, see the IBM Security QRadar Offboard Storage Guide.

About this task

It might take 24 hours or more for the data on the primary HA host /store partition to initially synchronize with the secondary HA host. During HA configuration the user interface is unavailable for a period of time.

Note: When an HA cluster is configured, you can display the IP addresses that are used in the HA cluster by hovering your mouse over the Host Name field on the System and License Management window.
Procedure

Step 1 Click the Admin tab.

Step 2 On the navigation menu, click System Configuration.

Step 3 Click the System and License Management icon.

Step 4 Select the host for which you want to configure HA.

Step 5 From the Actions menu, select Add HA Host and click OK.

Step 6 Read the introductory text. Click Next.

Step 7 Type values for the parameters:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Host IP Address</td>
<td>Type a new primary HA host IP address. The new IP address replaces the previous IP address. The current IP address of the primary HA host becomes the Cluster Virtual IP address. If the primary HA host fails and the secondary HA host becomes active, the Cluster Virtual IP address is assigned to the secondary HA host. Note: The new primary HA host IP address must be on the same subnet as the virtual Host IP.</td>
</tr>
<tr>
<td>Secondary HA host IP Address</td>
<td>Type the IP address of the secondary HA host that you want to add. The secondary HA host must be on the same subnet as the primary HA host.</td>
</tr>
<tr>
<td>Enter the root password of the host</td>
<td>Type the root password for the secondary HA host. The password must not include special characters.</td>
</tr>
<tr>
<td>Confirm the root password of the host</td>
<td>Type the root password for the secondary HA host again for confirmation.</td>
</tr>
</tbody>
</table>

Step 8 Optional. To configure advanced parameters:

a Click the arrow beside Show Advanced Options.

b Type values for the parameters:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heartbeat Interval (seconds)</td>
<td>Type the time, in seconds, that you want to elapse between heartbeat pings. The default is 10 seconds. For more information about heartbeat pings, see Heartbeat ping tests.</td>
</tr>
<tr>
<td>Heartbeat Timeout (seconds)</td>
<td>Type the time, in seconds, that you want to elapse before the primary HA host is considered unavailable if no heartbeat is detected. The default is 30 seconds.</td>
</tr>
<tr>
<td>Network Connectivity Test List peer IP addresses (comma delimited)</td>
<td>Type the IP addresses of the hosts you want the secondary HA host to ping. The default is all other managed hosts in the QRadar deployment. For more information about network connectivity testing, see Network connectivity tests.</td>
</tr>
</tbody>
</table>
Disconnecting an HA cluster

You can disconnect a primary and secondary HA host cluster.

Before you begin

If you migrated the /store file system to a Fibre Channel device, you must modify the /etc/fstab file before you disconnect the HA cluster. For more information, see **Updating the /etc/fstab file**.

About this task

By disconnecting an HA cluster, the data on your primary HA console or managed host is not protected against network or hardware failure.

Procedure

Step 1 Click the Admin tab.

Step 2 On the navigation menu, click System Configuration.

Step 3 Click the System and License Management icon.

Step 4 Select the HA host that you want to remove.

Step 5 From the toolbar, select High Availability > Remove HA Host.

Step 6 Click OK.

Note: When you remove an HA host, the host restarts.

Updating the /etc/fstab file

Before you disconnect a Fibre Channel HA cluster, you must modify the /store and /store/tmp mount lines in the /etc/fstab file.

About this task

You must update the /etc/fstab file on the primary HA host and the secondary HA host.

Procedure

Step 1 Using SSH, log in to your QRadar host as the root user:

Username: root
Password: <password>

IBM Security QRadar High Availability Guide
Step 2 Modify the fstab file.

- **a** Edit the fstab file by typing the following command:

  ```
  vi /etc/fstab
  ```

- **b** Locate the existing mount lines for /store and /store/tmp.

- **c** Remove the `noauto` option for /store and /store/tmp.

Step 3 Save and close the file.

What to do next

Perform the steps in the procedure, Disconnecting an HA cluster.

Editing an HA cluster

You can edit the advanced options for your HA cluster.

Procedure

- **Step 1** Click the **Admin** tab.
- **Step 2** On the navigation menu, click **System Configuration**.
- **Step 3** Click the **System and License Management** icon.
- **Step 4** Select the row for the HA cluster that you want to edit.
- **Step 5** From the toolbar, select **High Availability > Edit HA Host**.
- **Step 6** Edit the parameters in the advanced options section. See Table 1-2.
- **Step 7** Click **Next**.
- **Step 8** Review the information.
- **Step 9** Click **Finish**.

Setting an HA host offline

You can set the primary or secondary HA host to Offline from the Active or Standby state.

About this task

If you set the active system to Offline, the standby system becomes the active system, forcing a failover. If you set the standby system to Offline, the standby system no longer monitors the heartbeat of the active system, however, continues to synchronize data from the active system.

Procedure

- **Step 1** Click the **Admin** tab.
- **Step 2** On the navigation menu, click **System Configuration**.
- **Step 3** Click the **System and License Management** icon.
- **Step 4** Select the HA host that you want to set to offline.
- **Step 5** From the toolbar, select **High Availability > Set System Offline**.
Setting an HA host online

You can set the primary or secondary HA host to Online.

Procedure

Step 1 Click the **Admin** tab.

Step 2 On the navigation menu, click **System Configuration**.

