IBM Security QRadar
Version 7.1.x and 7.2.x

DSM Configuration Guide

IBM
Before using this information and the product that it supports, read the information in Notices.
CONTENTS

ABOUT THIS GUIDE
- Intended audience ... 15
- Conventions .. 15
- Technical documentation 16
- Contacting customer support 16
- Statement of good security practices 16

1 OVERVIEW

2 ACCESS TO THE INTEGRATION DOCUMENTATION ADDENDUM

3 INSTALLING DSMs
- Scheduling Automatic Updates 21
- Viewing updates .. 22
- Manually installing a DSM 24

4 3Com 8800 Series Switch

5 Ambiron TrustWave ipAngel

6 AHNlab Policy Center

7 Apache HTTP Server
- Configuring Apache HTTP Server with syslog 33
- Configuring Apache HTTP Server with syslog-ng 35

8 APC UPS

9 Amazon AWS CloudTrail
- AWS CloudTrail DSM integration process 42
- Enabling communication between QRadar and AWS CloudTrail ... 42
- Configuring an Amazon AWS CloudTrail log source in QRadar .. 42
| 10 | Apple Mac OS X |
| 11 | AccessData InSight |
| 12 | Application Security DbProtect |
| 13 | Arbor Networks Peakflow |
| 14 | Arbor Networks Pravail |
| 15 | Arpeggio SIFT-IT |
| 16 | Array Networks SSL VPN |
| 17 | Aruba Mobility Controllers |
| 18 | Avaya VPN Gateway |
| 19 | BalaBit IT Security |
| 20 | Barracuda |
| 21 | Bit9 Security |
| 22 | BlueCat Networks Adonis |
| 23 | Blue Coat SG |

Arbor Networks Pravail
- Arbor Networks Pravail DSM integration process ... 58
- Configuring your Arbor Networks Pravail system for communication with QRadar ... 58
- Configuring an Arbor Networks Pravail log source in QRadar 59

Avaya VPN Gateway
- Avaya VPN Gateway DSM integration process .. 69
- Configuring your Avaya VPN Gateway system for communication with QRadar 70
- Configuring an Avaya VPN Gateway log source in QRadar 70

BalaBit IT Security
- Configuring BalaBit IT Security for Microsoft Windows Events 73
- Configuring BalaBit IT Security for Microsoft ISA or TMG Events 77

Barracuda
- Barracuda Spam & Virus Firewall ... 83
- Barracuda Web Application Firewall .. 85
- Barracuda Web Filter ... 85

Blue Coat SG
- Creating a custom event format ... 94
- Retrieving Blue Coat events ... 95
Creating additional custom format key-value pairs .. 101

24 BRIDGEWATER

25 BROCADE FABRIC OS

26 CA TECHNOLOGIES
CA ACF2 ... 107
CA SiteMinder ... 121
CA Top Secret ... 123

27 CHECK POINT
Check Point FireWall-1 137
Check Point Provider-1 150

28 CILASOFT QJRN/400

29 CISCO
Cisco ACE Firewall 159
Cisco Aironet .. 161
Cisco ACS .. 163
Cisco ASA .. 167
Cisco CallManager 172
Cisco CatOS for Catalyst Switches 173
Cisco CSA .. 175
Cisco FWSM .. 177
Cisco IDS/IPS .. 178
Cisco NAC .. 180
Cisco Nexus ... 182
Cisco IOS .. 183
Cisco Pix .. 185
Cisco VPN 3000 Concentrator 187
Cisco Wireless Services Module 188
Cisco Wireless LAN Controllers 191
Cisco Identity Services Engine 196

30 CITRIX
Citrix NetScaler ... 201
Citrix Access Gateway 203
<table>
<thead>
<tr>
<th>Page</th>
<th>Vendor and Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>CLOUDPASSAGE HALO</td>
</tr>
<tr>
<td>32</td>
<td>CORRELOG AGENT FOR IBM zOS</td>
</tr>
<tr>
<td>33</td>
<td>CRYPTOCARD CRYPTO-SHIELD</td>
</tr>
<tr>
<td>34</td>
<td>CYBER-ARK VAULT</td>
</tr>
<tr>
<td>35</td>
<td>CYBERGUARD FIREWALL/VPN APPLIANCE</td>
</tr>
<tr>
<td>36</td>
<td>DAMBALLA FAILSAFE</td>
</tr>
<tr>
<td>37</td>
<td>DG TECHNOLOGY MEAS</td>
</tr>
<tr>
<td>38</td>
<td>DIGITAL CHINA NETWORKS (DCN)</td>
</tr>
<tr>
<td>39</td>
<td>ENTERASYS</td>
</tr>
<tr>
<td></td>
<td>Enterasys Dragon</td>
</tr>
<tr>
<td></td>
<td>Enterasys HiGuard Wireless IPS</td>
</tr>
<tr>
<td></td>
<td>Enterasys HiPath Wireless Controller</td>
</tr>
<tr>
<td></td>
<td>Enterasys Stackable and Standalone Switches</td>
</tr>
<tr>
<td></td>
<td>Enterasys XSR Security Router</td>
</tr>
<tr>
<td></td>
<td>Enterasys Matrix Router</td>
</tr>
<tr>
<td></td>
<td>Enterasys NetSight Automatic Security Manager</td>
</tr>
<tr>
<td></td>
<td>Enterasys Matrix K/N/S Series Switch</td>
</tr>
<tr>
<td></td>
<td>Enterasys NAC</td>
</tr>
<tr>
<td></td>
<td>Enterasys 800-Series Switch</td>
</tr>
<tr>
<td>40</td>
<td>EXTREME NETWORKS EXTREMEWARE</td>
</tr>
<tr>
<td>41</td>
<td>F5 NETWORKS</td>
</tr>
<tr>
<td></td>
<td>F5 Networks BIG-IP AFM</td>
</tr>
<tr>
<td></td>
<td>F5 Networks BIG-IP APM</td>
</tr>
<tr>
<td></td>
<td>F5 Networks BIG-IP ASM</td>
</tr>
<tr>
<td></td>
<td>F5 Networks BIG-IP LTM</td>
</tr>
<tr>
<td></td>
<td>F5 Networks FirePass</td>
</tr>
<tr>
<td>Page</td>
<td>Software/Server/Device</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
</tr>
<tr>
<td>42</td>
<td>FAIR WARNING</td>
</tr>
<tr>
<td>43</td>
<td>FIDELIS XPS</td>
</tr>
<tr>
<td>44</td>
<td>FIREEye</td>
</tr>
<tr>
<td>45</td>
<td>FOREScout CounterACT</td>
</tr>
<tr>
<td>46</td>
<td>FORTINET FORTiGATE</td>
</tr>
<tr>
<td></td>
<td>Fortinet FortiGate DSM integration process</td>
</tr>
<tr>
<td></td>
<td>Configuring a Fortinet FortiGate log source</td>
</tr>
<tr>
<td>47</td>
<td>FOUNDRY FASTiRON</td>
</tr>
<tr>
<td>48</td>
<td>GENERIC FIREWALL</td>
</tr>
<tr>
<td>49</td>
<td>GENERIC AUTHORIZATION SERVER</td>
</tr>
<tr>
<td>50</td>
<td>GREAT BAY BEACON</td>
</tr>
<tr>
<td>51</td>
<td>HBGary ACTIVE DEFENSE</td>
</tr>
<tr>
<td>52</td>
<td>HONEYCOMB LEXICON FILE INTEGRITY MONITOR (FIM)</td>
</tr>
<tr>
<td>53</td>
<td>HP</td>
</tr>
<tr>
<td></td>
<td>HP ProCurve</td>
</tr>
<tr>
<td></td>
<td>HP Tandem</td>
</tr>
<tr>
<td></td>
<td>Hewlett Packard UNIX (HP-UX)</td>
</tr>
<tr>
<td>54</td>
<td>HUAWEI</td>
</tr>
<tr>
<td></td>
<td>Huawei AR Series Router</td>
</tr>
<tr>
<td></td>
<td>Huawei S Series Switch</td>
</tr>
<tr>
<td>55</td>
<td>IBM</td>
</tr>
<tr>
<td></td>
<td>IBM CICS</td>
</tr>
<tr>
<td></td>
<td>IBM Lotus Domino</td>
</tr>
<tr>
<td></td>
<td>IBM Proventia Management SiteProtector</td>
</tr>
<tr>
<td></td>
<td>IBM ISS Proventia</td>
</tr>
<tr>
<td></td>
<td>IBM RACF</td>
</tr>
<tr>
<td></td>
<td>IBM DB2</td>
</tr>
<tr>
<td>Page</td>
<td>Section</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>61</td>
<td>KASPERSKY SECURITY CENTER</td>
</tr>
<tr>
<td>62</td>
<td>LASTLINE</td>
</tr>
<tr>
<td>63</td>
<td>LIEBERMAN RANDOM PASSWORD MANAGER</td>
</tr>
<tr>
<td>64</td>
<td>LINUX</td>
</tr>
<tr>
<td></td>
<td>Linux DHCP .. 423</td>
</tr>
<tr>
<td></td>
<td>Linux Iptables ... 424</td>
</tr>
<tr>
<td></td>
<td>Linux OS .. 427</td>
</tr>
<tr>
<td>65</td>
<td>McAfee</td>
</tr>
<tr>
<td></td>
<td>McAfee Intrushield .. 431</td>
</tr>
<tr>
<td></td>
<td>McAfee Application / Change Control 437</td>
</tr>
<tr>
<td></td>
<td>McAfee Web Gateway 439</td>
</tr>
<tr>
<td>66</td>
<td>METAINFO METAIP</td>
</tr>
<tr>
<td>67</td>
<td>MICROSOFT</td>
</tr>
<tr>
<td></td>
<td>Microsoft Exchange Server 449</td>
</tr>
<tr>
<td></td>
<td>Microsoft IAS Server 456</td>
</tr>
<tr>
<td></td>
<td>Microsoft DHCP Server 456</td>
</tr>
<tr>
<td></td>
<td>Microsoft IIS Server 457</td>
</tr>
<tr>
<td></td>
<td>Microsoft ISA .. 463</td>
</tr>
<tr>
<td></td>
<td>Microsoft Hyper-V ... 463</td>
</tr>
<tr>
<td></td>
<td>Microsoft SharePoint 464</td>
</tr>
<tr>
<td></td>
<td>Microsoft Operations Manager 472</td>
</tr>
<tr>
<td></td>
<td>Microsoft System Center Operations Manager 475</td>
</tr>
<tr>
<td></td>
<td>Microsoft Endpoint Protection 478</td>
</tr>
<tr>
<td>68</td>
<td>NETAPP DATA ONTAP</td>
</tr>
<tr>
<td>69</td>
<td>NAME VALUE PAIR</td>
</tr>
<tr>
<td></td>
<td>NVP Log Format ... 487</td>
</tr>
<tr>
<td></td>
<td>Examples .. 489</td>
</tr>
<tr>
<td>70</td>
<td>NIKSUN</td>
</tr>
<tr>
<td>71</td>
<td>NOKIA FIREWALL</td>
</tr>
<tr>
<td></td>
<td>Integrating with a Nokia Firewall using syslog 493</td>
</tr>
<tr>
<td></td>
<td>Integrating with a Nokia Firewall using OPSEC 496</td>
</tr>
</tbody>
</table>
Nortel Networks

- Nortel Multiprotocol Router .. 501
- Nortel Application Switch ... 504
- Nortel Contivity .. 505
- Nortel Ethernet Routing Switch 2500/4500/5500 505
- Nortel Ethernet Routing Switch 8300/8600 506
- Nortel Secure Router ... 508
- Nortel Secure Network Access Switch ... 509
- Nortel Switched Firewall 5100 .. 510
- Nortel Switched Firewall 6000 ... 512
- Nortel Threat Protection System ... 514
- Nortel VPN Gateway ... 515

Novell eDirectory

ObserveIT

OpenBSD

Open LDAP

Open Source Snort

OpenStack

Oracle

- Oracle Audit Records .. 539
- Oracle DB Listener .. 542
- Oracle Audit Vault .. 547
- Oracle OS Audit ... 548
- Oracle BEA WebLogic ... 550
- Oracle Acme Packet Session Border Controller 555
- Oracle Fine Grained Auditing ... 559
81 OSSEC
82 PALO ALTO NETWORKS
83 PIREAN ACCESS: ONE
84 POSTFIX MAIL TRANSFER AGENT
85 PROFTPD
86 PROOFPOINT ENTERPRISE PROTECTION AND ENTERPRISE PRIVACY
87 RADWARE DEFENSEPro
88 RAZ-LEE iSECURITY
89 REDBACK ASE
90 RIVERBED STELCENTRAL NETPROFILER (AUDIT AND ALERT)
91 RSA AUTHENTICATION MANAGER
 Configuring syslog for RSA .. 591
 Configuring the log file protocol for RSA 593
92 SAFENET/DATASECURE
93 SALESFORCE SECURITY AUDITING AND MONITORING
94 SAMHAIN LABS
 Configuring syslog to collect Samhain events 599
 Configuring JDBC to collect Samhain events 600
<table>
<thead>
<tr>
<th></th>
<th>Product</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>IMPERVA SECURESPHERE</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>SENTRYGO HEDGEHOG</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>SECURE COMPUTING SIDEWINDER</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>SOLARWINDS ORION</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>SONICWALL</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>SOPHOS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sophos Enterprise Console</td>
<td>617</td>
</tr>
<tr>
<td></td>
<td>Sophos PureMessage</td>
<td>623</td>
</tr>
<tr>
<td></td>
<td>Sophos Astaro Security Gateway</td>
<td>631</td>
</tr>
<tr>
<td></td>
<td>Sophos Web Security Appliance</td>
<td>632</td>
</tr>
<tr>
<td>101</td>
<td>SOURCEFIRE</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>SSH CRYPTOAUDITOR</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>SPLUNK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collect Windows events forwarded from Splunk appliances</td>
<td>637</td>
</tr>
<tr>
<td>104</td>
<td>SQUID WEB PROXY</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>STARENT NETWORKS</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>STEALTHBITS StealthINTERCEPT</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>STONESOFT MANAGEMENT CENTER</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>SUN SOLARIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sun Solaris</td>
<td>657</td>
</tr>
<tr>
<td></td>
<td>Sun Solaris DHCP</td>
<td>658</td>
</tr>
<tr>
<td></td>
<td>Sun Solaris Basic Security Mode (BSM)</td>
<td>660</td>
</tr>
</tbody>
</table>
109 SYBASE ASE

110 SYMANTEC

Symantec Endpoint Protection .. 669
Symantec SGS ... 670
Symantec System Center .. 670
Symantec Data Loss Prevention (DLP) 674
Symantec PGP Universal Server .. 678

111 MOTOROLA SYMBOL AP

112 SYMANTEC CRITICAL SYSTEM PROTECTION

113 SYMARK

114 THREATGRID MALWARE THREAT INTELLIGENCE PLATFORM

115 TIPPING POINT

Tipping Point Intrusion Prevention System 695
Tipping Point X505/X506 Device ... 698

116 TOP LAYER IPS

117 TREND MICRO

Trend Micro InterScan VirusWall .. 701
Trend Micro Control Manager ... 702
Trend Micro Office Scan .. 704
Trend Micro Deep Discovery .. 708
<table>
<thead>
<tr>
<th>Page</th>
<th>Vendor</th>
<th>Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>118</td>
<td>TRIPWIRE</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>TROPOS CONTROL</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>TRUSTEER APEX LOCAL EVENT AGGREGATOR</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>UNIVERSAL CEF</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>UNIVERSAL DSM</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>UNIVERSAL LEEF</td>
<td>Configuring a Universal LEEF log source 719</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Forwarding events to QRadar .. 723</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creating a Universal LEEF event map .. 723</td>
</tr>
<tr>
<td>124</td>
<td>VENUSTECH VENUSENSE</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>VERDASYS DIGITAL GUARDIAN</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>VERICEPT CONTENT 360 DSM</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>VMWARE</td>
<td>VMware ESX and ESXi ... 737</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VMware vCenter. .. 742</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VMware vCloud Director. .. 743</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VMware vShield .. 746</td>
</tr>
<tr>
<td>128</td>
<td>VORMETRIC DATA SECURITY</td>
<td>Vormetric Data Security DSM integration process 749</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configuring your Vormetric Data Security systems for communication with QRadar 750</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configuring a Vormetric Data Security log source in QRadar 752</td>
</tr>
<tr>
<td>129</td>
<td>WATCHGUARD FIREWARE OS</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>WEBSENSE V-SERIES</td>
<td>Websense TRITON .. 755</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Websense V-Series Data Security Suite ... 757</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Websense V-Series Content Gateway .. 759</td>
</tr>
</tbody>
</table>
ZSCALER NANOLOG STREAMING SERVICE

A SUPPORTED THIRD-PARTY DEVICES

B NOTICES AND TRADEMARKS
Notices ... 769
Trademarks ... 771

INDEX
The DSM Configuration Guide for IBM Security QRadar provides you with information for configuring Device Support Modules (DSMs).

DSMs allow QRadar to integrate events from security appliances, software, and devices in your network that forward events to IBM Security QRadar or IBM Security QRadar Log Manager. All references to QRadar or IBM Security QRadar is intended to refer both the QRadar and QRadar Log Manager product.

For instructions about how to integrate DSMs that are released or updated after IBM Security QRadar V7.2.2, use the IBM Security QRadar Integration Documentation Addendum on IBM Fix Central (http://www-933.ibm.com/support/fixcentral/).

Intended audience

This guide is intended for the system administrator responsible for setting up event collection for QRadar in your network.

This guide assumes that you have administrative access and a knowledge of your corporate network and networking technologies.

Conventions

The following conventions are used throughout this guide:

- Indicates that the procedure contains a single instruction.

Note: Indicates that the information provided is supplemental to the associated feature or instruction.

CAUTION: Indicates that the information is critical. A caution alerts you to potential loss of data or potential damage to an application, system, device, or network.

WARNING: Indicates that the information is critical. A warning alerts you to potential dangers, threats, or potential personal injury. Read any and all warnings carefully before proceeding.
Technical documentation
For information on how to access more technical documentation, technical notes, and release notes, see the Accessing IBM Security QRadar Documentation Technical Note. (http://www.ibm.com/support/docview.wss?rs=0&uid=swg21614644)

Contacting customer support
For information on contacting customer support, see the Support and Download Technical Note. (http://www.ibm.com/support/docview.wss?rs=0&uid=swg21612861)

Statement of good security practices
IT system security involves protecting systems and information through prevention, detection and response to improper access from within and outside your enterprise. Improper access can result in information being altered, destroyed, misappropriated or misused or can result in damage to or misuse of your systems, including for use in attacks on others. No IT system or product should be considered completely secure and no single product, service or security measure can be completely effective in preventing improper use or access. IBM systems, products and services are designed to be part of a comprehensive security approach, which will necessarily involve additional operational procedures, and may require other systems, products or services to be most effective. IBM DOES NOT WARRANT THAT ANY SYSTEMS, PRODUCTS OR SERVICES ARE IMMUNE FROM, OR WILL MAKE YOUR ENTERPRISE IMMUNE FROM, THE MALICIOUS OR ILLEGAL CONDUCT OF ANY PARTY.
The DSM Configuration guide is intended to assist with device configurations for systems, software, or appliances that provide events to QRadar.

Device Support Modules (DSMs) parse event information for QRadar products to log and correlate events received from external sources such as security equipment (for example, firewalls), and network equipment (for example, switches and routers).

Events forwarded from your log sources are displayed in the Log Activity tab. All events are correlated and security and policy offenses are created based on correlation rules. These offenses are displayed on the Offenses tab. For more information, see the IBM Security QRadar Users Guide.

Note: Information found in this documentation about configuring Device Support Modules (DSMs) is based on the latest RPM files located on the IBM website at http://www.ibm.com/support.

To configure QRadar to receive events from devices, you must:

1. Configure the device to send events to QRadar.
2. Configure log sources for QRadar to receive events from specific devices. For more information, see the IBM Security QRadar Log Sources User Guide.
The following list contains the names of supported DSMs that are documented in the IBM Security QRadar Integration Documentation Addendum (http://public.dhe.ibm.com/software/security/products/qradar/documents/iTeam_addendum/b_dsm_guide.pdf).

- 3Com Switch 8800
- AccessData InSight
- AhnLab Policy Center
- Ambrion Trust Wave ipAngel
- ArborNetworksPrevail
- Barracuda Web Application Firewall
- Blue Coat SG
- Arbor Networks Pravail
- APC UPS
- Barracuda Web Application Firewall
- Bit9 Security Platform
- Cisco Ironport
- Correllog Agent for IBM z/OS
- CloudPassage Halo
- DG Technology MEAS
- FireEye
- IBM AS/400 iSeries
- IBM AIX Server
- IBM AIX Audit
- IBM Federated Directory Server
- IBM Fiberlink MaaS360
- IBM Privileged Session Recorder
- IBM Security Network IPS
- IBM SmartCloud Orchestrator
- IBM Tivoli Endpoint Manager
- IBM WebShere DataPower
- Kaspersky Security Center
- Kisco Information System SafeNet/i
- Lastline Enterprise
- McAfee ePolicy Orchestrator
- LOGbinder EX event collection from MicrosoftExchange Server
- LOGbinder SP event collection from MicrosoftSharePoint
- LOGbinder SQL event collection from Microsoft SQL Server
- Microsoft Exchange Server
- Microsoft SQL Server
- OpenStack
- Palo Alto Networks
- Riverbed SteelCentral NetProfiler (Cascade Profiler) Alert
- SafeNet DataSecure
- Salesforce Security Auditing
- Salesforce Security Monitoring
- SSH CryptoAuditor
- Symantec Critical System Protection
- Sourcefire Defense Center (DC)
- Sourcefire Intrusion Sensor
- StealthINTERCEPT Alerts
- StealthINTERCEPT Analytics
- StealthINTERCEPT
- Sun Solaris Sendmail
- Trend Micro WatchGuard Fireware OS
- Trend Micro Deep Discovery Analyzer
- Universal CEF
- Watchguard Fireware OS
3 INSTALLING DSMs

You can download and install weekly automatic software updates for DSMs, protocols, and scanner modules.

After Device Support Modules (DSMs) are installed the QRadar Console provides any rpm file updates to managed hosts after the configuration changes are deployed. If you are using high availability (HA), DSMs, protocols, and scanners are installed during replication between the primary and secondary host. During this installation process, the secondary displays the status Upgrading. For more information, see Managing High Availability in the IBM Security QRadar SIEM Administration Guide.

CAUTION: Uninstalling a Device Support Module (DSM) is not supported in QRadar. If you need technical assistance, contact Customer Support. For more information, see Contacting customer support.

Scheduling Automatic Updates

You can schedule when automatic updates are downloaded and installed on your QRadar Console.

QRadar performs automatic updates on a recurring schedule according to the settings on the Update Configuration page; however, if you want to schedule an update or a set of updates to run at a specific time, you can schedule an update using the Schedule the Updates window. Scheduling your own automatic updates is useful when you want to schedule a large update to run during off-peak hours, thus reducing any performance impacts on your system.

If no updates are displayed in the Updates window, either your system has not been in operation long enough to retrieve the weekly updates or no updates have been issued. If this occurs, you can manually check for new updates.

Procedure

1. **Step 1** Click the **Admin** tab.
2. **Step 2** On the navigation menu, click **System Configuration**.
3. **Step 3** Click the **Auto Update** icon.
4. **Step 4** Optional. If you want to schedule specific updates, select the updates you want to schedule.
Step 5 From the **Schedule** list, select the type of update you want to schedule. Options include:
- All Updates
- Selected Updates
- DSM, Scanner, Protocol Updates
- Minor Updates

Note: Protocol updates installed automatically require you to restart Tomcat. For more information on manually restarting Tomcat, see the *IBM Security QRadar Log Sources User Guide*.

Step 6 Using the calendar, select the start date and time of when you want to start your scheduled updates.

Step 7 Click **OK**.

The selected updates are now scheduled.

Viewing updates You can view or install any pending software updates for QRadar through the **Admin** tab.

Procedure

Step 1 Click the **Admin** tab.

Step 2 On the navigation menu, click **System Configuration**.

Step 3 Click the **Auto Update** icon.

The Updates window is displayed. The window automatically displays the Check for Updates page, providing the following information:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updates were installed</td>
<td>Specifies the date and time the last update was installed.</td>
</tr>
<tr>
<td>Next Update install is scheduled</td>
<td>Specifies the date and time the next update is scheduled to be installed. If there is no date and time indicated, the update is not scheduled to run.</td>
</tr>
<tr>
<td>Name</td>
<td>Specifies the name of the update.</td>
</tr>
</tbody>
</table>
| Type | Specifies the type of update. Types include:
 - DSM, Scanner, Protocol Updates
 - Minor Updates |
The Check for Updates page toolbar provides the following functions:

Table 3-2 Auto updates toolbar

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hide</td>
<td>Select one or more updates, and then click Hide to remove the selected updates from the Check for Updates page. You can view and restore the hidden updates on the Restore Hidden Updates page. For more information, see the IBM Security QRadar SIEM Administrator Guide.</td>
</tr>
<tr>
<td>Install</td>
<td>From this list, you can manually install updates. When you manually install updates, the installation process starts within a minute.</td>
</tr>
<tr>
<td>Schedule</td>
<td>From this list, you can configure a specific date and time to manually install selected updates on your Console. This is useful when you want to schedule the update installation during off-peak hours.</td>
</tr>
<tr>
<td>Unschedule</td>
<td>From this list, you can remove preconfigured schedules for manually installing updates on your Console.</td>
</tr>
<tr>
<td>Search By Name</td>
<td>In this text box, you can type a keyword and then press Enter to locate a specific update by name.</td>
</tr>
<tr>
<td>Next Refresh</td>
<td>This counter displays the amount of time until the next automatic refresh. The list of updates on the Check for Updates page automatically refreshes every 60 seconds. The timer is automatically paused when you select one or more updates.</td>
</tr>
<tr>
<td>Pause</td>
<td>Click this icon to pause the automatic refresh process. To resume automatic refresh, click the Play icon.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Click this icon to manually refresh the list of updates.</td>
</tr>
</tbody>
</table>

Step 4 To view details on an update, select the update.

The description and any error messages are displayed in the right pane of the window.
Manually installing a DSM

You can use the IBM support website to download and manually install the latest RPM files for QRadar.

http://www.ibm.com/support

Most users do not need to download updated DSMs as auto updates installs the latest rpm files on a weekly basis. If your system is restricted from the Internet, you might need to install rpm updates manually. The DSMs provided on the IBM website, or through auto updates contain improved event parsing for network security products and enhancements for event categorization in the QRadar Identifier Map (QID map).

CAUTION: Uninstalling a Device Support Module (DSM) is not supported in QRadar. If you need technical assistance, contact Customer Support. For more information, see Contacting customer support.

Installing a single DSM

The IBM support website contains individual DSMs that you can download and install using the command-line.

Procedure

Step 1 Download the DSM file to your system hosting QRadar.

Step 2 Using SSH, log in to QRadar as the root user.
 Username: root
 Password: <password>

Step 3 Navigate to the directory that includes the downloaded file.

Step 4 Type the following command:
 rpm -Uvh <filename>
 Where <filename> is the name of the downloaded file. For example:
 rpm -Uvh DSM-CheckPointFirewall-7.0-209433.noarch.rpm

Step 5 Log in to QRadar.
 https://<IP Address>
 Where <IP Address> is the IP address of the QRadar Console or Event Collector.

Step 6 On the Admin tab, click Deploy Changes.
 The installation is complete.
Installing a DSM bundle

The IBM support website contains a DSM bundle which is updated daily with the latest DSM versions that you can install.

Procedure

Step 1 Download the DSM bundle to your system hosting QRadar.

Step 2 Using SSH, log in to QRadar as the root user.
 Username: root
 Password: <password>

Step 3 Navigate to the directory that includes the downloaded file.

Step 4 Type the following command to extract the DSM bundle:
 tar -zxvf QRadar_bundled-DSM-<version>.tar.gz
 Where <version> is your version of QRadar.

Step 5 Type the following command:
 for FILE in *Common*.rpm DSM-*.rpm; do rpm -Uvh "$FILE"; done
 The installation of the DSM bundle can take several minutes to complete.

Step 6 Log in to QRadar.
 https://<IP Address>
 Where <IP Address> is the IP address of QRadar.

Step 7 On the Admin tab, click Deploy Changes.
 The installation is complete.
The 3COM 8800 Series Switch DSM for IBM Security QRadar accepts events using syslog.

Supported event types
QRadar records all relevant status and network condition events forwarded from your 3Com 8800 Series Switch using syslog.

Configure your 3COM 8800 Series Switch
You can configure your 3COM 8800 Series Switch to forward syslog events to QRadar.

Procedure

Step 1 Log in to the 3Com 8800 Series Switch user interface.

Step 2 Enable the information center.

```
info-center enable
```

Step 3 Configure the host with the IP address of your QRadar system as the loghost, the severity level threshold value as informational, and the output language to English.

```
info-center loghost <ip_address> facility <severity> language english
```

Where:
- `<ip_address>` is the IP address of your QRadar.
- `<severity>` is the facility severity.

Step 4 Configure the ARP and IP information modules to log.

```
info-center source arp channel loghost log level informational
info-center source ip channel loghost log level informational
```

The configuration is complete. The log source is added to QRadar as 3COM 8800 Series Switch events are automatically discovered. Events forwarded to QRadar by 3COM 880 Series Switches are displayed on the **Log Activity** tab.

IBM Security QRadar DSM Configuration Guide
Configure a log source QRadar automatically discovers and creates a log source for syslog events from 3COM 8800 Series Switches. These configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 Click **Add**.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **3Com 8800 Series Switch**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

The syslog protocol configuration is displayed.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 4-1 Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.
The Ambiron TrustWave ipAngel DSM for IBM Security QRadar accepts events using syslog.

Supported event types
QRadar records all Snort-based events from the ipAngel console.

Before you begin
Before you configure QRadar to integrate with ipAngel, you must forward your cache and access logs to your QRadar. The events in your cache and access logs that are forwarded from Ambiron TrustWave ipAngel are not automatically discovered. For information on forwarding device logs to QRadar, see your vendor documentation.

Configure a log source
To integrate Ambiron TrustWave ipAngel events with QRadar, you must manually configure a log source.

Procedure

1. Log in to QRadar.
2. Click the **Admin** tab.
3. On the navigation menu, click **Data Sources**.
4. Click the **Log Sources** icon.
5. Click **Add**.
6. In the **Log Source Name** field, type a name for your log source.
7. In the **Log Source Description** field, type a description for the log source.
8. From the **Log Source Type** list, select **Ambiron TrustWave ipAngel Intrusion Prevention System (IPS)**.
9. Using the **Protocol Configuration** list, select **Syslog**.
10. Configure the following values:
Table 5-1 Syslog Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Ambiron TrustWave ipAngel appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The log source is added to QRadar. Events forwarded to QRadar by Ambiron TrustWave ipAngel are displayed on the **Log Activity** tab.
AHNLAB POLICY CENTER

For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
The Apache HTTP Server DSM for IBM Security QRadar accepts Apache events using syslog or syslog-ng.

QRadar records all relevant HTTP status events. The procedure in this section applies to Apache DSMs operating on UNIX/Linux platforms only.

CAUTION: Do not run both syslog and syslog-ng at the same time.

Select one of the following configuration methods:
- Configuring Apache HTTP Server with syslog
- Configuring Apache HTTP Server with syslog-ng

Configuring Apache HTTP Server with syslog

You can configure your Apache HTTP Server to forward events with the syslog protocol.

Procedure

Step 1 Log in to the server hosting Apache, as the root user.

Step 2 Edit the Apache configuration file httpd.conf.

Step 3 Add the following information in the Apache configuration file to specify the custom log format:

```
LogFormat "%h %A %l %u %t "%r" %>s %p %b" <log format name>
```

Where `<log format name>` is a variable name you provide to define the log format.

Step 4 Add the following information in the Apache configuration file to specify a custom path for the syslog events:

```
CustomLog "|/usr/bin/logger -t httpd -p <facility>.<priority>" <log format name>
```

Where:

- `<facility>` is a syslog facility, for example, local0.
- `<priority>` is a syslog priority, for example, info or notice.
- `<log format name>` is a variable name you provide to define the custom log format. The log format name must match the log format defined in Step 4.
For example,

```bash
CustomLog "|/usr/bin/logger -t httpd -p local1.info"
MyApacheLogs
```

Step 5 Type the following command to disabled hostname lookup:

```bash
HostnameLookups off
```

Step 6 Save the Apache configuration file.

Step 7 Edit the syslog configuration file.

```bash
/etc/syslog.conf
```

Step 8 Add the following information to your syslog configuration file:

```bash
<facility>.<priority> <TAB><TAB>@<host>
```

Where:

- `<facility>` is the syslog facility, for example, local0. This value must match the value you typed in **Step 4**.
- `<priority>` is the syslog priority, for example, info or notice. This value must match the value you typed in **Step 4**.
- `<TAB>` indicates you must press the Tab key.
- `<host>` is the IP address of the QRadar Console or Event Collector.

Step 9 Save the syslog configuration file.

Step 10 Type the following command to restart the syslog service:

```bash
/etc/init.d/syslog restart
```

Step 11 Restart Apache to complete the syslog configuration.

The configuration is complete. The log source is added to QRadar as syslog events from Apache HTTP Servers are automatically discovered. Events forwarded to QRadar by Apache HTTP Servers are displayed on the Log Activity tab of QRadar.

Configuring a Log Source in QRadar

You can configure a log source manually for Apache HTTP Server events in QRadar.

QRadar automatically discovers and creates a log source for syslog events from Apache HTTP Server. However, you can manually create a log source for QRadar to receive syslog events. These configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Apache HTTP Server**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 7-1 Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete. For more information on Apache, see http://www.apache.org/.

Configuring Apache HTTP Server with syslog-ng

You can configure your Apache HTTP Server to forward events with the syslog-ng protocol.

Procedure

Step 1 Log in to the server hosting Apache, as the root user.

Step 2 Edit the Apache configuration file.

```
/etc/httpd/conf/httpd.conf
```

Step 3 Add the following information to the Apache configuration file to specify the LogLevel:

```
LogLevel info
```

The LogLevel might already be configured to the info level depending on your Apache installation.

Step 4 Add the following to the Apache configuration file to specify the custom log format:

```
LogFormat "%h %A %l %u %t "%r" %>s %p %b" <log format name>
```

Where `<log format name>` is a variable name you provide to define the custom log format.

Step 5 Add the following information to the Apache configuration file to specify a custom path for the syslog events:

```
CustomLog "|/usr/bin/logger -t 'httpd' -u /var/log/httpd/apache_log.socket" <log format name>
```

The log format name must match the log format defined in **Step 4**.

Step 6 Save the Apache configuration file.

Step 7 Edit the syslog-ng configuration file.

```
/etc/syslog-ng/syslog-ng.conf
```
Step 8 Add the following information to specify the destination in the syslog-ng configuration file:

```plaintext
source s_apache {
    unix-stream("/var/log/httpd/apache_log.socket"
    max-connections(512)
    keep-alive(yes));
};
destination auth_destination { <udp|tcp>("<IP address>"
    port(514)); }
log{
    source(s_apache);
    destination(auth_destination);
};
```

Where:
- `<IP address>` is the IP address of the QRadar Console or Event Collector.
- `<udp|tcp>` is the protocol you select to forward the syslog event.

Step 9 Save the syslog-ng configuration file.

Step 10 Type the following command to restart syslog-ng:

```
service syslog-ng restart
```

Step 11 You are now ready to configure the log source in QRadar.

The configuration is complete. The log source is added to QRadar as syslog events from Apache HTTP Servers are automatically discovered. Events forwarded to QRadar by Apache HTTP Servers are displayed on the Log Activity tab of QRadar.

Configuring a log source

You can configure a log source manually for Apache HTTP Server events in QRadar.

QRadar automatically discovers and creates a log source for syslog-ng events from Apache HTTP Server. However, you can manually create a log source for QRadar to receive syslog events. These configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select Apache HTTP Server.

Step 9 Using the Protocol Configuration list, select Syslog.

Step 10 Configure the following values:

Table 7-2 Syslog Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Apache installations.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete. For more information on Apache, see http://www.apache.org/.
The APC UPS DSM for IBM Security QRadar accepts syslog events from the APC Smart-UPS family of products.

Note: Events from the RC-Series Smart-UPS are not supported.

Supported event types
QRadar supports the following APC Smart-UPS syslog events:

- UPS events
- Battery events
- Bypass events
- Communication events
- Input power events
- Low battery condition events
- SmartBoost events
- SmartTrim events

Before you begin
To integrate Smart-UPS events with QRadar, you must manually create a log source to receive syslog events.

Before you can receive events in QRadar, you must configure a log source, then configure your APC UPS to forward syslog events. Syslog events forwarded from APC Smart-UPS series devices are not automatically discovered. QRadar can receive syslog events on port 514 for both TCP and UDP.

Configuring a Log Source in QRadar
QRadar does not automatically discover or create log sources for syslog events from APC Smart-UPS series appliances.

Procedure

1. Log in to QRadar.
2. Click the **Admin** tab.
3. On the navigation menu, click **Data Sources**.
4. Click the **Log Sources** icon.
5. Click **Add**.
Step 6 In the **Log Source Name** field, type a name for your log source.
Step 7 In the **Log Source Description** field, type a description for the log source.
Step 8 From the **Log Source Type** list, select **APC UPS**.
Step 9 Using the **Protocol Configuration** list, select **Syslog**.
Step 10 Configure the following values:

Table 8-1 Syslog Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your APC Smart-UPS series appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.
Step 12 On the **Admin** tab, click **Deploy Changes**.

The log source is added to QRadar. You are now ready to configure your APC Smart-UPS to forward syslog events to QRadar.

Configuring your APC UPS to forward syslog events

You can configure syslog event forwarding on your APC UPS.

Procedure

Step 1 Log in to the APC Smart-UPS web interface.
Step 2 In the navigation menu, select **Network > Syslog**.
Step 3 From the **Syslog** list, select **Enable**.
Step 4 From the **Facility** list, select a facility level for your syslog messages.
Step 5 In the **Syslog Server** field, type the IP address of your QRadar Console or Event Collector.
Step 6 From the **Severity** list, select **Informational**.
Step 7 Click **Apply**.

The syslog configuration is complete. Events forwarded to QRadar by your APC UPS are displayed on the **Log Activity** tab.
The IBM Security QRadar DSM for Amazon AWS CloudTrail can collect audit events from your Amazon AWS CloudTrail S3 bucket.

The following table identifies the specifications for the Amazon AWS CloudTrail DSM:

Table 9-1 Amazon AWS CloudTrail DSM specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Amazon</td>
</tr>
<tr>
<td>DSM</td>
<td>Amazon AWS CloudTrail</td>
</tr>
<tr>
<td>Supported versions</td>
<td>1.0</td>
</tr>
<tr>
<td>Protocol</td>
<td>Log File</td>
</tr>
<tr>
<td>QRadar recorded events</td>
<td>All relevant events</td>
</tr>
<tr>
<td>Automatically discovered</td>
<td>No</td>
</tr>
<tr>
<td>Includes identity</td>
<td>No</td>
</tr>
</tbody>
</table>
AWS CloudTrail DSM integration process

To integrate Amazon AWS CloudTrail with QRadar, use the following procedure:

1. Obtain and install a certificate to enable communication between your Amazon AWS CloudTrail S3 bucket and QRadar.
2. Install the most recent version of the Log File Protocol RPM on your QRadar Console. You can install a protocol by using the procedure to manually install a DSM.
3. Install the Amazon AWS CloudTrail DSM on your QRadar Console.
4. Configure the Amazon AWS CloudTrail log source in QRadar.

Related tasks
- Manually installing a DSM
- Enabling communication between QRadar and AWS CloudTrail
- Configuring an Amazon AWS CloudTrail log source in QRadar

Enabling communication between QRadar and AWS CloudTrail

A certificate is required for the HTTP connection between QRadar and Amazon AWS CloudTrail.

Procedure

Step 1. Access your Amazon AWS CloudTrail S3 bucket.

Step 2. Export the certificate as a DER-encoded binary certificate to your desktop system. The file extension must be .DER.

Step 3. Copy the certificate to the /opt/qradar/conf/trusted_certificates directory on the QRadar host on which you plan to configure the log source.

Configuring an Amazon AWS CloudTrail log source in QRadar

To collect Amazon AWS CloudTrail events, you must configure a log source in QRadar. When you configure the log source, use the location and keys that are required to access your Amazon AWS CloudTrail S3 bucket.

Before you begin

Ensure that the following components are installed and deployed on your QRadar host:

- PROTOCOL-LogFileProtocol-build_number.noarch.rpm
- DSM-AmazonAWSCloudTrail-build_number.noarch.rpm

Also ensure that audit logging is enabled on your Amazon AWS CloudTrail S3 bucket. For more information, see your vendor documentation.
About this task

The following table provides more information about some of the extended parameters:

Table 9-2 Amazon AWS CloudTrail log source parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bucket Name</td>
<td>The name of the AWS CloudTrail S3 bucket where the log files are stored.</td>
</tr>
<tr>
<td>AWS Access Key</td>
<td>The public access key required to access the AWS CloudTrail S3 bucket.</td>
</tr>
<tr>
<td>AWS Secret Key</td>
<td>The private access key required to access the AWS CloudTrail S3 bucket.</td>
</tr>
<tr>
<td>Remote Directory</td>
<td>The root directory location on the AWS CloudTrail S3 bucket from which the files are retrieved, for example, \user_account_name |</td>
</tr>
</tbody>
</table>
| FTP File Pattern | .*\.
| Processor | GZIP |
| Event Generator | Amazon AWS JSON
| | Applies additional processing to the retrieved event files. |
| Recurrence | Defines how often the Log File Protocol connects to the Amazon cloud API, checks for new files, and retrieves them if they exist. Every access to an AWS S3 bucket incurs a cost to the account that owns the bucket. Therefore, a smaller recurrence value increases the cost. |

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 In the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 From the Log Source Type list, select Amazon AWS CloudTrail.

Step 7 From the Protocol Configuration list, select Log File.

Step 8 From the Service Type field, select AWS.

Step 9 Configure the remaining parameters.

Step 10 Click Save.

Step 11 On the Admin tab, click Deploy Changes.
The Apple Mac OS X DSM for IBM Security QRadar accepts events using syslog.

Supported event types
QRadar records all relevant firewall, web server access, web server error, privilege escalation, and informational events.

Before you begin
To integrate Mac OS X events with QRadar, you must manually create a log source to receive syslog events.

To complete this integration, you must configure a log source, then configure your Mac OS X to forward syslog events. Syslog events forwarded from Mac OS X devices are not automatically discovered. It is recommended that you create a log source, then forward events to QRadar. Syslog events from Mac OS X can be forwarded to QRadar on TCP port 514 or UDP port 514.

Configuring a log source
QRadar does not automatically discover or create log sources for syslog events from Apple Mac OS X.

Procedure

1. Log in to QRadar.
2. Click the Admin tab.
3. On the navigation menu, click Data Sources.
4. Click the Log Sources icon.
5. Click Add.
6. In the Log Source Name field, type a name for your log source.
7. In the Log Source Description field, type a description for the log source.
8. From the Log Source Type list, select Mac OS X.
10. Configure the following values:
Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The log source is added to QRadar. You are now ready to configure your Apple Mac OS X device to forward syslog events to QRadar.

Configuring syslog on your Apple Mac OS X

You can configure syslog on systems running Mac OS X operating systems.

Procedure

1. Using SSH, log in to your Mac OS X device as a root user.
2. Open the `/etc/syslog.conf` file.
3. Add the following line to the top of the file. Make sure all other lines remain intact:

   ```
   *.*           @<IP address>
   ```

 Where `<IP address>` is the IP address of the QRadar.
4. Save and exit the file.
5. Send a hang-up signal to the syslog daemon to make sure all changes are enforced:

   ```
   sudo killall - HUP syslogd
   ```

 The syslog configuration is complete. Events forwarded to QRadar by your Apple Mac OS X are displayed on the **Log Activity** tab. For more information on configuring Mac OS X, see your Mac OS X vendor documentation.

Table 10-1 Mac OS X syslog parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Apple Mac OS X device.</td>
</tr>
</tbody>
</table>
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
You can integrate Application Security DbProtect with QRadar.

Supported event types
The Application Security DbProtect DSM for IBM Security QRadar accepts syslog events from DbProtect devices installed with the Log Enhanced Event Format (LEEF) Service.

Before you begin
To forward syslog events from Application Security DbProtect to QRadar requires the LEEF Relay module.

The LEEF Relay module for DbProtect translates the default events messages to Log Enhanced Event Format (LEEF) messages for QRadar, enabling QRadar to record all relevant DbProtect events. Before you can receive events in QRadar, you must install and configure the LEEF Service for your DbProtect device to forward syslog events. The DbProtect LEEF Relay requires that you install the .NET 4.0 Framework, which is bundled with the LEEF Relay installation.

Installing the DbProtect LEEF Relay Module
The DbProtect LEEF Relay module for DbProtect must be installed on the same server as the DbProtect console. This allows the DbProtect LEEF Relay to work alongside an existing installation using the standard hardware and software prerequisites for a DbProtect console.

Note: Windows 2003 hosts require the Windows Imaging Components (wic_x86.exe). The Windows Imaging Components are located on the Windows Server Installation CD and must be installed before you continue. For more information, see your Windows 2003 Operating System documentation.

Procedure

Step 1
Download the DbProtect LEEF Relay module for DbProtect from the Application Security, Inc. customer portal.

http://www.appsecinc.com

Step 2
Save the setup file to the same host as your DbProtect console.

Step 3
Double click `setup.exe` to start the DbProtect LEEF Relay installation.

The Microsoft .NET Framework 4 Client Profile is displayed.

Step 4
Click `Accept`, if you agree with the Microsoft .NET Framework 4 End User License Agreement.
The Microsoft .NET Framework 4 is installed on your DbProtect console. After the installation is complete, the DbProtect LEEF Relay module installation Wizard is displayed.

Step 5 Click **Next**.

The Installation Folder window is displayed.

Step 6 To select the default installation path, click **Next**.

If you change the default installation directory, make note of the file location as it is required later. The Confirm Installation window is displayed.

Step 7 Click **Next**.

The DbProtect LEEF Relay module is installed.

Step 8 Click **Close**.

You are now ready to configure the DbProtect LEEF Relay module.

Configuring the DbProtect LEEF Relay

After the installation of the DbProtect LEEF Relay is complete, you can configure the service to forward events to QRadar.

Note: The DbProtect LEEF Relay must be stopped before you edit any configuration values.

Procedure

Step 1 Navigate to the DbProtect LEEF Relay installation directory.

C:\Program Files (x86)\AppSecInc\AppSecLEEFConverter

Step 2 Edit the DbProtect LEEF Relay configuration file:

AppSecLEEFConverter.exe.config

Step 3 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SyslogListenerPort</td>
<td>Optional. Type the listen port number the DbProtect LEEF Relay uses to listen for syslog messages from the DbProtect console. By default, the DbProtect LEEF Relay listens on port 514.</td>
</tr>
<tr>
<td>SyslogDestinationHost</td>
<td>Type the IP address of your QRadar Console or Event Collector.</td>
</tr>
<tr>
<td>SyslogDestinationPort</td>
<td>Type 514 as the destination port for LEEF formatted syslog messages forwarded to QRadar.</td>
</tr>
<tr>
<td>LogFileName</td>
<td>Optional. Type a file name for the DbProtect LEEF Relay to write debug and log messages. The LocalSystem user account that runs the DbProtect LEEF Relay service must have write privileges to the file path you specify.</td>
</tr>
</tbody>
</table>

Step 4 Save the configuration changes to the file.
Step 5 On your desktop of the DbProtect console, select **Start > Run**.
 The Run window is displayed.

Step 6 Type the following:
 `services.msc`

Step 7 Click **OK**.
 The Services window is displayed.

Step 8 In the details pane, verify the DbProtect LEEF Relay is started and set to automatic startup.

Step 9 To change a service property, right-click on the service name, and then click **Properties**.

Step 10 Using the **Startup type** list, select **Automatic**.

Step 11 If the DbProtect LEEF Relay is not started, click **Start**.
 You are now ready to configure alerts for your DbProtect console.

Configure DbProtect alerts
You can configure sensors on your DbProtect console to generate alerts.

Procedure

Step 1 Log in to your DbProtect console.

Step 2 Click the **Activity Monitoring** tab.

Step 3 Click the **Sensors** tab.

Step 4 Select a sensor and click **Reconfigure**.
 Any database instances that are configured for your database are displayed.

Step 5 Select any database instances and click **Reconfigure**.

Step 6 Click **Next** until the Sensor Manager Policy window is displayed.

Step 7 Select the **Syslog** check box and click **Next**.

Step 8 The Syslog Configuration window is displayed.

Step 9 In the **Send Alerts to the following Syslog console** field, type the IP address of your DbProtect console.

Step 10 In the **Port** field, type the port number you configured in the SyslogListenerPort field of the DbProtect LEEF Relay.
 By default, 514 is the default Syslog listen port for the DbProtect LEEF Relay. For more information, see **Configuring the DbProtect LEEF Relay**, Step 3.

Step 11 Click **Add**.

Step 12 Click **Next** until you reach the Deploy to Sensor window.

Step 13 Click **Deploy to Sensor**.
 The configuration is complete. Events forwarded to QRadar by your DbProtect console are added as a log source and automatically displayed on the **Log Activity** tab.
Configuring a log source

QRadar automatically discovers and creates a log source for syslog events from Application Security DbProtect. These configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 In the Log Source Name field, type a name for your log source.

Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select Application Security DbProtect.

Step 9 Using the Protocol Configuration list, select Syslog.

The syslog protocol configuration is displayed.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Application Security DbProtect device.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The log source is added to QRadar.
IBM Security QRadar can collect and categorize syslog events from Arbor Networks Peakflow SP appliances that are in your network.

Configuration overview

Arbor Networks Peakflow SP appliances store the syslog events locally.

To collect local syslog events, you must configure your Peakflow SP appliance to forward the syslog events to a remote host. QRadar automatically discovers and creates log sources for syslog events that are forwarded from Arbor Networks Peakflow SP appliances. QRadar supports syslog events that are forwarded from Peakflow V5.8.

To configure Arbor Networks Peakflow SP, complete the following tasks:

1. On your Peakflow SP appliance, create a notification group for QRadar.
2. On your Peakflow SP appliance, configure the global notification settings.
3. On your Peakflow SP appliance, configure your alert notification rules.
4. On your QRadar system, verify that the forwarded events are automatically discovered.

Supported event types for Arbor Networks Peakflow SP

The Arbor Networks Peakflow DSM for QRadar collects events from several categories.

Each event category contains low-level events that describe the action that is taken within the event category. For example, authentication events can have low-level categories of login successful or login failure.

The following list defines the event categories that are collected by QRadar from Peakflow SP appliances:

- Denial of Service (DoS) events
- Authentication events
- Exploit events
- Suspicious activity events
- System events
Configuring remote syslog in Peakflow SP

To collect events, you must configure a new notification group or edit existing groups to add QRadar as a remote syslog destination.

Procedure

Step 1 Log in to the configuration interface for your Peakflow SP appliance as an administrator.

Step 2 In the navigation menu, select **Administration > Notification > Groups**.

Step 3 Click **Add Notification Group**.

Step 4 In the **Destinations** field, type the IP address of your QRadar system.

Step 5 In the **Port** field, type 514 as the port for your syslog destination.

Step 6 From the **Facility** list, select a syslog facility.

Step 7 From the **Severity** list, select **info**.

The informational severity collects all event messages at the informational event level and higher severity.

Step 8 Click **Save**.

Step 9 Click **Configuration Commit**.

Configuring global notifications settings for alerts in Peakflow SP

Global notifications in Peakflow SP provide system notifications that are not associated with rules. This procedure defines how to add QRadar as the default notification group and enable system notifications.

Procedure

Step 1 Log in to the configuration interface for your Peakflow SP appliance as an administrator.

Step 2 In the navigation menu, select **Administration > Notification > Global Settings**.

Step 3 In the **Default Notification Group** field, select the notification group that you created for QRadar syslog events.

Step 4 Click **Save**.

Step 5 Click **Configuration Commit** to apply the configuration changes.

Step 6 Log in to the Peakflow SP command-line interface as an administrator.

Step 7 Type the following command to list the current alert configuration:

```
services sp alerts system_errors show
```

Step 8 Optional. Type the following command to list the fields names that can be configured:

```
services sp alerts system_errors ?
```

Step 9 Type the following command to enable a notification for a system alert:

```
services sp alerts system_errors <name> notifications enable
```

Where `<name>` is the field name of the notification.

Step 10 Type the following command to commit the configuration changes:
To generate events, you must edit or add rules to use the notification group that QRadar as a remote syslog destination.

Procedure

Step 1 Log in to the configuration interface for your Peakflow SP appliance as an administrator.

Step 2 In the navigation menu, select Administration > Notification > Rules.

Step 3 Select one of the following options:

- Click a current rule to edit the rule.
- Click **Add Rule** to create a new notification rule.

Step 4 Configure the following values:

Step 5 Repeat these steps to configure any other rules you want to forward to QRadar.

Step 6 Click **Save**.

Step 7 Click **Configuration Commit** to apply the configuration changes.

QRadar automatically discovers and creates a log source for syslog events forwarded from Arbor Peakflow. Events that are forwarded to QRadar are displayed on the Log Activity tab.

Table 13-3 Notification rule parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Type the IP address or host name as an identifier for events from your Peakflow SP installation. The log source identifier must be a unique value.</td>
</tr>
<tr>
<td>Resource</td>
<td>Type a CIDR address or select a managed object from the list of Peakflow resources.</td>
</tr>
<tr>
<td>Importance</td>
<td>Select the importance of the rule.</td>
</tr>
<tr>
<td>Notification Group</td>
<td>Select the notification group that you assigned to forward syslog events to QRadar.</td>
</tr>
</tbody>
</table>

QRadar automatically discovers and creates a log source for syslog events forwarded from Arbor Peakflow. These configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 In the navigation menu, click **Data Sources**.

Step 4 Click the Log Sources icon.

Step 5 Click Add.
Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 Optional. In the **Log Source Description** field, type a description for your log source.

Step 8 From the **Log Source Type** list, select **Arbor Networks Peakflow**.

Step 9 From the **Protocol Configuration** list, select **Syslog**.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 13-4</th>
<th>Syslog protocol parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name as an identifier for events from your Peakflow SP installation. The log source identifier must be unique value.</td>
</tr>
<tr>
<td>Enabled</td>
<td>Select this check box to enable the log source. By default, the check box is selected.</td>
</tr>
<tr>
<td>Credibility</td>
<td>Select the credibility of the log source. The range is 0 - 10. The credibility indicates the integrity of an event or offense as determined by the credibility rating from the source devices. Credibility increases if multiple sources report the same event. The default is 5.</td>
</tr>
<tr>
<td>Target Event Collector</td>
<td>Select the Event Collector to use as the target for the log source.</td>
</tr>
<tr>
<td>Coalescing Events</td>
<td>Select this check box to enable the log source to coalesce (bundle) events. By default, automatically discovered log sources inherit the value of the Coalescing Events list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
<tr>
<td>Incoming Event Payload</td>
<td>From the list, select the incoming payload encoder for parsing and storing the logs.</td>
</tr>
<tr>
<td>Store Event Payload</td>
<td>Select this check box to enable the log source to store event payload information. By default, automatically discovered log sources inherit the value of the Store Event Payload list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.
The IBM Security QRadar DSM for Arbor Networks Pravail can collect event logs from your Arbor Networks Pravail servers.

The following table identifies the specifications for the Arbor Networks Pravail DSM:

Table 14-1 Arbor Networks Pravail DSM specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Arbor Networks</td>
</tr>
<tr>
<td>DSM</td>
<td>Arbor Networks Pravail</td>
</tr>
<tr>
<td>RPM file name</td>
<td>DSM-ArborNetworksPravail-build_number.noarch.rpm</td>
</tr>
<tr>
<td>Supported versions</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>Syslog</td>
</tr>
<tr>
<td>QRadar recorded events</td>
<td>All relevant events</td>
</tr>
<tr>
<td>Automatically discovered</td>
<td>Yes</td>
</tr>
<tr>
<td>Includes identity</td>
<td>No</td>
</tr>
<tr>
<td>More information</td>
<td>http://www.stealthbits.com/resources</td>
</tr>
</tbody>
</table>
To integrate Arbor Networks Pravail DSM with QRadar, use the following procedure:

1. If automatic updates are not enabled, download and install the most recent Arbor Networks Pravail RPM on your QRadar Console.
2. For each instance of Arbor Networks Pravail, configure your Arbor Networks Pravail system to enable communication with QRadar.
3. If QRadar automatically discovers the DSM, for each Arbor Networks Pravail server you want to integrate, create a log source on the QRadar Console.

Related tasks

- Manually installing a DSM
- Configuring your Arbor Networks Pravail system for communication with QRadar
- Configuring an Arbor Networks Pravail log source in QRadar

To collect all audit logs and system events from Arbor Networks Pravail, you must add a destination that specifies QRadar as the syslog server.

Procedure

Step 1 Log in to your Arbor Networks Pravail server.
Step 2 Click **Settings & Reports**.
Step 3 Click **Administration > Notifications**.
Step 4 On the **Configure Notifications** page, click **Add Destinations**.
Step 5 Select **Syslog**.
Step 6 Configure the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>The IP address for the QRadar Console</td>
</tr>
<tr>
<td>Port</td>
<td>514</td>
</tr>
<tr>
<td>Severity</td>
<td>Info</td>
</tr>
<tr>
<td>Alert Types</td>
<td>The alert types that you want to send to the QRadar Console</td>
</tr>
</tbody>
</table>

Step 7 Click **Save**.
Configuring an Arbor Networks Pravail log source in QRadar

To collect Arbor Networks Pravail events, configure a log source in QRadar.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 In the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 From the Log Source Type list, select Arbor Networks Pravail.

Step 7 From the Protocol Configuration list, select Syslog.

Step 8 Configure the remaining parameters.

Step 9 Click Save.

Step 10 On the Admin tab, click Deploy Changes.
The IBM Security QRadar SIFT-IT DSM accepts syslog events from Arpeggio SIFT-IT running on IBM iSeries® that are formatted using the Log Enhanced Event Protocol (LEEF).

Supported versions
QRadar supports events from Arpeggio SIFT-IT 3.1 and later installed on IBM iSeries version 5 revision 3 (V5R3) and later.

Supported events
Arpeggio SIFT-IT supports syslog events from the journal QAUDJRN in LEEF format.

For example,

```
Jan 29 01:33:34 RUFUS LEEF:1.0|Arpeggio|SIFT-IT|3.1|PW_U|sev=3
usrName=ADMIN src=100.100.100.114 srcPort=543 jJobNam=QBASE
jJobUsr=ADMIN jJobNum=1664 jrmtIP=100.100.100.114 jrmtPort=543
jSeqNo=4755 jPgm=QWTMCMNL jPgmLib=QSYS jMsgId=PWU0000 jType=U
jUser=ROOT jDev=QPADEV000F jMsgTxt=Invalid user id ROOT. Device QPADEV000F.
```

Events SIFT-IT forwards to QRadar are determined with a configuration rule set file. SIFT-IT includes a default configuration rule set file that you can edit to meet your security or auditing requirements. For more information on configuring rule set files, see your SIFT-IT User Guide.

Configuring a SIFT-IT agent
Arpeggio SIFT-IT is capable of forwarding syslog events in LEEF format with SIFT-IT agents.

A SIFT-IT agent configuration defines the location of your QRadar installation, the protocol and formatting of the event message, and the configuration rule set.

Procedure

Step 1 Log in to your IBM iSeries.

Step 2 Type the following command and press Enter to add SIFT-IT to your library list:

```
ADDLIBLE SIFTITLIB0
```

Step 3 Type the following command and press Enter to access the SIFT-IT main menu:

```
GO SIFTIT
```
Step 4 From the main menu, select 1. Work with SIFT-IT Agent Definitions.

Step 5 Type 1 to add an agent definition for QRadar and press Enter.

Step 6 Configure the following agent parameters:

a In the SIFT-IT Agent Name field, type a name.
 For example, QRadar.

b In the Description field, type a description for the agent.
 For example, Arpeggio agent for QRadar.

c In the Server host name or IP address field, type the location of your QRadar Console or Event Collector.

d In the Connection type field, type either *TCP, *UDP, or *SECURE.
 The *SECURE option requires the TLS protocol. For more information, see the IBM Security QRadar Log Sources User Guide.

e In the Remote port number field, type 514.
 By default, QRadar supports both TCP and UDP syslog messages on port 514.

f In the Message format options field, type *QRADAR.

g Optional. Configure any additional parameters for attributes that are not QRadar specific.
 The additional operational parameters are described in the SIFT-IT User Guide.

h Press F3 to exit to the Work with SIFT-IT Agents Description menu.

Step 7 Type 9 and press Enter to load a configuration rule set for QRadar.

Step 8 In the Configuration file field, type the path to your QRadar configuration rule set file.
 For example,

 /sifitit/QRadarconfig.txt

Step 9 Press F3 to exit to the Work with SIFT-IT Agents Description menu.

Step 10 Type 11 to start the QRadar agent.
 The configuration is complete.

Next steps
Syslog events forwarded by Arpeggio SIFT-IT in LEEF format are automatically discovered by QRadar. In most cases, the log source is automatically created in QRadar after a small number of events are detected. If the event rate is extremely low, then you might be required to manually create a log source for Arpeggio SIFT-IT in QRadar. Until the log source is automatically discovered and identified, the event type displays as Unknown on the Log Activity tab of QRadar. Automatically discovered log sources can be viewed on the Admin tab of QRadar by clicking the Log Sources icon.
Configuring a log source
QRadar automatically discovers and creates a log source for system authentication events forwarded from Arpeggio SIFT-IT. This procedure is optional.

Procedure

Step 1
Log in to QRadar.

Step 2
Click the **Admin** tab.

Step 3
On the navigation menu, click **Data Sources**.

Step 4
Click the **Log Sources** icon.

Step 5
Click **Add**.

Step 6
In the **Log Source Name** field, type a name for your log source.

Step 7
In the **Log Source Description** field, type a description for the log source.

Step 8
From the **Log Source Type** list, select **Arpeggio SIFT-IT**.

Step 9
Using the **Protocol Configuration** list, select **Syslog**.

Step 10
Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Arpeggio SIFT-IT installation.</td>
</tr>
</tbody>
</table>

Step 11
Click **Save**.

Step 12
On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.
After you create your QRadar agent definition, you can use your Arpeggio SIFT-IT software and QRadar integration to customize your security and auditing requirements.

This can include:

- Creating custom configurations in Arpeggio SIFT-IT with granular filtering on event attributes.
 For example, filtering on job name, user, file or object name, system objects, or ports. All events forwarded from SIFT-IT and the contents of the event payload in QRadar are easily searchable.
- Configuring rules in QRadar to generate alerts or offenses for your security team to identify potential security threats, data loss, or breaches in real-time.
- Configuring processes in Arpeggio SIFT-IT to trigger real-time remediation of issues on your IBM iSeries.
- Creating offenses for your security team from Arpeggio SIFT-IT events in QRadar with the Offenses tab or configuring email job logs in SIFT-IT for your IBM iSeries administrators.
- Creating multiple configuration rule sets for multiple agents that run simultaneously to handle specific security or audit events.
 For example, you can configure one QRadar agent with a specific rule sets for forwarding all IBM iSeries events, then develop multiple configuration rule sets for specific compliance purposes. This allows you to easily manage configuration rule sets for compliance regulations, such as FISMA, PCI, HIPPA, SOX, or ISO 27001. All of the events forwarded by SIFT-IT QRadar agents is contained in a single log source and categorized to be easily searchable.
The Array Networks SSL VPN DSM for IBM Security QRadar collects events from an ArrayVPN appliance using syslog.

Supported event types
QRadar records all relevant SSL VPN events forwarded using syslog on TCP port 514 or UDP port 514.

Configuring a log source
To integrate Array Networks SSL VPN events with QRadar, you must manually create a log source.

QRadar does not automatically discover or create log sources for syslog events from Array Networks SSL VPN.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 Click **Add**.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Array Networks SSL VPN Access Gateways**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 16-1 Syslog parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.
Step 12 On the Admin tab, click Deploy Changes.

The log source is added to QRadar. Events forwarded to QRadar by Array Networks SSL VPN are displayed on the Log Activity tab.

Next Steps
You are now ready to configure your Array Networks SSL VPN appliance to forward remote syslog events to QRadar. For more information on configuring Array Networks SSL VPN appliances for remote syslog, please consult your Array Networks documentation.
The Aruba Mobility Controllers DSM for IBM Security QRadar accepts events using syslog.

Supported event types
QRadar records all relevant events forwarded using syslog on TCP port 514 or UDP port 514.

Configure your Aruba Mobility Controller
You can configure the Aruba Wireless Networks (Mobility Controller) device to forward syslog events to QRadar.

Procedure

1. Log in to the Aruba Mobility Controller user interface.
2. From the top menu, select **Configuration**.
3. From the **Switch** menu, select **Management**.
4. Click the **Logging** tab.
5. From the **Logging Servers** menu, select **Add**.
6. Type the IP address of the QRadar server that you want to collect logs.
7. Click **Add**.
8. Optional. Change the logging level for a module:
 - Select the check box next to the name of the logging module.
 - Choose the logging level you want to change from the list that is displayed at the bottom of the window.
9. Click **Done**.
10. Click **Apply**.

The configuration is complete. The log source is added to QRadar as Aruba Mobility Controller events are automatically discovered. Events forwarded to QRadar by Aruba Mobility Controller are displayed on the **Log Activity** tab of QRadar.
Configuring a log source QRadar automatically discovers and creates a log source for syslog events from Aruba Mobility Controllers. These configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 Click **Add**.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Aruba Mobility Controller**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Aruba Mobility Controller.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The log source is added to QRadar. Events forwarded to QRadar by Aruba Mobility Controller appliances are displayed on the **Log Activity** tab.
The IBM Security QRadar DSM for Avaya VPN Gateway can collect event logs from your Avaya VPN Gateway servers.

The following table identifies the specifications for the Avaya VPN Gateway DSM:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Avaya Inc.</td>
</tr>
<tr>
<td>DSM</td>
<td>Avaya VPN Gateway</td>
</tr>
<tr>
<td>RPM file name</td>
<td>DSM-AvayaVPNGateway-7.1-799033.noarch.rpm</td>
</tr>
<tr>
<td></td>
<td>DSM-AvayaVPNGateway-7.2-799036.noarch.rpm</td>
</tr>
<tr>
<td>Supported versions</td>
<td>9.0.7.2</td>
</tr>
<tr>
<td>Protocol</td>
<td>syslog</td>
</tr>
<tr>
<td>QRadar recorded events</td>
<td>OS, System Control Process, Traffic Processing, Startup, Configuration Reload, AAA Subsystem, IPsec Subsystem</td>
</tr>
<tr>
<td>Automatically discovered</td>
<td>Yes</td>
</tr>
<tr>
<td>Includes identity</td>
<td>Yes</td>
</tr>
<tr>
<td>More information</td>
<td>http://www.avaya.com</td>
</tr>
</tbody>
</table>

To integrate Avaya VPN Gateway DSM with QRadar, use the following procedure:

1. If automatic updates are not enabled, download and install the most recent version of the following RPMs on your QRadar Console:
 - Syslog protocol RPM
 - DSMCommon RPM
- Avaya VPN Gateway RPM

2 For each instance of Avaya VPN Gateway, configure your Avaya VPN Gateway system to enable communication with QRadar.

3 If QRadar automatically discovers the log source, for each Avaya VPN Gateway server you want to integrate, create a log source on the QRadar Console.

Related tasks
Manually installing a DSM
Configuring your Avaya VPN Gateway system for communication with QRadar
Configuring an Avaya VPN Gateway log source in QRadar

Configuring your Avaya VPN Gateway system for communication with QRadar

To collect all audit logs and system events from Avaya VPN Gateway, you must specify QRadar as the syslog server and configure the message format.

Procedure

Step 1 Log in to your Avaya VPN Gateway command-line interface (CLI).

Step 2 Type the following command:

```
/cfg/sys/syslog/add
```

Step 3 At the prompt, type the IP address of your QRadar system.

Step 4 To apply the configuration, type the following command:

```
apply
```

Step 5 To verify that the IP address of your QRadar system is listed, type the following command:

```
/cfg/sys/syslog/list
```

Configuring an Avaya VPN Gateway log source in QRadar

To collect Avaya VPN Gateway events, configure a log source in QRadar.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 In the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 Click **Add**.

Step 6 From the **Log Source Type** list, select **Avaya VPN Gateway**.

Step 7 From the **Protocol Configuration** list, select **Syslog**.
Step 8 Configure the remaining parameters.
Step 9 Click Save.
Step 10 On the Admin tab, click Deploy Changes.
The BalaBit Syslog-ng Agent application can collect and forward syslog events for the Microsoft Security Event Log DSM and the Microsoft ISA DSM in QRadar.

To configure a BalaBit IT Security agent, select a configuration:

- Configuring BalaBit IT Security for Microsoft Windows Events
- Configuring BalaBit IT Security for Microsoft ISA or TMG Events

Configuring BalaBit IT Security for Microsoft Windows Events

The Microsoft Windows Security Event Log DSM in QRadar can accept Log Extended Event Format (LEEF) events from BalaBit’s Syslog-ng Agent.

Supported event types

The BalaBit Syslog-ng Agent forwards Windows events to QRadar using syslog.

- Windows security
- Application
- System
- DNS
- DHCP
- Custom container event logs
Before you begin

Before you can receive events from BalaBit IT Security Syslog-ng Agents, you must install and configure the agent to forward events.

Review the following configuration steps before you attempt to configure the BalaBit Syslog-ng Agent:

1. Install the BalaBit Syslog-ng Agent in your Windows host. For more information, see your BalaBit Syslog-ng Agent documentation.
2. Configure Syslog-ng Agent Events.
3. Configure QRadar as a destination for the Syslog-ng Agent.
4. Restart the Syslog-ng Agent service.
5. Optional. Configure the log source in QRadar.

Configuring the Syslog-ng Agent event source

Before you can forward events to QRadar, you must specify what Windows-based events the Syslog-ng Agent collects.

Procedure

Step 1: From the Start menu, select All Programs > syslog-ng Agent for Windows > Configure syslog-ng Agent for Windows.

The Syslog-ng Agent window is displayed.

Step 2: Expand the syslog-ng Agent Settings pane, and select Eventlog Sources.

Step 3: Double-click on Event Containers.

The Event Containers Properties window is displayed.

Step 4: From the Event Containers pane, select the Enable radio button.

Step 5: Select a check box for each event type you want to collect:

- **Application** - Select this check box if you want the device to monitor the Windows application event log.
- **Security** - Select this check box if you want the device to monitor the Windows security event log.
- **System** - Select this check box if you want the device to monitor the Windows system event log.

Note: BalaBit’s Syslog-ng Agent supports additional event types, such as DNS or DHCP events using custom containers. For more information, see your BalaBit Syslog-ng Agent documentation.

Step 6: Click Apply, and then click OK.

The event configuration for your BalaBit Syslog-ng Agent is complete. You are now ready to configure QRadar as a destination for Syslog-ng Agent events.

Configuring a syslog destination

The Syslog-ng Agent allows you to configure multiple destinations for your Windows-based events.
To configure QRadar as a destination, you must specify the IP address for QRadar, and then configure a message template for the LEEF format.

Procedure

Step 1 From the **Start** menu, select **All Programs > syslog-ng Agent for Windows > Configure syslog-ng Agent for Windows**.

The Syslog-ng Agent window is displayed.

Step 2 Expand the syslog-ng Agent Settings pane, and click **Destinations**.

Step 3 Double-click on **Add new server**.

The Server Property window is displayed.

Step 4 On the **Server** tab, click **Set Primary Server**.

Step 5 Configure the following parameters:

a. **Server Name** - Type the IP address of your QRadar Console or Event Collector.

b. **Server Port** - Type **514** as the TCP port number for events forwarded to QRadar.

Step 6 Click the **Messages** tab.

Step 7 From the **Protocol** list, select **Legacy BSD Syslog Protocol**.

Step 8 In the **Template** field, define a custom template message for the protocol by typing:

```
<${PRI}>${BSDDATE} ${HOST} LEEF:${MSG}
```

The information typed in this field is space delimited.

Step 9 From the Event Message Format pane, in the **Message Template** field, type the following to define the format for the LEEF events:

```
1.0|Microsoft|Windows|2k8r2|${EVENT_ID}|devTime=${R_YEAR}-${R_MONTH}-${R_DAY}T${R_HOUR}:${R_MIN}:${R_SEC}GMT${TZOFFSET} devTimeFormat=yyyy-MM-dd'T'HH:mm:ssz cat=${EVENT_TYPE}sev=${EVENT_LEVEL} resource=${HOST} usrName=${EVENT_USERNAME} application=${EVENT_SOURCE} message=${EVENT_MSG}
```

Note: The LEEF format uses tab as a delimiter to separate event attributes from each other. However, the delimiter does not start until after the last pipe character for `{EVENT_ID}`. The following fields must include a tab before the event name: devTime, devTimeFormat, cat, sev, resource, usrName, application, and message. You might need to use a text editor to copy and paste the LEEF message format into the **Message Template** field.

Step 10 Click **OK**.

The destination configuration is complete. You are now ready to restart the Syslog-ng Agent service.
Restart the Syslog-ng Agent service

Before the Syslog-ng Agent can forward LEEF formatted events, you must restart the Syslog-ng Agent service on the Windows host.

Procedure

Step 1
From the Start menu, select Start > Run.
The Run window is displayed.

Step 2
Type the following:

```
services.msc
```

Step 3
Click OK.
The Services window is displayed.

Step 4
In the Name column, right-click on Syslog-ng Agent for Windows, and select Restart.

After the Syslog-ng Agent for Windows service restarts, the configuration is complete. Syslog events from the BalaBit Syslog-ng Agent are automatically discovered by QRadar. The Windows events that are automatically discovered are displayed as Microsoft Windows Security Event Logs on the Log Activity tab.

Configuring a log source

QRadar automatically discovers and creates a log source for syslog events from LEEF formatted messages. These configuration steps are optional.

Procedure

Step 1
Log in to QRadar.

Step 2
Click the Admin tab.

Step 3
On the navigation menu, click Data Sources.

Step 4
Click the Log Sources icon.

Step 5
Click Add.

Step 6
In the Log Source Name field, type a name for your BalaBit Syslog-ng Agent log source.

Step 7
In the Log Source Description field, type a description for the log source.

Step 8
From the Log Source Type list, select Microsoft Windows Security Event Log.

Step 9
Using the Protocol Configuration list, select Syslog.

Step 10
Configure the following values:

```
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for the log source as an identifier for events from the BalaBit Syslog-ng Agent.</td>
</tr>
</tbody>
</table>
```

Step 11
Click Save.

Step 12
On the Admin tab, click Deploy Changes.
The configuration is complete.

Configuring BalaBit IT Security for Microsoft ISA or TMG Events

You can integrate the BalaBit Syslog-ng Agent application to forward syslog events to QRadar.

Supported event types

The BalaBit Syslog-ng Agent reads Microsoft ISA or Microsoft TMG event logs and forwards syslog events using the Log Extended Event Format (LEEF).

The events forwarded by BalaBit IT Security are parsed and categorized by the Microsoft Internet and Acceleration (ISA) DSM for QRadar. The DSM accepts both Microsoft ISA and Microsoft Threat Management Gateway (TMG) events.

Before you begin

Before you can receive events from BalaBit IT Security Syslog-ng Agents, you must install and configure the agent to forward events.

Note: This integration uses BalaBit’s Syslog-ng Agent for Windows and BalaBit’s Syslog-ng PE to parse and forward events to QRadar for the DSM to interpret.

Review the following configuration steps before you attempt to configure the BalaBit Syslog-ng Agent:

To configure the BalaBit Syslog-ng Agent, you must:

1. Install the BalaBit Syslog-ng Agent in your Windows host. For more information, see your BalaBit Syslog-ng Agent vendor documentation.

2. Configure the BalaBit Syslog-ng Agent.

3. Install a BalaBit Syslog-ng PE for Linux or Unix in relay mode to parse and forward events to QRadar. For more information, see your BalaBit Syslog-ng PE vendor documentation.

4. Configure syslog for BalaBit Syslog-ng PE.

5. Optional. Configure the log source in QRadar.

Configure the BalaBit Syslog-ng Agent

Before you can forward events to QRadar, you must specify the file source for Microsoft ISA or Microsoft TMG events in the Syslog-ng Agent collects.

If your Microsoft ISA or Microsoft TMG appliance is generating event files for the Web Proxy Server and the Firewall Service, both files can be added.

Configure the file source

File sources allow you to define the base log directory and files monitored by the Syslog-ng Agent.
Procedure

Step 1 From the Start menu, select All Programs > syslog-ng Agent for Windows > Configure syslog-ng Agent for Windows.

The Syslog-ng Agent window is displayed.

Step 2 Expand the syslog-ng Agent Settings pane, and select File Sources.

Step 3 Select the Enable radio button.

Step 4 Click Add to add your Microsoft ISA and TMG event files.

Step 5 From the Base Directory field, click Browse and select the folder for your Microsoft ISA or Microsoft TMG log files.

Step 6 From the File Name Filter field, click Browse and select a log file containing your Microsoft ISA or Microsoft TMG events.

 Note: The File Name Filter field supports the wildcard (*) and question mark (?) characters to follow log files that are replaced after reaching a specific file size or date.

Step 7 In the Application Name field, type a name to identify the application.

Step 8 From the Log Facility list, select Use Global Settings.

Step 9 Click OK.

Step 10 To add additional file sources, click Add and repeat this process from Step 4.

Microsoft ISA and TMG store Web Proxy Service events and Firewall Service events in individual files.

Step 11 Click Apply, and then click OK.

The event configuration is complete. You are now ready to configure a syslog destinations and formatting for your Microsoft TMG and ISA events.

Configuring a syslog destination

The event logs captured by Microsoft ISA or TMG cannot be parsed by the BalaBit Syslog-ng Agent for Windows, so you must forward your logs to a BalaBit Syslog-ng Premium Edition (PE) for Linux or Unix.

To forward your TMG and ISA event logs, you must specify the IP address for your PE relay and configure a message template for the LEEF format. The BalaBit Syslog-ng PE acts as an intermediate syslog server to parse the events and forward the information to QRadar.

Procedure

Step 1 From the Start menu, select All Programs > syslog-ng Agent for Windows > Configure syslog-ng Agent for Windows.

The Syslog-ng Agent window is displayed.

Step 2 Expand the syslog-ng Agent Settings pane, and click Destinations.

Step 3 Double-click on Add new sever.

Step 4 On the Server tab, click Set Primary Server.
Step 5 Configure the following parameters:
 a Server Name - Type the IP address of your BalaBit Syslog-ng PE relay.
 b Server Port - Type 514 as the TCP port number for events forwarded to your BalaBit Syslog-ng PE relay.

Step 6 Click the Messages tab.

Step 7 From the Protocol list, select Legacy BSD Syslog Protocol.

Step 8 From the File Message Format pane, in the Message Template field, type the following format command:
 ${FILE_MESSAGE}${TZOFFSET}

Step 9 Click Apply, and then click OK.
 The destination configuration is complete. You are now ready to filter comment lines from the event log.

Filtering the log file for comment lines
The event log file for Microsoft ISA or Microsoft TMG can contain comment markers, these comments must be filtered from the event message.

Procedure
Step 1 From the Start menu, select All Programs > syslog-ng Agent for Windows > Configure syslog-ng Agent for Windows.
 The Syslog-ng Agent window is displayed.

Step 2 Expand the syslog-ng Agent Settings pane, and select Destinations.

Step 3 Right-click on your QRadar syslog destination and select Event Filters > Properties.
 The Global event filters Properties window is displayed.

Step 4 Configure the following values:
 • From the Global file filters pane, select Enable.
 • From the Filter Type pane, select Black List Filtering.

Step 5 Click OK.

Step 6 From the filter list menu, double-click Message Contents.
 The Message Contents Properties window is displayed.

Step 7 From the Message Contents pane, select the Enable radio button.

Step 8 In the Regular Expression field, type the following regular expression:
 ^#

Step 9 Click Add.

Step 10 Click Apply, and then click OK.
 The event messages containing comments are no longer forwarded.
Note: You might be required to restart Syslog-ng Agent for Windows service to begin syslog forwarding. For more information, see your BalaBit Syslog-ng Agent documentation.

Configuring a BalaBit Syslog-ng PE Relay

The BalaBit Syslog-ng Agent for Windows sends Microsoft TMG and ISA event logs to a Balabit Syslog-ng PE installation, which is configured in relay mode.

The relay mode installation is responsible for receiving the event log from the BalaBit Syslog-ng Agent for Windows, parsing the event logs in to the LEEF format, then forwarding the events to QRadar using syslog.

To configure your BalaBit Syslog-ng PE Relay, you must:

1. Install BalaBit Syslog-ng PE for Linux or Unix in relay mode. For more information, see your BalaBit Syslog-ng PE vendor documentation.

2. Configure syslog on your Syslog-ng PE relay.

 Note: For a sample syslog.conf file you can use to configure Microsoft TMG and ISA logs using your BalaBit Syslog-ng PE relay, see http://www.ibm.com/support.

The BalaBit Syslog-ng PE formats the TMG and ISA events in the LEEF format based on the configuration of your syslog.conf file. The syslog.conf file is responsible for parsing the event logs and forwarding the events to QRadar.

Procedure

Step 1 Using SSH, log in to your BalaBit Syslog-ng PE relay command-line interface (CLI).

Step 2 Edit the following file:

/etc/syslog-ng/etc/syslog.conf

Step 3 From the destinations section, add an IP address and port number for each relay destination.

For example,

```
# destinations
destination d_messages { file("/var/log/messages"); }
destination d_remote_tmgfw { tcp("QRadar_IP" port(QRadar_PORT) log_disk_fifo_size(10000000) template(t_tmgfw)); }
destination d_remote_tmgweb { tcp("QRadar_IP" port(QRadar_PORT) log_disk_fifo_size(10000000) template(t_tmgweb)); }
```

Where:

QRadar_IP is the IP address of your QRadar Console or Event Collector.

QRadar_PORT is the port number required for QRadar to receive syslog events. By default, QRadar receives syslog events on port 514.

Step 4 Save the syslog configuration changes.

Step 5 Restart Syslog-ng PE to force the configuration file to be read.
The BalaBit Syslog-ng PE configuration is complete. Syslog events forwarded from the BalaBit Syslog-ng relay are automatically discovered by QRadar as Microsoft Windows Security Event Log on the Log Activity tab. For more information, see the IBM Security QRadar Users Guide.

Note: When using multiple syslog destinations, messages are considered delivered after they successfully arrived at the primary syslog destination.

Configuring a log source

QRadar automatically discovers and creates a log source for syslog events from LEEF formatted messages provided by your BalaBit Syslog-ng relay. The following configuration steps are optional.

Procedure

1. Log in to QRadar.
2. Click the Admin tab.
3. On the navigation menu, click Data Sources.
 - The Data Sources panel is displayed.
4. Click the Log Sources icon.
 - The Log Sources window is displayed.
5. Click Add.
 - The Add a log source window is displayed.
6. In the Log Source Name field, type a name for the log source.
7. In the Log Source Description field, type a description for the log source.
8. From the Log Source Type list, select Microsoft ISA.
9. From the Protocol Configuration list, select Syslog.
 - The syslog protocol configuration is displayed.
10. Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for the log source as an identifier for Microsoft ISA or Microsoft Threat Management Gateway events from the BalaBit Syslog-ng Agent.</td>
</tr>
</tbody>
</table>

11. Click Save.
12. On the Admin tab, click Deploy Changes.
 - The BalaBit IT Security configuration for Microsoft ISA and Microsoft TMG events is complete.
IBM Security QRadar supports the following Barracuda devices:

- Barracuda Spam & Virus Firewall
- Barracuda Web Application Firewall
- Barracuda Web Filter

Barracuda Spam & Virus Firewall

You can integrate Barracuda Spam & Virus Firewall with QRadar.

Supported event types
The Barracuda Spam & Virus Firewall DSM for IBM Security QRadar accepts both Mail syslog events and Web syslog events from Barracuda Spam & Virus Firewall appliances.

Mail syslog events contain the event and action taken when the firewall processes email. Web syslog events record information on user activity and configuration changes on your Barracuda Spam & Virus Firewall appliance.

Before you begin
Syslog messages are sent to QRadar from Barracuda Spam & Virus Firewall using UDP port 514. You must verify any firewalls between QRadar and your Barracuda Spam & Virus Firewall appliance allow UDP traffic on port 514.

Configuring syslog event forwarding
You can configure syslog forwarding for Barracuda Spam & Virus Firewall.

Procedure

1. Log in to the Barracuda Spam & Virus Firewall web interface.
2. Click the *Advanced* tab.
3. From the *Advanced* menu, select *Advanced Networking*.
4. In the *Mail Syslog* field, type the IP address of your QRadar Console or event collector.
5. Click *Add*.
6. In the *Web Interface Syslog* field, type the IP address of your QRadar Console or event collector.
Step 7 Click Add.

Configuring a log source

QRadar automatically discovers and creates a log source for syslog events from Barracuda Spam & Virus Firewall appliances. The following configuration steps are optional.

Procedure

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 Click the Log Sources icon.
Step 4 Click Add.
Step 5 In the Log Source Name field, type a name for your log source.
Step 6 In the Log Source Description field, type a description for the log source.
Step 7 From the Log Source Type list, select Barracuda Spam & Virus Firewall.
Step 8 From the Protocol Configuration list, select Syslog.
Step 9 In the Log Source Identifier field, type the IP address or host name for the log source.
Step 10 Click Save.
Step 11 On the Admin tab, click Deploy Changes.
Barracuda Web Application Firewall

For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).

Barracuda Web Filter

You can integrate Barracuda Web Filter appliance events with QRadar.

Supported event types
The Barracuda Web Filter DSM for IBM Security QRadar accepts web traffic and web interface events in syslog format forwarded by Barracuda Web Filter appliances.

Web traffic events contain the event and action taken when the appliance processes web traffic. Web interface events contain user login activity and configuration changes to the Web Filter appliance.