Step 3 Click the **System and License Management** icon.

Step 4 Select the offline HA host that you want to set to Online.

Step 5 From the toolbar, select **High Availability > Set System Online**.

What to do next

On the System and License Management window, verify the status of the HA host. Choose from one of the following options:

- If the primary HA host displays a status of Active, HA host is restored.
- If you experience a problem setting a host online, restore the primary or secondary HA host. For more information, see Restoring a failed secondary HA host or Restoring a failed primary HA host.

Switching a primary HA host to active

You can set the primary HA host to be the active system.

Before you begin

The primary HA host must be the standby system and the secondary HA host must be the active system.

About this task

If your primary host is recovered from a failure, it is automatically assigned as the standby system in your HA cluster. You must manually switch the primary HA host to be the active system and the secondary HA host to be the standby system.

Procedure

Step 1 Click the **Admin** tab.

Step 2 On the navigation menu, click **System Configuration**.

Step 3 Click the **System and License Management** icon.

Step 4 In the System and License Management window, select the secondary HA host.

Step 5 From the toolbar, select **High Availability > Set System Offline**.

Note: You QRadar user interface might be inaccessible during this time.

Step 6 In the System and License Management window, select the secondary HA host.

Step 7 From the toolbar, select **High Availability > Set System Online**.

IBM Security QRadar High Availability Guide
What to do next

When you can access the System and License Management window, check the status column to ensure that the primary HA host is the active system and the secondary HA host is the standby system.
In IBM Security QRadar, if your console is under heavy load or there is a high volume of data synchronization, you can tune your high availability environment.

Partition splitting

The ariel database saves temporary search results to /store/ariel/persistent_data. If the console is under heavy load and performance is impacted, persistent data can be excluded from synchronizing with the secondary HA host, by moving it to a separate partition.

Important: If you install QRadar 7.2.1, /store/ariel/persistent_data is mounted to a separate partition and uses the xfs file system. Therefore, you are not required to run the partition splitting script. The partition splitting script can be applied if you upgrade QRadar from any version before 7.2.1.

The partition splitting script performs the following actions:

- Changes the size of the /store partition.
- Creates a partition.
- Mounts the /store/ariel/persistent_data file system to the new partition.

Attention: This script might take several hours to complete. When you run the script on the secondary HA host, the primary host continues to collect data and remains available through the user interface. When you run the script on the primary HA host, the system is not active and the user interface is not available.

There are potential risks that are involved with running the partition script.

Before you run the partition splitting script, review the following information:

- Determine the cause of your performance issues. Partitioning and migrating the /store location might resolve throttling issues where HA data replication causes performance degradation.
- Determine the /store partition disk capacity. When you add a partition, you must specify a partition size that is approximately 25% of the capacity of the /store partition.

Important: The script does not validate incorrect size values. For more information, see [Estimating partition sizes](#).
• Ensure that there is sufficient space for the new partition on the host. For example, if you have 100 GB of free space, you must not allocate a 400 GB partition.

Prepare for HA partition splitting

To perform partition splitting, you are required to complete several tasks on the primary and secondary hosts in your HA cluster.

Administrators must perform the following tasks in sequence:

1. Disconnect the primary and secondary HA cluster. For more information see, [Disconnecting an HA cluster](#).
2. Estimate the partition size.
3. Run the partition splitting script on the primary and secondary HA hosts.
4. Reconnect the HA cluster. For more information, [Creating an HA cluster](#).

Estimating partition sizes

You must determine the size of the /store partition on the primary HA host and calculate a size for the new partition.

Procedure

Step 1 Using SSH, log in to the primary HA host as the root user:

Username: **root**
Password: `<password>`

Step 2 Type the following command:

```bash
df -h
```

Step 3 Calculate a value that is 25% of the partition where the /store file system is mounted.

What to do next

Perform the steps in the procedure, [Partitioning a primary and secondary HA host](#).

Partitioning a primary and secondary HA host

You can alter the partitions of a primary and secondary HA host.

Before you begin

You must disconnect the HA cluster, see [Disconnecting an HA cluster](#).

You must determine the disk capacity of the /store partition, see [Estimating partition sizes](#).

About this task

These instructions are applicable to the primary and secondary HA hosts. You can run the partition splitting script on the primary and secondary hosts at the same time.
Attention: You must not run the partition splitting script on a managed host. It is only designed to run on a primary HA console and a secondary HA host.

Procedure

Step 1 Using SSH, log in to the HA <host> as the root user:
Where <host> is the primary or secondary HA host.
Username: root
Password: <password>

Step 2 Change to the /opt/qradar/bin directory.

Step 3 Type `./create_cursor_partition.sh size=<size>`.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| size | Type a value that is approximately 25% the capacity of the /store partition, by using the following formats:
 - M for Megabyte
 - G for Gigabyte
 - T for Terabyte
For example: `./create_cursor_partition.sh size=30G`
For information, see [Estimating partition sizes](#).
Note: The partition <size> must be the same on the primary and secondary HA hosts.

Step 4 When the following warning message is displayed, type `reboot`.

```bash
[WARN] Process not completed. Changes were made that require a system reboot. Please reboot the system and run "./create_cursor_partition.sh --continue".
```

Step 5 After the primary or secondary host restarts, type the following command:

`./create_cursor_partition.sh --continue`.

Step 6 Verify that the partitions are correctly altered, by typing:

`df -h`

What to do next

1. Re-run the partition splitting script on the secondary HA host.
 Note: Use the same partition size as the primary HA host.

2. Reconnect the HA cluster. For more information, see [Creating an HA cluster](#).
HA crossover cables

In a high volume high availability deployment, the interfaces on both the primary and secondary HA hosts can become saturated. If performance is impacted, you can use a second pair of interfaces on the primary and secondary HA hosts to manage HA and data replication.

Each dedicated interface is connected with a crossover cable. Flow and event data is received by the primary interface, but all HA data replication is isolated by the new connection between the primary and secondary HA hosts.

Prepare for HA crossover

To implement HA crossover, you are required to complete several tasks.

1. Install crossover cable between the HA peer nodes on the same interfaces. You must ensure that each interface matches. For example, if the interface used by the primary host is eth2, the secondary HA host must also use eth2.

2. Configure an HA pair. For more information, see Creating an HA cluster. Ensure that the data between the primary and secondary HA host is fully synchronized. For more information, see Monitor the High-availability hosts status.

3. Configure crossover cable between your HA hosts by using the provided scripts.

Configuring crossover cable between HA hosts

In IBM Security QRadar, you can configure a crossover cable between HA hosts to improve performance in high volume HA deployments.

Procedure

Step 1 Using SSH, log on to the primary HA host as the root user.

Step 2 Shut down the interface that you connected the crossover cable to, by typing the following command:

```bash
ifdown <interface>
```

Where `<interface>` is the matching interface that you configured on your primary and secondary HA hosts. For example, eth2.

Step 3 Run the crossover script by typing the following command:

```bash
/opt/qradar/bin/qradar_netttune.pl crossover add <interface>
```

Where `<interface>` is the matching interface that you configured on your primary and secondary HA hosts. For example, eth2.

Step 4 Verify the crossover connection on the primary and secondary hosts, by typing the following command:

```bash
/opt/qradar/bin/qradar_netttune.pl crossover test link
```

Step 5 On the primary HA host, enable the crossover cable by typing the following command:

```bash
/opt/qradar/bin/qradar_netttune.pl crossover enable
```
Step 6 To verify that the route was added between the interface on the primary and secondary HA hosts, type the following command:

```
route -n
```

Step 7 To check for incrementing byte and packet counts between the interfaces that are using the crossover link, type the following command:

```
ifconfig <interface>
```

Where `<interface>` is the matching interface that you configured on your primary and secondary HA hosts. For example, eth2.
5 REINSTALL OR RECOVER QRADAR HIGH-AVAILABILITY APPLIANCES

Administrators might need to recover a failed primary or secondary HA appliance.

Attention: If your HA cluster uses shared storage, you must manually configure your external storage device. For more information, see the IBM Security QRadar Offboard Storage Guide.

QRadar activation keys

To recover a primary or secondary console or non-console HA appliance or reinstall QRadar software you must have a valid activation key.

The activation key is a 24-digit, four-part, alphanumeric value. You can find the activation key:

- Printed on a sticker and physically placed on your appliance.
- Included with the packing slip. All appliances are listed along with their associated keys.

Note: The letter I and the number 1 (one) are treated the same, as are the letter O and the number 0 (zero).

QRadar build versions

If you need to reinstall QRadar on a failed primary HA host, you must consider the build version of the secondary HA host.

The build version of the primary HA host must be the same as the QRadar build version installed on the secondary HA host.

Note: The secondary or primary HA host must be patched to the correct build version before configuring an HA cluster. For more information, see the IBM Security QRadar SIEM Upgrade Guide or the IBM Security QRadar Log Manager Upgrade Guide.
Notebook hyperterminal connections

During the recovery of a QRadar appliance, you can use a notebook to monitor the progress of the installation.

If you use HyperTerminal to monitor a QRadar reinstallation or recovery, then use the connection parameters listed in Table 1-3:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connect Using</td>
<td>Select the appropriate COM port of the serial connector.</td>
</tr>
<tr>
<td>Bits per second</td>
<td>Type 9600</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>Type 1</td>
</tr>
<tr>
<td>Data bits</td>
<td>Type 8</td>
</tr>
<tr>
<td>Parity</td>
<td>Type None</td>
</tr>
</tbody>
</table>

QRadar network connections

During the recovery or reinstallation of a QRadar appliance, you can specify the network connection settings.

Use the information in Table 1-4 when you recover or reinstall a QRadar appliance:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>Type a fully qualified domain name as the system hostname.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Type the IP address of the system.</td>
</tr>
<tr>
<td>Note: If you are recovering an HA appliance, the IP address is the primary HA host IP address, which you can identify in the System and License Management window by hovering your mouse over the Host Name field.</td>
<td></td>
</tr>
<tr>
<td>Network Mask</td>
<td>Type the network mask address for the system.</td>
</tr>
<tr>
<td>Gateway</td>
<td>Type the default gateway of the system.</td>
</tr>
<tr>
<td>Primary DNS</td>
<td>Type the primary DNS server address.</td>
</tr>
<tr>
<td>Secondary DNS</td>
<td>Optional. Type the secondary DNS server address.</td>
</tr>
<tr>
<td>Public IP</td>
<td>Optional. Type the Public IP address of the server. This is a secondary IP address that is used to access the server, usually from a different network or the Internet, and is managed by your network administrator. The Public IP address is often configured using Network Address Translation (NAT) services or firewall settings on your network.</td>
</tr>
<tr>
<td>Email Server</td>
<td>Type the email server. If you do not have an email server, type localhost in this field.</td>
</tr>
</tbody>
</table>
Recovering a secondary HA console or non-console

You can install or recover a secondary HA QRadar console or non-console (managed host) appliance.