Before you begin
Syslog messages are forward to QRadar using UDP port 514. You must verify any firewalls between QRadar and your Barracuda Web Filter appliance allow UDP traffic on port 514.

Configuring syslog event forwarding
Configure syslog forwarding for Barracuda Web Filter.

Procedure

Step 1 Log in to the Barracuda Web Filter web interface.

Step 2 Click the Advanced tab.

Step 3 From the Advanced menu, select Syslog.

Step 4 From the Web Traffic Syslog field, type IP address of your QRadar Console or Event Collector.

Step 5 Click Add.

Step 6 From the Web Interface Syslog field, type IP address of your QRadar Console or Event Collector.

Step 7 Click Add.

The syslog configuration is complete.
Configuring a log source

QRadar automatically discovers and creates a log source for syslog events from Barracuda Web Filter appliances. The following configuration steps are optional.

Procedure

1. Log in to QRadar.
2. Click the **Admin** tab.
3. On the navigation menu, click **Data Sources**.
4. Click the **Log Sources** icon.
5. Click **Add**.
6. In the **Log Source Name** field, type a name for your log source.
7. In the **Log Source Description** field, type a description for the log source.
8. From the **Log Source Type** list, select **Barracuda Web Filter**.
9. Using the **Protocol Configuration** list, select **Syslog**.
10. Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Barracuda Web Filter appliance.</td>
</tr>
</tbody>
</table>

11. Click **Save**.
12. On the **Admin** tab, click **Deploy Changes**.

The log source is added to QRadar. Events forwarded by Barracuda Web Filter are displayed on the **Log Activity** tab of QRadar.
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
The BlueCat Networks Adonis DSM for IBM Security QRadar accepts events forwarded in Log Enhanced Event Protocol (LEEF) using syslog from BlueCat Adonis appliances managed with BlueCat Proteus.

Supported versions

QRadar supports BlueCat Networks Adonis appliances using version 6.7.1-P2 and later.

You might be required to include a patch on your BlueCat Networks Adonis to integrate DNS and DHCP events with QRadar. For more information, see KB-4670 and your BlueCat Networks documentation.

Supported event types

QRadar is capable of collecting all relevant events related to DNS and DHCP queries.

This includes the following events:

- DNS IPv4 and IPv6 query events
- DNS name server query events
- DNS mail exchange query events
- DNS text record query events
- DNS record update events
- DHCP discover events
- DHCP request events
- DHCP release events

Event type format

The LEEF format consists of a pipe (|) delimited syslog header and a space delimited event payload.

For example,

```
Aug 10 14:55:30 adonis671-184
LEEF:1.0|BCN|Adonis|6.7.1|DNS_Query|cat=A_record
src=10.10.10.10 url=test.example.com
```

If the syslog events forwarded from your BlueCat Adonis appliance are not formatted similarly to the sample above, you must examine your device
configuration. Properly formatted LEEF event messages are automatically discovered by the BlueCat Networks Adonis DSM and added as a log source to QRadar.

Before you begin
BlueCat Adonis must be configured to generate events in Log Enhanced Event Protocol (LEEF) and redirect the event output by way of syslog to QRadar.

BlueCat Networks provides a script on their appliance to assist you with configuring syslog. To complete the syslog redirection, you must have administrative or root access to the command-line interface of the BlueCat Adonis or your BlueCat Proteus appliance. If the syslog configuration script is not present on your appliance, you can contact your BlueCat Networks representative.

Configuring BlueCat Adonis
You can configure your BlueCat Adonis appliance to forward DNS and DHCP events to QRadar.

Procedure

Step 1 Using SSH, log in to your BlueCat Adonis appliance command-line interface.

Step 2 Type the following command to start the syslog configuration script:

```
/usr/local/bluecat/qradar/setup-qradar.sh
```

Step 3 Type the IP address of your QRadar Console or Event Collector.

Step 4 Type `yes` or `no` to confirm the IP address.

The configuration is complete when a success message is displayed.

The log source is added to QRadar as BlueCat Networks Adonis syslog events are automatically discovered. Events forwarded to QRadar are displayed on the **Log Activity** tab. If the events are not automatically discovered, you can manually configure a log source.

Configuring a log source in QRadar
QRadar automatically discovers and creates a log source for syslog events from BlueCat Networks Adonis. However, you can manually create a log source for QRadar to receive syslog events. The following configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 Click **Add**.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **BlueCat Networks Adonis**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.
Step 10 Configure the following values:

Table 22-2 Syslog Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your BlueCat Networks Adonis appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete.
The Blue Coat SG DSM for IBM Security QRadar allows you to integrate events from a Blue Coat SG appliance with QRadar.

QRadar records all relevant and available information from name-value events that are separated by pipe (|) characters.

QRadar can receive events from your Blue Coat SG appliance using syslog or can retrieve events from the Blue Coat SG appliance using the Log File protocol. The instructions provided describe how to configure Blue Coat SG using a custom name-value pair format. However, QRadar supports the following formats:

- Custom Format
- SQUID
- NCSA
- main
- IM
- Streaming
- smartreporter
- bcereporterman main_v1
- bcereporterssl_v1
- p2p
- SSL
- bcreportercifs_v1
- CIFS
- MAPI

For more information about your Blue Coat SG Appliance, see your vendor documentation.
Creating a custom event format

The Blue Coat SG DSM for QRadar accepts custom formatted events from a Blue Coat SG appliance.

Procedure

Step 1 Using a web browser, log in to the Blue Coat Management Console.
Step 2 Select Configuration > Access Logging > Formats.
Step 3 Select New.
Step 4 Type a format name for the custom format.
Step 5 Select Custom format string.
Step 6 Type the following custom format for QRadar:

Bluecoat|src=$(c-ip)|srcport=$(c-port)|dst=$(cs-uri-address)|dstport=$(cs-uri-port)|username=$(cs-username)|devicetime=$(gmttime)|s-action=$(s-action)|sc-status=$(sc-status)|cs-method=$(cs-method)|time-taken=$(time-taken)|sc-bytes=$(sc-bytes)|cs-bytes=$(cs-bytes)|cs-uri-scheme=$(cs-uri-scheme)|cs-host=$(cs-host)|cs-uri-path=$(cs-uri-path)|cs-uri-query=$(cs-uri-query)|cs-uri-extension=$(cs-uri-extension)|cs-auth-group=$(cs-auth-group)|rs{(Content-Type)=$(rs(Content-Type))|cs(User-Agent)=$(cs(User-Agent))|cs(Referer)=$(cs(Referer))|sc-filter-result=$(sc-filter-result)|filter-category=$(sc-filter-category)|cs-uri=$(cs-uri)

Step 7 Select Log Last Header from the list.
Step 8 Click OK.
Step 9 Click Apply.

Note: The custom format for QRadar supports additional key-value pairs using the Blue Coat ELFF format. For more information, see Creating additional custom format key-value pairs.

You are ready to enable access logging on your Blue Coat device.

Creating a log facility

To use the custom log format created for QRadar, you must associate the custom log format for QRadar to a facility.

Procedure

Step 1 Select Configuration > Access Logging > Logs.
Step 2 Click New.
Step 3 Configure the following parameters:

- **Log Name** - Type a name for the log facility.
- **Log Format** - Select the custom format you created in Creating a custom event format, Step 4.
- **Description** - Type a description for the log facility.

Step 4 Click OK.
Step 5 Click Apply.

You are ready to enable logging on the Blue Coat device. For more information, see Enabling access logging.

Enabling access logging

You must enable access logging on your Blue Coat SG device.

Procedure

Step 1 Select Configuration > Access Logging > General.

Step 2 Select the Enable Access Logging check box.

If the Enable Access Logging check box is not selected, logging is disabled globally for all of the formats listed.

Step 3 Click Apply.

You are ready to configure the Blue Coat upload client. For more information, see Retrieving Blue Coat events.

Retrieving Blue Coat events

Events from your Blue Coat SG appliance are forwarded using the Blue Coat upload client.

QRadar can receive forwarded events using FTP or syslog.

- If you are using FTP, see Log File protocol configuration.
- If you are using syslog, see Syslog configuration.

Log File protocol configuration

To use FTP, you must configure the Blue Coat upload client.

Procedure

Step 1 Select Configuration > Access Logging > Logs > Upload Client.

Step 2 From the Log list, select the log containing your custom format.

Step 3 From the Client type list, select FTP Client.

Step 4 Select the text file option.

If you select the gzip file option on your Blue Coat appliance, you must configure a Processor for your log source with the GZIP option.

Step 5 Click Settings.

Step 6 From the Settings For list, select Primary FTP Server.

Step 7 Configure the following values:

- Host - Type the IP address of the FTP server receiving the Blue Coat events.
- Port - Type the FTP port number.
- Path - Type a directory path for the log files.
- Username - Type the username required to access the FTP server.

Step 8 Click OK.
Step 9 Select the **Upload Schedule** tab.
Step 10 From the Upload the access log option, select **periodically**.
Step 11 Configure the **Wait time between connect attempts**.
Step 12 Select if you want to upload the log file to the FTP daily or on an interval.
Step 13 Click **Apply**.

Configuring a Log Source in QRadar

Procedure

1. Log in to QRadar.
2. Click the **Admin** tab.
3. On the navigation menu, click **Data Sources**.
4. Click the **Log Sources** icon.
5. Click **Add**.
6. In the **Log Source Name** field, type a name for your log source.
7. From the **Log Source Type** list, select the **Bluecoat SG Appliance** option.
8. From the **Protocol Configuration** list, select the **Log File** option.
9. Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type an IP address, host name, or name to identify the event source. IP addresses or host names are recommended as they allow QRadar to identify a log file to a unique event source.</td>
</tr>
<tr>
<td>Service Type</td>
<td>From the list, select the protocol you want to use when retrieving log files from a remote server. The default is SFTP.</td>
</tr>
<tr>
<td></td>
<td>• SFTP - SSH File Transfer Protocol</td>
</tr>
<tr>
<td></td>
<td>• FTP - File Transfer Protocol</td>
</tr>
<tr>
<td></td>
<td>• SCP - Secure Copy</td>
</tr>
<tr>
<td></td>
<td>Note: The underlying protocol used to retrieve log files for the SCP and SFTP service type requires that the server specified in the Remote IP or Hostname field has the SFTP subsystem enabled.</td>
</tr>
<tr>
<td>Remote IP or Hostname</td>
<td>Type the IP address or host name of the device storing your event log files.</td>
</tr>
</tbody>
</table>
Remote Port
Type the TCP port on the remote host that is running the selected Service Type. The valid range is 1 to 65535.
The options include:

- **FTP** - TCP Port 21
- **SFTP** - TCP Port 22
- **SCP** - TCP Port 22

Note: If the host for your event files is using a non-standard port number for FTP, SFTP, or SCP, you must adjust the port value accordingly.

Remote User
Type the user name necessary to log in to the host containing your event files.
The username can be up to 255 characters in length.

Remote Password
Type the password necessary to log in to the host.

Confirm Password
Confirm the password necessary to log in to the host.

SSH Key File
If you select SCP or SFTP as the Service Type, this parameter allows you to define an SSH private key file. When you provide an SSH Key File, the **Remote Password** field is ignored.

Remote Directory
Type the directory location on the remote host from which the files are retrieved, relative to the user account you are using to log in.

Note: For FTP only. If your log files reside in the remote user’s home directory, you can leave the remote directory blank. This is to support operating systems where a change in the working directory (CWD) command is restricted.

Recursive
Select this check box if you want the file pattern to search sub folders in the remote directory. By default, the check box is clear.
The Recursive option is ignored if you configure SCP as the Service Type.

FTP File Pattern
If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing.
The FTP file pattern you specify must match the name you assigned to your event files. For example, to collect files ending with .log, type the following:

`.*\.log`

Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website:

FTP Transfer Mode

This option only appears if you select FTP as the Service Type. The FTP Transfer Mode parameter allows you to define the file transfer mode when retrieving log files over FTP.

From the list, select the transfer mode you want to apply to this log source:

- **Binary** - Select Binary for log sources that require binary data files or compressed zip, gzip, tar, or tar+gzip archive files.
- **ASCII** - Select ASCII for log sources that require an ASCII FTP file transfer.

You must select **NONE** for the Processor parameter and **LINEBYLINE** the Event Generator parameter when using ASCII as the FTP Transfer Mode.

SCP Remote File

If you select SCP as the Service Type you must type the file name of the remote file.

Start Time

Type the time of day you want the processing to begin. For example, type 00:00 to schedule the Log File protocol to collect event files at midnight.

This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: HH:MM.

Recurrence

Type the frequency, beginning at the Start Time, that you want the remote directory to be scanned. Type this value in hours (H), minutes (M), or days (D).

For example, type 2H if you want the remote directory to be scanned every 2 hours from the start time. The default is 1H.

Run On Save

Select this check box if you want the log file protocol to run immediately after you click **Save**.

After the Run On Save completes, the log file protocol follows your configured start time and recurrence schedule.

Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File parameter.

EPS Throttle

Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The valid range is 100 to 5000.

Processor

If the files located on the remote host are stored in a zip, gzip, tar, or tar+gzip archive format, select the processor that allows the archives to be expanded and contents processed.
Step 10 Click Save.

Step 11 On the Admin tab, click Deploy Changes.

The log file protocol configuration for Blue Coat SG is complete.

Syslog configuration

To allow syslog event collection, you must configure your Blue Coat appliance to forward syslog events.

CAUTION: If your Blue Coat SG appliance is reporting events using syslog (rather than a file transfer protocol) and the destination syslog server becomes unavailable, it is possible that other syslog destinations can stop receiving data until all syslog destinations are again available. This creates the potential for some syslog data to not be sent at all. If you are sending to multiple syslog destinations, a disruption in availability in one syslog destination might interrupt the stream of events to other syslog destinations from your Blue Coat SG appliance.

Procedure

Step 1 Select Configuration > Access Logging > Logs > Upload Client.

Step 2 From the Log list, select the log containing your custom format.

Step 3 From the Client type drop-down list box, select Custom Client.

Step 4 Click Settings.

Step 5 From the Settings For list, select Primary Custom Server.

Step 6 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignore Previously Processed File(s)</td>
<td>Select this check box to track and ignore files that have already been processed by the log file protocol. QRadar examines the log files in the remote directory to determine if a file has been previously processed by the log file protocol. If a previously processed file is detected, the log file protocol does not download the file for processing. All files that have not been previously processed are downloaded. This option only applies to FTP and SFTP Service Types.</td>
</tr>
<tr>
<td>Change Local Directory?</td>
<td>Select this check box to define a local directory on your QRadar system for storing downloaded files during processing. We recommend that you leave this check box clear. When this check box is selected, the Local Directory field is displayed, which allows you to configure the local directory to use for storing files.</td>
</tr>
<tr>
<td>Event Generator</td>
<td>From the Event Generator list, select LineByLine. The Event Generator applies additional processing to the retrieved event files. Each line of the file is a single event. For example, if a file has 10 lines of text, 10 separate events are created.</td>
</tr>
</tbody>
</table>
Configure a log source
To integrate Barracuda Web Application Firewall with QRadar, you must manually create a log source to receive Blue Coat SG events.

Procedure
Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Blue Coat SG Appliance.
Step 9 Using the Protocol Configuration list, select Syslog.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Blue Coat SG appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.
Step 12 On the Admin tab, click Deploy Changes.

The log source is added to QRadar. Events forwarded to QRadar by Blue Coat SG are displayed on the Log Activity tab.
Creating additional custom format key-value pairs

The custom format allows you to forward specific Blue Coat data or events to QRadar using the Extended Log File Format (ELFF).

The custom format is a series of pipe delimited fields starting with Bluecoat| and containing $(Blue Coat ELFF Parameter). Custom format fields for QRadar must be separated by the pipe character.

For example:

Bluecoat|src=$(c-ip)|srcport=$(c-port)|dst=$(cs-uri-address)|dstport=$(cs-uri-port)|username=$(cs-username)|devicetime=$(gmttime)|s-action=$(s-action)|sc-status=$(sc-status)|cs-method=$(cs-method)

Table 23-3 QRadar Custom Format Examples

<table>
<thead>
<tr>
<th>Blue Coat ELFF Parameter</th>
<th>QRadar Custom Format Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>sc-bytes</td>
<td>$(sc-bytes)</td>
</tr>
<tr>
<td>rs(Content-type)</td>
<td>$(rs(Content-Type))</td>
</tr>
</tbody>
</table>

For more information on the available Blue Coat ELFF parameters, see your Blue Coat appliance documentation.
The Bridgewater Systems DSM for IBM Security QRadar accepts events using syslog.

Supported event types
QRadar records all relevant events forwarded from Bridgewater AAA Service Controller devices using syslog.

Configuring Syslog for your Bridgewater Systems Device
You must configure your Bridgewater Systems appliance to send syslog events to QRadar.

Procedure

Step 1
Log in to your Bridgewater Systems device command-line interface (CLI).

Step 2
To log operational messages to the RADIUS and Diameter servers, open the following file:

```
/etc/syslog.conf
```

Step 3
To log all operational messages, uncomment the following line:

```
local1.info /WideSpan/logs/oplog
```

Step 4
To log error messages only, change the `local1.info /WideSpan/logs/oplog` line to the following:

```
local1.err /WideSpan/logs/oplog
```

Note: RADIUS and Diameter system messages are stored in the `/var/adm/messages` file.

Step 5
Add the following line:

```
local1.*@<IP address>
```

Where `<IP address>` is the IP address your QRadar Console.

Step 6
The RADIUS and Diameter server system messages are stored in the `/var/adm/messages` file. Add the following line for the system messages:

```
<facility>.*@<IP address>
```

Where:

- `<facility>` is the facility used for logging to the `/var/adm/messages` file.
- `<IP address>` is the IP address of your QRadar Console.
Step 7 Save and exit the file.

Step 8 Send a hang-up signal to the syslog daemon to make sure all changes are enforced:

```bash
kill -HUP `cat /var/run/syslog.pid`
```

The configuration is complete. The log source is added to QRadar as Bridgewater Systems appliance events are automatically discovered. Events forwarded to QRadar by your Bridgewater Systems appliance are displayed on the Log Activity tab.

Configuring a log source QRadar automatically discovers and creates a log source for syslog events from a Bridgewater Systems appliance. The following configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 In the Log Source Name field, type a name for your log source.

Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select Bridgewater Systems AAA Service Controller.

Step 9 Using the Protocol Configuration list, select Syslog.

Step 10 Configure the following values:

Table 24-1 Syslog Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Bridgewater Systems appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete.
IBM Security QRadar can collect and categorize syslog system and audit events from Brocade switches and appliances that use Fabric OS V7.x.

To collect syslog events, you must configure your switch to forward syslog events. Each switch or appliance must be configured to forward events.

Events that you forward from Brocade switches are automatically discovered. A log source is configured for each switch or appliance that forwards events to QRadar. Brocade switches or appliance that run Fabric OS V7.x.

Configuring syslog for Brocade Fabric OS appliances

To collect events, you must configure syslog on your Brocade appliance to forward events to QRadar.

Procedure

1. **Step 1** Log in to your appliance as an admin user.
2. **Step 2** To configure an address to forward syslog events, type the following command:
   ```
   syslogdipadd <IP address>
   ```
 Where `<IP address>` is the IP address of the QRadar Console, Event Processor, Event Collector, or all-in-one system.
3. **Step 3** To verify the address, type the following command:
   ```
   syslogdipshow
   ```

Result

As events are generated by the Brocade switch, they are forwarded to the syslog destination you specified. The log source is automatically discovered after enough events are forwarded by the Brocade appliance. It typically takes a minimum of 25 events to automatically discover a log source.

What to do next

Administrators can log in to the QRadar Console and verify that the log source is created on the Console and that the **Log Activity** tab displays events from the Brocade appliance.
This section provides information on the following DSMs:

- CA ACF2
- CA SiteMinder
- CA Top Secret

CA ACF2

IBM Security QRadar includes two options for integrating CA Access Control Facility (ACF2) events:

- Integrate CA ACF2 with QRadar using IBM Security zSecure
- Integrate CA ACF2 with QRadar using audit scripts

Integrate CA ACF2 with QRadar using IBM Security zSecure

The CA ACF2 DSM allows you to integrate LEEF events from an ACF2 image on an IBM z/OS mainframe using IBM Security zSecure.

Using a zSecure process, events from the System Management Facilities (SMF) are recorded to an event file in the Log Enhanced Event format (LEEF). QRadar retrieves the LEEF event log files using the log file protocol and processes the events. You can schedule QRadar to retrieve events on a polling interval, which allows QRadar to retrieve the events on the schedule you have defined.
To integrate CA ACF2 events:

1. Confirm your installation meets any prerequisite installation requirements.

2. Configure your CA ACF2 z/OS image to write events in LEEF format. For more information, see the *IBM Security zSecure Suite: CARLa-Driven Components Installation and Deployment Guide*.

3. Create a log source in QRadar for CA ACF2 to retrieve your LEEF formatted event logs.

4. Optional. Create a custom event property for CA ACF2 in QRadar. For more information, see the *IBM Security QRadar Custom Event Properties for IBM z/OS* technical note.

Before You begin

Before you can configure the data collection process, you must complete the basic zSecure installation process.

The following installation prerequisites are required:

- You must ensure parmlib member IFAPRDxx is not disabled for IBM Security zSecure Audit on your z/OS image.
- The SCKRLOAD library must be APF-authorized.
- You must configure a process to periodically refresh your CKFREEZE and UNLOAD data sets.
- You must configure an SFTP, FTP, or SCP server on your z/OS image for QRadar to download your LEEF event files.
- You must allow SFTP, FTP, or SCP traffic on firewalls located between QRadar and your z/OS image.

After installing the software, you must also perform the post-installation activities to create and modify the configuration. For instructions on installing and configuring zSecure, see the *IBM Security zSecure Suite: CARLa-Driven Components Installation and Deployment Guide*.

Create a log source for ACF2 in QRadar

You can use the Log File protocol to retrieve archived log files containing events from a remote host.

Log files are transferred, one at a time, to QRadar for processing. The log file protocol can manage plain text event logs, compressed files, or archives. Archives must contain plain-text files that can be processed one line at a time. Multi-line event logs are not supported by the log file protocol. IBM z/OS with zSecure writes log files to a specified directory as gzip archives. QRadar extracts the archive and processes the events, which are written as one event per line in the file.

To retrieve these events, you must create a log source using the Log File protocol. QRadar requires credentials to log in to the system hosting your LEEF formatted event files and a polling interval.
To configure a log source in QRadar for CA ACF2:

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 Click **Add**.

Step 6 In the **Log Source Name** field, type a name for the log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **CA ACF2**.

Step 9 From the **Protocol Configuration** list, select **Log File**.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 26-1 CA ACF2 Log File Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
<tr>
<td>Service Type</td>
</tr>
<tr>
<td>Remote IP or Hostname</td>
</tr>
</tbody>
</table>
Table 26-1 CA ACF2 Log File Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Port</td>
<td>Type the TCP port on the remote host that is running the selected Service Type. The valid range is 1 to 65535. The options include:</td>
</tr>
<tr>
<td></td>
<td>• FTP - TCP Port 21</td>
</tr>
<tr>
<td></td>
<td>• SFTP - TCP Port 22</td>
</tr>
<tr>
<td></td>
<td>• SCP - TCP Port 22</td>
</tr>
<tr>
<td></td>
<td>Note: If the host for your event files is using a non-standard port number for FTP, SFTP, or SCP, you must adjust the port value accordingly.</td>
</tr>
<tr>
<td>Remote User</td>
<td>Type the user name necessary to log in to the host containing your event files. The username can be up to 255 characters in length.</td>
</tr>
<tr>
<td>Remote Password</td>
<td>Type the password necessary to log in to the host.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password necessary to log in to the host.</td>
</tr>
<tr>
<td>SSH Key File</td>
<td>If you select SCP or SFTP as the Service Type, this parameter allows you to define an SSH private key file. When you provide an SSH Key File, the Remote Password field is ignored.</td>
</tr>
<tr>
<td>Remote Directory</td>
<td>Type the directory location on the remote host from which the files are retrieved, relative to the user account you are using to log in. Note: For FTP only. If your log files reside in the remote user’s home directory, you can leave the remote directory blank. This is to support operating systems where a change in the working directory (CWD) command is restricted.</td>
</tr>
<tr>
<td>Recursive</td>
<td>Select this check box if you want the file pattern to search sub folders in the remote directory. By default, the check box is clear. The Recursive option is ignored if you configure SCP as the Service Type.</td>
</tr>
</tbody>
</table>
If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing.

IBM z/OS mainframe using IBM Security zSecure Audit writes event files using the pattern ACF2.<timestamp>.gz

The FTP file pattern you specify must match the name you assigned to your event files. For example, to collect files starting with ACF2 and ending with .gz, type the following:

```
ACF2.*\.*\ .gz
```

Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website:

FTP Transfer Mode

This option only displays if you select FTP as the Service Type. From the list, select **Binary**.

The binary transfer mode is required for event files stored in a binary or compressed format, such as zip, gzip, tar, or tar+gzip archive files.

SCP Remote File

If you select SCP as the Service Type you must type the file name of the remote file.

Start Time

Type the time of day you want the processing to begin. For example, type 00:00 to schedule the Log File protocol to collect event files at midnight.

This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: HH:MM.

Recurrence

Type the frequency, beginning at the Start Time, that you want the remote directory to be scanned. Type this value in hours (H), minutes (M), or days (D).

For example, type 2H if you want the remote directory to be scanned every 2 hours from the start time. The default is 1H.

Run On Save

Select this check box if you want the log file protocol to run immediately after you click **Save**.

After the Run On Save completes, the log file protocol follows your configured start time and recurrence schedule.

Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File parameter.

EPS Throttle

Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The valid range is 100 to 5000.

Table 26-1 CA ACF2 Log File Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP File Pattern</td>
<td>If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing. IBM z/OS mainframe using IBM Security zSecure Audit writes event files using the pattern ACF2.<timestamp>.gz. The FTP file pattern you specify must match the name you assigned to your event files. For example, to collect files starting with ACF2 and ending with .gz, type the following: ACF2..\ .gz. Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website: http://download.oracle.com/javase/tutorial/essential/regex/.</td>
</tr>
<tr>
<td>FTP Transfer Mode</td>
<td>This option only displays if you select FTP as the Service Type. From the list, select Binary. The binary transfer mode is required for event files stored in a binary or compressed format, such as zip, gzip, tar, or tar+gzip archive files.</td>
</tr>
<tr>
<td>SCP Remote File</td>
<td>If you select SCP as the Service Type you must type the file name of the remote file.</td>
</tr>
<tr>
<td>Start Time</td>
<td>Type the time of day you want the processing to begin. For example, type 00:00 to schedule the Log File protocol to collect event files at midnight. This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: HH:MM.</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Type the frequency, beginning at the Start Time, that you want the remote directory to be scanned. Type this value in hours (H), minutes (M), or days (D). For example, type 2H if you want the remote directory to be scanned every 2 hours from the start time. The default is 1H.</td>
</tr>
<tr>
<td>Run On Save</td>
<td>Select this check box if you want the log file protocol to run immediately after you click Save. After the Run On Save completes, the log file protocol follows your configured start time and recurrence schedule. Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File parameter.</td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The valid range is 100 to 5000.</td>
</tr>
</tbody>
</table>
Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The CA ACF2 configuration is complete. If your configuration requires custom event properties, see the *IBM Security QRadar Custom Event Properties for IBM z/OS* technical note.

Integrate CA ACF2 with QRadar using audit scripts

The CA Access Control Facility (ACF2) DSM allows you to use an IBM mainframe to collect events and audit transactions with the log file protocol.

Configuration overview

QexACF2.load.trs is a TERSED file containing a PDS loadlib with the QEXACF2 program. A tered file is similar to a zip file and requires you to use the TRSMAIN program to uncompress the contents. The TRSMAIN program is available from http://www.ibm.com/support/.

To upload a TRS file from a workstation, you must pre-allocate a file with the following DCB attributes: DSORG=PS, RECFM=FB, LRECL=1024, BLKSIZE=6144. The file transfer type must be BINARY APPEND. If the transfer type is TEXT or TEXT APPEND, then the file cannot properly uncompress.
After you upload the file to the mainframe into the preallocated dataset the tersed file can be UNPACKED using the TRSMAIN utility using the sample JCL also included in the tar package. A return code of 0008 from the TRSMAIN utility indicates the dataset is not recognized as a valid TERSED file. This error might be the result of the file not being uploaded to a file with the correct DCB attributes or due to the fact that the transfer was not performed using the BINARY APPEND transfer mechanism.

After you have successfully UNPACKED the loadlib file, you can run the QEXACF2 program with the sample JCL file. The sample JCL file is contained in the tar collection. To run the QEXACF2 program, you must modify the JCL to your local naming conventions and JOB card requirements. You might also need to use the STEPLIB DD if the program is not placed in a LINKLISTED library.

To integrate CA ACF2 events into QRadar:

1. The IBM mainframe records all security events as Service Management Framework (SMF) records in a live repository.
2. The CA ACF2 data is extracted from the live repository using the SMF dump utility. The SMF file contains all of the events and fields from the previous day in raw SMF format.
3. The `QexACF2.load.trs` program pulls data from the SMF formatted file. The `QexACF2.load.trs` program only pulls the relevant events and fields for QRadar and writes that information in a condensed format for compatibility. The information is saved in a location accessible by QRadar.
4. QRadar uses the log file protocol source to retrieve the output file information on a scheduled basis. QRadar then imports and processes this file.

Configure CA ACF2 to integrate with QRadar

QRadar uses scripts to write audit events to from CA ACF2 installations, which are retrieved by QRadar using the Log File protocol.

Procedure

Step 1 From the IBM support website (http://www.ibm.com/support), download the following compressed file:

 qexacf2_bundled.tar.gz

Step 2 On a Linux-based operating system, extract the file:

 tar -zxvf qexacf2_bundled.tar.gz

The following files are contained in the archive:

 QexACF2.JCL.txt - Job Control Language file
 QexACF2.load.trs - Compressed program library (requires IBM TRSMAIN)
 trsmain sample JCL.txt - Job Control Language for TRSMAIN to decompress the .trs file

Step 3 Load the files onto the IBM mainframe using the following methods:
a Upload the sample QexACF2_trsmain_JCL.txt and QexACF2.JCL.txt files using the TEXT protocol.

b Upload the QexACF2.load.trs file using a BINARY mode transfer and append to a pre-allocated data set. The QexACF2.load.trs file is a tered file containing the executable (the mainframe program QexACF2). When you upload the .trs file from a workstation, pre-allocate a file on the mainframe with the following DCB attributes: DSORG=PS, RECFM=FB, LRECL=1024, BLKSIZE=6144. The file transfer type must be binary mode and not text.

Note: QexACF2 is a small C mainframe program that reads the output of the TSSUTIL (EARLOUT data) line by line. QexACF2 adds a header to each record containing event information, for example, record descriptor, the date, and time. The program places each field into the output record, suppresses trailing blank characters, and delimits each field with the pipe character. This output file is formatted for QRadar and the blank suppression reduces network traffic to QRadar. This program does not consume CPU or I/O disk resources.

Step 4
Customize the trsmain sample_JCL.txt file according to your installation-specific parameters.

For example, jobcard, data set naming conventions, output destinations, retention periods, and space requirements.

The trsmain sample_JCL.txt file uses the IBM utility TRSMAIN to extract the program stored in the QexACF2.load.trs file.

An example of the QexACF2_trsmain_JCL.txt file includes:

```
//TRSMAIN   JOB (yourvalidjobcard),Q1labs,
//  MSGCLASS=V
//DEL    EXEC PGM=IEFBR14
//D1    DD   DISP=(MOD,DELETE),DSN=<yourhlq>.QEXACF2.LOAD.TRS
//       UNIT=SYSDA,
//       SPACE=(CYL,(10,10))
//TRSMAIN EXEC PGM=TRSMAIN,PARM='UNPACK'
//SYSPRINT  DD SYSOUT=*,DCB=(LRECL=133,BLKSIZE=12901,RECFM=FBA)
//INFILE    DD DISP=SHR,DSN=<yourhlq>.QEXACF2.LOAD.TRS
//OUTFILE   DD DISP=(NEW,CATLG,DELETE),
//       DSN=<yourhlq>.LOAD,
//       SPACE=(CYL,(10,10,5),RLSE),UNIT=SYSDA
//```

The .trs input file is an IBM TERSE formatted library and is extracted by running the JCL, which calls the TRSMAIN. This tered file, when extracted, creates a PDS linklib with the QexACF2 program as a member.

### Step 5
You can STEPLIB to this library or choose to move the program to one of the LINKLIBs that are in LINKLST. The program does not require authorization.

### Step 6
After uploading, copy the program to an existing link listed library or add a STEPLIB DD statement with the correct dataset name of the library that will contain the program.

### Step 7
The QexACF2_jcl.txt file is a text file containing a sample JCL. You must configure the job card to meet your configuration.

*IBM Security QRadar DSM Configuration Guide*
The QexACF2_jcl.txt sample file includes:

```plaintext
//QEXACF2 JOB (T,JXPO,JKSD0093),DEV,NOTIFY=Q1JACK,
// MSGCLASS=P,
// REGION=0M
//*
//QEXACF2 JCL VERSION 1.0 OCTOBER, 2010
//*
//***
//* Change below dataset names to sites specific datasets names*
//***
//SET1 SET SMFIN='MVS1.SMF.RECORDS(0)',
// QEXOUT='Q1JACK.QEXACF2.OUTPUT',
// SMFOUT='Q1JACK.ACF2.DATA'
//***
//* Delete old datasets *
//***
//DEL EXEC PGM=IEFBR14
//DD1 DD DISP=(MOD,DELETE),DSN=&SMFOUT,
// UNIT=SYSDA,
// SPACE=(CYL,(10,10)),
// DCB=(RECFM=FB,LRECL=80)
//DD2 DD DISP=(MOD,DELETE),DSN=&QEXOUT,
// UNIT=SYSDA,
// SPACE=(CYL,(10,10)),
// DCB=(RECFM=FB,LRECL=80)
//***
//* Allocate new dataset *
//***
//ALLOC EXEC PGM=IEFBR14
//DD1 DD DISP=(NEW,CATLG),DSN=&QEXOUT,
// SPACE=(CYL,(100,100)),
// DCB=(RECFM=VB,LRECL=1028,BLKSIZE=6144)
//***
//* Execute ACFRPTPP (Report Preprocessor GRO) to extract ACF2*
//* SMF records *
//***
//PRESCAN EXEC PGM=ACFRPTPP
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//RECMAN1 DD DISP=SHR,DSN=&SMFIN
//SMFFLT DD DSN=&SMFOUT,SPACE=(CYL,(100,100)),DISP=(,CATLG),
// DCB=(RECFM=FB,LRECL=8192,BLKSIZE=40960),
// UNIT=SYSSALLDA
//***
//* execute QEXACF2 *
//***
//EXTRACT EXEC PGM=QEXACF2,DYNAMNBR=10,
// TIME=1440
//STEPLIB DD DISP=SHR,DSN=Q1JACK.C.LOAD
//SYSTSIN DD DUMMY
```

CA ACF2 115
Step 8 After the output file is created, you must choose one of the following options:

a Schedule a job to transfer the output file to an interim FTP server.

Each time the job completes, the output file is forwarded to an interim FTP server. You must configure the following parameters in the sample JCL to successfully forward the output to an interim FTP server:

For example:

```asciidoctor
//FTP EXEC PGM=FTP,REGION=3800K
//INPUT DD *
<IPADDR>
<User>
>Password
PUT '<ACFOUT>' EARL_<THEIPOFTHEMAINFRAMEDEVICE>/<ACFOUT>
QUIT
//OUTPUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
/*
```

Where:

<IPADDR> is the IP address or host name of the interim FTP server to receive the output file.

<User> is the user name required to access the interim FTP server.

>Password is the password required to access the interim FTP server.

<THEIPOFTHEMAINFRAMEDEVICE> is the destination of the mainframe or interim FTP server receiving the output.

For example:

```asciidoctor
PUT 'Q1JACK.QEXACF2.OUTPUT.C320' /192.168.1.101/QEXACF2.OUTPUT.C320
<QEXOUTDSN> is the name of the output file saved to the interim FTP server.
You are now ready to create a log source in QRadar. For more information, see Create a log source.

b Schedule QRadar to retrieve the output file from CA ACF2.

If the zOS platform is configured to serve files through FTP, SFTP, or allow SCP, then no interim FTP server is required and QRadar can pull the output file directly from the mainframe. The following text must be commented out using // or deleted from the QexACF2_jcl.txt file:

```plaintext
//FTP EXEC PGM=FTP,REGION=3800K
//INPUT DD *
<IADDR>
<User>
<Pass>
PUT '<ACFOUT>' EARL_</THEIPOFTHEMAINFRAMEDEVICE>/<ACFOUT>
QUIT
//OUTPUT DD SYSOUT=*  
//SYSPRINT DD SYSOUT=*  
```

You are now ready to configure the a log source in QRadar.

Create a log source

A log file protocol source allows QRadar to retrieve archived log files from a remote host.

The CA ACF2 DSM supports the bulk loading of log files using the log file protocol source. When configuring your CA ACF2 DSM to use the log file protocol, make sure the hostname or IP address configured in the CA ACF2 is the same as configured in the Remote Host parameter in the Log File protocol configuration.

To configure a log source in QRadar for CA ACF2:

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
 The Data Sources panel is displayed.
Step 4 Click the Log Sources icon.
 The Log Sources window is displayed.
Step 5 Click Add.
 The Add a log source window is displayed.
Step 6 In the Log Source Name field, type a name for the log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select CA ACF2.
Step 9 From the Protocol Configuration list, select Log File.
Step 10 Configure the following values:
Table 26-2 CA ACF2 Log File Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type an IP address, host name, or name to identify the event source. IP addresses or host names are recommended as they allow QRadar to identify a log file to a unique event source. For example, if your network contains multiple devices, such as multiple z/OS images or a file repository containing all of your event logs, you should specify the IP address or host name of the device that uniquely identifies the log source. This allows events to be identified at the device level in your network, instead of identifying the event for the file repository.</td>
</tr>
<tr>
<td>Service Type</td>
<td>From the list, select the protocol you want to use when retrieving log files from a remote server. The default is SFTP.</td>
</tr>
<tr>
<td></td>
<td>• SFTP - SSH File Transfer Protocol</td>
</tr>
<tr>
<td></td>
<td>• FTP - File Transfer Protocol</td>
</tr>
<tr>
<td></td>
<td>• SCP - Secure Copy</td>
</tr>
<tr>
<td></td>
<td>Note: The underlying protocol used to retrieve log files for the SCP and SFTP service type requires that the server specified in the Remote IP or Hostname field has the SFTP subsystem enabled.</td>
</tr>
<tr>
<td>Remote IP or Hostname</td>
<td>Type the IP address or host name of the device storing your event log files.</td>
</tr>
<tr>
<td>Remote Port</td>
<td>Type the TCP port on the remote host that is running the selected Service Type. The valid range is 1 to 65535.</td>
</tr>
<tr>
<td></td>
<td>The options include:</td>
</tr>
<tr>
<td></td>
<td>• FTP - TCP Port 21</td>
</tr>
<tr>
<td></td>
<td>• SFTP - TCP Port 22</td>
</tr>
<tr>
<td></td>
<td>• SCP - TCP Port 22</td>
</tr>
<tr>
<td></td>
<td>Note: If the host for your event files is using a non-standard port number for FTP, SFTP, or SCP, you must adjust the port value accordingly.</td>
</tr>
<tr>
<td>Remote User</td>
<td>Type the user name necessary to log in to the host containing your event files. The username can be up to 255 characters in length.</td>
</tr>
<tr>
<td>Remote Password</td>
<td>Type the password necessary to log in to the host.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password necessary to log in to the host.</td>
</tr>
<tr>
<td>SSH Key File</td>
<td>If you select SCP or SFTP as the Service Type, this parameter allows you to define an SSH private key file. When you provide an SSH Key File, the Remote Password field is ignored.</td>
</tr>
</tbody>
</table>
Remote Directory: Type the directory location on the remote host from which the files are retrieved, relative to the user account you are using to log in.

Note: For FTP only. If your log files reside in the remote user's home directory, you can leave the remote directory blank. This is to support operating systems where a change in the working directory (CWD) command is restricted.

Recursive: Select this check box if you want the file pattern to search subfolders in the remote directory. By default, the check box is clear.

The Recursive option is ignored if you configure SCP as the Service Type.

FTP File Pattern: If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing.

IBM z/OS mainframe using IBM Security zSecure Audit writes event files using the pattern `zOS.<timestamp>.gz`

The FTP file pattern you specify must match the name you assigned to your event files. For example, to collect files starting with `zOS` and ending with `.gz`, type the following:

```
ACF2.*\.gz
```

Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website:

FTP Transfer Mode: This option only displays if you select FTP as the Service Type. From the list, select **Binary**.

The binary transfer mode is required for event files stored in a binary or compressed format, such as zip, gzip, tar, or tar+gzip archive files.

SCP Remote File: If you select SCP as the Service Type, you must type the file name of the remote file.

Start Time: Type the time of day you want the processing to begin. For example, type `00:00` to schedule the Log File protocol to collect event files at midnight.

This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: `HH:MM`.

Table 26-2 CA ACF2 Log File Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Directory</td>
<td>Type the directory location on the remote host from which the files are retrieved, relative to the user account you are using to log in.</td>
</tr>
<tr>
<td>Recursive</td>
<td>Select this check box if you want the file pattern to search subfolders in the remote directory. By default, the check box is clear.</td>
</tr>
<tr>
<td>FTP File Pattern</td>
<td>If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing. Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website: http://download.oracle.com/javase/tutorial/essential/regex/</td>
</tr>
<tr>
<td>FTP Transfer Mode</td>
<td>This option only displays if you select FTP as the Service Type. From the list, select Binary.</td>
</tr>
<tr>
<td>SCP Remote File</td>
<td>If you select SCP as the Service Type, you must type the file name of the remote file.</td>
</tr>
<tr>
<td>Start Time</td>
<td>Type the time of day you want the processing to begin. For example, type <code>00:00</code> to schedule the Log File protocol to collect event files at midnight. This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: <code>HH:MM</code>.</td>
</tr>
</tbody>
</table>
Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The CA ACF2 configuration is complete. If your configuration requires custom event properties, see the *IBM Security QRadar Custom Event Properties for IBM z/OS technical note*.

Table 26-2 CA ACF2 Log File Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrence</td>
<td>Type the frequency, beginning at the Start Time, that you want the remote directory to be scanned. Type this value in hours (H), minutes (M), or days (D). For example, type 2H if you want the remote directory to be scanned every 2 hours from the start time. The default is 1H.</td>
</tr>
<tr>
<td>Run On Save</td>
<td>Select this check box if you want the log file protocol to run immediately after you click Save. After the Run On Save completes, the log file protocol follows your configured start time and recurrence schedule. Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File parameter.</td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The valid range is 100 to 5000.</td>
</tr>
<tr>
<td>Processor</td>
<td>From the list, select gzip. Processors allow event file archives to be expanded and contents processed for events. Files are only processed after they are downloaded to QRadar. QRadar can process files in zip, gzip, tar, or tar+gzip archive format.</td>
</tr>
<tr>
<td>Ignore Previously Processed File(s)</td>
<td>Select this check box to track and ignore files that have already been processed by the log file protocol. QRadar examines the log files in the remote directory to determine if a file has been previously processed by the log file protocol. If a previously processed file is detected, the log file protocol does not download the file for processing. All files that have not been previously processed are downloaded. This option only applies to FTP and SFTP Service Types.</td>
</tr>
<tr>
<td>Change Local Directory?</td>
<td>Select this check box to define a local directory on your QRadar for storing downloaded files during processing. We recommend that you leave this check box clear. When this check box is selected, the Local Directory field is displayed, which allows you to configure the local directory to use for storing files.</td>
</tr>
<tr>
<td>Event Generator</td>
<td>From the Event Generator list, select LineByLine. The Event Generator applies additional processing to the retrieved event files. Each line of the file is a single event. For example, if a file has 10 lines of text, 10 separate events are created.</td>
</tr>
</tbody>
</table>
CA SiteMinder

The CA SiteMinder DSM collects and categorizes authorization events from CA SiteMinder appliances using syslog-ng.

Supported event types

The CA SiteMinder DSM accepts access and authorization events logged in smaccess.log and forwards the events to QRadar using syslog-ng.

Configure a log source

CA SiteMinder with QRadar QRadar does not automatically discover authorization events forwarded using syslog-ng from CA SiteMinder appliances.

To manually create a CA SiteMinder log source:

Step 1 Click the Admin tab.
Step 2 On the navigation menu, click Data Sources.
The Data Sources panel is displayed.
Step 3 Click the Log Sources icon.
The Log Sources window is displayed.
Step 4 In the Log Source Name field, type a name for your CA SiteMinder log source.
Step 5 In the Log Source Description field, type a description for the log source.
Step 6 From the Log Source Type list, select CA SiteMinder.
Step 7 From the Protocol Configuration list, select Syslog.
The syslog protocol parameters are displayed.

Note: The Log File protocol is displayed in the Protocol Configuration list, however, polling for log files is not a recommended configuration method.

Step 8 Configure the following values:

Table 26-3 Adding a Syslog Log Source

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for your CA SiteMinder appliance.</td>
</tr>
<tr>
<td>Enabled</td>
<td>Select this check box to enable the log source. By default, this check box is selected.</td>
</tr>
<tr>
<td>Credibility</td>
<td>From the list, select the credibility of the log source. The range is 0 to 10. The credibility indicates the integrity of an event or offense as determined by the credibility rating from the source device. Credibility increases if multiple sources report the same event. The default is 5.</td>
</tr>
<tr>
<td>Target Event Collector</td>
<td>From the list, select the Event Collector to use as the target for the log source.</td>
</tr>
</tbody>
</table>
Step 9 Click **Save**.

The **Admin** tab toolbar detects log source changes and displays a message to indicate when you need to deploy a change.

Step 10 On the **Admin** tab, click **Deploy Changes**.

You are now ready to configure syslog-ng on your CA SiteMinder appliance to forward events to QRadar.

Configure Syslog-ng for CA SiteMinder

You must configure your CA SiteMinder appliance to forward syslog-ng events to your QRadar Console or Event Collector.

QRadar can collect syslog-ng events from TCP or UDP syslog sources on port 514.

To configure syslog-ng for CA SiteMinder:

Step 1 Using SSH, log in to your CA SiteMinder appliance as a root user.

Step 2 Edit the syslog-ng configuration file.

```
/etc/syslog-ng.conf
```

Step 3 Add the following information to specify the access log as the event file for syslog-ng:

```
source s_siteminder_access {
  file("/opt/apps/siteminder/sm66/siteminder/log/smaccess.log");
};
```
Step 4 Add the following information to specify the destination and message template:

```
  destination d_remote_q1_siteminder {
          udp("<QRadar IP>") port(514) template ("$PROGRAM $MSG\n");
    };
```

Where `<QRadar IP>` is the IP address of the QRadar Console or Event Collector.

Step 5 Add the following log entry information:

```
  log {
          source(s_siteminder_access);
          destination(d_remote_q1_siteminder);
    };
```

Step 6 Save the syslog-ng.conf file.

Step 7 Type the following command to restart syslog-ng:

```
  service syslog-ng restart
```

After the syslog-ng service restarts, the CA SiteMinder configuration is complete. Events forwarded to QRadar by CA SiteMinder are displayed on the Log Activity tab.

CA Top Secret

IBM Security QRadar includes two options for integrating CA Top Secret events:

- Integrate CA Top Secret with QRadar using IBM Security zSecure
- Integrate CA Top Secret with QRadar using audit scripts

Integrate CA Top Secret with QRadar using IBM Security zSecure

The CA Top Secret DSM allows you to integrate LEEF events from a Top Secret image on an IBM z/OS mainframe using IBM Security zSecure.

Using a zSecure process, events from the System Management Facilities (SMF) are recorded to an event file in the Log Enhanced Event format (LEEF). QRadar retrieves the LEEF event log files using the log file protocol and processes the events. You can schedule QRadar to retrieve events on a polling interval, which allows QRadar to retrieve the events on the schedule you have defined.
To integrate CA Top Secret events:

1. Confirm your installation meets any prerequisite installation requirements.
2. Configure your CA Top Secret z/OS image to write events in LEEF format. For more information, see the IBM Security zSecure Suite: CARLa-Driven Components Installation and Deployment Guide.
3. Create a log source in QRadar for CA Top Secret to retrieve your LEEF formatted event logs.
4. Optional. Create a custom event property for CA Top Secret in QRadar. For more information, see the IBM Security QRadar Custom Event Properties for IBM z/OS technical note.

Before you begin

Before you can configure the data collection process, you must complete the basic zSecure installation process.

The following prerequisites are required:

- You must ensure parmlib member IFAPRDxx is not disabled for IBM Security zSecure Audit on your z/OS image.
- The SCKRLOAD library must be APF-authorized.
- You must configure a process to periodically refresh your CKFREEZE and UNLOAD data sets.
- You must configure an SFTP, FTP, or SCP server on your z/OS image for QRadar to download your LEEF event files.
- You must allow SFTP, FTP, or SCP traffic on firewalls located between QRadar and your z/OS image.

After installing the software, you must also perform the post-installation activities to create and modify the configuration. For instructions on installing and configuring zSecure, see the IBM Security zSecure Suite: CARLa-Driven Components Installation and Deployment Guide.

Create a log source

The Log File protocol allows QRadar to retrieve archived log files from a remote host.

Log files are transferred, one at a time, to QRadar for processing. The log file protocol can manage plain text event logs, compressed files, or archives. Archives must contain plain-text files that can be processed one line at a time. Multi-line event logs are not supported by the log file protocol. IBM z/OS with zSecure writes log files to a specified directory as gzip archives. QRadar extracts the archive and processes the events, which are written as one event per line in the file.

To retrieve these events, you must create a log source using the Log File protocol. QRadar requires credentials to log in to the system hosting your LEEF formatted event files and a polling interval.
To configure a log source in QRadar for CA Top Secret:

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

The Data Sources panel is displayed.

Step 4 Click the **Log Sources** icon.

The Log Sources window is displayed.

Step 5 Click **Add**.

The Add a log source window is displayed.

Step 6 In the **Log Source Name** field, type a name for the log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **CA Top Secret**.

Step 9 From the **Protocol Configuration** list, select **Log File**.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type an IP address, host name, or name to identify the event source. IP addresses or host names are recommended as they allow QRadar to identify a log file to a unique event source.</td>
</tr>
<tr>
<td></td>
<td>For example, if your network contains multiple devices, such as multiple z/OS images or a file repository containing all of your event logs, you should specify the IP address or host name of the device that uniquely identifies the log source. This allows events to be identified at the device level in your network, instead of identifying the event for the file repository.</td>
</tr>
<tr>
<td>Service Type</td>
<td>From the list, select the protocol you want to use when retrieving log files from a remote server. The default is SFTP.</td>
</tr>
</tbody>
</table>
| | • **SFTP** - SSH File Transfer Protocol
 • **FTP** - File Transfer Protocol
 • **SCP** - Secure Copy
 Note: The underlying protocol used to retrieve log files for the SCP and SFTP service type requires that the server specified in the Remote IP or Hostname field has the SFTP subsystem enabled. |
| Remote IP or Hostname | Type the IP address or host name of the device storing your event log files. |
Remote Port: Type the TCP port on the remote host that is running the selected Service Type. The valid range is 1 to 65535. The options include:
- FTP - TCP Port 21
- SFTP - TCP Port 22
- SCP - TCP Port 22

Note: If the host for your event files is using a non-standard port number for FTP, SFTP, or SCP, you must adjust the port value accordingly.

Remote User: Type the user name necessary to log in to the host containing your event files. The username can be up to 255 characters in length.

Remote Password: Type the password necessary to log in to the host.

Confirm Password: Confirm the password necessary to log in to the host.

SSH Key File: If you select SCP or SFTP as the Service Type, this parameter allows you to define an SSH private key file. When you provide an SSH Key File, the Remote Password field is ignored.

Remote Directory: Type the directory location on the remote host from which the files are retrieved, relative to the user account you are using to log in.

Note: For FTP only. If your log files reside in the remote user’s home directory, you can leave the remote directory blank. This is to support operating systems where a change in the working directory (CWD) command is restricted.

Recursive: Select this check box if you want the file pattern to search subfolders in the remote directory. By default, the check box is clear. The Recursive option is ignored if you configure SCP as the Service Type.
Table 26-4 CA Top Secret Log File Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP File Pattern</td>
<td>If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing. IBM z/OS mainframe using IBM Security zSecure Audit writes event files using the pattern TSS.<timestamp>.gz. The FTP file pattern you specify must match the name you assigned to your event files. For example, to collect files starting with TSS and ending with .gz, type the following: TSS...gz. Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website: http://download.oracle.com/javase/tutorial/essential/regex/</td>
</tr>
<tr>
<td>FTP Transfer Mode</td>
<td>This option only displays if you select FTP as the Service Type. From the list, select Binary. The binary transfer mode is required for event files stored in a binary or compressed format, such as zip, gzip, tar, or tar+gzip archive files.</td>
</tr>
<tr>
<td>SCP Remote File</td>
<td>If you select SCP as the Service Type you must type the file name of the remote file.</td>
</tr>
<tr>
<td>Start Time</td>
<td>Type the time of day you want the processing to begin. For example, type 00:00 to schedule the Log File protocol to collect event files at midnight. This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: HH:MM.</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Type the frequency, beginning at the Start Time, that you want the remote directory to be scanned. Type this value in hours (H), minutes (M), or days (D). For example, type 2H if you want the remote directory to be scanned every 2 hours from the start time. The default is 1H.</td>
</tr>
<tr>
<td>Run On Save</td>
<td>Select this check box if you want the log file protocol to run immediately after you click Save. After the Run On Save completes, the log file protocol follows your configured start time and recurrence schedule. Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File parameter.</td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The valid range is 100 to 5000.</td>
</tr>
</tbody>
</table>
The CA Top Secret configuration is complete. If your configuration requires custom event properties, see the *IBM Security QRadar Custom Event Properties for IBM z/OS* technical note.

Integrate CA Top Secret with QRadar using audit scripts

The CA Top Secret DSM allows you to integrate with an IBM zOS mainframe to collect events and audit transactions.

QRadar records all relevant and available information from the event.
To integrate CA Top Secret events into QRadar:

1. The IBM mainframe records all security events as Service Management Framework (SMF) records in a live repository.

2. At midnight, the CA Top Secret data is extracted from the live repository using the SMF dump utility. The SMF file contains all of the events and fields from the previous day in raw SMF format.

3. The `qextopsloadlib` program pulls data from the SMF formatted file. The `qextopsloadlib` program only pulls the relevant events and fields for QRadar and writes that information in a condensed format for compatibility. The information is saved in a location accessible by QRadar.

4. QRadar uses the log file protocol source to retrieve the output file information on a scheduled basis. QRadar then imports and processes this file.

Configure CA Top Secret to integrate with QRadar

To integrate CA Top Secret with QRadar:

Step 1

From the IBM support website (http://www.ibm.com/support), download the following compressed file:

```
qextops_bundled.tar.gz
```

Step 2

On a Linux-based operating system, extract the file:

```
tar -zxvf qextops_bundled.tar.gz
```

The following files are contained in the archive:

- `qextops_jcl.txt`
- `qextopsloadlib.trs`
- `qextops_trsmain_JCL.txt`

Step 3

Load the files onto the IBM mainframe using any terminal emulator file transfer method.

- **a** Upload the sample `qextops_trsmain_JCL.txt` and `qextops_jcl.txt` files using the TEXT protocol.

- **b** Upload the `qextopsloadlib.trs` file using a BINARY mode transfer. The `qextopsloadlib.trs` file is a tersed file containing the executable (the mainframe program qextops). When you upload the `.trs` file from a workstation, pre-allocate a file on the mainframe with the following DCB attributes:

  ```
  DSORG=PS, RECFM=FB, LRECL=1024, BLKSIZE=6144.
  ```

 The file transfer type must be binary mode and not text.

Note: Qextops is a small C mainframe program that reads the output of the TSSUTIL (EARLOUT data) line by line. Qextops adds a header to each record containing event information, for example, record descriptor, the date, and time. The program places each field into the output record, suppresses trailing blank characters, and delimits each field with the pipe character. This output file is formatted for QRadar and the blank suppression reduces network traffic to QRadar. This program does not consume CPU or I/O disk resources.
Step 4 Customize the `qextops_trsmain_JCL.txt` file according to your installation-specific requirements.

The `qextops_trsmain_JCL.txt` file uses the IBM utility TRSMAIN to extract the program stored in the `qextopsloadlib.trs` file.

An example of the `qextops_trsmain_JCL.txt` file includes:

```plaintext
//TRSMAIN JOB (yourvalidjobcard),Q1labs,
// MSGCLASS=V
//DEL EXEC PGM=IEFBR14
//D1 DD DISP=(MOD,DELETE),DSN=<yourhlq>.QEXTOPS.TRS
//       UNIT=SYSDA,
//       SPACE=(CYL,(10,10))
//TRSMAIN EXEC PGM=TRSMAIN,PARM='UNPACK'
//SYSPRINT DD SYSOUT=*,DCB=(LRECL=133,BLKSIZE=12901,RECFM=FBA)
//INFILE DD DISP=SHR,DSN=<yourhlq>.QEXTOPS.TRS
//OUTFILE DD DISP=(NEW,CATLG,DELETE),
//         DSN=<yourhlq>.LOAD,
//         SPACE=(CYL,(10,10,5),RLSE),UNIT=SYSDA
//
```

You must update the file with your installation specific information for parameters, for example, jobcard, data set naming conventions, output destinations, retention periods, and space requirements.

The .trs input file is an IBM TERSE formatted library and is extracted by running the JCL, which calls the TRSMAIN. This tersed file, when extracted, creates a PDS linklib with the `qextops` program as a member.

Step 5 You can STEPLIB to this library or choose to move the program to one of the LINKLIBs that are in the LINKLST. The program does not require authorization.

Step 6 After uploading, copy the program to an existing link listed library or add a STEPLIB DD statement with the correct dataset name of the library that will contain the program.

Step 7 The `qextops_jcl.txt` file is a text file containing a sample JCL. You must configure the job card to meet your configuration.

The `qextops_jcl.txt` sample file includes:

```plaintext
//QEXTOPS JOB (T,JXPO,JKSD0093),DEV,NOTIFY=Q1JACK,
// MSGCLASS=P,
// REGION=0M
//*
//*QEXTOPS  JCL version 1.0  September, 2010
//*
//******************************************************************************
//* Change below dataset names to sites specific datasets names*
//******************************************************************************
//SET1 SET TSSOUT='Q1JACK.EARLOUT.ALL',
//       EARLOUT='Q1JACK.QEXTOPS.PROGRAM.OUTPUT'
//******************************************************************************
//* Delete old datasets*
//******************************************************************************
```
//DEL EXEC PGM=IEFBR14
//DD1 DD DISP=(MOD,DELETE),DSN=&TSSOUT,
// UNIT=SYSDA,
// SPACE=(CYL,(10,10)),
// DCB=(RECFM=FB,LRECL=80)
//DD2 DD DISP=(MOD,DELETE),DSN=&EARLOUT,
// UNIT=SYSDA,
// SPACE=(CYL,(10,10)),
// DCB=(RECFM=FB,LRECL=80)

#**
/* Allocate new dataset */
#**
//ALLOC EXEC PGM=IEFBR14
//DD1 DD DISP=(NEW,CATLG),DSN=&EARLOUT,
// SPACE=(CYL,(100,100)),
// DCB=(RECFM=VB,LRECL=1028,BKSIZE=6144)
#**
/* Execute Top Secret TSSUTIL utility to extract smf records */
#**
//REPORT EXEC PGM=TSSUTIL
//SMFIN DD DISP=SHR,DSN=&SMFIN1
//SMFIN1 DD DISP=SHR,DSN=&SMFIN2
//UTILOUT DD DSN=&UTILOUT,
// DISP=(,CATLG),UNIT=SYSDA,SPACE=(CYL,(50,10),RLSE),
// DCB=(RECFM=FB,LRECL=133,BKSIZE=0)
//EARLOUT DD DSN=&TSSOUT,
// DISP=(NEW,CATLG),UNIT=SYSDA,
// SPACE=(CYL,(200,100),RLSE),
// DCB=(RECFM=VB,LRECL=456,BKSIZE=27816)
//UTILIN DD *

NOLEGEND
REPORT EVENT(ALL) END

#**
/* EXTRACT EXEC PGM=QEXTOPS,DYNAMNBR=10,*/
//TIME=1440
//STEPLIB DD DISP=SHR,DSN=Q1JACK.C.LOAD
//SYSTSIN DD DUMMY
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//CFG DD DUMMY
//EARLIN DD DISP=SHR,DSN=&TSSOUT
//EARLOUT DD DISP=SHR,DSN=&EARLOUT
#**
//FTP EXEC PGM=FTP,REGION=3800K
//INPUT DD *
<IPADDR>
<User>
<Password>
PUT '<EARLOUT>' EARL_<THEIPOFTHEMAINFRAMEDEVICE>/<EARLOUT>
Step 8 After the output file is created, you must choose one of the following options:

a Schedule a job to transfer the output file to an interim FTP server.

Each time the job completes, the output file is forwarded to an interim FTP server. You must configure the following parameters in the sample JCL to successfully forward the output to an interim FTP server:

For example:

```
//FTP EXEC PGM=FTP,REGION=3800K
//INPUT DD *
<IPADDR>
<User>
<Password>
PUT '<EARLOUT>' EARL_<THEIPOFTHEMAINFRAMEDEVICE>/<EARLOUT>
QUIT
//OUTPUT DD SYSOUT=*  
//SYSPRINT DD SYSOUT=* 
```

Where:

- `<IPADDR>` is the IP address or host name of the interim FTP server to receive the output file.
- `<USER>` is the user name required to access the interim FTP server.
- `<PASSWORD>` is the password required to access the interim FTP server.
- `<THEIPOFTHEMAINFRAMEDEVICE>` is the destination of the mainframe or interim FTP server receiving the output.

For example:

```
PUT 'Q1JACK.QEXTOPS.OUTPUT.C320' /192.168.1.101/CA/QEXTOPS.OUTPUT.C320
```

- `<QEXITDSN>` is the name of the output file saved to the interim FTP server.

You are now ready to configure the Log File protocol. See Create a log source.

b Schedule QRadar to retrieve the output file from CA Top Secret.

If the zOS platform is configured to serve files through FTP, SFTP, or allow SCP, then no interim FTP server is required and QRadar can pull the output file directly from the mainframe. The following text must be commented out using //* or deleted from the qextops_jcl.txt file:

```
//FTP EXEC PGM=FTP,REGION=3800K
//INPUT DD *
<IPADDR>
<User>
<Password>
PUT '<EARLOUT>' EARL_<THEIPOFTHEMAINFRAMEDEVICE>/<EARLOUT>
QUIT
```
//OUTPUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*

You are now ready to configure the Log File protocol. See Create a log source.

Create a log source

A log file protocol source allows QRadar to retrieve archived log files from a remote host. The CA Top Secret DSM supports the bulk loading of log files using the log file protocol source.

When configuring your CA Top Secret DSM to use the log file protocol, make sure the hostname or IP address configured in the CA Top Secret is the same as configured in the Remote Host parameter in the Log File Protocol configuration.

To configure a log source in QRadar for CA Top Secret:

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
The Data Sources panel is displayed.
Step 4 Click the Log Sources icon.
The Log Sources window is displayed.
Step 5 Click Add.
The Add a log source window is displayed.
Step 6 In the Log Source Name field, type a name for the log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select CA Top Secret.
Step 9 From the Protocol Configuration list, select Log File.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 26-5 CA Top Secret Log File Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
</tbody>
</table>
From the list, select the protocol you want to use when retrieving log files from a remote server. The default is SFTP.

- **SFTP** - SSH File Transfer Protocol
- **FTP** - File Transfer Protocol
- **SCP** - Secure Copy

Note: The underlying protocol used to retrieve log files for the SCP and SFTP service type requires that the server specified in the **Remote IP or Hostname** field has the SFTP subsystem enabled.

Type the IP address or host name of the device storing your event log files.

Type the TCP port on the remote host that is running the selected Service Type. The valid range is 1 to 65535.

The options include:

- **FTP** - TCP Port 21
- **SFTP** - TCP Port 22
- **SCP** - TCP Port 22

Note: If the host for your event files is using a non-standard port number for FTP, SFTP, or SCP, you must adjust the port value accordingly.

Type the user name necessary to log in to the host containing your event files.

The username can be up to 255 characters in length.

Type the password necessary to log in to the host.

Confirm the password necessary to log in to the host.

If you select SCP or SFTP as the Service Type, this parameter allows you to define an SSH private key file. When you provide an SSH Key File, the **Remote Password** field is ignored.

Type the directory location on the remote host from which the files are retrieved, relative to the user account you are using to log in.

Note: For FTP only. If your log files reside in the remote user’s home directory, you can leave the remote directory blank. This is to support operating systems where a change in the working directory (CWD) command is restricted.

Select this check box if you want the file pattern to search subfolders in the remote directory. By default, the check box is clear.

The Recursive option is ignored if you configure SCP as the Service Type.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Type</td>
<td>From the list, select the protocol you want to use when retrieving log files from a remote server. The default is SFTP.</td>
</tr>
<tr>
<td>Remote IP or Hostname</td>
<td>Type the IP address or host name of the device storing your event log files.</td>
</tr>
<tr>
<td>Remote Port</td>
<td>Type the TCP port on the remote host that is running the selected Service Type. The valid range is 1 to 65535.</td>
</tr>
<tr>
<td>Remote User</td>
<td>Type the user name necessary to log in to the host containing your event files. The username can be up to 255 characters in length.</td>
</tr>
<tr>
<td>Remote Password</td>
<td>Type the password necessary to log in to the host.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password necessary to log in to the host.</td>
</tr>
<tr>
<td>SSH Key File</td>
<td>If you select SCP or SFTP as the Service Type, this parameter allows you to define an SSH private key file. When you provide an SSH Key File, the Remote Password field is ignored.</td>
</tr>
<tr>
<td>Remote Directory</td>
<td>Type the directory location on the remote host from which the files are retrieved, relative to the user account you are using to log in.</td>
</tr>
<tr>
<td>Recursive</td>
<td>Select this check box if you want the file pattern to search subfolders in the remote directory. By default, the check box is clear. The Recursive option is ignored if you configure SCP as the Service Type.</td>
</tr>
</tbody>
</table>
FTP File Pattern

If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing.

The FTP file pattern you specify must match the name you assigned to your event files.

Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website:

http://download.oracle.com/javase/tutorial/essential/regex/

FTP Transfer Mode

This option only displays if you select FTP as the Service Type. From the list, select **Binary**.

The binary transfer mode is required for event files stored in a binary or compressed format, such as zip, gzip, tar, or tar+gzip archive files.

SCP Remote File

If you select SCP as the Service Type you must type the file name of the remote file.

Start Time

Type the time of day you want the processing to begin. For example, type 00:00 to schedule the Log File protocol to collect event files at midnight.

This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: HH:MM.

Recurrence

Type the frequency, beginning at the Start Time, that you want the remote directory to be scanned. Type this value in hours (H), minutes (M), or days (D).

For example, type 2H if you want the remote directory to be scanned every 2 hours from the start time. The default is 1H.

Run On Save

Select this check box if you want the log file protocol to run immediately after you click **Save**.

After the Run On Save completes, the log file protocol follows your configured start time and recurrence schedule.

Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File parameter.

EPS Throttle

Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The valid range is 100 to 5000.

Processor

From the list, select **gzip**.

Processors allow event file archives to be expanded and contents processed for events. Files are only processed after they are downloaded to QRadar. QRadar can process files in zip, gzip, tar, or tar+gzip archive format.

Table 26-5 CA Top Secret Log File Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP File Pattern</td>
<td>If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing. The FTP file pattern you specify must match the name you assigned to your event files. Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website: http://download.oracle.com/javase/tutorial/essential/regex/.</td>
</tr>
<tr>
<td>FTP Transfer Mode</td>
<td>This option only displays if you select FTP as the Service Type. From the list, select Binary. The binary transfer mode is required for event files stored in a binary or compressed format, such as zip, gzip, tar, or tar+gzip archive files.</td>
</tr>
<tr>
<td>SCP Remote File</td>
<td>If you select SCP as the Service Type you must type the file name of the remote file.</td>
</tr>
<tr>
<td>Start Time</td>
<td>Type the time of day you want the processing to begin. For example, type 00:00 to schedule the Log File protocol to collect event files at midnight. This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: HH:MM.</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Type the frequency, beginning at the Start Time, that you want the remote directory to be scanned. Type this value in hours (H), minutes (M), or days (D). For example, type 2H if you want the remote directory to be scanned every 2 hours from the start time. The default is 1H.</td>
</tr>
<tr>
<td>Run On Save</td>
<td>Select this check box if you want the log file protocol to run immediately after you click Save. After the Run On Save completes, the log file protocol follows your configured start time and recurrence schedule. Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File parameter.</td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The valid range is 100 to 5000.</td>
</tr>
<tr>
<td>Processor</td>
<td>From the list, select gzip. Processors allow event file archives to be expanded and contents processed for events. Files are only processed after they are downloaded to QRadar. QRadar can process files in zip, gzip, tar, or tar+gzip archive format.</td>
</tr>
</tbody>
</table>
Table 26-5 CA Top Secret Log File Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Ignore Previously Processed File(s) | Select this check box to track and ignore files that have already been processed by the log file protocol.
QRadar examines the log files in the remote directory to determine if a file has been previously processed by the log file protocol. If a previously processed file is detected, the log file protocol does not download the file for processing. All files that have not been previously processed are downloaded.
This option only applies to FTP and SFTP Service Types. |
| Change Local Directory? | Select this check box to define a local directory on your QRadar for storing downloaded files during processing.
We recommend that you leave this check box clear. When this check box is selected, the Local Directory field is displayed, which allows you to configure the local directory to use for storing files. |
| Event Generator | From the Event Generator list, select LineByLine.
The Event Generator applies additional processing to the retrieved event files. Each line of the file is a single event. For example, if a file has 10 lines of text, 10 separate events are created. |

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The CA Top Secret configuration is complete. If your configuration requires custom event properties, see the IBM Security QRadar Custom Event Properties for IBM z/OS technical note.
This section provides information on the following DSMs for IBM Security QRadar:

- Check Point FireWall-1
- Check Point Provider-1

Check Point FireWall-1

You can configure QRadar to integrate with a Check Point FireWall-1 device using one of the following methods:

- Integrating Check Point FireWall-1 using OPSEC
- Integrating Check Point FireWall-1 using syslog
- Integrating Check Point Firewall events from external syslog forwarders

Note: Depending on your Operating System, the procedures for the Check Point FireWall-1 device might vary. The following procedures are based on the Check Point SecurePlatform Operating system.

Integrating Check Point FireWall-1 using OPSEC

This section describes how to ensure that QRadar accepts Check Point FireWall-1 events using Open Platform for Security (OPSEC/LEA).

To integrate Check Point OPSEC/LEA with QRadar, you must create two Secure Internal Communication (SIC) files and enter the information into QRadar as a Check Point Firewall-1 log source.
Check Point Firewall-1 configuration overview
To integrate Check Point Firewall-1 with QRadar, you must complete the following procedures in sequence:

1. Add QRadar as a host for Check Point Firewall-1.
2. Add an OPSEC application to Check Point Firewall-1.
3. Locate the Log Source Secure Internal Communications DN.
4. In QRadar, configure the OPSEC LEA protocol.
5. Verify the OPSEC/LEA communications configuration.

Adding a Check Point Firewall-1 Host
To add QRadar as a host in Check Point Firewall-1 SmartCenter:

Step 1 Log in to the Check Point SmartDashboard user interface.
Step 2 Select *Manage > Network Objects > New > Node > Host*.
Step 3 Type parameters for your Check Point Firewall-1 host:
 - **Name:** QRadar
 - **IP Address:** <IP address of QRadar>
 - **Comment:** <Optional>

Step 4 Click **OK**.
Step 5 Select **Close**.
You are now ready to create an OPSEC Application Object for Check Point Firewall-1.

Creating an OPSEC Application Object
To create the OPSEC Application Object:

Step 1 Open the Check Point SmartDashboard user interface.
Step 2 Select *Manage > Servers and OPSEC applications > New > OPSEC Application Properties*.
Step 3 Assign a name to the OPSEC Application Object.
 For example:
   ```
   QRadar-OPSEC
   ```
 The OPSEC Application Object name must be different than the host name you typed when creating the node.
 a. From the **Host** list, select **QRadar**.
 b. From the **Vendor** list, select **User Defined**.
 c. In Client Entities, select the **LEA** check box.
 d. To generate a Secure Internal Communication (SIC) DN, click **Communication**.
 e. Enter an activation key.
Note: The activation key is a password used to generate the SIC DN. When you configure your Check Point log source in QRadar, the activation key is typed into the Pull Certificate Password parameter.

f Click Initialize.

The window updates the Trust state from Uninitialized to Initialized but trust not established.

g Click Close.

The OPSEC Application Properties window is displayed.

h Write down or copy the displayed SIC DN to a text file.

Note: The displayed SIC value is required for the OPSEC Application Object SIC Attribute parameter when you configure the Check Point log source in QRadar. The OPSEC Application Object SIC resembles the following example:

CN=QRadar-OPSEC,O=cpmodule..tdfaaz.

You are now ready to locate the log source SIC for Check Point Firewall-1.

Locating the log source SIC

To locate the Log Source SIC from the Check Point SmartDashboard:

Step 1 Select Manage > Network Objects.

Step 2 Select your Check Point Log Host object.

Note: You must know if the Check Point Log Host is a separate object in your configuration from the Check Point Management Server. In most cases, the Check Point Log Host is the same object as the Check Point Management Server.

Step 3 Click Edit.

The Check Point Host General Properties window is displayed.

Step 4 Copy the Secure Internal Communication (SIC).

Note: Depending on your Check Point version, the Communication button might not be available to display the SIC attribute. You can locate the SIC attribute from the Check Point Management Server command-line interface. You must use the cpca_client lscert command from the command-line interface of the Management Server to display all certificates. The Log Source SIC Attribute resembles the following example: cn=cp_mgmt,o=cpmodule...tdfaaz. For more information, see your Check Point Command Line Interface Guide.

You must now install the Security Policy from the Check Point SmartDashboard user interface.

Step 5 Select Policy > Install > OK.

You are now ready to configure the OPSEC LEA protocol.
Configuring an OPSEC/LEA log source in QRadar

To configure the log source in QRadar:

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 Click the **Log Sources** icon.

Step 4 Click **Add**.

Step 5 In the **Log Source Name** field, type a name for your log source.

Step 6 In the **Log Source Description** field, type a description for the log source.

Step 7 From the **Log Source Type** list, select **Check Point FireWall-1**.

Step 8 Using the **Protocol Configuration** list, select **OPSEC/LEA**.

Step 9 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address for the log source. This value must match the value configured in the Server IP parameter. The log source identifier must be unique for the log source type.</td>
</tr>
<tr>
<td>Server IP</td>
<td>Type the IP address of the Check Point host or Check Point Management Server IP.</td>
</tr>
<tr>
<td>Server Port</td>
<td>Type the port used for OPSEC communication. Administrators must ensure the existing firewall policy permits the LEA/OPSEC connection from your QRadar.</td>
</tr>
<tr>
<td>Use Server IP for Log Source</td>
<td>Select this check box if you want to use the LEA server’s IP address instead of the managed device’s IP address for a log source. By default, the check box is selected.</td>
</tr>
<tr>
<td>Statistics Report Interval</td>
<td>Type the interval, in seconds, during which the number of syslog events are recorded in the qradar.log file. The valid range is 4 to 2,147,483,648 and the default is 600.</td>
</tr>
<tr>
<td>Authentication Type</td>
<td>From the list, select the authentication type you want to use for this LEA configuration. The options include:</td>
</tr>
<tr>
<td></td>
<td>• sslca (default)</td>
</tr>
<tr>
<td></td>
<td>• sslca_clear</td>
</tr>
<tr>
<td></td>
<td>• clear</td>
</tr>
<tr>
<td></td>
<td>This value must match the authentication method configured on the Check Point Firewall or Check Point custom log management server.</td>
</tr>
<tr>
<td>OPSEC Application Object</td>
<td>Type the Secure Internal Communications (SIC) name of the OPSEC Application Object. The SIC name is the distinguished name (DN) of the application, for example: CN=LEA, o=fwconsole..?psasx.</td>
</tr>
</tbody>
</table>
Step 10 Click **Save**.

Step 11 On the **Admin** tab, click **Deploy Changes**.

You are now ready to verify your OPSEC/LEA communications for Check Point FireWall-1.

Editing your OPSEC communications configuration

This section describes how to modify your Check Point FireWall-1 configuration to allow OPSEC communications on non-standard ports, configure communications in a clear text, un-authenticated stream, and verify the configuration in QRadar.

Changing your Check Point Custom Log Manager (CLM) IP address

If your Check Point configuration includes a Check Point Custom Log Manager (CLM), you might eventually need to change the IP address for the CLM, which impacts any of the automatically discovered Check Point log sources from that CLM in QRadar. This is because when you manually add the log source for the CLM using the OPSEC/LEA protocol, then all Check Point firewalls that forward logs to the CLM are automatically discovered by QRadar. These automatically discovered log sources cannot be edited. If the CLM IP address changes, you must edit the original Check Point CLM log source that contains the OPSEC/LEA protocol configuration and update the server IP address and log source identifier.

After you update the log source for the new Check Point CLM IP address, then any new events reported from the automatically discovered Check Point log sources are updated.

Note: Do not delete and recreate your Check Point CLM or automatically discovered log sources in QRadar. Deleting a log source does not delete event data, but can make finding previously recorded events more difficult to find.

Table 27-6 OPSEC/LEA protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source SIC Attribute (Entity SIC Name)</td>
<td>Type the SIC name for the server generating log sources. For example: <code>cn=cp_mgmt,o=fwconsole..7psasx</code></td>
</tr>
<tr>
<td>Specify Certificate</td>
<td>Select this check box to define a certificate for this LEA configuration.</td>
</tr>
<tr>
<td>Certificate Filename</td>
<td>Type the directory path of the certificate you want to use for this configuration.</td>
</tr>
<tr>
<td>Certificate Authority IP</td>
<td>Type the IP address of the SmartCenter server from which you want to pull your certificate.</td>
</tr>
<tr>
<td>Pull Certificate Password</td>
<td>Type the password you want to use when requesting a certificate.</td>
</tr>
<tr>
<td>OPSEC Application</td>
<td>Type the name of the application you want to use when requesting a certificate. This value can be up to 255 characters in length.</td>
</tr>
</tbody>
</table>
To update your Check Point OPSEC log source:

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 Select the original Check Point CLM log source containing the OPSEC/LEA protocol configuration and click **Edit**.

Step 6 In the **Log Source Identifier** field, type a new identifying name of your Check Point CLM.

Step 7 In the **Server IP** field, type the new IP address of your Check Point CLM.

Step 8 Click **Save**.

The IP address update for your Check Point CLM in QRadar is complete.

Changing the default port for OPSEC LEA communication

To change the default port on which OPSEC LEA communicates (that is, port 18184):

Step 1 At the command-line prompt of your Check Point SmartCenter Server, type the following command to stop the firewall services:

```
cpstop
```

Step 2 Depending on your Check Point SmartCenter Server operating system, open the following file:

- **Linux** - `$FWDIR\conf\fwopsec.conf`
- **Windows** - `%FWDIR%\conf\fwopsec.conf`

The default contents of this file are as follows:

```
# The VPN-1/FireWall-1 default settings are:
#
# sam_server  auth_port  0
# sam_server   port   18183
#
# lea_server  auth_port   18184
# lea_server   port   0
#
# ela_server  auth_port   18187
# ela_server   port   0
#
# cpmi_server auth_port   18190
#
# uaa_server  auth_port  19191
# uaa_server   port   0
#
```

Step 3 Change the default lea_server auth_port from 18184 to another port number.

Step 4 Remove the hash (#) mark from that line.
For example:
```plaintext
lea_server auth_port 18888
# lea_server port 0
```

Step 5 Save and close the file.

Step 6 Type the following command to start the firewall services:
```plaintext
cpstart
```

Configuring OPSEC LEA for un-encrypted communications

To configure the OPSEC LEA protocol for un-encrypted communications:

Step 1 At the command-line prompt of your Check Point SmartCenter Server, stop the firewall services by typing the following command:
```plaintext
cpstop
```

Step 2 Depending on your Check Point SmartCenter Server operating system, open the following file:
- **Linux** - `$FWDIR/conf/fwopsec.conf`
- **Windows** - `%FWDIR%\conf\fwopsec.conf`

Step 3 Change the default `lea_server auth_port` from 18184 to 0.

Step 4 Change the default `lea_server port` from 0 to 18184.

Step 5 Remove the hash (#) marks from both lines.

For example:
```plaintext
lea_server auth_port 0
lea_server port 18184
```

Step 6 Save and close the file.

Step 7 Type the following command to start the firewall services:
```plaintext
cpstart
```

Step 8 You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Check Point Firewall-1 device:

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 Click **Add**.

Step 6 From the **Log Source Type** list, select **Check Point FireWall-1**.

Step 7 Using the **Protocol Configuration** list, select **OPSEC/LEA**.

Step 8 Configure the following parameters:
Table 27-7 OPSEC/LEA protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address for the log source. This value must match the value configured in the Server IP parameter. The log source identifier must be unique for the log source type.</td>
</tr>
<tr>
<td>Server IP</td>
<td>Type the IP address of the server.</td>
</tr>
<tr>
<td>Server Port</td>
<td>Type the port used for OPSEC communication. The valid range is 0 to 65,536 and the default is 18184.</td>
</tr>
<tr>
<td>Use Server IP for Log Source</td>
<td>Select this check box if you want to use the LEA server’s IP address instead of the managed device’s IP address for a log source. By default, the check box is selected.</td>
</tr>
<tr>
<td>Statistics Report Interval</td>
<td>Type the interval, in seconds, during which the number of syslog events are recorded in the qradar.log file. The valid range is 4 to 2,147,483,648 and the default is 600.</td>
</tr>
</tbody>
</table>
Step 9 Click **Save**.

Step 10 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.

Table 27-7 OPSEC/LEA protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication Type</td>
<td>From the list, select the authentication type you want to use for this LEA configuration. The options are sslca (default), sslca_clear, or clear. This value must match the authentication method used by the server. The following parameters appear if sslca or sslca_clear is selected as the authentication type.</td>
</tr>
<tr>
<td></td>
<td>OPSEC Application Object SIC Attribute (SIC Name) - Type the Secure Internal Communications (SIC) name of the OPSEC Application Object. The SIC name is the distinguished name (DN) of the application, for example: CN=LEA, o=fwconsole..7psasx. The name can be up to 255 characters in length and is case sensitive.</td>
</tr>
<tr>
<td></td>
<td>Log Source SIC Attribute (Entity SIC Name) - Type the SIC name of the server, for example: cn=cp_mgmt,o=fwconsole..7psasx. The name can be up to 255 characters in length and is case sensitive.</td>
</tr>
<tr>
<td></td>
<td>Specify Certificate - Select this check box if you want to define a certificate for this LEA configuration. QRadar attempts to retrieve the certificate using these parameters when the certificate is required. If you select the Specify Certificate check box, the Certificate Filename parameter is displayed:</td>
</tr>
<tr>
<td></td>
<td>Certificate Filename - This option only appears if Specify Certificate is selected. Type the directory path of the certificate you want to use for this configuration. If you clear the Specify Certificate check box, the following parameters appear:</td>
</tr>
<tr>
<td></td>
<td>Certificate Authority IP - Type the IP address of the SmartCenter server from which you want to pull your certificate.</td>
</tr>
<tr>
<td></td>
<td>Pull Certificate Password - Type the password you want to use when requesting a certificate. The password can be up to 255 characters in length.</td>
</tr>
<tr>
<td></td>
<td>OPSEC Application - Type the name of the application you want to use when requesting a certificate. This value can be up to 255 characters in length.</td>
</tr>
</tbody>
</table>
Integrating Check Point FireWall-1 using syslog

This section describes how to ensure that the QRadar Check Point FireWall-1 DSMs accepts FireWall-1 events using syslog.

Configuring Syslog for Check Point FireWall-1

Before you configure QRadar to integrate with a Check Point FireWall-1 device:

Note: If Check Point SmartCenter is installed on Microsoft Windows, you must integrate Check Point with QRadar using OPSEC. For more information, see Integrating Check Point FireWall-1 using OPSEC.

Step 1 Type the following command to access the Check Point console as an expert user:

```
expert
```

A password prompt is displayed.

Step 2 Type your expert console password. Press the Enter key.

Step 3 Open the following file:

```
/etc/rc.d/rc3.d/S99local
```

Step 4 Add the following lines:

```
$FWDIR/bin/fw log -ftn | /usr/bin/logger -p <facility>.<priority> > /dev/null 2>&1 &
```

Where:

- `<facility>` is a Syslog facility, for example, local3.
- `<priority>` is a Syslog priority, for example, info.

For example:

```
$FWDIR/bin/fw log -ftn | /usr/bin/logger -p local3.info > /dev/null 2>&1 &
```

Step 5 Save and close the file.

Step 6 Open the syslog.conf file.

Step 7 Add the following line:

```
<facility>.<priority> <TAB><TAB>@<host>
```

Where:

- `<facility>` is the syslog facility, for example, local3. This value must match the value you typed in **Step 4**.
- `<priority>` is the syslog priority, for example, info or notice. This value must match the value you typed in **Step 4**.
- `<TAB>` indicates you must press the Tab key.
- `<host>` indicates the QRadar Console or managed host.

Step 8 Save and close the file.

Step 9 Depending on your operating system, type the following command to restart syslog:
In Linux: `service syslog restart`
In Solaris: `/etc/init.d/syslog start`

Step 10 Type the following command:

```
nohup $FWDIR/bin/fw log -ftn | /usr/bin/logger -p <facility>..<priority> > /dev/null 2>&1 &
```

Where:

- `<facility>` is a Syslog facility, for example, `local3`. This value must match the value you typed in **Step 4**.
- `<priority>` is a Syslog priority, for example, `info`. This value must match the value you typed in **Step 4**.

The configuration is complete. The log source is added to QRadar as Check Point Firewall-1 syslog events are automatically discovered. Events forwarded to QRadar are displayed on the **Log Activity** tab.

Configuring a log source
QRadar automatically discovers and creates a log source for syslog events from Check Point FireWall-1. The following configuration steps are optional.

Procedure

Step 1 Log in to QRadar.
Step 2 Click the **Admin** tab.
Step 3 On the navigation menu, click **Data Sources**.
Step 4 Click the **Log Sources** icon.
Step 5 Click **Add**.
Step 6 In the **Log Source Name** field, type a name for your log source.
Step 7 In the **Log Source Description** field, type a description for the log source.
Step 8 From the **Log Source Type** list, select **Check Point FireWall-1**.
Step 9 Using the **Protocol Configuration** list, select **Syslog**.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Check Point FireWall-1 appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.
Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.
Integrating Check Point Firewall events from external syslog forwarders

Check Point Firewall events can be forwarded from external sources, such as Splunk Forwarders or other third party syslog forwarders that send events to QRadar.

When Check Point Firewall events are provided from external sources in syslog format, the events identify with IP address in the syslog header. This causes events to identify incorrectly when they are processed with the standard syslog protocol. The syslog redirect protocol provides administrators a method to substitute an IP address from the event payload into the syslog header to correctly identify the event source.

To substitute an IP address, administrators must identify a common field from their Check Point Firewall event payload that contains the proper IP address. For example, events from Splunk Forwarders use `orig=` in the event payload to identify the original IP address for the Check Point firewall. The protocol substitutes in the proper IP address to ensure that the device is properly identified in the log source. As Check Point Firewall events are forwarded, QRadar automatically discovers and create new log sources for each unique IP address.

Substitutions are done with regular expressions and can support either TCP or UDP syslog events. The protocol automatically configures iptables for the initial log source and port configuration. If an administrator decides to change the port assignment a Deploy Full Configuration is required to update the iptables configuration and use the new port assignment.

Configuring a log source for Check Point forwarded events

To collect raw events forwarded from an external source, you must configure a log source before events are forwarded to QRadar.

Procedure

1. Log in to QRadar.
2. Click the Admin tab.
3. In the navigation menu, click Data Sources.
4. Click the Log Sources icon.
5. Click Add.
6. In the Log Source Name field, type a name for your log source.
7. In the Log Source Description field, type a description for your log source.
8. From the Log Source Type list, select Check Point FireWall-1.
9. From the Protocol Configuration list, select Syslog Redirect.
10. Configure the following values:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for the Check Point Firewall events. The log source identifier must be unique value.</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the regular expression (regex) required to identify the Check Point Firewall IP address from the event payload.</td>
</tr>
<tr>
<td></td>
<td>For example, administrators can use the following regular expression to parse Check Point Firewall events provided by Splunk Forwarders.</td>
</tr>
<tr>
<td></td>
<td><code>orig=(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})</code></td>
</tr>
<tr>
<td>Listen Port</td>
<td>Type the port number used by QRadar to accept incoming syslog redirect events. The default listen port is 517.</td>
</tr>
<tr>
<td></td>
<td>The port number you configure must match the port that you configured on the appliance that forwards the syslog events. Administrators cannot specify port 514 in this field.</td>
</tr>
<tr>
<td>Protocol</td>
<td>From the list, select either UDP or TCP. The syslog redirect protocol supports any number of UDP syslog connection, but restricts TCP connections to 2500.</td>
</tr>
<tr>
<td></td>
<td>If an administrator has more than 2500 log sources in the syslog stream, a second Check Point log source and listen port number is required.</td>
</tr>
<tr>
<td>Enabled</td>
<td>Select this check box to enable the log source. By default, the check box is selected.</td>
</tr>
<tr>
<td>Credibility</td>
<td>From the list, select the credibility of the log source. The range is 0 - 10. The credibility indicates the integrity of an event or offense as determined by the credibility rating from the source devices. Credibility increases if multiple sources report the same event. The default is 5.</td>
</tr>
<tr>
<td>Target Event Collector</td>
<td>From the list, select the Event Collector to use as the target for the log source.</td>
</tr>
<tr>
<td>Coalescing Events</td>
<td>Select this check box to enable the log source to coalesce (bundle) events. By default, automatically discovered log sources inherit the value of the Coalescing Events list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
<tr>
<td>Incoming Event Payload</td>
<td>From the list, select the incoming payload encoder for parsing and storing the logs.</td>
</tr>
</tbody>
</table>
You can configure QRadar to integrate with a Check Point Provider-1 device.

All events from Check Point Provider-1 are parsed using the Check Point FireWall-1 DSM. You can integrate Check Point Provider-1 using one of the following methods:

- Integrating syslog for Check Point Provider-1
- Configuring OPSEC for Check Point Provider-1

Note: Depending on your Operating System, the procedures for the Check Point Provider-1 device can vary. The following procedures are based on the Check Point SecurePlatform operating system.

Integrating syslog for Check Point Provider-1

This method ensures the Check Point FireWall-1 DSM for IBM Security QRadar accepts Check Point Provider-1 events using syslog.

QRadar records all relevant Check Point Provider-1 events.

Configure syslog on Check Point Provider-1

To configure syslog on your Check Point Provider-1 device:

Step 1 Type the following command to access the console as an expert user:

```
expert
```

A password prompt is displayed.

Step 2 Type your expert console password. Press the Enter key.

Step 3 Type the following command:

```
csh
```

Step 4 Select the desired customer logs:

```
mdsenv <customer name>
```

Step 5 Type the following command:
nohup $FWDIR/bin/fw log -ftn | /usr/bin/logger -p <facility>.<priority> 2>&1 &

Where:

<facility> is a Syslog facility, for example, local3.

<priority> is a Syslog priority, for example, info.

You are now ready to configure the log source in QRadar.

The configuration is complete. The log source is added to QRadar as Check Point Firewall-1 syslog events are automatically discovered. Events forwarded to QRadar are displayed on the Log Activity tab.

Configure a log source

QRadar automatically discovers and creates a log source for syslog events from Check Point Provider-1 as Check Point FireWall-1 events. The following configuration steps are optional.

To manually configure a log source for Check Point Provider-1 syslog events:

1. **Step 1** Log in to QRadar.
2. **Step 2** Click the Admin tab.
3. **Step 3** On the navigation menu, click Data Sources.
 The Data Sources panel is displayed.
4. **Step 4** Click the Log Sources icon.
 The Log Sources window is displayed.
5. **Step 5** Click Add.
 The Add a log source window is displayed.
6. **Step 6** In the Log Source Name field, type a name for your log source.
7. **Step 7** In the Log Source Description field, type a description for the log source.
8. **Step 8** From the Log Source Type list, select Check Point Firewall-1.
9. **Step 9** Using the Protocol Configuration list, select Syslog.
 The syslog protocol configuration is displayed.
10. **Step 10** Configure the following values:

 Table 27-3 Syslog Parameters

Parameter	Description
Log Source Identifier	Type the IP address or host name for the log source as an identifier for events from your Check Point Provider-1 appliance.

11. **Step 11** Click Save.
12. **Step 12** On the Admin tab, click Deploy Changes.
 The configuration is complete.
Configuring OPSEC for Check Point Provider-1

This method ensures the QRadar Check Point FireWall-1 DSM accepts Check Point Provider-1 events using OPSEC.

Reconfigure Check Point Provider-1 SmartCenter

This section describes how to reconfigure the Check Point Provider-1 SmartCenter.

In the Check Point Provider-1 Management Domain GUI (MDG), create a host object representing the QRadar. The leapipe is the connection between the Check Point Provider-1 and QRadar.

To reconfigure the Check Point Provider-1 SmartCenter (MDG):

Step 1 To create a host object, open the Check Point SmartDashboard user interface and select **Manage > Network Objects > New > Node > Host**.

Step 2 Type the Name, IP Address, and optional Comment for your host.

Step 3 Click **OK**.

Step 4 Select **Close**.

Step 5 To create the OPSEC connection, select **Manage > Servers and OPSEC Applications New > OPSEC Application Properties**.

Step 6 Type a name and optional comment.

The name you type must be different than the name used in **Step 2**.

Step 7 From the Host drop-down menu, select the QRadar host object that you just created.

Step 8 From **Application Properties**, select **User Defined** as the Vendor type.

Step 9 From **Client Entries**, select **LEA**.

Step 10 Configure the Secure Internal Communication (SIC) certificate, click **Communication** and enter an activation key.

Step 11 Select **OK** and then **Close**.

Step 12 To install the Policy on your firewall, select **Policy > Install > OK**.

Configure an OPSEC log source

To configure the log source in QRadar:

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

The Data Sources panel is displayed.

Step 4 Click the **Log Sources** icon.

The Log Sources window is displayed.

Step 5 Click **Add**.

The Add a log source window is displayed.
Step 6 From the Log Source Type list, select Check Point FireWall-1.

Step 7 Using the Protocol Configuration list, select OPSEC/LEA.

The OPSEC/LEA protocol parameters appear.

Step 8 Configure the following values:

a Log Source Name - Type a name for the log source.

b Log Source Identifier - Type the IP address for the log source. This value must match the value you typed in the Server IP parameter.

c Server IP - Type the IP address of the Check Point Provider-1.

d Server Port - Type the port used for OPSEC/LEA. The default is 18184.

You must ensure the existing firewall policy permits the LEA/OPSEC connection from your QRadar.

e OPSEC Application Object SIC Attribute - Type the SIC DN of the OPSEC Application Object.

f Log Source SIC Attribute - Type the SIC name for the server generating the log source.

SIC attribute names can be up to 255 characters in length and are case sensitive.

g Specify Certificate - Ensure the Specify Certificate check box is clear.

h Pull Certificate Password - Type the activation key password.

i Certificate Authority IP - Type the Check Point Manager Server IP address.

j OPSEC Application - Type the name of the application requesting a certificate.

For example:

If the value is CN=QRadar-OPSEC,O=cpmodule...tdfaaz, the OPSEC Application value is QRadar-OPSEC.

Step 9 Click Save.

Step 10 On the Admin tab, click Deploy Changes.

The configuration is complete. For detailed information on the OPSEC/LEA protocol, see the IBM Security QRadar Log Sources User Guide.
IBM Security QRadar collects detailed audit events from Cilasoft QJRN/400 software for IBM i (AS/400, iSeries, System i).

Configuration overview

To collect events, administrators can configure Cilasoft QJRN/400 to forward events with syslog or optionally configure the integrated file system (IFS) to write events to a file. Syslog provides real-time events to QRadar and provides automatic log source discovery for administrators, which is the easiest configuration method for event collection. The IFS option provides an optional configuration to write events to a log file, which can be read remotely by using the Log File protocol. QRadar supports syslog events from Cilasoft QJRN/400 V5.14.K and later.

To configure Cilasoft QJRN/400, complete the following tasks:

1. On your Cilasoft QJRN/400 installation, configure the Cilasoft Security Suite to forward syslog events to QRadar or write events to a file.

2. For syslog configurations, administrators can verify that the events forwarded by Cilasoft QJRN/400 are automatically discovered on the Log Activity tab.

Cilasoft QJRN/400 configurations that use IFS to write event files to disk are considered an alternative configuration for administrators that cannot use syslog. IFS configurations require the administrator to locate the IFS file and configure the host system to allow FTP, SFTP, or SCP communications. A log source can then be configured to use the log file protocol with the location of the event log file.

Configuring Cilasoft QJRN/400

To collect events, you must configure queries on your Cilasoft QJRN/400 to forward syslog events to QRadar.

Procedure

Step 1
To start the Cilasoft Security Suite, type the following command:

```
IJRN/QJRN
```

The account that is used to make configuration changes must have ADM privileges or USR privileges with access to specific queries through an Extended Access parameter.

Step 2
To configure the output type, select one of the following options:
To edit several selected queries, type **2EV** to access the Execution Environment and change the **Output Type** field and type **SEM**.

To edit large numbers of queries, type the command CHGQJQRYA and change the **Output Type** field and type **SEM**.

Step 3 On the Additional Parameters screen, configure the following parameters:

<table>
<thead>
<tr>
<th>Table 28-1 Cilasoft QJRN/400 output parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Format</td>
</tr>
</tbody>
</table>
| Output | To configure an output type, one of the following parameters to select an output type:
SYSLOG - Type this parameter to forward events with the syslog protocol. This option provides real-time events.
IFS - Type this parameter to write events to a file with the Integrated File System. This option requires the administrator to configure a log source with the Log File protocol. This option writes events to a file, which can only be read in 15 minute intervals. |
| IP Address | Type the IP address of your QRadar system.
If an IP address for QRadar is defined as a special value in the WRKQJVAL command, you can type *CFG*.
Events can be forwarded to either the Console, an Event Collector, an Event Processor, or your QRadar all-in-one appliance. |
| Port | Type 514 or *CFG* as the port for syslog events.
By default, *CFG* automatically selects port 514. |
| Tag | This field is not used by QRadar. |
| Facility | This field is not used by QRadar. |
| Severity | Select a value for the event severity. For more information on severity that is assigned to *QRY destinations, see command WRKQJFVAL in your Cilasoft documentation. |

For more information on Cilasoft configuration parameters, see the *Cilasoft QJRN/400 User’s Guide*.

Syslog events that are forwarded to QRadar are viewable on the **Log Activity** tab.

Configuring a Cilasoft QJRN/400 log source

QRadar automatically discovers and creates a log source for syslog events that are forwarded from Cilasoft QJRN/400. These configuration steps are optional.
Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 Click the Log Sources icon.

Step 4 Click Add.

Step 5 In the Log Source Name field, type a name for your log source.

Step 6 From the Log Source Type list, select Cilasoft QJRN/400.

Step 7 From the Protocol Configuration list, select Syslog.

Note: If Cilasoft QJRN/400 is configured to write events to the integrated file system with the *IFS option, the administrator must select Log File. Configuration instructions for the log file protocol are available in the Log Sources User Guide.

Step 8 Configure the following values:

Table 28-2 Syslog protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address as an identifier for events from your Cilasoft QJRN/400 installation. The log source identifier must be unique value.</td>
</tr>
<tr>
<td>Enabled</td>
<td>Select this check box to enable the log source. By default, the check box is selected.</td>
</tr>
<tr>
<td>Credibility</td>
<td>Select the credibility of the log source. The range is 0 - 10. The credibility indicates the integrity of an event or offense as determined by the credibility rating from the source devices. Credibility increases if multiple sources report the same event. The default is 5.</td>
</tr>
<tr>
<td>Target Event Collector</td>
<td>Select the Event Collector to use as the target for the log source.</td>
</tr>
<tr>
<td>Coalescing Events</td>
<td>Select this check box to enable the log source to coalesce (bundle) events. By default, automatically discovered log sources inherit the value of the Coalescing Events list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
<tr>
<td>Incoming Event Payload</td>
<td>From the list, select the incoming payload encoder for parsing and storing the logs.</td>
</tr>
<tr>
<td>Store Event Payload</td>
<td>Select this check box to enable the log source to store event payload information. By default, automatically discovered log sources inherit the value of the Store Event Payload list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
</tbody>
</table>
Step 9 Click **Save**.

Step 10 On the **Admin** tab, click **Deploy Changes**.
This section provides information on the following DSMs:

- Cisco ACE Firewall
- Cisco Aironet
- Cisco ACS
- Cisco ASA
- Cisco CallManager
- Cisco CatOS for Catalyst Switches
- Cisco CSA
- Cisco FWSM
- Cisco IDS/IPS
- Cisco NAC
- Cisco Nexus
- Cisco IOS
- Cisco Pix
- Cisco VPN 3000 Concentrator
- Cisco Wireless Services Module
- Cisco Wireless LAN Controllers
- Cisco Identity Services Engine

Cisco ACE Firewall

You can integrate a Cisco ACE firewall with IBM Security QRadar.

QRadar can accept events forwarded from Cisco ACE Firewalls using syslog. QRadar records all relevant events. Before you configure QRadar to integrate with an ACE firewall, you must configure your Cisco ACE Firewall to forward all device logs to QRadar.
Configure Cisco ACE Firewall

To forward Cisco ACE device logs to QRadar:

Step 1 Log in to your Cisco ACE device.
Step 2 From the shell interface, select Main Menu > Advanced Options > Syslog Configuration.
Step 3 The Syslog Configuration menu varies depending on whether there are any syslog destination hosts configured yet. If no syslog destinations have been added, create one by selecting the Add First Server option. Click OK.
Step 4 Type the hostname or IP address of the destination host and port in the First Syslog Server field. Click OK.

The system restarts with new settings. When finished, the Syslog server window displays the host you have configured.
Step 5 Click OK.

The Syslog Configuration menu is displayed. Notice that options for editing the server configuration, removing the server, or adding a second server are now available.
Step 6 If you want to add another server, click Add Second Server.

At any time, click the View Syslog options to view existing server configurations.
Step 7 To return to the Advanced Menu, click Return.

The configuration is complete. The log source is added to QRadar as Cisco ACE Firewall events are automatically discovered. Events forwarded to QRadar by Cisco ACE Firewall appliances are displayed on the Log Activity tab of QRadar.

Configure a log source

QRadar automatically discovers and creates a log source for syslog events from Cisco ACE Firewalls.

However, you can manually create a log source for QRadar to receive syslog events. The following configuration steps are optional.

To manually configure a log source for Cisco ACE Firewall:

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.

The Data Sources panel is displayed.
Step 4 Click the Log Sources icon.

The Log Sources window is displayed.
Step 5 Click Add.

The Add a log source window is displayed.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select Cisco ACE Firewall.

Step 9 Using the Protocol Configuration list, select Syslog.
 The syslog protocol configuration is displayed.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Cisco ACE Firewalls.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.
 The configuration is complete.

Cisco Aironet

You can integrate a Cisco Aironet devices with IBM Security QRadar.

A Cisco Aironet DSM accepts Cisco Emblem Format events using syslog. Before you configure QRadar to integrate with a Cisco Aironet device, you must configure your Cisco Aironet appliance to forward syslog events.

Configure Cisco Aironet

To configure Cisco Aironet to forward events:

Step 1 Establish a connection to the Cisco Aironet device using one of the following methods:
- Telnet to the wireless access point
- Access the console

Step 2 Type the following command to access privileged EXEC mode:
```plaintext
enable
```

Step 3 Type the following command to access global configuration mode:
```plaintext
config terminal
```

Step 4 Type the following command to enable message logging:
```plaintext
logging on
```

Step 5 Configure the syslog facility. The default is local7.
```plaintext
logging facility <facility, for example, local7>
```

Step 6 Type the following command to log messages to your QRadar:
```plaintext
logging <IP address of your QRadar>
```

Step 7 Enable timestamp on log messages:
Step 8 Return to privileged EXEC mode:

```
end
```

Step 9 View your entries:

```
show running-config
```

Step 10 Save your entries in the configuration file:

```
copy running-config startup-config
```

The configuration is complete. The log source is added to QRadar as Cisco Aironet events are automatically discovered. Events forwarded to QRadar by Cisco Aironet appliances are displayed on the Log Activity tab of QRadar.

Configure a log source

QRadar automatically discovers and creates a log source for syslog events from Cisco Aironet. The following configuration steps are optional.

To manually configure a log source for Cisco Aironet:

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

The Data Sources panel is displayed.

Step 4 Click the Log Sources icon.

The Log Sources window is displayed.

Step 5 Click Add.

The Add a log source window is displayed.

Step 6 In the Log Source Name field, type a name for your log source.

Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select Cisco Aironet.

Step 9 Using the Protocol Configuration list, select Syslog.

The syslog protocol configuration is displayed.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Cisco Aironet appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete.
Cisco ACS

The Cisco ACS DSM for IBM Security QRadar accepts syslog ACS events using syslog.

QRadar records all relevant and available information from the event. You can integrate Cisco ACS with QRadar using one of the following methods:

- Configure your Cisco ACS device to directly send syslog to QRadar for Cisco ACS v5.x. See Configure Syslog for Cisco ACS v5.x.
- Configure your Cisco ACS device to directly send syslog to QRadar for Cisco ACS v4.x. See Configure Syslog for Cisco ACS v4.x.
- A server using the QRadar WinCollect or Adaptive Log Exporter (Cisco ACS software version 3.x or later). See Configure Cisco ACS for the Adaptive Log Exporter.

Note: QRadar only supports Cisco ACS versions prior to v3.x using a Universal DSM.

Configure Syslog for Cisco ACS v5.x

The configure syslog forwarding from a Cisco ACS appliance with software version 5.x, you must:

Create a Remote Log Target
To create a remote log target for your Cisco ACS appliance:

Step 1 Log in to your Cisco ACS appliance.

Step 2 On the navigation menu, click System Administration > Configuration > Log Configuration > Remote Log Targets.

The Remote Log Targets page is displayed.

Step 3 Click Create.

Step 4 Configure the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Type a name for the remote syslog target.</td>
</tr>
<tr>
<td>Description</td>
<td>Type a description for the remote syslog target.</td>
</tr>
<tr>
<td>Type</td>
<td>Select Syslog.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Type the IP address of QRadar or your Event Collector.</td>
</tr>
</tbody>
</table>

Step 5 Click Submit.

You are now ready to configure global policies for event logging on your Cisco ACS appliance.
Configure global logging categories
To configure Cisco ACS to forward log failed attempts to QRadar:

Step 1 On the navigation menu, click System Administration > Configuration > Log Configuration > Global.
The Logging Categories window is displayed.

Step 2 Select the Failed Attempts logging category and click Edit.

Step 3 Click Remote Syslog Target.

Step 4 From the Available targets window, use the arrow key to move the syslog target for QRadar to the Selected targets window.

Step 5 Click Submit.
You are now ready to configure the log source in QRadar.

Configure a log source
QRadar automatically discovers and creates a log source for syslog events from Cisco ACS v5.x.

However, you can manually create a log source for QRadar to receive Cisco ACS events.

To manually configure a log source for Cisco ACS:

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.
The Data Sources panel is displayed.

Step 4 Click the Log Sources icon.
The Log Sources window is displayed.

Step 5 Click Add.
The Add a log source window is displayed.

Step 6 From the Log Source Type list, select Cisco ACS.

Step 7 Using the Protocol Configuration list, select Syslog.
The syslog protocol configuration is displayed.

Step 8 Configure the following values:

<table>
<thead>
<tr>
<th>Table 29-2 Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
</tbody>
</table>

Step 9 Click Save.

Step 10 On the Admin tab, click Deploy Changes.
The configuration is complete.

Configure Syslog for Cisco ACS v4.x
To configure syslog forwarding from a Cisco ACS appliance with software version 4.x, you must:

Configure syslog forwarding for Cisco ACS v4.x
To configure an ACS device to forward syslog events to QRadar:

Step 1 Log in to your Cisco ACS device.

Step 2 On the navigation menu, click **System Configuration**.
The System Configuration page opens.

Step 3 Click **Logging**.
The logging configuration is displayed.

Step 4 In the Syslog column for **Failed Attempts**, click **Configure**.
The Enable Logging window is displayed.

Step 5 Select the **Log to Syslog Failed Attempts report** check box.

Step 6 Add the following Logged Attributes:

- Message-Type
- User-Name
- Nas-IP-Address
- Authen-Failure-Code
- Caller-ID
- NAS-Port
- Author-Data
- Group-Name
- Filter Information
- Logged Remotely

Step 7 Configure the following syslog parameters:

- **IP** - Type the IP address of QRadar.
- **Port** - Type the syslog port number of QRadar. The default is port 514.
- **Max message length (Bytes)** - Type 1024 as the maximum syslog message length.

Note: Cisco ACS provides syslog report information for a maximum of two syslog servers.

Step 8 Click **Submit**.
You are now ready to configure the log source in QRadar.
Configure a log source for Cisco ACS v4.x

QRadar automatically discovers and creates a log source for syslog events from Cisco ACS v4.x. The following configuration steps are optional.

To manually create a log source for Cisco ACS v4.x:

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
 The Data Sources panel is displayed.
Step 4 Click the Log Sources icon.
 The Log Sources window is displayed.
Step 5 Click Add.
 The Add a log source window is displayed.
Step 6 From the Log Source Type list, select Cisco ACS.
Step 7 Using the Protocol Configuration list, select Syslog.
 The syslog protocol configuration is displayed.
Step 8 Configure the following values:

<table>
<thead>
<tr>
<th>Table 29-3 Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
</tbody>
</table>

Step 9 Click Save.
Step 10 On the Admin tab, click Deploy Changes.
 The configuration is complete.

Configure Cisco ACS for the Adaptive Log Exporter

If you are using an older version of Cisco ACS, such as v3.x, you can log events from your Cisco ACS appliance to a comma-separated file.

The Cisco ACS device plug-in for the Adaptive Log Exporter can be used to read and forward events from your comma-separated file to QRadar.

Configure Cisco ACS to log events

Your Cisco ACS appliance must be configured to write comma-separated event files to integrate with the Adaptive Log Exporter.

To configure Cisco ACS:

Step 1 Log in to your Cisco ACS appliance.
Step 2 On the navigation menu, click System Configuration.
 The System Configuration page opens.
Step 3 Click Logging.
 The logging configuration is displayed.

Step 4 In the CSV column for Failed Attempts, click Configure.
 The Enable Logging window is displayed.

Step 5 Select the Log to CSV Failed Attempts report check box.

Step 6 Add the following Logged Attributes:
 • Message-Type
 • User-Name
 • Nas-IP-Address
 • Authen-Failure-Code
 • Caller-ID
 • NAS-Port
 • Author-Data
 • Group-Name
 • Filter Information
 • Logged Remotely

Step 7 Configure a time frame for Cisco ACS to generate a new comma-separated value (CSV) file.

Step 8 Click Submit.
 You are now ready to configure the Adaptive Log Exporter.
 For more information on installing and using the Adaptive Log Exporter, see the Adaptive Log Exporter Users Guide.

Cisco ASA

You can integrate a Cisco Adaptive Security Appliance (ASA) with IBM Security QRadar.

A Cisco ASA DSM accepts events using syslog or NetFlow using NetFlow Security Event Logging (NSEL). QRadar records all relevant events. Before you configure QRadar, you must configure your Cisco ASA device to forward syslog or NetFlow NSEL events.

Choose one of the following options:

• Forward events to QRadar using syslog. See Integrate Cisco ASA Using Systol

• Forward events to QRadar using NetFlow NSEL. See Integrate Cisco ASA for NetFlow using NSEL
Integrate Cisco ASA Using Syslog

This section includes the following topics:

- Configure syslog forwarding
- Configure a log source

Configure syslog forwarding

This section describes how to configure Cisco ASA to forward syslog events.

Step 1 Log in to the Cisco ASA device.

Step 2 Type the following command to access privileged EXEC mode:

 enable

Step 3 Type the following command to access global configuration mode:

 conf t

Step 4 Enable logging:

 logging enable

Step 5 Configure the logging details:

 logging console warning
 logging trap warning
 logging asdm warning

Step 6 Type the following command to configure logging to QRadar:

 logging host <interface> <IP address>

 Where:

 <interface> is the name of the Cisco Adaptive Security Appliance interface.
 <IP address> is the IP address of QRadar.

 Note: Using the command show interfaces displays all available interfaces for your Cisco device.

Step 7 Disable the output object name option:

 no names

 You must disable the output object name option to ensure that the logs use IP addresses and not object names.

Step 8 Exit the configuration:

 exit

Step 9 Save the changes:

 write mem

The configuration is complete. The log source is added to QRadar as Cisco ASA syslog events are automatically discovered. Events forwarded to QRadar by Cisco ASA are displayed on the Log Activity tab of QRadar.
Configure a log source
QRadar automatically discovers and creates a log source for syslog events from Cisco ASA. The following configuration steps are optional.

To manually configure a log source for Cisco ASA syslog events:

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
 The Data Sources panel is displayed.
Step 4 Click the Log Sources icon.
 The Log Sources window is displayed.
Step 5 Click Add.
 The Add a log source window is displayed.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Cisco Adaptive Security Appliance (ASA).
Step 9 Using the Protocol Configuration list, select Syslog.
 The syslog protocol configuration is displayed.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your OSSEC installations.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.
Step 12 On the Admin tab, click Deploy Changes.
 The configuration is complete.

Integrate Cisco ASA for NetFlow using NSEL
This section includes the following topics:
- Configure NetFlow Using NSEL
- Configure a log source

Configure NetFlow Using NSEL
To configure Cisco ASA to forward NetFlow events using NSEL.

Step 1 Log in to the Cisco ASA device command-line interface (CLI).
Step 2 Type the following command to access privileged EXEC mode:

 `enable`
Step 3 Type the following command to access global configuration mode:
 `conf t`

Step 4 Disable the output object name option:
 `no names`

Step 5 Type the following command to enable NetFlow export:
 `flow-export destination <interface-name> <ipv4-address or hostname> <udp-port>`
 Where:
 `<interface-name>` is the name of the Cisco Adaptive Security Appliance interface for the NetFlow collector.
 `<ipv4-address or hostname>` is the IP address or host name of the Cisco ASA device with the NetFlow collector application.
 `<udp-port>` is the UDP port number to which NetFlow packets are sent.
 Note: QRadar typically uses port 2055 for NetFlow event data on QRadar QFlow Collectors. You must configure a different UDP port on your Cisco Adaptive Security Appliance for NetFlow using NSEL.

Step 6 Type the following command to configure the NSEL class-map:
 `class-map flow_export_class`

Step 7 Choose one of the following traffic options:
 a To configure a NetFlow access list to match specific traffic, type the command:
 `match access-list flow_export_acl`
 b To configure NetFlow to match any traffic, type the command:
 `match any`
 Note: The Access Control List (ACL) must exist on the Cisco ASA device before defining the traffic match option in Step 7.

Step 8 Type the following command to configure the NSEL policy-map:
 `policy-map flow_export_policy`

Step 9 Type the following command to define a class for the flow-export action:
 `class flow_export_class`

Step 10 Type the following command to configure the flow-export action:
 `flow-export event-type all destination <IP address>`
 Where `<IP address>` is the IP address of QRadar.
 Note: If you are using a Cisco ASA version before v8.3 you can skip Step 10 as the device defaults to the flow-export destination. For more information, see your Cisco ASA documentation.

Step 11 Type the following command to add the service policy globally:
 `service-policy flow_export_policy global`
Step 12 Exit the configuration:

```
exit
```

Step 13 Save the changes:

```
write mem
```

You must verify that your collector applications use the Event Time field to correlate events.

Configure a log source

To integrate Cisco ASA using NetFlow with QRadar, you must manually create a log source to receive NetFlow events. QRadar does not automatically discover or create log sources for syslog events from Cisco ASA using NetFlow and NSEL.

Note: Your system must be running the latest version of the NSEL protocol to integrate with a Cisco ASA device using NetFlow NSEL. The NSEL protocol is available on IBM Support, http://www.ibm.com/support, or through auto updates in QRadar.

To configure a log source:

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

The Data Sources panel is displayed.

Step 4 Click the **Log Sources** icon.

The Log Sources window is displayed.

Step 5 Click **Add**.

The Add a log source window is displayed.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Cisco Adaptive Security Appliance (ASA)**.

Step 9 Using the **Protocol Configuration** list, select **Cisco NSEL**.

The syslog protocol configuration is displayed.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 29-5</th>
<th>Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for the log source.</td>
</tr>
</tbody>
</table>
Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The log source is added to QRadar. Events forwarded to QRadar by Cisco ASA are displayed on the **Log Activity** tab. For more information on configuring NetFlow with your Cisco ASA device, see your vendor documentation.

Cisco CallManager

The Cisco CallManager DSM for IBM Security QRadar collects application events forwarded from Cisco CallManager devices using syslog.

Before receiving events in QRadar, you must configure your Cisco Call Manager device to forward events. After you forward syslog events from Cisco CallManager, QRadar automatically detects and adds Cisco CallManager as a log source.

Configure syslog forwarding

To configure syslog on your Cisco CallManager:

1. **Step 1** Log in to your Cisco CallManager interface.
2. **Step 2** Select **System > Enterprise Parameters**.

 The Enterprise Parameters Configuration is displayed.

3. **Step 3** In the **Remote Syslog Server Name** field, type the IP address of the QRadar Console.
4. **Step 4** From the **Syslog Severity For Remote Syslog messages** list, select **Informational**.

 The informational severity allows you to collect all events at the information level and later.

5. **Step 5** Click **Save**.
6. **Step 6** Click **Apply Config**.

 The syslog configuration is complete. You are now ready to configure a syslog log source for Cisco CallManager.

Note: QRadar typically uses port 2055 for NetFlow event data on QRadar QFlow Collectors. You must define a different UDP port on your Cisco Adaptive Security Appliance for NetFlow using NSEL.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector Port</td>
<td>Type the UDP port number used by Cisco ASA to forward NSEL events. The valid range of the Collector Port parameter is 1-65535.</td>
</tr>
<tr>
<td>Note: QRadar typically uses port 2055 for NetFlow event data on QRadar QFlow Collectors. You must define a different UDP port on your Cisco Adaptive Security Appliance for NetFlow using NSEL.</td>
<td></td>
</tr>
</tbody>
</table>
Configure a log source

QRadar automatically discovers and creates a log source for syslog events from Cisco CallManager devices. The following configuration steps are optional.

To manually configure a syslog log source for Cisco CallManager:

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
 The Data Sources panel is displayed.
Step 4 Click the Log Sources icon.
 The Log Sources window is displayed.
Step 5 Click Add.
 The Add a log source window is displayed.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Cisco Call Manager.
Step 9 Using the Protocol Configuration list, select Syslog.
 The syslog protocol configuration is displayed.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Cisco CallManager.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.
Step 12 On the Admin tab, click Deploy Changes.
The configuration is complete.

Cisco CatOS for Catalyst Switches

The Cisco CatOS for Catalyst Switches DSM for IBM Security QRadar accepts events using syslog.

QRadar records all relevant device events. Before configuring a Cisco CatOS device in QRadar, you must configure your device to forward syslog events.

Configure syslog

To configure your Cisco CatOS device to forward syslog events:

Step 1 Log in to your Cisco CatOS user interface.
Step 2 Type the following command to access privileged EXEC mode:
   ```
   enable
   ```
Step 3 Configure the system to timestamp messages:

```
set logging timestamp enable
```

Step 4 Type the IP address of QRadar:

```
set logging server <IP address>
```

Step 5 Limit messages that are logged by selecting a severity level:

```
set logging server severity <server severity level>
```

Step 6 Configure the facility level that should be used in the message. The default is `local7`.

```
set logging server facility <server facility parameter>
```

Step 7 Enable the switch to send syslog messages to the QRadar.

```
set logging server enable
```

You are now ready to configure the log source in QRadar.

Configure a log source

QRadar automatically discovers and creates a log source for syslog events from Cisco CatOS appliances. The following configuration steps are optional.

To manually configure a syslog log source for Cisco CatOS:

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

The Data Sources panel is displayed.

Step 4 Click the **Log Sources** icon.

The Log Sources window is displayed.

Step 5 Click **Add**.

The Add a log source window is displayed.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Cisco CatOS for Catalyst Switches**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

The syslog protocol configuration is displayed.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 29-7</th>
<th>Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Cisco CatOS for Catalyst Switch appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.
Step 12 On the **Admin** tab, click **Deploy Changes**.
The configuration is complete.

<table>
<thead>
<tr>
<th>Cisco CSA</th>
<th>You can integrate a Cisco Security Agent (CSA) server with IBM Security QRadar.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported event types</td>
<td>The Cisco CSA DSM accepts events using syslog, SNMPv1, and SNMPv2. QRadar records all configured Cisco CSA alerts.</td>
</tr>
<tr>
<td>Configure syslog for Cisco CSA</td>
<td>To configure your Cisco CSA server to forward events:</td>
</tr>
<tr>
<td>Step 1</td>
<td>Open the Cisco CSA user interface.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Select Events > Alerts.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click New. The Configuration View window is displayed.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Type in values for the following parameters:</td>
</tr>
<tr>
<td></td>
<td>a Name - Type a name you wish to assign to your configuration.</td>
</tr>
<tr>
<td></td>
<td>b Description - Type a description for the configuration. This parameter is optional.</td>
</tr>
<tr>
<td>Step 5</td>
<td>From the Send Alerts, select the event set from the list to generate alerts.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Select the SNMP check box.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Type a Community name. The Community name entered in the CSA user interface must match the Community field configured on QRadar. This option is only available using the SNMPv2 protocol.</td>
</tr>
<tr>
<td>Step 8</td>
<td>In the Manager IP address parameter, type the IP address of QRadar.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Click Save. You are now ready to configure the log source in QRadar.</td>
</tr>
</tbody>
</table>
Configure a log source

QRadar automatically discovers and creates a log source for syslog events from Cisco CSA appliances. The following configuration steps are optional.

To manually configure a syslog log source for Cisco CSA:

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
The Data Sources panel is displayed.
Step 4 Click the Log Sources icon.
The Log Sources window is displayed.
Step 5 Click Add.
The Add a log source window is displayed.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Cisco CSA.
Step 9 Using the Protocol Configuration list, select Syslog.
The syslog protocol configuration is displayed.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Cisco CSA appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.
Step 12 On the Admin tab, click Deploy Changes.
The configuration is complete.
You can integrate Cisco Firewall Service Module (FWSM) with IBM Security QRadar.

Supported event types
The Cisco FWSM DSM for QRadar accepts FWSM events using syslog. QRadar records all relevant Cisco FWSM events.

Configure Cisco FWSM to forward syslog events
To integrate Cisco FWSM with QRadar, you must configure your Cisco FWSM appliances to forward syslog events to QRadar.

To configure Cisco FWSM:

Step 1
Using a console connection, telnet, or SSH, log in to the Cisco FWSM.

Step 2
Enable logging:

```
logging on
```

Step 3
Change the logging level:

```
logging trap level (1-7)
```

By default, the logging level is set to 3 (error).

Step 4
Designate QRadar as a host to receive the messages:

```
logging host [interface] ip_address [tcp[/port] | udp[/port]] [format emblem]
```

For example:

```
logging host dmz1 192.168.1.5
```

Where 192.168.1.5 is the IP address of your QRadar system.

You are now ready to configure the log source in QRadar.

Configure a log source
QRadar automatically discovers and creates a log source for syslog events from Cisco FWSM appliances. The following configuration steps are optional.

To manually configure a syslog log source for Cisco FWSM:

Step 1
Log in to QRadar.

Step 2
Click the Admin tab.

Step 3
On the navigation menu, click Data Sources.

The Data Sources panel is displayed.

Step 4
Click the Log Sources icon.

The Log Sources window is displayed.

Step 5
Click Add.

The Add a log source window is displayed.

Step 6
In the Log Source Name field, type a name for your log source.

Step 7
In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Cisco Firewall Services Module (FWSM).

Step 9 Using the Protocol Configuration list, select Syslog.

The syslog protocol configuration is displayed.

Step 10 Configure the following values:

Table 29-9 Syslog Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Cisco FWSM appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete.

Cisco IDS/IPS

The SDEE specification defines the message format and the protocol used to communicate the events generated by your Cisco IDS/IPS security device. QRadar supports SDEE connections by polling directly to the IDS/IPS device and not the management software, which controls the device.

Note: You must have security access or web authentication on the device before connecting to QRadar.

After you configure your Cisco IDS/IPS device, you must configure the SDEE protocol in QRadar. When configuring the SDEE protocol, you must define the URL required to access the device.

For example, https://www.mysdeeserver.com/cgi-bin/sdee-server.

You must use an http or https URL, which is specific to your Cisco IDS version:

- If you are using RDEP (for Cisco IDS v4.0), the URL should have /cgi-bin/event-server at the end. For example: https://www.my-rdep-server.com/cgi-bin/event-server

- If you are using SDEE/CIDEE (for Cisco IDS v5.x and later), the URL should have /cgi-bin/sdee-server at the end. For example: https://www.my-sdee-server/cgi-bin/sdee-server

QRadar does not automatically discover or create log sources for syslog events from Cisco IDS/IPS devices. To integrate Cisco IDS/IPS device events with QRadar, you must manually create a log source for each Cisco IDS/IPS in your network.
To configure a Cisco IDS/IPS log source using SDEE polling:

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

The Data Sources panel is displayed.

Step 4 Click the **Log Sources** icon.

The Log Sources window is displayed.

Step 5 Click **Add**.

The Add a log source window is displayed.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Cisco Intrusion Prevention System (IPS)**.

Step 9 Using the **Protocol Configuration** list, select **SDEE**.

The syslog protocol configuration is displayed.

Step 10 Configure the following values:

Table 29-10 SDEE Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type an IP address, hostname, or name to identify the SDEE event source. IP addresses or hostnames are recommended as they allow QRadar to identify a log file to a unique event source. The log source identifier must be unique for the log source type.</td>
</tr>
</tbody>
</table>
| URL | Type the URL required to access the log source, for example, https://www.mysdeeserver.com/cgi-bin/sdee-server. You must use an http or https URL. The options include:
 • If you are using SDEE/CIDEE (for Cisco IDS v5.x and later), the URL should have /cgi-bin/sdee-server at the end. For example, https://www.my-sdee-server/cgi-bin/sdee-server
 • If you are using RDEP (for Cisco IDS v4.0), the URL should have /cgi-bin/event-server at the end. For example, https://www.my-rdep-server.com/cgi-bin/event-server |
| Username | Type the username. This username must match the SDEE URL username used to access the SDEE URL. The username can be up to 255 characters in length. |
| Password | Type the user password. This password must match the SDEE URL password used to access the SDEE URL. The password can be up to 255 characters in length. |
Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The log source is added to QRadar. Events polled from your Cisco IDS/IPS appliances are displayed on the **Log Activity** tab of QRadar.

Table 29-10 SDEE Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events / Query</td>
<td>Type the maximum number of events to retrieve per query. The valid range is 0 to 501 and the default is 100.</td>
</tr>
<tr>
<td>Force Subscription</td>
<td>Select this check box if you want to force a new SDEE subscription. By default, the check box is selected.</td>
</tr>
<tr>
<td></td>
<td>The check box forces the server to drop the least active connection and accept a new SDEE subscription connection for this log source.</td>
</tr>
<tr>
<td></td>
<td>Clearing the check box continues with any existing SDEE subscription.</td>
</tr>
<tr>
<td>Severity Filter Low</td>
<td>Select this check box if you want to configure the severity level as low.</td>
</tr>
<tr>
<td></td>
<td>Log sources that support SDEE return only the events that match this severity level. By default, the check box is selected.</td>
</tr>
<tr>
<td>Severity Filter Medium</td>
<td>Select this check box if you want to configure the severity level as medium.</td>
</tr>
<tr>
<td></td>
<td>Log sources that support SDEE return only the events that match this severity level. By default, the check box is selected.</td>
</tr>
<tr>
<td>Severity Filter High</td>
<td>Select this check box if you want to configure the severity level as high.</td>
</tr>
<tr>
<td></td>
<td>Log sources that support SDEE return only the events that match this severity level. By default, the check box is selected.</td>
</tr>
</tbody>
</table>

Cisco NAC

The Cisco NAC DSM for IBM Security QRadar accepts events using syslog.

Supported event types

QRadar records all relevant audit, error, and failure events as well as quarantine and infected system events. Before configuring a Cisco NAC device in QRadar, you must configure your device to forward syslog events.

Configuring Cisco NAC to forward events

To configure the device to forward syslog events:

Procedure

- **Step 1** Log in to the Cisco NAC user interface.
- **Step 2** In the Monitoring section, select **Event Logs**.
- **Step 3** Click the **Syslog Settings** tab.
- **Step 4** In the **Syslog Server Address** field, type the IP address of your QRadar.
Step 5 In the **Syslog Server Port** field, type the syslog port. The default is 514.

Step 6 In the **System Health Log Interval** field, type the frequency, in minutes, for system statistic log events.

Step 7 Click **Update**.

You are now ready to configure the log source in QRadar.

Configuring a log source

To integrate Cisco NAC events with QRadar, you must manually create a log source to receive Cisco NAC events. QRadar does not automatically discover or create log sources for syslog events from Cisco NAC appliances.

Procedure

Step 1
Log in to QRadar.

Step 2
Click the **Admin** tab.

Step 3
On the navigation menu, click **Data Sources**.

Step 4
Click the **Log Sources** icon.

Step 5
Click **Add**.

Step 6
In the **Log Source Name** field, type a name for your log source.

Step 7
In the **Log Source Description** field, type a description for the log source.

Step 8
From the **Log Source Type** list, select **Cisco NAC Appliance**.

Step 9
Using the **Protocol Configuration** list, select **Syslog**.

Step 10
Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Cisco NAC appliance.</td>
</tr>
</tbody>
</table>

Step 11
Click **Save**.

Step 12
On the **Admin** tab, click **Deploy Changes**.

The log source is added to QRadar. Events forwarded to QRadar by Cisco NAC are displayed on the **Log Activity** tab.
The Cisco Nexus DSM for IBM Security QRadar supports alerts from Cisco NX-OS devices.

The events are forwarded from Cisco Nexus to QRadar using syslog. Before you can integrate events with QRadar, you must configure your Cisco Nexus device to forward syslog events.

Configure Cisco Nexus to forward events

To configure syslog on your Cisco Nexus server:

Step 1
Type the following command to switch to configuration mode:

```
config t
```

Step 2
Type the following commands:

```
logging server <IP address> <severity>
```

Where:

- `<IP address>` is the IP address of your QRadar Console.
- `<severity>` is the severity level of the event messages, which range from 0-7.

For example, `logging server 100.100.10.1 6` forwards information level (6) syslog messages to 100.100.10.1.

Step 3
Type the following to configure the interface for sending syslog events:

```
logging source-interface loopback
```

Step 4
Type the following command to save your current configuration as the start up configuration:

```
copy running-config startup-config
```

The configuration is complete. The log source is added to QRadar as Cisco Nexus events are automatically discovered. Events forwarded to QRadar by Cisco Nexus are displayed on the Log Activity tab of QRadar.

Configure a log source

QRadar automatically discovers and creates a log source for syslog events from Cisco Nexus. The following configuration steps are optional.

To manually configure a log source for Cisco Nexus:

Step 1
Log in to QRadar.

Step 2
Click the Admin tab.

Step 3
On the navigation menu, click Data Sources.

The Data Sources panel is displayed.

Step 4
Click the Log Sources icon.

The Log Sources window is displayed.

Step 5
Click Add.
The Add a log source window is displayed.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Cisco Nexus**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

The syslog protocol configuration is displayed.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 29-12</th>
<th>Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Cisco Nexus appliances.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete. For more information on configuring a Virtual Device Context (VDC) on your Cisco Nexus device, see your vendor documentation.

Cisco IOS

You can integrate Cisco IOS series devices with IBM Security QRadar.

Supported event types

The Cisco IOS DSM for QRadar accepts Cisco IOS events using syslog. QRadar records all relevant events. The following Cisco Switches and Routers are automatically discovered as Cisco IOS and have their events parsed by the Cisco IOS DSM:

- Cisco 12000 Series Routers
- Cisco 6500 Series Switches
- Cisco 7600 Series Routers
- Cisco Carrier Routing System
- Cisco Integrated Services Router.

Note: Make sure all Access Control Lists (ACLs) are set to LOG.

Configure Cisco IOS to forward events

To configure a Cisco IOS-based device to forward events:

Step 1 Log in to your Cisco IOS Server, switch, or router.

Step 2 Type the following command to log in to the router in privileged-exec.

```
enable
```

Step 3 Type the following command to switch to configuration mode:
conf t

Step 4 Type the following commands:

```
logging <IP address>
logging source-interface <interface>
```

Where:

- `<IP address>` is the IP address hosting QRadar and the SIM components.
- `<interface>` is the name of the interface, for example, dmz, lan, ethernet0, or ethernet1.

Step 5 Type the following to configure the priority level:

```
logging trap warning
logging console warning
```

Where `warning` is the priority setting for the logs.

Step 6 Configure the syslog facility:

```
logging facility syslog
```

Step 7 Save and exit the file.

Step 8 Copy running-config to startup-config:

```
copy running-config startup-config
```

You are now ready to configure the log source in QRadar.

The configuration is complete. The log source is added to QRadar as Cisco IOS events are automatically discovered. Events forwarded to QRadar by Cisco IOS-based devices are displayed on the **Log Activity** tab of QRadar.

Configure a log source

QRadar automatically discovers and creates a log source for syslog events from Cisco IOS. The following configuration steps are optional.

To manually configure a log source for Cisco IOS-based devices:

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

The Data Sources panel is displayed.

Step 4 Click the **Log Sources** icon.

The Log Sources window is displayed.

Step 5 Click **Add**.

The Add a log source window is displayed.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select one of the following:
• Cisco IOS
• Cisco 12000 Series Routers
• Cisco 6500 Series Switches
• Cisco 7600 Series Routers
• Cisco Carrier Routing System
• Cisco Integrated Services Router

Step 9 Using the Protocol Configuration list, select **Syslog**.
The syslog protocol configuration is displayed.

Step 10 Configure the following values:

Table 29-13 Syslog Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Cisco IOS-based device.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.
The configuration is complete.

Cisco Pix

You can integrate Cisco Pix security appliances with IBM Security QRadar.

The Cisco Pix DSM for QRadar accepts Cisco Pix events using syslog. QRadar records all relevant Cisco Pix events.

Configure Cisco Pix to forward events

To Configure Cisco Pix:

Step 1 Log in to your Cisco PIX appliance using a console connection, telnet, or SSH.

Step 2 Type the following command to access Privileged mode:

```
enable
```

Step 3 Type the following command to access Configuration mode:

```
conf t
```

Step 4 Enable logging and timestamp the logs:

```
logging on
inglogging timestamp
```

Step 5 Set the log level:

```
logging trap warning
```

Step 6 Configure logging to QRadar:

```
logging host <interface> <ip address>
```
Where:

<interface> is the name of the interface, for example, dmz, lan, ethernet0, or ethernet1.

<ip address> is the IP address hosting QRadar.

The configuration is complete. The log source is added to QRadar as Cisco Pix Firewall events are automatically discovered. Events forwarded to QRadar by Cisco Pix Firewalls are displayed on the Log Activity tab of QRadar.

Configure a log source

QRadar automatically discovers and creates a log source for syslog events from Cisco Pix Firewalls. The following configuration steps are optional.

To manually configure a log source for Cisco Pix:

1. **Step 1** Log in to QRadar.
2. **Step 2** Click the **Admin** tab.
3. **Step 3** On the navigation menu, click **Data Sources**.
 The Data Sources panel is displayed.
4. **Step 4** Click the **Log Sources** icon.
 The Log Sources window is displayed.
5. **Step 5** Click **Add**.
 The Add a log source window is displayed.
6. **Step 6** In the **Log Source Name** field, type a name for your log source.
7. **Step 7** In the **Log Source Description** field, type a description for the log source.
8. **Step 8** From the **Log Source Type** list, select **Cisco PIX Firewall**.
9. **Step 9** Using the **Protocol Configuration** list, select **Syslog**.
 The syslog protocol configuration is displayed.
10. **Step 10** Configure the following values:

 Table 29-14 Syslog Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Cisco Pix Firewall.</td>
</tr>
</tbody>
</table>

11. **Step 11** Click **Save**.
12. **Step 12** On the **Admin** tab, click **Deploy Changes**.
 The configuration is complete.
Cisco VPN 3000 Concentrator

The Cisco VPN 3000 Concentrator DSM for IBM Security QRadar accepts Cisco VPN Concentrator events using syslog. QRadar records all relevant events. Before you can integrate with a Cisco VPN concentrator, you must configure your device to forward syslog events to QRadar.

To configure your Cisco VPN 3000 Concentrator:

Step 1 Log in to the Cisco VPN 3000 Concentrator command-line interface (CLI).

Step 2 Type the following command to add a syslog server to your configuration:

```
set logging server <IP address>
```

Where `<IP address>` is the IP address of QRadar or your Event Collector.

Step 3 Type the following command to enable system message logging to the configured syslog servers:

```
set logging server enable
```

Step 4 Set the facility and severity level for syslog server messages:

```
set logging server facility server_facility_parameter
set logging server severity server_severity_level
```

The configuration is complete. The log source is added to QRadar as Cisco VPN Concentrator events are automatically discovered. Events forwarded to QRadar are displayed on the Log Activity tab of QRadar.

Configure a log source

QRadar automatically discovers and creates a log source for syslog events from Cisco VPN 3000 Series Concentrators. These configuration steps are optional.

To manually configure a log source:

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

The Data Sources panel is displayed.

Step 4 Click the Log Sources icon.

The Log Sources window is displayed.

Step 5 Click Add.

The Add a log source window is displayed.

Step 6 In the Log Source Name field, type a name for your log source.

Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select Cisco VPN 3000 Series Concentrator.
Step 9 Using the **Protocol Configuration** list, select **Syslog**.

The syslog protocol configuration is displayed.

Step 10 Configure the following values:

Table 29-15 Syslog Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Cisco VPN 3000 Series Concentrators.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.

Cisco Wireless Services Module

You can integrate a Cisco Wireless Services Module (WiSM) device with IBM Security QRadar.

A Cisco WiSM DSM for QRadar accepts events using syslog. Before you can integrate QRadar with a Cisco WiSM device, you must configure Cisco WiSM to forward syslog events.

Configure Cisco WiSM to forward events

To configure Cisco WiSM to forward syslog events to QRadar:

Step 1 Log in to the Cisco Wireless LAN Controller user interface.

Step 2 Click **Management > Logs > Config**.

The Syslog Configuration window is displayed.

Step 3 In the **Syslog Server IP Address** field type the IP address of the QRadar host to which you want to send the syslog messages. Click **Add**.

Step 4 Using the **Syslog Level** list, set the severity level for filtering syslog messages to the syslog servers using one of the following options:

- **Emergencies** - Severity level 0
- **Alerts** - Severity level 1 (Default)
- **Critical** - Severity level 2
- **Errors** - Severity level 3
- **Warnings** - Severity level 4
- **Notifications** - Severity level 5
- **Informational** - Severity level 6
- **Debugging** - Severity level 7
If you set a syslog level, only those messages whose severity level is equal or less than that level are sent to the syslog servers. For example, if you set the syslog level to Warnings (severity level 4), only those messages whose severity is between 0 and 4 are sent to the syslog servers.

Step 5 From the **Syslog Facility** list, set the facility for outgoing syslog messages to the syslog server using one of the following options:

- **Kernel** - Facility level 0
- **User Process** - Facility level 1
- **Mail** - Facility level 2
- **System Daemons** - Facility level 3
- **Authorization** - Facility level 4
- **Syslog** - Facility level 5 (default value)
- **Line Printer** - Facility level 6
- **USENET** - Facility level 7
- **Unix-to-Unix Copy** - Facility level 8
- **Cron** - Facility level 9
- **FTP Daemon** - Facility level 11
- **System Use 1** - Facility level 12
- **System Use 2** - Facility level 13
- **System Use 3** - Facility level 14
- **System Use 4** - Facility level 15
- **Local Use 0** - Facility level 16
- **Local Use 1** - Facility level 17
- **Local Use 2** - Facility level 18
- **Local Use 3** - Facility level 19
- **Local Use 4** - Facility level 20
- **Local Use 5** - Facility level 21
- **Local Use 6** - Facility level 22
- **Local Use 7** - Facility level 23

Step 6 Click **Apply**.

Step 7 From the **Buffered Log Level** and the **Console Log Level** lists, select the severity level for log messages to the controller buffer and console using one of the following options:

- **Emergencies** - Severity level 0
- **Alerts** - Severity level 1
- **Critical** - Severity level 2
Errors - Severity level 3 (default value)
Warnings - Severity level 4
Notifications - Severity level 5
Informational - Severity level 6
Debugging - Severity level 7

If you set a logging level, only those messages whose severity is equal to or less than that level are logged by the controller. For example, if you set the logging level to Warnings (severity level 4), only those messages whose severity is between 0 and 4 are logged.

Step 8 Select the File Info check box if you want the message logs to include information about the source file. The default value is enabled.
Step 9 Select the Proc Info check box if you want the message logs to include process information. The default value is disabled.
Step 10 Select the Trace Info check box if you want the message logs to include traceback information. The default value is disabled.
Step 11 Click Apply to commit your changes.
Step 12 Click Save Configuration to save your changes.

The configuration is complete. The log source is added to QRadar as Cisco WiSM events are automatically discovered. Events forwarded by Cisco WiSM are displayed on the Log Activity tab of QRadar.

Configure a log source
QRadar automatically discovers and creates a log source for syslog events from Cisco WiSM. The following configuration steps are optional.

To manually configure a log source for Cisco WiSM:

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
 The Data Sources panel is displayed.
Step 4 Click the Log Sources icon.
 The Log Sources window is displayed.
Step 5 Click Add.
 The Add a log source window is displayed.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Cisco Wireless Services Module (WiSM).
Step 9 Using the Protocol Configuration list, select Syslog.
 The syslog protocol configuration is displayed.
Step 10 Configure the following values:

Table 29-16 Syslog protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Cisco WiSM appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete.

Cisco Wireless LAN Controllers

The Cisco Wireless LAN Controllers DSM for IBM Security QRadar collects events forwarded from Cisco Wireless LAN Controller devices using syslog or SNMPv2.

This section includes the following topics:

- Configuring syslog for Cisco Wireless LAN Controller
- Configuring SNMPv2 for Cisco Wireless LAN Controller

Before you begin

If you collect events from Cisco Wireless LAN Controllers, you should select the best collection method for your configuration. The Cisco Wireless LAN Controller DSM for QRadar supports both syslog and SNMPv2 events. However, syslog provides all available Cisco Wireless LAN Controller events, where SNMPv2 only sends a limited set of security events to QRadar.

Configuring syslog for Cisco Wireless LAN Controller

You can configure Cisco Wireless LAN Controller for forward syslog events to QRadar.

Procedure

Step 1 Log in to your Cisco Wireless LAN Controller interface.
Step 2 Click the Management tab.
Step 3 From the menu, select Logs > Config.
Step 4 In the Syslog Server IP Address field, type the IP address of your QRadar Console.
Step 5 Click Add.
Step 6 From the Syslog Level list, select a logging level.
 The Information level allows you to collect all Cisco Wireless LAN Controller events above the debug level.
Step 7 From the Syslog Facility list, select a facility level.
Step 8 Click Apply
Step 9 Click Save Configuration.
What to do next
You are now ready to configure a syslog log source for Cisco Wireless LAN Controller.

Configuring a syslog log source in QRadar
QRadar does not automatically discover incoming syslog events from Cisco Wireless LAN Controllers. You must create a log source for each Cisco Wireless LAN Controller providing syslog events to QRadar.

Procedure
Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Cisco Wireless LAN Controllers.
Step 9 Using the Protocol Configuration list, select Syslog.
Step 10 Configure the following values:

Table 29-17 Syslog protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Cisco Wireless LAN Controller.</td>
</tr>
<tr>
<td>Enabled</td>
<td>Select this check box to enable the log source. By default, the check box is selected.</td>
</tr>
<tr>
<td>Credibility</td>
<td>From the list, select the credibility of the log source. The range is 0 to 10. The credibility indicates the integrity of an event or offense as determined by the credibility rating from the source devices. Credibility increases if multiple sources report the same event. The default is 5.</td>
</tr>
<tr>
<td>Target Event Collector</td>
<td>From the list, select the Event Collector to use as the target for the log source.</td>
</tr>
<tr>
<td>Coalescing Events</td>
<td>Select this check box to enable the log source to coalesce (bundle) events. Automatically discovered log sources use the default value configured in the Coalescing Events drop-down in the QRadar Settings window on the Admin tab. However, when you create a new log source or update the configuration for an automatically discovered log source you can override the default value by configuring this check box for each log source. For more information on settings, see the IBM Security QRadar Administration Guide.</td>
</tr>
</tbody>
</table>
Configuring SNMPv2 for Cisco Wireless LAN Controllers

SNMP event collection for Cisco Wireless LAN Controllers allows you to capture the following events for QRadar:

- SNMP Config Event
- bsn Authentication Errors
- LWAPP Key Decryption Errors

Procedure

1. Log in to your Cisco Wireless LAN Controller interface.
2. Click the Management tab.
3. From the menu, select SNMP > Communities.
 - You can use the one of the default communities created or create a new community.
4. Click New.
5. In the Community Name field, type the name of the community for your device.
6. In the IP Address field, type the IP address of QRadar.
 - The IP address and IP mask you specify is the address from which your Cisco Wireless LAN Controller accepts SNMP requests. You can treat these values as an access list for SNMP requests.
7. In the IP Mask field, type a subnet mask.
8. From the Access Mode list, select Read Only or Read/Write.
9. From the Status list, select Enable.
10. Click Save Configuration to save your changes.
What to do next
You are now ready to create a SNMPv2 trap receiver.

Configure a trap receiver for Cisco Wireless LAN Controller
Trap receivers configured for Cisco Wireless LAN Controllers define where the device can send SNMP trap messages.

Procedure
Step 1 Click the Management tab.
Step 2 From the menu, select SNMP > Trap Receivers.
Step 3 In the Trap Receiver Name field, type a name for your trap receiver.
Step 4 In the IP Address field, type the IP address of QRadar.
 The IP address you specify is the address to which your Cisco Wireless LAN Controller sends SNMP messages. If you plan to configure this log source on an Event Collector, you want to specify the Event Collector appliance IP address.
Step 5 From the Status list, select Enable.
Step 6 Click Apply to commit your changes.
Step 7 Click Save Configuration to save your settings.

What to do next
You are now ready to create a SNMPv2 log source in QRadar.

Configure a log source for SNMPv2 for Cisco Wireless LAN Controller
QRadar does not automatically discover and create log sources for SNMP event data from Cisco Wireless LAN Controllers. You must create a log source for each Cisco Wireless LAN Controller providing SNMPv2 events.

Procedure
Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Cisco Wireless LAN Controllers.
Step 9 Using the Protocol Configuration list, select SNMPv2.
Step 10 Configure the following values:
Table 29-18 SNMPv2 protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Cisco Wireless LAN Controller.</td>
</tr>
<tr>
<td>Community</td>
<td>Type the SNMP community name required to access the system containing SNMP events. The default is Public.</td>
</tr>
<tr>
<td>Include OIDs in Event Payload</td>
<td>Select the Include OIDs in Event Payload check box. This option allows the SNMP event payload to be constructed using name-value pairs instead of the standard event payload format. Including OIDs in the event payload is required for processing SNMPv2 or SNMPv3 events from certain DSMs.</td>
</tr>
<tr>
<td>Enabled</td>
<td>Select this check box to enable the log source. By default, the check box is selected.</td>
</tr>
<tr>
<td>Credibility</td>
<td>From the list, select the credibility of the log source. The range is 0 to 10. The credibility indicates the integrity of an event or offense as determined by the credibility rating from the source devices. Credibility increases if multiple sources report the same event. The default is 5.</td>
</tr>
<tr>
<td>Target Event Collector</td>
<td>From the list, select the Event Collector to use as the target for the log source.</td>
</tr>
<tr>
<td>Coalescing Events</td>
<td>Select this check box to enable the log source to coalesce (bundle) events.</td>
</tr>
</tbody>
</table>

Automatically discovered log sources use the default value configured in the Coalescing Events drop-down in the QRadar Settings window on the Admin tab. However, when you create a new log source or update the configuration for an automatically discovered log source you can override the default value by configuring this check box for each log source. For more information on settings, see the IBM Security QRadar Administration Guide.

| Store Event Payload | Select this check box to enable or disable QRadar from storing the event payload. |

Automatically discovered log sources use the default value from the Store Event Payload drop-down in the QRadar Settings window on the Admin tab. However, when you create a new log source or update the configuration for an automatically discovered log source you can override the default value by configuring this check box for each log source.

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete. Events forwarded to by Cisco Wireless LAN Controller are displayed on the Log Activity tab of QRadar.
Cisco Identity Services Engine

The Cisco Identity Services Engine (ISE) DSM for QRadar accepts syslog events from Cisco ISE appliances with log sources configured to use the UDP Multiline protocol.

Configuration overview

QRadar supports syslog events forwarded by Cisco ISE versions 1.1. Before you configure your Cisco ISE appliance, you should consider which logging categories you want to configure on your Cisco ISE to forward to QRadar. Each logging category must be configured with a syslog severity and included as a remote target to allow Cisco ISE to forward the event to QRadar. The log source you configure in QRadar receives the event forwarded from Cisco ISE and uses a regular expression to assemble the multiline syslog event into an event readable by QRadar.

To integrate Cisco ISE events with QRadar, you must perform the following tasks:

1. Configure a log source in QRadar for your Cisco ISE appliance forwarding events to QRadar.
2. Create a remote logging target for QRadar on your Cisco ISE appliance.
3. Configure the logging categories on your Cisco ISE appliance.

Supported event logging categories

The Cisco ISE DSM for QRadar is capable of receiving syslog events from the following event logging categories.

<table>
<thead>
<tr>
<th>Event logging category</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA audit</td>
</tr>
<tr>
<td>Failed attempts</td>
</tr>
<tr>
<td>Passed authentication</td>
</tr>
<tr>
<td>AAA diagnostics</td>
</tr>
<tr>
<td>Administrator authentication and authorization</td>
</tr>
<tr>
<td>Authentication flow diagnostics</td>
</tr>
<tr>
<td>Identity store diagnostics</td>
</tr>
<tr>
<td>Policy diagnostics</td>
</tr>
<tr>
<td>Radius diagnostics</td>
</tr>
<tr>
<td>Guest</td>
</tr>
<tr>
<td>Accounting</td>
</tr>
<tr>
<td>Radius accounting</td>
</tr>
<tr>
<td>Administrative and operational audit</td>
</tr>
<tr>
<td>Posture and client provisioning audit</td>
</tr>
<tr>
<td>Posture and client provisioning diagnostics</td>
</tr>
<tr>
<td>Profiler</td>
</tr>
</tbody>
</table>
Configuring a Cisco ISE log source in QRadar

To collect syslog events, you must configure a log source for Cisco ISE in QRadar to use the UDP Multiline Syslog protocol.

You must configure a log source for each individual Cisco ISE appliance that forwards events to QRadar. However, all Cisco ISE appliances can forward their events to the same listen port on QRadar that you configure.

Procedure

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 In the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for your log source.
Step 8 From the Log Source Type list, select Cisco Identity Services Engine.
Step 9 From the Protocol Configuration list, select UDP Multiline Syslog.
Step 10 Configure the following values:

Table 29-1 Supported Cisco ISE event logging categories (continued)

<table>
<thead>
<tr>
<th>Event logging category</th>
</tr>
</thead>
<tbody>
<tr>
<td>System diagnostics</td>
</tr>
<tr>
<td>Distributed management</td>
</tr>
<tr>
<td>Internal operations diagnostics</td>
</tr>
<tr>
<td>System statistics</td>
</tr>
</tbody>
</table>

Table 29-2 Cisco ISE log source parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address, host name, or name to identify the log source or appliance providing UDP Multiline Syslog events to QRadar.</td>
</tr>
</tbody>
</table>
Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

What to do next
You are now ready to configure your Cisco ISE appliance with a remote logging target.

Creating a remote logging target in Cisco ISE
To forward syslog events to QRadar, you must configure your Cisco ISE appliance with a remote logging target.

Procedure

1. Log in to your Cisco ISE Administration Interface.
2. From the navigation menu, select Administration > System > Logging > Remote Logging Targets.
3. Click Add.
4. In the Name field, type a name for the remote target system.
5. In the Description field, type a description.
6. In the IP Address field, type a the IP address of the QRadar Console or Event Collector.
7. In the Port field, type 517 or use the port value you specific in your Cisco ISE log source for QRadar.
8. From the Facility Code list, select the syslog facility to use for logging events.

Table 29-2 Cisco ISE log source parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listen Port</td>
<td>Type 517 as the port number used by QRadar to accept incoming UDP Multiline Syslog events. The valid port range is 1 to 65535. To edit a saved configuration to use a new port number: 1 In the Listen Port field, type the new port number for receiving UDP Multiline Syslog events. 2 Click Save. 3 On the Admin tab, select Advanced > Deploy Full Configuration. After the full deploy completes, QRadar is capable of receiving events on the updated listen port. Note: When you click Deploy Full Configuration, QRadar restarts all services, resulting in a gap in data collection for events and flows until the deployment completes.</td>
</tr>
<tr>
<td>Message ID Pattern</td>
<td>Type the following regular expression (regex) required to filter the event payload messages. CISE_\S+ (\d{10})</td>
</tr>
</tbody>
</table>
Step 9 In the **Maximum Length** field, type **1024** as the maximum packet length allowed for the UDP syslog message.

Step 10 Click **Submit**.

The remote logging target is created for QRadar.

What to do next

You are now ready to configure the logging categories forwarded by Cisco ISE to QRadar.

Configuring Cisco ISE logging categories

To define which events are forwarded by your Cisco ISE appliance, you must configure each logging category with a syslog severity and the remote logging target your configured for QRadar.

For a list of pre-defined event logging categories for Cisco ISE, see [Supported event logging categories](#).

Procedure

Step 1 From the navigation menu, select **Administration > System > Logging > Logging Categories**.

Step 2 Select a logging category, and click **Edit**.

Step 3 From the **Log Severity** list, select a severity for the logging category.

Step 4 In the **Target** field, add your remote logging target for QRadar to the **Select** box.

Step 5 Click **Save**.

Step 6 Repeat this process for each logging category you want to forward to QRadar.

The configuration is complete. Events forwarded by Cisco ISE are displayed on the **Log Activity** tab in QRadar.
This section provides information on the following DSMs:

- Citrix NetScaler
- Citrix Access Gateway

Citrix NetScaler

The Citrix NetScaler DSM for IBM Security QRadar accepts all relevant audit log events using syslog.

Configuring syslog on Citrix NetScaler

To integrate Citrix NetScaler events with QRadar, you must configure Citrix NetScaler to forward syslog events.

Procedure

Step 1 Using SSH, log in to your Citrix NetScaler device as a root user.

Step 2 Type the following command to add a remote syslog server:

```
add audit syslogAction <ActionName> <IP Address> -serverPort 514 -logLevel Info -dateFormat DDMMYYYY
```

Where:

- `<ActionName>` is a descriptive name for the syslog server action.
- `<IP Address>` is the IP address or hostname of your QRadar Console.

For example:

```
add audit syslogAction action-QRadar 10.10.10.10 -serverPort 514 -logLevel Info -dateFormat DDMMYYYY
```
Step 3 Type the following command to add an audit policy:

```
add audit syslogPolicy <PolicyName> <Rule> <ActionName>
```

Where:

- `<PolicyName>` is a descriptive name for the syslog policy.
- `<Rule>` is the rule or expression the policy uses. The only supported value is `ns_true`.
- `<ActionName>` is a descriptive name for the syslog server action.

For example:

```
add audit syslogPolicy policy-QRadar ns_true action-QRadar
```

Step 4 Type the following command to bind the policy globally:

```
bind system global <PolicyName> -priority <Integer>
```

Where:

- `<PolicyName>` is a descriptive name for the syslog policy.
- `<Integer>` is a numeric value used to rank message priority for multiple policies that are communicating using syslog.

For example:

```
bind system global policy-QRadar -priority 30
```

When multiple policies have priority assigned to them as a numeric value the lower priority value is evaluated before the higher value.

Step 5 Type the following command to save the Citrix NetScaler configuration.

```
save config
```

Step 6 Type the following command to verify the policy is saved in your configuration:

```
sh system global
```

Note: For information on configuring syslog using the Citrix NetScaler user interface, see http://support.citrix.com/article/CTX121728 or your vendor documentation.

The configuration is complete. The log source is added to QRadar as Citrix NetScaler events are automatically discovered. Events forwarded by Citrix NetScaler are displayed on the Log Activity tab of QRadar.

Configuring a Citrix NetScaler log source

QRadar automatically discovers and creates a log source for syslog events from Citrix NetScaler. This procedure is optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.
Step 5 Click **Add**.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Citrix NetScaler**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Citrix NetScaler devices.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.

Citrix Access Gateway

The Citrix Access Gateway DSM accepts access, audit, and diagnostic events forwarded from your Citrix Access Gateway appliance using syslog.

Configuring syslog for Citrix Access Gateway

This procedure outlines the configure steps required to configure syslog on your Citrix Access Gateway to forward events to the QRadar Console or an Event Collector.

Procedure

Step 1 Log in to your Citrix Access Gateway web interface.

Step 2 Click the **Access Gateway Cluster** tab.

Step 3 Select **Logging/Settings**.

Step 4 In the **Server** field, type the IP address of your QRadar Console or Event Collector.

Step 5 From the **Facility** list, select a syslog facility level.

Step 6 In the **Broadcast interval (mins)**, type 0 to continuously forward syslog events to QRadar.

Step 7 Click **Submit** to save your changes.

The configuration is complete. The log source is added to QRadar as Citrix Access Gateway events are automatically discovered. Events forwarded to QRadar by Citrix Access Gateway are displayed on the **Log Activity** tab in QRadar.
Configuring a Citrix Access Gateway log source

QRadar automatically discovers and creates a log source for syslog events from Citrix Access Gateway appliances. This procedure is optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 In the Log Source Name field, type a name for your log source.

Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select Citrix Access Gateway.

Step 9 Using the Protocol Configuration list, select Syslog.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 30-2</th>
<th>Syslog protocol parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Citrix Access Gateway appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete.
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
The QRadar CRYPTOCard CRYPTO-Shield DSM for IBM Security QRadar accepts events using syslog.

Before you begin

To integrate CRYPTOCard CRYPTO-Shield events with QRadar, you must manually create a log source to receive syslog events.

Before you can receive events in QRadar, you must configure a log source, then configure your CRYPTOCard CRYPTO-Shield to forward syslog events. Syslog events forwarded from CRYPTOCard CRYPTO-Shield devices are not automatically discovered. QRadar can receive syslog events on port 514 for both TCP and UDP.

Configuring a log source

QRadar does not automatically discover or create log sources for syslog events from CRYPTOCard CRYPTO-Shield devices.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the *Admin* tab.

Step 3 On the navigation menu, click *Data Sources*.

Step 4 Click the *Log Sources* icon.

Step 5 Click *Add*.

Step 6 In the *Log Source Name* field, type a name for your log source.

Step 7 In the *Log Source Description* field, type a description for the log source.

Step 8 From the *Log Source Type* list, select *CRYPTOCard CRYPTOShield*.

Step 9 Using the *Protocol Configuration* list, select *Syslog*.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 33-1 Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
</tbody>
</table>
Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The log source is added to QRadar.

Configure syslog for CRYPTOCard CRYPTO-Shield

To configure your CRYPTOCard CRYPTO-Shield device to forward syslog events:

Step 1 Log in to your CRYPTOCard CRYPTO-Shield device.

Step 2 Configure the following System Configuration parameters:

NOTE You must have CRYPTOCard Operator access with the assigned default Super-Operator system role to access the System Configuration parameters.

- `log4j.appender.<protocol>` - Directs the logs to a syslog host where the `<protocol>` is the type of log appender, which determines where you want to send logs for storage. The options are: ACC, DBG, or LOG. For this parameter, type the following: `org.apache.log4j.net.SyslogAppender`

- `log4j.appender.<protocol>.SyslogHost <IP address>` - Type the IP address or hostname of the syslog server where:
 - `<protocol>` is the type of log appender, which determines where you want to send logs for storage. The options are: ACC, DBG, or LOG.
 - `<IP address>` is the IP address of the QRadar host to which you want to send logs. This value can only be specified when the first parameter is configured.

This parameter can only be specified when the `log4j.appender.<protocol>` parameter is configured.

The configuration is complete. Events forwarded to QRadar by CRYPTOCard CRYPTO-Shield are displayed on the **Log Activity** tab.

Supported event types

QRadar records both user activities and safe activities from the Cyber-Ark Vault in the audit log events. Cyber-Ark Vault integrates with QRadar to forward audit logs using syslog to create a complete audit picture of privileged account activities.

Event type format

Cyber-Ark Vault must be configured to generate events in Log Enhanced Event Protocol (LEEF) and forward these events using syslog. The LEEF format consists of a pipe (|) delimited syslog header and tab separated fields in the event payload.

If the syslog events forwarded from your Cyber-Ark Vault is not formatted as described above, you must examine your device configuration or software version to ensure your appliance supports LEEF. Properly formatted LEEF event messages are automatically discovered and added as a log source to QRadar.

Configure syslog for Cyber-Ark Vault

To configure Cyber-Ark Vault to forward syslog events to QRadar:

Procedure

1. **Step 1** Log in to your Cyber-Ark device.
2. **Step 2** Edit the DBParm.ini file.
3. **Step 3** Configure the following parameters:
 - **SyslogServerIP** - Type the IP address of QRadar.
 - **SyslogServerPort** - Type the UDP port used to connect to QRadar. The default value is 514.
 - **SyslogMessageCodeFilter** - Configure which message codes are sent from the Cyber-Ark Vault to QRadar. You can define specific message numbers or a range of numbers. By default, all message codes are sent for user activities and safe activities.

 For example, to define a message code of 1,2,3,30 and 5-10, you must type: 1,2,3,5-10,30.
• **SyslogTranslatorFile** - Type the file path to the LEEF.xsl translator file. The translator file is used to parse Cyber-Ark audit records data in the syslog protocol.

 Step 4 Copy LEEF.xsl to the location specified by the SyslogTranslatorFile parameter in the DBParm.ini file.

 The configuration is complete. The log source is added to QRadar as Cyber-Ark Vault events are automatically discovered. Events forwarded by Cyber-Ark Vault are displayed on the **Log Activity** tab of QRadar.

Configuring a log source
QRadar automatically discovers and creates a log source for syslog events from Cyber-Ark Vault. The following configuration steps are optional.

Procedure

 Step 1 Log in to QRadar.

 Step 2 Click the **Admin** tab.

 Step 3 On the navigation menu, click **Data Sources**.

 Step 4 Click the **Log Sources** icon.

 Step 5 Click **Add**.

 Step 6 In the **Log Source Name** field, type a name for your log source.

 Step 7 In the **Log Source Description** field, type a description for the log source.

 Step 8 From the **Log Source Type** list, select **Cyber-Ark Vault**.

 Step 9 Using the **Protocol Configuration** list, select **Syslog**.

 Step 10 Configure the following values:

 Table 34-1 Syslog Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Cyber-Ark Vault appliance.</td>
</tr>
</tbody>
</table>

 Step 11 Click **Save**.

 Step 12 On the **Admin** tab, click **Deploy Changes**.

 The configuration is complete.
The CyberGuard Firewall VPN Appliance DSM for IBM Security QRadar accepts CyberGuard events using syslog.

Supported event types
QRadar records all relevant CyberGuard events for CyberGuard KS series appliances forwarded using syslog.

Configure syslog events
To configure a CyberGuard device to forward syslog events:

Procedure

Step 1 Log in to the CyberGuard user interface.
Step 2 Select the Advanced page.
Step 3 Under System Log, select Enable Remote Logging.
Step 4 Type the IP address of QRadar.
Step 5 Click Apply.

The configuration is complete. The log source is added to QRadar as CyberGuard events are automatically discovered. Events forwarded by CyberGuard appliances are displayed on the Log Activity tab of QRadar.

Configure a log source
QRadar automatically discovers and creates a log source for syslog events from CyberGuard appliances. The following configuration steps are optional.

Procedure

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select CyberGuard TSP Firewall/VPN.
Step 9 Using the Protocol Configuration list, select Syslog.
Step 10 Configure the following values:

Table 35-1 Syslog parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your CyberGuard appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete.
The Failsafe DSM for IBM Security QRadar accepts syslog events using the Log Enhanced Event Protocol (LEEF), enabling QRadar to record all relevant Damballa Failsafe events.

Event type format

Damballa Failsafe must be configured to generate events in Log Enhanced Event Protocol (LEEF) and forward these events using syslog. The LEEF format consists of a pipe (|) delimited syslog header and tab separated fields in the event payload.

If the syslog events forwarded from your Damballa Failsafe is not formatted as described above, you must examine your device configuration or software version to ensure your appliance supports LEEF. Properly formatted LEEF event messages are automatically discovered and added as a log source to QRadar.

Configuring syslog for Damballa Failsafe

To collect events, you must configure your Damballa Failsafe device to forward syslog events to QRadar.

Procedure

1. **Step 1** Log in to your Damballa Failsafe Management Console
2. **Step 2** From the navigation menu, select **Setup > Integration Settings**.
3. **Step 3** Click the **Q1 QRadar** tab.
4. **Step 4** Select **Enable Publishing to Q1 QRadar**.
5. **Step 5** Configure the following options:
 - **Q1 Hostname** - Type the IP address or Fully Qualified Name (FQN) of your QRadar Console.
 - **Destination Port** - Type **514**. By default, QRadar uses port 514 as the port for receiving syslog events.
 - **Source Port** - Optional. Type the source port your Damballa Failsafe device uses for sending syslog events.
6. **Step 6** Click **Save**.

The configuration is complete. The log source is added to QRadar as Damballa Failsafe events are automatically discovered. Events forwarded by Damballa Failsafe are displayed on the **Log Activity** tab of QRadar.
Configuring a log source
QRadar automatically discovers and creates a log source for syslog events from Damballa Failsafe devices. The following configuration steps are optional.

Procedure
Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Damballa Failsafe.
Step 9 Using the Protocol Configuration list, select Syslog.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Damballa Failsafe devices.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.
Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete.
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
The Digital China Networks (DCN) DCS/DCRS Series DSM for IBM Security QRadar can accept events from Digital China Networks (DCN) switches using syslog.

Supported event types
QRadar records all relevant IPv4 events forwarded from DCN switches. To integrate your device with QRadar, you must configure a log source, then configure your DCS or DCRS switch to forward syslog events.

Supported appliances
The DSM supports the following DCN DCS/DCRS Series switches:
- DCS - 3650
- DCS - 3950
- DCS - 4500
- DCRS - 5750
- DCRS - 5960
- DCRS - 5980
- DCRS - 7500
- DCRS - 9800

Configuring a log source
QRadar does not automatically discover incoming syslog events from DCN DCS/DCRS Series switches.

Procedure

1. Log in to QRadar.
2. Click the **Admin** tab.
3. On the navigation menu, click **Data Sources**.
4. Click the **Log Sources** icon.
5. Click **Add**.
6. In the **Log Source Name** field, type a name for your log source.
7. In the **Log Source Description** field, type a description for the log source.
8. From the **Log Source Type** list, select **DCN DCS/DCRS Series**.
Step 9 Using the **Protocol Configuration** list, select **Syslog**.

Step 10 Configure the following value:

<table>
<thead>
<tr>
<th>Table 38-1</th>
<th>Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address, hostname, or name for the log source as an identifier for your DCN DCS/DCRS Series switch. Each log source you create for your DCN DCS/DCRS Series switch should include a unique identifier, such as an IP address or hostname.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The log source is added to QRadar. You are now ready to configure your Digital China Networks DCS or DCRS Series switch to forward events to QRadar.

Configure a DCN DCS/DCRS Series Switch

To collect events, you must configure your DCN DCS/DCRS Series switch in QRadar.

Procedure

Step 1 Log in to your DCN DCS/DCRS Series switch command-line Interface (CLI).

Step 2 Type the following command to access the administrative mode:

```
enable
```

Step 3 Type the following command to access the global configuration mode:

```
config
```

The command-line interface displays the configuration mode prompt:

```
Switch(Config)#
```

Step 4 Type the following command to configure a log host for your switch:

```
logging <IP address> facility <local> severity <level>
```

Where:

- `<IP address>` is the IP address of the QRadar Console.
- `<local>` is the syslog facility, for example, local0.
- `<level>` is the severity of the syslog events, for example, informational. If you specify a value of informational, you forward all information level events and later, such as, notifications, warnings, errors, critical, alerts, and emergencies.

For example, `logging 10.10.10.1 facility local0 severity informational`

Step 5 Type the following command to save your configuration changes:

```
write
```
The configuration is complete. You can verify events forwarded to QRadar by viewing events in the **Log Activity** tab.
Enterasys

This section provides information on the following DSMs:

- Enterasys Dragon
- Enterasys HiGuard Wireless IPS
- Enterasys HiPath Wireless Controller
- Enterasys HiPath Wireless Controller
- Enterasys Stackable and Standalone Switches
- Enterasys XSR Security Router
- Enterasys Matrix Router
- Enterasys NetSight Automatic Security Manager
- Enterasys Matrix K/N/S Series Switch
- Enterasys NAC
- Enterasys 800-Series Switch

Enterasys Dragon

The Enterasys Dragon DSM for IBM Security QRadar accepts Enterasys events using either syslog or SNMPv3 to record all relevant Enterasys Dragon events.

To configure your QRadar Enterasys Dragon DSM, you must:

1. Choose one of the following:
 b. Create an Alarm Tool policy using a Syslog notification rule. See Create a Policy for Syslog.

2. Configure the log source within QRadar. See Configure a log source.

3. Configure Dragon Enterprise Management Server (EMS) to forward syslog messages. See Configure the EMS to forward syslog messages.
Create an Alarm Tool Policy for SNMPv3

This procedure describes how to configure an Alarm Tool policy using an SNMPv3 notification rule. Use SNMPv3 notification rules if you need to transfer PDATA binary data elements.

To configure Enterasys Dragon with an Alarm Tool policy using an SNMPv3 notification rule:

Step 1 Log in to the Enterasys Dragon EMS.

Step 2 Click the **Alarm Tool** icon.

Step 3 Configure the Alarm Tool Policy:

- In the **Alarm Tool Policy View > Custom Policies** menu tree, right-click and select **Add Alarm Tool Policy**.

 The Add Alarm Tool Policy window is displayed.

- In the **Add Alarm Tool Policy** field, type a policy name.

 For example: **QRadar**

- Click **OK**.

- In the menu tree, select the policy name you entered from Step 3.

Step 4 To configure the event group:

- Click the **Events Group** tab.

 The Event Group Editor is displayed.

- Select the event group or individual events to monitor.

- Click **Add**.

 A prompt is displayed.

- Click **Yes**.

- In the right column of the Event Group Editor, type **Dragon-Events**.

- Click **OK**.

Step 5 Configure the SNMPv3 notification rules:

- Click the **Notification Rules** tab.

- Click **New**.

- In the name field, type **QRadar-Rule**.

- Click **OK**.

- In the Notification Rules panel, select **QRadar-Rule**.

- Click the **SNMP V3** tab.

- Click **New**.

- Update SNMP V3 values, as required:

 - **Server IP Address** - Type the QRadar IP address.
Note: Do not change the OID.