Before you begin

These instructions are applicable to the installation or recovery of a QRadar console and non-console. You must choose different options according to the appliance you are installing or recovering.

Ensure that you have a QRadar activation key. For information, see QRadar activation keys.

Procedure

Step 1 Prepare your appliance.

a Install all necessary hardware.

b Choose one of the following options:

 - Connect a notebook to the serial port on the rear of the appliance. For more information, see Notebook hyperterminal connections.
 - Connect a keyboard and monitor to their respective ports.

For more information on your QRadar appliance or appliance ports, see the IBM Security QRadar Hardware Guide.

c Power on the system and log in:

 Username: root

 Note: The username is case sensitive.

d Press Enter.

e Press the Spacebar to advance each window then type yes to accept the agreement and press Enter.

f Type your activation key and press Enter.

Step 2 Choose one of the following options:

- If you are installing a console, select This system is a stand-by for a console, then select Next and press Enter.

- If you are installing a non-console, select This system is a stand-by for a non-console, then select Next and press Enter. Go to Step 4.

Step 3 Choose one of the following options:

- **Manual** - Type the current date and time, then select Next and press Enter. Go to Step 6.

- **Server** - In the Time server field, type the time server name or IP address, then select Next and press Enter.

Step 4 Select your time zone continent or area, then select Next and press Enter.

Step 5 Select your time zone region, then select Next and press Enter.
Step 6 Select IPv4, then select Next and press Enter.

Note: Each interface with a physical link is denoted with a plus (+) symbol.

Step 7 Select the management interface, then select Next and press Enter.

Step 8 Configure the QRadar network settings. For information, see QRadar network connections.

Step 9 Select Next and press Enter.

Note: If you are changing network settings using qchange_netsetup, select Finish and press Enter. For more information, see the IBM Security QRadar SIEM Installation Guide or the IBM Security QRadar Log Manager Installation Guide.

Step 10 Configure the QRadar root password:

a Type your password, then select Next and press Enter.

b Retype your new password, then select Finish and press Enter.

Note: This process can take several minutes.

c Press Enter to select OK.

Step 11 Log in to the QRadar user interface.

Step 12 Configure your HA cluster. For more information on configuring your HA cluster, see Creating an HA cluster.

Recovering a failed primary HA appliance

You can recover a failed primary HA QRadar appliance.

Before you begin

Ensure that you have a QRadar activation key. For more information, see QRadar activation keys.

Procedure

Step 1 Install all necessary hardware.

Step 2 Choose one of the following options:

- Connect a notebook to the serial port on the rear of the appliance. For more information, see Notebook hyperterminal connections.

- Connect a keyboard and monitor to their respective ports.

Step 3 Power on the system and log in:

Username: root

Step 4 Press Enter.

Step 5 Press the Spacebar to advance each window then type yes to accept the agreement and press Enter.

Step 6 Type your activation key and press Enter.

Step 7 Select HA Recovery Setup, then select Next and press Enter.

Step 8 Choose one of the following options:
Recovering a failed secondary HA host to QRadar 7.1

You can recover a failed secondary HA host to QRadar 7.1.

About this task

When recovering a failed secondary HA host that used a previous QRadar version, you can install QRadar 7.1 from an updated recovery partition.

The installer repartitions and reformats the hard disk, installs the Operating System, then re-installs QRadar. Wait for the flatten process to complete. This process can take several minutes.

For more information on installing your secondary HA host, see the IBM Security QRadar SIEM Installation Guide or the IBM Security QRadar Log Manager Installation Guide.

Procedure

Step 1 Using SSH, log in to the secondary HA host as the root user.

Username: root
Password: <password>

Step 2 Obtain the QRadar software from the following location:

http://www.ibm.com/support

Step 3 Copy the QRadar 7.1 ISO to the secondary HA host by typing the following command:

```
scp <iso file name> root@<ip_address>:/root
```

Important: If you are installing QRadar 7.0 and above, **Step 4** through **Step 5** are not required because the recovery script is placed in /opt/qradar/bin during the installation.

Step 4 Mount the ISO by typing the following command:

```
mount -o loop <iso_file_name> /media/cdrom/
```

Step 5 Copy the recovery script into the root directory by typing the following command:

```
cp /media/cdrom/post/recovery.py /root
```

Step 6 Unmount the ISO by typing the following command:

```
umount /media/cdrom/
```

Step 7 If the host is a non-console, stop the IPTables service to enable SCP. Type the following command:

```
service tables stop.
```

Step 8 Start the extracted recovery script by typing the following command:

```
./recovery.py -r --default --reboot <iso_file_name>
```

Step 9 When prompted, press Enter to reboot the appliance.

Step 10 When prompted, type `flatten` and press Enter.

Step 11 When the installation completes, type `SETUP` and log in to the system as the root user.

Recovering a failed secondary HA Host to QRadar 7.1 (MR2)

When you recover a failed secondary HA host that used a previous QRadar version, you can install QRadar 7.0 from an updated recovery partition.