- **Inform** - Select the **Inform** check box.
- **Security Name** - Type the SNMPv3 username.
- **Auth Password** - Type the appropriate password.
- **Priv Password** - Type the appropriate password.
- **Message** - Type the following on one line:

```
Dragon Event:
%DATE%, %TIME%, %NAME%, %SENSOR%, %PROTO%, %SIP%,
%DIP%, %SPORT%, %DPORT%, %DIR%, %DATA%, <<<%PDATA%>>>
```

Note: Verify that the security passwords and protocols match data configured in the SNMP configuration.

- Click **OK**.

Step 6 Verify that the notification events are logged as separate events:

 a. Click the **Global Options** tab.
 b. Click the **Main** tab.
 c. Make sure that **Concatenate Events** is not selected.

Step 7 Configure the SNMP options:

 a. Click the **Global Options** tab.
 b. Click the **SNMP** tab
 c. Type the IP address of the EMS server sending SNMP traps.

Step 8 Configure the alarm information:

 a. Click the **Alarms** tab.
 b. Click **New**.
 c. Type values for the following parameters:
 - **Name** - Type **QRadar-Alarm**.
 - **Type** - Select **Real Time**.
 - **Event Group** - Select **Dragon-Events**.
 - **Notification Rule** - Select the **QRadar-Rule** check box.
 d. Click **OK**.
 e. Click **Commit**.

Step 9 Navigate to the Enterprise View.

Step 10 Right-click on the **Alarm Tool** and select **Associate Alarm Tool Policy**.

Step 11 Select the **QRadar** policy. Click **OK**.

Step 12 From the Enterprise menu, right-click and select **Deploy**.

You are now ready to configure the log source SNMP protocol in QRadar.
Create a Policy for Syslog

This procedure describes how to configure an Alarm Tool policy using a syslog notification rule in the Log Event Extended Format (LEEF) message format.

LEEF is the preferred message format for sending notifications to Dragon Network Defense when the notification rate is very high or when IPv6 addresses are displayed. If you prefer not to use syslog notifications in LEEF format, refer to your *Enterasys Dragon documentation* for more information.

Note: Use SNMPv3 notification rules if you need to transfer PDATA, which is a binary data element. Do not use a syslog notification rule.

To configure Enterasys Dragon with an Alarm Tool policy using a syslog notification rule:

Step 1 Log in to the Enterasys Dragon EMS.

Step 2 Click the *Alarm Tool* icon.

Step 3 Configure the Alarm Tool Policy:

a In the *Alarm Tool Policy View > Custom Policies* menu tree, right-click and select *Add Alarm Tool Policy.*

The Add Alarm Tool Policy window is displayed.

b In the *Add Alarm Tool Policy* field, type a policy name.

For example:

QRadar

c Click *OK.*

d In the menu tree, select *QRadar.*

Step 4 To configure the event group:

a Click the *Events Group* tab.

b Click *New.*

The Event Group Editor is displayed.

c Select the event group or individual events to monitor.

d Click *Add.*

A prompt is displayed.

e Click *Yes.*

f In the right column of the Event Group Editor, type *Dragon-Events.*

g Click *OK.*

Step 5 Configure the Syslog notification rule:

a Click the *Notification Rules* tab.

b Click *New.*

c In the name field, type *QRadar-RuleSys.*

d Click *OK.*
In the Notification Rules panel, select the newly created QRadar-RuleSys item.

Click the Syslog tab.

Click New.

The Syslog Editor is displayed.

Update the following values:

- **Facility** - Using the Facility list, select a facility.
- **Level** - Using the Level list, select notice.
- **Message** - Using the Type list, select LEEF.

LEEF:Version=1.0|Vendor|Product|ProductVersion|eventID|devTime|proto|src|sensor|dst|srcPort|dstPort|direction|eventData|

Note: The LEEF message format delineates between fields using a pipe delimiter between each keyword.

Click OK.

Step 6 Verify that the notification events are logged as separate events:

- Click the Global Options tab.
- Click the Main tab.
- Make sure that Concatenate Events is not selected.

Step 7 Configure the alarm information:

- Click the Alarms tab.
- Click New.
- Type values for the parameters:
 - **Name** - Type QRadar-Alarm.
 - **Type** - Select Real Time.
 - **Event Group** - Select Dragon-Events.
 - **Notification Rule** - Select the QRadar-RuleSys check box.
- Click OK.
- Click Commit.

Step 8 Navigate to the Enterprise View.

Step 9 Right-click on the Alarm Tool and select Associate Alarm Tool Policy.

Step 10 Select the newly created QRadar policy. Click OK.

Step 11 In the Enterprise menu, right-click the policy and select Deploy.

You are now ready to configure a syslog log source in QRadar.
Configure a log source

You are now ready to configure the log source in QRadar:

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Enterasys Dragon Network IPS.
Step 9 From the Protocol Configuration list, select either the SNMPv3 or Syslog option.

For more information on configuring a specific protocol, see the IBM Security QRadar Log Sources User Guide.

For more information about Enterasys Dragon device, see your Enterasys Dragon documentation.

Note: Using the event mapping tool in the Log Activity tab, you can map a normalized or raw event to a high-level and low-level category (or QID). However, you cannot map combination Dragon messages using the event mapping tool. For more information, see the IBM Security QRadar Users Guide.

Configure the EMS to forward syslog messages

Starting with Dragon Enterprise Management Server (EMS) v7.4.0 appliances, you must use syslog-ng for forwarding events to a Security and Information Manager such as QRadar.

Syslogd has been replaced by syslog-ng in Dragon EMS v7.4.0 and later.

To configure EMS to forward syslog messages, you must choose one of the following:

• If you are using syslog-ng and Enterasys Dragon EMS v7.4.0 and later, see Configuring syslog-ng Using Enterasys Dragon EMS v7.4.0 and later.
• If you are using syslogd and Enterasys Dragon EMS v7.4.0 and below, see Configuring syslogd Using Enterasys Dragon EMS v7.4.0 and below.

Configuring syslog-ng Using Enterasys Dragon EMS v7.4.0 and later

This section describes the steps to configure syslog-ng in non-encrypted mode and syslogd to forward syslog messages to QRadar.

If you are using encrypted syslog-ng, refer to your Enterasys documentation.
CAUTION: Do not run both syslog-ng and syslogd at the same time.

To configure syslog-ng in non-encrypted mode:

Step 1 On your EMS system, open the following file:
```bash
/opt/syslog-ng/etc/syslog-ng.conf
```

Step 2 Configure a Facility filter for the Syslog notification rule.
For example, if you selected facility local1:
```bash
filter filt_facility_local1 {facility(local1); }
```

Step 3 Configure a Level filter for the Syslog notification rule.
For example, if you selected level notice:
```bash
filter filt_level_notice {level(notice); }
```

Step 4 Configure a destination statement for the QRadar.
For example, if the IP address of the QRadar is 10.10.1.1 and you want to use syslog port of 514, type:
```bash
destination siem { tcp("10.10.1.1" port(514)); }
```

Step 5 Add a log statement for the notification rule:
```bash
log {
  source(s_local);
  filter (filt_facility_local1); filter (filt_level_notice);
  destination(siem);
}
```

Step 6 Save the file and restart syslog-ng.
```bash
   cd /etc/rc.d
   ./rc.syslog-ng stop
   ./rc.syslog-ng start
```

Step 7 The Enterasys Dragon EMS configuration is complete.

Configuring syslogd Using Enterasys Dragon EMS v7.4.0 and below

If your Dragon Enterprise Management Server (EMS) is using a version earlier than v7.4.0 on the appliance, you must use syslogd for forwarding events to a Security and Information Manager such as QRadar.

To configure syslogd, you must:

Step 1 On the Dragon EMS system, open the following file:
```bash
/etc/syslog.conf
```

Step 2 Add a line to forward the facility and level you configured in the syslog notification rule to QRadar.
For example, to define the local1 facility and notice level:
```bash
local1.notice @<IP address>
```
Where:
Step 3: Save the file and restart syslogd.

```
  cd /etc/rc.d
  ./rc.syslog stop
  ./rc.syslog start
```

The Enterasys Dragon EMS configuration is complete.

Enterasys HiGuard Wireless IPS

The Enterasys HiGuard Wireless IPS DSM for IBM Security QRadar records all relevant events using syslog.

Before configuring the Enterasys HiGuard Wireless IPS device in QRadar, you must configure your device to forward syslog events.

Configure Enterasys HiGuard

To configure the device to forward syslog events:

1. Log in to the HiGuard Wireless IPS user interface.
2. In the left navigation pane, click **Syslog**, which allows the management server to send events to designated syslog receivers. The Syslog Configuration panel is displayed.
3. In the System Integration Status section, enable syslog integration. This allows the management server to send messages to the configured syslog servers. By default, the management server enables syslog. The Current Status field displays the status of the syslog server. The options are: Running or Stopped. An error status is displayed if one of the following occurs:
 - One of the configured and enabled syslog servers includes a hostname that cannot be resolved.
 - The management server is stopped.
 - An internal error has occurred. If this occurs, please contact Enterasys Technical Support.
4. From **Manage Syslog Servers**, click **Add**. The Syslog Configuration window is displayed.
5. Type values for the following parameters:
 - **Syslog Server (IP Address/Hostname)** - Type the IP address or hostname of the syslog server to which events should be sent.
 - **Port Number** - Type the port number of the syslog server to which HWMH sends events. The default is 514.
 - **Message Format** - Select **Plain Text** as the format for sending events.

IBM Security QRadar DSM Configuration Guide
Configure a log source QRadar automatically discovers and creates a log source for syslog events from Enterasys HiGuard. The following configuration steps are optional.

To manually configure a log source for Enterasys HiGuard:

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Enterasys HiGuard.
Step 9 Using the Protocol Configuration list, select Syslog.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Enterasys HiGuard.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.
Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete.

Enterasys HiPath Wireless Controller The Enterasys HiPath Wireless Controller DSM for IBM Security QRadar records all relevant events using syslog.

Supported event types QRadar supports the following Enterasys HiPath Wireless Controller events:

- Wireless access point events
- Application log events
- Service log events
- Audit log events
Configure your HiPath Wireless Controller

To integrate your Enterasys HiPath Wireless Controller events with QRadar, you must configure your device to forward syslog events.

To forward syslog events to QRadar:

Step 1 Log in to the HiPath Wireless Assistant.
Step 2 Click **Wireless Controller Configuration**.
 The HiPath Wireless Controller Configuration window is displayed.
Step 3 From the menu, click **System Maintenance**.
Step 4 From the Syslog section, select the **Syslog Server IP** check box and type the IP address of the device receiving the syslog messages.
Step 5 Using the **Wireless Controller Log Level** list, select **Information**.
Step 6 Using the **Wireless AP Log Level** list, select **Major**.
Step 7 Using the **Application Logs** list, select **local.0**.
Step 8 Using the **Service Logs** list, select **local.3**.
Step 9 Using the **Audit Logs** list, select **local.6**.
Step 10 Click **Apply**.
 You are now ready to configure the log source in QRadar.

Configure a log source

QRadar automatically discovers and creates a log source for syslog events from Enterasys HiPath. The following configuration steps are optional.

To manually configure a log source for Enterasys HiPath:

Step 1 Log in to QRadar.
Step 2 Click the **Admin** tab.
Step 3 On the navigation menu, click **Data Sources**.
Step 4 Click the **Log Sources** icon.
Step 5 Click **Add**.
Step 6 In the **Log Source Name** field, type a name for your log source.
Step 7 In the **Log Source Description** field, type a description for the log source.
Step 8 From the **Log Source Type** list, select **Enterasys HiPath**.
Step 9 Using the **Protocol Configuration** list, select **Syslog**.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Enterasys HiPath.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

IBM Security QRadar DSM Configuration Guide
Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete. For more information about your Enterasys HiPath Wireless Controller device, see your vendor documentation.

<table>
<thead>
<tr>
<th>Enterasys Stackable and Standalone Switches</th>
<th>The Enterasys Stackable and Standalone Switches DSM for IBM Security QRadar accepts events using syslog.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QRadar records all relevant events. Before configuring an Enterasys Stackable and Standalone Switches device in QRadar, you must configure your device to forward syslog events.</td>
</tr>
</tbody>
</table>
To configure the device to forward syslog events to QRadar:

Step 1 Log in to the Enterasys Stackable and Standalone Switch device.

Step 2 Type the following command:

```
set logging server <index> [ip-addr <IP address>] [facility <facility>] [severity <severity>] [descr <description>] [port <port>] [state <enable | disable>]
```

Where:

- `<index>` is the server table index number (1 to 8) for this server.
- `<ip address>` is the IP address of the server you wish to send syslog messages. This is an optional field. If you do not define an IP address, an entry in the Syslog server table is created with the specified index number and a message is displayed indicating that no IP address has been assigned.
- `<facility>` is a syslog facility. Valid values are `local0` to `local7`. This is an optional field. If not specified, the default value configured with the set logging default command is applied.
- `<severity>` is the server severity level that the server will log messages. The valid range is 1 to 8. If not specified, the default value configured with the set logging default command is applied. This is an optional field. Valid values include:
 - 1: Emergencies (system is unusable)
 - 2: Alerts (immediate action required)
 - 3: Critical conditions
 - 4: Error conditions
 - 5: Warning conditions
 - 6: Notifications (significant conditions)
 - 7: Informational messages
 - 8: Debugging messages
- `<description>` is a description of the facility/server. This is an optional field.
- `<port>` is the default UDP port that the client uses to send messages to the server. If not specified, the default value configured with the set logging default command is applied. This is an optional field.
- `<enable | disable>` enables or disables this facility/server configuration. This is an optional field. If state is not specified, the server will not be enabled or disabled.

Step 3 You are now ready to configure the log source in QRadar.

When you create the log source in the QRadar user interface, select one of the following options from the **Log Source Type** list:

- Enterasys Stackable and Standalone Switches
- Enterasys A2-Series
- Enterasys B2-Series
Enterasys XSR Security Router

The Enterasys XSR Security Router DSM for IBM Security QRadar accepts events using syslog.

QRadar records all relevant events. Before configuring an Enterasys XSR Security Router in QRadar, you must configure your device to forward syslog events.

To configure the device to send syslog events to QRadar:

Step 1
Using Telnet or SSH, log in to the XSR Security Router command-line interface.

Step 2
Type the following command to access config mode:

```
enable
config
```

Step 3
Type the following command:

```
logging <IP address> low
```

Where `<IP address>` is the IP address of your QRadar.

Step 4
Exit from config mode.

Step 5
Save the configuration:

```
exit
copy running-config startup-config
```

Step 6
You are now ready to configure the log sources in QRadar.

To configure QRadar to receive events from an Enterasys XSR Security Router:

- From the **Log Source Type** list, select **Enterasys XSR Security Routers**.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*.

For more information about your Enterasys XSR Security Router, see your vendor documentation.
Enterasys Matrix Router

The Enterasys Matrix Router DSM for IBM Security QRadar accepts Enterasys Matrix events using SNMPv1, SNMPv2, SNMPv3, and syslog.

You can integrate Enterasys Matrix Router version 3.5 with QRadar. QRadar records all SNMP events and syslog login, logout, and login failed events. Before you configure QRadar to integrate with Enterasys Matrix, you must:

Step 1
Log in to the switch/router as a privileged user.

Step 2
Type the following command:

```
set logging server <server number> description <description> facility <facility> ip_addr <ip address> port <port> severity <severity>
```

Where:

- `<server number>` is the server number 1 to 8.
- `<description>` is a description of the server.
- `<facility>` is a syslog facility, for example, local0.
- `<ip address>` is the IP address of the server you wish to send syslog messages.
- `<port>` is the default UDP port that the client uses to send messages to the server. Use port 514 unless otherwise stated.
- `<severity>` is the server severity level 1 to 9 where 1 indicates an emergency and 8 is debug level.

For example:

```
set logging server 5 description ourlogserver facility local0 ip_addr 1.2.3.4 port 514 severity 8
```

Step 3
You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from an Enterasys Matrix device:

- From the Log Source Type list, select **Enterasys Matrix E1 Switch**.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*.

Enterasys NetSight Automatic Security Manager

QRadar records all relevant events. Before configuring an Enterasys NetSight Automatic Security Manager device in QRadar, you must configure your device to forward syslog events.
To configure the device to send syslog events to QRadar:

Step 1 Log in to the Automatic Security Manager user interface.

Step 2 Click the Automated Security Manager icon to access the Automated Security Manager Configuration window.

Note: You can also access the Automated Security Manager Configuration window from the Tool menu.

Step 3 From the left navigation menu, select Rule Definitions.

Step 4 Choose one of the following options:
 a If a rule is currently configured, highlight the rule. Click Edit.
 b To create a new rule, click Create.

Step 5 Select the Notifications check box.

Step 6 Click Edit.

The Edit Notifications window is displayed.

Step 7 Click Create.

The Create Notification window is displayed.

Step 8 Using the Type list, select Syslog.

Step 9 In the Syslog Server IP/Name field, type the IP address of the device that will receive syslog traffic.

Step 10 Click Apply.

Step 11 Click Close.

Step 12 In the Notification list, select the notification configured above.

Step 13 Click OK.

Step 14 You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from an Enterasys NetSight Automatic Security Manager device:

 ◮ From the Log Source Type list, select Enterasys NetsightASM.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide.

For more information about your Enterasys NetSight Automatic Security Manager device, see your vendor documentation.

Enterasys Matrix K/N/S Series Switch

The Enterasys Matrix Series DSM for IBM Security QRadar accepts events using syslog. QRadar records all relevant Matrix K-Series, N-Series, or S-Series standalone device events.
Before you configure QRadar to integrate with a Matrix K-Series, N-Series, or S-Series, you must:

Step 1 Log in to your Enterasys Matrix device command-line interface (CLI).

Step 2 Type the following commands:

```plaintext
set logging server 1 ip-addr <IP Address of Event Processor>
state enable
set logging application RtrAcl level 8
set logging application CLI level 8
set logging application SNMP level 8
set logging application Webview level 8
set logging application System level 8
set logging application RtrFe level 8
set logging application Trace level 8
set logging application RtrLSNat level 8
set logging application FlowLimit level 8
set logging application UPN level 8
set logging application AAA level 8
set logging application Router level 8
set logging application AddrNtfy level 8
set logging application OSPF level 8
set logging application VRRP level 8
set logging application RtrArpProc level 8
set logging application LACP level 8
set logging application RtrNat level 8
set logging application RtrTwcb level 8
set logging application HostDoS level 8
set policy syslog extended-format enable
```

For more information on configuring the Matrix Series routers or switches, consult your vendor documentation.

Step 3 You are now ready to configure the log sources in QRadar.

To configure QRadar to receive events from an Enterasys Matrix Series device:

- From the Log Source Type list, select Enterasys Matrix K/N/S Series Switch.

For information on configuring log sources, see the IBM Security QRadar Log Sources User Guide.
The Enterasys NAC DSM for IBM Security QRadar accepts events using syslog. QRadar records all relevant events.

For details on configuring your Enterasys NAC appliances for syslog, consult your vendor documentation. After the Enterasys NAC appliance is forwarding syslog events to QRadar, the configuration is complete. The log source is added to QRadar as Enterasys NAC events are automatically discovered. Events forwarded by Enterasys NAC appliances are displayed on the Log Activity tab of QRadar.

Configure a log source

QRadar automatically discovers and creates a log source for syslog events from Enterasys NAC. The following configuration steps are optional.

To manually configure a log source for Enterasys NAC:

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Enterasys NAC.
Step 9 Using the Protocol Configuration list, select Syslog.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Enterasys NAC appliances.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.
Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete.

The Enterasys 800-Series Switch DSM for IBM Security QRadar accepts events using syslog.

QRadar records all relevant audit, authentication, system, and switch events. Before configuring your Enterasys 800-Series Switch in QRadar, you must configure your switch to forward syslog events.
Configure your
Enterasys 800-Series Switch

To configure the device to forward syslog events:

Step 1 Log in to your Enterasys 800-Series Switch command-line interface.
You must be a system administrator or operator-level user to complete these configuration steps.

Step 2 Type the following command to enable syslog:
   ```
   enable syslog
   ```

Step 3 Type the following command to create a syslog address for forwarding events to QRadar:
   ```
   create syslog host 1 <IP address> severity informational facility local7 udp_port 514 state enable
   ```
 Where `<IP address>` is the IP address of your QRadar Console or Event Collector.

Step 4 Optional. Type the following command to forward syslog events using an IP interface address:
   ```
   create syslog source_ipif <name> <IP address>
   ```
 Where:

 `<name>` is the name of your IP interface.
 `<IP address>` is the IP address of your QRadar Console or Event Collector.

The configuration is complete. The log source is added to QRadar as Enterasys 800-Series Switch events are automatically discovered. Events forwarded to QRadar by Enterasys 800-Series Switches are displayed on the Log Activity tab of QRadar.

Configure a log source

QRadar automatically discovers and creates a log source for syslog events from Enterasys 800-Series Switches. The following configuration steps are optional.

To manually configure a log source:

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 In the Log Source Name field, type a name for your log source.

Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select Enterasys 800-Series Switch.

Step 9 Using the Protocol Configuration list, select Syslog.

Step 10 Configure the following values:
Table 39-1 Syslog Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Enterasys 800-Series Switch.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.
The Extreme Networks ExtremeWare DSM for IBM Security QRadar records all relevant Extreme Networks ExtremeWare and Extremeware XOS devices events from using syslog.

To integrate QRadar with an ExtremeWare device, you must configure a log source in QRadar, then configure your Extreme Networks ExtremeWare and Extremeware XOS devices to forward syslog events. QRadar does not automatically discover or create log sources for syslog events from ExtremeWare appliances.

Configuring a log source

To integrate with QRadar, you must manually create a log source to receive the incoming ExtremeWare events forwarded to QRadar.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 In the Log Source Name field, type a name for your log source.

Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select Extreme Networks ExtremeWare Operating System (OS).

Step 9 Using the Protocol Configuration list, select Syslog.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 40-1 Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

IBM Security QRadar DSM Configuration Guide
The log source is added to QRadar. Events forwarded to QRadar by Extreme Networks ExtremeWare appliances are displayed on the Log Activity tab.

For information on configuring syslog forwarding for your Extremeware appliances, see your vendor documentation.
This section provides information on the following DSMs:

- F5 Networks BIG-IP AFM
- F5 Networks BIG-IP APM
- F5 Networks BIG-IP ASM
- F5 Networks BIG-IP LTM
- F5 Networks FirePass

The F5 Networks BIG-IP Advanced Firewall Manager (AFM) DSM for IBM Security QRadar accepts syslog events forwarded from F5 Networks BIG-IP AFM systems in name-value pair format.

Supported event types

QRadar is capable of collecting the following events from F5 BIG-IP appliances with Advanced Firewall Managers:

- Network events
- Network Denial of Service (DoS) events
- Protocol security events
- DNS events
- DNS Denial of Service (DoS) events

Before you begin

Before you can configure the Advanced Firewall Manager, you must verify that your BIG-IP appliance is licensed and provisions to include Advanced Firewall Manager.

Procedure

Step 1 Log in to your BIG-IP appliance Management Interface.
Step 2 From the navigation menu, select System > License.
Step 3 In the License Status column, verify the Advanced Firewall Manager is licensed and enabled.
Step 4 To enable the Advanced Firewall Manager, select System > Resource Provisioning.

Step 5 From the Provisioning column, select the check box and select Nominal from the list.

Step 6 Click Submit to save your changes.

Configure a logging pool
A logging pool allows you to define a pool of servers that receive syslog events. The pool contains the IP address, port, and a node name that you provide.

Procedure
Step 1 From the navigation menu, select Local Traffic > Pools.
Step 2 Click Create.
Step 3 In the Name field, type a name for the logging pool.
For example, Logging_Pool.
Step 4 From the Health Monitor field, in the Available list, select TCP and click <<.
This moves the TCP option from the Available list to the Selected list.
Step 5 In the Resource pane, from the Node Name list, select Logging_Node or the name you defined in Step 3.
Step 6 In the Address field, type the IP address for the QRadar Console or Event Collector.
Step 7 In the Service Port field, type 514.
Step 8 Click Add.
Step 9 Click Finish.

Creating a high-speed log destination
The process to configure logging for BIG-IP AFM requires that you create a high-speed logging destination.

Procedure
Step 1 From the navigation menu, select System > Logs > Configuration > Log Destinations.
Step 2 Click Create.
Step 3 In the Name field, type a name for the destination.
For example, Logging_HSL_dest.
Step 4 In the Description field, type a description.
Step 5 From the Type list, select Remote High-Speed Log.
Step 6 From the Pool Name list, select a logging pool from the list of remote log servers.
For example, Logging_Pool.
Step 7 From the Protocol list, select TCP.
Step 8 Click Finish.
Creating a formatted log destination

The formatted log destination allows you to specify any special formatting required on the events forwarded to the high-speed logging destination.

Procedure

Step 1 From the navigation menu, select System > Logs > Configuration > Log Destinations.

Step 2 Click Create.

Step 3 In the Name field, type a name for the logging format destination.

 For example, Logging_Format_dest.

Step 4 In the Description field, type a description.

Step 5 From the Type list, select Remote Syslog.

Step 6 From the Syslog Format list, select Syslog.

Step 7 From the High-Speed Log Destination list, select your high-speed logging destination.

 For example, Logging_HSL_dest.

Step 8 Click Finished.

Creating a log publisher

Creating a publisher allows the BIG-IP appliance to publish the formatted log message to the local syslog database.

Procedure

Step 1 From the navigation menu, select System > Logs > Configuration > Log Publishers.

Step 2 Click Create.

Step 3 In the Name field, type a name for the publisher.

 For example, Logging_Pub.

Step 4 In the Description field, type a description.

Step 5 From the Destinations field, in the Available list, select the log destination name you created in Step 3 and click << to add items to the Selected list.

 This moves your logging format destination from the Available list to the Selected list. To include local logging in your publisher configuration, you can add local-db and local-syslog to the Selected list.
Creating a logging profile

Logging profiles allow you to configure the types of events that your Advanced Firewall Manager is producing and associates your events with the logging destination.

Procedure
Step 1 From the navigation menu, select Security > Event Logs > Logging Profile.
Step 2 Click Create.
Step 3 In the Name field, type a name for the log profile.
For example, Logging_Profile.
Step 4 In the Network Firewall field, select the Enabled check box.
Step 5 From the Publisher list, select the log publisher you configured.
For example, Logging_Pub.
Step 6 In the Log Rule Matches field, select the Accept, Drop, and Reject check boxes.
Step 7 In the Log IP Errors field, select the Enabled check box.
Step 8 In the Log TCP Errors field, select the Enabled check box.
Step 9 In the Log TCP Events field, select the Enabled check box.
Step 10 In the Storage Format field, from the list, select Field-List.
Step 11 In the Delimiter field, type , (comma) as the delimiter for events.
Step 12 In the Storage Format field, select all of the options in the Available Items list and click <<.
This moves the all Field-List options from the Available list to the Selected list.
Step 13 In the IP Intelligence pane, from the Publisher list, select the log publisher you configured.
For example, Logging_Pub.
Step 14 Click Finished.

Associate the profile to a virtual server

The log profile you created must be associated with a virtual server in the Security Policy tab. This allows the virtual server to process your network firewall events, along with local traffic.

Procedure
Step 1 From the navigation menu, select Local Traffic > Virtual Servers.
Step 2 Click the name of a virtual server to modify.
Step 3 From the Security tab, select Policies.
Step 4 From the Log Profile list, select Enabled.
Step 5 From the Profile field, in the Available list, select Logging_Profile or the name you specified in Step 3 and click <<.
This moves the Logging_Profile option from the Available list to the Selected list.
Step 6 Click **Update** to save your changes.

The configuration is complete. The log source is added to QRadar as F5 Networks BIG-IP AFM syslog events are automatically discovered. Events forwarded to QRadar by F5 Networks BIG-IP AFM are displayed on the **Log Activity** tab of QRadar.

Configuring a Log Source

QRadar automatically discovers and creates a log source for syslog events from F5 Networks BIG-IP AFM. However, you can manually create a log source for QRadar to receive syslog events. The following configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 Click **Add**.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **F5 Networks BIG-IP AFM**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your F5 BIG-IP AFM appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.
The F5 Networks BIG-IP Access Policy Manager (APM) DSM for IBM Security QRadar collects access and authentication security events from a BIG-IP APM device using syslog.

Configure remote syslog
To configure your BIG-IP LTM device to forward syslog events to a remote syslog source, choose your BIG-IP APM software version:

- Configure Remote Syslog for F5 BIG-IP APM 11.x
- Configure Remote Syslog for F5 BIG-IP APM 10.x

Configure Remote Syslog for F5 BIG-IP APM 11.x
To configure syslog for F5 BIG-IP APM 11.x:

Step 1 Log in to the command-line of your F5 BIG-IP device.
Step 2 Type the following command to add a single remote syslog server:

```
tmsh syslog remote server {<Name> {host <IP Address>}}
```
Where:

- `<Name>` is the name of the F5 BIG-IP APM syslog source.
- `<IP Address>` is the IP address of the QRadar Console.

For example,

```
bigpipe syslog remote server {BIGIP_APM {host 10.100.100.101}}
```

Step 3 Type the following to save the configuration changes:

```
tmsh save sys config partitions all
```

The configuration is complete. The log source is added to QRadar as F5 Networks BIG-IP APM events are automatically discovered. Events forwarded to QRadar by F5 Networks BIG-IP APM are displayed on the Log Activity tab in QRadar.

Configure Remote Syslog for F5 BIG-IP APM 10.x
To configure syslog for F5 BIG-IP APM 10.x:

Step 1 Log in to the command-line of your F5 BIG-IP device.
Step 2 Type the following command to add a single remote syslog server:

```
bigpipe syslog remote server {<Name> {host <IP Address>}}
```
Where:

- `<Name>` is the name of the F5 BIG-IP APM syslog source.
- `<IP Address>` is the IP address of QRadar Console.

For example,

```
bigpipe syslog remote server {BIGIP_APM {host 10.100.100.101}}
```

Step 3 Type the following to save the configuration changes:

```
bigpipe save
```
The configuration is complete. The log source is added to QRadar as F5 Networks BIG-IP APM events are automatically discovered. Events forwarded to QRadar by F5 Networks BIG-IP APM are displayed on the Log Activity tab.

Configuring a log source

QRadar automatically discovers and creates a log source for syslog events from F5 Networks BIG-IP APM appliances. These configuration steps are optional.

Procedure

1. Log in to QRadar.
2. Click the Admin tab.
3. On the navigation menu, click Data Sources.
4. Click the Log Sources icon.
5. Click Add.
6. In the Log Source Name field, type a name for your log source.
7. In the Log Source Description field, type a description for the log source.
8. From the Log Source Type list, select F5 Networks BIG-IP APM.
10. Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your F5 Networks BIG-IP APM appliance.</td>
</tr>
</tbody>
</table>

11. Click Save.
12. On the Admin tab, click Deploy Changes.

The configuration is complete.

F5 Networks BIG-IP ASM

The F5 Networks BIG-IP Application Security Manager (ASM) DSM for IBM Security QRadar collects web application security events from BIG-IP ASM appliances using syslog.

Configure F5 Networks BIG-IP ASM

To forward syslog events from an F5 Networks BIG-IP ASM appliance to QRadar, you must configure a logging profile.

A logging profile allows you to configure remote storage for syslog events, which can be forwarded directly to QRadar.
Procedure
Step 1 Log in to the F5 Networks BIG-IP ASM appliance user interface.
Step 2 On the navigation pane, select Application Security > Options.
Step 3 Click Logging Profiles.
Step 4 Click Create.
Step 5 From the Configuration list, select Advanced.
Step 6 Configure the following parameters:
 a Type a Profile Name.
 For example, type QRadar.
 b Optional. Type a Profile Description.
 Note: If you do not want data logged locally as well as remotely, you must clear the Local Storage check box.
 c Select the Remote Storage check box.
 d From the Type list, select Reporting Server.
 e From the Protocol list, select TCP.
 f Configure the Server Addresses fields:
 - IP address - Type the IP address of the QRadar Console.
 - Port - Type a port value of 514.
 g Select the Guarantee Logging check box.
 Note: Enabling the Guarantee Logging option ensures the system log requests continue for the web application when the logging utility is competing for system resources. Enabling the Guarantee Logging option can slow access to the associated web application.
 h Select the Report Detected Anomalies check box, to allow the system to log details.
 i Click Create.

The display refreshes with the new logging profile. The log source is added to QRadar as F5 Networks BIG-IP ASM events are automatically discovered. Events forwarded by F5 Networks BIG-IP ASM are displayed on the Log Activity tab of QRadar.

Configuring a log source
QRadar automatically discovers and creates a log source for syslog events from F5 Networks BIG-IP ASM appliances. These configuration steps are optional.

Procedure
Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select F5 Networks BIG-IP ASM.
Step 9 Using the Protocol Configuration list, select Syslog.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your F5 Networks BIG-IP ASM appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.
Step 12 On the Admin tab, click Deploy Changes.
The configuration is complete.

F5 Networks BIG-IP LTM

The F5 Networks BIG-IP Local Traffic Manager (LTM) DSM for IBM Security QRadar collects networks security events from a BIG-IP device using syslog.

Before receiving events in QRadar, you must configure a log source for QRadar, then configure your BIG-IP LTM device to forward syslog events. We recommend you create your log source before forward events as QRadar does not automatically discover or create log sources for syslog events from F5 BIG-IP LTM appliances.

Configuring a log source

To integrate F5 BIG-IP LTM with QRadar, you must manually create a log source to receive syslog events.

Procedure

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select F5 Networks BIG-IP LTM.
Step 9 Using the Protocol Configuration list, select Syslog.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your BIG-IP LTM appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

You are now ready to configure your BIG-IP LTM appliance to forward syslog events to QRadar.

Configuring syslog forwarding in BIG-IP LTM

To configure your BIG-IP LTM device to forward syslog events, select your BIG-IP LTM software version:

- Configuring Remote Syslog for F5 BIG-IP LTM 11.x
- Configuring Remote Syslog for F5 BIG-IP LTM 10.x
- Configuring Remote Syslog for F5 BIG-IP LTM 9.4.2 to 9.4.8

Configuring Remote Syslog for F5 BIG-IP LTM 11.x

To configure syslog for F5 BIG-IP LTM 11.x:

Step 1 Log in to the command-line of your F5 BIG-IP device.

Step 2 To log in to the Traffic Management Shell (tmsh), type the following command:

```
tmsh
```

Step 3 To add a syslog server, type the following command:

```
modify /sys syslog remote-servers add {<Name> {host <IP Address> remote-port 514}}
```

Where:

- `<Name>` is a name that you assign to identify the syslog server on your BIG-IP LTM appliance.
- `<IP Address>` is the IP address of QRadar.

For example,

```
modify /sys syslog remote-servers add {BIGIPsyslog {host 10.100.100.100 remote-port 514}}
```

Step 4 Save the configuration changes:

```
save /sys config
```

Events forwarded from your F5 Networks BIG-IP LTM appliance are displayed on the Log Activity tab in QRadar.
Configuring Remote Syslog for F5 BIG-IP LTM 10.x

To configure syslog for F5 BIG-IP LTM 10.x:

Step 1 Log in to the command-line of your F5 BIG-IP device.

Step 2 Type the following command to add a single remote syslog server:

```
bigpipe syslog remote server {<Name> {host <IP Address>}}
```

Where:

- `<Name>` is the name of the F5 BIG-IP LTM syslog source.
- `<IP Address>` is the IP address of QRadar.

For example:

```
bigpipe syslog remote server {BIGIPsyslog {host 10.100.100.100}}
```

Step 3 Save the configuration changes:

```
bigpipe save
```

Note: F5 Networks modified the syslog output format in BIG-IP v10.x to include the use of `local/` before the hostname in the syslog header. The syslog header format containing `local/` is not supported in QRadar, but a workaround is available to correct the syslog header. For more information, see http://www.ibm.com/support.

Events forwarded from your F5 Networks BIG-IP LTM appliance are displayed on the Log Activity tab in QRadar.

Configuring Remote Syslog for F5 BIG-IP LTM 9.4.2 to 9.4.8

To configure syslog for F5 BIG-IP LTM 9.4.2 to 9.4.8:

Step 1 Log in to the command-line of your F5 BIG-IP device.

Step 2 Type the following command to add a single remote syslog server:

```
bigpipe syslog remote server <IP Address>
```

Where `<IP Address>` is the IP address of QRadar.

For example:

```
bigpipe syslog remote server 10.100.100.100
```

Step 3 Type the following to save the configuration changes:

```
bigpipe save
```

The configuration is complete. Events forwarded from your F5 Networks BIG-IP LTM appliance are displayed on the Log Activity tab in QRadar.

F5 Networks FirePass

The F5 Networks FirePass DSM for IBM Security QRadar collects system events from an F5 FirePass SSL VPN device using syslog.

By default, remote logging is disabled and must be enabled in the F5 Networks FirePass device. Before receiving events in QRadar, you must configure your F5...
Configuring syslog forwarding for F5 FirePass

To forward syslog events from an F5 Networks BIG-IP FirePass SSL VPM appliance to QRadar, you must enable and configure a remote log server.

The remote log server can forward events directly to your QRadar Console or any Event Collectors in your deployment.

Procedure

Step 1 Log in to the F5 Networks FirePass Admin Console.

Step 2 On the navigation pane, select Device Management > Maintenance > Logs.

Step 3 From the System Logs menu, select the Enable Remote Log Server check box.

Step 4 From the System Logs menu, clear the Enable Extended System Logs check box.

Step 5 In the Remote host parameter, type the IP address or hostname of your QRadar.

Step 6 From the Log Level list, select Information.

The Log Level parameter monitors application level system messages.

Step 7 From the Kernel Log Level list, select Information.

The Kernel Log Level parameter monitors Linux kernel system messages.

Step 8 Click Apply System Log Changes.

The changes are applied and the configuration is complete. The log source is added to QRadar as F5 Networks FirePass events are automatically discovered. Events forwarded to QRadar by F5 Networks BIG-IP ASM are displayed on the Log Activity tab in QRadar.

Configuring a log source

QRadar automatically discovers and creates a log source for syslog events from F5 Networks FirePass appliances. These configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 In the Log Source Name field, type a name for your log source.

Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select F5 Networks FirePass.

Step 9 Using the Protocol Configuration list, select Syslog.

Step 10 Configure the following values:
Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.

Table 41-4 Syslog protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your F5 Networks FirePass appliance.</td>
</tr>
</tbody>
</table>
The Fair Warning DSM for IBM Security QRadar retrieves event files from a remote source using the log file protocol.

QRadar records event categories from the Fair Warning log files about user activity related to patient privacy and security threats to medical records. Before you can retrieve log files from Fair Warning, you must verify your device is configured to generate an event log. Instructions for generating the event log can be found in your Fair Warning documentation.

When configuring the log file protocol, make sure the hostname or IP address configured in the Fair Warning system is the same as configured in the Remote Host parameter in the Log File Protocol configuration.

Configuring a log source

You can configure QRadar to download an event log from a Fair Warning device.

Procedure

1. Log in to QRadar.
2. Click the **Admin** tab.
3. On the navigation menu, click **Data Sources**.
4. Click the **Log Sources** icon.
5. Click **Add**.
6. In the **Log Source Name** field, type a name for your log source.
7. In the **Log Source Description** field, type a description for the log source.
8. From the **Log Source Type** list box, select **Fair Warning**.
9. Select the **Log File** option from the **Protocol Configuration** list.
10. In the **FTP File Pattern** field, type a regular expression that matches the log files generated by the Fair Warning system.
11. In the **Remote Directory** field, type the path to the directory containing logs from your Fair Warning device.
12. From the **Event Generator** list, select **Fair Warning**.
13. Click **Save**.
14. On the **Admin** tab, click **Deploy Changes**.
The configuration is complete. For more information on full parameters for the Log File protocol, see the *IBM Security QRadar Log Sources User Guide*.

For more information on configuring Fair Warning, consult your vendor documentation.

Supported event types
QRadar is capable of collecting all relevant alerts triggered by policy and rule violations configured on your Fidelis XPS appliance.

Event type format
Fidelis XPS must be configured to generate events in Log Enhanced Event Protocol (LEEF) and forward these events using syslog. The LEEF format consists of a pipe (|) delimited syslog header and tab separated fields in the event payload.

If the syslog events forwarded from your Fidelis XPS is not formatted as described above, you must examine your device configuration or software version to ensure your appliance supports LEEF. Properly formatted LEEF event messages are automatically discovered and added as a log source to QRadar.

Configuring Fidelis XPS
You can configure syslog forwarding of alerts from your Fidelis XPS appliance.

Procedure

Step 1 Log in to CommandPost to manage your Fidelis XPS appliance.

Step 2 From the navigation menu, select **System > Export**.

A list of available exports is displayed. If this is the first time you have used the export function, the list is empty.

Step 3 Select one of the following options:

- Click **New** to create a new export for your Fidelis XPS appliance.
- Click **Edit** next to an export name to edit an existing export on your Fidelis XPS appliance.

The Export Editor is displayed.

Step 4 From the **Export Method** list, select **Syslog LEEF**.

Step 5 In the **Destination** field, type the IP address or host name for QRadar.

For example, `10.10.100::514`

This field does not support non-ASCII characters.

Step 6 From **Export Alerts**, select one of the following options:
- **All alerts** - Select this option to export all alerts to QRadar. This option is resource intensive and it can take time to export all alerts.
- **Alerts by Criteria** - Select this option to export specific alerts to QRadar. This option displays a new field that allows you to define your alert criteria.

Step 7 From **Export Malware Events**, select **None**.

Step 8 From **Export Frequency**, select **Every Alert / Malware**.

Step 9 In the **Save As** field, type a name for your export.

Step 10 Click **Save**.

Step 11 Optional. To verify events are forwarded to QRadar, you can click **Run Now**. Run Now is intended as a test tool to verify that alerts selected by criteria are exported from your Fidelis appliance. This option is not available if you selected to export all events in **Step 6**.

The configuration is complete. The log source is added to QRadar as Fidelis XPS syslog events are automatically discovered. Events forwarded to QRadar by Fidelis XPS are displayed on the **Log Activity** tab of QRadar.

Configuring a log source QRadar automatically discovers and creates a log source for syslog events from Fidelis XPS. However, you can manually create a log source for QRadar to receive syslog events. The following configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 Click **Add**.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Fidelis XPS**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 43-5</th>
<th>Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Fidelis XPS appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.

IBM Security QRadar DSM Configuration Guide
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
The ForeScout CounterACT DSM for IBM Security QRadar accepts Log Extended Event Format (LEEF) events from CounterACT using syslog.

Supported event types
QRadar records the following ForeScout CounterACT events:
- Denial of Service (DoS)
- Authentication
- Exploit
- Suspicious
- System

Configuring a log source
To integrate ForeScout CounterACT with QRadar, you must manually create a log source to receive policy-based syslog events.

QRadar does not automatically discover or create log sources for syslog events from ForeScout CounterACT appliances.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 Click **Add**.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **ForeScout CounterACT**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

Step 10 Configure the following values:
Configure ForeScout CounterACT

Before configuring QRadar, you must install a plug-in for your ForeScout CounterACT appliance and configure ForeScout CounterACT to forward syslog events to QRadar.

Configure the ForeScout CounterACT Plug-in

To integrate QRadar with ForeScout CounterACT, you must download, install and configure a plug-in for CounterACT. The plug-in extends ForeScout CounterACT and provides the framework for forwarding LEEF events to QRadar.

Procedure

Step 1 From the ForeScout website, download the plug-in for ForeScout CounterACT.
Step 2 Log in to your ForeScout CounterACT appliance.
Step 3 From the CounterACT Console toolbar, select Options > Plugins > Install and select the location of the plug-in file.
 The plug-in is installed and displayed in the Plugins pane.
Step 4 From the Plugins pane, select the QRadar plug-in and click Configure.
 The Add QRadar wizard is displayed.
Step 5 In the Server Address field, type IP address of QRadar.
Step 6 From the Port list, select 514.
Step 7 Click Next.
Step 8 From the Assigned CounterACT devices pane, choose one of the following options:
 • Default Server - Select this option to make all devices on this ForeScout CounterACT forward events to QRadar.
 • Assign CounterACT devices - Select this option to assign which individual devices running on ForeScout CounterACT forward events to QRadar. The Assign CounterACT devices option is only available if you have one or more ForeScout CounterACT server.
Step 9 Click Finish.

The plug-in configuration is complete. You are now ready to define the events forwarded to QRadar by ForeScout CounterACT policies.
Configuring ForeScout CounterACT Policies

ForeScout CounterACT policies test conditions to trigger management and remediation actions on the appliance.

The plug-in provides an additional action for policies to forward the event to the QRadar using syslog. To forward events to QRadar, you must define a CounterACT policy that includes the QRadar update action. The policy condition must be met at least once to initiate an event to QRadar. You must configure each policy to send updates to QRadar for events you want to record.

Procedure

Step 1 Select a policy for ForeScout CounterACT.

Step 2 From the Actions tree, select Audit > Send Updates to QRadar Server.

Step 3 From the Contents tab, configure the following values:

a. Select the Send host property results check box.

b. Choose one of the type of events to forward for the policy:

 - Send All - Select this option to include all properties discovered for the policy to QRadar.
 - Send Specific - Select this option to select and send only specific properties for the policy to QRadar.

c. Select the Send policy status check box.

Step 4 From the Trigger tab, select the interval ForeScout CounterACT uses for forwarding the event to QRadar:

 - Send when the action starts - Select this check box to send a single event to QRadar when the conditions of your policy are met.
 - Send when information is updated - Select this check box to send a report when there is a change in the host properties specified in the Contents tab.
 - Send periodically every - Select this check box to send a reoccurring event to QRadar on an interval if the policy conditions are met.

Step 5 Click OK to save the policy changes.

Step 6 Repeat this process to configure any additional policies with an action to send updates to QRadar, if required.

The configuration is complete. Events forwarded by ForeScout CounterACT are displayed on the Log Activity tab of QRadar.
The Fortinet FortiGate DSM for IBM Security QRadar records all relevant FortiGate IPS/Firewall events using syslog.

The following table identifies the specifications for the Fortinet FortiGate DSM:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Fortinet</td>
</tr>
<tr>
<td>DSM</td>
<td>Fortinet FortiGate</td>
</tr>
<tr>
<td>RPM file name</td>
<td>DSM-FortinetFortiGate-7.x-xxxxxx.noarch.rpm</td>
</tr>
<tr>
<td>Supported version</td>
<td>FortiOS v2.5 and later</td>
</tr>
<tr>
<td>Protocol</td>
<td>Syslog</td>
</tr>
<tr>
<td>QRadar recorded events</td>
<td>All relevant events</td>
</tr>
<tr>
<td>Auto discovered</td>
<td>Yes</td>
</tr>
<tr>
<td>Includes identity</td>
<td>Yes</td>
</tr>
<tr>
<td>For more information</td>
<td>http://www.fortinet.com</td>
</tr>
</tbody>
</table>

To integrate Fortinet FortiGate DSM with QRadar, use the following procedures:

1. Download and install the most recent Fortinet FortiGate RPM to your QRadar Console. If automatic updates are enabled, this procedure is not required. RPMs need to be installed only one time.

2. Optional. Install the Syslog Redirect protocol RPM to collect events through Fortigate FortiAnalyzer. When you use the Syslog Redirect protocol, QRadar can identify the specific Fortigate firewall that sent the event. You can use the procedure to manually install a DSM to install a protocol.

3. Configure your Fortinet FortiGate system to enable communication with QRadar. This procedure must be performed for each instance of Fortinet FortiGate. For
more information on configuring a Fortinet FortiGate device, see your vendor documentation.

4 For each Fortinet FortiGate server you want to integrate, create a log source on the QRadar Console. If QRadar automatically discovers the DSM, this step is not required.

Related tasks
Manually installing a DSM

Configuring a Fortinet FortiGate log source

<table>
<thead>
<tr>
<th>Configuring a Fortinet FortiGate log source</th>
<th>QRadar automatically discovers and creates a log source for syslog events from Fortinet FortiGate. The following configuration steps are optional.</th>
</tr>
</thead>
</table>
| Procedure | **Step 1** Log in to QRadar.
Step 2 Click the **Admin** tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the **Log Sources** icon.
Step 5 Click **Add**.
Step 6 In the **Log Source Name** field, type a name for your log source.
Step 7 In the **Log Source Description** field, type a description for the log source.
Step 8 From the **Log Source Type** list, select **Fortinet FortiGate Security Gateway**.
Step 9 Using the **Protocol Configuration** list, select one of the following options:
 • Select **Syslog**.
 • To configure QRadar to receive FortiAnalyzer events, select **Syslog Redirect**.
Step 10 Configure the following values:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>devname=((\w-)+)</td>
</tr>
<tr>
<td>RegEx</td>
<td></td>
</tr>
<tr>
<td>Listen Port</td>
<td>517</td>
</tr>
<tr>
<td>Protocol</td>
<td>UDP</td>
</tr>
</tbody>
</table>
Step 11 Configure the remaining parameters.
Step 12 Click **Save**.
Step 13 On the **Admin** tab, click **Deploy Changes**.

Table 46-1 Syslog Parameters
You can integrate a Foundry FastIron device with IBM Security QRadar to collect all relevant events using syslog.

Configure syslog for Foundry FastIron

To integrate QRadar with a Foundry FastIron RX device, you must configure the appliance to forward syslog events.

Procedure

Step 1 Log in to the Foundry FastIron device command-line interface (CLI).

Step 2 Type the following command to enable logging:

```
logging on
```

Local syslog is now enabled with the following defaults:

- Messages of all syslog levels (Emergencies - Debugging) are logged.
- Up to 50 messages are retained in the local syslog buffer.
- No syslog server is specified.

Step 3 Type the following command to define an IP address for the syslog server:

```
logging host <IP Address>
```

Where `<IP Address>` is the IP address of your QRadar.

You are now ready to configure the log source in QRadar.

Configuring a log source

QRadar automatically discovers and creates a log source for syslog events from Foundry FastIron. The following configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 In the Log Source Name field, type a name for your log source.

Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Foundry FastIron.
Step 9 Using the Protocol Configuration list, select Syslog.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Foundry FastIron appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.
Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete.
The generic firewall server DSM for IBM Security QRadar accepts events using syslog. QRadar records all relevant events.

Configuring event properties

To configure QRadar to interpret the incoming generic firewall events:

Step 1 Forward all firewall logs to your QRadar.
For information on forwarding firewall logs from your generic firewall to QRadar, see your firewall vendor documentation.

Step 2 Open the following file:
```
/opt/qradar/conf/genericFirewall.conf
```
Make sure you copy this file to systems hosting the Event Collector and the QRadar Console.

Step 3 Restart the Tomcat server:
```
service tomcat restart
```
A message is displayed indicating that the Tomcat server has restarted.

Step 4 Enable or disable regular expressions in your patterns by setting the `regex_enabled` property accordingly. By default, regular expressions are disabled. For example:
```
regex_enabled=false
```
When you set the `regex_enabled` property to false, the system generates regular expressions based on the tags you entered while attempting to retrieve the corresponding data values from the logs.

When you set the `regex_enabled` property to true, you can define custom regex to control patterns. These regex are directly applied to the logs and the first captured group is returned. When defining custom regex patterns, you must adhere to regex rules, as defined by the Java programming language. For more information, see the following website:
```
http://download.oracle.com/javase/tutorial/essential/regex/
```
To integrate a generic firewall with QRadar, make sure you specify the classes directly instead of using the predefined classes. For example, the digit class `/\d/` becomes `/\d/`. Also, instead of using numeric qualifiers, re-write the expression to use the primitive qualifiers `/\d/`, `/*` and `/\+/`.

Step 5 Review the file to determine a pattern for accepted packets.
For example, if your device generates the following log messages for accepted packets:

Aug. 5, 2005 08:30:00 Packet accepted. Source IP: 192.168.1.1
Source Port: 80 Destination IP: 192.168.1.2 Destination Port: 80
Protocol: tcp

The pattern for accepted packets is Packet accepted.

Step 6
Add the following to the file:

```plaintext
accept_pattern=<accept pattern>
```

Where `<accept pattern>` is the pattern determined in **Step 5**. For example:

```plaintext
accept_pattern=Packet accepted
```

Patterns are case insensitive.

Step 7
Review the file to determine a pattern for denied packets.

For example, if your device generates the following log messages for denied packets:

Aug. 5, 2005 08:30:00 Packet denied. Source IP: 192.168.1.1
Source Port: 21 Destination IP: 192.168.1.2 Destination Port: 21
Protocol: tcp

The pattern for denied packets is Packet denied.

Step 8
Add the following to the file:

```plaintext
deny_pattern=<deny pattern>
```

Where `<deny pattern>` is the pattern determined in **Step 7**. Patterns are case insensitive.

Step 9
Review the file to determine a pattern, if present, for the following:

- source ip
- source port
- destination ip
- destination port
- protocol

For example, if your device generates the following log message:

Aug. 5, 2005 08:30:00 Packet accepted. Source IP: 192.168.1.1
Source Port: 80 Destination IP: 192.168.1.2 Destination Port: 80
Protocol: tcp

The pattern for source IP is Source IP.

Step 10
Add the following to the file:

```plaintext
source_ip_pattern=<source ip pattern>
source_port_pattern=<source port pattern>
destination_ip_pattern=<destination ip pattern>
destination_port_pattern=<destination port pattern>
```
protocol_pattern=<protocol pattern>

Where <source ip pattern>, <source port pattern>, <destination ip pattern>, <destination port pattern>, and <protocol pattern> are the corresponding patterns identified in Step 9.

Note: Patterns are case insensitive and you can add multiple patterns. For multiple patterns, separate using a # symbol.

Step 11 Save and exit the file.

You are now ready to configure the log source in QRadar.

Configuring a log source

To integrate generic firewalls with QRadar, you must manually create a log source to receive the events as QRadar does not automatically discover or create log sources for events from generic firewall appliances.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

The Data Sources panel is displayed.

Step 4 Click the Log Sources icon.

The Log Sources window is displayed.

Step 5 Click Add.

The Add a log source window is displayed.

Step 6 In the Log Source Name field, type a name for your log source.

Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select Configurable Firewall Filter.

Step 9 Using the Protocol Configuration list, select Syslog.

The syslog protocol configuration is displayed.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your generic firewall appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The log source is added to QRadar. Events forwarded to QRadar by generic firewalls are displayed on the Log Activity tab.
The generic authorization server DSM for IBM Security QRadar records all relevant generic authorization events using syslog.

Configuring event properties

To configure QRadar to interpret the incoming generic authorization events:

Step 1 Forward all authentication server logs to your QRadar system.
For information on forwarding authentication server logs to QRadar, see your generic authorization server vendor documentation.

Step 2 Open the following file:

```
/opt/qradar/conf/genericAuthServer.conf
```
Make sure you copy this file to systems hosting the Event Collector and the Console.

Step 3 Restart the Tomcat server:

```
service tomcat restart
```
A message is displayed indicating that the Tomcat server has restarted.

Step 4 Enable or disable regular expressions in your patterns by setting the `regex_enabled` property accordingly. By default, regular expressions are disabled. For example:

```
regex_enabled=false
```
When you set the `regex_enabled` property to false, the system generates regular expressions (regex) based on the tags you entered while attempting to retrieve the corresponding data values from the logs.

When you set the `regex_enabled` property to true, you can define custom regex to control patterns. These regex are directly applied to the logs and the first captured group is returned. When defining custom regex patterns, you must adhere to regex rules, as defined by the Java programming language. For more information, see the following website: http://download.oracle.com/javase/tutorial/essential/regex/

To integrate the generic authorization server with QRadar, make sure you specify the classes directly instead of using the predefined classes. For example, the digit class `/\d/` becomes `/[0-9]/`. Also, instead of using numeric qualifiers, re-write the expression to use the primitive qualifiers `/?/`, `/*/` and `/+/`

Step 5 Review the file to determine a pattern for successful login:
For example, if your authentication server generates the following log message for accepted packets:

Jun 27 12:11:21 expo sshd[19926]: Accepted password for root from 10.100.100.109 port 1727 ssh2

The pattern for successful login is **Accepted password**.

Step 6 Add the following entry to the file:

```
login_success_pattern=<login success pattern>
```

Where `<login success pattern>` is the pattern determined in **Step 5**.

For example:
```
login_success_pattern=Accepted password
```

All entries are case insensitive.

Step 7 Review the file to determine a pattern for login failures.

For example, if your authentication server generates the following log message for login failures:

Jun 27 12:58:33 expo sshd[20627]: Failed password for root from 10.100.100.109 port 1849 ssh2

The pattern for login failures is **Failed password**.

Step 8 Add the following to the file:

```
login_failed_pattern=<login failure pattern>
```

Where `<login failure pattern>` is the pattern determined for login failure.

For example:
```
login_failed_pattern=Failed password
```

All entries are case insensitive.

Step 9 Review the file to determine a pattern for logout:

For example, if your authentication server generates the following log message for logout:

Jun 27 13:00:01 expo su(pam_unix)[22723]: session closed for user genuser

The pattern for logout is **session closed**.

Step 10 Add the following to the genericAuthServer.conf file:

```
logout_pattern=<logout pattern>
```

Where `<logout pattern>` is the pattern determined for logout in **Step 9**.

For example:
```
logout_pattern=session closed
```

All entries are case insensitive.

Step 11 Review the file to determine a pattern, if present, for source IP address and source port.
For example, if your authentication server generates the following log message:

Jun 27 12:11:21 expo sshd[19926]: Accepted password for root
from 10.100.100.109 port 1727 ssh2

The pattern for source IP address is from and the pattern for source port is port.

Step 12 Add an entry to the file for source IP address and source port:

```plaintext
source_ip_pattern=<source IP pattern>
source_port_pattern=<source port pattern>
```

Where `<source IP pattern>` and `<source port pattern>` are the patterns identified in **Step 11** for source IP address and source port.

For example:

```plaintext
source_ip_pattern=from
source_port_pattern=port
```

Step 13 Review the file to determine if a pattern exists for username.

For example:

Jun 27 12:11:21 expo sshd[19926]: Accepted password for root
from 10.100.100.109 port 1727 ssh2

The pattern for username is for.

Step 14 Add an entry to the file for the username pattern:

For example:

```plaintext
user_name_pattern=for
```

You are now ready to configure the log source in QRadar.

Configure a log source

To integrate generic authorization appliance event with QRadar, you must manually create a log source to receive the events as QRadar does not automatically discover or create log sources for events from generic authorization appliances.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 Click **Add**.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Configurable Authentication message filter**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

IBM Security QRadar DSM Configuration Guide
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 49-1</th>
<th>Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your generic authorization appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The log source is added to QRadar. Events forwarded to QRadar by generic authorization appliances are displayed on the Log Activity tab.
The Great Bay Beacon DSM for IBM Security QRadar supports syslog alerts from the Great Bay Beacon Endpoint Profiler.

QRadar records all relevant endpoint security events. Before you can integrate with QRadar, you must configure your Great Bay Beacon Endpoint Profiler to forward syslog event messages to QRadar.

Configuring syslog for Great Bay Beacon

You can configure your Great Bay Beacon Endpoint Profiler to forward syslog events.

Procedure

1. Log in to your Great Bay Beacon Endpoint Profiler.
2. To create an event, select Configuration > Events > Create Events.
 - A list of currently configured events is displayed.
3. From the Event Delivery Method pane, select the **Syslog** check box.
4. To apply your changes, select **Configuration Apply Changes > Update Modules**.
5. Repeat Step 2 to Step 4 to configure all of the events you want to monitor in QRadar.
6. Configure QRadar as an external log source for your Great Bay Beacon Endpoint Profiler.
 - For information on configuring QRadar as an external log source, see the *Great Bay Beacon Endpoint Profiler Configuration Guide*.
 - You are now ready to configure the log source in QRadar.

Configuring a log source

QRadar automatically discovers and creates a log source for syslog events from Great Bay Beacon. The following configuration steps are optional.

Procedure

1. Log in to QRadar.
2. Click the **Admin** tab.
3. On the navigation menu, click **Data Sources**.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Great Bay Beacon.
Step 9 Using the Protocol Configuration list, select Syslog.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Great Bay Beacon appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.
Step 12 On the Admin tab, click Deploy Changes.
The configuration is complete.
The HBGary Active Defense DSM for IBM Security QRadar accepts several event types forwarded from HBGary Active Defense devices, such as access, system, system configuration, and policy events.

Events from Active Defense are forwarded in the Log Event Extended Format (LEEF) to QRadar using syslog. Before you can configure QRadar, you must configure a route for your HBGary Active Defense device to forward events to a syslog destination.

Configuring HBGary Active Defense

You can configure a route for syslog events in Active Defense for QRadar.

Procedure

Step 1 Log in to the Active Defense Management Console.
Step 2 From the navigation menu, select Settings > Alerts.
Step 3 Click Add Route.
Step 4 In the Route Name field, type a name for the syslog route you are adding to Active Defense.
Step 5 From the Route Type list, select LEEF (Q1 Labs).
Step 6 In the Settings pane, configure the following values:
 • Host - Type the IP address or hostname for your QRadar Console or Event Collector.
 • Port - Type 514 as the port number.
Step 7 In the Events pane, select any events you want to forward to QRadar.
Step 8 Click OK to save your configuration changes.

The Active Defense device configuration is complete. You are now ready to configure a log source in QRadar. For more information on configuring a route in Active Defense, see your HBGary Active Defense User Guide.
Configuring a log source

QRadar automatically discovers and creates a log source for LEEF formatted syslog events forwarded from Active Defense. These configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 In the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 In the Log Source Name field, type a name for the log source.

Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select HBGary Active Defense.

Step 9 From the Protocol Configuration list, select Syslog.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for your HBGary Active Defense device.</td>
</tr>
<tr>
<td></td>
<td>The IP address or hostname identifies your HBGary Active Defense device as a unique event source in QRadar.</td>
</tr>
</tbody>
</table>

For more information on configuring log sources, see the IBM Security QRadar Log Sources Users Guide.

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The HBGary Active Defense configuration is complete.
You can use the Honeycomb Lexicon File Integrity Monitor (FIM) DSM with IBM Security QRadar to collect detailed file integrity events from your network.

Configuration overview

QRadar supports syslog events that are forwarded from Lexicon File Integrity Monitor installations that use Lexicon mesh v3.1 and later. The syslog events that are forwarded by Lexicon FIM are formatted as Log Extended Event Format (LEEF) events by the Lexicon mesh service.

To integrate Lexicon FIM events with QRadar, you must complete the following tasks:

1. On your Honeycomb installation, configure the Lexicon mesh service to generate syslog events in LEEF.
2. On your Honeycomb installation, configure any Lexicon FIM policies for your Honeycomb data collectors to forward FIM events to your QRadar Console or Event Collector.
3. On your QRadar Console, verify that a Lexicon FIM log source is created and that events are displayed on the Log Activity tab.
4. Optional. Ensure that no firewall rules block communication between your Honeycomb data collectors and the QRadar Console or Event Collector that is responsible for receiving events.

Supported Honeycomb FIM event types logged by QRadar

The Honeycomb FIM DSM for QRadar can collect events from several categories. Each event category contains low-level events that describe the action that is taken within the event category. For example, file rename events might have a low-level categories of either file rename successful or file rename failed.

The following list defines the event categories that are collected by QRadar for Honeycomb file integrity events:

- Baseline events
- Open file events
- Create file events
- Rename file events
• Modify file events
• Delete file events
• Move file events
• File attribute change events
• File ownership change events

QRadar can also collect Windows and other log files that are forwarded from Honeycomb Lexicon. However, any event that is not a file integrity event might require special processing by a Universal DSM or a log source extension in QRadar.

Configuring the Lexicon mesh service

To collect events in a format that is compatible with QRadar, you must configure your Lexicon mesh service to generate syslog events in LEEF.

Procedure

Step 1 Log in to the Honeycomb LexCollect system that is configured as the dbContact system in your network deployment.

Step 2 Locate the Honeycomb installation directory for the installImage directory. For example, c:\Program Files\Honeycomb\installImage\data.

Step 3 Open the mesh.properties file.

If your deployment does not contain Honeycomb LexCollect, you can edit mesh.properties manually.

For example, c:\Program Files\mesh

Step 4 To export syslog events in LEEF, edit the formatter field. For example, formatter=leef.

Step 5 Save your changes.

The mesh service is configured to output LEEF events. For information about the Lexicon mesh service, see your Honeycomb documentation.

Configuring a Honeycomb Lexicon FIM log source in QRadar

QRadar automatically discovers and creates a log source for file integrity events that are forwarded from the Honeycomb Lexicon File Integrity Monitor. This procedure is optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 In the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 In the Log Source Name field, type a name for your log source.
Step 7 Optional. In the Log Source Description field, type a description for your log source.

Step 8 From the Log Source Type list, select Honeycomb Lexicon File Integrity Monitor.

Step 9 From the Protocol Configuration list, select Syslog.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Honeycomb Lexicon FIM installation.</td>
</tr>
<tr>
<td></td>
<td>The log source identifier must be unique value.</td>
</tr>
<tr>
<td>Enabled</td>
<td>Select this check box to enable the log source. By default, the check box is selected.</td>
</tr>
<tr>
<td>Credibility</td>
<td>From the list, select the credibility of the log source. The range is 0 - 10.</td>
</tr>
<tr>
<td></td>
<td>The credibility indicates the integrity of an event or offense as determined by the credibility rating from the source devices. Credibility increases if multiple sources report the same event. The default is 5.</td>
</tr>
<tr>
<td>Target Event Collector</td>
<td>From the list, select the Event Collector to use as the target for the log source.</td>
</tr>
<tr>
<td>Coalescing Events</td>
<td>Select this check box to enable the log source to coalesce (bundle) events.</td>
</tr>
<tr>
<td></td>
<td>By default, automatically discovered log sources inherit the value of the Coalescing Events list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
<tr>
<td>Incoming Event Payload</td>
<td>From the list, select the incoming payload encoder for parsing and storing the logs.</td>
</tr>
<tr>
<td>Store Event Payload</td>
<td>Select this check box to enable the log source to store event payload information.</td>
</tr>
<tr>
<td></td>
<td>By default, automatically discovered log sources inherit the value of the Store Event Payload list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

Honeycomb Lexicon File Integrity Monitor events that are forwarded to QRadar are displayed on the Log Activity tab.
This section provides information on the following DSMs:

- HP ProCurve
- HP Tandem
- Hewlett Packard UNIX (HP-UX)

HP ProCurve

You can integrate an HP ProCurve device with IBM Security QRadar to record all relevant HP Procurve events using syslog.

Configuring syslog for HP ProCurve

You can configure your HP ProCurve device to forward syslog events to QRadar.

Procedure

Step 1 Log into the HP ProCurve device.

Step 2 Type the following command to make global configuration level changes.

```
cfg
```

If successful, the CLI will change to `ProCurve(config)#` as the prompt.

Step 3 Type the following command to `logging <syslog-ip-addr>`

Where `<syslog-ip-addr>` is the IP address of the QRadar.

Step 4 To exit config mode, press CTRL+Z.

Step 5 Type `write mem` to save the current configuration to the startup configuration for your HP ProCurve device.

You are now ready to configure the log source in QRadar.

Configuring a log source

QRadar automatically discovers and creates a log source for LEEF formatted syslog events forwarded from Active Defense. These configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 In the navigation menu, click **Data Sources**.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for the log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select HP ProCurve.
Step 9 From the Protocol Configuration list, select Syslog.
Step 10 Configure the following values:

| Table 53-1 HP ProCurve syslog protocol parameters |
|-----------|---|
| Parameter | Description |
| Log Source Identifier | Type the IP address or hostname for your HP ProCurve device. |

Step 11 Click Save.
Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete.

HP Tandem

You can integrate an HP Tandem device with IBM Security QRadar. An HP Tandem device accepts SafeGuard Audit file events using a log file protocol source.

A log file protocol source allows QRadar to retrieve archived log files from a remote host. The HP Tandem DSM supports the bulk loading of log files using the log file protocol source.

When configuring your HP Tandem device to use the log file protocol, make sure the hostname or IP address configured in the HP Tandem device is the same as configured in the Remote Host parameter in the Log File Protocol configuration.

The SafeGuard Audit file names have the following format:

A nnnnnn

The single alphabetic character A is followed by a seven-digit decimal integer nnnnnn, which increments by one each time a name is generated in the same audit pool.

You are now ready to configure the log source and protocol in QRadar:

Procedure

Step 1 From the Log Source Type list, select HP Tandem.
Step 2 To configure the log file protocol, from the Protocol Configuration list, select Log File.
You can integrate an HP-UX device with IBM Security QRadar. An HP-UX DSM accepts events using syslog.

Configuring syslog for HP-UX

Procedure

1. Log in to the HP-UX device command-line interface.
2. Open the following file:

 `/etc/syslog.conf`
3. Add the following line:

 `<facility>.<level> <destination>`

 Where:

 `<facility>` is auth.

 `<level>` is info.

 `<destination>` is the IP address of the QRadar.
4. Save and exit the file.
5. Type the following command to ensure that syslogd enforces the changes to the syslog.conf file.

 `kill -HUP `cat /var/run/syslog.pid`

 Note: The above command is surrounded with back quotation marks.

You are now ready to configure the log source in QRadar.

Configure a log source

QRadar automatically discovers and creates a log source for syslog events forwarded from HP-UX. These configuration steps are optional.

Procedure

1. Log in to QRadar.
2. Click the **Admin** tab.
3. In the navigation menu, click **Data Sources**.
4. Click the **Log Sources** icon.
5. Click **Add**.
6. In the **Log Source Name** field, type a name for the log source.
Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Hewlett Packard UniX**.

Step 9 From the **Protocol Configuration** list, select **Syslog**.

Step 10 Configure the following values:

Table 53-1 HP-UX syslog parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for your Hewlett Packard UniX device.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.
This section includes configurations for the following DSMs:

- Huawei AR Series Router
- Huawei S Series Switch

Huawei AR Series Router

The Huawei AR Series Router DSM for IBM Security QRadar can accept events from Huawei AR Series Routers using syslog.

QRadar records all relevant IPv4 events forwarded from Huawei AR Series Router. To integrate your device with QRadar, you must create a log source, then configure your AR Series Router to forward syslog events.

Supported routers

The DSM supports events from the following Huawei AR Series Routers:

- AR150
- AR200
- AR1200
- AR2200
- AR3200

Configuring a log source

QRadar does not automatically discover incoming syslog events from Huawei AR Series Routers.

If your events are not automatically discovered, you must manually create a log source from the Admin tab in QRadar.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.

Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select Huawei AR Series Router.

Step 9 From the Protocol Configuration list, select Syslog.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address, host name, or name for the log source as an identifier for your Huawei AR Series Router. Each log source you create for your Huawei AR Series Router should include a unique identifier, such as an IP address or host name.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The log source is added to QRadar. You are now ready to configure your Huawei AR Series Router to forward events to QRadar.

Configuring Your Huawei AR Series Router

To forward syslog events to QRadar, you must configure your Huawei AR Series Router as an information center, then configure a log host.

The log host you create for your Huawei AR Series Router should forward events to your QRadar Console or an Event Collector.

Procedure

Step 1 Log in to your Huawei AR Series Router command-line Interface (CLI).

Step 2 Type the following command to access the system view:

```
system-view
```

Step 3 Type the following command to enable the information center:

```
info-center enable
```

Step 4 Type the following command to send informational level log messages to the default channel:

```
info-center source default channel loghost log level informational debug state off trap state off
```

Step 5 Optional. To verify your Huawei AR Series Router source configuration, type the command:

```
display channel loghost
```

Step 6 Type the following command to configure the IP address for QRadar as the loghost for your switch:

```
info-center loghost <IP address> facility <local>
```
Where:

- `<IP address>` is the IP address of the QRadar Console or Event Collector.
- `<local>` is the syslog facility, for example, local0.

For example,

```
info-center loghost 10.10.10.1 facility local0
```

Step 7 Type the following command to exit the configuration:

```
quit
```

The configuration is complete. You can verify events forwarded to QRadar by viewing events on the **Log Activity** tab.

Huawei S Series Switch

The Huawei S Series Switch DSM for IBM Security QRadar can accept events from Huawei S Series Switch appliances using syslog.

QRadar records all relevant IPv4 events forwarded from Huawei S Series Switches. To integrate your device with QRadar, you must configure a log source, then configure your S Series Switch to forward syslog events.

Supported switches

The DSM supports events from the following Huawei S Series Switches:

- S5700
- S7700
- S9700

Configuring a log source

QRadar does not automatically discover incoming syslog events from Huawei S Series Switches.

If your events are not automatically discovered, you must manually create a log source from the **Admin** tab in QRadar.

Procedure

1. Log in to QRadar.
2. Click the **Admin** tab.
3. On the navigation menu, click **Data Sources**.
4. Click the **Log Sources** icon.
5. Click **Add**.
6. In the **Log Source Name** field, type a name for your log source.
7. In the **Log Source Description** field, type a description for the log source.
8. From the **Log Source Type** list, select **Huawei S Series Switch**.
9. From the **Protocol Configuration** list, select **Syslog**.
10. Configure the following values:
Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The log source is added to QRadar. You are now ready to configure your Huawei S Series Switch to forward events to QRadar.

Configuring Your Huawei S Series Switch

To forward syslog events to QRadar, you must configure your Huawei S Series Switch as an information center, then configure a log host.

The log host you create for your Huawei S Series Switch should forward events to your QRadar Console or an Event Collector.

Procedure

Step 1 Log in to your Huawei S Series Switch command-line Interface (CLI).

Step 2 Type the following command to access the system view:

```
system-view
```

Step 3 Type the following command to enable the information center:

```
info-center enable
```

Step 4 Type the following command to send informational level log messages to the default channel:

```
info-center source default channel loghost log level informational debug state off trap state off
```

Step 5 Optional. To verify your Huawei S Series Switch source configuration, type the command:

```
display channel loghost
```

Step 6 Type the following command to configure the IP address for QRadar as the loghost for your switch:

```
info-center loghost <IP address> facility <local>
```

Where:

- `<IP address>` is the IP address of the QRadar Console or Event Collector.
- `<local>` is the syslog facility, for example, local0.

For example,

```
info-center loghost 10.10.10.1 facility local0
```
Step 7 Type the following command to exit the configuration:

 quit

The configuration is complete. You can verify events forwarded to QRadar by viewing events on the Log Activity tab.
This section provides information about IBM DSMs:

IBM CICS

The IBM CICS® DSM allows you to integrate events from IBM Custom Information Control System (CICS®) events from an IBM z/OS® mainframe using IBM Security zSecure.

Using a zSecure process, events from the System Management Facilities (SMF) are recorded to an event file in the Log Enhanced Event format (LEEF). QRadar retrieves the LEEF event log files using the log file protocol and processes the events. You can schedule QRadar to retrieve events on a polling interval, which allows QRadar to retrieve the events on the schedule you have defined.

To integrate IBM CICS events:

1. Confirm your installation meets any prerequisite installation requirements. For more information, see Before You Begin.
2. Configure your IBM z/OS image to write events in LEEF format. For more information, see the IBM Security zSecure Suite: CARLa-Driven Components Installation and Deployment Guide.
3. Create a log source in QRadar for IBM CICS to retrieve your LEEF formatted event logs. For more information, see Create a log source.
4. Optional. Create a custom event property for IBM CICS in QRadar. For more information, see the IBM Security QRadar Custom Event Properties for IBM z/OS technical note.

Before You Begin

Before you can configure the data collection process, you must complete the basic zSecure installation process.

The following prerequisites are required:

- You must ensure parmlib member IFAPRDxx is not disabled for IBM Security zSecure Audit on your z/OS image.
- The SCKRLOAD library must be APF-authorized.
- You must configure a process to periodically refresh your CKFREEZE and UNLOAD data sets.
You must configure an SFTP, FTP, or SCP server on your z/OS image for QRadar to download your LEEF event files.

You must allow SFTP, FTP, or SCP traffic on firewalls located between QRadar and your z/OS image.

After installing the software, you must also perform the post-installation activities to create and modify the configuration. For instructions on installing and configuring zSecure, see the IBM Security zSecure Suite: CARLa-Driven Components Installation and Deployment Guide.

Create a log source

The Log File protocol allows QRadar to retrieve archived log files from a remote host.

Log files are transferred, one at a time, to QRadar for processing. The log file protocol can manage plain text event logs, compressed files, or archives. Archives must contain plain-text files that can be processed one line at a time. Multi-line event logs are not supported by the log file protocol. IBM z/OS with zSecure writes log files to a specified directory as gzip archives. QRadar extracts the archive and processes the events, which are written as one event per line in the file.

To retrieve these events, you must create a log source using the Log File protocol. QRadar requires credentials to log in to the system hosting your LEEF formatted event files and a polling interval.

Procedure

Step 1 Click the Admin tab.

Step 2 Click the Log Sources icon.

Step 3 Click Add.

Step 4 In the Log Source Name field, type a name for the log source.

Step 5 In the Log Source Description field, type a description for the log source.

Step 6 From the Log Source Type list, select IBM CICS.

Step 7 From the Protocol Configuration list, select Log File.

Step 8 Configure the following values:
Table 55-3 IBM CICS log file protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type an IP address, host name, or name to identify the event source. IP addresses or host names are recommended as they allow QRadar to identify a log file to a unique event source.</td>
</tr>
<tr>
<td></td>
<td>For example, if your network contains multiple devices, such as multiple z/OS images or a file repository containing all of your event logs, you should specify a name, IP address, or hostname for the image or location that uniquely identifies events for the IBM CICS log source. This allows events to be identified at the image or location level in your network that your users can identify.</td>
</tr>
<tr>
<td>Service Type</td>
<td>From the list, select the protocol you want to use when retrieving log files from a remote server. The default is SFTP.</td>
</tr>
<tr>
<td></td>
<td>- SFTP - SSH File Transfer Protocol</td>
</tr>
<tr>
<td></td>
<td>- FTP - File Transfer Protocol</td>
</tr>
<tr>
<td></td>
<td>- SCP - Secure Copy</td>
</tr>
<tr>
<td></td>
<td>Note: The underlying protocol used to retrieve log files for the SCP and SFTP service type requires that the server specified in the Remote IP or Hostname field has the SFTP subsystem enabled.</td>
</tr>
<tr>
<td>Remote IP or Hostname</td>
<td>Type the IP address or host name of the device storing your event log files.</td>
</tr>
<tr>
<td>Remote Port</td>
<td>Type the TCP port on the remote host that is running the selected Service Type. The valid range is 1 to 65535. The options include:</td>
</tr>
<tr>
<td></td>
<td>- FTP - TCP Port 21</td>
</tr>
<tr>
<td></td>
<td>- SFTP - TCP Port 22</td>
</tr>
<tr>
<td></td>
<td>- SCP - TCP Port 22</td>
</tr>
<tr>
<td></td>
<td>Note: If the host for your event files is using a non-standard port number for FTP, SFTP, or SCP, you must adjust the port value accordingly.</td>
</tr>
<tr>
<td>Remote User</td>
<td>Type the user name or userid necessary to log in to the host containing your event files.</td>
</tr>
<tr>
<td></td>
<td>- If your log files are located on your IBM z/OS image, type the userid necessary to log in to your IBM z/OS. The userid can be up to 8 characters in length.</td>
</tr>
<tr>
<td></td>
<td>- If your log files are located on a file repository, type the user name necessary to log in to the file repository. The user name can be up to 255 characters in length.</td>
</tr>
<tr>
<td>Remote Password</td>
<td>Type the password necessary to log in to the host.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password necessary to log in to the host.</td>
</tr>
</tbody>
</table>
Table 55-3 IBM CICS log file protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH Key File</td>
<td>If you select SCP or SFTP as the Service Type, this parameter allows you to define an SSH private key file. When you provide an SSH Key File, the Remote Password field is ignored.</td>
</tr>
<tr>
<td>Remote Directory</td>
<td>Type the directory location on the remote host from which the files are retrieved, relative to the user account you are using to log in.</td>
</tr>
<tr>
<td>Recursive</td>
<td>Select this check box if you want the file pattern to search subfolders in the remote directory. By default, the check box is clear. The Recursive option is ignored if you configure SCP as the Service Type.</td>
</tr>
<tr>
<td>FTP File Pattern</td>
<td>If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing. IBM z/OS mainframe using IBM Security zSecure Audit writes event files using the pattern CICS.<timestamp>.gz. The FTP file pattern you specify must match the name you assigned to your event files. For example, to collect files starting with zOS and ending with .gz, type the following: CICS.*.gz. Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website: http://download.oracle.com/javase/tutorial/essential/regex/.</td>
</tr>
<tr>
<td>FTP Transfer Mode</td>
<td>This option only displays if you select FTP as the Service Type. From the list, select Binary. The binary transfer mode is required for event files stored in a binary or compressed format, such as zip, gzip, tar, or tar+gzip archive files.</td>
</tr>
<tr>
<td>SCP Remote File</td>
<td>If you select SCP as the Service Type you must type the file name of the remote file.</td>
</tr>
<tr>
<td>Start Time</td>
<td>Type the time of day you want the processing to begin. For example, type 00:00 to schedule the Log File protocol to collect event files at midnight. This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: HH:MM.</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Type the frequency, beginning at the Start Time, that you want the remote directory to be scanned. Type this value in hours (H), minutes (M), or days (D). For example, type 2H if you want the remote directory to be scanned every 2 hours from the start time. The default is 1H.</td>
</tr>
</tbody>
</table>
Step 9 Click Save.

Step 10 On the Admin tab, click Deploy Changes.

The IBM CICS configuration is complete. If your IBM CICS requires custom event properties, see the IBM Security QRadar Custom Event Properties for IBM z/OS technical note.

IBM Lotus Domino You can integrate an IBM Lotus Domino® device with IBM Security QRadar. An IBM Lotus Domino device accepts events using SNMP.

Table 55-3 IBM CICS log file protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run On Save</td>
<td>Select this check box if you want the log file protocol to run immediately after you click Save. After the Run On Save completes, the log file protocol follows your configured start time and recurrence schedule. Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File parameter.</td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The valid range is 100 to 5000.</td>
</tr>
<tr>
<td>Processor</td>
<td>From the list, select gzip. Processors allow event file archives to be expanded and contents processed for events. Files are only processed after they are downloaded to QRadar. QRadar can process files in zip, gzip, tar, or tar+gzip archive format.</td>
</tr>
<tr>
<td>Ignore Previously Processed File(s)</td>
<td>Select this check box to track and ignore files that have already been processed by the log file protocol. QRadar examines the log files in the remote directory to determine if a file has been previously processed by the log file protocol. If a previously processed file is detected, the log file protocol does not download the file for processing. All files that have not been previously processed are downloaded. This option only applies to FTP and SFTP Service Types.</td>
</tr>
<tr>
<td>Change Local Directory?</td>
<td>Select this check box to define a local directory on your QRadar for storing downloaded files during processing. We recommend that you leave this check box clear. When this check box is selected, the Local Directory field is displayed, which allows you to configure the local directory to use for storing files.</td>
</tr>
<tr>
<td>Event Generator</td>
<td>From the Event Generator list, select LineByLine. The Event Generator applies additional processing to the retrieved event files. Each line is a single event. For example, if a file has 10 lines of text, 10 separate events are created.</td>
</tr>
</tbody>
</table>
Setting Up SNMP Services

To set up the SNMP services on the IBM Lotus Domino server:

Procedure

Step 1 Install the Lotus Domino SNMP Agent as a service. From the command prompt, go to the Lotus\Domino directory and type the following command:

`lnsnmp -SC`

Step 2 Confirm that the Microsoft SNMP service is installed.

Step 3 Start the SNMP and LNSNMP services. From a command prompt, type the following commands:

```
net start snmp
net start lnsnmp
```

Step 4 Select Start > Program > Administrative Tools > Services to open the Services MMC.

Step 5 Double-click on the SNMP service and select the Traps tab.

Step 6 In the Community name field, type public and click add to list.

Step 7 In the Traps destinations section, select Add and type the IP address of your QRadar. Click Add.

Step 8 Click OK.

Step 9 Confirm that both SNMP agents are set to Automatic so they run upon server boot.

Starting the Domino Server Add-in Tasks

After you configure the SNMP services, you must start the Domino server add-in tasks. Repeat the below procedure for each Domino partition.

Procedure

Step 1 Log in to the Domino Server console.

Step 2 To support SNMP traps for Domino events, type the following command to start the Event Interceptor add-in task:

```
load intrcpt
```

Step 3 To support Domino statistic threshold traps, type the following command to start the Statistic Collector add-in task:

```
load collect
```

Step 4 Arrange for the add-in tasks to be restarted automatically the next time that Domino is restarted. Add intrcpt and collect to the ServerTasks variable in Domino's NOTES.INI file.

Configuring SNMP Services

To configure SNMP services:

Note: Configurations might vary depending on your environment. See your vendor documentation for more information.
Procedure

Step 1 Open the Domino Administrator utility and authenticate with administrative credentials.

Step 2 Click on the Files tab, and the Monitoring Configuration (events4.nsf) document.

Step 3 Expand the DDM Configuration Tree and select DDM Probes By Type.

Step 4 Select Enable Probes, and then select Enable All Probes In View.

 Note: You might receive a warning after performing this action. This is a normal result, as some of the probes require additional configuration.

Step 5 Select DDM Filter.

 You can either create a new DDM Filter or edit the existing DDM Default Filter.

Step 6 Apply the DDM Filter to enhanced and simple events. Choose to log all event types.

Step 7 Depending on the environment, you can choose to apply the filter to all servers in a domain or only to specific servers.

Step 8 Click Save. Close when finished.

Step 9 Expand the Event Handlers tree and select Event Handlers By Server.

Step 10 Select New Event Handler.

Step 11 Configure the following parameters:

 • Basic - Servers to monitor: Choose to monitor either all servers in the domain or only specific servers.

 • Basic - Notification trigger: Any event that matches the criteria.

 • Event - Criteria to match: Events can be any type.

 • Event - Criteria to match: Events must be one of these priorities (Check all the boxes).

 • Event - Criteria to match: Events can have any message.

 • Action - Notification method: SNMP Trap.

 • Action - Enablement: Enable this notification.

Step 12 Click Save. Close when finished.

 You are now ready to configure the log source in QRadar.

Configuring a log source

QRadar does not automatically discover incoming syslog events from Huawei AR Series Routers.

If your events are not automatically discovered, you must manually create a log source from the Admin tab in QRadar.

Procedure

Step 1 Click the Admin tab.

Step 2 Click the Log Sources icon.
IBM Proventia Management SiteProtector

The IBM Proventia® Management SiteProtector™ DSM for IBM Security QRadar accepts SiteProtector events by polling the SiteProtector database.

The DSM allows QRadar to record Intrusion Prevention System (IPS) events and audit events directly from the IBM SiteProtector database.

Note: The IBM Proventia Management SiteProtector DSM requires the latest JDBC Protocol to collect audit events.

The IBM Proventia Management SiteProtector DSM for IBM Security QRadar can accept detailed SiteProtector events by reading information from the primary SensorData1 table. The SensorData1 table is generated with information from several other tables in the IBM SiteProtector database. SensorData1 remains the primary table for collecting events.

IDP events include information from SensorData1, along with information from the following tables:

- SensorDataAVP1
- SensorDataResponse1

Audit events include information from the following tables:

- AuditInfo

Table 55-4 SNIPv2 protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type an IP address, hostname, or name to identify the SNIPv2 event source.</td>
</tr>
<tr>
<td></td>
<td>IP addresses or hostnames are recommended as they allow QRadar to identify a log file to a unique event source.</td>
</tr>
<tr>
<td>Community</td>
<td>Type the SNMP community name required to access the system containing SNIPv2 events.</td>
</tr>
<tr>
<td>Include OIDs in Event Payload</td>
<td>Clear the value from this check box. When selected, this option constructs SNIPv2 events with name-value pairs instead of the standard event payload format.</td>
</tr>
</tbody>
</table>

Step 3 Click **Add**.

Step 4 In the **Log Source Name** field, type a name for your log source.

Step 5 From the **Log Source Type** list, select **IBM Lotus Domino**.

Step 6 From the **Protocol Configuration** list, select **SNIPv2**.

Step 7 Configure the following values:

Step 8 Click **Save**.

Step 9 On the **Admin** tab, click **Deploy Changes**.

IBM Proventia Management SiteProtector

The IBM Proventia® Management SiteProtector™ DSM for IBM Security QRadar accepts SiteProtector events by polling the SiteProtector database.

The DSM allows QRadar to record Intrusion Prevention System (IPS) events and audit events directly from the IBM SiteProtector database.

Note: The IBM Proventia Management SiteProtector DSM requires the latest JDBC Protocol to collect audit events.

The IBM Proventia Management SiteProtector DSM for IBM Security QRadar can accept detailed SiteProtector events by reading information from the primary SensorData1 table. The SensorData1 table is generated with information from several other tables in the IBM SiteProtector database. SensorData1 remains the primary table for collecting events.

IDP events include information from SensorData1, along with information from the following tables:

- SensorDataAVP1
- SensorDataResponse1

Audit events include information from the following tables:

- AuditInfo
Audit events are not collected by default and make a separate query to the AuditInfo and AuditTrail tables when you select the **Include Audit Events** check box. For more information about your SiteProtector database tables, see your vendor documentation.

Before you configure QRadar to integrate with SiteProtector, we recommend you create a database user account and password in SiteProtector for QRadar. Your QRadar user must have read permissions for the SensorData1 table, which stores SiteProtector events. The JDBC - SiteProtector protocol allows QRadar to log in and poll for events from the database. Creating a QRadar account is not required, but it is recommended for tracking and securing your event data.

Note: Ensure that no firewall rules are blocking the communication between the SiteProtector console and QRadar.

Configure a log source

To configure QRadar to poll for IBM SiteProtector events:

Procedure

Step 1 Click the **Admin** tab.

Step 2 Click the **Log Sources** icon.

Step 3 Click **Add**.

Step 4 In the **Log Source Name** field, type a name for your log source.

Step 5 From the **Log Source Type** list, select **IBM Proventia Management SiteProtector**.

Step 6 Using the **Protocol Configuration** list, select **JDBC - SiteProtector**.

Step 7 Configure the following values:

<table>
<thead>
<tr>
<th>Table 55-5 JDBC - SiteProtector protocol parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Database Type</td>
</tr>
</tbody>
</table>
Table 55-5 JDBC - SiteProtector protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database Name</td>
<td>Type the name of the database to which you want to connect. The default database name is RealSecureDB.</td>
</tr>
<tr>
<td>IP or Hostname</td>
<td>Type the IP address or hostname of the database server.</td>
</tr>
<tr>
<td>Port</td>
<td>Type the port number used by the database server. The default that is displayed depends on the selected Database Type. The valid range is 0 to 65536. The default for MSDE is port 1433. The JDBC configuration port must match the listener port of the database. The database must have incoming TCP connections enabled to communicate with QRadar. The default port number for all options include:</td>
</tr>
<tr>
<td></td>
<td>• MSDE - 1433</td>
</tr>
<tr>
<td></td>
<td>• Postgres - 5432</td>
</tr>
<tr>
<td></td>
<td>• MySQL - 3306</td>
</tr>
<tr>
<td></td>
<td>• Oracle - 1521</td>
</tr>
<tr>
<td></td>
<td>• Sybase - 1521</td>
</tr>
<tr>
<td>Note:</td>
<td>If you define a Database Instance when using MSDE as the database type, you must leave the Port parameter blank in your configuration.</td>
</tr>
<tr>
<td>Username</td>
<td>Type the database username. The username can be up to 255 alphanumeric characters in length. The username can also include underscores (_).</td>
</tr>
<tr>
<td>Password</td>
<td>Type the database password. The password can be up to 255 characters in length.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password to access the database.</td>
</tr>
<tr>
<td>Authentication Domain</td>
<td>If you select MSDE as the Database Type and the database is configured for Windows, you must define a Windows Authentication Domain. Otherwise, leave this field blank. The authentication domain must contain alphanumeric characters. The domain can include the following special characters: underscore (_), en dash (-), and period(.).</td>
</tr>
<tr>
<td>Database Instance</td>
<td>If you select MSDE as the Database Type and you have multiple SQL server instances on one server, define the instance to which you want to connect. Note: If you use a non-standard port in your database configuration, or have blocked access to port 1434 for SQL database resolution, you must leave the Database Instance parameter blank in your configuration.</td>
</tr>
<tr>
<td>Table Name</td>
<td>Type the name of the view that includes the event records. The default table name is SensorData1.</td>
</tr>
</tbody>
</table>
Table 55-5 JDBC - SiteProtector protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVP View Name</td>
<td>Type the name of the view that includes the event attributes. The default table name is SensorDataAVP.</td>
</tr>
<tr>
<td>Response View Name</td>
<td>Type the name of the view that includes the response events. The default table name is SensorDataResponse.</td>
</tr>
<tr>
<td>Select List</td>
<td>Type * to include all fields from the table or view. You can use a comma-separated list to define specific fields from tables or views, if required for your configuration. The list must contain the field defined in the Compare Field parameter. The comma-separated list can be up to 255 alphanumeric characters in length. The list can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period(.).</td>
</tr>
<tr>
<td>Compare Field</td>
<td>Type SensorDataRowID to identify new events added between queries to the table.</td>
</tr>
<tr>
<td>Polling Interval</td>
<td>Type the polling interval, which is the amount of time between queries to the event table. The default polling interval is 10 seconds. You can define a longer polling interval by appending H for hours or M for minutes to the numeric value. The maximum polling interval is 1 week in any time format. Numeric values without an H or M designator poll in seconds.</td>
</tr>
<tr>
<td>Use Named Pipe Communication</td>
<td>If you select MSDE as the Database Type, select this check box to use an alternative method to a TCP/IP port connection. When using a Named Pipe connection, the username and password must be the appropriate Windows authentication username and password and not the database username and password. Also, you must use the default Named Pipe.</td>
</tr>
<tr>
<td>Database Cluster Name</td>
<td>If you select the Use Named Pipe Communication check box, the Database Cluster Name parameter is displayed. If you are running your SQL server in a cluster environment, define the cluster name to ensure Named Pipe communication functions properly.</td>
</tr>
<tr>
<td>Include Audit Events</td>
<td>Select this check box to collect audit events from IBM SiteProtector. By default, this check box is clear.</td>
</tr>
<tr>
<td>Use NTLMv2</td>
<td>Select the Use NTLMv2 check box to force MSDE connections to use the NTLMv2 protocol when communicating with SQL servers that require NTLMv2 authentication. The default value of the check box is selected. If the Use NTLMv2 check box is selected, it has no effect on MSDE connections to SQL servers that do not require NTLMv2 authentication.</td>
</tr>
<tr>
<td>Use SSL</td>
<td>Select this check box if your connection supports SSL communication.</td>
</tr>
<tr>
<td>Log Source Language</td>
<td>Select the language of the log source events.</td>
</tr>
</tbody>
</table>
Step 8 Click **Save**.

Step 9 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.

IBM ISS Proventia

The IBM Integrated Systems Solutions® (ISS) Proventia DSM for IBM Security QRadar records all relevant IBM Proventia® events using SNMP.

Procedure

Step 1 In the Proventia Manager user interface navigation pane, expand the System node.

Step 2 Select **System**.

Step 3 Select **Services**.

The Service Configuration page is displayed.

Step 4 Click the **SNMP** tab.

Step 5 Select **SNMP Traps Enabled**.

Step 6 In the **Trap Receiver** field, type the IP address of your QRadar you wish to monitor incoming SNMP traps.

Step 7 In the **Trap Community** field, type the appropriate community name.

Step 8 From the **Trap Version** list, select the trap version.

Step 9 Click **Save Changes**.

You are now ready to configure QRadar to receive SNMP traps.

To configure QRadar to receive events from an ISS Proventia device:

- From the **Log Source Type** list, select **IBM Proventia Network Intrusion Prevention System (IPS)**.

For information on configuring SNMP in the QRadar, see the *IBM Security QRadar Log Sources User Guide*. For more information about your ISS Proventia device, see your vendor documentation.

IBM RACF

IBM Security QRadar includes two options for integrating event from IBM RACF®:

- Integrating IBM RACF with QRadar Using IBM Security zSecure
- Integrate IBM RACF with QRadar using audit scripts

Integrating IBM RACF with QRadar Using IBM Security zSecure

The IBM RACF DSM allows you to integrate events from an IBM z/OS® mainframe using IBM Security zSecure™.

Using a zSecure process, events from the System Management Facilities (SMF) are recorded to an event file in the Log Enhanced Event format (LEEF). QRadar

IBM Security QRadar DSM Configuration Guide
retrieves the LEEF event log files using the log file protocol and processes the events. You can schedule QRadar to retrieve events on a polling interval, which allows QRadar to retrieve the events on the schedule you have defined.

To integrate IBM RACF LEEF events:

1. Confirm your installation meets any prerequisite installation requirements. For more information, see Before You Begin.
2. Configure your IBM z/OS image to write events in LEEF format. For more information, see the IBM Security zSecure Suite: CARLa-Driven Components Installation and Deployment Guide.
3. Create a log source in QRadar for IBM RACF to retrieve your LEEF formatted event logs. For more information, see Creating an IBM RACF Log Source in QRadar.
4. Optional. Create a custom event property for IBM RACF in QRadar. For more information, see the IBM Security QRadar Custom Event Properties for IBM z/OS technical note.

Before You Begin

Before you can configure the data collection process, you must complete the basic zSecure installation process.

The following prerequisites are required:

- You must ensure parmlib member IFAPRDxx is not disabled for IBM Security zSecure Audit on your z/OS image.
- The SCKRLOAD library must be APF-authorized.
- You must configure a process to periodically refresh your CKFREEZE and UNLOAD data sets.
- You must configure an SFTP, FTP, or SCP server on your z/OS image for QRadar to download your LEEF event files.
- You must allow SFTP, FTP, or SCP traffic on firewalls located between QRadar and your z/OS image.

After installing the software, you must also perform the post-installation activities to create and modify the configuration. For instructions on installing and configuring zSecure, see the IBM Security zSecure Suite: CARLa-Driven Components Installation and Deployment Guide.

Creating an IBM RACF Log Source in QRadar

The Log File protocol allows QRadar to retrieve archived log files from a remote host.

Log files are transferred, one at a time, to QRadar for processing. The log file protocol can manage plain text event logs, compressed files, or archives. Archives must contain plain-text files that can be processed one line at a time. Multi-line event logs are not supported by the log file protocol. IBM z/OS with zSecure writes
log files to a specified directory as gzip archives. QRadar extracts the archive and processes the events, which are written as one event per line in the file.

To retrieve these events, you must create a log source using the Log File protocol. QRadar requires credentials to log in to the system hosting your LEEF formatted event files and a polling interval.

Procedure

Step 5 Click the **Admin** tab.

Step 6 Click the **Log Sources** icon.

Step 7 Click **Add**.

Step 8 In the **Log Source Name** field, type a name for the log source.

Step 9 In the **Log Source Description** field, type a description for the log source.

Step 10 From the **Log Source Type** list, select **IBM Resource Access Control Facility (RACF)**.

Step 11 From the **Protocol Configuration** list, select **Log File**.

Step 12 Configure the following values:

<table>
<thead>
<tr>
<th>Table 55-6</th>
<th>IBM RACF log file protocol parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type an IP address, host name, or name to identify the event source. IP addresses or host names are recommended as they allow QRadar to identify a log file to a unique event source. For example, if your network contains multiple devices, such as multiple z/OS images or a file repository containing all of your event logs, you should specify a name, IP address, or hostname for the image or location that uniquely identifies events for the IBM RACF log source. This allows events to be identified at the image or location level in your network that your users can identify.</td>
</tr>
<tr>
<td>Service Type</td>
<td>From the list, select the protocol you want to use when retrieving log files from a remote server. The default is SFTP. • SFTP - SSH File Transfer Protocol • FTP - File Transfer Protocol • SCP - Secure Copy Note: The underlying protocol used to retrieve log files for the SCP and SFTP service type requires that the server specified in the Remote IP or Hostname field has the SFTP subsystem enabled.</td>
</tr>
<tr>
<td>Remote IP or Hostname</td>
<td>Type the IP address or host name of the device storing your event log files.</td>
</tr>
</tbody>
</table>
Table 55-6 IBM RACF log file protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Port</td>
<td>Type the TCP port on the remote host that is running the selected Service Type. The valid range is 1 to 65535. The options include:</td>
</tr>
<tr>
<td></td>
<td>• FTP - TCP Port 21</td>
</tr>
<tr>
<td></td>
<td>• SFTP - TCP Port 22</td>
</tr>
<tr>
<td></td>
<td>• SCP - TCP Port 22</td>
</tr>
<tr>
<td></td>
<td>Note: If the host for your event files is using a non-standard port number for FTP, SFTP, or SCP, you must adjust the port value accordingly.</td>
</tr>
<tr>
<td>Remote User</td>
<td>Type the user name or userid necessary to log in to the host containing your event files.</td>
</tr>
<tr>
<td></td>
<td>• If your log files are located on your IBM z/OS image, type the userid necessary to log in to your IBM z/OS. The userid can be up to 8 characters in length.</td>
</tr>
<tr>
<td></td>
<td>• If your log files are located on a file repository, type the user name necessary to log in to the file repository. The user name can be up to 255 characters in length.</td>
</tr>
<tr>
<td>Remote Password</td>
<td>Type the password necessary to log in to the host.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password necessary to log in to the host.</td>
</tr>
<tr>
<td>SSH Key File</td>
<td>If you select SCP or SFTP as the Service Type, this parameter allows you to define an SSH private key file. When you provide an SSH Key File, the Remote Password field is ignored.</td>
</tr>
<tr>
<td>Remote Directory</td>
<td>Type the directory location on the remote host from which the files are retrieved, relative to the user account you are using to log in.</td>
</tr>
<tr>
<td>Recursive</td>
<td>Select this check box if you want the file pattern to search subfolders in the remote directory. By default, the check box is clear. The Recursive option is ignored if you configure SCP as the Service Type.</td>
</tr>
</tbody>
</table>
Table 55-6 IBM RACF log file protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP File Pattern</td>
<td>If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing. IBM z/OS mainframe using IBM Security zSecure Audit writes event files using the pattern RACF.<timestamp>.gz. The FTP file pattern you specify must match the name you assigned to your event files. For example, to collect files starting with zOS and ending with .gz, type the following: RACF * . gz. Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website: http://download.oracle.com/javase/tutorial/essential/regex/</td>
</tr>
<tr>
<td>FTP Transfer Mode</td>
<td>This option only displays if you select FTP as the Service Type. The binary transfer mode is required for event files stored in a binary or compressed format, such as zip, gzip, tar, or tar+gzip archive files.</td>
</tr>
<tr>
<td>SCP Remote File</td>
<td>If you select SCP as the Service Type you must type the file name of the remote file.</td>
</tr>
<tr>
<td>Start Time</td>
<td>Type the time of day you want the processing to begin. For example, type 00:00 to schedule the Log File protocol to collect event files at midnight. This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: HH:MM.</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Type the frequency, beginning at the Start Time, that you want the remote directory to be scanned. Type this value in hours (H), minutes (M), or days (D). For example, type 2H if you want the remote directory to be scanned every 2 hours from the start time. The default is 1H.</td>
</tr>
<tr>
<td>Run On Save</td>
<td>Select this check box if you want the log file protocol to run immediately after you click Save. After the Run On Save completes, the log file protocol follows your configured start time and recurrence schedule. Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File parameter.</td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The valid range is 100 to 5000.</td>
</tr>
</tbody>
</table>
Step 13 Click Save.

Step 14 On the Admin tab, click Deploy Changes.

The IBM RACF configuration is complete. If your IBM RACF requires custom event properties, see the IBM Security QRadar Custom Event Properties for IBM z/OS technical note.
Integrate IBM RACF with QRadar using audit scripts

The IBM Resource Access Control Facility (RACF®) DSM for IBM Security QRadar allows you to integrate with an IBM z/OS mainframe using IBM RACF for auditing transactions.

QRadar records all relevant and available information from the event.

Note: zSecure integration is the only integration that provides custom events to the log source. Custom events may be displayed even when you collect events by using the Native QEXRACF integration.

To integrate the IBM RACF events into QRadar:

1. The IBM mainframe system records all security events as Service Management Framework (SMF) records in a live repository.

2. At midnight, the IBM RACF data is extracted from the live repository using the SMF dump utility. The RACFICE utility IRRADU00 (an IBM utility) creates a log file containing all of the events and fields from the previous day in a SMF record format.

3. The QEXRACF program pulls data from the SMF formatted file, as described above. The program only pulls the relevant events and fields for QRadar and writes that information in a condensed format for compatibility. The information is also saved in a location accessible by QRadar.

4. QRadar uses the log file protocol source to pull the QEXRACF output file and retrieves the information on a scheduled basis. QRadar then imports and process this file.

Configure IBM RACF to integrate with QRadar

To integrate an IBM mainframe RACF with QRadar:

Step 1 From the IBM support website (http://www.ibm.com/support), download the following compressed file:

`qexracf_bundled.tar.gz`

Step 2 On a Linux-based operating system, extract the file:

`tar -zxvf qexracf_bundled.tar.gz`

The following files are contained in the archive:

- `qexracf_jcl.txt`
- `qexracfloadlib.trs`
- `qexracf_trsmain_JCL.txt`

Step 3 Load the files onto the IBM mainframe using any terminal emulator file transfer method.

Upload the `qexracf_trsmain_JCL.txt` and `qexracf_jcl.txt` files using the TEXT protocol.

Upload the `QexRACF loadlib.trs` file using binary mode and append to a pre-allocated data set. The `QexRACF loadlib.trs` file is a terced file containing the executable (the mainframe program QEXRACF). When you upload the .trs file
from a workstation, pre-allocate a file on the mainframe with the following DCB attributes: DSORG=PS, RECFM=FB, LRECL=1024, BLKSIZE=6144. The file transfer type must be binary mode and not text.

Step 4 Customize the `qexracf_trsmain_JCL.txt` file according to your installation-specific requirements.

The `qexracf_trsmain_JCL.txt` file uses the IBM utility Trsmain to uncompress the program stored in the `QexRACF loadlib.trs` file.

An example of the `qexracf_trsmain_JCL.txt` file includes:

```plaintext
//TRSMAIN JOB (yourvalidjobcard),Q1labs,
// MSGCLASS=V
//DEL EXEC PGM=IEFBR14
//D1 DD DISP=(MOD,DELETE),DSN=yourhlq.QEXRACF.TRS
//       UNIT=SYSDA,
//       SPACE=(CYL,(10,10))
//TRSMAIN EXEC PGM=TRSMAIN,PARM='UNPACK'
//SYSPRINT DD SYSOUT=*,DCB=(LRECL=133,BLKSIZE=12901,RECFM=FBA)
//INFILE DD DISP=SHR,DSN=yourhlq.QEXRACF.TRS
//OUTFILE DD DISP=(NEW,CATLG,DELETE),
//       DSN=yourhlq.load,UNIT=SYSDA
//
```

You must update the file with your installation specific information for parameters, such as, jobcard, data set naming conventions, output destinations, retention periods, and space requirements.

The .trs input file is an IBM TERSE formatted library and is extracted by running the JCL, which calls the TRSMAIN. This tersed file, when extracted, creates a PDS linklib with the QEXRACF program as a member.

Step 5 You can STEPLIB to this library or choose to move the program to one of the LINKLIBs that are in the LINKLST. The program does not require authorization.

Step 6 After uploading, copy the program to an existing link listed library or add a STEPLIB DD statement with the correct dataset name of the library that will contain the program.

Step 7 The `qexracf_jcl.txt` file is a text file containing a sample JCL deck to provide you with the necessary JCL to run the IBM IRRAWDU00 utility. This allows QRadar to obtain the necessary IBM RACF events. Configure the job card to meet your local standards.

An example of the `qexracf_jcl.txt` file includes:

```plaintext
//QEXRACF JOB (<your valid jobcard>),Q1LABS,
// MSGCLASS=P,
// REGION=0M
//*
//*QEXRACF JCL version 1.0  April 2009
//*
//******************************************************************************
//* Change below dataset names to sites specific datasets
```
SET1 SET SMFOUT='"your hlq>.CUSTNAME.IRRADU00.OUTPUT"',
// SMFIN='"your SMF dump output dataset"',
// QRAFCFOUT='"your hlq>.QEXRACF.OUTPUT"'

//***
//DELETE old datasets *
//***
DELET EXEC PGM=IEFBR14
//DD2 DD DISP=(MOD,DELETE),DSN=&QRAFCFOUT,
 // UNIT=SYSDA,
 // SPACE=(TRK,(1,1)),
 // DCB=(RECFM=FB,LRECL=80)
//***
//Allocate new dataset *
//***
ALLOC EXEC PGM=IEFBR14
//DD1 DD DISP=(NEW,CATLG),DSN=&QRAFCFOUT,
 // SPACE=(CYL,(1,10)),UNIT=SYSDA,
 // DCB=(RECFM=VB,LRECL=1028,BLKSIZE=6144)
//***
//Execute IBM IRRADU00 utility to extract RACF smf records *
//***
IRRADU00 EXEC PGM=IFASMFDP
//SYSPRINT DD SYSOUT=* //ADUPRINT DD SYSOUT=* //OUTDD DD DSN=&SMFOUT,SPACE=(CYL,(100,100)),DISP=,(CATLG),
 // DCB=(RECFM=FB,LRECL=8192,BLKSIZE=40960),
 // UNIT=SYSALLDA
//SMFDATA DD DISP=SHR,DSN=&SMFIN
//SMFOUT DD DUMMY
//SYSIN DD *
 //INDD(SMFDATA,OPTIONS(DUMP))
 //OUTDD(SMFOUT,TYPE(30:83))
 //ABEND(NORETRY)
 //USER2(IRRADU00)
 //USER3(IRRADU86)
 //***
 //FTP Output file from C program (Qexracf) to an FTP server *
 //EXTRACT EXEC PGM=QEXRACF,DYNAMNBR=10,
 // TIME=1440
 //STEPLIB DD DISP=SHR,DSN=<the loadlib containing the QEXRACF program if not in LINKLST>
 //SYSTSIN DD DUMMY
 //SYSTSPRT DD SYSOUT=* //SYSPRINT DD SYSOUT=* //RACIN DD DISP=SHR,DSN=&SMFOUT
 //RACOUT DD DISP=SHR,DSN=&QRAFCFOUT
 //***
/* FTP Output file from C program (Qexracf) to an FTP server */
IBM RACF

Step 8
After the output file is created, you must send this file to an FTP server. This ensures that every time you run the utility, the output file is sent to a specific FTP server for processing at the end of the above script. If the z/OS platform is configured to serve files through FTP or SFTP, or allow SCP, then no interim server is required and QRadar can pull those files directly from the mainframe. If an interim FTP server is needed, QRadar requires a unique IP address for each IBM RACF log source or they will be joined as one system.

Create an IBM RACF log source
The Log File protocol allows QRadar to retrieve archived log files from a remote host.

Log files are transferred, one at a time, to QRadar for processing. The log file protocol can manage plain text event logs, compressed files, or archives. Archives must contain plain-text files that can be processed one line at a time. Multi-line event logs are not supported by the log file protocol. IBM RACF with z/OS writes log files to a specified directory as gzip archives. QRadar extracts the archive and processes the events, which are written as one event per line in the file.

To retrieve these events, you must create a log source using the Log File protocol. QRadar requires credentials to log in to the system hosting your event files and a polling interval.

Procedure
Step 9 Click the Admin tab.
Step 10 Click the Log Sources icon.
Step 11 Click Add.
Step 12 In the Log Source Name field, type a name for the log source.
Step 13 In the Log Source Description field, type a description for the log source.
Step 14 From the Log Source Type list, select IBM Resource Access Control Facility (RACF).

Step 15 From the Protocol Configuration list, select Log File.

Step 16 Configure the following values:

Table 55-7 IBM RACF log file protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type an IP address, host name, or name to identify the event source. IP addresses or host names are recommended as they allow QRadar to identify a log file to a unique event source. For example, if your network contains multiple devices, such as multiple z/OS images or a file repository containing all of your event logs, you should specify a name, IP address, or hostname for the image or location that uniquely identifies events for the IBM RACF log source. This allows events to be identified at the image or location level in your network that your users can identify.</td>
</tr>
<tr>
<td>Service Type</td>
<td>From the list, select the protocol you want to use when retrieving log files from a remote server. The default is SFTP. • SFTP - SSH File Transfer Protocol • FTP - File Transfer Protocol • SCP - Secure Copy Note: The underlying protocol used to retrieve log files for the SCP and SFTP service type requires that the server specified in the Remote IP or Hostname field has the SFTP subsystem enabled.</td>
</tr>
<tr>
<td>Remote IP or Hostname</td>
<td>Type the IP address or host name of the device storing your event log files.</td>
</tr>
<tr>
<td>Remote Port</td>
<td>Type the TCP port on the remote host that is running the selected Service Type. The valid range is 1 to 65535. The options include: • FTP - TCP Port 21 • SFTP - TCP Port 22 • SCP - TCP Port 22 Note: If the host for your event files is using a non-standard port number for FTP, SFTP, or SCP, you must adjust the port value accordingly.</td>
</tr>
</tbody>
</table>
Remote User
Type the user name or userid necessary to log in to the host containing your event files.

- If your log files are located on your IBM z/OS image, type the userid necessary to log in to your IBM z/OS. The userid can be up to 8 characters in length.
- If your log files are located on a file repository, type the user name necessary to log in to the file repository. The user name can be up to 255 characters in length.

Remote Password
Type the password necessary to log in to the host.

Confirm Password
Confirm the password necessary to log in to the host.

SSH Key File
If you select SCP or SFTP as the Service Type, this parameter allows you to define an SSH private key file. When you provide an SSH Key File, the Remote Password field is ignored.

Remote Directory
Type the directory location on the remote host from which the files are retrieved, relative to the user account you are using to log in.

Note: For FTP only. If your log files reside in the remote user’s home directory, you can leave the remote directory blank. This is to support operating systems where a change in the working directory (CWD) command is restricted.

Recursive
Select this check box if you want the file pattern to search sub folders in the remote directory. By default, the check box is clear.

The Recursive option is ignored if you configure SCP as the Service Type.

FTP File Pattern
If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing.

The FTP file pattern you specify must match the name you assigned to your event files. For example, to collect files starting with zOS and ending with .gz, type the following:

Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website:
http://download.oracle.com/javase/tutorial/essential/regex/
FTP Transfer Mode
This option only displays if you select FTP as the Service Type.

From the list, select the transfer mode you want to apply to this log source:

- **Binary** - Select Binary for log sources that require binary data files or compressed zip, gzip, tar, or tar+gzip archive files.
- **ASCII** - Select ASCII for log sources that require an ASCII FTP file transfer.

SCP Remote File
If you select SCP as the Service Type you must type the file name of the remote file.

Start Time
Type the time of day you want the processing to begin. For example, type 00:00 to schedule the Log File protocol to collect event files at midnight.

This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: HH:MM.

Recurrence
Type the frequency, beginning at the Start Time, that you want the remote directory to be scanned. Type this value in hours (H), minutes (M), or days (D).

For example, type 2H if you want the remote directory to be scanned every 2 hours from the start time. The default is 1H.

Run On Save
Select this check box if you want the log file protocol to run immediately after you click **Save**.

After the Run On Save completes, the log file protocol follows your configured start time and recurrence schedule.

Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File parameter.

EPS Throttle
Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The valid range is 100 to 5000.

Processor
From the list, select **gzip**.

Processors allow event file archives to be expanded and contents processed for events. Files are only processed after they are downloaded to QRadar. QRadar can process files in zip, gzip, tar, or tar+gzip archive format.

Ignore Previously Processed File(s)
Select this check box to track and ignore files that have already been processed by the log file protocol.

QRadar examines the log files in the remote directory to determine if a file has been previously processed by the log file protocol. If a previously processed file is detected, the log file protocol does not download the file for processing. All files that have not been previously processed are downloaded.

This option only applies to FTP and SFTP Service Types.
Step 17 Click **Save**.

Step 18 On the **Admin** tab, click **Deploy Changes**.

The IBM RACF configuration is complete. If your IBM RACF requires custom event properties, see the **IBM Security QRadar Custom Event Properties for IBM z/OS** technical note.

IBM DB2

IBM Security QRadar has two options for integrating events from IBM DB2®:

- Integrating IBM DB2 with LEEF Events
- Integrating IBM DB2 Audit Events

Integrating IBM DB2 with LEEF Events

The IBM DB2 DSM allows you to integrate DB2 events in LEEF format from an IBM z/OS® mainframe using IBM Security zSecure®.

Using a zSecure process, events from the System Management Facilities (SMF) are recorded to an event file in the Log Enhanced Event format (LEEF). QRadar retrieves the LEEF event log files using the log file protocol and processes the events. You can schedule QRadar to retrieve events on a polling interval, which allows you to retrieve the events on the schedule you have defined.
To integrate IBM DB2 events:

1. Confirm your installation meets any prerequisite installation requirements. For more information, see Before You Begin.

2. Configure your IBM DB2 image to write events in LEEF format. For more information, see the IBM Security zSecure Suite: CARLa-Driven Components Installation and Deployment Guide.

3. Create a log source in QRadar for IBM DB2 to retrieve your LEEF formatted event logs. For more information, see Creating a log source.

4. Optional. Create a custom event property for IBM DB2 in QRadar. For more information, see the IBM Security QRadar Custom Event Properties for IBM z/OS technical note.

Before You Begin

Before you can configure the data collection process, you must complete the basic zSecure installation process.

The following prerequisites are required:

- You must ensure parmlib member IFAPRDxx is not disabled for IBM Security zSecure Audit on your IBM DB2 z/OS image.
- The SCKRLOAD library must be APF-authorized.
- You must configure a process to periodically refresh your CKFREEZE and UNLOAD data sets.
- You must configure an SFTP, FTP, or SCP server on your z/OS image for QRadar to download your LEEF event files.
- You must allow SFTP, FTP, or SCP traffic on firewalls located between QRadar and your z/OS image.

After installing the software, you must also perform the post-installation activities to create and modify the configuration. For instructions on installing and configuring zSecure, see the IBM Security zSecure Suite: CARLa-Driven Components Installation and Deployment Guide.

Creating a log source

The Log File protocol allows QRadar to retrieve archived log files from a remote host.

Log files are transferred, one at a time, to QRadar for processing. The log file protocol can manage plain text event logs, compressed files, or archives. Archives must contain plain-text files that can be processed one line at a time. Multi-line event logs are not supported by the log file protocol. IBM z/OS with zSecure writes log files to a specified directory as gzip archives. QRadar extracts the archive and processes the events, which are written as one event per line in the file.

To retrieve these events, you must create a log source using the Log File protocol. QRadar requires credentials to log in to the system hosting your LEEF formatted event files and a polling interval.
Procedure

Step 5 Click the Admin tab.

Step 6 Click the Log Sources icon.

Step 7 Click Add.

Step 8 In the Log Source Name field, type a name for the log source.

Step 9 In the Log Source Description field, type a description for the log source.

Step 10 From the Log Source Type list, select IBM DB2.

Step 11 From the Protocol Configuration list, select Log File.

Step 12 Configure the following values:

<table>
<thead>
<tr>
<th>Table 55-8 IBM DB2 log file protocol parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
<tr>
<td>Service Type</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Note: The underlying protocol used to retrieve log files for the SCP and SFTP service type requires that the server specified in the Remote IP or Hostname field has the SFTP subsystem enabled.</td>
</tr>
<tr>
<td>Remote IP or Hostname</td>
</tr>
</tbody>
</table>
Table 55-8 IBM DB2 log file protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Port</td>
<td>Type the TCP port on the remote host that is running the selected Service Type. The valid range is 1 to 65535.</td>
</tr>
<tr>
<td></td>
<td>The options include:</td>
</tr>
<tr>
<td></td>
<td>• FTP - TCP Port 21</td>
</tr>
<tr>
<td></td>
<td>• SFTP - TCP Port 22</td>
</tr>
<tr>
<td></td>
<td>• SCP - TCP Port 22</td>
</tr>
<tr>
<td>Note:</td>
<td>If the host for your event files is using a non-standard port number for FTP, SFTP, or SCP, you must adjust the port value accordingly.</td>
</tr>
<tr>
<td>Remote User</td>
<td>Type the user name or userid necessary to log in to the host containing your event files.</td>
</tr>
<tr>
<td></td>
<td>• If your log files are located on your IBM z/OS image, type the userid necessary to log in to your IBM z/OS. The userid can be up to 8 characters in length.</td>
</tr>
<tr>
<td></td>
<td>• If your log files are located on a file repository, type the user name necessary to log in to the file repository. The user name can be up to 255 characters in length.</td>
</tr>
<tr>
<td>Remote Password</td>
<td>Type the password necessary to log in to the host.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password necessary to log in to the host.</td>
</tr>
<tr>
<td>SSH Key File</td>
<td>If you select SCP or SFTP as the Service Type, this parameter allows you to define an SSH private key file. When you provide an SSH Key File, the Remote Password field is ignored.</td>
</tr>
<tr>
<td>Remote Directory</td>
<td>Type the directory location on the remote host from which the files are retrieved, relative to the user account you are using to log in.</td>
</tr>
<tr>
<td>Recursive</td>
<td>Select this check box if you want the file pattern to search sub folders in the remote directory. By default, the check box is clear. The Recursive option is ignored if you configure SCP as the Service Type.</td>
</tr>
</tbody>
</table>
If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing.

IBM z/OS mainframe using IBM Security zSecure Audit writes event files using the pattern DB2.<timestamp>.gz

The FTP file pattern you specify must match the name you assigned to your event files. For example, to collect files starting with zOS and ending with .gz, type the following:

DB2.*\.gz

Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website:

http://download.oracle.com/javase/tutorial/essential/regex/

This option only displays if you select FTP as the Service Type. From the list, select Binary.

The binary transfer mode is required for event files stored in a binary or compressed format, such as zip, gzip, tar, or tar+gzip archive files.

If you select SCP as the Service Type you must type the file name of the remote file.

Type the time of day you want the processing to begin. For example, type 00:00 to schedule the Log File protocol to collect event files at midnight.

This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: HH:MM.

Type the frequency, beginning at the Start Time, that you want the remote directory to be scanned. Type this value in hours (H), minutes (M), or days (D).

For example, type 2H if you want the remote directory to be scanned every 2 hours from the start time. The default is 1H.

Select this check box if you want the log file protocol to run immediately after you click Save.

After the Run On Save completes, the log file protocol follows your configured start time and recurrence schedule.

Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File parameter.

Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The valid range is 100 to 5000.
Step 13 Click **Save**.

Step 14 On the **Admin** tab, click **Deploy Changes**.

The IBM DB2 LEEF configuration is complete. If your configuration requires custom event properties, see the *IBM Security QRadar Custom Event Properties for IBM z/OS* technical note.

Integrating IBM DB2 Audit Events

The IBM DB2 DSM allows you to integrate your DB2 audit logs into QRadar for analysis.

The `db2audit` command creates a set of comma-delimited text files with a .del extension that defines the scope of audit data for QRadar when auditing is configured and enabled. Comma-delimited files created by the `db2audit` command include:

- `audit.del`
- `checking.del`
- `context.del`
- `execute.del`

Table 55-8 IBM DB2 log file protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>From the list, select gzip. Processors allow event file archives to be expanded and contents processed for events. Files are only processed after they are downloaded to QRadar. QRadar can process files in zip, gzip, tar, or tar+gzip archive format.</td>
</tr>
<tr>
<td>Ignore Previously Processed File(s)</td>
<td>Select this check box to track and ignore files that have already been processed by the log file protocol. QRadar examines the log files in the remote directory to determine if a file has been previously processed by the log file protocol. If a previously processed file is detected, the log file protocol does not download the file for processing. All files that have not been previously processed are downloaded. This option only applies to FTP and SFTP Service Types.</td>
</tr>
<tr>
<td>Change Local Directory?</td>
<td>Select this check box to define a local directory on your QRadar for storing downloaded files during processing. We recommend that you leave this check box clear. When this check box is selected, the Local Directory field is displayed, which allows you to configure the local directory to use for storing files.</td>
</tr>
<tr>
<td>Event Generator</td>
<td>From the Event Generator list, select LineByLine. The Event Generator applies additional processing to the retrieved event files. Each line of the file is a single event. For example, if a file has 10 lines of text, 10 separate events are created.</td>
</tr>
</tbody>
</table>
To integrate the IBM DB2 DSM with QRadar, you must:

1. Use the `db2audit` command to ensure the IBM DB2 records security events. See your IBM DB2 vendor documentation for more information.

2. Extract the DB2 audit data of events contained in the instance to a log file, depending on your version of IBM DB2:
 - If you are using DB2 v9.5 and later, see Extract audit data: DB2 v9.5 and later.
 - If you are using DB2 v8.x to v9.4, see Extract audit data: DB2 v8.x to v9.4

3. Use the log file protocol source to pull the output instance log file and send that information back to QRadar on a scheduled basis. QRadar then imports and processes this file. See Creating a log source for IBM DB2.

Note: The IBM DB2 DSM does not support the IBM z/OS mainframe operating system.

Extract audit data: DB2 v9.5 and later

To extract audit data when you are using IBM DB2 v9.5 and later:

Step 1 Log into a DB2 account with SYSADMIN privilege.

Step 2 Move the audit records from the database instance to the audit log:

```
db2audit flush
```

For example, the flush command response might resemble the following:

AUD00001 Operation succeeded.

Step 3 Archive and move the active instance to a new location for future extraction:

```
db2audit archive
```

For example, an archive command response might resemble the following:

Node AUD Archived or Interim Log File
Message

AUD00001 dbaudit.instance.log.0.20091217125028
AUD00001 Operation succeeded.

Note: In DB2 v9.5 and later, the archive command replaces the prune command. The archive command moves the active audit log to a new location, effectively pruning all non-active records from the log. An archive command must be complete before an extract can be performed.

Step 4 Extract the data from the archived audit log and write the data to .del files:

```
db2audit extract delasc from files
db2audit.instance.log.0.200912171528
```
For example, an archive command response might resemble the following:

AUD00001 Operation succeeded.

Note: Double-quatation marks (") are used as the default text delimiter in the ASCII files, do not change the delimiter.

Step 5
Move the .del files to a storage location where QRadar can pull the file. The movement of the comma-delimited (.del) files should be synchronized with the file pull interval in QRadar.

You are now ready to configure QRadar to receive DB2 log files. See [*Creating a log source for IBM DB2*](#).

Extract audit data: DB2 v8.x to v9.4
To extract audit data when you are using IBM DB2 v8.x to v9.4.

Step 1
Log into a DB2 account with SYSADMIN privilege.

Step 2
Type the following start command to audit a database instance:

```
db2audit start
```

For example, the start command response might resemble the following:

AUD00001 Operation succeeded.

Step 3
Move the audit records from the instance to the audit log:

```
db2audit flush
```

For example, the flush command response might resemble the following:

AUD00001 Operation succeeded.

Step 4
Extract the data from the archived audit log and write the data to .del files:

```
db2audit extract delasc
```

For example, an archive command response might resemble the following:

AUD00001 Operation succeeded.

Note: Double-quatation marks (") are used as the default text delimiter in the ASCII files, do not change the delimiter.

Step 5
Remove non-active records:

```
db2audit prune all
```

Step 6
Move the .del files to a storage location where QRadar can pull the file. The movement of the comma-delimited (.del) files should be synchronized with the file pull interval in QRadar.

You are now ready to create a log source in QRadar to receive DB2 log files.

Creating a log source for IBM DB2
A log file protocol source allows QRadar to retrieve archived log files from a remote host.
The IBM DB2 DSM supports the bulk loading of log files using the log file protocol source. When configuring your IBM DB2 to use the log file protocol, make sure the hostname or IP address configured in the IBM DB2 system is the same as configured in the Remote Host parameter in the Log File protocol configuration. For more information, see the IBM Security QRadar Log Sources User Guide.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 Click the Log Sources icon.

Step 4 Click Add.

Step 5 In the Log Source Name field, type a name for the log source.

Step 6 In the Log Source Description field, type a description for the log source.

Step 7 From the Log Source Type list, select IBM DB2.

Step 8 From the Protocol Configuration list, select Log File.

Step 9 Configure the following values:

Table 55-9 IBM DB2 log file protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type an IP address, host name, or name to identify the event source. IP addresses or host names are recommended as they allow QRadar to identify a log file to a unique event source. For example, if your network contains multiple devices, such as multiple z/OS images or a file repository containing all of your event logs, you should specify a name, IP address, or hostname for the image or location that uniquely identifies events for the IBM DB2 log source. This allows events to be identified at the image or location level in your network that your users can identify.</td>
</tr>
<tr>
<td>Service Type</td>
<td>From the list, select the protocol you want to use when retrieving log files from a remote server. The default is SFTP.</td>
</tr>
<tr>
<td></td>
<td>• SFTP - SSH File Transfer Protocol</td>
</tr>
<tr>
<td></td>
<td>• FTP - File Transfer Protocol</td>
</tr>
<tr>
<td></td>
<td>• SCP - Secure Copy</td>
</tr>
<tr>
<td></td>
<td>Note: The underlying protocol used to retrieve log files for the SCP and SFTP service type requires that the server specified in the Remote IP or Hostname field has the SFTP subsystem enabled.</td>
</tr>
<tr>
<td>Remote IP or Hostname</td>
<td>Type the IP address or host name of the device storing your event log files.</td>
</tr>
</tbody>
</table>
Remote Port

Type the TCP port on the remote host that is running the selected Service Type. The valid range is 1 to 65535.

The options include:

- **FTP** - TCP Port 21
- **SFTP** - TCP Port 22
- **SCP** - TCP Port 22

Note: If the host for your event files is using a non-standard port number for FTP, SFTP, or SCP, you must adjust the port value accordingly.

Remote User

Type the user name necessary to log in to the host containing your event files.

The username can be up to 255 characters in length.

Remote Password

Type the password necessary to log in to the host.

Confirm Password

Confirm the password necessary to log in to the host.

SSH Key File

If you select SCP or SFTP as the Service Type, this parameter allows you to define an SSH private key file. When you provide an SSH Key File, the Remote Password field is ignored.

Remote Directory

Type the directory location on the remote host from which the files are retrieved, relative to the user account you are using to log in.

Note: For FTP only. If your log files reside in the remote user’s home directory, you can leave the remote directory blank. This is to support operating systems where a change in the working directory (CWD) command is restricted.

Recursive

Select this check box if you want the file pattern to search subfolders in the remote directory. By default, the check box is clear.

The Recursive option is ignored if you configure SCP as the Service Type.

FTP File Pattern

If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing.

The FTP file pattern you specify must match the name you assigned to your event files. For example, to collect comma-delimited files ending with .del, type the following:

```
.*.del
```

Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website:

http://download.oracle.com/javase/tutorial/essential/regex/
Table 55-9 IBM DB2 log file protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| FTP Transfer Mode | From the list, select **ASCII** for comma-delimited, text, or ASCII log sources that require an ASCII FTP file transfer mode.
This option only displays if you select FTP as the Service Type. |
| SCP Remote File | If you select SCP as the Service Type you must type the file name of the remote file. |
| Start Time | Type the time of day you want the processing to begin. For example, type 00:00 to schedule the Log File protocol to collect event files at midnight.
This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: HH:MM. |
| Recurrence | Type the frequency, beginning at the Start Time, that you want the remote directory to be scanned. Type this value in hours (H), minutes (M), or days (D).
For example, type 2H if you want the remote directory to be scanned every 2 hours from the start time. The default is 1H. |
| Run On Save | Select this check box if you want the log file protocol to run immediately after you click **Save**.
After the Run On Save completes, the log file protocol follows your configured start time and recurrence schedule.
Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File parameter. |
| EPS Throttle | Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The valid range is 100 to 5000. |
| Processor | From the list, select **None**.
Processors allow event file archives to be expanded and contents processed for events. Files are only processed after they are downloaded to QRadar. QRadar can process files in zip, gzip, tar, or tar+gzip archive format. |
| Ignore Previously Processed File(s) | Select this check box to track and ignore files that have already been processed by the log file protocol.
QRadar examines the log files in the remote directory to determine if a file has been previously processed by the log file protocol. If a previously processed file is detected, the log file protocol does not download the file for processing. All files that have not been previously processed are downloaded.
This option only applies to FTP and SFTP Service Types. |
Step 10 Click **Save**.

Step 11 On the **Admin** tab, click **Deploy Changes**.

The configuration for IBM DB2 is complete.

IBM WebSphere Application Server

The IBM WebSphere® Application Server DSM for IBM Security QRadar accepts events using the log file protocol source.

QRadar records all relevant application and security events from the WebSphere Application Server log files.

Configuring IBM WebSphere

You can configure IBM WebSphere Application Server events for QRadar.

Procedure

1. **Step 1** Using a web browser, log in to the IBM WebSphere administrative console.
2. **Step 2** Click **Environment > WebSphere Variables**.
3. **Step 3** Define **Cell** as the Scope level for the variable.
4. **Step 4** Click **New**.
5. **Step 5** Configure the following values:
 - **Name** - Type a name for the cell variable.
 - **Description** - Type a description for the variable (optional).
 - **Value** - Type a directory path for the log files.

 For example:
   ```
   {QRADAR_LOG_ROOT} = /opt/IBM/WebSphere/AppServer/profiles/Custom01/logs/QRadar
   ```

 You must create the target directory specified in **Step 5** before proceeding.

6. **Step 6** Click **OK**.
Step 7 Click Save.

Step 8 You must restart the WebSphere Application Server to save the configuration changes.

Note: If the variable you created affects a cell, you must restart all WebSphere Application Servers in the cell before you continue.

You are now ready to customize the logging option for the IBM WebSphere Application Server DSM.

Customizing the Logging Option You must customize the logging option for each application server WebSphere uses and change the settings for the JVM Logs (Java Virtual Machine logs).

Procedure

Step 1 Select Servers > Application Servers.

Step 2 Select your WebSphere Application Server to load the server properties.

Step 3 Select Logging and Tracing > JVM Logs.

Step 4 Configure a name for the JVM log files.

For example:

- System.Out log file name: \${QRADAR_LOG_ROOT}/\${WAS_SERVER_NAME}-SystemOut.log
- System.Err log file name: \${QRADAR_LOG_ROOT}/\${WAS_SERVER_NAME}-SystemErr.log

Step 5 Select a time of day to save the log files to the target directory.

Step 6 Click OK.

Step 7 You must restart the WebSphere Application Server to save the configuration changes.

Note: If the JVM Logs changes affect the cell, you must restart all of the WebSphere Application Servers in the cell before you continue.

You are now ready to import the file into QRadar using the Log File Protocol.

Create a log source The log file protocol allows QRadar to retrieve archived log files from a remote host. The IBM WebSphere Application Server DSM supports the bulk loading of log files using the log file protocol source.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 Click the Log Sources icon.

Step 4 Click Add.
Step 5 In the **Log Source Name** field, type a name for the log source.

Step 6 In the **Log Source Description** field, type a description for the log source.

Step 7 From the **Log Source Type** list, select **IBM WebSphere Application Server**.

Step 8 Using the **Protocol Configuration** list, select **Log File**.

Step 9 Configure the following values:

Table 55-10 Log File Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type an IP address, hostname, or name to identify your IBM WebSphere Application Server as an event source in QRadar. IP addresses or host names are recommended as they allow QRadar to identify a log file to a unique event source. For example, if your network contains multiple IBM WebSphere Application Serves that provides logs to a file repository, you should specify the IP address or hostname of the device that created the event log. This allows events to be identified at the device level in your network, instead of identifying the file repository.</td>
</tr>
</tbody>
</table>
| Service Type | From the list, select the protocol you want to use when retrieving log files from a remove server. The default is SFTP.
| | • SFTP - SSH File Transfer Protocol
| | • FTP - File Transfer Protocol
| | • SCP - Secure Copy
| | **Note**: The underlying protocol used to retrieve log files for the SCP and SFTP service type requires that the server specified in the **Remote IP or Hostname** field has the SFTP subsystem enabled. |
| Remote IP or Hostname | Type the IP address or host name of your IBM WebSphere Application Server storing your event log files. |
| Remote Port | Type the TCP port on the remote host that is running the selected Service Type. The valid range is 1 to 65535.
| | The options include:
| | • FTP - TCP Port 21
| | • SFTP - TCP Port 22
| | • SCP - TCP Port 22
| | **Note**: If the host for your event files is using a non-standard port number for FTP, SFTP, or SCP, you must adjust the port value accordingly. |
| Remote User | Type the user name necessary to log in to the host containing your event files.
| | The username can be up to 255 characters in length. |
| Remote Password | Type the password necessary to log in to the host. |
Table 55-10 Log File Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirm Password</td>
<td>Confirm the password necessary to log in to the host.</td>
</tr>
<tr>
<td>SSH Key File</td>
<td>If you select SCP or SFTP as the Service Type, this parameter allows you to define an SSH private key file.</td>
</tr>
<tr>
<td></td>
<td>The Remote Password field is ignored when you provide an SSH Key File.</td>
</tr>
<tr>
<td>Remote Directory</td>
<td>Type the directory location on the remote host to the cell and file path you specified in Step 5. This is the directory you created containing your IBM WebSphere Application Server event files.</td>
</tr>
<tr>
<td></td>
<td>Note: For FTP only. If your log files reside in the remote user’s home directory, you can leave the remote directory blank. This is to support operating systems where a change in the working directory (CWD) command is restricted.</td>
</tr>
<tr>
<td>Recursive</td>
<td>Select this check box if you want the file pattern to search sub folders. By default, the check box is clear.</td>
</tr>
<tr>
<td></td>
<td>The Recursive option is ignored if you configure SCP as the Service Type.</td>
</tr>
<tr>
<td>FTP File Pattern</td>
<td>If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing.</td>
</tr>
<tr>
<td></td>
<td>The FTP file pattern you specify must match the name you assigned to your JVM logs in Step 4. For example, to collect system logs, type the following:</td>
</tr>
<tr>
<td></td>
<td>System..*.log</td>
</tr>
<tr>
<td></td>
<td>Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website:</td>
</tr>
<tr>
<td>FTP Transfer Mode</td>
<td>This option only appears if you select FTP as the Service Type. The FTP Transfer Mode parameter allows you to define the file transfer mode when retrieving log files over FTP.</td>
</tr>
<tr>
<td></td>
<td>From the list, select the transfer mode you want to apply to this log source:</td>
</tr>
<tr>
<td></td>
<td>• Binary - Select Binary for log sources that require binary data files or compressed zip, gzip, tar, or tar+gzip archive files.</td>
</tr>
<tr>
<td></td>
<td>• ASCII - Select ASCII for log sources that require an ASCII FTP file transfer.</td>
</tr>
<tr>
<td></td>
<td>You must select NONE for the Processor parameter and LINEBYLINE the Event Generator parameter when using ASCII as the FTP Transfer Mode.</td>
</tr>
<tr>
<td>SCP Remote File</td>
<td>If you select SCP as the Service Type you must type the file name of the remote file.</td>
</tr>
</tbody>
</table>
Table 55-10 Log File Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Time</td>
<td>Type the time of day you want the processing to begin. This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: HH:MM.</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Type the frequency, beginning at the Start Time, that you want the remote directory to be scanned. Type this value in hours (H), minutes (M), or days (D). For example, 2H if you want the directory to be scanned every 2 hours. The default is 1H.</td>
</tr>
<tr>
<td>Note: We recommend when scheduling a Log File protocol, you select a recurrence time for the log file protocol shorter than the scheduled write interval of the WebSphere Application Server log files. This ensures that WebSphere events are collected by the Log File Protocol before a new log file overwrites the old event log.</td>
<td></td>
</tr>
<tr>
<td>Run On Save</td>
<td>Select this check box if you want the log file protocol to run immediately after you click Save. After the Run On Save completes, the log file protocol follows your configured start time and recurrence schedule. Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File parameter.</td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The valid range is 100 to 5000.</td>
</tr>
<tr>
<td>Processor</td>
<td>If the files located on the remote host are stored in a zip, gzip, tar, or tar+gzip archive format, select the processor that allows the archives to be expanded and contents processed.</td>
</tr>
<tr>
<td>Ignore Previously Processed File(s)</td>
<td>Select this check box to track files that have already been processed. Files that have been previously processed are not processed a second time. This check box only applies to FTP and SFTP Service Types.</td>
</tr>
<tr>
<td>Change Local Directory?</td>
<td>Select this check box to define the local directory on your QRadar that you want to use for storing downloaded files during processing. We recommend that you leave the check box clear. When the check box is selected, the Local Directory field is displayed, which allows you to configure the local directory to use for storing files.</td>
</tr>
<tr>
<td>Event Generator</td>
<td>From the Event Generator list, select WebSphere Application Server. The Event Generator applies additional processing, which is specific to retrieved event files for IBM WebSphere Application Server events.</td>
</tr>
</tbody>
</table>

Step 10 Click Save.

Step 11 On the Admin tab, click Deploy Changes.
The configuration is complete. For more information about IBM WebServer Application Server, see your vendor documentation.

IBM Informix Audit

The IBM Informix® Audit DSM allows IBM Security QRadar to integrate IBM Informix audit logs into QRadar for analysis.

QRadar retrieves the IBM Informix archived audit log files from a remote host using the Log File protocol configuration. QRadar records all configured IBM Informix Audit events.

When configuring your IBM Informix to use the log file protocol, make sure the hostname or IP address configured in the IBM Informix is the same as configured in the Remote Host parameter in the Log File protocol configuration.

You are now ready to configure the log source and protocol in QRadar:

Step 1 To configure QRadar to receive events from an IBM Informix device, you must select the **IBM Informix Audit** option from the **Log Source Type** list.

Step 2 To configure the log file protocol, you must select the **Log File** option from the **Protocol Configuration** list.

Step 3 We recommend that you use a secure protocol for transferring files, such as Secure File Transfer Protocol (SFTP).

For more information on configuring log sources and protocols, see the **IBM Security QRadar Log Sources User Guide**.
IBM IMS

The IBM Information Management System (IMS™) DSM for IBM Security QRadar allows you to use an IBM mainframe to collect events and audit IMS database transactions.

Configuration overview

To integrate IBM IMS events with QRadar, you must download scripts that allow IBM IMS events to be written to a log file.

Overview of the event collection process:

1. The IBM mainframe records all security events as Service Management Framework (SMF) records in a live repository.
2. The IBM IMS data is extracted from the live repository using the SMF dump utility. The SMF file contains all of the events and fields from the previous day in raw SMF format.
3. The `qeximsloadlib.trs` program pulls data from the SMF formatted file. The `qeximsloadlib.trs` program only pulls the relevant events and fields for QRadar and writes that information in a condensed format for compatibility. The information is saved in a location accessible by QRadar.
4. QRadar uses the log file protocol source to retrieve the output file information for QRadar on a scheduled basis. QRadar then imports and processes this file.

Configure IBMIMS

To integrate IBM IMS with QRadar:

Procedure

Step 1
From the IBM support website (http://www.ibm.com/support), download the following compressed file:

`QexIMS_bundled.tar.gz`

Step 2
On a Linux-based operating system, extract the file:

```
  tar -zxvf  qexims_bundled.tar.gz
```

The following files are contained in the archive:

- `qexims_jcl.txt` - Job Control Language file
- `qeximsloadlib.trs` - Compressed program library (requires IBM TRSMAIN)
- `qexims_trsmain_JCL.txt` - Job Control Language for TRSMAIN to decompress the .trs file

Step 3
Load the files onto the IBM mainframe using the following methods:

a. Upload the sample `qexims_trsmain_JCL.txt` and `qexims_jcl.txt` files using the TEXT protocol.

b. Upload the `qeximsloadlib.trs` file using BINARY mode transfer and append to a pre-allocated data set. The `qeximsloadlib.trs` file is a tersed file containing the executable (the mainframe program QexIMS). When you upload the .trs file from a workstation, pre-allocate a file on the mainframe with the
following DCB attributes: DSORG=PS, RECFM=FB, LRECL=1024, BLKSIZE=6144. The file transfer type must be binary mode and not text.

Note: QexIMS is a small C mainframe program that reads the output of the IMS log file (EARLOUT data) line by line. QexIMS adds a header to each record containing event information, for example, record descriptor, the date, and time. The program places each field into the output record, suppresses trailing blank characters, and delimits each field with the pipe character. This output file is formatted for QRadar and the blank suppression reduces network traffic to QRadar. This program does not consume CPU or I/O disk resources.

Step 4 Customize the `qexims_trsmain_JCL.txt` file according to your installation specific information for parameters.

For example, jobcard, data set naming conventions, output destinations, retention periods, and space requirements.

The `qexims_trsmain_JCL.txt` file uses the IBM utility TRSMAIN to extract the program stored in the `qeximsloadlib.trs` file.

An example of the `qexims_trsmain_JCL.txt` file includes:

```bash
//TRSMAIN JOB (yourvalidjobcard),Q1labs,
//  MSGCLASS=V
//DEL EXEC PGM=IEFBR14
//D1 DD DISP=(MOD,DELETE),DSN=<yourhlq>.QEXIMS.TRS
//       UNIT=SYSDA,
//       SPACE=(CYL,(10,10))
//TRSMAIN EXEC PGM=TRSMAIN,PARM='UNPACK'
//SYSPRINT DD SYSOUT=*,DCB=(LRECL=133,BLKSIZE=12901,RECFM=FBA)
//INFILE DD DISP=SHR,DSN=<yourhlq>.QEXIMS.TRS
//OUTFILE DD DISP=(NEW,CATLG,DELETE),
//       DSN=<yourhlq>.LOAD,
//       SPACE=(CYL,(1,1,5),RLSE),UNIT=SYSDA
//
```

The .trs input file is an IBM TERSE formatted library and is extracted by running the JCL, which calls the TRSMAIN. This tersed file, when extracted, creates a PDS linklib with the `qexims` program as a member.

Step 5 You can STEPLIB to this library or choose to move the program to one of the LINKLIBs that are in LINKLST. The program does not require authorization.

Step 6 The `qexims_jcl.txt` file is a text file containing a sample JCL. You must configure the job card to meet your configuration.

The `qexims_jcl.txt` sample file includes:

```bash
//QEXIMS JOB (T,JXPO,JKSD0093),DEV,NOTIFY=Q1JACK,
//  MSGCLASS=P,
// REGION=0M
/**
/*QEXIMS JCL VERSION 1.0  FEBRUARY 2011
/*
/*******************************************************************************/
/* Change dataset names to site specific dataset names */
```
//***
//SET1 SET IMSOUT='Q1JACK.QEXIMS.OUTPUT',
// IMSIN='Q1JACK.QEXIMS.INPUT.DATA'
//***
//* Delete old datasets *
//***
//DEL EXEC PGM=IEFBR14
//DD1 DD DISP=(MOD,DELETE),DSN=&IMSOUT,
// UNIT=SYSDA,
// SPACE=(CYL,(10,10)),
// DCB=(RECFM=FB,LRECL=80)
//***
//* Allocate new dataset
//***
//ALLOC EXEC PGM=IEFBR14
//DD1 DD DISP=(NEW,CATLG),DSN=&IMSOUT,
// SPACE=(CYL,(21,2)),
// DCB=(RECFM=VB,LRECL=1028,BLKSIZE=6144)
//EXTRACT EXEC PGM=QEXIMS,DYNAMNBR=10,
// TIME=1440
//STEPLIB DD DISP=SHR,DSN=Q1JACK.C.LOAD
//SYSTSIN DD DUMMY
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//IMSIN DD DISP=SHR,DSN=&IMSIN
//IMSOUT DD DISP=SHR,DSN=&IMSOUT
//*FTP EXEC PGM=FTP,REGION=3800K
//*INPUT DD *
/*<target server>
/*<USER>
/*<PASSWORD>
/*ASCII
/*PUT '<IMSOUT>' /TARGET DIRECTORY>/<IMSOUT>
/*QUIT
/*OUTPUT DD SYSOUT=*
/*SYSPRINT DD SYSOUT=*
/*

Step 7 After the output file is created, you must choose one of the following options:

a Schedule a job to transfer the output file to an interim FTP server.

Each time the job completes, the output file is forwarded to an interim FTP server. You must configure the following parameters in the sample JCL to successfully forward the output to an interim FTP server:

For example:

//*FTP EXEC PGM=FTP,REGION=3800K
//*INPUT DD *
/*<target server>
/*<USER>
Where:

<target server> is the IP address or host name of the interim FTP server to receive the output file.

<User> is the user name required to access the interim FTP server.

<password> is the password required to access the interim FTP server.

<imsout> is the name of the output file saved to the interim FTP server.

For example:

```
PUT 'Q1JACK.QEXIMS.OUTPUT.C320' /192.168.1.101/IMS/QEXIMS.OUTPUT.C320
```

Note: You must remove commented lines beginning with //* for the script to properly forward the output file to the interim FTP server.

You are now ready to configure the Log File protocol.

b Schedule QRadar to retrieve the output file from IBM IMS.

If the mainframe is configured to serve files through FTP, SFTP, or allow SCP, then no interim FTP server is required and QRadar can pull the output file directly from the mainframe. The following text must be commented out using //* or deleted from the qexims_jcl.txt file:

```
//*FTP EXEC PGM=FTP,REGION=3800K
//*INPUT DD *
//*<target server>
//*<User>
//*<password>
//*ASCII
//*PUT '<IMSOUT>' /TARGET DIRECTORY>/<IMSOUT>
//*QUIT
//*OUTPUT DD SYSOUT=*  
//*SYSPRINT DD SYSOUT=*
```

You are now ready to configure the Log File protocol.

Configure a log source A log file protocol source allows QRadar to retrieve archived log files from a remote host.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.
Step 3 Click the Log Sources icon.

Step 4 From the Log Source Type list, select IBM IMS.

Step 5 Using the Protocol Configuration list, select Log File.

Step 6 Configure the following parameters:

<table>
<thead>
<tr>
<th>Table 55-1</th>
<th>Log File protocol parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for the log source. The log source identifier must be unique for the log source type.</td>
</tr>
<tr>
<td>Service Type</td>
<td>From the list, select the protocol you want to use when retrieving log files from a remote server. The default is SFTP.</td>
</tr>
<tr>
<td></td>
<td>• SFTP - SSH File Transfer Protocol</td>
</tr>
<tr>
<td></td>
<td>• FTP - File Transfer Protocol</td>
</tr>
<tr>
<td></td>
<td>• SCP - Secure Copy</td>
</tr>
<tr>
<td></td>
<td>Note: The underlying protocol used to retrieve log files for the SCP and SFTP service types requires that the server specified in the Remote IP or Hostname field has the SFTP subsystem enabled.</td>
</tr>
<tr>
<td>Remote IP or Hostname</td>
<td>Type the IP address or hostname of the IBM IMS system.</td>
</tr>
<tr>
<td>Remote Port</td>
<td>Type the TCP port on the remote host that is running the selected Service Type. If you configure the Service Type as FTP, the default is 21. If you configure the Service Type as SFTP or SCP, the default is 22. The valid range is 1 to 65535.</td>
</tr>
<tr>
<td>Remote User</td>
<td>Type the username necessary to log in to your IBM IMS system. The username can be up to 255 characters in length.</td>
</tr>
<tr>
<td>Remote Password</td>
<td>Type the password necessary to log in to your IBM IMS system.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the Remote Password to log in to your IBM IMS system.</td>
</tr>
<tr>
<td>SSH Key File</td>
<td>If you select SCP or SFTP from the Service Type field you can define a directory path to an SSH private key file. The SSH Private Key File allows you to ignore the Remote Password field.</td>
</tr>
<tr>
<td>Remote Directory</td>
<td>Type the directory location on the remote host from which the files are retrieved. By default, the newauditlog.sh script writes the human-readable logs files to the /var/log/ directory.</td>
</tr>
<tr>
<td>Recursive</td>
<td>Select this check box if you want the file pattern to also search sub folders. The Recursive parameter is not used if you configure SCP as the Service Type. By default, the check box is clear.</td>
</tr>
</tbody>
</table>
Table 55-1 Log File protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP File Pattern</td>
<td>If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing. For example, if you want to retrieve all files in the <code><starttime>.<endtime>.<hostname>.log</code> format, use the following entry: \d+.\d+..\w+..log. Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website: http://download.oracle.com/javase/tutorial/essential/regex/</td>
</tr>
</tbody>
</table>
| FTP Transfer Mode | This option only appears if you select FTP as the Service Type. The FTP Transfer Mode parameter allows you to define the file transfer mode when retrieving log files over FTP. From the list, select the transfer mode you want to apply to this log source:
 • **Binary** - Select Binary for log sources that require binary data files or compressed .zip, .gzip, .tar, or .tar+gzip archive files.
 • **ASCII** - Select ASCII for log sources that require an ASCII FTP file transfer. You must select **NONE** for the Processor field and **LINEBYLINE** the Event Generator field when using ASCII as the transfer mode. |
| SCP Remote File | If you select SCP as the Service Type, you must type the file name of the remote file. |
| Start Time | Type the time of day you want the processing to begin. This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: HH:MM. |
| Recurrence | Type the frequency, beginning at the Start Time, that you want the remote directory to be scanned. Type this value in hours (H), minutes (M), or days (D). For example, type 2H if you want the directory to be scanned every 2 hours. The default is 1H. |
| Run On Save | Select this check box if you want the log file protocol to run immediately after you click Save. After the Run On Save completes, the log file protocol follows your configured start time and recurrence schedule. Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File(s) parameter. |
| EPS Throttle | Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The valid range is 100 to 5000. |
Step 7 Click **Save**.

The configuration is complete. Events that are retrieved using the log file protocol are displayed on the **Log Activity** tab of QRadar.

IBM Guardium

IBM Guardium® is a database activity and audit tracking tool for system administrators to retrieve detailed auditing events across database platforms.

Note: These instructions require that you install the 8.2p45 fix for InfoSphere Guardium. For more information on this fix, see the Fix Central website at http://www.ibm.com/support/fixcentral/.

Supported event types

QRadar collects informational, error, alert, and warnings from IBM Guardium using syslog. IBM Security QRadar receives IBM Guardium Policy Builder events in the Log Event Extended Format (LEEF).

QRadar can only automatically discover and map events the default policies that ship with IBM Guardium. Any user configured events require are displayed as unknowns in QRadar and you must manually map the unknown events.

Table 55-1 Log File protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>If the files located on the remote host are stored in a .zip, .gzip, .tar, or tar+gzip archive format, select the processor that allows the archives to be expanded and contents processed.</td>
</tr>
<tr>
<td>Ignore Previously Processed File(s)</td>
<td>Select this check box to track files that have already been processed and you do not want the files to be processed a second time. This only applies to FTP and SFTP Service Types.</td>
</tr>
<tr>
<td>Change Local Directory?</td>
<td>Select this check box to define the local directory on your QRadar system that you want to use for storing downloaded files during processing. We recommend that you leave the check box clear. When the check box is selected, the Local Directory field is displayed, which allows you to configure the local directory to use for storing files.</td>
</tr>
<tr>
<td>Event Generator</td>
<td>From the Event Generator list, select LINEBYLINE.</td>
</tr>
</tbody>
</table>
Configuration overview

The following list outlines the process required to integrate IBM Guardium with QRadar.

1. Create a syslog destination for policy violation events. For more information, see Creating a syslog destination for events.
2. Configure your existing policies to generate syslog events. For more information, see Configuring policies to generate syslog events.
3. Install the policy on IBM Guardium. For more information, see Installing an IBM Guardium Policy.
4. Configure the log source in QRadar. For more information, see Configure a log source.
5. Identify and map unknown policy events in QRadar. For more information, see Creating an event map for IBM Guardium events.

Creating a syslog destination for events

To create a syslog destination for these events on IBM Guardium, you must log in to the command-line interface (CLI) and define the IP address for QRadar.

Procedure

Step 1
Using SSH, log in to IBM Guardium as the root user.
Username: <username>
Password: <password>

Step 2
Type the following command to configure the syslog destination for informational events:

```
store remote add daemon.info <IP address>:<port> <tcp|udp>
```

For example, `store remote add daemon.info 10.10.1.1:514 tcp`

Where:

- `<IP address>` is the IP address of your QRadar Console or Event Collector.
- `<port>` is the syslog port number used to communicate to the QRadar Console or Event Collector.
- `<tcp|udp>` is the protocol used to communicate to the QRadar Console or Event Collector.

Step 3
Type the following command to configure the syslog destination for warning events:

```
store remote add daemon.warning <IP address>:<port> <tcp|udp>
```

Where:

- `<IP address>` is the IP address of your QRadar Console or Event Collector.
- `<port>` is the syslog port number used to communicate to the QRadar Console or Event Collector.
- `<tcp|udp>` is the protocol used to communicate to the QRadar Console or Event Collector.
Step 4 Type the following command to configure the syslog destination for error events:

```
store remote add daemon.err <IP address>:<port> <tcp|udp>
```

Where:

- `<IP address>` is the IP address of your QRadar Console or Event Collector.
- `<port>` is the syslog port number used to communicate to the QRadar Console or Event Collector.
- `<tcp|udp>` is the protocol used to communicate to the QRadar Console or Event Collector.

Step 5 Type the following command to configure the syslog destination for alert events:

```
store remote add daemon.alert <IP address>:<port> <tcp|udp>
```

Where:

- `<IP address>` is the IP address of your QRadar Console or Event Collector.
- `<port>` is the syslog port number used to communicate to the QRadar Console or Event Collector.
- `<tcp|udp>` is the protocol used to communicate to the QRadar Console or Event Collector.

You are now ready to configure a policy for IBM InfoSphere Guardium.

Configuring policies to generate syslog events

Policies in IBM Guardium are responsible for reacting to events and forwarding the event information to QRadar.

Procedure

1. **Step 1** Click the Tools tab.
2. **Step 2** From the left-hand navigation, select Policy Builder.
3. **Step 3** From the Policy Finder pane, select an existing policy and click Edit Rules.
4. **Step 4** Click Edit this Rule individually.
 - The Access Rule Definition is displayed.
5. **Step 5** Click Add Action.
6. **Step 6** From the Action list, select one of the following alert types:
 - Alert Per Match - A notification is provided for every policy violation.
 - Alert Daily - A notification is provided the first time a policy violation occurs that day.
 - Alert Once Per Session - A notification is provided per policy violation for unique session.
 - Alert Per Time Granularity - A notification is provided per your selected time frame.
7. **Step 7** From the Message Template list, select QRadar.
8. **Step 8** From Notification Type, select SYSLOG.
Step 9 Click **Add**, then click **Apply**.

Step 10 Click **Save**.

Step 11 Repeat **Step 2** to **Step 10** for all rules within the policy you want to forward to QRadar.

For more information on configuring a policy, see your IBM InfoSphere Guardium vendor documentation. After you have configured all of your policies, you are now ready to install the policy on your IBM Guardium system.

Note: Due to the configurable policies, QRadar can only automatically discover the default policy events. If you have customized policies that forward events to QRadar, you must manually create a log source to capture those events.

Installing an IBM Guardium Policy

Any new or edited policy in IBM Guardium must be installed before the updated alert actions or rule changes can occur.

Procedure

Step 1 Click the **Administration Console** tab.

Step 2 From the left-hand navigation, select **Configuration > Policy Installation**.

Step 3 From the Policy Installer pane, select a policy you modified in **Step 3, Configuring policies to generate syslog events**.

Step 4 From the drop-down list, select **Install and Override**.

A confirmation is displayed to install the policy to all Inspection Engines.

Step 5 Click **OK**.

For more information on installing a policy, see your IBM InfoSphere Guardium vendor documentation. After you have installed all of your policies, you are ready to configure the log source in QRadar.
Configure a log source

QRadar only automatically discovers default policy events from IBM Guardium. Due to the configurable nature of policies, we recommend that you configure a log source manually for IBM Guardium.

Procedure

Step 1 Log in to QRadar.
Step 2 Click the **Admin** tab.
Step 3 Click the **Log Sources** icon.
Step 4 Click **Add**.
Step 5 In the **Log Source Name** field, type a name for the log source.
Step 6 In the **Log Source Description** field, type a description for the log source.
Step 7 From the **Log Source Type** list, select **IBM Guardium**.
Step 8 From the **Protocol Configuration** list, select **Syslog**.
Step 9 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for the IBM InfoSphere Guardium appliance.</td>
</tr>
</tbody>
</table>

For more information on configuring log sources, see the *IBM Security QRadar Log Sources Users Guide*.

Step 10 Click **Save**.
Step 11 On the **Admin** tab, click **Deploy Changes**.

The IBM Infosphere Guardium configuration is complete.

Creating an event map for IBM Guardium events

Event mapping is required for a number of IBM Guardium events. Due to the customizable nature of policy rules, most events, except the default policy events do not contain a predefined QRadar Identifier (QID) map to categorize security events.

You can individually map each event for your device to an event category in QRadar. Mapping events allows QRadar to identify, coalesce, and track reoccurring events from your network devices. Until you map an event, all events that are displayed in the **Log Activity** tab for IBM Guardium are categorized as unknown. Unknown events are easily identified as the Event Name column and Low Level Category columns display Unknown.
Discovering unknown events
As your device forwards events to QRadar, it can take time to categorize all of the events for a device, as some events might not be generated immediately by the event source appliance or software. It is helpful to know how to quickly search for unknown events. When you know how to search for unknown events, we recommend you repeat this search until you are comfortable that you have identified the majority of your events.

Procedure
Step 1 Log in to QRadar.
Step 1 Click the Log Activity tab.
Step 2 Click Add Filter.
Step 3 From the first list, select Log Source.
Step 4 From the Log Source Group list, select the log source group or Other.
Log sources that are not assigned to a group are categorized as Other.
Step 5 From the Log Source list, select your IBM Guardium log source.
Step 6 Click Add Filter.
The Log Activity tab is displayed with a filter for your log source.
Step 7 From the View list, select Last Hour.
Any events generated by the IBM Guardium DSM in the last hour are displayed. Events displayed as unknown in the Event Name column or Low Level Category column require event mapping in QRadar.

Note: You can save your existing search filter by clicking Save Criteria.
You are now ready to modify the event map.

Modifying the event map
Modifying an event map allows you to manually categorize events to a QRadar Identifier (QID) map. Any event categorized to a log source can be remapped to a new QRadar Identifier (QID).

Note: Events that do not have a defined log source cannot be mapped to an event. Events without a log source display SIM Generic Log in the Log Source column.

Procedure
Step 1 On the Event Name column, double-click an unknown event for IBM Guardium.
The detailed event information is displayed.
Step 2 Click Map Event.
Step 3 From the Browse for QID pane, select any of the following search options to narrow the event categories for a QRadar Identifier (QID):
 a From the High-Level Category list, select a high-level event categorization.
For a full list of high-level and low-level event categories or category definitions, see the Event Categories section of the IBM Security QRadar Administration Guide.

b From the **Low-Level Category** list, select a low-level event categorization.

c From the **Log Source Type** list, select a log source type.

The Log Source Type list allows you to search for QIDs from other log sources. Searching for QIDs by log source is useful when events are similar to another existing network device. For example, IBM Guardium provides policy events, you might select another product that likely captures similar events.

d To search for a QID by name, type a name in the **QID/Name** field.

The QID/Name field allows you to filter the full list of QIDs for a specific word, for example, policy.

Step 4 Click **Search**.

A list of QIDs are displayed.

Step 5 Select the QID you want to associate to your unknown event.

Step 6 Click **OK**.

QRadar maps any additional events forwarded from your device with the same QID that matches the event payload. The event count increases each time the event is identified by QRadar.

If you update an event with a new QRadar Identifier (QID) map, past events stored in QRadar are not updated. Only new events are categorized with the new QID.

IBM Security Directory Server

The following table identifies the specifications for the IBM Security Directory Server DSM:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>IBM</td>
</tr>
<tr>
<td>DSM</td>
<td>IBM Security Directory Server</td>
</tr>
<tr>
<td>RPM file name</td>
<td>DSM-IBMSecurityDirectoryServer-<build_number>.noarch.rpm</td>
</tr>
<tr>
<td>Supported version</td>
<td>6.3.1 and later</td>
</tr>
<tr>
<td>Protocol</td>
<td>Syslog (LEEF)</td>
</tr>
<tr>
<td>QRadar recorded events</td>
<td>All relevant events</td>
</tr>
<tr>
<td>Automatically discovered</td>
<td>Yes</td>
</tr>
</tbody>
</table>
To integrate IBM Security Directory Server with QRadar, use the following procedure:

1. If automatic updates are not enabled, download and install the most recent versions of the following RPMs on your QRadar Console:
 - DSMCommon RPM
 - IBM Security Directory Server RPM

2. Configure each IBM Security Directory Server system in your network to enable communication with QRadar.
 For more information, see *Enabling communication between QRadar and IBM Security Directory Server* (http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=%2Fcom.ibm.IBMDS.doc_6.3.1%2Fadmin_gd381.htm&path=9_3_4_13_18_3)

3. If QRadar does not automatically discover the log source, for each IBM Security Directory Server on your network, create a log source on the QRadar Console.

Related tasks

- **Manually installing a DSM**
- **Configuring an IBM Security Directory Server log source in QRadar**

Configuring an IBM Security Directory Server log source in QRadar

To collect IBM Security Directory Server events, configure a log source in QRadar.

Before you begin

Ensure that the DSM-IBMSecurityDirectoryServer-build_number.noarch.rpm file is installed and deployed on your QRadar host:

Procedure

Step 1 Log in to QRadar.

Step 2 Click the *Admin* tab.

Step 3 In the navigation menu, click *Data Sources*.

Step 4 Click the *Log Sources* icon.

Step 5 Click *Add*.

Step 6 From the *Log Source Type* list, select *IBM Security Directory Server*.
Step 7 From the Protocol Configuration list, select Syslog.
Step 8 Configure the remaining parameters.
Step 9 Click Save.
Step 10 On the Admin tab, click Deploy Changes.

IBM Tivoli Access Manager for e-business

The IBM Tivoli® Access Manager for e-business DSM for IBM Security QRadar accepts access, audit, and HTTP events forwarded from IBM Tivoli Access Manager.

QRadar collects audit, access, and HTTP events from IBM Tivoli Access Manager for e-business using syslog. Before you can configure QRadar, you must configure Tivoli Access Manager for e-business to forward events to a syslog destination.

Configure Tivoli Access Manager for e-business

You can configure syslog on your Tivoli Access Manager for e-business to forward events.

Procedure

Step 1 Log in to Tivoli Access Manager's IBM Security Web Gateway.
Step 2 From the navigation menu, select Secure Reverse Proxy Settings > Manage > Reverse Proxy.

The Reverse Proxy pane is displayed.

Step 3 From the Instance column, select an instance.
Step 4 Click the Manage list and select Configuration > Advanced.

The text of the WebSEAL configuration file is displayed.

Step 5 Locate the Authorization API Logging configuration.

The remote syslog configuration begins with logcfg. For example,

```
# As an example, to send authorization events to a remote syslog server:
# logcfg = audit.azn:rsyslog server=<IP address>,port=514,log_id=<log name>
```

Step 6 Copy the remote syslog configuration (logcfg) to a new line without the comment (#) marker.

Step 7 Edit the remote syslog configuration.

For example,

```
logcfg = audit.azn:rsyslog server=<IP address>,port=514,log_id=<log name>
logcfg = audit.authn:rsyslog server=<IP address>,port=514,log_id=<log name>
logcfg = http:rsyslog server=<IP address>,port=514,log_id=<log name>
```

Where:

- `<IP address>` is the IP address of your QRadar Console or Event Collector.
- `<Log name>` is the name assigned to the log that is forwarded to QRadar. For example, `log_id=WebSEAL-log`.
Step 8 Click Submit.

The Deploy button is displayed in the navigation menu.

Step 9 From the navigation menu, click Deploy.

Step 10 Click Deploy.

You must restart the reverse proxy instance to continue.

Step 11 From the Instance column, select your instance configuration.

Step 12 Click the Manage list and select Control > Restart.

A status message is displayed after the restart completes. For more information on configuring a syslog destination, see your IBM Tivoli Access Manager for e-business vendor documentation. You are now ready to configure a log source in QRadar.

Configure a log source

QRadar automatically discovers syslog audit and access events, but does not automatically discover HTTP events forwarded from IBM Tivoli Access Manager for e-business.

Since QRadar automatically discovers audit and access events, you are not required to create a log source. However, you can manually create a log source for QRadar to receive IBM Tivoli Access Manager for e-business syslog events. The following configuration steps for creating a log source are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 Click the Log Sources icon.

Step 4 Click Add.

Step 5 In the Log Source Name field, type a name for the log source.

Step 6 In the Log Source Description field, type a description for the log source.

Step 7 From the Log Source Type list, select IBM Tivoli Access Manager for e-business.

Step 8 From the Protocol Configuration list, select Syslog.

Step 9 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for your IBM Tivoli Access Manager for e-business appliance. The IP address or hostname identifies your IBM Tivoli Access Manager for e-business as a unique event source in QRadar.</td>
</tr>
</tbody>
</table>
For more information on configuring log sources, see the *IBM Security QRadar Log Sources Users Guide*.

Step 10 Click **Save**.

Step 11 On the **Admin** tab, click **Deploy Changes**.

The IBM Tivoli Access Manager for e-business configuration is complete.

IBM z/Secure® Audit

The IBM z/OS® DSM for IBM Security QRadar allows you to integrate with an IBM z/OS mainframe using IBM Security zSecure® Audit to collect security, authorization, and audit events.

Using a zSecure process, events from the System Management Facilities (SMF) are recorded to an event file in the Log Enhanced Event format (LEEF). QRadar retrieves the LEEF event log files using the log file protocol and processes the events. You can schedule QRadar to retrieve events on a polling interval, which allows QRadar to retrieve the events on the schedule you have defined.

To integrate IBM z/OS events from IBM Security zSecure Audit into QRadar:

1. Confirm your installation meets any prerequisite installation requirements. For more information, see **Before You Begin**.
2. Configure your IBM z/OS image. For more information, see the IBM Security zSecure Suite: CARLa-Driven Components Installation and Deployment Guide.
3. Create a log source in QRadar for IBM z/OS to retrieve your LEEF formatted event logs. For more information, see **Create an IBM z/OS log source**.
4. Optional. Create a custom event property for IBM z/OS in QRadar. For more information, see the *IBM Security QRadar Custom Event Properties for IBM z/OS* technical note.

Before You Begin

Before you can configure the data collection process, you must complete the basic zSecure installation process.

The following prerequisites are required:

- You must ensure parmlib member IFAPRDxx is not disabled for IBM Security zSecure Audit on your z/OS image.
- The SCKRLOAD library must be APF-authorized.
- You must configure a process to periodically refresh your CKFREEZE and UNLOAD data sets.
- You must configure an SFTP, FTP, or SCP server on your z/OS image for QRadar to download your LEEF event files.
- You must allow SFTP, FTP, or SCP traffic on firewalls located between QRadar and your z/OS image.

After installing the software, you must also perform the post-installation activities to create and modify the configuration. For instructions on installing and configuring...
zSecure, see the IBM Security zSecure Suite: CARLa-Driven Components Installation and Deployment Guide.

Create an IBM z/OS log source

The Log File protocol allows QRadar to retrieve archived log files from a remote host.

Log files are transferred, one at a time, to QRadar for processing. The log file protocol can manage plain text event logs, compressed files, or archives. Archives must contain plain-text files that can be processed one line at a time. Multi-line event logs are not supported by the log file protocol. IBM z/OS with zSecure writes log files to a specified directory as gzip archives. QRadar extracts the archive and processes the events, which are written as one event per line in the file.

To retrieve these events, you must create a log source using the Log File protocol. QRadar requires credentials to log in to the system hosting your LEEF formatted event files and a polling interval.

Procedure

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 Click the Log Sources icon.
Step 4 Click Add.
Step 5 In the Log Source Name field, type a name for the log source.
Step 6 In the Log Source Description field, type a description for the log source.
Step 7 From the Log Source Type list, select IBM z/OS.
Step 8 From the Protocol Configuration list, select Log File.
Step 9 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type an IP address, host name, or name to identify the event source. IP addresses or host names are recommended as they allow QRadar to identify a log file to a unique event source.</td>
</tr>
</tbody>
</table>

For example, if your network contains multiple devices, such as multiple z/OS images or a file repository containing all of your event logs, you should specify a name, IP address, or hostname for the image or location that uniquely identifies events for the IBM z/OS log source. This allows events to be identified at the image or location level in your network that your users can identify.
From the list, select the protocol you want to use when retrieving log files from a remote server. The default is SFTP.