Procedure

Step 1 Using SSH, log in to the secondary HA host as the root user.

Username: root

Password: <password>

Step 2 Obtain the QRadar software from the following location:

http://www.ibm.com/support

Step 3 Copy the QRadar 7.0 ISO to the secondary HA host, type the following command:

```
scp <iso file name> root@<ip_address>:/root
```
Step 4 If the host is a non-Console, stop the IPTables service to allow SCP. Type the following command:

```
service iptables stop.
```

Step 5 Start the extracted recovery script by typing the following command:

```
./recovery.py -r --default --reboot <iso_file_name>
```

Step 6 When prompted, press Enter to reboot the appliance.

Step 7 When prompted, type `flatten` and press Enter.

Results

The installer repartitions and reformat the hard disk, installs the Operating System, and then re-installs QRadar SIEM. Wait for the flatten process to complete. This process can take up to several minutes, depending on your system. When this process is complete, the normal installation process proceeds.
Step 12 Type the Cluster Virtual IP address, then select Next and press Enter. For more information, see Displaying HA cluster IP addresses.

Step 13 Configure the QRadar network settings. For information, see QRadar network connections.

Step 14 Select Next and press Enter.

Step 15 Configure the QRadar root password:
 a Type your password, then select Next and press Enter.
 b Retype your password, then select Finish and press Enter.

 Note: This process can take several minutes.

 c Press Enter to select OK.

Step 16 Log in to the QRadar user interface.

Step 17 Restore the failed primary HA host. For more information on restoring a failed primary HA host, see Verifying that the primary HA host is operational.

Recovering QRadar on a secondary HA console or non-console system

You can install or recover QRadar console or non-console (managed host) software on your secondary HA system.

Before you begin

These instructions are applicable to the installation or recovery of a QRadar console and non-console. You must choose different options according to the appliance you are installing or recovering.

Ensure that you have a QRadar activation key. For more information, see QRadar activation keys.

Procedure

Step 1 Install the necessary hardware.

Step 2 Obtain the Red Hat Enterprise Linux 6.4 operating system and install it on your hardware.

 For instructions on how to install and configure the Red Hat Enterprise Linux 6.2 operating system, see the IBM Security QRadar SIEM Installation Guide or the IBM Security QRadar Log Manager Installation Guide.

Step 3 Log in as root.

Step 4 Create the /media/cdrom directory by typing the following command:

 `mkdir /media/cdrom`

Step 5 Obtain the QRadar software from the following location:

 `http://www.ibm.com/support`

Step 6 Mount the QRadar 7.1 ISO by typing the following command:

 `mount -o loop <path to the QRadar ISO> /media/cdrom`

Step 7 Begin the installation by typing the following command:
Step 8 Press the Spacebar to advance each window then type yes to accept the agreement and press Enter.

Step 9 Type your activation key and press Enter.

Step 10 Choose one of the following options:

- If you are installing a console, select This system is a stand-by for a console, then select Next and press Enter.
- If you are installing a non-console, select This system is a stand-by for a non-console, then select Next and press Enter. Go to Step 12.

Step 11 Choose one of the following options:

- Manual - Type the current date and time, then select Next and press Enter. Go to Step 14.
- Server - In the Time server field, type the time server name or IP address, then select Next and press Enter.

Step 12 Select your time zone continent or area, then select Next and press Enter.

Step 13 Select your time zone region, then select Next and press Enter.

Step 14 Select IPv4, then select Next and press Enter.

Note: Each interface with a physical link is denoted with a plus (+) symbol.

Step 15 Select management interface, then select Next and press Enter.

Step 16 Configure the QRadar network settings. For information, see QRadar network connections.

Step 17 Select Next and press Enter.

Note: If you are changing network settings using qchange_netsetup, select Finish and press Enter. For more information, see the IBM Security QRadar SIEM Installation Guide or the IBM Security QRadar Log Manager Installation Guide.

Step 18 To configure the QRadar root password:

a Type your password, then select Next and press Enter.

b Retype your new password, then select Finish and press Enter.

Note: This process can take several minutes.

The Configuration is Complete window is displayed.

c Press Enter to select OK.

Step 19 Log in to the QRadar user interface.

Step 20 Configure your HA cluster. For more information on configuring your HA cluster, see Creating an HA cluster.
Recovering QRadar on a failed primary HA console or non-console

You can recover QRadar console or non-console (managed host) software on your failed primary HA host.

Before you begin

These instructions are applicable to the installation or recovery of QRadar on a primary console and non-console. You must choose different options according to the appliance you are installing or recovering.

Ensure that you have a QRadar activation key. For more information, see [QRadar activation keys](#).

Procedure

Step 1 Install the necessary hardware.

Step 2 Obtain the Red Hat Enterprise Linux 6.2 operating system and install it on your hardware.

For instructions on how to install and configure the Red Hat Enterprise Linux 6.2 operating system, see the [IBM Security QRadar SIEM Installation Guide](#) or the [IBM Security QRadar Log Manager Installation Guide](#).

Step 3 Log in as root.