- **SFTP** - SSH File Transfer Protocol
- **FTP** - File Transfer Protocol
- **SCP** - Secure Copy

Note: The underlying protocol used to retrieve log files for the SCP and SFTP service type requires that the server specified in the Remote IP or Hostname field has the SFTP subsystem enabled.

Type the IP address or host name of the device storing your event log files.

Type the TCP port on the remote host that is running the selected Service Type. The valid range is 1 to 65535.

The options include:

- **FTP** - TCP Port 21
- **SFTP** - TCP Port 22
- **SCP** - TCP Port 22

Note: If the host for your event files is using a non-standard port number for FTP, SFTP, or SCP, you must adjust the port value accordingly.

Type the user name or userid necessary to log in to the host containing your event files.

- If your log files are located on your IBM z/OS image, type the userid necessary to log in to your IBM z/OS. The userid can be up to 8 characters in length.
- If your log files are located on a file repository, type the user name necessary to log in to the file repository. The user name can be up to 255 characters in length.

Type the password necessary to log in to the host.

Confirm the password necessary to log in to the host.

If you select SCP or SFTP as the Service Type, this parameter allows you to define an SSH private key file. When you provide an SSH Key File, the Remote Password field is ignored.

Type the directory location on the remote host from which the files are retrieved, relative to the user account you are using to log in.

Select this check box if you want the file pattern to search sub folders in the remote directory. By default, the check box is clear.

The Recursive option is ignored if you configure SCP as the Service Type.
IBM Security zSecure Audit 359

Table 55-3 z/OS Log File Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP File Pattern</td>
<td>If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing. IBM z/OS mainframe using IBM Security zSecure Audit writes event files using the pattern zOS.<timestamp>.gz. The FTP file pattern you specify must match the name you assigned to your event files. For example, to collect files starting with zOS and ending with .gz, type the following: zOS.*.gz. Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website: http://download.oracle.com/javase/tutorial/essential/regex/</td>
</tr>
<tr>
<td>FTP Transfer Mode</td>
<td>This option only displays if you select FTP as the Service Type. From the list, select Binary. The binary transfer mode is required for event files stored in a binary or compressed format, such as zip, gzip, tar, or tar+gzip archive files.</td>
</tr>
<tr>
<td>SCP Remote File</td>
<td>If you select SCP as the Service Type you must type the file name of the remote file.</td>
</tr>
<tr>
<td>Start Time</td>
<td>Type the time of day you want the processing to begin. For example, type 00:00 to schedule the Log File protocol to collect event files at midnight. This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: HH:MM.</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Type the frequency, beginning at the Start Time, that you want the remote directory to be scanned. Type this value in hours (H), minutes (M), or days (D). For example, type 2H if you want the remote directory to be scanned every 2 hours from the start time. The default is 1H.</td>
</tr>
<tr>
<td>Run On Save</td>
<td>Select this check box if you want the log file protocol to run immediately after you click Save. After the Run On Save completes, the log file protocol follows your configured start time and recurrence schedule. Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File parameter.</td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The valid range is 100 to 5000.</td>
</tr>
</tbody>
</table>
Step 10
Click **Save**.

Step 11
On the **Admin** tab, click **Deploy Changes**.

The IBM z/OS with IBM zSecure configuration is complete. If your IBM z/OS for zSecure requires custom event properties, see the *IBM Security QRadar Custom Event Properties for IBM z/OS* technical note.

IBM zSecure Alert

The IBM zSecure Alert DSM for IBM Security QRadar accepts alert events using syslog, allowing QRadar to receive alert events in real-time.

The alert configuration on your IBM zSecure Alert appliance determines which alert conditions you want to monitor and forward to QRadar. To collect events in QRadar, you must configure your IBM zSecure Alert appliance to forward events in a UNIX syslog event format using the QRadar IP address as the destination. For information on configuring UNIX syslog alerts and destinations, see the *IBM Security zSecure Alert User Reference Manual*.

Table 55-3 z/OS Log File Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>From the list, select gzip. Processors allow event file archives to be expanded and contents processed for events. Files are only processed after they are downloaded to QRadar. QRadar can process files in zip, gzip, tar, or tar+gzip archive format.</td>
</tr>
<tr>
<td>Ignore Previously Processed File(s)</td>
<td>Select this check box to track and ignore files that have already been processed by the log file protocol. QRadar examines the log files in the remote directory to determine if a file has been previously processed by the log file protocol. If a previously processed file is detected, the log file protocol does not download the file for processing. All files that have not been previously processed are downloaded. This option only applies to FTP and SFTP Service Types.</td>
</tr>
<tr>
<td>Change Local Directory?</td>
<td>Select this check box to define a local directory on your QRadar for storing downloaded files during processing. We recommend that you leave this check box clear. When this check box is selected, the Local Directory field is displayed, which allows you to configure the local directory to use for storing files.</td>
</tr>
<tr>
<td>Event Generator</td>
<td>From the Event Generator list, select LineByLine. The Event Generator applies additional processing to the retrieved event files. Each line of the file is a single event. For example, if a file has 10 lines of text, 10 separate events are created.</td>
</tr>
</tbody>
</table>
QRadar automatically discovers and creates a log source for syslog events from IBM zSecure Alert. However, you can manually create a log source for QRadar to receive syslog events. The following configuration steps are optional.

Procedure

Step 1 Log in to QRadar.
Step 2 Click the **Admin** tab.
Step 3 Click the **Log Sources** icon.
Step 4 Click **Add**.
Step 5 In the **Log Source Name** field, type a name for your log source.
Step 6 In the **Log Source Description** field, type a description for the log source.
Step 7 From the **Log Source Type** list, select **IBM zSecure Alert**.
Step 8 Using the **Protocol Configuration** list, select **Syslog**.
Step 9 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your IBM zSecure Alert.</td>
</tr>
</tbody>
</table>

Step 10 Click **Save**.
Step 11 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.

IBM Security Identity Manager

The IBM Security Identity Manager DSM for IBM Security QRadar accepts audit, recertification, and system events from IBM Security Identity Manager appliances.

To collect events with QRadar, you must have the IBM Security Identity Manager JDBC protocol installed, which allows QRadar to poll for event information in the ITIMDB database. IBM Security Identity Manager events are generated from the audit table along with several other tables from the database.

Before you configure QRadar to integrate with IBM Security Identity Manager, we recommend you create a database user account and password in IBM Security Identity Manager for QRadar. Your QRadar user must have read permissions to the ITIMDB database, which stores IBM Security Identity Manager events. The IBM Security Identity Manager protocol allows QRadar to log in and poll for events from the database. Creating a QRadar account is not required, but it is recommended for tracking and securing your event data.

Note: Ensure no firewall rules are blocking the communication between your IBM Security Identity Manager appliance and QRadar.
Procedure

Step 1 Click the Admin tab.

Step 2 Click the Log Sources icon.

Step 3 Click Add.

Step 4 In the Log Source Name field, type a name for your log source.

Step 5 In the Log Source Description field, type a description for the log source.

Step 6 From the Log Source Type list, select IBM Security Identity Manager.

Step 7 Using the Protocol Configuration list, select IBM Security Identity Manager JDBC.

Step 8 Configure the following values:

Table 55-5 IBM Security Identity Manager JDBC Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Log Source Identifier | Type the identifier for the log source. The log source identifier must be defined in the following format: ITIMDB@<hostname>
 Where <hostname> is the IP address or host name for your IBM Security Identity Manager appliance.
 The log source identifier must be unique for the log source type. |
| Database Type | From the list, select a database to use for the event source. The options include:
 - DB2 - Select this option if DB2 is the database type on your IBM Security Identity Manager appliance. DB2 is the default database type.
 - MSDE - Select this option if MSDE is the database type on your IBM Security Identity Manager appliance
 - Oracle - Select this option if MSDE is the database type on your IBM Security Identity Manager appliance |
| Database Name | Type the name of the database to which you want to connect. The default database name is ITIMDB.
 The table name can be up to 255 alphanumeric characters in length. The table name can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period(.). |
| IP or Hostname | Type the IP address or hostname of the IBM Security Identity Manager appliance. |
Port
Type the port number used by the database server. The default that is displayed depends on the selected Database Type. The valid range is 0 to 65536. The default for DB2 is port 50000.

The JDBC configuration port must match the listener port of the database. The database must have incoming TCP connections enabled to communicate with QRadar.

The default port number for all options include:
- **DB2** - 50000
- **MSDE** - 1433
- **Oracle** - 1521

Note: If you define a Database Instance when using MSDE as the database type, you must leave the Port parameter blank in your configuration.

Username
Type the database username. The username can be up to 255 alphanumeric characters in length. The username can also include underscores (_).

Password
Type the database password. The password can be up to 255 characters in length.

Confirm Password
Confirm the password to access the database.

Table Name
Type `ITIMUSER.AUDIT_EVENT` as the name of the table or view that includes the event records. If you change the value of this field from the default, events cannot be properly collected by the IBM Security Identity Manager JDBC protocol.

The table name can be up to 255 alphanumeric characters in length. The table name can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period(.)

Select List
Type `*` to include all fields from the table or view.

You can use a comma-separated list to define specific fields from tables or views, if required for your configuration. The list must contain the field defined in the Compare Field parameter. The comma-separated list can be up to 255 alphanumeric characters in length. The list can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period(.)

Compare Field
Type `TIMESTAMP` to identify new events added between queries to the table by their timestamp.

The compare field can be up to 255 alphanumeric characters in length. The list can include the special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period(.)

Table 55-5 IBM Security Identity Manager JDBC Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Port | Type the port number used by the database server. The default that is displayed depends on the selected Database Type. The valid range is 0 to 65536. The default for DB2 is port 50000. The JDBC configuration port must match the listener port of the database. The database must have incoming TCP connections enabled to communicate with QRadar. The default port number for all options include:
- **DB2** - 50000
- **MSDE** - 1433
- **Oracle** - 1521 | |
| Username | Type the database username. The username can be up to 255 alphanumeric characters in length. The username can also include underscores (_). |
| Password | Type the database password. The password can be up to 255 characters in length. |
| Confirm Password | Confirm the password to access the database. |
| Table Name | Type `ITIMUSER.AUDIT_EVENT` as the name of the table or view that includes the event records. If you change the value of this field from the default, events cannot be properly collected by the IBM Security Identity Manager JDBC protocol. The table name can be up to 255 alphanumeric characters in length. The table name can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period(.) |
| Select List | Type `*` to include all fields from the table or view. You can use a comma-separated list to define specific fields from tables or views, if required for your configuration. The list must contain the field defined in the Compare Field parameter. The comma-separated list can be up to 255 alphanumeric characters in length. The list can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period(.) |
| Compare Field| Type `TIMESTAMP` to identify new events added between queries to the table by their timestamp. The compare field can be up to 255 alphanumeric characters in length. The list can include the special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period(.) |
Start Date and Time
Optional. Configure the start date and time for database polling.

The Start Date and Time parameter must be formatted as `yyyy-MM-dd HH:mm` with HH specified using a 24 hour clock. If the start date or time is clear, polling begins immediately and repeats at the specified polling interval.

Polling Interval
Type the polling interval in seconds, which is the amount of time between queries to the database table. The default polling interval is 30 seconds.

You can define a longer polling interval by appending H for hours or M for minutes to the numeric value. The maximum polling interval is 1 week in any time format. Numeric values without an H or M designator poll in seconds.

EPS Throttle
Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The default value is 20000 EPS.

Authentication Domain
If you select MSDE as the Database Type, the Authentication Domain field is displayed. If your network is configured to validate users with domain credentials, you must define a Windows Authentication Domain. Otherwise, leave this field blank.

The authentication domain must contain alphanumeric characters. The domain can include the following special characters: underscore (_), en dash (-), and period (.).

Database Instance
If you select MSDE as the Database Type, the Database Instance field is displayed.

Type the type the instance to which you want to connect, if you have multiple SQL server instances on one server.

Note: If you use a non-standard port in your database configuration, or have blocked access to port 1434 for SQL database resolution, you must leave the Database Instance parameter blank in your configuration.

Use Named Pipe Communication
If you select MSDE as the Database Type, the Use Named Pipe Communications check box is displayed. By default, this check box is clear.

Select this check box to use an alternative method to a TCP/IP port connection.

When using a Named Pipe connection, the username and password must be the appropriate Windows authentication username and password and not the database username and password. Also, you must use the default Named Pipe.

Table 55-5 IBM Security Identity Manager JDBC Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Date and Time</td>
<td>Optional. Configure the start date and time for database polling.</td>
</tr>
<tr>
<td></td>
<td>The Start Date and Time parameter must be formatted as <code>yyyy-MM-dd HH:mm</code></td>
</tr>
<tr>
<td></td>
<td>with HH specified using a 24 hour clock. If the start date or time is clear,</td>
</tr>
<tr>
<td></td>
<td>polling begins immediately and repeats at the specified polling interval.</td>
</tr>
<tr>
<td>Polling Interval</td>
<td>Type the polling interval in seconds, which is the amount of time between</td>
</tr>
<tr>
<td></td>
<td>queries to the database table. The default polling interval is 30 seconds.</td>
</tr>
<tr>
<td></td>
<td>You can define a longer polling interval by appending H for hours or M for</td>
</tr>
<tr>
<td></td>
<td>minutes to the numeric value. The maximum polling interval is 1 week in any</td>
</tr>
<tr>
<td></td>
<td>time format. Numeric values without an H or M designator poll in seconds.</td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of Events Per Second (EPS) that you do not want this protocol</td>
</tr>
<tr>
<td></td>
<td>to exceed. The default value is 20000 EPS.</td>
</tr>
<tr>
<td>Authentication Domain</td>
<td>If you select MSDE as the Database Type, the Authentication Domain field is</td>
</tr>
<tr>
<td></td>
<td>displayed. If your network is configured to validate users with domain</td>
</tr>
<tr>
<td></td>
<td>credentials, you must define a Windows Authentication Domain. Otherwise,</td>
</tr>
<tr>
<td></td>
<td>leave this field blank.</td>
</tr>
<tr>
<td></td>
<td>The authentication domain must contain alphanumeric characters. The domain</td>
</tr>
<tr>
<td></td>
<td>can include the following special characters: underscore (_), en dash (-),</td>
</tr>
<tr>
<td></td>
<td>and period (.).</td>
</tr>
<tr>
<td>Database Instance</td>
<td>If you select MSDE as the Database Type, the Database Instance field is</td>
</tr>
<tr>
<td></td>
<td>displayed.</td>
</tr>
<tr>
<td></td>
<td>Type the type the instance to which you want to connect, if you have</td>
</tr>
<tr>
<td></td>
<td>multiple SQL server instances on one server.</td>
</tr>
<tr>
<td></td>
<td>Note: If you use a non-standard port in your database configuration, or</td>
</tr>
<tr>
<td></td>
<td>have blocked access to port 1434 for SQL database resolution, you must</td>
</tr>
<tr>
<td></td>
<td>leave the Database Instance parameter blank in your configuration.</td>
</tr>
<tr>
<td>**Use Named Pipe</td>
<td>If you select MSDE as the Database Type, the Use Named Pipe Communications</td>
</tr>
<tr>
<td>Communications**</td>
<td>check box is displayed. By default, this check box is clear.</td>
</tr>
<tr>
<td></td>
<td>Select this check box to use an alternative method to a TCP/IP port</td>
</tr>
<tr>
<td></td>
<td>connection.</td>
</tr>
<tr>
<td></td>
<td>When using a Named Pipe connection, the username and password must be the</td>
</tr>
<tr>
<td></td>
<td>appropriate Windows authentication username and password and not the</td>
</tr>
<tr>
<td></td>
<td>database username and password. Also, you must use the default Named Pipe.</td>
</tr>
</tbody>
</table>
Step 9 Click **Save**.

Step 10 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.

Table 55-5 IBM Security Identity Manager JDBC Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use NTLMv2</td>
<td>If you select MSDE as the Database Type, the Use NTLMv2 check box is displayed. Select the Use NTLMv2 check box to force MSDE connections to use the NTLMv2 protocol when communicating with SQL servers that require NTLMv2 authentication. The default value of the check box is selected. If the Use NTLMv2 check box is selected, it has no effect on MSDE connections to SQL servers that do not require NTLMv2 authentication.</td>
</tr>
<tr>
<td>Database Cluster Name</td>
<td>If you select the Use Named Pipe Communication check box, the Database Cluster Name parameter is displayed. If you are running your SQL server in a cluster environment, define the cluster name to ensure Named Pipe communication functions properly.</td>
</tr>
</tbody>
</table>
IBM Security Network Protection (XGS)

The IBM Security Network Protection (XGS) DSM accepts events by using the Log Enhanced Event Protocol (LEEF), which enables QRadar to record all relevant events.

The following table identifies the specifications for the IBM Security Network Protection (XGS) DSM:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>IBM</td>
</tr>
<tr>
<td>DSM</td>
<td>Security Network Protection (XGS)</td>
</tr>
<tr>
<td>RPM file name</td>
<td></td>
</tr>
<tr>
<td>Supported versions</td>
<td>v5.0 with fixpack 7</td>
</tr>
<tr>
<td>Protocol</td>
<td>syslog (LEEF)</td>
</tr>
<tr>
<td>QRadar recorded events</td>
<td>All relevant system, access, and security events</td>
</tr>
<tr>
<td>Automatically discovered</td>
<td>Yes</td>
</tr>
<tr>
<td>Includes identity</td>
<td>No</td>
</tr>
</tbody>
</table>

Before you configure an Network Security Protection (XGS) appliance in QRadar, you must configure remote syslog alerts for your IBM Security Network Protection (XGS) rules or policies to forward events to QRadar.

All event types are sent to QRadar using a remote syslog alert object that is LEEF enabled.

Remote syslog alert objects can be created, edited and deleted from each context in which an events is generated. To configure a remote syslog alert object log in to the Network Security Protection (XGS) local management interface as admin and navigate to one of the following:

- Manage > System Settings > System Alerts (System events)
- Secure > Network Access Policy (Access events)
- Secure > IPS Event Filter Policy (Security events)
- Secure > Intrusion Prevention Policy (Security events)
- Secure > Network Access Policy > Inspection > Intrusion Prevention Policy
In the IPS Objects, the Network Objects pane, or the System Alerts page, complete the following steps.

Procedure

Step 1 Click **New > Alert > Remote Syslog**.

Step 2 Select an existing remote syslog alert object, and then click **Edit**.

Step 3 Configure the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Type a name for the syslog alert configuration.</td>
</tr>
<tr>
<td>Remote Syslog Collector</td>
<td>Type the IP address of your QRadar Console or Event Collector.</td>
</tr>
<tr>
<td>Remote Syslog Collector Port</td>
<td>Type 514 for the Remote Syslog Collector Port.</td>
</tr>
<tr>
<td>Remote LEEF Enabled</td>
<td>Select this check box to enable LEEF formatted events. This field is required.</td>
</tr>
<tr>
<td></td>
<td>Note: If you do not see this option, verify you have software version 5.0 and fixpack 7 installed on your IBM Security Network Protection appliance.</td>
</tr>
<tr>
<td>Comment</td>
<td>Optional. Type a comment for the syslog configuration.</td>
</tr>
</tbody>
</table>

Step 4 Click **Save Configuration**.

The alert is added to the Available Objects list.

Step 5 To update your IBM Security Network Protection (XGS) appliance, click **Deploy**.

Step 6 Add the LEEF alert object for QRadar to the following locations:

- One or more rules in a policy
- **Added Objects** pane on the System Alerts page

Step 7 Click **Deploy**

For more information about the Network Security Protection (XGS) device, click Help in the Network Security Protection (XGS) local management interface browser client window or access the online Network Security Protection (XGS) documentation.

Configuring a Log Source in QRadar

QRadar automatically discovers and creates a log source for LEEF-enabled syslog events from IBM Security Network Protection (XGS). The following configuration steps are optional.

Procedure

Step 1 Click the Admin tab.

Step 2 Click the Log Sources icon.

Step 3 Click **Add**.
Step 4 In the Log Source Name field, type a name for your log source.

Step 5 From the Log Source Type list, select IBM Security Network Protection (XGS).

Step 6 Using the Protocol Configuration list, select Syslog.

Step 7 Configure the following values:

Table 55-3 Syslog Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your IBM Security Network Protection (XGS).</td>
</tr>
</tbody>
</table>

Step 8 Click Save.

Step 9 On the Admin tab, click Deploy Changes.

IBM Security Access Manager for Enterprise Single Sign-On

You can use the IBM® Security Access Manager for Enterprise Single Sign-On DSM for IBM Security QRadar to receive events forwarded using syslog.

Supported versions

QRadar can collect events from IBM Security Access Manager for Enterprise Single Sign-On version 8.1 or 8.2.

Supported event types

Events forwarded by the IBM Security Access Manager for Enterprise Single Sign-On include audit, system, and authentication events.

Events are read from the following database tables and forwarded using syslog:

- IMSLOGUserService
- IMSLOGUserAdminActivity
- IMSLOGUserActivity

All events forwarded to QRadar from IBM Security Access Manager for Enterprise Single Sign-On use ### as a syslog field-separator. IBM Security Access Manager for Enterprise Single Sign-On forwards events to QRadar using UDP on port 514.

Before you begin

To configure syslog forwarding for events, you must be an administrator or your user account must include credentials to access the IMS Configuration Utility.

Any firewalls configured between your IBM Security Access Manager for Enterprise Single Sign-On and QRadar should be configured to allow UDP communication on port 514. This configuration requires you to restart your IBM Security Access Manager for Enterprise Single Sign-On appliance.
Configuring a log server type

IBM Security Access Manager for Enterprise Single Sign-On appliance requires you to configure a log server type to forward syslog formatted events:

Procedure

Step 1 Log in to the IMS Configuration Utility for IBM Security Access Manager for Enterprise Single Sign-On. For example, https://localhost:9043/webconf

Step 2 From the navigation menu, select Advanced Settings > IMS Server > Logging > Log Server Information.

Step 3 From the Log server types list, select syslog.

Step 4 Click Add.

Step 5 Click Update to save the configuration.

Configuring syslog forwarding

To forward events to QRadar, you must configure a syslog destination on your IBM Security Access Manager for Enterprise Single Sign-On appliance.

Procedure

Step 1 From the navigation menu, select Advanced Settings > IMS Server > Logging > Syslog.

Step 2 Configure the following options:

<table>
<thead>
<tr>
<th>Table 55-4</th>
<th>Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
</tbody>
</table>
| Enable syslog | From the Available Tables list, select the following tables and click Add. You must add the following tables:
* logUserService
* logUserActivity
* logUserAdminActivity |
| Syslog server port | Type 514 as the port number used for forwarding events to QRadar. |
| Syslog server hostname | Type the IP address or hostname of your QRadar Console or Event Collector. |
| Syslog logging facility | Type an integer value to specify the facility of the events forwarded to QRadar. The default value is 20. |
| Syslog field-separator | Type ### as the characters used to separate name-value pair entries in the syslog payload. |

Step 3 Click Update to save the configuration.

Step 4 Restart your IBM Security Access Manager for Enterprise Single Sign-on appliance.
The syslog configuration is complete. The log source is added to QRadar as IBM Security Access Manager for Enterprise Single Sign-On syslog events are automatically discovered. Events forwarded to QRadar are displayed on the Log Activity tab.

Configuring a Log Source in QRadar

QRadar automatically discovers and creates a log source for syslog events from IBM Security Access Manager for Enterprise Single Sign-On. The following procedure is optional.

Procedure

Step 1 Click the **Admin** tab.

Step 2 Click the **Log Sources** icon.

Step 3 Click **Add**.

Step 4 In the **Log Source Name** field, type a name for your log source.

Step 5 From the **Log Source Type** list, select **IBM Security Access Manager for Enterprise Single Sign-On**.

Step 6 Using the **Protocol Configuration** list, select **Syslog**.

Step 7 Configure the following values:

<table>
<thead>
<tr>
<th>Table 55-5 Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
<tr>
<td>Enabled</td>
</tr>
<tr>
<td>Credibility</td>
</tr>
<tr>
<td>Target Event Collector</td>
</tr>
<tr>
<td>Coalescing Events</td>
</tr>
<tr>
<td>Incoming Event Payload</td>
</tr>
</tbody>
</table>
Table 55-5 Syslog Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store Event Payload</td>
<td>Select this check box to enable the log source to store event payload information.</td>
</tr>
<tr>
<td></td>
<td>By default, automatically discovered log sources inherit the value of the Store Event Payload list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
</tbody>
</table>

Step 8 Click **Save**.

Step 9 On the **Admin** tab, click **Deploy Changes**.
You can integrate an Internet System Consortium (ISC) BIND device with IBM Security QRadar. An ISC BIND device accepts events using syslog.

Configuring syslog for ISC BIND

You can configure syslog on your ISC BIND device to forward events to QRadar.

Procedure

Step 1 Log in to the ISC BIND device.

Step 2 Open the following file to add a logging clause:

```bash
named.conf
logging {
  channel <channel_name> {
    syslog <syslog_facility>;
    severity <critical | error | warning | notice | info | debug [level ] | dynamic >;
    print-category yes;
    print-severity yes;
    print-time yes;
  };
  category queries {
    <channel_name>;
  };
  category notify {
    <channel_name>;
  };
  category network {
    <channel_name>;
  };
  category client {
    <channel_name>;
  };
}
```

IBM Security QRadar DSM Configuration Guide
For Example:
```plaintext
logging {
    channel QRadar {
        syslog local3;
        severity info;
    };
    category queries {
        QRadar;
    };
    category notify {
        QRadar;
    };
    category network {
        QRadar;
    };
    category client {
        QRadar;
    };
};
```

Step 3 Save and exit the file.

Step 4 Edit the syslog configuration to log to your QRadar using the facility you selected in Step 2:
```plaintext
<syslog_facility>.* @<IP Address>
```
Where `<IP Address>` is the IP address of your QRadar.

For example:
```plaintext
local3.* @192.16.10.10
```

Note: QRadar only parses logs with a severity level of info or higher.

Step 5 Restart the following services.
```
service syslog restart
service named restart
```
You are now ready to configure the log source in QRadar.

Configuring a log source QRadar automatically discovers and creates a log source for syslog events from ISC BIND. The following configuration steps are optional.
Procedure

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select ISC BIND.
Step 9 Using the Protocol Configuration list, select Syslog.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your ISC BIND appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.
Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete.
The Infoblox NIOS DSM for IBM Security QRadar accepts events using syslog, which enables QRadar to record all relevant events from an Infoblox NIOS device.

Before you configure QRadar, configure your Infoblox NIOS device to send syslog events to QRadar. For more information on configuring logs on your Infoblox NIOS device, see your Infoblox NIOS vendor documentation.

The following table identifies the specifications for the Infoblox NIOS DSM:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Infoblox</td>
</tr>
<tr>
<td>DSM</td>
<td>NIOS</td>
</tr>
<tr>
<td>Version</td>
<td>v6.x</td>
</tr>
<tr>
<td>Events accepted</td>
<td>Syslog</td>
</tr>
<tr>
<td>QRadar recorded events</td>
<td>• ISC Bind events</td>
</tr>
<tr>
<td></td>
<td>• Linux DHCP events</td>
</tr>
<tr>
<td></td>
<td>• Linux Server events</td>
</tr>
<tr>
<td></td>
<td>• Apache events</td>
</tr>
<tr>
<td>Option in QRadar</td>
<td>Infoblox NIOS</td>
</tr>
<tr>
<td>Auto discovered</td>
<td>No</td>
</tr>
<tr>
<td>Includes identity</td>
<td>Yes</td>
</tr>
<tr>
<td>For more information</td>
<td>http://www.infoblox.com</td>
</tr>
</tbody>
</table>

Configuring a log source

QRadar does not automatically discover or create log sources for syslog events from Infoblox NIOS appliances. To integrate Infoblox NIOS appliances with QRadar, you must manually create a log source to receive Infoblox NIOS events.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Infoblox NIOS.
Step 9 Using the Protocol Configuration list, select Syslog.
Step 10 Configure the remaining parameters.
Step 11 Click Save.
Step 12 On the Admin tab, click Deploy Changes.
The iT-CUBE agileSI DSM for IBM Security QRadar can accept security-based and audit SAP events from agileSI installations that are integrated with your SAP system.

QRadar uses the event data defined as security risks in your SAP environment to generate offenses and correlate event data for your security team. SAP security events are written in Log Event Extended Format (LEEF) to a log file produced by agileSI. QRadar retrieves the new events using the SMB Tail protocol. To retrieve events from agileSI, you must create a log source using the SMB Tail protocol and provide QRadar credentials to log in and poll the LEEF formatted agileSI event file. QRadar is updated with new events each time the SMB Tail protocol polls the event file for new SAP events.

Configuring agileSI to forward events

To configure agileSI, you must create a logical filename for your events and configure the connector settings with the path to your agileSI event log.

The location of the LEEF formatted event file must be in a location viewable by Samba and accessible with the credentials you configure for the log source in QRadar.

Procedure

Step 1

In agileSI core system installation, define a logical file name for the output file containing your SAP security events.

SAP provides a concept which enables you to use platform-independent logical file names in your application programs. Create a logical file name and path using transaction “FILE” (Logical File Path Definition) according to your organization’s requirements.
Step 2 Log in to agileSI.
Where:
<sap-system-url> is the IP address and port number of your SAP system, such as 10.100.100.125:50041.
<client> is the agent in your agileSI deployment.

Step 3 From the menu, click Display/Change to enable change mode for agileSI.

Step 4 From the toolbar, select Tools > Core Consumer Connector Settings.
The Core Consumer Connector Settings are displayed.

Step 5 Configure the following values:
 a From the Consumer Connector list, select Q1 Labs.
 b Select the Active check box.
 c From the Connector Type list, select File.
 d From the Logical File Name field, type the path to your logical file name you configured in Step 1.
 For example, /ITCUBE/LOG_FILES.
 The file created for the agileSI events is labeled LEEFYYYYDDMM.TXT where YYYYDDMM is the year, day, and month. The event file for the current day is appended with new events every time the extractor runs. iT-CUBE agileSI creates a new LEEF file for SAP events daily.

Step 6 Click Save.
The configuration for your connector is saved. Before you can complete the agileSI configuration, you must deploy the changes for agileSI using extractors.

Step 7 From the toolbar, select Tools > Extractor Management.
The Extractor Management settings are displayed.

Step 8 Click Deploy all.
The configuration for agileSI events is complete. You are now ready to configure a log source in QRadar.

Configure an agileSI log source
QRadar must be configured to log in and poll the event file using the SMB Tail protocol.
The SMB Tail protocol logs in and retrieves events logged by agileSI in the LEEFYYYYDDMM.txt file.

Procedure
Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 In the Log Source Name field, type a name for your log source.

Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select iT-CUBE agileSI.

Step 9 Using the Protocol Configuration list, select SMB Tail.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address, hostname, or name for the log source as an identifier for your iT-CUBE agileSI events.</td>
</tr>
<tr>
<td>Server Address</td>
<td>Type the IP address of your iT-CUBE agileSI server.</td>
</tr>
<tr>
<td>Domain</td>
<td>Type the domain for your iT-CUBE agileSI server.</td>
</tr>
<tr>
<td></td>
<td>This parameter is optional if your server is not located in a domain.</td>
</tr>
<tr>
<td>Username</td>
<td>Type the username required to access your iT-CUBE agileSI server.</td>
</tr>
<tr>
<td></td>
<td>Note: The username and password you specify must be able to read to the LEEFYYYYYDDMM.txt file for your agileSI events.</td>
</tr>
<tr>
<td>Password</td>
<td>Type the password required to access your iT-CUBE agileSI server.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password required to access your iT-CUBE agileSI server.</td>
</tr>
<tr>
<td>Log Folder Path</td>
<td>Type the directory path to access the LEEFYYYYYDDMM.txt file.</td>
</tr>
<tr>
<td></td>
<td>Parameters that support file paths allow you to define a drive letter with the path information. For example, you can use c$:/LogFiles/ for an administrative share, or LogFiles/ for a public share folder path, but not c:/LogFiles.</td>
</tr>
<tr>
<td></td>
<td>If a log folder path contains an administrative share (C$), users with NetBIOS access on the administrative share (C$) have the proper access required to read the log files. Local or domain administrators have sufficient privileges to access log files that reside on administrative shares.</td>
</tr>
</tbody>
</table>

IBM Security QRadar DSM Configuration Guide
Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete. As your iT-CUBE agileSI log source retrieves new events, the **Log Activity** tab in QRadar is updated.

Table 58-1 SMB Tail protocol parameters (continued)*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Pattern</td>
<td>Type the regular expression (regex) required to filter the filenames. All matching files are included for processing when QRadar polls for events. For example, if you want to list all files ending with <code>.txt</code>, use the following entry: <code>.*\.txt</code>. Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website: http://download.oracle.com/javase/tutorial/essential/regex/</td>
</tr>
<tr>
<td>Force File Read</td>
<td>Select this check box to force the protocol to read the log file. By default, the check box is selected. If the check box is clear the event file is read when QRadar detects a change in the modified time or file size.</td>
</tr>
<tr>
<td>Recursive</td>
<td>Select this check box if you want the file pattern to search sub folders. By default, the check box is selected.</td>
</tr>
<tr>
<td>Polling Interval (in seconds)</td>
<td>Type the polling interval, which is the number of seconds between queries to the event file to check for new data. The minimum polling interval is 10 seconds, with a maximum polling interval of 3,600 seconds. The default is 10 seconds.</td>
</tr>
<tr>
<td>Throttle Events/Sec</td>
<td>Type the maximum number of events the SMB Tail protocol forwards per second. The minimum value is 100 EPS and the maximum is 20,000 EPS. The default is 100 EPS.</td>
</tr>
</tbody>
</table>
The Itron Smart Meter DSM for IBM Security QRadar collects events from an Itron Openway Smart Meter using syslog.

The Itron Openway Smart Meter sends syslog events to QRadar using Port 514. For details of configuring your meter for syslog, see your Itron Openway Smart Meter documentation.

QRadar automatically discovers and creates a log source for syslog events from Itron Openway Smart Meters. However, you can manually create a log source for QRadar to receive syslog events. The following configuration steps are optional.

Procedure

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Itron Smart Meter.
Step 9 Using the Protocol Configuration list, select Syslog.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Itron Openway Smart Meter installation.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.
Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete.
IBM Security QRadar supports the following Juniper Networks DSMs:

- Juniper Networks AVT
- Juniper DDoS Secure
- Juniper DX Application Acceleration Platform
- Juniper EX Series Ethernet Switch
- Juniper IDP
- Juniper Networks Secure Access
- Juniper Infranet Controller
- Juniper Networks Firewall and VPN
- Juniper Networks Network and Security Manager
- Juniper Junos OS
- Juniper Steel-Belted Radius
- Juniper Networks vGW Virtual Gateway
- Juniper Security Binary Log Collector
- Juniper Junos WebApp Secure
- Juniper Networks WLC Series Wireless LAN Controller

Juniper Networks AVT

The Juniper Networks Application Volume Tracking (AVT) DSM for IBM Security QRadar accepts events using Java Database Connectivity (JDBC) protocol.

QRadar records all relevant events. To integrate with Juniper Networks NSM AVT data, you must create a view in the database on the Juniper Networks NSM server. You must also configure the Postgres database configuration on the Juniper Networks NSM server to allow connections to the database since, by default, only local connections are allowed.

Note: This procedure is provided as a guideline. For specific instructions, see your vendor documentation.
Procedure

Step 1 Log in to your Juniper Networks AVT device command-line interface (CLI).

Step 2 Open the following file:
/var/netscreen/DevSvr/pgsql/data/pg_hba.conf file

Step 3 Add the following line to the end of the file:

 host all all <IP address>/32 trust

 Where <IP address> is the IP address of your QRadar Console or Event Collector you want to connect to the database.

Step 4 Reload the Postgres service:

 su - nsm -c "pg_ctl reload -D /var/netscreen/DevSvr/pgsql/data"

Step 5 As the Juniper Networks NSM user, create the view:

 create view strm_avt_view as SELECT a.name, a.category,
v.srcip,v.dstip,v.dstport, v."last", u.name as userinfo, v.id,
avt_part v JOIN app a ON v.app =a.id JOIN userinfo u ON
v.userinfo = u.id;

 The view is created.

To configure QRadar to receive events from a Juniper Networks AVT device:

Step 1 From the Log Source Type list, select Juniper Networks AVT.

Step 2 You must also configure the JDBC protocol for the log source. Use the following parameters to configure the JDBC protocol:

 a Database Type - From the Database Type list, select Postgres.
 b Database Name - Type profilerDb.
 c IP or Hostname - Type the IP address of the Juniper Networks NSM system.
 d Port - Type 5432.
 e Username - Type the username for the profilerDb database.
 f Password - Type the password for profilerDB database.
 g Table Name - Type strm_avt_view.
 h Select List - Type * for the select list.
 i Compare Field - Type id for the Compare Field.
 j Use Prepared Statements - The Use Prepared Statements check box must be clear. The Juniper Networks AVT DSM does not support prepared statements.
 k Polling Interval - Type 10 for the Polling interval.

Note: The Database Name and Table Name parameters are case sensitive.

For more information on configuring log sources and protocols, see the IBM Security QRadar Log Sources User Guide.
Juniper DDoS Secure

The Juniper DDoS Secure DSM for IBM Security QRadar receives events from Juniper DDoS Secure devices by using syslog in Log Event Extended Format (LEEF) format. QRadar records all relevant status and network condition events.

Procedure

Step 1 Log in to Juniper DDoS Secure.
Step 2 Go to the Structured Syslog Server window.
Step 3 In the Server IP Address(es) field, type the IP address of the QRadar Console.
Step 4 From the Format list, select LEEF.
Step 5 Optional. If you do not want to use the default of local0 in the Facility field, type a facility.
Step 6 From the Priority list, select the syslog priority level that you want to include. Events that meet or exceed the syslog priority level you select are forwarded to QRadar.
Step 7 Log in to QRadar.
Step 8 Click the Admin tab.
Step 9 From the navigation menu, click Data Sources.
Step 10 Click the Log Sources icon.
Step 11 Click Add.
Step 12 From the Log Source Type list, select the Juniper DDoS Secure option.
Step 13 Configure the parameters.
Step 14 Click Save.

For more information about log source management, see the IBM Security QRadar Log Sources User Guide.

Juniper DX Application Acceleration Platform

The Juniper DX Application Acceleration Platform DSM for IBM Security QRadar uses syslog to receive events. QRadar records all relevant status and network condition events. Before configuring QRadar, you must configure your Juniper device to forward syslog events.

Procedure

Step 1 Log in to the Juniper DX user interface.
Step 2 Browse to the desired cluster configuration (Services - Cluster Name), Logging section.
Step 3 Select the Enable Logging check box.
Step 4 Select the desired Log Format.
QRadar supports Juniper DX logs using the common and perf2 formats only.
Step 5 Select the desired Log Delimiter format.
QRadar supports comma delimited logs only.

Step 6 In the **Log Host** section, type the IP address of your QRadar system.

Step 7 In the **Log Port** section, type the UDP port on which you wish to export logs.

Step 8 You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Juniper DX Application Acceleration Platform:

- From the **Log Source Type** list, select the **Juniper DX Application Acceleration Platform** option.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*.

Juniper EX Series Ethernet Switch

The Juniper EX Series Ethernet Switch DSM for IBM Security QRadar accepts events using syslog.

The Juniper EX Series Ethernet Switch DSM supports Juniper EX Series Ethernet Switches running Junos OS. Before you can integrate QRadar with a Juniper EX Series Ethernet Switch, you must configure your Juniper EX Series Switch to forward syslog events.

Procedure

Step 1 Log in to the Juniper EX Series Ethernet Switch command-line interface (CLI).

Step 2 Type the following command:

```
configure
```

Step 3 Type the following command:

```
set system syslog host <IP address> <option> <level>
```

Where:

- `<IP address>` is the IP address of your QRadar.
- `<level>` is info, error, warning, or any.
- `<option>` is one of the following options from Table 60-1.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>All facilities</td>
</tr>
<tr>
<td>authorization</td>
<td>Authorization system</td>
</tr>
<tr>
<td>change-log</td>
<td>Configuration change log</td>
</tr>
<tr>
<td>conflict-log</td>
<td>Configuration conflict log</td>
</tr>
<tr>
<td>daemon</td>
<td>Various system processes</td>
</tr>
<tr>
<td>dfc</td>
<td>Dynamic flow capture</td>
</tr>
</tbody>
</table>

Table 60-1 Juniper Networks EX Series Switch Options
Juniper IDP

The Juniper IDP DSM for IBM Security QRadar accepts events using syslog. QRadar records all relevant Juniper IDP events.

Configuring syslog for Juniper IDP

You can configure a sensor on your Juniper IDP to send logs to a syslog server:

Procedure

Step 1 Log in to the Juniper NSM user interface.

Step 2 In NSM, double-click on the **Sensor in Device Manager**.

Step 3 Select **Global Settings**.

Table 60-1 Juniper Networks EX Series Switch Options (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>explicit-priority</td>
<td>Include priority and facility in messages</td>
</tr>
<tr>
<td>external</td>
<td>Local external applications</td>
</tr>
<tr>
<td>facility-override</td>
<td>Alternate facility for logging to remote host</td>
</tr>
<tr>
<td>firewall</td>
<td>Firewall filtering system</td>
</tr>
<tr>
<td>ftp</td>
<td>FTP process</td>
</tr>
<tr>
<td>interactive-commands</td>
<td>Commands run by the UI</td>
</tr>
<tr>
<td>kernel</td>
<td>Kernel</td>
</tr>
<tr>
<td>log-prefix</td>
<td>Prefix for all logging to this host</td>
</tr>
<tr>
<td>match</td>
<td>Regular expression for lines to be logged</td>
</tr>
<tr>
<td>pfe</td>
<td>Packet Forwarding Engine</td>
</tr>
<tr>
<td>user</td>
<td>User processes</td>
</tr>
</tbody>
</table>

For example:

```bash
set system syslog host 10.77.12.12 firewall info
```

Configures the Juniper EX Series Ethernet Switch to send info messages from firewall filtering systems to your QRadar.

Step 4 Repeat **Step 3** to configure any additional syslog destinations and options. Each additional option must be identified using a separate syslog destination configuration.

Step 5 You are now ready to configure the Juniper EX Series Ethernet Switch in QRadar.

To configure QRadar to receive events from a Juniper EX Series Ethernet Switch:

- From the **Log Source Type** list, select **Juniper EX-Series Ethernet Switch** option.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*. For more information about your Juniper switch, see your vendor documentation.
Step 4 Select **Enable Syslog**.

Step 5 Type the Syslog Server IP address to forward events to QRadar.

Step 6 Click **OK**.

Step 7 Use **Update Device** to load the new settings onto the IDP Sensor.

The format of the syslog message sent by the IDP Sensor is as follows:

```
<day id>, <record id>, <timeReceived>, <timeGenerated>,
<domain>, <domainVersion>, <deviceName>, <deviceIpAddress>,
<category>, <subcategory>, <src zone>, <src intface>, <src addr>,
<src port>, <nat src addr>, <nat src port>, <dst zone>,
<dst intface>, <dst addr>, <dst port>, <nat dst addr>,
<nat dst port>, <protocol>, <rule domain>, <rule domainVersion>,
<policy name>, <rulebase>, <rule number>, <action>, <severity>,
<is alert>, <elapsed>, <bytes in>, <bytes out>, <bytes total>,
<packet in>, <packet out>, <packet total>, <repeatCount>,
<natPacketData>, <varData Enum>, <misc-str>, <user str>,
<application str>, <uri str>
```

For example:

```
[syslog@juniper.net dayId="20061012" recordId="0"
timeRecv="2006/10/12 21:52:21" timeGen="2006/10/12 21:52:21"
domain="" devDomVer2="0" device_ip="10.209.83.4"
cat="Predefined" attack="TROJAN:SUBSEVEN:SCAN" srcZn="NULL"
srcIntf="NULL" srcAddr="192.168.170.20" srcPort="63396"
natSrcAddr="NULL" natSrcPort="0" dstZn="NULL" dstIntf="NULL"
dstAddr="192.168.170.10" dstPort="27374" natDstAddr="NULL"
natDstPort="0" protocol="TCP" ruleDomain="" ruleVer="5"
policy="Policy2" rulebase="IDS" ruleNo="4" action="NONE"
severity="LOW" alert="no" elapsedTime="0" inbytes="0"
outbytes="0" totBytes="0" inPak="0" outPak="0" totPak="0"
repCount="0" packetData="no" varEnum="31"
misc="<017>'interface=eth2" user="NULL" app="NULL" uri="NULL""]
```

Configure a log source

Juniper NSM is a central management server for Juniper IDP. You can configure QRadar to collect and represent the Juniper IDP alerts as coming from a central NSM, or QRadar can collect syslog from the individual Juniper IDP device.

To configure QRadar to receive events from Juniper Networks Secure Access device:

- From the **Log Source Type** list, select **Juniper Networks Intrusion Detection and Prevention (IDP)**.

For more information on configuring devices, see the *IBM Security QRadar Log Sources User Guide*. For more information about Juniper IDP, see your Network and Security Manager documentation.

Note: If your Juniper device is running release 5.5R3-HF2 - 6.1 or above, we recommend that you use the WELF:WELF format for logging. See your vendor documentation to determine if your device and license support logging in WELF:WELF format.

This document provides information for integrating a Juniper Secure Access device using one of the following formats:

- WELF:WELF (Recommended). See Use the WELF:WELF format.
- Syslog. See Use the syslog format.

Use the WELF:WELF format

To integrate a Juniper Networks Secure Access device with QRadar using the WELF:WELF format.

Procedure

Step 1 Log in to your Juniper device administration user interface:
https://10.xx.xx.xx/admin

Step 2 Configure syslog server information for events:

a If a WELF:WELF file is configured, go to Step f. Otherwise, go to Step b.

b From the left panel, select System > Log/Monitoring > Events > Filter.

c Click New Filter.

d Select WELF.

e Click Save Changes.

f From the left panel, select System > Log/Monitoring > Events > Settings.

g From the Select Events to Log pane, select the events that you wish to log.

h In the Server name/IP field, type the name or IP address of the syslog server.

i From the Facility list, select the facility.

j From the Filter list, select WELF:WELF.

k Click Add, then click Save Changes.

Step 3 Configure syslog server information for user access:

a If a WELF:WELF file is configured, go to Step e. Otherwise, go to Step b.

b From the left panel, select System > Log/Monitoring > User Access > Filter.

c Click New Filter.

d Select WELF. Click Save Changes.

e From the left panel, select System > Log/Monitoring > User Access > Settings.
From the Select Events to Log pane, select the events that you wish to log.

In the Server name/IP field, type the name or IP address of the syslog server.

From the Facility list, select the facility.

From the Filter list, select WELF:WELF.

Click Add and click Save Changes.

Step 4 Configure syslog server information for administrator access:

a If a WELF:WELF file is configured, go to Step f. Otherwise, go to Step b.

b From the left panel, select System > Log/Monitoring > Admin Access > Filter.

c Click New Filter.

d Select WELF.

e Click Save Changes.

f From the left panel, select System > Log/Monitoring > Admin Access > Settings.

g From the Select Events to Log pane, select the events that you wish to log.

h In the Server name/IP field, type the name or IP address of the syslog server.

i From the Facility list, select the facility.

j From the Filter list, select WELF:WELF.

k Click Add, then click Save Changes.

Step 5 Configure syslog server information for client logs:

a If a WELF:WELF file is configured, go to Step e. Otherwise, go to Step b.

b From the left panel, select System > Log/Monitoring > Client Logs > Filter.

The Filter menu is displayed.

c Click New Filter.

d Select WELF. Click Save Changes.

e From the left panel, select System > Log/Monitoring > Client Logs > Settings.

f From the Select Events to Log pane, select the events that you wish to log.

g In the Server name/IP field, type the name or IP address of the syslog server.

h From the Facility list, select the facility.

i From the Filter list, select WELF:WELF.

j Click Add, then click Save Changes.

You are now ready to configure the log source in QRadar.
To configure QRadar to receive events from Juniper Networks Secure Access device:

- From the Log Source Type list, select Juniper Networks Secure Access (SA) SSL VPN.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide. For more information about your Juniper device, see your vendor documentation.

Use the syslog format

You can use the syslog format to integrate a Juniper Networks Secure Access device with QRadar.

Procedure

Step 1
Log in to your Juniper device administration user interface:

https://10.xx.xx.xx/admin

Step 2
Configure syslog server information for events:

- a From the left pane, select System > Log/Monitoring > Events > Settings.
- b From the Select Events to Log section, select the events that you wish to log.
- c In the Server name/IP field, type the name or IP address of the syslog server.

Step 3
Configure syslog server information for user access:

- a From the left pane, select System > Log/Monitoring > User Access > Settings.
- b From the Select Events to Log section, select the events that you wish to log.
- c In the Server name/IP field, type the name or IP address of the syslog server.

Step 4
Configure syslog server information for administrator access:

- a From the left pane, select System > Log/Monitoring > Admin Access > Settings.
- b From the Select Events to Log section, select the events that you wish to log.
- c In the Server name/IP field, type the name or IP address of the syslog server.

Step 5
Configure syslog server information for client logs:

- a From the left pane, select System > Log/Monitoring > Client Logs > Settings.
- b From the Select Events to Log section, select the events that you wish to log.
- c In the Server name/IP field, type the name or IP address of the syslog server.

You are now ready to configure the log source in QRadar.
To configure QRadar to receive events from Juniper Networks Secure Access device:

- From the Log Source Type list, select Juniper Networks Secure Access (SA) SSL VPN.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide. For more information about your Juniper device, see your vendor documentation.

Juniper Infranet Controller

The Juniper Networks Infranet Controller DSM for IBM Security QRadar accepts DHCP events using syslog. QRadar records all relevant events from a Juniper Networks Infranet Controller. Before you configure QRadar to integrate with a Juniper Networks Infranet Controller, you must configure syslog within the server. For more information on configuring your Juniper Networks Infranet Controller, consult your vendor documentation.

After you configure syslog for your Juniper Infranet Controller, you are now ready to configure the log source in QRadar.

To configure QRadar to receive events from your Juniper Networks Infranet Controller:

- From the Log Source Type list, select Juniper Networks Infranet Controller option.

For more information on configuring devices, see the IBM Security QRadar Log Sources User Guide.
The Juniper Networks Firewall and VPN DSM for IBM Security QRadar accepts Juniper Firewall and VPN events using UDP syslog. QRadar records all relevant firewall and VPN events.

Note: TCP syslog is not supported. You must use UDP syslog.

You can Juniper Networks Firewall and VPN device to export events to QRadar.

Procedure

Step 1 Log in to your Juniper Networks Firewall and VPN user interface.

Step 2 Select **Configuration > Report Settings > Syslog**.

Step 3 Select the **enable syslog messages** check box.

Step 4 Type the IP address of your QRadar Console or Event Collector.

Step 5 Click **Apply**.

You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Juniper Networks Firewall and VPN device:

- From the **Log Source Type** list, select **Juniper Networks Firewall and VPN** option.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*. For more information about your Juniper Networks Firewall and VPN device, see your Juniper documentation.

The Juniper Networks Network and Security Manager (NSM) DSM for IBM Security QRadar accepts Juniper Networks NSM and Juniper Networks Secure Service Gateway (SSG) logs. All Juniper SSG logs must be forwarded through Juniper NSM to QRadar. All other Juniper devices should be forwarded directory to QRadar.

For more information on advanced filtering of Juniper Networks NSM logs, see your Juniper Networks vendor documentation.

To integrate a Juniper Networks NSM device with QRadar, you must:

- **Configuring Juniper Networks NSM to export logs to syslog**
- **Configuring a log source for Juniper Networks NSM**

Juniper Networks NSM uses the syslog server when exporting qualified log entries to syslog. Configuring the syslog settings for the management system only defines the syslog settings for the management system.
It does not actually export logs from the individual devices. You can enable the management system to export logs to syslog.

Procedure

Step 1 Log in to the Juniper Networks NSM user interface.

Step 2 From the Action Manager menu, select Action Parameters.

Step 3 Type the IP address for the syslog server to which you want to send qualified logs.

Step 4 Type the syslog server facility for the syslog server to which you want to send qualified logs.

Step 5 From the Device Log Action Criteria node, select the Actions tab.

Step 6 Select Syslog Enable for Category, Severity, and Action.

You are now ready to configure the log source in QRadar.

Configuring a log source for Juniper Networks NSM

You can configure a log source in QRadar for Juniper Networks NSM.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 1 From the Log Source Type list, select Juniper Networks Network and Security Manager.

Step 2 From the Protocol Configuration list, select Juniper NSM.

Step 3 Configure the following values for the Juniper NSM protocol:

<table>
<thead>
<tr>
<th>Table 60-2</th>
<th>Juniper NSM Protocol Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for the log source. The log source identifier must be unique for the log source type.</td>
</tr>
<tr>
<td>IP</td>
<td>Type the IP address or hostname of the Juniper Networks NSM server.</td>
</tr>
<tr>
<td>Inbound Port</td>
<td>Type the inbound port to which the Juniper Networks NSM sends communications. The valid range is 0 to 65536. The default is 514.</td>
</tr>
<tr>
<td>Redirection Listen Port</td>
<td>Type the port to which traffic is forwarded. The valid range is 0 to 65,536. The default is 516.</td>
</tr>
<tr>
<td>Use NSM Address for Log Source</td>
<td>Select this check box to use the Juniper NSM management server IP address instead of the log source IP address. By default, the check box is selected.</td>
</tr>
</tbody>
</table>
Note: In the QRadar interface, the Juniper NSM protocol configuration enables you to use the Juniper Networks NSM IP address by selecting the Use NSM Address for Event Source check box. If you wish to change the configuration to use the originating IP address (clear the check box), you must log in to your QRadar Console, as a root user, and reboot the Console (for an all-in-one system) or the Event Collector hosting the log sources (in a distributed environment) using the following command: `shutdown -r now`.

The Juniper Junos OS Platform DSM for IBM Security QRadar accepts events using syslog, structured-data syslog, or PCAP (SRX Series only). QRadar records all valid syslog or structured-data syslog events.

The Juniper Junos OS Platform DSM supports the following Juniper devices running Junos OS:

- Juniper M Series Multiservice Edge Routing
- Juniper MX Series Ethernet Services Router
- Juniper T Series Core Platform
- Juniper SRX Series Services Gateway

For information on configuring PCAP data using a Juniper Networks SRX Series appliance, see [Configure the PCAP Protocol](#).

Note: For more information about structured-data syslog, see RFC 5424 at the Internet Engineering Task Force: http://www.ietf.org/

Before you configure QRadar to integrate with a Juniper device, you must forward data to QRadar using syslog or structured-data syslog.

Procedure

Step 1 Log in to your Juniper platform command-line interface (CLI).

Step 2 Include the following syslog statements at the `set system` hierarchy level:

```
[set system]
syslog {
    host (hostname) {
        facility <severity>;
        explicit-priority;
        any any;
        authorization any;
        firewall any;
    }
    source-address source-address;
    structured-data {
        brief;
    }
}
```

IBM Security QRadar DSM Configuration Guide
Table 60-3 lists and describes the configuration setting variables to be entered in the syslog statement.

Table 60-3 List of Syslog Configuration Setting Variables

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>host (hostname)</td>
<td>Type the IP address or the fully-qualified hostname of your QRadar.</td>
</tr>
<tr>
<td>Facility <severity></td>
<td>Define the severity of the messages that belong to the named facility with which it is paired. Valid severity levels are:</td>
</tr>
<tr>
<td></td>
<td>• any</td>
</tr>
<tr>
<td></td>
<td>• none</td>
</tr>
<tr>
<td></td>
<td>• emergency</td>
</tr>
<tr>
<td></td>
<td>• alert</td>
</tr>
<tr>
<td></td>
<td>• critical</td>
</tr>
<tr>
<td></td>
<td>• error</td>
</tr>
<tr>
<td></td>
<td>• warning</td>
</tr>
<tr>
<td></td>
<td>• notice</td>
</tr>
<tr>
<td></td>
<td>• info</td>
</tr>
<tr>
<td></td>
<td>Messages with the specified severity level and higher are logged. The levels from emergency through info are in order from highest severity to lowest.</td>
</tr>
<tr>
<td>Source-address</td>
<td>Type a valid IP address configured on one of the router interfaces for system logging purposes.</td>
</tr>
<tr>
<td></td>
<td>The source-address is recorded as the source of the syslog message send to QRadar. This IP address is specified in host hostname statement set system syslog hierarchy level; not, however, for messages directed to the other routing engine, or to the TX Matrix platform in a routing matrix.</td>
</tr>
<tr>
<td>structured-data</td>
<td>Inserts structured-data syslog into the data.</td>
</tr>
</tbody>
</table>

You are now ready to configure the log source in QRadar.

The following devices are auto discovered by QRadar as a Juniper Junos OS Platform devices:

- Juniper M Series Multiservice Edge Routing
- Juniper MX Series Ethernet Services Router
- Juniper SRX Series
- Juniper EX Series Ethernet Switch
- Juniper T Series Core Platform

To manually configure QRadar to receive events from a Juniper Junos OS Platform device:
From the Log Source Type list, select one of the following options: Juniper JunOS Platform, Juniper M-Series Multiservice Edge Routing, Juniper MX-Series Ethernet Services Router, Juniper SRX-series, or Juniper T-Series Core Platform.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide. For more information about your Juniper device, see your vendor documentation.

Configure the PCAP Protocol

The Juniper SRX Series appliance supports forwarding of packet capture (PCAP) and syslog data to QRadar.

Syslog data is forwarded to QRadar on port 514. The IP address and outgoing PCAP port number is configured on the Juniper Networks SRX Series appliance interface. The Juniper Networks SRX Series appliance must be configured using the to forward PCAP data in the format <IP Address>:<Port>.

Where:

- **<IP Address>** is the IP address of QRadar.
- **<Port>** is the outgoing port address for the PCAP data.

For more information on Configuring Packet Capture, see your Juniper Networks Junos OS documentation.

You are now ready to configure the log source and protocol in QRadar. For more information see Configuring a New Juniper Networks SRX Log Source with PCAP.

Configuring a New Juniper Networks SRX Log Source with PCAP

The Juniper Networks SRX Series appliance is auto discovered by QRadar as a Juniper Junos OS Platform.

QRadar detects the syslog data and adds the log source automatically. The PCAP data can be added to QRadar as Juniper SRX Series Services Gateway log source using the PCAP Syslog Combination protocol. Adding the PCAP Syslog Combination protocol after QRadar auto discovers the Junos OS syslog data adds an additional log source to your existing log source limit. Deleting the existing syslog entry, then adding the PCAP Syslog Combination protocol adds both syslog and PCAP data as single log source.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.
Step 5 Click **Add**.

Step 6 From the **Log Source Type** list, select **Juniper SRX-series Services Gateway**.

Step 7 From the **Protocol Configuration** list, select **PCAP Syslog Combination**.

Step 8 Type the Log Source Identifier.

Step 9 Type the Incoming PCAP Port.

To configure the Incoming PCAP Port parameter in the log source, enter the outgoing port address for the PCAP data as configured on the Juniper Networks SRX Series appliance interface. For more information on configuring log sources, see the Log Sources User Guide.

Step 10 Click **Save**.

Step 11 Select the auto discovered syslog-only Junos OS log source for your Juniper Networks SRX Series appliance.

Step 12 Click **Delete**.

A delete log source confirmation window is displayed.

Step 13 Click **Yes**.

The Junos OS syslog log source is deleted from the log source list. You should now have the PCAP Syslog Combination protocol in your log source list.

Step 14 On the **Admin** tab, click **Deploy Changes**.

Juniper Steel-Belted Radius

The Juniper Steel-Belted Radius DSM for IBM Security QRadar accepts syslog events from a client running the WinCollect or the Adaptive Log Exporter utility using the Windows operating system, or on Linux using syslog.

QRadar records all successful and unsuccessful login attempts. You can integrate Juniper Networks Steel-Belted Radius with QRadar using one of the following methods:

- Configure Juniper Steel Belted-Radius to use WinCollect or Adaptive Log Exporter on Microsoft Windows operating systems. For more information, see Configuring Juniper Steel-Belted Radius for the Adaptive Log Exporter or the WinCollect Use Guide.

- Configure Juniper Steel-Belted Radius using syslog on Linux-based operating systems. For more information, see Configuring Juniper Steel-Belted Radius for syslog.
Configuring Juniper Steel-Belted Radius for the Adaptive Log Exporter

You can integrate a Juniper Steel-Belted Radius DSM with QRadar using the Adaptive Log Exporter.

Procedure

Step 1 From the Start menu, select **Start > Programs > Adaptive Log Exporter > Configure Adapter Log Exporter**.

The Adaptive Log Exporter must be installed on the same system as your Juniper SBR system. The Adaptive Log Exporter must be updated to include the Juniper SBR device plug-in. For more information, see your Adaptive Log Exporter Users Guide.

Step 2 Click the **Devices** tab.

Step 3 Select **Juniper SBR**, right-click and select **Add Device**.

The New Juniper SBR Properties window is displayed.

Step 4 Configure the following parameters:

a **Name** - Type a name for the device. The name can include alphanumeric characters and underscore (_) characters.

b **Description** - Type a description for this device.

c **Device Address** - Type the IP address or hostname that the device. The IP address or hostname is used to identify the device in syslog messages forwarded to QRadar. This is the IP address or hostname that will appear in QRadar.

d **Root Log Directory** - Type the location where Juniper SBR stores log files. Report log files should be located in the Steel-Belted Radius directory `<radiusdir>\authReports`. The Adaptive Log Exporter monitors the Root Log Directory for any .CSV files having a date stamp in the file name matching the current day.

Step 5 From the **Adaptive Log Exporter** toolbar, click **Save**.

Step 6 From the **Adaptive Log Exporter** toolbar, click **Deploy**.

Note: You must use the default values for the log file heading in the Juniper Steel-Belted Radius appliance. If the log file headings have been changed from the default values and QRadar is not parsing SBR events properly, please contact Customer Support.

Step 7 You are now ready to configure the log source in QRadar.

Juniper SBR events provided from the Adaptive Log Exporter are automatically discovered by QRadar. If you want to manually configure QRadar to receive events from Juniper Steel-Belted Radius:

- From the **Log Source Type** drop-down box, select the **Juniper Steel-Belted Radius** option.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*.
You can integrate a Juniper Steel-Belted Radius DSM with QRadar using syslog on a Linux-based operating system.

Procedure

Step 1 Using SSH log in to your Juniper Steel-Belted Radius device, as a root user.

Step 2 Edit the following file:

```
/etc/syslog.conf
```

Step 3 Add the following information:

```
<facility>.<priority>       @<IP address>
```

Where:

- `<facility>` is the syslog facility, for example, `local3`.
- `<priority>` is the syslog priority, for example, `info`.
- `<IP address>` is the IP address of QRadar.

Step 4 Save the file.

Step 5 From the command-line, type the following command to restart syslog:

```
service syslog restart
```

Step 6 You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from Juniper Steel-Belted Radius:

- From the **Log Source Type** list, select the **Juniper Steel-Belted Radius** option.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*. For more information on configuring your Steel-Belted Radius server consult your vendor documentation.

Juniper Networks vGW Virtual Gateway

The Juniper Networks vGW Virtual Gateway DSM for IBM Security QRadar accepts events using syslog and NetFlow from your vGW management server or firewall. QRadar records all relevant events, such as admin, policy, IDS logs, and firewall events. Before configuring an Juniper Networks vGW Virtual Gateway in QRadar, you must configure vGW to forward syslog events.

Procedure

Step 1 Log in to your Juniper Networks vGW user interface.

Step 2 Select **Settings**.

Step 3 From **Security Settings**, select **Global**.

Step 4 From **External Logging**, select one of the following:

- **Send Syslog from vGW management server** - Central logging with syslog event provided from a management server.
If you select the option **Send Syslog from vGW management server**, all events forwarded to QRadar contain the IP address of the vGW management server.

- **Send Syslog from Firewalls** - Distribute logging with each Firewall Security VM providing syslog events.

Step 5 Type values for the following parameters:

a. **Syslog Server** - Type the IP address of your vGW management server if you selected to **Send Syslog from vGW management server**. Or, type the IP address of QRadar if you selected **Send Syslog from Firewalls**.

b. **Syslog Server Port** - Type the port address for syslog. This is typically port 514.

Step 6 From the **External Logging** panel, click **Save**.

Only changes made to the **External Logging** section are stored when you click **Save**. Any changes made to NetFlow require that you save using the button within the **NetFlow Configuration** section.

Step 7 From the **NetFlow Configuration** panel, select the **enable** check box.

NetFlow does not support central logging from a vGW management server. From the External Logging section, you must select the option **Send Syslog from Firewalls**.

Step 8 Type values for the following parameters:

a. **NetFlow collector address** - Type the IP address of QRadar.

b. **NetFlow collector port** - Type a port address for NetFlow events.

Note: QRadar typically uses port 2055 for NetFlow event data on QFlow Collectors. You must configure a different NetFlow collector port on your Juniper Networks vGW Series Virtual Gateway for NetFlow.

Step 9 From the **NetFlow Configuration**, click **Save**.

Step 10 You are now ready to configure the log source in QRadar.

QRadar automatically detects syslog forwarded from Juniper Networks vGW. If you want to manually configure QRadar to receive syslog events:

▷ From the **Log Source Type** list, select **Juniper vGW**.

For more information on configuring log sources, see the **IBM Security QRadar Log Sources User Guide**. For more information, see your Juniper Networks vGW documentation.
Juniper Security Binary Log Collector

The Juniper Security Binary Log Collector DSM for IBM Security QRadar can accept audit, system, firewall and intrusion prevention system (IPS) events in binary format from Juniper SRX or Juniper Networks J Series appliances. The Juniper Networks binary log file format is intended to increase performance when writing large amounts of data to an event log. To integrate your device with QRadar, you must configure your Juniper appliance to stream binary formatted events, then configure a log source in QRadar.

This section includes the following topics:

- Configuring the Juniper Networks Binary Log Format
- Configure a log source

Configuring the Juniper Networks Binary Log Format

The binary log format from Juniper SRX or J Series appliances are streamed to QRadar using the UDP protocol. You must specify a unique port for streaming binary formatted events, the standard syslog port for QRadar cannot understand binary formatted events. The default port assigned to QRadar for receiving streaming binary events from Juniper appliances is port 40798.

Note: The Juniper Binary Log Collector DSM only supports events forwarded in Streaming mode. The Event mode is not supported.

Procedure

Step 1 Log in to your Juniper SRX or J Series using the command-line Interface (CLI).

Step 2 Type the following command to edit your device configuration:

```
configure
```

Step 3 Type the following command to configure the IP address and port number for streaming binary formatted events:

```
set security log stream <Name> host <IP address> port <Port>
```

Where:

- `<Name>` is the name assigned to the stream.
- `<IP address>` is the IP address of your QRadar Console or Event Collector.
- `<Port>` is a unique port number assigned for streaming binary formatted events to QRadar. By default, QRadar listens for binary streaming data on port 40798. For a list of ports used by QRadar, see the *IBM Security QRadar Common Ports List* technical note.

Step 4 Type the following command to set the security log format to binary:

```
set security log stream <Name> format binary
```

Where `<Name>` is the name you specified for your binary format stream in Step 3.

Step 5 Type the following command to enable security log streaming:

```
set security log mode stream
```
Step 6 Type the following command to set the source IP address for the event stream:

```
set security log source-address <IP address>
```

Where `<IP address>` is the IP address of your Juniper SRX Series or Juniper J Series appliance.

Step 7 Type the following command to save the configuration changes:

```
commit
```

Step 8 Type the following command to exit the configuration mode:

```
exit
```

The configuration of your Juniper SRX or J Series appliance is complete. You are now ready to configure a log source in QRadar.

Configure a log source QRadar does not automatically discover incoming Juniper Security Binary Log Collector events from Juniper SRX or Juniper J Series appliances.

If your events are not automatically discovered, you must manually create a log source using the Admin tab in QRadar.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 In the Log Source Name field, type a name for your log source.

Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select Juniper Security Binary Log Collector.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 60-4</th>
<th>Juniper Security Binary Log Collector protocol parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type an IP address or hostname to identify the log source. The identifier address should be the Juniper SRX or J Series appliance generating the binary event stream.</td>
</tr>
<tr>
<td>Binary Collector Port</td>
<td>Specify the port number used by the Juniper Networks SRX or J Series appliance to forward incoming binary data to QRadar. The UDP port number for binary data is the same port configured in Configuring the Juniper Networks Binary Log Format, Step 3. If you edit the outgoing port number for the binary event stream from your Juniper Networks SRX or J Series appliance, you must also edit your Juniper log source and update the Binary Collector Port parameter in QRadar. To edit the port: 1 In the Binary Collector Port field, type the new port number for receiving binary event data. 2 Click Save. Event collection is stopped for the log source until you fully deploy QRadar. 3 On the Admin tab, select Advanced > Deploy Full Configuration. The port update is complete and event collection starts on the new port number. Note: When you click Deploy Full Configuration, QRadar restarts all services, resulting in a gap in data collection for events and flows until the deployment completes.</td>
</tr>
<tr>
<td>XML Template File Location</td>
<td>Type the path to the XML file used to decode the binary stream from your Juniper SRX or Juniper J Series appliance. By default, QRadar includes an XML template file for decoding the binary stream in the following directory: /opt/qradar/conf/security_log.xml</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete. You can verify events forwarded to QRadar by viewing events in the Log Activity tab.
Juniper Junos WebApp Secure

Juniper Junos WebApp Secure provides incident logging and access logging events to QRadar. Before you can receive events in QRadar, you must configure event forwarding on your Juniper Junos WebApp Secure, then define the events you want to forward.

Configuring syslog forwarding

To configure a remote syslog server for Juniper Junos WebApp Secure, you must SSH in to a configuration interface. The configuration interface allows you to setup or configure core settings on your Juniper Junos WebApp Secure appliance.

Procedure

Step 1 Using SSH, log in to your Juniper Junos WebApp device using port 2022.

https://<IP address>:<port>

Where:

<IP address> is the IP address of your Juniper Junos WebApp Secure appliance.

<Port> is the port number of your Juniper Junos WebApp Secure appliance configuration interface. The default SSH configuration port is 2022.

Step 2 From the Choose a Tool menu, select Logging.

Step 3 Click Run Tool.

Step 4 From the Log Destination menu, select Remote Syslog Server.

Step 5 In the Syslog Server field, type the IP address of your QRadar Console or Event Collector.

Step 6 Click Save.

Step 7 From the Choose a Tool menu, select Quit.

Step 8 Type Exit to close your SSH session.

You are now ready to configure event logging on your Juniper Junos WebApp Secure appliance.

Configuring event logging

The Juniper Junos WebApp Secure appliance must be configured to determine which logs are forwarded to QRadar.

Procedure

Step 1 Using a web browser, log in to the Configuration Site for your Juniper Junos WebApp Secure appliance.

https://<IP address>:<port>

Where:

<IP address> is the IP address of your Juniper Junos WebApp Secure appliance.
<Port> is the port number of your Juniper Junos WebApp Secure appliance. The default configuration uses a port number of 5000.

Step 2 From the navigation menu, select **Configuration Manager**.

Step 3 From the Configuration menu, select **Basic Mode**.

Step 4 Click the **Global Configuration** tab and select **Logging**.

Step 5 Click the link **Show Advanced Options**.

Step 6 Configure the following parameters:

<table>
<thead>
<tr>
<th>Table 60-1</th>
<th>Juniper Junos WebApp Secure logging parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
</tbody>
</table>
| Access logging: Log Level | Click this option to configure the level of information logged when access logging is enabled. The options include:
 • 0 - Access logging is disabled.
 • 1 - Basic logging.
 • 2 - Basic logging with headers.
 • 3 - Basic logging with headers and body.
 Note: Access logging is disabled by default. It is recommended that you only enable access logging for debugging purposes. For more information, see your Juniper Junos WebApp Secure documentation. |
| Access logging: Log requests before processing | Click this option and select **True** to log the request before it is processed, then forward the event to QRadar. |
| Access logging: Log requests to access log after processing | Click this option and select **True** to log the request after it is processed. After Juniper Junos WebApp Secure processes the event, then it is forwarded to QRadar. |
| Access logging: Log responses to access log after processing | Click this option and select **True** to log the response after it is processed. After Juniper Junos WebApp Secure processes the event, then the event is forwarded to QRadar. |
| Access logging: Log responses to access log before processing | Click this option and select **True** to log the response before it is processed, then forward the event to QRadar. |
The configuration is complete. The log source is added to QRadar as Juniper Junos WebApp Secure events are automatically discovered. Events forwarded to QRadar by Juniper Junos WebApp Secure are displayed on the Log Activity tab of QRadar.

Configuring a log source

QRadar automatically discovers and creates a log source for syslog events from Juniper Junos WebApp Secure. The following configuration steps are optional.

Procedure

1. **Log in to QRadar.**
2. **Click the Admin tab.**
3. **On the navigation menu, click Data Sources.**
4. **Click the Log Sources icon.**
5. **Click Add.**
6. **In the Log Source Name field, type a name for your log source.**
7. **In the Log Source Description field, type a description for the log source.**
8. **From the Log Source Type list, select Juniper Junos WebApp Secure.**
9. **Using the Protocol Configuration list, select Syslog.**
10. **Configure the following values:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incident severity log level</td>
<td>Click this option to define the severity of the incident events to log. All incidents at or above the level defined are forwarded to QRadar. The options include:</td>
</tr>
<tr>
<td></td>
<td>The options include:</td>
</tr>
<tr>
<td></td>
<td>• 0 - Informational level and later incident events are logged and forwarded.</td>
</tr>
<tr>
<td></td>
<td>• 1 - Suspicious level and later incident events are logged and forwarded.</td>
</tr>
<tr>
<td></td>
<td>• 2 - Low level and later incident events are logged and forwarded.</td>
</tr>
<tr>
<td></td>
<td>• 3 - Medium level and later incident events are logged and forwarded.</td>
</tr>
<tr>
<td></td>
<td>• 4 - High level and later incident events are logged and forwarded.</td>
</tr>
</tbody>
</table>

Log incidents to the syslog

Click this option and select Yes to enable syslog forwarding to QRadar.

Table 60-1 Juniper Junos WebApp Secure logging parameters (continued)
Juniper Networks WLC Series Wireless LAN Controller

IBM Security QRadar can collect and categorize syslog events from Juniper Networks WLC Series Wireless LAN Controllers.

Configuration overview

To collect syslog events, you must configure your Juniper Networks Wireless LAN Controller to forward syslog events to QRadar. Administrators can use either the RingMaster interface or the command-line interface to configure syslog forwarding for their Juniper Networks Wireless LAN Controller appliance. QRadar automatically discovers and creates log sources for syslog events that are forwarded from Juniper Networks WLC Series Wireless LAN Controllers. QRadar supports syslog events from Juniper WLAN devices that run on Mobility System Software (MSS) V7.6.

To integrate Juniper WLC events with QRadar, administrators can complete the following tasks:

1 On your Juniper WLAN appliance, configure syslog server.
 • To use the RingMaster user interface to configure a syslog server, see Configuring a syslog server from the Juniper WLC user interface.
 • To use the command-line interface to configure a syslog server, see Configuring a syslog server with the command-line interface for Juniper WLC.

2 On your QRadar system, verify that the forwarded events are automatically discovered.

Configuring a syslog server from the Juniper WLC user interface

To collect events, you must configure a syslog server on your Juniper WLC system to forward syslog events to QRadar.

Procedure

Step 1 Log in to the RingMaster software.
Step 2 From the Organizer panel, select a Wireless LAN Controller.
Step 3 From the System panel, select Log.
Step 4 From the Task panel, select Create Syslog Server.
Step 5 In the **Syslog Server** field, type the IP address of your QRadar system.

Step 6 In the **Port** field, type *514*.

Step 7 From the **Severity Filter** list, select a severity.

Logging debug severity events can negatively affect system performance on the Juniper WLC appliance. As a best practice, administrators can log events at the error or warning severity level and slowly increase the level to get the data you need. The default severity level is error.

Step 8 From the **Facility Mapping** list, select a facility between Local 0 - Local 7.

Step 9 Click **Finish**.

Result

As events are generated by the Juniper WLC appliance, they are forwarded to the syslog destination you specified. The log source is automatically discovered after enough events are forwarded to QRadar. It typically takes a minimum of 25 events to automatically discover a log source.

What to do next

Administrators can log in to the QRadar Console and verify that the log source is created on the Console. The **Log Activity** tab displays events from the Juniper WLC appliance.

Configuring a syslog server with the command-line interface for Juniper WLC

To collect events, you must configure a syslog server on your Juniper WLC system to forward syslog events to QRadar.

Procedure

Step 1 Log in to the command-line interface of the Juniper WLC appliance.

Step 2 To configure a syslog server, type the following command:

```plaintext
set log server <ip-addr> [port 514 severity <severity-level> local-facility <facility-level>]
```

For example, `set log server 1.1.1.1 port 514 severity error local-facility local0`.

Step 3 To save the configuration, type the following command:

```plaintext
save configuration
```

Result

As events are generated by the Juniper WLC appliance, they are forwarded to the syslog destination you specified. The log source is automatically discovered after enough events are forwarded to QRadar. It typically takes a minimum of 25 events to automatically discover a log source.
What to do next

Administrators can log in to the Console and verify that the log source is created. The **Log Activity** tab displays events from the Juniper WLC appliance.
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
LIEBERMAN RANDOM PASSWORD MANAGER

The Lieberman Random Password Manager DSM for allows you to integrate IBM Security QRadar with Lieberman Enterprise Random Password Manager and Lieberman Random Password Manager software using syslog events in the Log Extended Event Format (LEEF).

The Lieberman Random Password Manager forwards syslog events to QRadar using Port 514. QRadar records all relevant password management events. For information on configuring syslog forwarding, see your vendor documentation.

QRadar automatically detects syslog events forwarded from Lieberman Random Password Manager and Lieberman Enterprise Random Password Manager devices. However, if you want to manually configure QRadar to receive events from these devices:

- From the Log Source Type list, select Lieberman Random Password Manager.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide.
This section provides information on the Linux DHCP, IPtables, and OS DSMs:

Linux DHCP

The Linux DHCP Server DSM for IBM Security QRadar accepts DHCP events using syslog.

Configuring Syslog for Linux DHCP

QRadar records all relevant events from a Linux DHCP Server. Before you configure QRadar to integrate with a Linux DHCP Server, you must configure syslog within your Linux DHCP Server to forward syslog events to QRadar.

For more information on configuring your Linux DHCP Server, consult the man pages or associated documentation for your DHCP daemon.

Configuring a log source

QRadar automatically discovers and creates log sources for syslog events forwarded from Linux DHCP Servers. The following procedure is optional.

Procedure

1. Log in to QRadar.
2. Click the **Admin** tab.
3. On the navigation menu, click **Data Sources**.
4. Click the **Log Sources** icon.
5. Click **Add**.
6. In the **Log Source Name** field, type a name for your Linux DHCP Server.
7. In the **Log Source Description** field, type a description for the log source.
8. From the **Log Source Type** list, select **Linux DHCP Server**.
9. Using the **Protocol Configuration** list, select **Syslog**.
10. Configure the following values:

<table>
<thead>
<tr>
<th>Table 64-1 Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
</tbody>
</table>

IBM Security QRadar DSM Configuration Guide
Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.

Linux IPtables

The Linux IPtables DSM for IBM Security QRadar accepts firewall IPtables events using syslog.

QRadar records all relevant from Linux IPtables where the syslog event contains any of the following words: Accept, Drop, Deny, or Reject. Creating a customized log prefix in the event payload allows QRadar to easily identify IPtables behavior.

Configure IPtables

IPtables is a powerful tool, which allows you to create rules on the Linux kernel firewall for routing traffic.

To configure IPtables, you must examine the existing rules, modify the rule to log the event, and assign a log identifier to your IPtables rule that can be identified by QRadar. This process allows you to determine which rules are logged by QRadar. QRadar includes any events that are logged that include the words: accept, drop, reject, or deny in the event payload.

Procedure

Step 1 Using SSH, log in to your Linux Server as a root user.

Step 2 Edit the IPtables file in the following directory:

```
/etc/iptables.conf
```

Note: The file containing IPtables rules can vary according to the specific Linux operating system you are configuring. For a system operating Red Hat Enterprise, the file is in the `/etc/sysconfig/iptables` directory. Consult your Linux operating system documentation for more information on configuring IPtables.

Step 3 Review the file to determine the IPtables rule you want to log.

For example, if you want to log the rule defined by the entry:

```
-A INPUT -i eth0 --dport 31337 -j DROP
```

Step 4 Insert a matching rule immediately before each rule you want to log:

```
-A INPUT -i eth0 --dport 31337 -j DROP
-A INPUT -i eth0 --dport 31337 -j DROP
```

Step 5 Update the target of the new rule to **LOG** for each rule you want to log. For example:

```
-A INPUT -i eth0 --dport 31337 -j LOG
-A INPUT -i eth0 --dport 31337 -j LOG
```

Step 6 Set the log level of the **LOG** target to a SYSLOG priority level, such as info or notice:

```
-A INPUT -i eth0 --dport 31337 -j LOG --log-level info
-A INPUT -i eth0 --dport 31337 -j DROP
```
Step 7 Configure a log prefix to identify the rule behavior. Set the log prefix parameter to
\[Q1Target=<\text{rule}>.\]
Where \(<\text{rule}>\) is one of \(\text{fw_accept}, \text{fw_drop}, \text{fw_reject}, \text{or fw_deny}.\)
For example, if the rule being logged by the firewall targets dropped events, the log
prefix setting should be \(Q1Target=\text{fw_drop}.\)
\[-A \text{ INPUT } -i \text{ eth0} --dport 31337 -j LOG --log-level info --log-prefix "Q1Target=\text{fw_drop} " -j DROP\]
\textbf{Note}: The trailing space is required before the closing quotation mark.

Step 8 Save and exit the file.

Step 9 Restart IPtables:
\texttt{/etc/init.d/iptables restart}

Step 10 Open the \texttt{syslog.conf} file.

Step 11 Add the following line:
\texttt{kern.<log level> @<IP address>}\n
Where:
\(<\text{log level}>\) is the previously set log level.
\(<\text{IP address}>\) is the IP address of QRadar.

Step 12 Save and exit the file.

Step 13 Restart the syslog daemon:
\texttt{/etc/init.d/syslog restart}\n
After the syslog daemon restarts, events are forwarded to QRadar. IPtable events
forwarded from Linux Servers are automatically discovered and displayed in the
\textbf{Log Activity} tab of QRadar.

Configuring a log source
QRadar automatically discovers and creates log sources for IPtables syslog
events forwarded from Linux Servers. The following steps for configuring a log
source are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the \textbf{Admin} tab.

Step 3 On the navigation menu, click \textbf{Data Sources}.

Step 4 Click the \textbf{Log Sources} icon.

Step 5 Click \textbf{Add}.

Step 6 In the \textbf{Log Source Name} field, type a name for your Linux DHCP Server.

Step 7 In the \textbf{Log Source Description} field, type a description for the log source.

Step 8 From the \textbf{Log Source Type} list, select \textbf{Linux iptables Firewall}.
Step 9 Using the Protocol Configuration list, select Syslog.

Step 10 Configure the following values:

Table 64-2 Syslog protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for IPtables events forwarded from your Linux Server.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete. IPtables events forwarded from Linux Servers are automatically discovered and displayed in the Log Activity tab of QRadar.

For more information on configuring IPtables on Linux Servers, consult the man pages or your associated Linux documentation.
The Linux OS DSM for IBM Security QRadar records Linux operating system events and forwards the events using syslog or syslog-ng.

If you are using syslog on a UNIX host, upgrade the standard syslog to a more recent version, such as, syslog-ng.

CAUTION: Do not run both syslog and syslog-ng at the same time.

To integrate Linux OS with QRadar, select one of the following syslog configurations for event collection:

- Configuring Linux OS using syslog
- Configure Linux OS using syslog-ng

You can also configure your Linux operating system to send audit logs to QRadar. For more information, see Configuring Linux OS to send audit logs.

Supported event types

The Linux OS DSM supports the following event types:

- cron
- HTTPS
- FTP
- NTP
- Simple Authentication Security Layer (SASL)
- SMTP
- SNMP
- SSH
- Switch User (SU)
- Pluggable Authentication Module (PAM) events.

Configuring Linux OS using syslog

Configure Linux OS using the syslog protocol.

Procedure

1. Log in to your Linux OS device, as a root user.
2. Open the `/etc/syslog.conf` file.
3. Add the following facility information:

   ```
   authpriv.*             @<IP address>
   ```

 Where `<IP address>` is the IP address of the QRadar.
4. Save the file.
5. Restart syslog:
   ```
   service syslog restart
   ```
Step 6 Log in to the QRadar user interface.

Step 7 Add a Linux OS log source. For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide.

Step 8 On the Admin tab, click Deploy Changes.

For more information on syslog, see your Linux operating system documentation.

Configure Linux OS using syslog-ng Configure Linux OS using the syslog-ng protocol.

Procedure

Step 1 Log in to your Linux OS device, as a root user.

Step 2 Open the /etc/syslog-ng/syslog-ng.conf file.

Step 3 Add the following facility information:

```
filter auth_filter{ facility(authpriv); };
destination auth_destination { tcp("<IP address>") port(514)); }
log{
    source(<Sourcename>);
    filter(auth_filter);
    destination(auth_destination);
};
```

Where:

- `<IP address>` is the IP address of the QRadar.
- `<Source name>` is the name of the source defined in the configuration file.

Step 4 Save the file.

Step 5 Restart syslog-ng:

```
service syslog-ng restart
```

Step 6 Log in to the QRadar user interface.

Step 7 Add a Linux OS log source. For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide.

Step 8 On the Admin tab, click Deploy Changes.

For more information on syslog-ng, see your Linux operating system documentation.

Configuring Linux OS to send audit logs Configure Linux OS to send audit logs to QRadar.

About this task

This task applies to Red Hat Enterprise Linux v6 operating systems. If you use SUSE, Debian, or Ubuntu operating system, see your vendor documentation for specific steps for your operating system.
Procedure

Step 1 Log in to your Linux OS device, as a root user.

Step 2 Type the following commands:

```
yum install audit
service auditd start
chkconfig auditd on
```

Step 3 Open the following file:

```
/etc/audisp/plugins.d/syslog.conf
```

Step 4 Ensure the parameters match the following values:

```
active = yes
direction = out
path = builtin_syslog
type = builtin
args = LOG_LOCAL6
format = string
```

Step 5 Open the following file:

```
/etc/rsyslog.conf
```

Step 6 Add the following line to the end of the file:

```
local6.* @@QRadar_Collector_IP_address
```

Step 7 Log in to the QRadar user interface.

Step 8 Add a Linux OS log source. For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide.

Step 9 On the Admin tab, click Deploy Changes.

Step 10 Log in to QRadar as the root user.

Step 11 Type the following commands:

```
service auditd restart
service syslog restart
```
This section provides information on the following DSMs:

- McAfee Intrushield
- McAfee Application / Change Control
- McAfee Web Gateway

McAfee Intrushield

A QRadar McAfee Intrushield DSM accepts events that use syslog. QRadar records all relevant events.

Before you configure QRadar to integrate with a McAfee Intrushield device, you must select your McAfee Intrushield version.

- To collect alert events from McAfee Intrushield V2.x - V5.x, see Configuring alert events for McAfee Intrushield V2.x - V5.x.
- To collect alert events from McAfee Intrushield V6.x - V7.x, see Configuring alert events for McAfee Intrushield V6.x and V7.x.
- To collect fault notification events from McAfee Intrushield V6.x - V7.x, see Configuring fault notification events for McAfee Intrushield V6.x and V7.x.

Configuring alert events for McAfee Intrushield V2.x - V5.x

To collect alert notification events from McAfee Intrushield, administrators must configure a syslog forwarder to send events to QRadar.

Procedure

Step 1 Log in to the McAfee Intrushield Manager user interface.

Step 2 In the dashboard click **Configure**.

Step 3 From the Resource Tree, click the **root node** (Admin-Domain-Name).

Step 4 Select **Alert Notification > Syslog Forwarder**.

Step 5 Type the Syslog Server details.

- The Enable Syslog Forwarder must be configured as **Yes**.
- The Port must be configured to **514**.

Step 6 Click **Edit**.

Step 7 Choose one of the following:
The custom message string must be entered as a single line without carriage returns or spaces. McAfee Intrushield appliances that do not have software patches applied use different message strings than patched systems. McAfee Intrushield expects the format of the custom message to contain a dollar sign ($) as a delimiter before and after each alert element. If you are missing a dollar sign for an element, then the alert event might not be formatted properly.

If you are unsure what event message format to use, contact McAfee Customer Support.

Step 8 Click Save.

Result

As events are generated by McAfee Intrushield, they are forwarded to the syslog destination that you specified. The log source is automatically discovered after enough events are forwarded by the McAfee Intrushield appliance. It typically takes a minimum of 25 events to automatically discover a log source.

What to do next

Administrators can log in to the QRadar Console and verify that the log source is created on the Console and that the Log Activity tab displays events from the McAfee Intrushield appliance.

Configuring alert events for McAfee Intrushield V6.x and V7.x

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpatched McAfee Intrushield V2.x systems</td>
<td>$\text{ALERT_ID}\text{</td>
</tr>
<tr>
<td>McAfee Intrushield that have patches applied to update to V3.x - V5.x</td>
<td>$\text{IV_ALERT_ID}\text{</td>
</tr>
</tbody>
</table>

Note: The custom message string must be entered as a single line without carriage returns or spaces. McAfee Intrushield appliances that do not have software patches applied use different message strings than patched systems. McAfee Intrushield expects the format of the custom message to contain a dollar sign ($) as a delimiter before and after each alert element. If you are missing a dollar sign for an element, then the alert event might not be formatted properly.

To collect alert notification events from McAfee Intrushield, administrators must configure a syslog forwarder to send events to QRadar.
Step 6 Configure the following parameters to forward alert notification events:

<table>
<thead>
<tr>
<th>Table 65-4 McAfee Intrushield v6.x & 7.x alert notification parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Enable Syslog Notification</td>
</tr>
<tr>
<td>Admin Domain</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Server Name or IP Address</td>
</tr>
<tr>
<td>UDP Port</td>
</tr>
<tr>
<td>Facility</td>
</tr>
<tr>
<td>Severity Mappings</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Send Notification If</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Notify on IPS Quarantine Alert</td>
</tr>
</tbody>
</table>
Step 7 From the **Message Preference** field, click **Edit** to add a custom message filter.

Step 8 To ensure that alert notifications are formatted correctly, type the following message string:

```
|$IV_ALERT_ID$|$IV_ALERT_TYPE$|$IV_ATTACK_TIME$|"$IV_ATTACK_NAME"|$IV_ATTACK_ID$|$IV_ATTACK_SEVERITY$|$IV_ATTACK_SIGNATURE$|$IV_ATTACK_CONFIDENCE$|$IV_ADMIN_DOMAIN$|$IV_SENSOR_NAME$|$IV_INTERFACE$|$IV_SOURCE_IP$|$IV_SOURCE_PORT$|$IV_DESTINATION_IP$|$IV_DESTINATION_PORT$|$IV_DIRECTION$|$IV_SUB_CATEGORY$
```

Note: The custom message string must be entered as a single line without carriage returns or spaces. McAfee Intrushield expects the format of the custom message to contain a dollar sign ($) as a delimiter before and after each alert element. If you are missing a dollar sign for an element, then the alert event might not be formatted properly.

You might require a text editor to properly format the custom message string as a single line.

Step 9 Click **Save**.

Result

As alert events are generated by McAfee Intrushield, they are forwarded to the syslog destination you specified. The log source is automatically discovered after enough events are forwarded by the McAfee Intrushield appliance. It typically takes a minimum of 25 events to automatically discover a log source.

What to do next

Administrators can log in to the QRadar Console and and verify that the log source is created on the Console and that the **Log Activity** tab displays events from the McAfee Intrushield appliance.

Configuring fault notification events for McAfee Intrushield V6.x and V7.x

To integrate fault notifications with McAfee Intrushield, you must configure your McAfee Intrushield to forward fault notification events.

Procedure

1. **Log in to the McAfee Intrushield Manager user interface.**
2. **On the Network Security Manager dashboard, click **Configure**.**
3. **Expand the Resource Tree, click **IPS Settings** node.**
4. **Click the **Fault Notification** tab.**
5. **In the Alert Notification menu, click the **Syslog** tab.**
6. **Configure the following parameters to forward fault notification events:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message Preference</td>
<td>Select the Customized option.</td>
</tr>
</tbody>
</table>
Step 7 From the **Message Preference** field, click **Edit** to add a custom message filter.

Step 8 To ensure that fault notifications are formatted correctly, type the following message string:

```
| %INTRUSHIELD-FAULT| $IV_FAULT_NAME$ | $IV_FAULT_TIME$ |
```

Note: The custom message string must be entered as a single line with no carriage returns. McAfee Intrushield expects the format of the custom message

Table 65-5 McAfee Intrushield V6.x - V7.x fault notification parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Syslog Notification</td>
<td>Select Yes to enable syslog notifications for McAfee Intrushield. You must enable this option to forward events to QRadar.</td>
</tr>
<tr>
<td>Admin Domain</td>
<td>Select any of the following options:</td>
</tr>
<tr>
<td></td>
<td>• Current - Select this check box to send syslog notifications for alerts in the current domain. This option is selected by default.</td>
</tr>
<tr>
<td></td>
<td>• Children - Select this check box to send syslog notifications for alerts in any child domains within the current domain.</td>
</tr>
<tr>
<td>Server Name or IP Address</td>
<td>Type the IP address of your QRadar Console or Event Collector. This field supports both IPv4 and IPv6 addresses.</td>
</tr>
<tr>
<td>Port</td>
<td>Type 514 as the port for syslog events.</td>
</tr>
<tr>
<td>Facilities</td>
<td>Select a syslog facility value.</td>
</tr>
<tr>
<td>Severity Mappings</td>
<td>Select a value to map the informational, low, medium, and high alert notification level to a syslog severity. The options include:</td>
</tr>
<tr>
<td></td>
<td>• Emergency - The system is down or unusable.</td>
</tr>
<tr>
<td></td>
<td>• Alert - The system requires immediate user input or intervention.</td>
</tr>
<tr>
<td></td>
<td>• Critical - The system should be corrected for a critical condition.</td>
</tr>
<tr>
<td></td>
<td>• Error - The system has non-urgent failures.</td>
</tr>
<tr>
<td></td>
<td>• Warning - The system has a warning message indicating an imminent error.</td>
</tr>
<tr>
<td></td>
<td>• Notice - The system has notifications, no immediate action required.</td>
</tr>
<tr>
<td></td>
<td>• Informational - Normal operating messages.</td>
</tr>
<tr>
<td>Forward Faults with severity level</td>
<td>Select Informational and later.</td>
</tr>
<tr>
<td>Message Preference</td>
<td>Select the Customized option.</td>
</tr>
</tbody>
</table>
syslog information to contain a dollar sign ($) delimiter before and after each element. If you are missing a dollar sign for an element, the event might not parse properly.

Step 9 Click **Save**.

Result
As fault events are generated by McAfee Intrushield, they are forwarded to the syslog destination that you specified.

What to do next
You can log in to the QRadar Console and verify that the Log Activity tab contains fault events from the McAfee Intrushield appliance.
McAfee Application / Change Control

The McAfee Application / Change Control DSM for IBM Security QRadar accepts change control events using Java Database Connectivity (JDBC). QRadar records all relevant McAfee Application / Change Control events. This document includes information on configuring QRadar to access the database containing events using the JDBC protocol.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 Click the Log Sources icon.

Step 4 Click Add.

Step 5 Using the Log Source Type list, select McAfee Application / Change Control.

Step 6 Using the Protocol Configuration list, select JDBC.

You must refer to the Configure Database Settings on yourApplication / Change Control Management Console to configure the McAfee Application / Change Control DSM in QRadar.

Step 7 Configure the following values:

<table>
<thead>
<tr>
<th>Table 65-6 McAfee Application / Change Control JDBC protocol parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
</tbody>
</table>
| Log Source Identifier | Type the identifier for the log source. Type the log source identifier in the following format:
 `<McAfee Change Control Database>@<Change Control Database Server IP or Host Name>`
 Where:
 `<McAfee Change Control Database>` is the database name, as entered in the Database Name parameter.
 `<Change Control Database Server IP or Host Name>` is the hostname or IP address for this log source, as entered in the IP or Hostname parameter.
 When defining a name for your log source identifier, you must use the values of the McAfee Change Control Database and Database Server IP address or hostname from the ePO Management Console. |
| Database Type | From the list, select MSDE. |
| Database Name | Type the exact name of the McAfee Application / Change Control database. |
| IP or Hostname | Type the IP address or host name of the McAfee Application / Change Control SQL Server. |
Port
Type the port number used by the database server. The default port for MSDE is 1433.
The JDBC configuration port must match the listener port of the McAfee Application / Change Control database. The McAfee Application / Change Control database must have incoming TCP connections enabled to communicate with QRadar.

Note: If you define a Database Instance when using MSDE as the database type, you must leave the Port parameter blank in your configuration.

Username
Type the username required to access the database.

Password
Type the password required to access the database. The password can be up to 255 characters in length.

Confirm Password
Confirm the password required to access the database. The confirmation password must be identical to the password entered in the Password parameter.

Authentication Domain
If you select MSDE as the Database Type and the database is configured for Windows, you must define the Window Authentication Domain. Otherwise, leave this field blank.

Database Instance
Optional. Type the database instance, if you have multiple SQL server instances on your database server.

Note: If you use a non-standard port in your database configuration, or have blocked access to port 1434 for SQL database resolution, you must leave the Database Instance parameter blank in your configuration.

Table Name
Type SCOR_EVENTS as the name of the table or view that includes the event records.

Select List
Type * for all fields from the table or view.

You can use a comma-separated list to define specific fields from tables or views, if required for your configuration. The list must contain the field defined in the Compare Field parameter. The comma-separated list can be up to 255 alphanumeric characters in length. The list can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period (.).

Compare Field
Type AutoID as the compare field. The compare field is used to identify new events added between queries to the table.

Start Date and Time
Optional. Type the start date and time for database polling.
The Start Date and Time parameter must be formatted as yyyy-MM-dd HH:mm with HH specified using a 24 hour clock. If the start date or time is clear, polling begins immediately and repeats at the specified polling interval.
Note: Selecting a value for the Credibility parameter greater than 5 will weight your McAfee Application / Change Control log source with a higher importance compared to other log sources in QRadar.

Step 8 Click Save.

Step 9 On the Admin tab, click Deploy Changes.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide.

McAfee Web Gateway

You can configure McAfee Web Gateway to integrate with IBM Security QRadar using one of the following methods:

- Configuring McAfee Web Gateway to communicate with QRadar (syslog)
- Configuring McAfee Web Gateway to communicate with QRadar (log file protocol)

Note: McAfee Web Gateway is formerly known as McAfee WebWasher.
The following table identifies the specifications for the McAfee Web Gateway DSM:

Table 65-1 McAfee Web Gateway DSM specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>McAfee</td>
</tr>
<tr>
<td>DSM</td>
<td>McAfee Web Gateway</td>
</tr>
<tr>
<td>RPM file name</td>
<td>DSM-McAfeeWebGateway-qradarversion-buildnumber.noarch</td>
</tr>
<tr>
<td>Supported versions</td>
<td>v6.0.0 and later</td>
</tr>
<tr>
<td>Protocol</td>
<td>Syslog, Log File Protocol</td>
</tr>
<tr>
<td>QRadar recorded</td>
<td>All relevant events</td>
</tr>
<tr>
<td>events</td>
<td></td>
</tr>
<tr>
<td>Automatically</td>
<td>Yes</td>
</tr>
<tr>
<td>discovered</td>
<td></td>
</tr>
<tr>
<td>Includes identity</td>
<td>No</td>
</tr>
<tr>
<td>More information</td>
<td>McAfee web site (http://www.mcafee.com)</td>
</tr>
</tbody>
</table>

To integrate McAfee Web Gateway DSM with QRadar, use the following procedure:

1. Download and install the most recent version of the McAfee Web Gateway DSM RPM on your QRadar Console.
2. For each instance of McAfee Web Gateway, configure your McAfee Web Gateway VPN system to enable communication with QRadar.
3. If QRadar does not automatically discover the log source, for each McAfee Web Gateway server you want to integrate, create a log source on the QRadar Console.
4. If you use McAfee Web Gateway v7.0.0 or later, create an event map.

Related tasks

- Manually installing a DSM
- Configuring McAfee Web Gateway to communicate with QRadar (syslog)
- Configuring McAfee Web Gateway to communicate with QRadar (log file protocol)
- Creating an event map for McAfee Web Gateway events
Configuring McAfee Web Gateway to communicate with QRadar (syslog)

To collect all events from McAfee Web Gateway, you must specify QRadar as the syslog server and configure the message format.

Procedure

Step 1 Log in to your McAfee Web Gateway console.

Step 2 Using the toolbar, click Configuration.

Step 3 Click the File Editor tab.

Step 4 Expand the appliance files and select the file /etc/rsyslog.conf.

The file editor displays the rsyslog.conf file for editing.

Step 5 Modify the rsyslog.conf file to include the following information:

```
# send access log to qradar
*.info;daemon.!=info;mail.none;authpriv.none;cron.none
-/var/log/messages
*.info;mail.none;authpriv.none;cron.none @<IP Address>:<Port>
```

Where:

- `<IP Address>` is the IP address of QRadar.
- `<Port>` is the syslog port number, for example 514.

Step 6 Click Save Changes.

You are now ready to import a policy for the syslog handler on your McAfee Web Gateway appliance. For more information, see Importing the Syslog Log Handler.

Importing the Syslog Log Handler

To import a policy rule set for the syslog handler:

Step 1 From the support website, download the following compressed file:

`log_handlers-1.1.tar.gz`

Step 2 Extract the file.

The extract file provides XML files that are version dependent to your McAfee Web Gateway appliance.

<table>
<thead>
<tr>
<th>Version</th>
<th>Required XML file</th>
</tr>
</thead>
<tbody>
<tr>
<td>McAfee Web Gateway V7.0</td>
<td>syslog_loghandler_70.xml</td>
</tr>
<tr>
<td>McAfee Web Gateway V7.3</td>
<td>syslog_loghandler_73.xml</td>
</tr>
</tbody>
</table>

Step 3 Log in to your McAfee Web Gateway console.

Step 4 Using the menu toolbar, click Policy.

Step 5 Click Log Handler.

Step 6 Using the menu tree, select Default.

Step 7 From the Add list, select Rule Set from Library.
Step 8 Click **Import from File button**.

Step 9 Navigate to the directory containing the syslog_handler file you downloaded in and select syslog_loghandler.xml as the file to import.

Note: If the McAfee Web Gateway appliance detects any conflicts with the rule set, you must resolve the conflict. For more information, see your McAfee Web Gateway documentation.

Step 10 Click **OK**.

Step 11 Click **Save Changes**.

Step 12 You are now ready to configure the log source in QRadar.

QRadar automatically discovers syslog events from a McAfee Web Gateway appliance.

- If you want to manually configure QRadar to receive syslog events, select **McAfee Web Gateway** from the **Log Source Type** list.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*.

Configuring McAfee Web Gateway to communicate with QRadar (log file protocol)

The McAfee Web Gateway appliance allows you to forward event log files to an interim file server for retrieval by QRadar.

Procedure

Step 1 From the support website, download the following file:

 log_handlers-1.1.tar.gz

Step 2 Extract the file.

This will give you the access handler file required to configure your McAfee Web Gateway appliance.

 access_log_file_loghandler.xml

Step 3 Log in to your McAfee Web Gateway console.

Step 4 Using the menu toolbar, click **Policy**.

Note: If there is an existing access log configuration in your McAfee Web Gateway appliance, you must delete the existing access log from the Rule Set Library before adding access_log_file_loghandler.xml.

Step 5 Click **Log Handler**.

Step 6 Using the menu tree, select **Default**.

Step 7 From the **Add** list, select **Rule Set from Library**.

Step 8 Click **Import from File button**.

Step 9 Navigate to the directory containing the access_log_file_loghandler.xml file you downloaded and select syslog_loghandler.xml as the file to import.
When importing the rule set for access_log_file_loghandler.xml, a conflict occurs stating the Access Log Configuration already exists in the current configuration and a conflict solution is presented.

Step 10 If the McAfee Web Gateway appliance detects that the Access Log Configuration already exists, select the **Conflict Solution: Change name** option presented to resolve the rule set conflict.

For more information on resolving conflicts, see your McAfee Web Gateway vendor documentation.

You must configure your access.log file to be pushed to an interim server on an auto rotation. It does not matter if you push your files to the interim server based on time or size for your access.log file. For more information on auto rotation, see your McAfee Web Gateway vendor documentation.

Note: Due to the size of access.log files generated, we recommend you select the option **GZIP files after rotation** in your McAfee Web Gateway appliance.

Step 11 Click **OK**.

Step 12 Click **Save Changes**.

Note: By default McAfee Web Gateway is configured to write access logs to the /opt/mwg/log/user-defined-logs/access.log/ directory.

You are now ready to configure QRadar to receive access.log files from McAfee Web Gateway. For more information, see Pulling Data Using the Log File Protocol.

Pulling Data Using the Log File Protocol

A log file protocol source allows QRadar to retrieve archived log files from a remote host. The McAfee Web Gateway DSM supports the bulk loading of access.log files using the log file protocol source. The default directory for the McAfee Web Gateway access logs are

You are now ready to configure the log source and protocol in QRadar:

Step 1 To configure QRadar to receive events from a McAfee Web Gateway appliance, select **McAfee Web Gateway** from the **Log Source Type** list.

Step 2 To configure the protocol, you must select the **Log File** option from the **Protocol Configuration** list.

Step 3 To configure the **File Pattern** parameter, you must type a regex string for the access.log file, such as access[0-9]+.log.

Note: If you selected to GZIP your access log files, you must type access[0-9]+.log.gz for the **File Pattern** field and from the **Processor** list, select GZIP.
Creating an event map for McAfee Web Gateway events

Event mapping is required for all events that are collected from McAfee Web Gateway v7.0.0 and later.

You can individually map each event for your device to an event category in QRadar. Mapping events allows QRadar to identify, coalesce, and track reoccurring events from your network devices. Until you map an event, some events that are displayed in the Log Activity tab for McAfee Web Gateway are categorized as unknown and some events might be already assigned to an existing QID map. Unknown events are easily identified as the Event Name column and Low Level Category columns display Unknown.

Discovering unknown events

This ensures that you map all event types and that you do not miss events that are not generated frequently, repeat this procedure several times over a period of time.

Procedure

Step 1
Log in to QRadar.

Step 1
Click the Log Activity tab.

Step 2
Click Add Filter.

Step 3
From the first list, select Log Source.

Step 4
From the Log Source Group list, select the log source group or Other. Log sources that are not assigned to a group are categorized as Other.

Step 5
From the Log Source list, select your McAfee Web Gateway log source.

Step 6
Click Add Filter.

The Log Activity tab is displayed with a filter for your log source.

Step 7
From the View list, select Last Hour.

Any events generated by the McAfee Web Gateway DSM in the last hour are displayed. Events displayed as unknown in the Event Name column or Low Level Category column require event mapping in QRadar.

Note: You can save your existing search filter by clicking Save Criteria.

You are now ready to modify the event map.

Modifying the event map

Modifying an event map allows you to manually categorize events to a QRadar Identifier (QID) map. Any event categorized to a log source can be remapped to a new QRadar Identifier (QID).

Note: Events that do not have a defined log source cannot be mapped to an event. Events without a log source display SIM Generic Log in the Log Source column.
Procedure

Step 1 On the Event Name column, double-click an unknown event for McAfee Web Gateway.
The detailed event information is displayed.

Step 2 Click Map Event.

Step 3 From the Browse for QID pane, select any of the following search options to narrow the event categories for a QRadar Identifier (QID):
 a From the High-Level Category list, select a high-level event categorization.
 b From the Low-Level Category list, select a low-level event categorization.
 c From the Log Source Type list, select a log source type.
 The Log Source Type list allows you to search for QIDs from other log sources. Searching for QIDs by log source is useful when events are similar to another existing network device. For example, McAfee Web Gateway provides policy events, you might select another product that likely captures similar events.
 d To search for a QID by name, type a name in the QID/Name field.
 The QID/Name field allows you to filter the full list of QIDs for a specific word, for example, policy.

Step 4 Click Search.
A list of QIDs are displayed.

Step 5 Select the QID you want to associate to your unknown event.

Step 6 Click OK.
QRadar maps any additional events forwarded from your device with the same QID that matches the event payload. The event count increases each time the event is identified by QRadar.
If you update an event with a new QRadar Identifier (QID) map, past events stored in QRadar are not updated. Only new events are categorized with the new QID.

QRadar records all relevant and available information from the event. Before configuring a MetaIP device in QRadar, you must configure your device to forward syslog events. For information on configuring your MetaInfo MetaIP appliance, see your vendor documentation.

After you configure your MetaInfo MetaIP appliance the configuration for QRadar is complete. QRadar automatically discovers and creates a log source for syslog events forwarded from MetaInfo MetaIP appliances. However, you can manually create a log source for QRadar to receive syslog events. The following configuration steps are optional.

To manually configure a log source for MetaInfo MetaIP:

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

The Data Sources panel is displayed.

Step 4 Click the **Log Sources** icon.

The Log Sources window is displayed.

Step 5 Click **Add**.

The Add a log source window is displayed.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Metainfo MetaIP**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

The syslog protocol configuration is displayed.

Step 10 Configure the following values:
Step 11 Click Save.
Step 12 On the Admin tab, click Deploy Changes.
The configuration is complete.

Table 66-1 Syslog Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your MetaInfo MetaIP appliances.</td>
</tr>
</tbody>
</table>
This section provides information on DSMs for Microsoft products.

Microsoft Exchange Server

The Microsoft Exchange Server DSM for IBM Security QRadar accepts Exchange events by polling for event log files.

Supported versions

QRadar supports collecting events from Microsoft Exchange Servers with the following products:

<table>
<thead>
<tr>
<th>Version</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Exchange 2003</td>
<td>WinCollect</td>
</tr>
<tr>
<td></td>
<td>Note: For more information, see the WinCollect User Guide.</td>
</tr>
<tr>
<td>Microsoft Exchange 2007</td>
<td>Microsoft Exchange Protocol</td>
</tr>
<tr>
<td>Microsoft Exchange 2010</td>
<td>Microsoft Exchange Protocol</td>
</tr>
</tbody>
</table>
The Microsoft Exchange Protocol for QRadar supports several event types for mail and security events. Each event type contains events in a separate log file on your Microsoft Exchange Server. To retrieve events, you must create a log source in QRadar to poll the Exchange Server for the event log, which is downloaded by the Microsoft Exchange Protocol.

QRadar supports the following event types for Microsoft Exchange:

- Outlook Web Access events (OWA)
- Simple Mail Transfer Protocol events (SMTP)
- Message Tracking Protocol events (MSGTRK)

The log files for each event type are located in the following default directories:

<table>
<thead>
<tr>
<th>Version</th>
<th>Event Type</th>
<th>Default File Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Exchange 2003</td>
<td>OWA</td>
<td><code>c:\\WINDOWS\system32\LogFiles\W3SVC1/</code></td>
</tr>
<tr>
<td></td>
<td>SMTP</td>
<td><code>c:\\Program Files\\Microsoft\\Exchange Server\\TransportRoles\\Logs\\ProtocolLog/</code></td>
</tr>
<tr>
<td></td>
<td>MSGTRK</td>
<td>Not supported with QRadar.</td>
</tr>
<tr>
<td>Microsoft Exchange 2007</td>
<td>OWA</td>
<td><code>c:\\WINDOWS\system32\LogFiles\W3SVC1/</code></td>
</tr>
<tr>
<td></td>
<td>SMTP</td>
<td><code>c:\\Program Files\\Microsoft\\Exchange Server\\TransportRoles\\Logs\\ProtocolLog/</code></td>
</tr>
<tr>
<td></td>
<td>MSGTRK</td>
<td><code>c:\\Program Files\\Microsoft\\Exchange Server\\TransportRoles\\Logs\\MessageTracking/</code></td>
</tr>
<tr>
<td>Microsoft Exchange 2010</td>
<td>OWA</td>
<td><code>c:\\inetpub\\logs\\LogFiles\\W3SVC1/</code></td>
</tr>
<tr>
<td></td>
<td>SMTP</td>
<td><code>c:\\Program Files\\Microsoft\\Exchange Server\\V14\\TransportRoles\\Logs\\ProtocolLog/</code></td>
</tr>
<tr>
<td></td>
<td>MSGTRK</td>
<td><code>c:\\Program Files\\Microsoft\\Exchange Server\\V14\\TransportRoles\\Logs\\MessageTracking/</code></td>
</tr>
</tbody>
</table>

The Exchange Protocol configuration supports file paths that allow you to define a drive letter with the path information. The default file paths are typical for standard Exchange Server installations, but if you have changed the ExchangeInstallPath environment variable, you need to adjust the Microsoft Exchange Protocol accordingly. The Microsoft Exchange Protocol is capable of reading subdirectories of the OWA, SMTP, and MSGTRK folders for event logs.

Directory paths can be specified in the following formats:

- Correct - `c:\LogFiles/`
- Correct - `LogFiles/`
- Incorrect - `c:\LogFiles`
- Incorrect - `c$\LogFiles`
Required ports and privileges

The Microsoft Exchange Protocol polls your Exchange Server for OWA, SMTP, and MSGTRK event logs using NetBIOS.

You must ensure any firewalls located between the Exchange Server and the remote host being remotely polled allow traffic on the following ports:

- **TCP port 135** is used by the Microsoft Endpoint Mapper.
- **UDP port 137** is used for NetBIOS name service.
- **UDP port 138** is used for NetBIOS datagram service.
- **TCP port 139** is used for NetBIOS session service.
- **TCP port 445** is required for Microsoft Directory Services to transfer files across a Windows share.

If a log folder path contains an administrative share (C$), users with NetBIOS access on the administrative share (C$) have the proper access required to read the log files. Local or domain administrators have sufficient privileges to access log files that reside on administrative shares. Clearing the file path information from any log folder path field disables monitoring for that log type.

Configure OWA logs

Outlook Web Access event logs for Microsoft Exchange are generated by the Microsoft Internet Information System (IIS) installed with your Windows operating system.

IIS is capable of writing OWA event logs in several different formats. We recommend using the W3C log file format because the W3C format contains the highest level of configurable logging detail.

The following log formats are supported by the Microsoft Exchange Protocol:

- **W3C**
- **NCSA**
- **IIS**

The configuration steps to enable OWA event logs for your Microsoft Exchange Server is dependant on the version of IIS installed.

Table 67-3 Microsoft IIS Versions

<table>
<thead>
<tr>
<th>Operating system</th>
<th>IIS version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Server 2003</td>
<td>IIS 6.0</td>
</tr>
<tr>
<td>Microsoft Server 2008</td>
<td>IIS 7.0</td>
</tr>
<tr>
<td>Microsoft Server 2008R2</td>
<td>IIS 7.0</td>
</tr>
</tbody>
</table>
To configure OWA event logs for Microsoft IIS 6.0:

Step 1 On the desktop, select **Start > Run**.

Step 2 Type the following command:

`inetmgr`

Step 3 Click **OK**.

Step 4 In the IIS 6.0 Manager menu tree, expand **Local Computer**.

Step 5 Expand **Web Sites**.

Step 6 Right-click **Default Web Site** and select **Properties**.

Step 7 From the **Active Log Format** list, choose one of the following options:

- Select **W3C** (Go to **Step 8**)
- Select **NCSA** (Go to **Step 11**)
- Select **IIS** (Go to **Step 11**)

Step 8 Click **Properties**.

Step 9 Click the **Advanced** tab.

Step 10 From the list of properties, select all properties that you want to apply to the Microsoft Exchange Server DSM. You must select the following check boxes:

- **Method (cs-method)**
- **Protocol Version (cs-version)**

Step 11 Click **OK**.

QRadar supports OWA, SMTP, and MSGTRK event logs. After you configure the event log types required, then you are ready to create a log source in QRadar.

To configure OWA event logs for Microsoft IIS 7.0:

Step 1 On the desktop, select **Start > Run**.

Step 2 Type the following command:

`inetmgr`

Step 3 Click **OK**.

Step 4 In the IIS 7.0 Manager menu tree, expand **Local Computer**.

Step 5 Click **Logging**.

Step 6 From the **Format** list, choose one of the following options:

- Select **W3C** (Go to **Step 7**)
- Select **NCSA** (Go to **Step 9**)
- Select **IIS** (Go to **Step 9**)

Step 7 Click **Select Fields**.
Step 8 From the list of properties, select all properties that you want to apply to the Microsoft Exchange Server DSM. You must select the following check boxes:

- Method (cs-method)
- Protocol Version (cs-version)

Step 9 Click OK. Mic

QRadar supports OWA, SMTP, and MSGTRK event logs. After you configure all of the event log types you want to collect, then you are ready to create a log source in QRadar.

Configure SMTP logs SMTP logs created by the Exchange Server write SMTP send and receive email events that are part of the message delivery process.

SMTP protocol logging is not enabled by default on Exchange 2007 or Exchange 2010 installations. You must enable SMTP logging on both send and receive connectors. The instructions for enabling SMTP event logs apply to both Exchange Server 2007 and Exchange Server 2010.

To enable SMTP event logs:

Step 1 Start the Exchange Management Console.

Step 2 Configure your receive connector based on the server type:

- For edge transport servers - In the console tree, select Edge Transport and click the Receive Connectors tab.
- For hub transport servers - In the console tree, select Server Configuration > Hub Transport, then select the server and click the Receive Connectors tab.

Step 3 Select your Receive Connector and click Properties.

Step 4 Click the General tab.

Step 5 From the Protocol logging level list, select Verbose.

Step 6 Click Apply.

Step 7 Click OK.

You are now ready to configure your send connectors.

Step 8 Configure your send connector based on the server type:

- For edge transport servers - In the console tree, select Edge Transport and click the Send Connectors tab.
- For hub transport servers - In the console tree, select Organization Configuration > Hub Transport, then select the server and click the Send Connectors tab.

Step 9 Select your Send Connector and click Properties.

Step 10 Click the General tab.

Step 11 From the Protocol logging level list, select Verbose.

Step 12 Click Apply.
Step 13 Click OK.
Logging for SMTP is now enabled.

Configure MSGTRK logs
Message Tracking logs created by the Exchange Server detail the message activity that takes on your Exchange Server, including the message path information.

MSGTRK logs are enabled by default on Exchange 2007 or Exchange 2010 installations. The following configuration steps are optional.

To enable MSGTRK event logs:
Step 1 Start the Exchange Management Console.
Step 2 Configure your receive connector based on the server type:
 • For edge transport servers - In the console tree, select Edge Transport and click Properties.
 • For hub transport servers - In the console tree, select Server Configuration > Hub Transport, then select the server and click Properties.
Step 3 Click the Log Settings tab.
Step 4 Select the Enable message tracking check box.
Step 5 Click Apply.
Step 6 Click OK.
MSGTRK events are now enabled on your Exchange Server.

Configure a log source
The Microsoft Windows Exchange protocol supports SMTP, OWA, and message tracking logs for Microsoft Exchange.

To configure a log source:
Step 1 Click the Admin tab.
Step 2 On the navigation menu, click Data Sources.
Step 3 Click the Log Sources icon.
Step 4 In the Log Source Name field, type a name for the log source.
Step 5 In the Log Source Description field, type a description for the log source.
Step 6 From the Log Source Type list, select Microsoft Exchange Server.
Step 7 From the Protocol Configuration list, select Microsoft Exchange.
Step 8 Configure the following parameters:
Table 67-4 Microsoft Exchange Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type an IP address, hostname, or name to identify the Windows Exchange event source. IP addresses or host names are recommended as they allow QRadar to identify a log file to a unique event source.</td>
</tr>
<tr>
<td>Server Address</td>
<td>Type the IP address of the Microsoft Exchange server.</td>
</tr>
<tr>
<td>Domain</td>
<td>Type the domain required to access the Microsoft Exchange server. This parameter is optional.</td>
</tr>
<tr>
<td>Username</td>
<td>Type the username required to access the Microsoft Exchange server.</td>
</tr>
<tr>
<td>Password</td>
<td>Type the password required to access the Microsoft Exchange server.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password required to access the Microsoft Exchange server.</td>
</tr>
<tr>
<td>SMTP Log Folder Path</td>
<td>Type the directory path to access the SMTP log files. Clearing the file path information from the SMTP Log Folder Path field disables SMTP monitoring.</td>
</tr>
<tr>
<td>OWA Log Folder Path</td>
<td>Type the directory path to access the OWA log files. Clearing the file path information from the OWA Log Folder Path field disables OWA monitoring.</td>
</tr>
<tr>
<td>MSGTRK Log Folder Path</td>
<td>Type the directory path to access message tracking log files. Message tracking is only available on Microsoft Exchange 2007 servers assigned the Hub Transport, Mailbox, or Edge Transport server role.</td>
</tr>
<tr>
<td>File Pattern</td>
<td>Type the regular expression (regex) required to filter the filenames. All files matching the regex are processed. The default is .*. (?: log</td>
</tr>
<tr>
<td>Force File Read</td>
<td>Select this check box to force the protocol to read the log file. By default, the check box is selected. If the check box is cleared, the log file is read when the log file modified time or file size attributes change.</td>
</tr>
<tr>
<td>Recursive</td>
<td>Select this check box if you want the file pattern to search sub folders. By default, the check box is selected.</td>
</tr>
<tr>
<td>Polling Interval (in seconds)</td>
<td>Type the polling interval, which is the number of seconds between queries to the log files to check for new data. The minimum polling interval is 10 seconds, with a maximum polling interval of 3,600 seconds. The default is 10 seconds.</td>
</tr>
<tr>
<td>Throttle Events/Sec</td>
<td>Type the maximum number of events the Microsoft Exchange protocol forwards every second. The minimum value is 100 EPS and the maximum is 20,000 EPS. The default value is 100 EPS.</td>
</tr>
</tbody>
</table>
Step 9 Click Save.
Step 10 On the Admin tab, click Deploy Changes.

The configuration is complete.

Microsoft IAS Server

The Microsoft IAS Server DSM for IBM Security QRadar accepts RADIUS events using syslog. You can integrate Internet Authentication Service (IAS) or Network Policy Server (NPS) logs with QRadar using WinCollect. For more information, see the IBM Security QRadar WinCollect Users Guide.

You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Microsoft Windows IAS Server:

> From the Log Source Type list, select the Microsoft IAS Server option.

For more information on configuring devices, see the IBM Security QRadar Log Sources User Guide. For more information about your server, see your vendor documentation.

Microsoft DHCP Server

The Microsoft DHCP Server DSM for IBM Security QRadar accepts DHCP events using the Microsoft DHCP Server protocol or WinCollect.

Configure your Microsoft DHCP Server

Before you can integrate your Microsoft DHCP Server with QRadar, you must enable audit logging.

To configure the Microsoft DHCP Server:

Step 1 Log in to the DHCP Server Administration Tool.

Step 2 From the DHCP Administration Tool, right-click on the DHCP server and select Properties.

The Properties window is displayed.

Step 3 Click the General tab.

The General panel is displayed.

Step 4 Click Enable DHCP Audit Logging.

The audit log file is created at midnight and must contain a three-character day of the week abbreviation.

Table 67-5 Microsoft DHCP Log File Examples

<table>
<thead>
<tr>
<th>Log Type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4</td>
<td>DhcpSrvLog-Mon.log</td>
</tr>
<tr>
<td>IPv6</td>
<td>DhcpV6SrvLog-Wed.log</td>
</tr>
</tbody>
</table>
By default Microsoft DHCP is configured to write audit logs to the
%WINDIR%\system32\dhcp\ directory.

Step 5 Restart the DHCP service.

You are now ready to configure the log source and protocol in QRadar:

Step 1 To configure QRadar to receive events from a Microsoft DHCP Server, you must
select the **Microsoft DHCP Server** option from the **Log Source Type** list.

Step 2 To configure the protocol, you must select the **Microsoft DHCP** option from the
Protocol Configuration list. For more information on configuring the Microsoft
DHCP protocol, see the *IBM Security QRadar Log Sources User Guide*.

Note: To integrate Microsoft DHCP Server versions 2000/2003 with QRadar using
WinCollect, see the *WinCollect Users Guide*.

Microsoft IIS Server

The Microsoft Internet Information Services (IIS) Server DSM for IBM Security
QRadar accepts FTP, HTTP, NNTP, and SMTP events using syslog.

You can integrate a Microsoft IIS Server with QRadar using one of the following
methods:

- Configure QRadar to connect to your Microsoft IIS Server using the IIS
 Protocol. The IIS Protocol collects HTTP events from Microsoft IIS servers. For
 more information, see Configure Microsoft IIS using the IIS Protocol.

- Configure a Snare Agent with your Microsoft IIS Server to forward event
 information to QRadar. For more information, see Configuring Microsoft IIS
 Using a Snare Agent.

- Configure WinCollect to forward IIS events to QRadar. For more information,
 see Configuring Microsoft IIS using Adaptive Log Exporter.

For more information, see the *WinCollect Users Guide*.

<table>
<thead>
<tr>
<th>Version</th>
<th>Supported Log Type</th>
<th>Method of Import</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft IIS 6.0</td>
<td>SMTP, NNTP, FTP, HTTP</td>
<td>IIS Protocol</td>
</tr>
<tr>
<td>Microsoft IIS 6.0</td>
<td>SMTP, NNTP, FTP, HTTP</td>
<td>WinCollect or Snare</td>
</tr>
<tr>
<td>Microsoft IIS 7.0</td>
<td>HTTP</td>
<td>IIS Protocol</td>
</tr>
<tr>
<td>Microsoft IIS 7.0</td>
<td>SMTP, NNTP, FTP, HTTP</td>
<td>WinCollect or Snare</td>
</tr>
</tbody>
</table>

Configure Microsoft IIS using the IIS Protocol

Before you configure QRadar with the Microsoft IIS protocol, you must configure
your Microsoft IIS Server to generate the proper log format.
The Microsoft IIS Protocol only supports the W3C Extended Log File format. The Microsoft authentication protocol NTLMv2 Session is not supported by the Microsoft IIS protocol.

Configuring Your IIS Server
To configure the W3C event log format in Microsoft IIS:

Step 1 Log in to your Microsoft Information Services (IIS) Manager.
Step 2 In the IIS Manager menu tree, expand Local Computer.
Step 3 Select Web Sites.
Step 4 Right-click on Default Web Sites and select Properties. The Default Web Site Properties window is displayed.
Step 5 Select the Web Site tab.
Step 6 Select the Enable logging check box.
Step 7 From the Active Log Format list, select W3C Extended Log File Format.
Step 8 From the Enable Logging pane, click Properties. The Logging Properties window is displayed.
Step 9 Click the Advanced tab.
Step 10 From the list of properties, select check boxes for the following W3C properties:

<table>
<thead>
<tr>
<th>IIS 6.0 Required Properties</th>
<th>IIS 7.0 Required Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date (date)</td>
<td>Date (date)</td>
</tr>
<tr>
<td>Time (time)</td>
<td>Time (time)</td>
</tr>
<tr>
<td>Client IP Address (c-ip)</td>
<td>Client IP Address (c-ip)</td>
</tr>
<tr>
<td>User Name (cs-username)</td>
<td>User Name (cs-username)</td>
</tr>
<tr>
<td>Server IP Address (s-ip)</td>
<td>Server IP Address (s-ip)</td>
</tr>
<tr>
<td>Server Port (s-port)</td>
<td>Server Port (s-port)</td>
</tr>
<tr>
<td>Method (cs-method)</td>
<td>Method (cs-method)</td>
</tr>
<tr>
<td>URI Stem (cs-uri-stem)</td>
<td>URI Stem (cs-uri-stem)</td>
</tr>
<tr>
<td>URI Query (cs-uri-query)</td>
<td>URI Query (cs-uri-query)</td>
</tr>
<tr>
<td>Protocol Status (sc-status)</td>
<td>Protocol Status (sc-status)</td>
</tr>
<tr>
<td>Protocol Version (cs-version)</td>
<td>User Agent (cs(User-Agent))</td>
</tr>
<tr>
<td>User Agent (cs(User-Agent))</td>
<td></td>
</tr>
</tbody>
</table>

Step 11 Click OK.
You are now ready to configure the log source in QRadar.
Configuring the Microsoft IIS Protocol in QRadar

To configure the log source

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

The Data Sources panel is displayed.

Step 4 Click the **Log Sources** icon.

The Log Sources window is displayed.

Step 5 Click **Add**.

The Add a log source window is displayed.

Step 6 From the **Log Source Type** list, select **Microsoft IIS Server**.

Step 7 From the **Protocol Configuration** list, select **Microsoft IIS**.

Step 8 Configure the following values:

<table>
<thead>
<tr>
<th>Table 67-8</th>
<th>Microsoft IIS Protocol Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for the log source.</td>
</tr>
<tr>
<td>Server Address</td>
<td>Type the IP address of the Microsoft IIS server.</td>
</tr>
<tr>
<td>Username</td>
<td>Type the username required to access the Microsoft IIS server.</td>
</tr>
<tr>
<td>Password</td>
<td>Type the password required to access the Microsoft IIS server.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password required to access the Microsoft IIS server.</td>
</tr>
<tr>
<td>Domain</td>
<td>Type the domain required to access the Microsoft IIS server.</td>
</tr>
<tr>
<td>Folder Path</td>
<td>Type the directory path to access the IIS log files. The default is <code>/WINDOWS/system32/LogFiles/W3SVC1/</code> Parameters that support file paths allow you to define a drive letter with the path information. For example, you can use <code>c$/LogFiles/</code> for an administrative share or <code>LogFiles/</code> for a public share folder path, but not <code>c:/LogFiles</code>. If a log folder path contains an administrative share (C$), users with NetBIOS access on the administrative share (C$) have the proper access required to read the log files. Local or domain administrators have sufficient privileges to access log files that reside on administrative shares.</td>
</tr>
</tbody>
</table>
Step 9 Click **Save**.

Step 10 The Microsoft IIS protocol configuration is complete.

Configuring Microsoft IIS Using a Snare Agent

If you want to use a snare agent to integrate the Microsoft IIS server with QRadar, you must configure a Snare Agent to forward events.

Configuring Microsoft IIS using a Snare Agent with QRadar requires the following:

1. **Configure Your Microsoft IIS Server for Snare**
2. **Configure the Snare Agent**
3. **Configure a Microsoft IIS log source**

Configure Your Microsoft IIS Server for Snare

To configure a Snare Agent to integrate a Microsoft IIS server with QRadar:

Step 1 Log in to your Microsoft Information Services (IIS) Manager.

Step 2 In the IIS Manager menu tree, expand **Local Computer**.

Step 3 Select **Web Sites**.

Step 4 Right-click on **Default Web Sites** and select **Properties**.

The Default Web Site Properties window is displayed.

Step 5 Select the **Web Site** tab.

Step 6 Select the **Enable logging** check box.

Step 7 From the **Active Log Format** list, select **W3C Extended Log File Format**.

Step 8 From the Enable Logging panel, click **Properties**.

The Logging Properties window is displayed.

Step 9 Click the **Advanced** tab.
Step 10 From the list of properties, select check boxes for the following W3C properties:

<table>
<thead>
<tr>
<th>IIS 6.0 Required Properties</th>
<th>IIS 7.0 Required Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date (date)</td>
<td>Date (date)</td>
</tr>
<tr>
<td>Time (time)</td>
<td>Time (time)</td>
</tr>
<tr>
<td>Client IP Address (c-ip)</td>
<td>Client IP Address (c-ip)</td>
</tr>
<tr>
<td>User Name (cs-username)</td>
<td>User Name (cs-username)</td>
</tr>
<tr>
<td>Server IP Address (s-ip)</td>
<td>Server IP Address (s-ip)</td>
</tr>
<tr>
<td>Server Port (s-port)</td>
<td>Server Port (s-port)</td>
</tr>
<tr>
<td>Method (cs-method)</td>
<td>Method (cs-method)</td>
</tr>
<tr>
<td>URI Stem (cs-uri-stem)</td>
<td>URI Stem (cs-uri-stem)</td>
</tr>
<tr>
<td>URI Query (cs-uri-query)</td>
<td>URI Query (cs-uri-query)</td>
</tr>
<tr>
<td>Protocol Status (sc-status)</td>
<td>Protocol Status (sc-status)</td>
</tr>
<tr>
<td>Protocol Version (cs-version)</td>
<td>User Agent (cs(User-Agent))</td>
</tr>
<tr>
<td>User Agent (cs(User-Agent))</td>
<td></td>
</tr>
</tbody>
</table>

Step 11 Click OK.

Step 12 You are now ready to configure the Snare Agent.

Configure the Snare Agent

To configure your Snare Agent:

Step 1 Access the InterSeCT Alliance website:

http://www.intersectalliance.com/projects/SnareIIS/

Step 2 Download open source Snare Agent for IIS, version 1.2:

SnareIISSetup-1.2.exe

Step 3 Install the open source Snare Agent for IIS.

Step 4 In the Snare Agent, select Audit Configuration.

The Audit Service Configuration window is displayed.

Step 5 In the Target Host field, type the IP address of your QRadar.

Step 6 In the Log Directory field type the IIS file location:

\%SystemRoot%\System32\LogFiles\ By default Snare for IIS is configured to look for logs in C:\WINNT\System32\LogFiles\.

Step 7 For Destination, select Syslog.

Step 8 For Delimiter, select TAB.

Step 9 Select the Display IIS Header Information check box.

Step 10 Click OK.
Configure a Microsoft IIS log source

QRadar automatically discovers and creates a log source for syslog events from Microsoft IIS forwarded from a Snare agent. These configuration steps are optional.

To manually create a Microsoft IIS log source in QRadar:

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
 The Data Sources panel is displayed.
Step 4 Click the Log Sources icon.
 The Log Sources window is displayed.
Step 5 Click Add.
 The Add a log source window is displayed.
Step 6 From the Log Source Type list, select Microsoft IIS Server.
Step 7 From the Protocol Configuration list, select Syslog.
Step 8 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for the log source.</td>
</tr>
</tbody>
</table>

Step 9 Click Save.
Step 10 On the Admin tab, click Deploy Changes.
 The configuration is complete.

Configuring Microsoft IIS using Adaptive Log Exporter

WinCollect is a stand-alone application that allows you to integrate device logs or application event data with QRadar or QRadar Log Manager.

To integrate the Adaptive Log Exporter with Microsoft IIS:

Step 1 Log in to your Microsoft Information Services (IIS) Manager.
Step 2 In the IIS Manager menu tree, expand Local Computer.
Step 3 Select Web Sites.
Step 4 Right-click on Default Web Site and select Properties.
 The Web Sites Properties window is displayed.
Step 5 From the Active Log Format list, select one of the following:
 • Select NCSA. Go to Step 9.
 • Select IIS. Go to Step 9.
 • Select W3C. Go to Step 6.
Step 6 Click Properties.

The Properties window is displayed.

Step 7 Click the Advanced tab.

Step 8 From the list of properties, select all event properties that you want to apply to the Microsoft IIS event log. The selected properties must include the following:

a Select the Method (cs-method) check box.

b Select the Protocol Version (cs-version) check box.

Step 9 Click OK.

Step 10 You are now ready to configure the Adaptive Log Exporter.

For more information on installing and configuring Microsoft IIS for the Adaptive Log Exporter, see the Adaptive Log Exporter User Guide.

Microsoft ISA

The Microsoft Internet and Acceleration (ISA) DSM for IBM Security QRadar accepts events using syslog. You can integrate Microsoft ISA Server with QRadar using WinCollect. For more information, see the WinCollect Users Guide.

Note: The Microsoft ISA DSM also supports events from Microsoft Threat Management Gateway using WinCollect.

Microsoft Hyper-V

The IBM Security QRadar DSM for Microsoft Hyper-V can collect event logs from your Microsoft Hyper-V servers.

The following table describes the specifications for the Microsoft Hyper-V Server DSM:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Microsoft</td>
</tr>
<tr>
<td>DSM</td>
<td>Microsoft Hyper-V</td>
</tr>
<tr>
<td>RPM file name</td>
<td>DSM-MicrosoftHyperV-build_number.rpm</td>
</tr>
<tr>
<td>Supported versions</td>
<td>v2008 and v2012</td>
</tr>
<tr>
<td>Protocol</td>
<td>WinCollect</td>
</tr>
<tr>
<td>QRadar recorded events</td>
<td>All relevant events</td>
</tr>
<tr>
<td>Automatically discovered</td>
<td>No</td>
</tr>
<tr>
<td>Includes identity</td>
<td>No</td>
</tr>
</tbody>
</table>
Microsoft Hyper-V DSM integration process

To integrate Microsoft Hyper-V DSM with QRadar, use the following procedures:

1. Download and install the most recent WinCollect RPM on your QRadar Console.
2. Install a WinCollect agent on the Hyper-V system or on another system that has a route to the Hyper-V system. You can also use an existing WinCollect agent. For more information, see the *WinCollect User Guide*.
3. If automatic updates are not enabled, download and install the DSM RPM for Microsoft Hyper-V on your QRadar Console. RPMs need to be installed only one time.
4. For each Microsoft Hyper-V server that you want to integrate, create a log source on the QRadar Console.

Related tasks
- Manually installing a DSM
- Configuring a Microsoft Hyper-V log source in QRadar

Configuring a Microsoft Hyper-V log source in QRadar

To collect Microsoft Hyper-V events, configure a log source in QRadar.

Before you begin

Ensure that you have the current credentials for the Microsoft Hyper-V server and the WinCollect agent can access it.

Procedure

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 In the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 From the Log Source Type list, select Microsoft Hyper-V.
Step 7 From the Protocol Configuration list, select WinCollect.
Step 8 From the Application or Service Log Type list, select Microsoft Hyper-V.
Step 9 From the WinCollect Agent list, select the WinCollect agent that accesses the Microsoft Hyper-V server.
Step 10 Configure the remaining parameters.
Step 11 Click Save.
Step 12 On the Admin tab, click Deploy Changes.

Microsoft SharePoint

The Microsoft SharePoint DSM for IBM Security QRadar collects audit events from the SharePoint database using JDBC to poll an SQL database for audit events.
Audit events allow you to track changes made to sites, files, and content managed by Microsoft SharePoint.

Microsoft SharePoint audit events include:
- Site name and the source from which the event originated
- Item ID, item name, and event location
- User ID associated with the event
- Event type, timestamp, and event action

There are two log source configurations that can be used to collect Microsoft SharePoint database events.

1. Create a database view in your SharePoint database to poll for events with the JDBC protocol. See Configuring a database view to collect audit events.

2. Create a JDBC log source and use predefined database queries to collect SharePoint events. This option does not require an administrator to create database view. See Configure a SharePoint log source for predefined database queries.

Configuring a database view to collect audit events

Before you can integrate Microsoft SharePoint events with QRadar, you must complete the following tasks:

1. Configure the audit events you want to collect for Microsoft SharePoint.
2. Create an SQL database view for QRadar in Microsoft SharePoint.
3. Configure a log source to collect audit events from Microsoft SharePoint.

Note: Ensure that no firewall rules are blocking the communication between QRadar and the database associated with Microsoft SharePoint.

Configure Microsoft SharePoint audit events

The audit settings for Microsoft SharePoint allow you to define what events are tracked for each site managed by Microsoft SharePoint.

Procedure

Step 1 Log in to your Microsoft SharePoint site.

Step 2 From the Site Actions list, select Site Settings.

Step 3 From the Site Collection Administration list, click Site collection audit settings.

Step 4 From the Documents and Items section, select a check box for each document and item audit event you want to audit.

Step 5 From the Lists, Libraries, and Sites section, select a check box for each content audit event you want to enable.

Step 6 Click OK.

You are now ready to create a database view for QRadar to poll Microsoft SharePoint events.
Create a database view for Microsoft SharePoint

Microsoft SharePoint uses SQL Server Management Studio (SSMS) to manage the SharePoint SQL databases. To collect audit event data, you must create a database view on your Microsoft SharePoint server that is accessible to QRadar.

Procedure

Step 1 Log in to the system hosting your Microsoft SharePoint SQL database.

Step 2 On the desktop, select **Start > Run**.

Step 3 Type the following:

```sql
ssms
```

Step 4 Click **OK**.

The Microsoft SQL Server 2008 displays the Connect to Server window.

Step 5 Log in to your Microsoft SharePoint database.

Step 6 Click **Connect**.

Step 7 From the Object Explorer for your SharePoint database, select **Databases > WSS_Logging > Views**.

Step 8 From the navigation menu, click **New Query**.

Step 9 In the Query pane, type the following Transact-SQL statement to create the AuditEvent database view:

```sql
create view dbo.AuditEvent as select a.siteID,
    a.ItemId,
    a.ItemType,
    u.tp_Title as "User",
    a.MachineName,
    a.MachineIp,
    a.DocLocation,
    a.LocationType,
    a.Occurred as "EventTime",
    a.Event as "EventID",
    a.EventName,
    a.EventSource,
    a.SourceName,
    a.EventData
from WSS_Content.dbo.AuditData a, WSS_Content.dbo.UserInfo u
where a.UserId = u.tp_ID and a.SiteId = u.tp_SiteID;
```

Step 10 From the Query pane, right-click and select **Execute**.

If the view is created, the following message is displayed in the results pane:

`Command(s) completed successfully.`

The dbo.AuditEvent view is created. You are now ready to configure the log source in QRadar to poll the view for audit events.
Configure a SharePoint log source for a database view

QRadar requires a user account with the proper credentials to access the view you created in the Microsoft SharePoint database. To successfully poll for audit data from the Microsoft SharePoint database, you must create a new user or provide the log source with existing user credentials to read from the AuditEvent view. For more information on creating a user account, see your vendor documentation.

To configure QRadar to receive SharePoint events:

Step 1 Click the Admin tab.
Step 2 On the navigation menu, click Data Sources.
Step 3 Click the Log Sources icon.
Step 4 In the Log Source Name field, type a name for the log source.
Step 5 In the Log Source Description field, type a description for the log source.
Step 6 From the Log Source Type list, select Microsoft SharePoint.
Step 7 From the Protocol Configuration list, select JDBC.
Step 8 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the identifier for the log source. Type the log source identifier in the following format:</td>
</tr>
<tr>
<td></td>
<td><code><SharePoint Database>@<SharePoint Database Server IP or Host Name></code></td>
</tr>
<tr>
<td></td>
<td>Where:</td>
</tr>
<tr>
<td></td>
<td><code><SharePoint Database></code> is the database name, as entered in the Database Name parameter.</td>
</tr>
<tr>
<td></td>
<td><code><SharePoint Database Server IP or Host Name></code> is the hostname or IP address for this log source, as entered in the IP or Hostname parameter.</td>
</tr>
<tr>
<td>Database Type</td>
<td>From the list, select MSDE.</td>
</tr>
<tr>
<td>Database Name</td>
<td>Type WSS_Logging as the name of the Microsoft SharePoint database.</td>
</tr>
<tr>
<td>IP or Hostname</td>
<td>Type the IP address or host name of the Microsoft SharePoint SQL Server.</td>
</tr>
<tr>
<td>Port</td>
<td>Type the port number used by the database server. The default port for MSDE is 1433.</td>
</tr>
<tr>
<td></td>
<td>The JDBC configuration port must match the listener port of the Microsoft SharePoint database. The Microsoft SharePoint database must have incoming TCP connections enabled to communicate with QRadar.</td>
</tr>
<tr>
<td></td>
<td>Note: If you define a Database Instance when using MSDE as the database type, you must leave the Port parameter blank in your configuration.</td>
</tr>
</tbody>
</table>

IBM Security QRadar DSM Configuration Guide
Table 67-2 Microsoft SharePoint JDBC Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>Type the username the log source can use to access the Microsoft SharePoint database.</td>
</tr>
<tr>
<td>Password</td>
<td>Type the password the log source can use to access the Microsoft SharePoint database. The password can be up to 255 characters in length.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password required to access the database. The confirmation password must be identical to the password entered in the Password field.</td>
</tr>
<tr>
<td>Authentication Domain</td>
<td>If you select MSDE as the Database Type and the database is configured for Windows, you must define the Windows Authentication Domain. Otherwise, leave this field blank.</td>
</tr>
<tr>
<td>Database Instance</td>
<td>Optional. Type the database instance, if you have multiple SQL server instances on your database server.</td>
</tr>
<tr>
<td>Note: If you use a non-standard port in your database configuration, or have blocked access to port 1434 for SQL database resolution, you must leave the Database Instance parameter blank in your configuration.</td>
<td></td>
</tr>
<tr>
<td>Table Name</td>
<td>Type AuditEvent as the name of the table or view that includes the event records.</td>
</tr>
<tr>
<td>Select List</td>
<td>Type * for all fields from the table or view. You can use a comma-separated list to define specific fields from tables or views, if required for your configuration. The list must contain the field defined in the Compare Field parameter. The comma-separated list can be up to 255 alphanumeric characters in length. The list can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period(.).</td>
</tr>
<tr>
<td>Compare Field</td>
<td>Type EventTime as the compare field. The compare field is used to identify new events added between queries to the table.</td>
</tr>
<tr>
<td>Start Date and Time</td>
<td>Optional. Type the start date and time for database polling. The Start Date and Time parameter must be formatted as yyyy-MM-dd HH:mm with HH specified using a 24 hour clock. If the start date or time is clear, polling begins immediately and repeats at the specified polling interval.</td>
</tr>
<tr>
<td>Use Prepared Statements</td>
<td>Select the Use Prepared Statements check box. Prepared statements allows the JDBC protocol source to setup the SQL statement one time, then run the SQL statement many times with different parameters. For security and performance reasons, we recommend that you use prepared statements. Clearing this check box requires you to use an alternative method of querying that does not use pre-compiled statements.</td>
</tr>
</tbody>
</table>
Configure a SharePoint log source for predefined database queries

Administrators who are not permitted to create a database view due to policy restrictions can collect Microsoft SharePoint events with a log source that uses predefined queries. Predefined queries are customized statements that are capable of joining data from separate tables when the database is polled by the JDBC protocol. To successfully poll for audit data from the Microsoft SharePoint database, you must create a new user or provide the log source with existing user credentials. For more information on creating a user account, see your vendor documentation.

Table 67-2 Microsoft SharePoint JDBC Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polling Interval</td>
<td>Type the polling interval, which is the amount of time between queries to the AuditEvent view you created. The default polling interval is 10 seconds.</td>
</tr>
<tr>
<td></td>
<td>You can define a longer polling interval by appending H for hours or M for minutes to the numeric value. The maximum polling interval is 1 week in any time format. Numeric values entered without an H or M poll in seconds.</td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The default value is 20000 EPS.</td>
</tr>
<tr>
<td>Use Named Pipe Communication</td>
<td>Clear the Use Named Pipe Communications check box.</td>
</tr>
<tr>
<td></td>
<td>When using a Named Pipe connection, the username and password must be the appropriate Windows authentication username and password and not the database username and password. Also, you must use the default Named Pipe.</td>
</tr>
<tr>
<td>Use NTLMv2</td>
<td>Select the Use NTLMv2 check box.</td>
</tr>
<tr>
<td></td>
<td>This option forces MSDE connections to use the NTLMv2 protocol when communicating with SQL servers that require NTLMv2 authentication. The default value of the check box is selected.</td>
</tr>
<tr>
<td></td>
<td>If the Use NTLMv2 check box is selected, it has no effect on MSDE connections to SQL servers that do not require NTLMv2 authentication.</td>
</tr>
<tr>
<td>Use SSL</td>
<td>Select this check box if your connection supports SSL communication. This option requires additional configuration on your SharePoint database and also requires administrators to configure certificates on both appliances.</td>
</tr>
<tr>
<td>Database Cluster Name</td>
<td>If you select the Use Named Pipe Communication check box, the Database Cluster Name parameter is displayed. If you are running your SQL server in a cluster environment, define the cluster name to ensure Named Pipe communication functions properly.</td>
</tr>
</tbody>
</table>

Note: Selecting a value for the Credibility parameter greater than 5 will weight your Microsoft SharePoint log source with a higher importance compared to other log sources in QRadar.

Step 9 Click **Save**.

Step 10 On the **Admin** tab, click **Deploy Changes**.

Microsoft SharePoint 469
Procedure

Step 1 Click the Admin tab.

Step 2 On the navigation menu, click Data Sources.

Step 3 Click the Log Sources icon.

Step 4 In the Log Source Name field, type a name for the log source.

Step 5 In the Log Source Description field, type a description for the log source.

Step 6 From the Log Source Type list, select Microsoft SharePoint.

Step 7 From the Protocol Configuration list, select JDBC.

Step 8 Configure the following values:

Table 67-3 Microsoft SharePoint JDBC Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Log Source Identifier | Type the identifier for the log source. Type the log source identifier in the following format:
 <SharePoint Database>@<SharePoint Database Server IP or Host Name>
 Where:
 <SharePoint Database> is the database name, as entered in the Database Name parameter.
 <SharePoint Database Server IP or Host Name> is the hostname or IP address for this log source, as entered in the IP or Hostname parameter. |
| Database Type | From the list, select MSDE. |
| Database Name | Type WSS_Logging as the name of the Microsoft SharePoint database. |
| IP or Hostname | Type the IP address or host name of the Microsoft SharePoint SQL Server. |
| Port | Type the port number used by the database server. The default port for MSDE is 1433.
The JDBC configuration port must match the listener port of the Microsoft SharePoint database. The Microsoft SharePoint database must have incoming TCP connections enabled to communicate with QRadar.
Note: If you define a Database Instance when using MSDE as the database type, you must leave the Port parameter blank in your configuration. |
| Username | Type the username the log source can use to access the Microsoft SharePoint database. |
| Password | Type the password the log source can use to access the Microsoft SharePoint database.
The password can be up to 255 characters in length. |
Confirm Password

Confirm the password required to access the database. The confirmation password must be identical to the password entered in the **Password** field.

Authentication Domain

If you select MSDE as the Database Type and the database is configured for Windows, you must define the Windows Authentication Domain. Otherwise, leave this field blank.

Database Instance

Optional. Type the database instance, if you have multiple SQL server instances on your database server.

Note: If you use a non-standard port in your database configuration, or have blocked access to port 1434 for SQL database resolution, you must leave the Database Instance parameter blank in your configuration.

Predefined Query

From the list, select **Microsoft SharePoint**.

Use Prepared Statements

Select the **Use Prepared Statements** check box.

Prepared statements allows the JDBC protocol source to setup the SQL statement one time, then run the SQL statement many times with different parameters. For security and performance reasons, we recommend that you use prepared statements.

Clearing this check box requires you to use an alternative method of querying that does not use pre-compiled statements.

Start Date and Time

Optional. Type the start date and time for database polling.

If a start date or time is not selected, polling begins immediately and repeats at the specified polling interval.

Polling Interval

Type the polling interval, which is the amount of time between queries to the AuditEvent view you created. The default polling interval is 10 seconds.

You can define a longer polling interval by appending H for hours or M for minutes to the numeric value. The maximum polling interval is 1 week in any time format. Numeric values entered without an H or M poll in seconds.

EPS Throttle

Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The default value is 20000 EPS.

Use Named Pipe Communication

Clear the Use Named Pipe Communications check box.

When using a Named Pipe connection, the username and password must be the appropriate Windows authentication username and password and not the database username and password. Also, you must use the default Named Pipe.

Table 67-3 Microsoft SharePoint JDBC Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirm Password</td>
<td>Confirm the password required to access the database. The confirmation password must be identical to the password entered in the Password field.</td>
</tr>
<tr>
<td>Authentication Domain</td>
<td>If you select MSDE as the Database Type and the database is configured for Windows, you must define the Windows Authentication Domain. Otherwise, leave this field blank.</td>
</tr>
<tr>
<td>Database Instance</td>
<td>Optional. Type the database instance, if you have multiple SQL server instances on your database server. Note: If you use a non-standard port in your database configuration, or have blocked access to port 1434 for SQL database resolution, you must leave the Database Instance parameter blank in your configuration.</td>
</tr>
<tr>
<td>Predefined Query</td>
<td>From the list, select Microsoft SharePoint.</td>
</tr>
<tr>
<td>Use Prepared Statements</td>
<td>Select the Use Prepared Statements check box. Prepared statements allows the JDBC protocol source to setup the SQL statement one time, then run the SQL statement many times with different parameters. For security and performance reasons, we recommend that you use prepared statements. Clearing this check box requires you to use an alternative method of querying that does not use pre-compiled statements.</td>
</tr>
<tr>
<td>Start Date and Time</td>
<td>Optional. Type the start date and time for database polling. If a start date or time is not selected, polling begins immediately and repeats at the specified polling interval.</td>
</tr>
<tr>
<td>Polling Interval</td>
<td>Type the polling interval, which is the amount of time between queries to the AuditEvent view you created. The default polling interval is 10 seconds. You can define a longer polling interval by appending H for hours or M for minutes to the numeric value. The maximum polling interval is 1 week in any time format. Numeric values entered without an H or M poll in seconds.</td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The default value is 20000 EPS.</td>
</tr>
<tr>
<td>Use Named Pipe Communication</td>
<td>Clear the Use Named Pipe Communications check box. When using a Named Pipe connection, the username and password must be the appropriate Windows authentication username and password and not the database username and password. Also, you must use the default Named Pipe.</td>
</tr>
</tbody>
</table>
Step 9 Click **Save**.

Step 10 On the **Admin** tab, click **Deploy Changes**.

Microsoft Operations Manager

The Microsoft Operations Manager DSM for IBM Security QRadar accepts Microsoft Operations Manager (MOM) events by poll the OnePoint database allowing QRadar to record the relevant events.

Before you configure QRadar to integrate with the Microsoft Operations Manager, you must ensure a database user account is configured with appropriate permissions to access the MOM OnePoint SQL Server database. Access to the OnePoint database SDK views is managed through the MOM SDK View User database role. For more information, please see your Microsoft Operations Manager documentation.

Note: Make sure that no firewall rules are blocking the communication between QRadar and the SQL Server database associated with MOM. For MOM installations that use a separate, dedicated computer for the SQL Server database, the SDKEventView view is queried on the database system, not the system running MOM.

To configure QRadar to receive MOM events:

Step 1 Click the **Admin** tab.

Step 2 On the navigation menu, click **Data Sources**.

The Data Sources panel is displayed.
Step 3 Click the Log Sources icon.
The Log Sources window is displayed.

Step 4 From the Log Source Type list, select Microsoft Operations Manager.

Step 5 From the Protocol Configuration list, select JDBC.
The JDBC protocol parameters appear.

Step 6 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the identifier for the log source. Type the log source identifier in the following format:</td>
</tr>
<tr>
<td></td>
<td><code><MOM Database>@<MOM Database Server IP or Host Name></code></td>
</tr>
<tr>
<td></td>
<td>Where:</td>
</tr>
<tr>
<td></td>
<td><code><MOM Database></code> is the database name, as entered in the Database Name parameter.</td>
</tr>
<tr>
<td></td>
<td><code><MOM Database Server IP or Host Name></code> is the hostname or IP address for this log source, as entered in the IP or Hostname parameter.</td>
</tr>
<tr>
<td>Database Type</td>
<td>From the list, select MSDE.</td>
</tr>
<tr>
<td>Database Name</td>
<td>Type OnePoint as the name of the Microsoft Operations Manager database.</td>
</tr>
<tr>
<td>IP or Hostname</td>
<td>Type the IP address or host name of the Microsoft Operations Manager SQL Server.</td>
</tr>
<tr>
<td>Port</td>
<td>Type the port number used by the database server. The default port for MSDE is 1433.</td>
</tr>
<tr>
<td></td>
<td>The JDBC configuration port must match the listener port of the Microsoft Operations Manager database. The Microsoft Operations Manager database must have incoming TCP connections enabled to communicate with QRadar.</td>
</tr>
<tr>
<td></td>
<td>Note: If you define a Database Instance when using MSDE as the database type, you must leave the Port parameter blank in your configuration.</td>
</tr>
<tr>
<td>Username</td>
<td>Type the username required to access the database.</td>
</tr>
<tr>
<td>Password</td>
<td>Type the password required to access the database. The password can be up to 255 characters in length.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password required to access the database. The confirmation password must be identical to the password entered in the Password parameter.</td>
</tr>
<tr>
<td>Authentication Domain</td>
<td>If you select MSDE as the Database Type and the database is configured for Windows, you must define the Window Authentication Domain. Otherwise, leave this field blank.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Database Instance</td>
<td>Optional. Type the database instance, if you have multiple SQL server instances on your database server.</td>
</tr>
<tr>
<td></td>
<td>Note: If you use a non-standard port in your database configuration, or have blocked access to port 1434 for SQL database resolution, you must leave the Database Instance parameter blank in your configuration.</td>
</tr>
<tr>
<td>Table Name</td>
<td>Type SDKEventView as the name of the table or view that includes the event records.</td>
</tr>
<tr>
<td>Select List</td>
<td>Type * for all fields from the table or view. You can use a comma-separated list to define specific fields from tables or views, if required for your configuration. The list must contain the field defined in the Compare Field parameter. The comma-separated list can be up to 255 alphanumeric characters in length. The list can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period (.).</td>
</tr>
<tr>
<td>Compare Field</td>
<td>Type TimeStored as the compare field. The compare field is used to identify new events added between queries to the table.</td>
</tr>
<tr>
<td>Start Date and Time</td>
<td>Optional. Type the start date and time for database polling. The Start Date and Time parameter must be formatted as yyyy-MM-dd HH:mm with HH specified using a 24 hour clock. If the start date or time is clear, polling begins immediately and repeats at the specified polling interval.</td>
</tr>
<tr>
<td>Use Prepared Statements</td>
<td>Select this check box to use prepared statements. Prepared statements allows the JDBC protocol source to setup the SQL statement one time, then run the SQL statement many times with different parameters. For security and performance reasons, we recommend that you use prepared statements. Clearing this check box requires you to use an alternative method of querying that does not use pre-compiled statements.</td>
</tr>
<tr>
<td>Polling Interval</td>
<td>Type the polling interval, which is the amount of time between queries to the event table. The default polling interval is 10 seconds.</td>
</tr>
<tr>
<td></td>
<td>You can define a longer polling interval by appending H for hours or M for minutes to the numeric value. The maximum polling interval is 1 week in any time format. Numeric values entered without an H or M poll in seconds.</td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The default value is 20000 EPS.</td>
</tr>
<tr>
<td>Use Named Pipe Communication</td>
<td>Clear the Use Named Pipe Communications check box. When using a Named Pipe connection, the username and password must be the appropriate Windows authentication username and password and not the database username and password. Also, you must use the default Named Pipe.</td>
</tr>
</tbody>
</table>
Step 7 Click Save.

Step 8 On the Admin tab, click Deploy Changes.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide.

Microsoft System Center Operations Manager

A QRadar Microsoft System Center Operations Manager (SCOM) DSM accepts SCOM events by polling the OperationsManager database allowing QRadar to record the relevant events.

Before you configure QRadar to integrate with the Microsoft SCOM, you must ensure a database user account is configured with appropriate permissions to access the SCOM OperationsManager SQL Server database. The appropriate authentication mode might need to be enabled in the Security settings of the SQL Server properties. For more information, please see your Microsoft SCOM documentation.

Note: Ensure that no firewall rules are blocking the communication between QRadar and the SQL Server database associated with SCOM. For SCOM installations that use a separate, dedicated computer for the SQL Server database, the EventView view is queried on the database system, not the system running SCOM.

To configure QRadar to receive SCOM events:

Step 1 Click the Admin tab.

Step 2 On the navigation menu, click Data Sources.

The Data Sources panel is displayed.

Step 3 Click the Log Sources icon.

The Log Sources window is displayed.

Step 4 From the Log Source Type list, select Microsoft SCOM.

Step 5 From the Protocol Configuration list, select JDBC.

The JDBC protocol is displayed.

Step 6 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database Cluster Name</td>
<td>If you select the Use Named Pipe Communication check box, the Database Cluster Name parameter is displayed. If you are running your SQL server in a cluster environment, define the cluster name to ensure Named Pipe communication functions properly.</td>
</tr>
</tbody>
</table>

Note: Selecting a value for the Credibility parameter greater than 5 will weight your Microsoft Operations Manager log source with a higher importance compared to other log sources in QRadar.
Table 67-5 Microsoft SCOM JDBC Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the identifier for the log source. Type the log source identifier in the following format: (<\text{SCOM Database}>@\angle\text{SCOM Database Server IP or Host Name}) Where: <\text{SCOM Database}> is the database name, as entered in the Database Name parameter. <\text{SCOM Database Server IP or Host Name}> is the hostname or IP address for this log source, as entered in the IP or Hostname parameter.</td>
</tr>
<tr>
<td>Database Type</td>
<td>From the list, select MSDE.</td>
</tr>
<tr>
<td>Database Name</td>
<td>Type OperationsManager as the name of the Microsoft SCOM database.</td>
</tr>
<tr>
<td>IP or Hostname</td>
<td>Type the IP address or host name of the Microsoft SCOM SQL Server.</td>
</tr>
<tr>
<td>Port</td>
<td>Type the port number used by the database server. The default port for MSDE is 1433.</td>
</tr>
<tr>
<td></td>
<td>The JDBC configuration port must match the listener port of the Microsoft SCOM database. The Microsoft SCOM database must have incoming TCP connections enabled to communicate with QRadar.</td>
</tr>
<tr>
<td></td>
<td>Note: If you define a Database Instance when using MSDE as the database type, you must leave the Port parameter blank in your configuration.</td>
</tr>
<tr>
<td>Username</td>
<td>Type the username required to access the database.</td>
</tr>
<tr>
<td>Password</td>
<td>Type the password required to access the database. The password can be up to 255 characters in length.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password required to access the database. The confirmation password must be identical to the password entered in the Password parameter.</td>
</tr>
<tr>
<td>Authentication Domain</td>
<td>If you select MSDE as the Database Type and the database is configured for Windows, you must define a Window Authentication Domain. Otherwise, leave this field blank.</td>
</tr>
<tr>
<td>Database Instance</td>
<td>Optional. Type the database instance, if you have multiple SQL server instances on your database server.</td>
</tr>
<tr>
<td></td>
<td>Note: If you use a non-standard port in your database configuration, or have blocked access to port 1434 for SQL database resolution, you must leave the Database Instance parameter blank in your configuration.</td>
</tr>
<tr>
<td>Table Name</td>
<td>Type EventView as the name of the table or view that includes the event records.</td>
</tr>
</tbody>
</table>
Note: Selecting a value for the Credibility parameter greater than 5 will weight your Microsoft SCOM log source with a higher importance compared to other log sources in QRadar.

Step 7 Click Save.

Table 67-5 Microsoft SCOM JDBC Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select List</td>
<td>Type * for all fields from the table or view. You can use a comma-separated list to define specific fields from tables or views, if required for your configuration. The list must contain the field defined in the Compare Field parameter. The comma-separated list can be up to 255 alphanumeric characters in length. The list can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period (.).</td>
</tr>
<tr>
<td>Compare Field</td>
<td>Type TimeAdded as the compare field. The compare field is used to identify new events added between queries to the table.</td>
</tr>
<tr>
<td>Start Date and Time</td>
<td>Optional. Type the start date and time for database polling. The Start Date and Time parameter must be formatted as yyyy-MM-dd HH:mm with HH specified using a 24 hour clock. If the start date or time is clear, polling begins immediately and repeats at the specified polling interval.</td>
</tr>
<tr>
<td>Use Prepared Statements</td>
<td>Select this check box to use prepared statements. Prepared statements allows the JDBC protocol source to setup the SQL statement one time, then run the SQL statement many times with different parameters. For security and performance reasons, we recommend that you use prepared statements. Clearing this check box requires you to use an alternative method of querying that does not use pre-compiled statements.</td>
</tr>
<tr>
<td>Polling Interval</td>
<td>Type the polling interval, which is the amount of time between queries to the event table. The default polling interval is 10 seconds. You can define a longer polling interval by appending H for hours or M for minutes to the numeric value. The maximum polling interval is 1 week in any time format. Numeric values entered without an H or M poll in seconds.</td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The default value is 20000 EPS.</td>
</tr>
<tr>
<td>Use Named Pipe Communication</td>
<td>Clear the Use Named Pipe Communications check box. When using a Named Pipe connection, the username and password must be the appropriate Windows authentication username and password and not the database username and password. Also, you must use the default Named Pipe.</td>
</tr>
<tr>
<td>Database Cluster Name</td>
<td>If you select the Use Named Pipe Communication check box, the Database Cluster Name parameter is displayed. If you are running your SQL server in a cluster environment, define the cluster name to ensure Named Pipe communication functions properly.</td>
</tr>
</tbody>
</table>
Step 8 On the Admin tab, click Deploy Changes.
For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide.

Microsoft Endpoint Protection

The Microsoft Endpoint Protection DSM for IBM Security QRadar is capable of collecting malware detection events.

Supported event types

Malware detection events are retrieved by QRadar by configuring the JDBC protocol. Adding malware detection events to QRadar allows you to monitor and detect malware infected computers in your deployment.

Malware detection events include:
- Site name and the source from which the malware was detected
- Threat name, threat ID, and severity
- User ID associated with the threat
- Event type, timestamp, and the cleaning action taken on the malware.

Configuration overview

The Microsoft Endpoint Protection DSM uses JDBC to poll an SQL database for malware detection event data. This DSM does not automatically discover. To integrate Microsoft EndPoint Protection with QRadar, you must:

1. Create an SQL database view for QRadar with the malware detection event data.
2. Configure a JDBC log source to poll for events from the Microsoft EndPoint Protection database.
3. Ensure that no firewall rules are blocking communication between QRadar and the database associated with Microsoft EndPoint Protection.
Creating a database view

Microsoft EndPoint Protection uses SQL Server Management Studio (SSMS) to manage the EndPoint Protection SQL databases.

Procedure

Step 1 Log in to the system hosting your Microsoft EndPoint Protection SQL database.

Step 2 On the desktop, select Start > Run.

Step 3 Type the following:

```
ssms
```

Step 4 Click OK.

Step 5 Log in to your Microsoft Endpoint Protection database.

Step 6 From the Object Explorer, select Databases.

Step 7 Select your database and click Views.

Step 8 From the navigation menu, click New Query.

Step 9 In the Query pane, type the following Transact-SQL statement to create the database view:

```
create view dbo.MalwareView as
select n.Type,
    n.RowID,
    n.Name,
    n.Description,
    n.Timestamp,
    n.SchemaVersion,
    n.ObserverHost,
    n.ObserverUser,
    n.ObserverProductName,
    n.ObserverProductversion,
    n.ObserverProtectionType,
    n.ObserverProtectionVersion,
    n.ObserverProtectionSignatureVersion,
    n.ObserverDetection,
    n.ObserverDetectionTime,
    n.ActorHost,
    n.ActorUser,
    n.ActorProcess,
    n.ActorResource,
    n.ActionType,
    n.TargetHost,
    n.TargetUser,
    n.TargetProcess,
    n.TargetResource,
    n.ClassificationID,
    n.ClassificationType,
    n.ClassificationSeverity,
    n.ClassificationCategory,
    n.RemediationType,
    n.RemediationResult
```
Step 10 From the Query pane, right-click and select Execute.
If the view is created, the following message is displayed in the results pane:

Command(s) completed successfully.

You are now ready to configure a log source in QRadar.

Configuring a log source

QRadar requires a user account with the proper credentials to access the view you created in the Microsoft EndPoint Protection database.

To successfully poll for malware detection events from the Microsoft EndPoint Protection database, you must create a new user or provide the log source with existing user credentials to read from the database view you created. For more information on creating a user account, see your vendor documentation.

Procedure

Step 1 Click the Admin tab.
Step 2 On the navigation menu, click Data Sources.
Step 3 Click the Log Sources icon.
Step 4 In the Log Source Name field, type a name for the log source.
Step 5 In the Log Source Description field, type a description for the log source.
Step 6 From the Log Source Type list, select Microsoft EndPoint Protection.
Step 7 From the Protocol Configuration list, select JDBC.
Step 8 Configure the following values:
Table 67-6 Microsoft EndPoint Protection JDBC parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Log Source Identifier | Type the identifier for the log source. Type the log source identifier in the following format:
"<Database>@<Database Server IP or Host Name>"
Where:
"<Database>" is the database name, as entered in the Database Name parameter.
"<Database Server IP or Host Name>" is the hostname or IP address for this log source, as entered in the IP or Hostname parameter. |
| Database Type | From the list, select MSDE. |
| Database Name | Type the name of the Microsoft EndPoint Protection database. This name must match the database name you selected when creating your view in Step 7. |
| IP or Hostname | Type the IP address or host name of the Microsoft EndPoint Protection SQL Server. |
| Port | Type the port number used by the database server. The default port for MSDE is 1433.
The JDBC configuration port must match the listener port of the Microsoft EndPoint Protection database. The Microsoft EndPoint Protection database must have incoming TCP connections enabled to communicate with QRadar.
Note: If you define a Database Instance when using MSDE as the database type, you must leave the Port parameter blank in your configuration. |
| Username | Type the username the log source can use to access the Microsoft EndPoint Protection database. |
| Password | Type the password the log source can use to access the Microsoft EndPoint Protection database. The password can be up to 255 characters in length. |
| Confirm Password | Confirm the password required to access the database. The confirmation password must be identical to the password entered in the Password field. |
| Authentication Domain | If you select MSDE as the Database Type and the database is configured for Windows, you must define the Windows Authentication Domain. Otherwise, leave this field blank. |
| Database Instance | Optional. Type the database instance, if you have multiple SQL server instances on your database server. |

Note: If you use a non-standard port in your database configuration, or have blocked access to port 1434 for SQL database resolution, you must leave the Database Instance parameter blank in your configuration.
Table 67-6 Microsoft EndPoint Protection JDBC parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table Name</td>
<td>Type <code>dbo.MalwareView</code> as the name of the table or view that includes the event records.</td>
</tr>
<tr>
<td>Select List</td>
<td>Type <code>*</code> for all fields from the table or view.</td>
</tr>
<tr>
<td>You can use a comma-separated list to define specific fields from tables or views, if required for your configuration. The list must contain the field defined in the Compare Field parameter. The comma-separated list can be up to 255 alphanumeric characters in length. The list can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period (.).</td>
<td></td>
</tr>
<tr>
<td>Compare Field</td>
<td>Type <code>Timestamp</code> as the compare field. The compare field is used to identify new events added between queries to the table.</td>
</tr>
<tr>
<td>Start Date and Time</td>
<td>Optional. Type the start date and time for database polling.</td>
</tr>
<tr>
<td>The Start Date and Time parameter must be formatted as yyyy-MM-dd HH:mm with HH specified using a 24 hour clock. If the start date or time is clear, polling begins immediately and repeats at the specified polling interval.</td>
<td></td>
</tr>
<tr>
<td>Use Prepared Statements</td>
<td>Select the Use Prepared Statements check box.</td>
</tr>
<tr>
<td>Prepared statements allows the JDBC protocol source to setup the SQL statement one time, then run the SQL statement many times with different parameters. For security and performance reasons, we recommend that you use prepared statements.</td>
<td></td>
</tr>
<tr>
<td>Clearing this check box requires you to use an alternative method of querying that does not use pre-compiled statements.</td>
<td></td>
</tr>
<tr>
<td>Polling Interval</td>
<td>Type the polling interval, which is the amount of time between queries to the view you created. The default polling interval is 10 seconds.</td>
</tr>
<tr>
<td>You can define a longer polling interval by appending H for hours or M for minutes to the numeric value. The maximum polling interval is 1 week in any time format. Numeric values entered without an H or M poll in seconds.</td>
<td></td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The default value is 20000 EPS.</td>
</tr>
<tr>
<td>Use Named Pipe Communication</td>
<td>Clear the Use Named Pipe Communications check box.</td>
</tr>
<tr>
<td>When using a Named Pipe connection, the username and password must be the appropriate Windows authentication username and password and not the database username and password. Also, you must use the default Named Pipe.</td>
<td></td>
</tr>
<tr>
<td>Database Cluster Name</td>
<td>If you select the Use Named Pipe Communication check box, the Create database Cluster Name parameter is displayed. If you are running your SQL server in a cluster environment, define the cluster name to ensure Named Pipe communication functions properly.</td>
</tr>
</tbody>
</table>
Note: Selecting a value for the Credibility parameter greater than 5 will weight your Microsoft EndPoint Protection log source with a higher importance compared to other log sources in QRadar.

Step 9 Click Save.

Step 10 On the Admin tab, click Deploy Changes.