Step 4 Create the `/media/cdrom` directory by typing the following command:

```bash
mkdir /media/cdrom
```

Step 5 Obtain the QRadar software from the following location:

```
http://www.ibm.com/support
```

Step 6 Mount the QRadar 7.1 ISO by typing the following command:

```bash
mount -o loop <path to the QRadar ISO> /media/cdrom
```

Step 7 Begin the installation by typing the following command:

```
/media/cdrom/setup
```

Note: QRadar verifies the integrity of the media before installation by checking the MD5 sum. If a warning message is displayed, that the MD5 checksum failed, redownload QRadar. For further assistance, contact Customer Support.

Step 8 Press the Spacebar to advance each window then type `yes` to accept the agreement and press Enter.

Step 9 Type your activation key and press Enter.

Step 10 Choose one of the following options:

- If you are installing a console, select **HA Recovery Setup**, then select **Next** and press Enter.
 [Step 11](#).

- If you are installing a non-console, select **HA Recovery Setup**, then select **Next** and press Enter. Go to **Step 12**.

Step 11 Choose one of the following options:
Recovering a secondary HA host to a previous version or factory default

You can recover a QRadar secondary HA host to a previous version or factory default.

About this task

Use this procedure to recover a failed QRadar secondary HA host, that does not include a recovery partition or a USB port, to a previous version or restore the system to factory defaults. When you recover the failed secondary HA host, all data removed and the factory default configuration is restored on the host.

Procedure

Step 1 Using SSH, log in to the Console as the root user.

Step 2 Using SCP, copy the recovery.py script from the Console to the failed secondary HA host.

By default, the recovery.py script is downloaded to the /root directory if you do not specify a location.
Step 3 Obtain the QRadar ISO from the following location:

http://www.ibm.com/support

Step 4 Using SCP, copy the ISO to the target QRadar host.

Step 5 Using SSH, log in to the secondary HA host.

Step 6 Type the following commands:

```bash
chmod 755 recovery.py
./recovery.py -r --default --reboot <iso_file_name>
```

Step 7 Press Enter when prompted to reboot the system.

Step 8 When prompted, type `flatten` and press Enter.

Results

The installer repartitions and reformats the hard disk, installs the Operating System, and then installs QRadar. Wait for the flatten process to complete. This process can take up to several minutes. When this process is complete the normal installation process continues.
In IBM Security QRadar, the System and License Management window displays the status of the hosts in your high-availability deployment.

High-availability status overview

The following table describes possible primary and secondary HA host statuses. Each status combination requires a different troubleshooting approach:

<table>
<thead>
<tr>
<th>Primary HA Host Status</th>
<th>Secondary HA Host Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Failed or Unknown</td>
</tr>
<tr>
<td>Failed or Unknown</td>
<td>Active</td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Offline</td>
<td>Active</td>
</tr>
</tbody>
</table>

If the secondary HA host displays a status of Unknown or Failed, verify that the host is operational, then restore the secondary HA host. For more information, see [Verifying that the secondary HA host is operational](#).

If the primary HA host displays a status of Unknown or Failed, verify that the host is operational, then restore the primary HA host. For more information, see [Verifying that the primary HA host is operational](#).

If the status of both the primary and secondary HA host is Unknown, identify which host was Active before each HA host displayed a status of Unknown. For more information, see [Verifying the status of primary and secondary hosts](#).

If the primary HA host displays a status of Offline, set the primary HA host Online. For more information, see [Setting an HA host online](#).
Verifying that the secondary HA host is operational

You must verify that the secondary HA host is operational.

Procedure

Step 1 Using SSH, log in to the secondary HA host as the root user:

Username: root
Password: <password>

What to do next

Choose one of the following options:

- If you can connect to the secondary HA host using SSH, restore the secondary HA host. See **Restoring a failed secondary HA host**.
- If you cannot connect to the secondary HA host using SSH and if you have Dell Remote Access Controller (DRAC) access to the secondary HA host, verify that the secondary HA host is on.

Restoring a failed secondary HA host

You can restore a failed secondary HA host.

Procedure

Step 1 Click the **Admin** tab.

Step 2 On the navigation menu, click **System Configuration**.

Step 3 Click **System and License Management**.

Step 4 Select the secondary HA host that you want to restore.

Step 5 From the **High Availability** menu, select **Restore System**.

While the HA configuration is restored, the status of the secondary HA host displays the following in sequence:

- Restoring
- Synchronizing (if disk synchronization is enabled)
- Standby

Step 6 Verify the status of the secondary HA host on the System and License Management window. Choose one of the following options:

- If the secondary HA host displays a status of Standby, you have restored the secondary HA host.
- If the secondary HA host displays a status of Failed or Unknown, go to **Step 7**.
Verifying that the primary HA host is operational

<table>
<thead>
<tr>
<th>Verifying that the primary HA host is operational</th>
<th>You must verify that the primary HA host is operational.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure</td>
<td></td>
</tr>
<tr>
<td>Step 1</td>
<td>Using SSH, log in to the primary HA host as the root user:</td>
</tr>
<tr>
<td></td>
<td>Username: root</td>
</tr>
<tr>
<td></td>
<td>Password: <password></td>
</tr>
<tr>
<td>What to do next</td>
<td></td>
</tr>
<tr>
<td>After the system is restarted, verify the status</td>
<td></td>
</tr>
<tr>
<td>of the primary HA host on the System and License</td>
<td></td>
</tr>
<tr>
<td>Management window. Choose one of the following</td>
<td></td>
</tr>
<tr>
<td>options:</td>
<td></td>
</tr>
<tr>
<td>• If you can connect to the primary HA host using</td>
<td></td>
</tr>
<tr>
<td>SSH, restore the primary HA host. See</td>
<td></td>
</tr>
<tr>
<td>Restoring a failed primary HA host.</td>
<td></td>
</tr>
<tr>
<td>• If you cannot connect to the primary HA host</td>
<td></td>
</tr>
<tr>
<td>using SSH and if you have Dell Remote Access</td>
<td></td>
</tr>
<tr>
<td>Controller (DRAC) access to the primary HA</td>
<td></td>
</tr>
<tr>
<td>host, verify that the primary HA host is on.</td>
<td></td>
</tr>
</tbody>
</table>

Restoring a failed primary HA host

<table>
<thead>
<tr>
<th>Restoring a failed primary HA host</th>
<th>You can restore a failed primary HA host.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure</td>
<td></td>
</tr>
<tr>
<td>Step 1</td>
<td>Click the Admin tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the navigation menu, click System</td>
</tr>
<tr>
<td></td>
<td>Configuration.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click System and License Management.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Select the primary HA host that you want to restore.</td>
</tr>
</tbody>
</table>
Step 5 From the **High Availability** menu, select **Restore System**.

While the HA configuration is restoring, the status of the primary HA host displays the following in sequence:

a Restoring

b Synchronizing (if disk synchronization is enabled)

c Offline

Step 6 Verify the status of the primary HA host. For more information, see **Monitor the High-availability hosts status**.

Step 7 Choose one of the following options:

- If the primary HA host displays a status of Offline, go to **Step 8**.
- If the primary HA host displays a status of Failed or Unknown, go to **Step 10**.

Step 8 From the System and License Management window, select **High Availability > Set System Online**.

Step 9 On the System and License Management window, verify the status of the primary HA host. Choose one of the following options:

- If the primary HA host displays a status of Active, you have restored the primary HA host.
- If the primary HA host displays a status of Failed or Unknown, go to **Step 10**.

Step 10 Using SSH, log in to the primary HA host as the root user:

Username: `root`

Password: `<password>`

Step 11 Restart the primary HA host by typing the following command:

```
reboot
```

What to do next

Monitor the High-availability hosts status then choose one of the following options:

- If the primary HA host displays a status of Offline, go to **Step 8**.
- If the primary HA host displays a status of Failed or Unknown, repeat **Step 5**.
You must verify that the primary and secondary HA hosts are operational.

Procedure

Step 1 Identify if the primary HA host was configured as a console or managed host. Choose from one of the following options:

- If your primary HA host was configured as a Console, go to **Step 2**.
- If your primary HA host was configured as a managed host, go to **Step 3**.

Step 2 Using SSH, log in to the Cluster Virtual IP address as the root user:

Username: root
Password: <password>

Choose from one of the following options:

- If you can connect to the Cluster Virtual IP address, restore access to the QRadar user interface. For more information, see the *IBM Security QRadar SIEM Troubleshooting Guide*.
- If you cannot connect to the Cluster Virtual IP address, go to **Step 3**.

Repeat the following procedure for the primary and secondary HA host IP addresses:

Step 3 Using SSH, log in to the secondary HA host as the root user:

Username: root
Password: <password>

What to do next

Choose one of the following options:

- If you cannot connect to the primary or secondary HA host using SSH, ensure that your network and hardware configuration is operational.
- If you can connect to the primary and secondary HA host, identify the most recently Active HA host in your HA cluster, see *Identifying the recently active HA host in your HA cluster*.
Identifying the recently active HA host in your HA cluster

You can identify the most recently Active host in your HA cluster.

Procedure

Step 1 Using SSH, log in to the primary HA host as the root user:
 Username: root
 Password: <password>

Step 2 Display the HA cluster configuration by typing the following command:
 `cat /proc/drbd`

Step 3 Review the following line in the output:
 0: cs:Connected ro:Primary/Secondary ds:UpToDate/UpToDate
 Choose from one of the following options:
 - If the line does not display: `cs:Connected`, then determine the most recently Active HA host in your cluster.
 - If the line displays `ro:Primary/Secondary`, the Primary HA host is the Active system, go to Step 5.
 - If the line displays `ro:Secondary/Primary`, the secondary HA host is the Active system, go to Step 5.
 - If the line displays `ro:Secondary/Secondary`, go to Step 4.

Step 4 Review the following line in the output:
 0: cs:Connected ro:Secondary/Secondary
 Choose one of the following options:
 - If the line displays: `ds:< >/UpToDate`, the Secondary HA Host is the Active system, go to Step 5.
 - If the line displays: `ds:UpToDate/< >`, the Primary HA Host is the Active system, go to Step 5.
 - If the line displays: `ds:UpToDate/UpToDate`, determine the most recently Active HA host in your HA cluster.

Step 5 Contact Customer Support for assistance with restoring your Active HA host.
Setting a primary host online

On the System and License Management window, if the primary HA host displays a status of Offline, set the primary HA host Online.

Procedure

Step 1 Click the Admin tab.
Step 2 On the navigation menu, click System Configuration.
Step 3 Click System and License Management.
Step 4 Select the primary HA host that you want to restore.
Step 5 From the High Availability menu, select Set System Online.
Step 6 On the System and License Management window, verify the status of the primary HA host. Choose from one of the following options:
 • If the primary HA host displays a status of Active, you have restored the primary HA host.
 • If the primary HA host displays a status of Offline, restore the primary HA host. For more information, see Restoring a failed primary HA host.
What’s in this appendix:

- Notices
- Trademarks

This section describes some important notices, trademarks, and compliance information.

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country/region or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
170 Tracer Lane,
Waltham MA 02451, USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

| Trademarks | IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml. The following terms are trademarks or registered trademarks of other companies: Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. |
| Privacy policy considerations | IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies or other technologies to collect product usage information, to help improve the end user experience, to tailor interactions with the end user or for other purposes. In many cases no personally identifiable information is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect personally identifiable information. If this Software Offering uses cookies to collect personally identifiable information, specific information about this offering’s use of cookies is set forth below. Depending upon the configurations deployed, this Software Offering may use session cookies that collect each user’s session id for purposes of session management and authentication. These cookies can be disabled, but disabling them will also eliminate the functionality they enable. If the configurations deployed for this Software Offering provide you as customer the ability to collect personally identifiable information from end users via cookies and other technologies, you should seek your own legal advice about any laws applicable to the collection and use of such information. |

IBM Security QRadar High Availability Guide
applicable to such data collection, including any requirements for notice and consent.

INDEX

<table>
<thead>
<tr>
<th>A</th>
<th>activation keys</th>
<th>QRadar 27</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>build versions</td>
<td>QRadar 27</td>
</tr>
<tr>
<td>C</td>
<td>cluster virtual IP address</td>
<td>HA clustering 5</td>
</tr>
<tr>
<td></td>
<td>clustering</td>
<td>HA 5</td>
</tr>
<tr>
<td></td>
<td>crossover cables</td>
<td>tuning HA 24</td>
</tr>
<tr>
<td>D</td>
<td>disconnecting a cluster</td>
<td>updating /etc/fstab 17</td>
</tr>
<tr>
<td></td>
<td>disk synchronization</td>
<td>post-failover synchronization 4</td>
</tr>
<tr>
<td>F</td>
<td>failovers</td>
<td>HA 6</td>
</tr>
<tr>
<td></td>
<td>manually enforced failover</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>primary disk failure</td>
<td>7</td>
</tr>
<tr>
<td>H</td>
<td>HA</td>
<td>clusters 5</td>
</tr>
<tr>
<td></td>
<td>editing a cluster</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>non fail-over scenarios</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>storage options</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>HA cluster</td>
<td>disconnected 17</td>
</tr>
<tr>
<td></td>
<td>updating /etc/fstab</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>HA clustering 5</td>
<td>cluster virtual IP address 5</td>
</tr>
<tr>
<td></td>
<td>HA wizard 5</td>
<td>primary HA host 5</td>
</tr>
<tr>
<td></td>
<td>secondary HA host 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HA clusters</td>
<td>displaying IP addresses 15</td>
</tr>
<tr>
<td></td>
<td>data consistency</td>
<td>maintaining 3</td>
</tr>
<tr>
<td></td>
<td>offboard storage</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>HA disk synchronization</td>
<td>real-time synchronization 4</td>
</tr>
<tr>
<td></td>
<td>HA failovers 6</td>
<td>event sequence 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>heartbeat ping tests 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>network connectivity tests 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>primary disk failure 7</td>
</tr>
<tr>
<td></td>
<td>HA host statuses 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HA hosts</td>
<td>status information 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HA replication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>improving performance 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HA wizard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HA clustering 5</td>
</tr>
<tr>
<td>I</td>
<td>installation and recovery</td>
<td>QRadar console software on a failed primary HA host 36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>intended audience 1</td>
</tr>
<tr>
<td>L</td>
<td>Laptop hyperterminal connections</td>
<td>28</td>
</tr>
<tr>
<td>M</td>
<td>maintaining</td>
<td>HA data consistency 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>managing HA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>adding an HA cluster 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disconnecting an HA cluster 17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>editing an HA cluster 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>setting a host offline 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>setting a host online 19</td>
</tr>
<tr>
<td>N</td>
<td>network connections</td>
<td>QRadar 28</td>
</tr>
<tr>
<td>O</td>
<td>offboard storage</td>
<td>solutions 12</td>
</tr>
<tr>
<td>P</td>
<td>partition splitting</td>
<td>estimating partition sizes 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>primary and secondary HA hosts 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>risks 21</td>
</tr>
</tbody>
</table>
planning for HA
 appliance guidelines 9
 backup considerations 11
 IP addressing 11
 link bandwidth 11
 storage guidelines 11
 subnets 11
primary HA host
 HA clustering 5

Q
QRadar
 activation keys 27
 build versions 27
 network connections 28

R
Recovery
 secondary HA console or non-console 29
recovery
 failed primary HA appliance 30
 failed primary HA QFlow appliance 33
risks
 partition splitting 21

S
secondary HA host
 HA clustering 5

T
troubleshooting HA
 active primary and failed secondary 39
 are the primary and secondary hosts operational 43
 identifying the recently active host in your HA cluster 44
 is the primary host operational 41
 is the secondary host operational 40
 offline primary and active secondary 45
 restoring a failed primary host 41
 restoring a secondary host 40

tuning HA
 crossover cables 24
 estimating partition sizes 22
 partition splitting 22
 partition splitting risks 21
 partitioning a primary and secondary host 22