The Microsoft EndPoint Protection configuration is complete.

Table 67-6 Microsoft EndPoint Protection JDBC parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use NTLMv2</td>
<td>Select the Use NTLMv2 check box. This option forces MSDE connections to use the NTLMv2 protocol when communicating with SQL servers that require NTLMv2 authentication. The default value of the check box is selected. If the Use NTLMv2 check box is selected, it has no effect on MSDE connections to SQL servers that do not require NTLMv2 authentication.</td>
</tr>
</tbody>
</table>
IBM Security QRadar accepts syslog events from a Windows agent installed with the Adaptive Log Exporter.

The Adaptive Log Exporter is an external event collection agent. The Adaptive Log Exporter allows you to collect events using a NetApp Data ONTAP plug-in. The Adaptive Log Exporter can read and process event log messages generated from Common Internet File System (CIFS) auditing on the NetApp Data ONTAP device and forward the events.

For more information on using the Adaptive Log Exporter, see the *Adaptive Log Exporter Users Guide*.

Note: The NetApp Data ONTAP plug-in for the Adaptive Log Exporter only supports CIFS. For information on configuring CIFS on your NetApp Data ONTAP device, see your vendor documentation.

QRadar automatically detects the NetApp Data ONTAP events from the Adaptive Log Exporter. To manually configure QRadar to receive events from NetApp Data ONTAP:

- From the **Log Source Type** list, select the **NetApp Data ONTAP** option.
The Name Value Pair (NVP) DSM allows you to integrate IBM Security QRadar with devices that might not natively send logs using syslog.

IBM Security QRadar The NVP DSM provides a log format that allows you to send logs to QRadar. For example, for a device that does not export logs natively with syslog, you can create a script to export the logs from a device that QRadar does not support, format the logs in the NVP log format, and send the logs to QRadar using syslog. The NVP DSM log source configured in QRadar then receives the logs and is able to parse the data since the logs are received in the NVP log format.

Note: Events for the NVP DSM are not automatically discovered by QRadar.

The NVP DSM accepts events using syslog. QRadar records all relevant events. The log format for the NVP DSM must be a tab-separated single line list of Name=Parameter. The NVP DSM does not require a valid syslog header.

Note: The NVP DSM assumes an ability to create custom scripts or thorough knowledge of your device capabilities to send logs to QRadar using syslog in NVP format.

This section provides information on the following:

- NVP Log Format
- Examples

NVP Log Format

Table 69-1 includes a list of tags that the NVP DSM is able to parse:

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeviceType</td>
<td>Type NVP as the DeviceType. This identifies the log formats as a Name Value Pair log message. This is a required parameter and DeviceType=NVP must be the first pair in the list.</td>
</tr>
</tbody>
</table>

IBM Security QRadar DSM Configuration Guide
Table 69-1 NVP Log Format Tags (continued)

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EventName</td>
<td>Type the event name that you want to use to identify the event in the Events interface when using the Event Mapping functionality. For more information on mapping events, see the IBM Security QRadar Users Guide. This is a required parameter.</td>
</tr>
<tr>
<td>EventCategory</td>
<td>Type the event category you want to use to identify the event in the Events interface. If this value is not included in the log message, the value NameValuePair value is used.</td>
</tr>
<tr>
<td>SourceIp</td>
<td>Type the source IP address for the message.</td>
</tr>
<tr>
<td>SourcePort</td>
<td>Type the source port for the message.</td>
</tr>
<tr>
<td>SourceIpPreNAT</td>
<td>Type the source IP address for the message before Network Address Translation (NAT) occurred.</td>
</tr>
<tr>
<td>SourceIpPostNAT</td>
<td>Type the source IP address for the message after NAT occurs.</td>
</tr>
<tr>
<td>SourceMAC</td>
<td>Type the source MAC address for the message.</td>
</tr>
<tr>
<td>SourcePortPreNAT</td>
<td>Type the source port for the message before NAT occurs.</td>
</tr>
<tr>
<td>SourcePortPostNAT</td>
<td>Type the source port for the message after NAT occurs.</td>
</tr>
<tr>
<td>DestinationIp</td>
<td>Type the destination IP address for the message.</td>
</tr>
<tr>
<td>DestinationPort</td>
<td>Type the destination port for the message.</td>
</tr>
<tr>
<td>DestinationIpPreNAT</td>
<td>Type the destination IP address for the message before NAT occurs.</td>
</tr>
<tr>
<td>DestinationIpPostNAT</td>
<td>Type the IP address for the message after NAT occurs.</td>
</tr>
<tr>
<td>DestinationPortPreNAT</td>
<td>Type the destination port for the message before NAT occurs.</td>
</tr>
<tr>
<td>DestinationPortPostNAT</td>
<td>Type the destination port for the message after NAT occurs.</td>
</tr>
<tr>
<td>DestinationMAC</td>
<td>Type the destination MAC address for the message.</td>
</tr>
<tr>
<td>DeviceTime</td>
<td>Type the time that the event was sent, according to the device. The format is: YY/MM/DD hh:mm:ss. If no specific time is provided, the syslog header or DeviceType parameter is applied.</td>
</tr>
<tr>
<td>UserName</td>
<td>Type the user name associated with the event.</td>
</tr>
<tr>
<td>HostName</td>
<td>Type the host name associated with the event. Typically, this parameter is only associated with identity events.</td>
</tr>
<tr>
<td>GroupName</td>
<td>Type the group name associated with the event. Typically, this parameter is only associated with identity events.</td>
</tr>
<tr>
<td>NetBIOSName</td>
<td>Type the NetBIOS name associated with the event. Typically, this parameter is only associated with identity events.</td>
</tr>
</tbody>
</table>
In addition to the parameters listed above, you can add any NVP parameters to your log. The additional parameters are added to the payload, however, these values are not parsed.

Step 11
You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from an NVP DSM:

- From the **Log Source Type** list, select the **Name Value Pair** option.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*.

Examples

Example 1

The following example parses all fields:

```
DeviceType=NVP  EventName=Test
DestinationIpPostNAT=172.16.45.10  DeviceTime=2007/12/14 09:53:49
SourcePort=1111  Identity=FALSE  SourcePortPostNAT=3333
DestinationPortPostNAT=6666  HostName=testhost
DestinationIpPreNAT=172.16.10.10  SourcePortPreNAT=2222
DestinationPortPreNAT=5555  SourceMAC=AA:15:C5:BF:C4:9D
SourceIp=172.16.200.10  SourceIpPostNAT=172.16.40.50
NetBIOSName=testbois  DestinationMAC=00:41:C5:BF:C4:9D
EventCategory=Accept  DestinationPort=4444
GroupName=testgroup  SourceIpPreNAT=172.16.70.87
UserName=root
DestinationIp=172.16.30.30
```

Example 2

The following example provides identity using the destination IP address:

```
<133>Apr 16 12:41:00 172.16.10.10 namevaluepair:
DeviceType=NVP  EventName=Test  EventCategory=Accept
Identity=TRUE  SourceMAC=AA:15:C5:BF:C4:9D
```
Example 3

The following example provides identity using the source IP address:

DeviceType=NVP EventName=Test EventCategory=Accept
DeviceTime=2007/12/14 09:53:49 SourcePort=5014 Identity=TRUE
IdentityUseSrcIp=TRUE SourceMAC=AA:15:C5:BF:C4:9D
SourceIp=172.15.210.113 DestinationIp=172.16.10.10
SourceMAC=AA:15:C5:BF:C4:9D UserName=root

Example 4

The following example provides an entry with no identity:

DeviceType=NVP EventName=Test EventCategory=Accept
DeviceTime=2007/12/14 09:53:49 SourcePort=5014 Identity=FALSE
SourceMAC=AA:15:C5:BF:C4:9D SourceIp=172.15.210.113
DestinationIp=172.16.10.10 DestinationMAC=00:41:C5:BF:C4:9D
UserName=root

SourceIp=172.15.210.113 DestinationIp=172.16.10.10
UserName=root
The Niksun DSM for IBM Security QRadar records all relevant Niksun events using syslog.

You can integrate NetDetector/NetVCR2005, version 3.2.1sp1_2 with QRadar. Before you configure QRadar to integrate with a Niksun device, you must configure a log source, then enable syslog forwarding on your Niksun appliance. For more information on configuring Niksun, see your Niksun appliance documentation.

Configure a log source

To integrate Niksun with QRadar, you must manually create a log source to receive events.

QRadar does not automatically discover or create log sources for syslog events from Niksun appliances. In cases where the log source is not automatically discovered, we recommend you create a log source before forwarding events to QRadar.

To configure a log source:

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Niksun 2005 v3.5.
Step 9 Using the Protocol Configuration list, select Syslog.
Step 10 Configure the following values:
Table 70-1 Syslog Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Niksun appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The log source is added to QRadar.
The Check Point Firewall-1 DSM allows IBM Security QRadar to accept events Check Point-based Firewall events sent from Nokia Firewall appliances.

The syslog and OPSEC protocols allow two methods for QRadar to collect Check Point events from Nokia Firewall appliances.

This section contains the following topics:

- Integrating with a Nokia Firewall using syslog
- Integrating with a Nokia Firewall using OPSEC

Integrating with a Nokia Firewall using syslog

This method allows you to configure your Nokia Firewall to accept Check Point syslog events forwarded from your Nokia Firewall appliance.

To configure QRadar to integrate with a Nokia Firewall device, you must:

1. Configure iptables on your QRadar Console or Event Collector to receive syslog events from Nokia Firewall.
2. Configure your Nokia Firewall to forward syslog event data.
3. Configure the events logged by the Nokia Firewall.

Configuring IPtables

Nokia Firewalls require a TCP reset (rst) or a TCP acknowledge (ack) from QRadar on port 256 before forwarding syslog events.

The Nokia Firewall TCP request is an online status request designed to ensure that QRadar is online and able to receive syslog events. If a valid reset or acknowledge is received from QRadar, then Nokia Firewall begins forwarding events to QRadar on UDP port 514. By default, QRadar does not respond to any online status requests from TCP port 256. You must configure IPtables on your QRadar Console or any Event Collectors that receive Check Point events from a Nokia Firewall to respond to an online status request.
Procedure

Step 1 Using SSH, log in to QRadar as the root user.
 Login: root
 Password: <password>

Step 2 Type the following command to edit the IPtables file:
 `vi /opt/qradar/conf/iptables.pre`
 The IPtables configuration file is displayed.

Step 3 Type the following command to instruct QRadar to respond to your Nokia Firewall with a TCP reset on port 256:
 `-A INPUT -s <IP address> -p tcp --dport 256 -j REJECT --reject-with tcp-reset`
 Where `<IP address>` is the IP address of your Nokia Firewall. You must include a TCP reset for each Nokia Firewall IP address that sends events to your QRadar Console or Event Collector. For example,
 `-A INPUT -s 10.10.100.10/32 -p tcp --dport 256 -j REJECT --reject-with tcp-reset`
 `-A INPUT -s 10.10.110.11/32 -p tcp --dport 256 -j REJECT --reject-with tcp-reset`
 `-A INPUT -s 10.10.120.12/32 -p tcp --dport 256 -j REJECT --reject-with tcp-reset`

Step 4 Save your IPtables configuration.

Step 5 Type the following command to update IPtables in QRadar:
 `./opt/qradar/bin/iptables_update.pl`

Step 6 Repeat Step 1 to Step 5 to configure any additional Event Collectors in your deployment that receive syslog events from a Nokia Firewall.

You are now ready to configure your Nokia Firewall to forward events to QRadar.

Configuring syslog

To configure your Nokia Firewall to forward syslog events to QRadar:

Procedure

Step 1 Log in to the Nokia Voyager.

Step 2 Click Config.

Step 3 In the System Configuration pane, click System Logging.

Step 4 In the Add new remote IP address to log to field, type the IP address of your QRadar Console or Event Collector.

Step 5 Click Apply.

Step 6 Click Save.

You are now ready to configure which events are logged by your Nokia Firewall to the logger.
Configure the logged events custom script

To configure which events are logged by your Nokia Firewall and forwarded to QRadar, you must configure a custom script for your Nokia Firewall.

Procedure

Step 1
Using SSH, log in to Nokia Firewall as an administrative user.

If you cannot connect to your Nokia Firewall, SSH may be disabled. You must enable the command-line using the Nokia Voyager web interface or connect directly using a serial connection. For more information, see your Nokia Voyager documentation.

Step 2
Type the following command to edit your Nokia Firewall rc.local file:

```
vi /var/etc/rc.local
```

Step 3
Add the following command to your rc.local file:

```
$FWDIR/bin/fw log -ftn | /bin/logger -p local1.info &
```

Step 4
Save the changes to your rc.local file.

The terminal is displayed.

Step 5
To begin logging immediately, type the following command:

```
nohup $FWDIR/bin/fw log -ftn | /bin/logger -p local1.info &
```

You are now ready to configure the log source in QRadar.

Configure a log source

Events forwarded by your Nokia Firewall are automatically discovered by the Check Point Firewall-1 DSM. The automatic discovery process creates a log source for syslog events from Nokia Firewall appliances. The following steps are optional.

Procedure

Step 1
Log in to QRadar.

Step 2
Click the **Admin** tab.

Step 3
On the navigation menu, click **Data Sources**.

Step 4
Click the **Log Sources** icon.

Step 5
Click **Add**.

Step 6
In the **Log Source Name** field, type a name for your log source.

Step 7
In the **Log Source Description** field, type a description for the log source.

Step 8
From the **Log Source Type** list, select **Check Point Firewall-1**.

Step 9
Using the **Protocol Configuration** list, select **Syslog**.

Step 10
Configure the following values:

<table>
<thead>
<tr>
<th>Table 71-1</th>
<th>Syslog protocol parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for the log source as an identifier for events from your Nokia Firewall appliance.</td>
</tr>
</tbody>
</table>
Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The syslog configuration for receiving Check Point events from Nokia Firewalls over syslog is complete. Check Point events from your Nokia Firewall are displayed in the Log Activity tab in QRadar.

Integrating with a Nokia Firewall using OPSEC
QRadar can accept Check Point FireWall-1 events from Nokia Firewalls using the Check Point FireWall-1 DSM configured using the OPSEC/LEA protocol. Before you configure QRadar to integrate with a Nokia Firewall device, you must:

1 Configure Nokia Firewall using OPSEC, see Configuring a Nokia Firewall for OPSEC.
2 Configure a log source in QRadar for your Nokia Firewall using the OPSEC LEA protocol, see Configuring an OPSEC log source.

Configuring a Nokia Firewall for OPSEC
To configure Nokia Firewall using OPSEC:

Procedure

Step 1 To create a host object for your QRadar, open up the Check Point SmartDashboard GUI and select Manage > Network Objects > New > Node > Host.

Step 2 Type the Name, IP Address, and optional Comment for your QRadar.

Step 3 Click OK.

Step 4 Select Close.

Step 5 To create the OPSEC connection, select Manage > Servers and OPSEC Applications > New > OPSEC Application Properties.

Step 6 Type the Name and optional Comment.

The name you type must be different than the name in Step 2.

Step 7 From the Host drop-down menu, select the QRadar host object that you created.

Step 8 From Application Properties, select User Defined as the Vendor Type.

Step 9 From Client Entries, select LEA.

Step 10 Select Communication and enter an activation key to configure the Secure Internal Communication (SIC) certificate.

Step 11 Select OK and then select Close.

Step 12 To install the policy on your firewall, select Policy > Install > OK.

For more information on policies, see your vendor documentation. You are now ready to configure a log source for your Nokia Firewall in QRadar.

Configuring an OPSEC log source
OPSEC/LEA log sources do not automatically discover in QRadar, you must create an OPSEC log source to collect events.
Procedure
Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Check Point FireWall-1.
Step 9 Using the Protocol Configuration list, select OPSEC/LEA.
Step 10 Configure the following values:

Table 71-2 OPSEC/LEA protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type an IP address, hostname, or name to identify the event source. IP addresses or host names are recommended as they allow QRadar to identify a log file to a unique event source.</td>
</tr>
<tr>
<td>Server IP</td>
<td>Type the IP address of the server.</td>
</tr>
<tr>
<td>Server Port</td>
<td>Type the port used for OPSEC communication. The valid range is 0 to 65,536 and the default is 18184.</td>
</tr>
<tr>
<td>Use Server IP for Log Source</td>
<td>Select this check box if you want to use the LEA server’s IP address instead of the managed device’s IP address for a log source. By default, the check box is selected.</td>
</tr>
<tr>
<td>Statistics Report Interval</td>
<td>Type the interval, in seconds, during which the number of syslog events are recorded in the qradar.log file. The valid range is 4 to 2,147,483,648 and the default is 600.</td>
</tr>
</tbody>
</table>
Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete. As events are received, they are displayed in the **Log Activity** tab in QRadar.
The Nominum Vantio DSM for IBM Security QRadar accepts syslog events in Log Extended Event Format (LEEF) forwarded from Nominum Vantio engines installed with the Nominum Vantio LEEF Adapter.

QRadar accepts all relevant events forwarded from Nominum Vantio.

The Vantio LEEF Adapter creates LEEF messages based on Lightweight View Policy (LVP) matches. In order to generate LVP matches for the Vantio LEEF Adapter to process, you must configure Lightweight Views and the lvp-monitor for the Vantio engine. LVP is an optionally licensed component of the Nominum Vantio product. For more information about configuring LVP, please see the Vantio Administrator’s Manual.

Before you can integrate Nominum Vantio events with QRadar, you must install and configure the Vantio LEEF adapter. To obtain the Vantio LEEF adapter or request additional information, you can email Nominum at the following address: leefadapter@nominum.com.

Configure the Vantio LEEF Adapter

To install and configure your Vantio LEEF Adapter:

- **Step 1** Using SSH, log in to your Vantio engine server.
- **Step 2** Install the Vantio LEEF Adapter:

  ```bash
  sudo rpm -I VantioLEEFAdapter-0.1-a.x86_64.rpm
  ```
- **Step 3** Edit the Vantio LEEF Adapter configuration file.

  ```bash
  usr/local/nom/sbin/VantioLEEFAdapter
  ```
- **Step 4** Configure the Vantio LEEF Adapter configuration to forward LEEF events to QRadar:

  ```bash
  -qradar-dest-addr=<IP Address>
  ```
 Where `<IP Address>` is the IP address of your QRadar Console or Event Collector.
- **Step 5** Save the Vantio LEEF configuration file.
- **Step 6** Type the following command to start the Vantio Adapter:

  ```bash
  usr/local/nom/sbin/VantioLEEFAdapter &
  ```
The configuration is complete. The log source is added(255,264),(306,272) QRadar as Nominum Vantio events are automatically discovered. Events forwarded to QRadar by the Vantio LEEF Adapter are displayed on the Log Activity tab of QRadar.

Configure a log source QRadar automatically discovers and creates a log source for syslog events from the Vantio LEEF Adapter. The following configuration steps are optional.

To manually configure a log source for Nominum Vantio:

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

The Data Sources panel is displayed.

Step 4 Click the Log Sources icon.

The Log Sources window is displayed.

Step 5 Click Add.

The Add a log source window is displayed.

Step 6 In the Log Source Name field, type a name for your log source.

Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select Nominum Vantio.

Step 9 Using the Protocol Configuration list, select Syslog.

The syslog protocol configuration is displayed.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from Nominum Vantio.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete.
This section provides information on the following DSMs:

- Nortel Multiprotocol Router
- Nortel Application Switch
- Nortel Contivity
- Nortel Ethernet Routing Switch 2500/4500/5500
- Nortel Ethernet Routing Switch 8300/8600
- Nortel Secure Router
- Nortel Secure Network Access Switch
- Nortel Switched Firewall 5100
- Nortel Switched Firewall 6000
- Nortel Threat Protection System
- Nortel VPN Gateway

Nortel Multiprotocol Router

The Nortel Multiprotocol Router DSM for IBM Security QRadar records all relevant Nortel Multiprotocol Router events using syslog.

Before you configure QRadar to integrate with a Nortel Multiprotocol Router device, you must:

1. Log in to your Nortel Multiprotocol Router device.
2. At the prompt, type the following command:

 bcc

 The Bay Command Console prompt is displayed.

 Welcome to the Bay Command Console!
 * To enter configuration mode, type config
 * To list all system commands, type ?
 * To exit the BCC, type exit

 bcc>

3. Type the following command to access configuration mode:
Step 4 Type the following command to access syslog configuration:

```
syslog
```

Step 5 Type the following commands:

```
log-host address <IP address>
```

Where `<IP address>` is the IP address of your QRadar.

Step 6 View current default settings for your QRadar:

```
info
```

For example:

```
log-host/10.11.12.210# info
    address 10.11.12.210
    log-facility local0
    state enabled
```

Step 7 If the output of the command entered in Step 6 indicates that the state is not enabled, type the following command to enable forwarding for the syslog host:

```
state enable
```

Step 8 Configure the log facility parameter:

```
log-facility local0
```

Step 9 Create a filter for the hardware slots to enable them to forward the syslog events. Type the following command to create a filter with the name WILDCARD:

```
filter name WILDCARD entity all
```

Step 10 Configure the slot-upper bound parameter:

```
slot-upper bound <number of slots>
```

Where `<number of slots>` is the number of slots available on your device. This parameter can require different configuration depending on your version of Nortel Multiprotocol Router device, which determines the maximum number of slots available on the device.

Step 11 Configure the level of syslog messages you want to send to your QRadar:

```
severity-mask all
```

Step 12 View the current settings for this filter:

```
info
```

For example:

```
filter/10.11.12.210/WILDCARD# info
    debug-map debug
    entity all
    event-lower-bound 0
    event-upper-bound 255
```
fault-map critical
info-map info
name WILDCARD
severity-mask {fault warning info trace debug}
slot-lower-bound 0
slot-upper-bound 1
state enabled
trace-map debug
warning-map warning

Step 13 View the currently configured settings for the syslog filters:

show syslog filters

When the syslog and filter parameters are correctly configured, the Operational State indicates up.

For example:

syslog# show syslog filters
show syslog filters Sep 15, 2008 18:21:25 [GMT+8]

<table>
<thead>
<tr>
<th>Host</th>
<th>IP address</th>
<th>Filter</th>
<th>Entity</th>
<th>Entity</th>
<th>Configured</th>
<th>Operational</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.11.12.130</td>
<td>WILDCARD</td>
<td>all</td>
<td>255</td>
<td>enabled</td>
<td>up</td>
</tr>
<tr>
<td></td>
<td>10.11.12.210</td>
<td>WILDCARD</td>
<td>all</td>
<td>255</td>
<td>enabled</td>
<td>up</td>
</tr>
</tbody>
</table>

Step 14 View the currently configured syslog host information:

show syslog log-host

The host log is displayed with the number of packets being sent to the various syslog hosts.

For example:

syslog# show syslog log-host
show syslog log-host Sep 15, 2008 18:21:32 [GMT+8]

<table>
<thead>
<tr>
<th>Host</th>
<th>Configured</th>
<th>Operational</th>
<th>Time</th>
<th>UDP</th>
<th>Facility</th>
<th>#Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.11.12.130</td>
<td>enabled</td>
<td>up</td>
<td>disabled</td>
<td>local0</td>
<td>1402</td>
</tr>
<tr>
<td></td>
<td>10.11.12.210</td>
<td>enabled</td>
<td>up</td>
<td>disabled</td>
<td>local0</td>
<td>131</td>
</tr>
</tbody>
</table>

Step 15 Exit the command interface:

a Exit the current command-line to return to the bcc command-line:

exit

b Exit the bbc command-line:

exit
Exit the command-line session:
```
logout
```
You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Nortel Multiprotocol Router device:

- From the Log Source Type list, select the Nortel Multiprotocol Router option.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide. For more information about your device, see your vendor documentation.

Nortel Application Switch

Nortel Application Switches integrate routing and switching by forwarding traffic at layer 2 speed using layer 4-7 information.

The Nortel Application Switch DSM for IBM Security QRadar accepts events using syslog. QRadar records all relevant status and network condition events. Before configuring a Nortel Application Switch device in QRadar, you must configure your device to send syslog events to QRadar.

To configure the device to send syslog events to QRadar:

Step 1 Log in to the Nortel Application Switch command-line interface (CLI).

Step 2 Type the following command:
```
/cfg/sys/syslog/host
```

Step 3 At the prompt, type the IP address of your QRadar:
```
Enter new syslog host: <IP address>
```
Where `<IP address>` is the IP address of your QRadar.

Step 4 Apply the configuration:
```
apply
```

Step 5 After the new configuration is applied, save your configuration:
```
save
```

Step 6 Type `y` at the prompt to confirm that you wish to save the configuration to flash. For example:
```
Confirm saving to FLASH [y/n]: y
New config successfully saved to FLASH
```

Step 7 You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Nortel Application Switch:

- From the Log Source Type list, select the Nortel Application Switch option.
For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide. For more information about the Nortel Application Switch, see your vendor documentation.

Nortel Contivity

A QRadar Nortel Contivity DSM records all relevant Nortel Contivity events using syslog.

Before you configure QRadar to integrate with a Nortel Contivity device, you must:

Step 1 Log in to the Nortel Contivity command-line interface (CLI).

Step 2 Type the following command:

```
enable <password>
```

Where `<password>` is the Nortel Contivity device administrative password.

Step 3 Type the following command:

```
config t
```

Step 4 Configure the logging information:

```
logging <IP address> facility-filter all level all
```

Where `<IP address>` is the IP address of the QRadar.

Step 5 Type the following command to exit the command-line:

```
exit
```

Step 6 You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Nortel Contivity device:

- From the Log Source Type list, select the Nortel Contivity VPN Switch option.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide. For more information about your Nortel Contivity device, see your vendor documentation.

Nortel Ethernet Routing Switch 2500/4500/5500

A QRadar Nortel Ethernet Routing Switch (ERS) 2500/4500/5500 DSM records all relevant routing switch events using syslog.

Before configuring a Nortel ERS 2500/4500/5500 device in QRadar, you must configure your device to send syslog events to QRadar.

To configure the device to send syslog events to QRadar:

Step 1 Log in to the Nortel ERS 2500/4500/5500 user interface.

Step 2 Type the following commands to access global configuration mode:

```
en
config term
```
Step 3 Type `informational` as the severity level for the logs you wish to send to the remote server:

```
logging remote level {critical|informational|serious|none}
```

Where `informational` sends all logs to the syslog server.

Step 4 Enable the host:

```
host enable
```

Step 5 Type the remote logging address:

```
logging remote address <IP address>
```

Where `<IP address>` is the IP address of the QRadar system.

Step 6 Ensure that remote logging is enabled:

```
logging remote enable
```

Step 7 You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Nortel ERS 2500/4500/5500 device:

- From the Log Source Type list, select the Nortel Ethernet Routing Switch 2500/4500/5500 option.

For more information on configuring log sources, see the Log Sources User Guide.

For more information about the Nortel ERS 2500/4500/5500, see http://www.nortel.com/support.

Nortel Ethernet Routing Switch 8300/8600

A QRadar Nortel Ethernet Routing Switch (ERS) 8300/8600 DSM records all relevant events using syslog.

Before configuring a Nortel ERS 8600 device in QRadar, you must configure your device to send syslog events to QRadar.

To configure the device to send syslog events to QRadar:

Step 1 Log in to the Nortel ERS 8300/8600 command-line interface (CLI).

Step 2 Type the following command:

```
config sys syslog host <ID>
```

Where `<ID>` is the ID of the host you wish to configure to send syslog events to QRadar.

For the syslog host ID, the valid range is 1 to 10.

Step 3 Type the IP address of your QRadar system:

```
address <IP address>
```

Where `<IP address>` is the IP address of your QRadar system.

Step 4 Type the facility for accessing the syslog host.
host <ID> facility local0
Where <ID> is the ID specified in Step 2.

Step 5 Enable the host:
host enable

Step 6 Type the severity level for which syslog messages are sent:
host <ID> severity info
Where <ID> is the ID specified in Step 2.

Step 7 Enable the ability to send syslog messages:
state enable

Step 8 Verify the syslog configuration for the host:
sylog host <ID> info
For example, the output might resemble the following:
ERS-8606:5/config/sys/syslog/host/1# info
Sub-Context:
Current Context:
address : 10.10.10.1
create : 1
delete : N/A
facility : local16
host : enable
mapinfo : info
mapwarning : warning
maperror : error
mapfatal : emergency
severity : info|warning|error|fatal
udp-port : 514
ERS-8606:5/config/sys/syslog/host/1#

Step 9 You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Nortel ERS 8300/8600 device:

► From the Log Source Type list, you must select the Nortel Ethernet Routing Switch 8300/8600 option.

For more information on configuring log sources, see the Log Sources User Guide.

For more information about the Nortel ERS 8300/8600, see http://www.nortel.com/support.
A QRadar Nortel Secure Router DSM records all relevant router events using syslog.

Before configuring a Nortel Secure Router device in QRadar, you must configure your device to send syslog events to QRadar.

To configure the device to send syslog events to QRadar:

Step 1 Log in to the Nortel Secure Router command-line interface (CLI).

Step 2 Type the following to access global configuration mode:

```
config term
```  

Step 3 Type the following command:

```
system logging syslog
```  

Step 4 Type the IP address of the syslog server (QRadar system):

```
host_ipaddr <IP address>
```  

Where `<IP address>` is the IP address of the QRadar system.

Step 5 Ensure that remote logging is enabled:

```
enable
```  

Step 6 Verify that the logging levels are configured, as appropriate:

```
show system logging syslog
```  

The following shows an example of the output:

```
------------------------------------
Syslog Setting
------------------------------------
Syslog:                         Enabled
Host IP Address:                10.10.10.1
Host UDP Port:                  514
Facility Priority Setting:      
facility                priority
======                  =====
auth:                   info
boots:                  warning
daemon:                 warning
domainname:             warning
gated:                  warning
kern:                   info
mail:                   warning
ntp:                    warning
system:                 info
fr:                     warning
```
Step 7 You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Nortel Secure Router device:

► From the Log Source Type list, select the Nortel Secure Router option.

For more information on configuring log sources, see the Log Sources User Guide.

For more information about the Nortel Secure Router, see http://www.nortel.com/support.

A QRadar Nortel Secure Network Access Switch (SNAS) DSM records all relevant switch events using syslog.

Before configuring a Nortel SNAS device in QRadar, you must:

Step 1 Log in to the Nortel SNAS user interface.

Step 2 Select the Config tab.

Step 3 Select Secure Access Domain and Syslog from the Navigation pane.

The Secure Access Domain window is displayed.

Step 4 From the Secure Access Domain list, select the secure access domain. Click Refresh.

Step 5 Click Add.

The Add New Remote Server window is displayed.

Step 6 Click Update.

The server is displayed in the secure access domain table.

Step 7 Using the toolbar, click Apply to send the current changes to the Nortel SNAS.

Step 8 You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Nortel SNAS device:

► From the Log Source Type list, select the Nortel Secure Network Access Switch (SNAS) option.
For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*.

For more information about the Nortel SNA, see http://www.nortel.com/support.

Nortel Switched Firewall 5100

A QRadar Nortel Switched Firewall 5100 DSM records all relevant firewall events using either syslog or OPSEC.

Before configuring a Nortel Switched Firewall device in QRadar, you must configure your device to send events to QRadar.

This section provides information on configuring a Nortel Switched Firewall using one of the following methods:

- Integrate Nortel Switched Firewall using syslog
- Integrate Nortel Switched Firewall using OPSEC

Integrate Nortel Switched Firewall using syslog

This method ensures the QRadar Nortel Switched Firewall 5100 DSM accepts events using syslog.

To configure your Nortel Switched Firewall 5100:

Step 1 Log into your Nortel Switched Firewall device command-line interface (CLI).

Step 2 Type the following command:

```
/cfg/sys/log/syslog/add
```

Step 3 Type the IP address of your QRadar system at the following prompt:

```
Enter IP address of syslog server:
```

A prompt is displayed to configure the severity level.

Step 4 Configure `info` as the desired severity level. For example:

```
Enter minimum logging severity
(emerg | alert | crit | err | warning | notice | info | debug):
info
```

A prompt is displayed to configure the facility.

Step 5 Configure `auto` as the local facility. For example:

```
Enter the local facility (auto | local0-local7): auto
```

Step 6 Apply the configuration:

```
apply
```

Step 7 Repeat for each firewall in your cluster.

Step 8 You are now ready to configure the log source in QRadar.
To configure QRadar to receive events from a Nortel Switched Firewall 5100 device using syslog:

1. From the Log Source Type list, select the Nortel Switched Firewall 5100 option.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide. For more information, see http://www.nortel.com/support.

Integrate Nortel Switched Firewall using OPSEC

This method ensures the QRadar Nortel Switched Firewall 5100 DSM accepts Check Point FireWall-1 events using OPSEC.

Note: Depending on your Operating System, the procedures for the Check Point SmartCenter Server can vary. The following procedures are based on the Check Point SecurePlatform Operating system.

To enable Nortel Switched Firewall and QRadar integration, you must:

1. Reconfigure Check Point SmartCenter Server.
2. Configure the log source in QRadar.

Reconfigure Check Point SmartCenter Server

This section describes how to reconfigure the Check Point SmartCenter Server. In the Check Point SmartCenter Server, create a host object representing the QRadar system. The leapipe is the connection between the Check Point SmartCenter Server and QRadar.

To reconfigure the Check Point SmartCenter Server:

Step 1 To create a host object, open the Check Point SmartDashboard user interface and select Manage > Network Objects > New > Node > Host.

Step 2 Type the Name, IP Address, and optional Comment for your host.

Step 3 Click OK.

Step 4 Select Close.

Step 5 To create the OPSEC connection, select Manage > Servers and OPSEC applications > New > OPSEC Application Properties.

Step 6 Type the Name and optional Comment.

 The name you type must be different than the name in Step 2.

Step 7 From the Host drop-down menu, select the host object you have created in Step 1.

Step 8 From Application Properties, select User Defined as the vendor.

Step 9 From Client Entries, select LEA.

Step 10 Click Communication.

Step 11 Choose a password in the provide field. This password is necessary when pulling the certificate to the Firewall Director.
Step 12 Click OK and then click Close.

Step 13 To install the Security Policy on your firewall, select Policy > Install > OK.

Configure a log source

You are now ready to configure the log source in QRadar.

Step 1 To configure QRadar to receive events from a Nortel Switched Firewall 5100 device using OPSEC, you must select the Nortel Switched Firewall 5100 option from the Log Source Type list.

Step 2 To configure QRadar to receive events from a Check Point SmartCenter Server using OPSEC LEA, you must select the LEA option from the Protocol Configuration list when configuring your protocol configuration.

For more information, see the IBM Security QRadar Log Sources User Guide.

Nortel Switched Firewall 6000

A QRadar Nortel Switched Firewall 6000 DSM records all relevant firewall events using either syslog or OPSEC.

Before configuring a Nortel Switched Firewall device in QRadar, you must configure your device to send events to QRadar.

This section provides information on configuring a Nortel Switched Firewall 6000 device with QRadar using one of the following methods:

- Configure syslog for Nortel Switched Firewalls
- Configure OPSEC for Nortel Switched Firewalls

Configure syslog for Nortel Switched Firewalls

This method ensures the QRadar Nortel Switched Firewall 6000 DSM accepts events using syslog.

To configure your Nortel Switched Firewall 6000:

Step 1 Log into your Nortel Switched Firewall device command-line interface (CLI).

Step 2 Type the following command:

```
/cfg/sys/log/syslog/add
```

Step 3 Type the IP address of your QRadar system at the following prompt:

```
Enter IP address of syslog server:
```

A prompt is displayed to configure the severity level.

Step 4 Configure info as the desired severity level. For example:

```
Enter minimum logging severity (emerg | alert | crit | err | warning | notice | info | debug):
```

info

A prompt is displayed to configure the facility.

Step 5 Configure auto as the local facility. For example:
Enter the local facility (auto | local0-local7): auto

Step 6 Apply the configuration:

apply

Step 7 You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from an Nortel Switched Firewall 6000 using syslog:

- From the Log Source Type list, select the Nortel Switched Firewall 6000 option.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide. For more information, see http://www.nortel.com/support.

Configure OPSEC for Nortel Switched Firewalls

This method ensures the QRadar Nortel Switched Firewall 6000 DSM accepts Check Point FireWall-1 events using OPSEC.

Note: Depending on your Operating System, the procedures for the Check Point SmartCenter Server can vary. The following procedures are based on the Check Point SecurePlatform Operating system.

To enable Nortel Switched Firewall and QRadar integration, you must:

Step 1 Reconfigure Check Point SmartCenter Server. See Reconfigure Check Point SmartCenter Server.

Step 2 Configure the OPSEC LEA protocol in QRadar.

To configure QRadar to receive events from a Check Point SmartCenter Server using OPSEC LEA, you must select the LEA option from the Protocol Configuration list when configuring LEA.

For more information, see the Log Sources User Guide.

Step 3 Configure the log source in QRadar.

To configure QRadar to receive events from a Nortel Switched Firewall 6000 device using OPSEC you must select the Nortel Switched Firewall 6000 option from the Log Source Type list. For more information on configuring log sources, see the Log Sources User Guide.

For more information, see http://www.nortel.com/support.

Reconfigure Check Point SmartCenter Server

This section describes how to reconfigure the Check Point SmartCenter Server. In the Check Point SmartCenter Server, create a host object representing the QRadar system. The leapipe is the connection between the Check Point SmartCenter Server and QRadar.
To reconfigure the Check Point SmartCenter Server:

Step 1 To create a host object, open the Check Point SmartDashboard user interface and select **Manage > Network Objects > New > Node > Host**.

Step 2 Type the Name, IP Address, and optional Comment for your host.

Step 3 Click **OK**.

Step 4 Select **Close**.

Step 5 To create the OPSEC connection, select **Manage > Servers and OPSEC applications > New > OPSEC Application Properties**.

Step 6 Type the Name and optional Comment.

The name you type must be different than the name in **Step 2**.

Step 7 From the **Host** drop-down menu, select the host object you have created in **Step 1**.

Step 8 From **Application Properties**, select **User Defined** as the vendor.

Step 9 From **Client Entries**, select **LEA**.

Step 10 Click **Communication** to generate a Secure Internal Communication (SIC) certificate and enter an activation key.

Step 11 Click **OK** and then click **Close**.

Step 12 To install the Security Policy on your firewall, select **Policy > Install > OK**.

The configuration is complete.

Nortel Threat Protection System

A QRadar Nortel Threat Protection System (TPS) DSM records all relevant threat and system events using syslog.

Before configuring a Nortel TPS device in QRadar, you must:

Step 1 Log in to the Nortel TPS user interface.

Step 2 Select **Policy & Response > Intrusion Sensor > Detection & Prevention**.

The Detection & Prevention window is displayed.

Step 3 Click **Edit** next to the intrusion policy you want to configure alerting option.

The Edit Policy window is displayed.

Step 4 Click **Alerting**.

The Alerting window is displayed.

Step 5 Under **Syslog Configuration**, select **on** next to State to enable syslog alerting.

Step 6 From the lists, select the facility and priority levels.

Step 7 Optional. In the **Logging Host** field, type the IP address of your QRadar system. This configures your QRadar system to be your logging host. Separate multiple hosts with commas.

Step 8 Click **Save**.

The syslog alerting configuration is saved.
Step 9 Apply the policy to your appropriate detection engines.

Step 10 You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Nortel TPS device:

▶ From the Log Source Type list, select the Nortel Threat Protection System (TPS) Intrusion Sensor option.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide. For more information about Nortel TPS, see http://www.nortel.com/support.

Nortel VPN Gateway

The IBM Security QRadar Nortel VPN Gateway DSM accepts events using syslog. QRadar records all relevant operating system (OS), system control, traffic processing, startup, configuration reload, AAA, and IPsec events. Before configuring a Nortel VPN Gateway device in QRadar, you must configure your device to send syslog events to QRadar.

To configure the device to send syslog events to QRadar:

Step 1 Log in to the Nortel VPN Gateway command-line interface (CLI).

Step 2 Type the following command:

```
/cfg/sys/syslog/add
```

Step 3 At the prompt, type the IP address of your QRadar system:

```Enter new syslog host: <IP address>
```

Where `<IP address>` is the IP address of your QRadar system.

Step 4 Apply the configuration:

```
apply
```

Step 5 View all syslog servers currently added to your system configuration:

```
/cfg/sys/syslog/list
```

Step 6 You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Nortel VPN Gateway device:

▶ From the Log Source Type list, select the Nortel VPN Gateway option.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide. For more information about the Nortel VPN Gateway, see http://www.nortel.com/support.

Before you begin

To use the Novell eDirectory DSM, you must have the following components installed:

- Novell eDirectory v8.8 with service pack 6 (sp6)
- Novell iManager v2.7
- XDASv2

To configure Novell eDirectory with QRadar, you must:

1. Configure the XDASv2 property file to forward events to QRadar.
2. Load the XDASv2 module on your Linux or Windows Operating System.
3. Configure auditing using Novell iManager.
4. Configure QRadar.

Configure XDASv2 to forward events

By default, XDASv2 is configured to log events to a file. To forward events from XDASv2 to QRadar, you must edit the xdasconfig.properties and configure the file for syslog forwarding.

Audit events must be forwarded by syslog to QRadar, instead of being logged to a file.

To configure XDASv2 to forward syslog events:

Step 1 Log in to the server hosting Novell eDirectory.

Step 2 Open the following file for editing:

- **Windows** - `C:\Novell\NDS\xdasconfig.properties`
- **Linux or Solaris** - `etc/opt/novell/configuration/xdasconfig.properties`

Step 3 To set the root logger, remove the comment marker (#) from the following line:

```
log4j.rootLogger=debug, S, R
```

Step 4 To set the appender, remove the comment marker (#) from the following line:
Step 5 To configure the IP address for the syslog destination, remove the comment marker (#) and edit the following lines:

```
log4j.appender.S.Host=<IP address>
log4j.appender.S.Port=<Port>
```

Where,

- `<IP address>` is the IP address or hostname of QRadar.
- `<Port>` is the port number for the UDP or TCP protocol. The default port for syslog communication is port 514 for QRadar or Event Collectors.

Step 6 To configure the syslog protocol, remove the comment marker (#) and type the protocol (UDP, TCP, or SSL) use in the following line:

```
log4j.appender.S.Protocol=TCP
```

The encrypted protocol SSL is not supported by QRadar.

Step 7 To set the severity level for logging events, remove the comment marker (#) from the following line:

```
log4j.appender.S.Threshold=INFO
```

The default value of INFO is the correct severity level for events.

Step 8 To set the facility for logging events, remove the comment marker (#) from the following line:

```
log4j.appender.S.Facility=USER
```

The default value of USER is the correct facility value for events.

Step 9 To set the facility for logging events, remove the comment marker (#) from the following line:

```
log4j.appender.R.MaxBackupIndex=10
```

Step 10 Save the xdas.properties file.

After you configure the syslog properties for XDASv2 events, you are ready to load the XDASv2 module.

Load the XDASv2 Module Before you can configure events in Novell iManager, you must load the changes you made to the XDASv2 module.

To load the XDASv2 module, select your operating system.

- To load the XDASv2 in Linux, see Load the XDASv2 on a Linux Operating System.
- To load the XDASv2 in Windows, see Load the XDASv2 on a Windows Operating System.
Note: If your Novell eDirectory has Novell Module Authentication Service (NMAS) installed with NMAS auditing enabled, the changes made to XDasv2 modules are loaded automatically. If you have NMAS installed, you should configure event auditing. For information on configuring event auditing, see *Configure event auditing using Novell iManager*.

Load the XDasv2 on a Linux Operating System

Step 1 Log in to your Linux server hosting Novell eDirectory, as a root user.

Step 2 Type the following command:

```
ndstrace -c "load xdasauditds"
```

You are now ready to configure event auditing in Novell eDirectory. For more information, see *Configure event auditing using Novell iManager*.

Load the XDasv2 on a Windows Operating System

Step 1 Log in to your Windows server hosting Novell eDirectory.

Step 2 On your desktop, click **Start > Run**.

The Run window is displayed.

Step 3 Type the following:

```
C:\Novell\NDS\ndscons.exe
```

This is the default installation path for the Windows Operating System. If you installed Novell eDirectory to a different directory, then the correct path is required.

Step 4 Click **OK**.

The Novell Directory Service console displays a list of available modules.

Step 5 From the **Services** tab, select **xdasauditds**.

Step 6 Click **Start**.

The xdasauditds service is started for Novell eDirectory.

Step 7 Click **Startup**.

The Service window is displayed.

Step 8 In the **Startup Type** panel, select the **Automatic** check box.

Step 9 Click **OK**.

Step 10 Close the Novell eDirectory Services window.

You are now ready to configure event auditing in Novell eDirectory. For more information, see *Configure event auditing using Novell iManager*.

Configure event auditing using Novell iManager

To configure event auditing for XDasv2 in Novell iManager:

Step 1 Log in to your Novell iManager console user interface.

Step 2 From the navigation bar, click **Roles and Tasks**.
Step 3 In the left-hand navigation, click eDirectory Auditing > Audit Configuration. The Audit Configuration panel is displayed.

Step 4 In the NPC Server name field, type the name of your NPC Server.

Step 5 Click OK.

The Audit Configuration for the NPC Server is displayed.

Step 6 Configure the following parameters:

a On the Components panel, select one or both of the following:
 - DS - Select this check box to audit XDASv2 events for an eDirectory object.
 - LDAP - Select this check box to audit XDASv2 events for a Lightweight Directory Access Protocol (LDAP) object.

b On the Log Event’s Large Values panel, select one of the following:
 - Log Large Values - Select this option to log events that are larger than 768 bytes.
 - Don’t Log Large Values - Select this option to log events less than 768 bytes. If a value exceeds 768 bytes, then the event is truncated.

c On the XDAS Events Configuration, select the check boxes of the events you want XDAS to capture and forward to QRadar.

d Click Apply.

Step 7 On the XDAS tab, click XDASRoles.

The XDAS Roles Configuration panel is displayed.

Step 8 Configure the following role parameters:

a Select a check box for each object class to support event collection.

b From the Available Attribute(s) list, select any attributes and click the arrow to add these to the Selected Attribute(s) list.

c Click OK after you have added the object attributes.

d Click Apply.

Step 9 On the XDAS tab, click XDASAccounts.

The XDAS Accounts Configuration panel is displayed.

Step 10 Configure the following account parameters:

a From the Available Classes list, select any classes and click the arrow to add these to the Selected Attribute(s) list.

b Click OK after you have added the object attributes.

c Click Apply.

You are now ready to configure QRadar.

Configure a log source QRadar automatically detects syslog events from Novell eDirectory. This configuration step is optional.
From the **Log Source Type** list, select **Novell eDirectory**.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*. For more information about Novell eDirectory, Novell iManager, or XDASv2, see your vendor documentation.
The ObserveIT DSM for IBM Security QRadar can collect Log Enhanced Event Format (LEEF) events from ObserveIT using the log file protocol.

About ObserveIT

ObserveIT provides administrators and security professionals the ability to capture and replay video recordings of user interactions with network systems, software, or operating systems.

To integrate ObserveIT with QRadar, you must download and install an interface package from the ObserveIT website. The interface package contains the tools required to monitor the ObserveIT database and write the events to a file in LEEF format. As ObserveIT generates and writes events to a log file, QRadar can poll for the event file and retrieve your ObserveIT event data. QRadar remembers the state of the event file to ensure that duplicate events are not imported the next time QRadar reads your event file.

The ObserveIT interface package for QRadar requires the following:

- Active Perl installed on the ObserveIT web server.
- An osql client and access to the ObserveIT database

You can download the ObserveIT interface package (Monitor_Log_QRadar.zip) from the ObserveIT customer support: support@observeIT.com.

Supported versions

QRadar supports ObserveIT v5.6.x and later.

Configuring ObserveIT

The following process outlines the steps required to integrate ObserveIT events with QRadar.

1. Configure the ObserveIT interface package for QRadar on your ObserveIT appliance.
2. Configure a log source to use the log file protocol and download the ObserveIT event log to QRadar.
Configuring the ObserveIT interface package

To collect ObserveIT events in QRadar, you must download and configure the ObserveIT interface package.

Procedure

Step 1 Email ObserveIT customer support at support@observeIT.com to receive the ObserveIT interface package for QRadar.

Monitor_Log_QRadar.zip

Step 2 Copy the ObserveIT interface package to the web server hosting ObserveIT.

Step 3 Extract the interface package to a directory.

Step 4 From the interface package directory, edit the following file:

Data_Query_v5.bat

Step 5 In the Data_Query_v5.bat file, edit the osql connection information with the location of the ObserveIT database.

Step 6 From the interface package directory, run the Monitor_Log.pl file.

You must be an administrator or have access to write permissions to the following folder: C:\Program Files (x86)\ObserveIT\NotificationService\LogFiles\qradar\.

Step 7 Verify that ObserveIT events are written to the following folder:

C:\Program Files (x86)\ObserveIT\NotificationService\LogFiles\qradar\.

Step 8 Optional. Add Monitor_Log.pl to the Windows Job Scheduler to ensure the script starts automatically when the host is powered on.

Next Steps

You are now ready to configure a log source for ObserveIT in QRadar.

Configuring a VenuseSense log source

To integrate ObserveIT events, you must manually create a log source in QRadar.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 In the Log Source Name field, type a name for the log source.

Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select ObserveIT.

Step 9 From the Protocol Configuration list, select Log File.

Step 10 Configure the following values:
Table 75-4 Log file protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type an IP address, host name, or name to identify the event source. IP addresses or host names allow QRadar to identify a log file to a unique event source.</td>
</tr>
<tr>
<td>Service Type</td>
<td>From the list, select the protocol you want to use to retrieve log files from a remote server. The default is SFTP.</td>
</tr>
<tr>
<td></td>
<td>• SFTP - SSH File Transfer Protocol</td>
</tr>
<tr>
<td></td>
<td>• FTP - File Transfer Protocol</td>
</tr>
<tr>
<td></td>
<td>• SCP - Secure Copy</td>
</tr>
<tr>
<td>Note:</td>
<td>The underlying protocol used to retrieve log files for the SCP and SFTP service type requires that the server specified in the Remote IP or Hostname field has the SFTP subsystem enabled.</td>
</tr>
<tr>
<td>Remote IP or Hostname</td>
<td>Type the IP address or host name of the ObserveIT web server that contains your event log files.</td>
</tr>
<tr>
<td>Remote Port</td>
<td>Type the port number for the protocol selected to retrieve the event logs from your ObserveIT web server. The valid range is 1 to 65535.</td>
</tr>
<tr>
<td></td>
<td>The options include:</td>
</tr>
<tr>
<td></td>
<td>• FTP - TCP Port 21</td>
</tr>
<tr>
<td></td>
<td>• SFTP - TCP Port 22</td>
</tr>
<tr>
<td></td>
<td>• SCP - TCP Port 22</td>
</tr>
<tr>
<td>Note:</td>
<td>If the host for your event files is using a non-standard port number for FTP, SFTP, or SCP, adjust the port value accordingly.</td>
</tr>
<tr>
<td>Remote User</td>
<td>Type the user name required to log in to the ObserveIT web server that contains your audit event logs. The username can be up to 255 characters in length.</td>
</tr>
<tr>
<td>Remote Password</td>
<td>Type the password to log in to your ObserveIT web server.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password to log in to your ObserveIT web server.</td>
</tr>
<tr>
<td>SSH Key File</td>
<td>If you select SCP or SFTP as the Service Type, use this parameter to define an SSH private key file. When you provide an SSH Key File, the Remote Password field is ignored.</td>
</tr>
<tr>
<td>Remote Directory</td>
<td>Type the directory location on the remote host from which the files are retrieved, relative to the user account you are using to log in.</td>
</tr>
<tr>
<td>Note:</td>
<td>For FTP only. If your log files reside in the remote user’s home directory, you can leave the remote directory blank. This is to support operating systems where a change in the working directory (CWD) command is restricted.</td>
</tr>
</tbody>
</table>
Table 75-4 Log file protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursive</td>
<td>Select this check box if you want the file pattern to search sub folders in the remote directory. By default, the check box is clear. The Recursive parameter is ignored if you configure SCP as the Service Type.</td>
</tr>
<tr>
<td>FTP File Pattern</td>
<td>If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All files that match the regular expression are retrieved and processed. The FTP file pattern must match the name you assigned to your ObserveIT event log. For example, to collect files that start with ObserveIT_ and end with a timestamp, type the following value: ObserveIT_* Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website: http://download.oracle.com/javase/tutorial/essential/regex/</td>
</tr>
<tr>
<td>FTP Transfer Mode</td>
<td>This option only displays if you select FTP as the Service Type. From the list, select ASCII. ASCII is required for text event logs retrieved by the log file protocol using FTP.</td>
</tr>
<tr>
<td>SCP Remote File</td>
<td>If you select SCP as the Service Type, type the file name of the remote file.</td>
</tr>
<tr>
<td>Start Time</td>
<td>Type a time value to represent the time of day you want the log file protocol to start. Type the start time, based on a 24 hour clock, in the following format: HH:MM. For example, type 00:00 to schedule the Log File protocol to collect event files at midnight. This parameter functions with the Recurrence parameter value to establish when and how often the Remote Directory on your ObserveIT web server is scanned for new event log files.</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Type the frequency that you want to scan the remote directory on your ObserveIT web server for new event log files. Type this value in hours (H), minutes (M), or days (D). For example, type 2H to scan the remote directory every 2 hours from the start time. The default is 1H and the minimum value is 15M.</td>
</tr>
</tbody>
</table>
Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration for ObserveIT is complete. As the log file protocol retrieves events, they are displayed on the **Log Activity** tab of QRadar.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run On Save</td>
<td>Select this check box if you want the log file protocol to run immediately after you click Save. After the save action completes, the log file protocol follows your configured start time and recurrence schedule. Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File parameter.</td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The valid range is 100 to 5000.</td>
</tr>
<tr>
<td>Processor</td>
<td>From the list, select NONE. Processors allow event file archives to be expanded and contents processed for events. Files are only processed after they are downloaded. QRadar can process files in zip, gzip, tar, or tar+gzip archive format.</td>
</tr>
<tr>
<td>Ignore Previously Processed File(s)</td>
<td>Select this check box to track and ignore files that are already processed. QRadar examines the log files in the remote directory to determine if a file is already processed by the log file protocol. If a previously processed file is detected, the log file protocol does not download the file. Only new or unprocessed event log files are downloaded by QRadar. This option only applies to FTP and SFTP service types.</td>
</tr>
<tr>
<td>Change Local Directory?</td>
<td>Select this check box to define a local directory on QRadar to store event log files during processing. We recommend that you leave this check box clear. When this check box is selected, the Local Directory field is displayed, which allows you to configure the local directory on QRadar to store event log files. After the event log is processed and the events added to QRadar, the local directory deletes the event log files to retain disk space.</td>
</tr>
<tr>
<td>Event Generator</td>
<td>From the Event Generator list, select LineByLine. The Event Generator applies additional processing to the retrieved event files. Each line of the file is a single event. For example, if a file has 10 lines of text, 10 separate events are created.</td>
</tr>
</tbody>
</table>
The OpenBSD DSM for IBM Security QRadar accepts events using syslog.

Supported event types
QRadar records all relevant informational, authentication, and system level events forwarded from OpenBSD operating systems.

Configure a log source
To integrate OpenBSD events with QRadar, you must manually create a log source. QRadar does not automatically discover or create log sources for syslog events from OpenBSD operating systems.

To create a log source for OpenBSD:

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.
The Data Sources panel is displayed.

Step 4 Click the **Log Sources** icon.
The Log Sources window is displayed.

Step 5 Click **Add**.
The Add a log source window is displayed.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **OpenBSD OS**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.
The syslog protocol configuration is displayed.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 76-1 Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.
Step 12 On the Admin tab, click Deploy Changes.

The log source is added to QRadar. You are now ready to configure your OpenBSD appliance to forward syslog events.

Configure syslog for OpenBSD

To configure OpenBSD to forward syslog events:

Step 1 Using SSH, log in to your OpenBSD device, as a root user.

Step 2 Open the /etc/syslog.conf file.

Step 3 Add the following line to the top of the file. Make sure all other lines remain intact:

```
*.* @<IP address>
```

Where <IP address> is the IP address of your QRadar.

Step 4 Save and exit the file.

Step 5 Send a hang-up signal to the syslog daemon to ensure all changes are applied:

```
kill -HUP `cat /var/run/syslog.pid`
```

Note: The command later uses the backquote character (‘), which is located to the left of the number one on most keyboard layouts.

The configuration is complete. Events forwarded to QRadar by OpenBSD are displayed on the Log Activity tab.
The Open LDAP DSM for IBM Security QRadar accepts multiline UDP syslog events from Open LDAP installations configured to log stats events using logging level 256.

Before you begin

Open LDAP events are forwarded to QRadar using port 514, but must be redirected to the port configured in the UDP Multiline protocol. This redirect using iptables is required because QRadar does not support multiline UDP syslog on the standard listen port.

Note: UDP multiline syslog events can be assigned to any port other than port 514. The default port assigned to the UDP Multiline protocol is UDP port 517. If port 517 is used in your network, see the *IBM Security QRadar Common Ports Technical Note* for a list of ports used by QRadar.

Configure a log source

QRadar does not automatically discover Open LDAP events forwarded in UDP multiline format. To complete the integration, you must manually create a log source for the UDP Multiline Syslog protocol using the Admin tab in QRadar. Creating the log source allows QRadar to establish a listen port for incoming Open LDAP multiline events.

To configure an Open LDAP log source in QRadar:

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 In the navigation menu, click Data Sources.

The Data Sources pane is displayed.

Step 4 Click the Log Sources icon.

The Log Sources window is displayed.

Step 5 Click Add.

The Add a log source window is displayed.

Step 6 In the Log Source Name field, type a name for your log source.

Step 7 In the Log Source Description field, type a description for your log source.

Step 8 From the Log Source Type list, select Open LDAP Software.
Step 9 From the Protocol Configuration list, select UDP Multiline Syslog.

Step 10 Configure the following values:

Table 77-1 UDP Multiline Protocol Configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Open LDAP server.</td>
</tr>
</tbody>
</table>
| Listen Port | Type the port number used by QRadar to accept incoming UDP Multiline Syslog events. The valid port range is 1 to 65536. The default UDP Multiline Syslog listen port is 517. Note: If you do not see the Listen Port field, you must restart Tomcat on QRadar. For more information on installing a protocol manually, see the IBM Security QRadar Log Sources User Guide. To edit the Listen Port number:
1 Update IPtables on your QRadar Console or Event Collector with the new UDP Multiline Syslog port number. For more information, see Configure IPtables for multiline UDP syslog events.
2 In the Listen Port field, type the new port number for receiving UDP Multiline Syslog events.
3 Click Save.
4 On the Admin tab, select Advanced > Deploy Full Configuration. Note: When you click Deploy Full Configuration, QRadar restarts all services, resulting in a gap in data collection for events and flows until the deployment completes. |
| Message ID Pattern | Type the regular expression (regex) required to filter the event payload messages. All matching events are included when processing Open LDAP events. The following regular expression is recommended for Open LDAP events: conn=(\d+)
For example, Open LDAP starts connection messages with the word conn, followed by the rest of the event payload. Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website: http://download.oracle.com/javase/tutorial/essential/regex/ |

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The log source is created for Open LDAP events. You are now ready to configure IPtables for QRadar to redirect Open LDAP events to the proper UDP multiline syslog port on your QRadar Console or Event Collector.
Configure IPtables for multiline UDP syslog events

Open LDAP requires that you redirect events from your Open LDAP servers from port 514 to another QRadar port for the UDP multiline protocol. You must configure IPtables on your QRadar Console or for each Event Collectors that receives multiline UDP syslog events from an Open LDAP server.

To configure QRadar to redirect multiline UDP syslog events:

Step 1
Using SSH, log in to QRadar as the root user.
Login: root
Password: <password>

Step 2
Type the following command to edit the IPtables file:
```
vi /opt/qradar/conf/iptables-nat.post
```
The IPtables NAT configuration file is displayed.

Step 3
Type the following command to instruct QRadar to redirect syslog events from UDP port 514 to UDP port 517:
```
-A PREROUTING -p udp --dport 514 -j REDIRECT --to-port <new-port> -s <IP address>
```
Where:
- `<IP address>` is the IP address of your Open LDAP server.
- `<New port>` is the port number configured in the UDP Multiline protocol for Open LDAP.

You must include a redirect for each Open LDAP IP address that sends events to your QRadar Console or Event Collector. For example, if you had three Open LDAP servers communicating to an Event Collect, you would type the following:
```
-A PREROUTING -p udp --dport 514 -j REDIRECT --to-port 517 -s 10.10.10.10
-A PREROUTING -p udp --dport 514 -j REDIRECT --to-port 517 -s 10.10.10.11
-A PREROUTING -p udp --dport 514 -j REDIRECT --to-port 517 -s 10.10.10.12
```

Step 4
Save your IPtables NAT configuration.
You are now ready to configure IPtables on your QRadar Console or Event Collector to accept events from your Open LDAP servers.

Step 5
Type the following command to edit the IPtables file:
```
vi /opt/qradar/conf/iptables.post
```
The IPtables configuration file is displayed.

Step 6
Type the following command to instruct QRadar to allow communication from your Open LDAP servers:
```
-I QChain 1 -m udp -p udp --src <IP address> --dport <New port> -j ACCEPT
```
Where:
- `<IP address>` is the IP address of your Open LDAP server.
- `<New port>` is the port number configured in the UDP Multiline protocol for Open LDAP.
You must include a redirect for each Open LDAP IP address that sends events to your QRadar Console or Event Collector. For example, if you had three Open LDAP servers communicating to an Event Collect, you would type the following:

- I QChain 1 -m udp -p udp --src 10.10.10.10 --dport 517 -j ACCEPT
- I QChain 1 -m udp -p udp --src 10.10.10.11 --dport 517 -j ACCEPT
- I QChain 1 -m udp -p udp --src 10.10.10.12 --dport 517 -j ACCEPT

Step 7 Type the following command to update IPtables in QRadar:

```
./opt/qradar/bin/iptables_update.pl
```

Step 8 Repeat **Step 1 to Step 7** to configure any additional QRadar Consoles or Event Collectors in your deployment that receive syslog events from an Open LDAP server.

You are now ready to configure your Open LDAP server to forward events to QRadar.

Configure event forwarding for Open LDAP

To configure syslog forwarding for Open LDAP:

Step 1 Log in to the command-line interface for your Open LDAP server.

Step 2 Edit the following file:

```
/etc/syslog.conf
```

Step 3 Add the following information to the syslog configuration file:

```
<facility>        @<IP address>
```

Where:

- `<facility>` is the syslog facility, for example local4.
- `<IP address>` is the IP address of your QRadar Console or Event Collector.

For example,

```
# Logging for SLAPD
local4.debug         /var/log/messages
local4.debug         @10.10.10.1
```

Note: If your Open LDAP server stores event messages in a directory other than /var/log/messages, you must edit the directory path accordingly.

Step 4 Save the syslog configuration file.

Step 5 Type the following command to restart the syslog service:

```
/etc/init.d/syslog restart
```

The configuration for Open LDAP is complete. UDP multiline events forwarded to QRadar are displayed on the **Log Activity** tab.
The Open Source SNORT DSM for IBM Security QRadar records all relevant SNORT events using syslog.

Supported event types
The SourceFire VRT certified rules for registered SNORT users are supported. Rule sets for Bleeding Edge, Emerging Threat, and other vendor rule sets might not be fully supported by the Open Source SNORT DSM.

Before you begin
The below procedure applies to a system operating Red Hat Enterprise. The procedures below can vary for other operating systems.

Configure Open Source SNORT
To configure syslog on an Open Source SNORT device:

Step 1 Configure SNORT on a remote system.
Step 2 Open the snort.conf file.
Step 3 Uncomment the following line:
 output alert_syslog:LOG_AUTH LOG_INFO
Step 4 Save and exit the file.
Step 5 Open the following file:
 /etc/init.d/snortd
Step 6 Add an -s to the following lines, as shown in the example below:
 daemon /usr/sbin/snort $ALERTMODE $BINARY_LOG $NO_PACKET_LOG
 $DUMP_APP -D $PRINT_INTERFACE -i $i -s -u $USER -g $GROUP $CONF
 -i $LOGIR/$i $PASS_FIRST
 daemon /usr/sbin/snort $ALERTMODE $BINARY_LOG $NO_PACKET_LOG
 $DUMP_APP -D $PRINT_INTERFACE $INTERFACE -s -u $USER -g $GROUP
 $CONF -i $LOGDIR
Step 7 Save and exit the file.
Step 8 Restart SNORT:
 /etc/init.d/snortd restart
Step 9 Open the syslog.conf file.
Step 10 Update the file to reflect the following:

```
auth.info                           @<IP Address>
```

Where `<IP Address>` is the system to which you want logs sent.

Step 11 Save and exit the file.

Step 12 Restart syslog:

```
/etc/init.d/syslog restart
```

You are now ready to configure the log source in QRadar.

Configure a log source QRadar automatically discovers and creates log sources for Open Source SNORT syslog events. The following configuration steps are optional.

To create a log source in QRadar:

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

The Data Sources panel is displayed.

Step 4 Click the **Log Sources** icon.

The Log Sources window is displayed.

Step 5 Click **Add**.

The Add a log source window is displayed.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Open Source IDS**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

The syslog protocol configuration is displayed.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 78-2</th>
<th>Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for the log source as an identifier for your Open Source SNORT events.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.

For more information about SNORT, see the SNORT documentation at http://www.snort.org/docs/.
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
This section provides information on configuring the following DSMs:

- Oracle Audit Records
- Oracle DB Listener
- Oracle Audit Vault
- Oracle OS Audit
- Oracle BEA WebLogic
- Oracle Acme Packet Session Border Controller
- Oracle Fine Grained Auditing

Oracle Audit Records

Oracle databases track auditing events, such as, user login and logouts, permission changes, table creation, and deletion and database inserts.

IBM Security QRadar can collect these events for correlation and reporting purposes through the use of the Oracle Audit DSM. For more information, see your Oracle documentation.

Note: Oracle provides two modes of audit logs. QRadar does not support fine grained auditing.

Before you begin

Oracle RDBMS is supported on Linux only when using syslog. Microsoft Windows hosts and Linux are supported when using JDBC to view database audit tables. When using a Microsoft Windows host, verify database audit tables are enabled. These procedures should be considered guidelines only. We recommend that you have experience with Oracle DBA before performing the procedures in this document. For more information, see your vendor documentation.

Before QRadar can collect Oracle Audit events from an Oracle RDBMS instance, that instance must be configured to write audit records to either syslog or the database audit tables. For complete details and instructions for configuring auditing, see your vendor documentation.

Note: Not all versions of Oracle can send audit events using syslog. Oracle v9i and 10g Release 1 can only send audit events to the database. Oracle v10g Release 2 and Oracle v11g can write audit events to the database or to syslog. If
you are using v10g Release 1 or v9i, you must use JDBC-based events. If you are using Oracle v10g Release 2, you can use syslog or JDBC-based events.

To configure an Oracle Audit device to write audit logs to QRadar, see **Configure Oracle audit logs**. If your system includes a large Oracle audit table (greater than 1 GB), see **Improve performance with large audit tables**.

Configure Oracle audit logs

To configure the device to write audit logs:

Step 1 Log in to the Oracle host as an Oracle user (This user was used to install Oracle, for example oracle).

Step 2 Make sure the ORACLE_HOME and ORACLE_SID environment variables are configured properly for your deployment.

Step 3 Open the following file:

```bash
${ORACLE_HOME}/dbs/init${ORACLE_SID}.ora
```

Step 4 Choose one of the following options:

- **a** For database audit trails, type the following command:
  ```bash
  *.audit_trail='DB'
  ```

- **b** For syslog, type the following command:
  ```bash
  *.audit_trail='os'
  *.audit_syslog_level='local0.info'
  ```

You must make sure the syslog daemon on the Oracle host is configured to forward the audit log to QRadar. For systems running Red Hat Enterprise, the following line in the `/etc/syslog.conf` file effects the forwarding:

```bash
local0.info @qradar.domain.tld
```

Where `qradar.domain.tld` is the hostname of the QRadar that receives the events. The syslog configuration must be re-loaded for the above command to be recognized. On a system running Red Hat Enterprise, type the following line to reload the syslog configuration:

```bash
kill -HUP /var/run/syslogd.pid
```

Step 5 Save and exit the file.

Step 6 To restart the database:

- **a** Connect to SQLplus and log in as sysdba:
  ```bash
  Enter user-name: sys as sysdba
  ```

- **b** Shut down the database:
  ```bash
  shutdown immediate
  ```

- **c** Restart the database:
  ```bash
  startup
  ```
Step 7 If you are using Oracle v9i or Oracle v10g Release 1, you must create a view, using SQLplus to enable the QRadar integration. If you are using Oracle 10g Release 2 or later, you can skip this step:

```
CREATE VIEW qradar_audit_view AS SELECT
    CAST(dba_audit_trail.timestamp AS TIMESTAMP) AS qradar_time,
    dba_audit_trail.* FROM dba_audit_trail;
```

If you are using the JDBC protocol, see the IBM Security QRadar Log Sources User Guide for more information on configuring the JDBC protocol. When configuring the JDBC protocol within QRadar, use the following specific parameters:

Table 80-1 Configuring Log Source Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Oracle v9i or 10g Release 1 Values</th>
<th>Oracle v10g Release 2 and v11g Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table Name</td>
<td>qradar_audit_view</td>
<td>dba_audit_trail</td>
</tr>
<tr>
<td>Select List</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Compare Field</td>
<td>qradar_time</td>
<td>extended_timestamp</td>
</tr>
<tr>
<td>Database Name</td>
<td>For all supported versions of Oracle, the Database Name must be the exact service name used by the Oracle listener. You can view the available service names by running the following command on the Oracle host: lsnrctl status</td>
<td></td>
</tr>
</tbody>
</table>

Note: Make sure that database user that QRadar uses to query events from the audit log table has the appropriate permissions for the Table Name object.

Step 8 You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from an Oracle Database:

1. From the Log Source Type list, select the Oracle RDBMS Audit Record option.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide.

Improve performance with large audit tables

The size of the Oracle audit table affects the amount of time that QRadar requires to process the DBA_AUDIT_TRAIL view. If your sys.sud$ table is large (close or exceeding 1 GB), extended processing time is required. To ensure QRadar processes the large sys.sud$ table quickly, you must create an index and a new view.

Note: If auditing is extensive or the database server is very active, you might need to shut down the database to perform the below procedure.

To create an index and a new view:

1. Access the following website to download the required files:
Step 2 From the **Software** tab, select **Scripts**.

Step 3 Download the appropriate file for your version of Oracle:
- If you are using Oracle 9i or 10g Release 1, download the following file:

 \[\text{oracle}_9i\text{ dba audit view.sql} \]

- If you are using Oracle v10g Release 2 and v11g, download the following file:

 \[\text{oracle alt dba audit view.sql} \]

Step 4 Copy the downloaded file to a local directory.

Step 5 Change the directory to the location where you copied the file in **Step 4**.

Step 6 Log in to SQLplus and log in as sysdba:

```
sqlplus / as sysdba
```

Step 7 At the SQL prompt, type one of the following commands, depending on your version of Oracle Audit:

To create an index, the file might already be in use and must have exclusive access.
- If you are using Oracle 9i or 10g Release 1, type the following command:

 \[@\text{oracle}_9i\text{ dba audit view.sql} \]

- If you are using Oracle v10g Release 2 and v11g, type the following command:

 \[@\text{oracle alt dba audit view.sql} \]

Step 8 Make sure the database user configured in QRadar has SELECT permissions on the view.

For example if the user is USER1:

```
grant select on sys.alt_dba_audit_view to USER1;
```

Step 9 Log out of SQLplus.

Step 10 Log in to QRadar.

Step 11 Update the JDBC protocol configuration for this entry to include the following:

- **Table Name** - Update the table name from `DBA_AUDIT_TRAIL` to `sys.alt_dba_audit_view`.
- **Compare Field** - Update the field from `entended_timestamp` to `ntimestamp`.

For more information, see the **Log Sources User Guide**.

Step 12 Click **Save**.

The configuration is complete.

Oracle DB Listener

The Oracle Database Listener application stores logs on the database server.

To integrate QRadar with Oracle DB Listener, select one of the following methods for event collection:
- Collect events using the Oracle Database Listener Protocol
- Collect Oracle database events using Perl

Collect events using the Oracle Database Listener Protocol

The Oracle Database Listener protocol source allows QRadar to monitor log files generated from an Oracle Listener database. Before you configure the Oracle Database Listener protocol to monitor log files for processing, you must obtain the directory path to the Oracle Listener database log files.

To configure QRadar to monitor log files from Oracle Database Listener:

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

The Data Sources panel is displayed.

Step 4 Click the **Log Sources** icon.

The Log Sources window is displayed.

Step 5 From the **Log Source Type** list, select **Oracle Database Listener**.

Step 6 Using the **Protocol Configuration** list, select **Oracle Database Listener**.

Step 7 Configure the following parameters:

<table>
<thead>
<tr>
<th>Table 80-2 Oracle Database Listener Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
<tr>
<td>Server Address</td>
</tr>
<tr>
<td>Domain</td>
</tr>
<tr>
<td>Username</td>
</tr>
<tr>
<td>Password</td>
</tr>
<tr>
<td>Confirm Password</td>
</tr>
<tr>
<td>Log Folder Path</td>
</tr>
</tbody>
</table>
Step 8 Click **Save**.

Step 9 On the **Admin** tab, click **Deploy Changes**.

The configuration of the Oracle Database Listener protocol is complete. For more information, see the *IBM Security QRadar Log Sources User Guide*.

Collect Oracle database events using Perl

The Oracle Database Listener application stores logs on the database server. To forward these logs from the Oracle server to QRadar, you must configure a Perl script on the Oracle server. The Perl script monitors the listener log file, combines any multi-line log entries into a single log entry, and sends the logs, using syslog (UDP), to QRadar.

Before being sent to QRadar, the logs are processed and re-formatted to ensure the logs are not forwarded line-by-line, as is found in the log file. All of the relevant information is retained.
Note: Perl scripts written for Oracle DB listener work on Linux/UNIX servers only. Windows Perl script is not supported.

To install and configure the Perl script:

Step 1 Access the following websites to download the required files:
http://www.ibm.com/support

Step 2 From the Software tab, select Scripts.

Step 3 Download the script to forward Oracle DB Listener events.
oracle_dblistener_fwdr.pl.gz

Step 4 Extract the file:

gzip -d oracle_dblistener_fwdr.pl.gz

Step 5 Copy the Perl script to the server that hosts the Oracle server.

Note: Perl 5.8 must be installed on the device that hosts the Oracle server.

Step 6 Log in to the Oracle server using an account that has read/write permissions for the listener.log file and the /var/run directory.

Step 7 Type the following command and include any additional command parameters to start the Oracle DB Listener script:

oracle_dblistener_fwdr.pl -h <IP address> -t "tail -F listener.log"

Where <IP address> is the IP address of your QRadar Console or Event Collector.

Table 80-3 Command Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-D</td>
<td>The -D parameter defines that the script is to run in the foreground. Default is to run as a daemon and log all internal messages to the local syslog service.</td>
</tr>
<tr>
<td>-t</td>
<td>The -t parameter defines that the command-line is used to tail the log file (monitors any new output from the listener). The log file might be different across versions of the Oracle database; some examples are provided below: Oracle 9i: <install_directory>/product/9.2/network/log/listener.log Oracle 10g: <install_directory>/product/10.2.0/db_1/network/log/listener.log Oracle 11g: <install_directory>/diag/tnslsnr/qaoracle11/listener/trace/listener.log</td>
</tr>
<tr>
<td>-f</td>
<td>The -f parameter defines the syslog facility.priority to be included at the beginning of the log. If nothing is specified, user.info is used.</td>
</tr>
</tbody>
</table>
For example, to monitor the listener log on an Oracle 9i server with an IP address of 182.168.12.44 and forward events to QRadar with the IP address of 192.168.1.100, type the following:

```
```

A sample log from this setup would appear as follows:

```
```

Note: The kill command can be used to terminate the script if you need to reconfigure a script parameter or stop the script from sending events to QRadar. For example, `kill -QUIT ‘cat /var/run/oracle_dblistener_fwdr.pl.pid‘`. The example command uses the backquote character (` `), which is located to the left of the number one on most keyboard layouts.

You are now ready to configure the Oracle Database Listener within QRadar.

Step 1 From the Log Source Type list, select Oracle Database Listener.

Step 2 From the Protocol Configuration list, select syslog.

Step 3 In the Log Source Identifier field, type the IP address of the Oracle Database you specified using the -H option in **Step 7**.

The configuration of the Oracle Database Listener protocol is complete. For more information on Oracle Database Listener, see your vendor documentation.
The Oracle Audit Vault DSM for IBM Security QRadar accepts events on Oracle v10.2.3.2 and later using Java Database Connectivity (JDBC) to accesses alerts on the JDBC protocol.

QRadar records Oracle Audit Vault alerts from the source database and captures events as configured by the Oracle Audit Policy Setting. When events occur, the alerts are stored in avsys.av$alert_store table. Customized events are created in Oracle Audit Vault by a user with AV_AUDITOR permissions.

See your vendor documentation about configuration of Audit Policy Settings in Oracle Audit Vault.

In Oracle Audit Vault, alert names are not mapped to a QRadar Identifier (QID). Using the Map Event function in the QRadar Events interface a normalized or raw event can be mapped to a high-level and low-level category (or QID). Using the Oracle Audit Vault DSM, category mapping can be done by mapping your high or low category alerts directly to an alert name (ALERT_NAME field) in the payload. For information about the Events interface, see the IBM Security QRadar Users Guide.

Configure a log source

To configure a QRadar log source to access the Oracle Audit Vault database using the JDBC protocol:

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

The Data Sources panel is displayed.

Step 4 Click the **Log Sources** icon.

The Log Sources window is displayed.

Step 5 Click **Add**.

Step 6 Using the **Log Source Type** list, select **Oracle Audit Vault**.

Step 7 Using the **Protocol Configuration** list, select **JDBC**.

Step 8 Configure the following values:

- a. Database Type: **Oracle**
- b. Database Name: `<Audit Vault Database Name>`
- c. Table Name: `avsys.av$alert_store`
- d. Select List: `*`
- e. Compare Field: **ALERT_SEQUENCE**
- f. IP or Hostname: `<Location of Oracle Audit Vault Server>`
- g. Port: `<Default Port>`
- h. Username: `<Database Access Username having AV_AUDITOR role>`
i Password: <Password>

j Polling Interval: <Default Interval>

Note: Verify the AV_AUDITOR password has been entered correctly before saving the JDBC protocol configuration. Oracle Audit Vault might lock the user account due to repeated failed login attempts. When the AV_AUDITOR account is locked, data in the avsys.av$alert_store cannot be accessed. In order to unlock this user account, it is necessary to first correct the password entry in the protocol configuration. Then log in to Oracle Audit Vault through the Oracle sqlplus prompt as the avadmindva user to perform an alter user <AV_AUDITOR USER> account unlock command.

Step 9 Click **Save**.

Step 10 On the **Admin** tab, click **Deploy Changes**.

Note: The local time zone conversion-dependent Oracle timestamps are not supported in earlier versions of the JDBC protocol for QRadar so fields AV_ALERT_TIME, ACTUAL_ALERT_TIME, and TIME_CLEARED in the payload only display object identifiers until your JDBC protocol is updated.

Oracle OS Audit

The Oracle OS Audit DSM for QRadar allows monitoring of the audit records that are stored in the local operating system file.

When audit event files are created or updated in the local operating system directory, a Perl script detects the change, and forwards the data to QRadar. The Perl script monitors the Audit log file, combines any multi-line log entries into a single log entry to ensure the logs are not forwarded line-by-line, as is found in the log file, then sends the logs using syslog to QRadar. Perl scripts written for Oracle OS Audit work on Linux/UNIX servers only. Windows-based Perl installations are not supported.

To integrate the Oracle OS Audit DSM with QRadar:

Step 1 Access the following websites to download the required files:

http://www.ibm.com/support

Step 2 From the **Software** tab, select **Scripts**.

Step 3 Download the Oracle OS Audit script:

oracle_osauditlog-fwdr_5.3.tar.gz

Step 4 Type the following command to extract the file:

```
tar -zxvf oracle_osauditlog-fwdr_5.3.tar.gz
```

Step 5 Copy the Perl script to the server that hosts the Oracle server.

Note: Perl 5.8 must be installed on the device that hosts the Oracle server. If you do not have Perl 5.8 installed, you might be prompted that library files are missing when you attempt to start the Oracle OS Audit script. We recommend you verify you have installed Perl 5.8 before you continue.
Step 6 Log in to the Oracle host as an Oracle user that has SYS or root privilege.

Step 7 Make sure the ORACLE_HOME and ORACLE_SID environment variables are configured properly for your deployment.

Step 8 Open the following file:

```bash
${ORACLE_HOME}/dbs/init${ORACLE_SID}.ora
```

Step 9 For syslog, add the following lines to the file:

```ora
*.audit_trail='os'
*.audit_syslog_level='local0.info'
```

Step 10 Verify account has read/write permissions for the following directories:

```bash
/var/lock/
/var/run/
```

Step 11 Restart the Oracle database instance.

Step 12 Start the OS Audit DSM script:

```bash
oracle_osauditlog_fwdr_5.3.pl -t target_host -d logs_directory
```

Table 80-4 Oracle OS Audit Command Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-t</code></td>
<td>The <code>-t</code> parameter defines the remote host that receives the audit log files.</td>
</tr>
</tbody>
</table>
| `-d` | The `-d` parameter defines directory location of the DDL and DML log files.

Note: The directory location you specify should be the absolute path from the root directory.

| `-H` | The `-H` parameter defines the host name or IP address for the syslog header. We recommend that this be the IP address of the Oracle server on which the script is running. |

| `-D` | The `-D` parameter defines that the script is to run in the foreground.

Default is to run as a daemon (in the background) and log all internal messages to the local syslog service.

| `-n` | The `-n` parameter processes new logs, and monitors existing log files for changes to be processed.

If the `-n` option string is absent all existing log files are processed during script execution.

| `-u` | The `-u` parameter defines UDP. |

| `-f` | The `-f` parameter defines the syslog facility.priority to be included at the beginning of the log.

If you do not type a value, `user.info` is used.

| `-r` | The `-r` parameter defines the directory name where you want to create the .pid file. The default is /var/run. This parameter is ignored if `-D` is specified. |
If you restart your Oracle server you must restart the script:

```
oracle_osauditlog_fwdr.pl -t target_host -d logs_directory
```

You are now ready to configure the log sources within QRadar.

Step 1 From the Log Source Type list, select Oracle RDBMS OS Audit Record.

Step 2 From the Protocol Configuration list, select syslog.

Step 3 From the Log Source Identifier field type the address specified using the –H option in Step 12. For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide.

For more information about your Oracle Audit Record, see your vendor documentation.

Oracle BEA WebLogic

The Oracle BEA WebLogic DSM allows QRadar to retrieve archived server logs and audit logs from any remote host, such as your Oracle BEA WebLogic server.

QRadar uses the log file protocol to retrieve events from your Oracle BEA WebLogic server and provide information on application events that occur in your domain or on a single server.

To integrate Oracle BEA WebLogic events, you must:

1. Enable auditing on your Oracle BEA WebLogic server.
2. Configure domain logging on your Oracle BEA WebLogic server.
3. Configure application logging on your Oracle BEA WebLogic server.
4. Configure an audit provider for Oracle BEA WebLogic.
5. Configure QRadar to retrieve log files from Oracle BEA WebLogic.

Enable event logs

By default, Oracle BEA WebLogic does not enable event logging.

To enable event logging on your Oracle WebLogic console:

Step 1 Log in to your Oracle WebLogic console user interface.

Step 2 Select Domain > Configuration > General.

Step 3 Click Advanced.

Step 4 From the Configuration Audit Type list, select Change Log and Audit.
Step 5 Click **Save**.

You are now ready to configure the collection of domain logs for Oracle BEA WebLogic.

Configure domain logging

Oracle BEA WebLogic supports multiple instances. Event messages from instances are collected in a single domain-wide log for the Oracle BEA WebLogic server.

To configure the log file for the domain:

Step 1 From your Oracle WebLogic console, select **Domain > Configuration > Logging**.

Step 2 From the **Log file name** parameter, type the directory path and file name for the domain log. For example, OracleDomain.log.

Step 3 Optional. Configure any additional domain log file rotation parameters.

Step 4 Click **Save**.

You are now ready to configure application logging for the server.

Configure application logging

To configure application logging for Oracle BEA WebLogic:

Step 1 From your Oracle WebLogic console, select **Server > Logging > General**.

Step 2 From the **Log file name** parameter, type the directory path and file name for the application log. For example, OracleDomain.log.

Step 3 Optional. Configure any additional application log file rotation parameters.

Step 4 Click **Save**.

You are now ready to configure an audit provider for Oracle BEA WebLogic.

Configure an audit provider

To configure an audit provider:

Step 1 Select **Security Realms > Realm Name > Providers > Auditing**.

Step 2 Click **New**.

Step 3 Configure an audit provider:

- Type a name for the audit provider you are creating.
- From the **Type** list, select **DefaultAuditor**.
- Click **OK**.

The Settings window is displayed.

Step 4 Click the auditing provider you created in **Step 3**.

Step 5 Click the **Provider Specific** tab.

Step 6 Configure the following parameters:

- Add any **Active Context Handler Entries** required.
Configure a log source

To configure QRadar to retrieve log files from Oracle BEA WebLogic:

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

The Data Sources panel is displayed.

Step 4 Click the **Log Sources** icon.

The Log Sources window is displayed.

Step 5 From the **Log Source Type** list, select **Oracle BEA WebLogic**.

Step 6 Using the **Protocol Configuration** list, select **Log File**.

Step 7 Configure the following parameters:

<table>
<thead>
<tr>
<th>Table 80-5</th>
<th>Log File Parameters</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for the log source. This value must match</td>
</tr>
<tr>
<td></td>
<td>the value configured in the Remote Host IP or Hostname parameter.</td>
</tr>
<tr>
<td></td>
<td>The log source identifier must be unique for the log source type.</td>
</tr>
<tr>
<td>Service Type</td>
<td>From the list, select the File Transfer Protocol (FTP) you want to use for</td>
</tr>
<tr>
<td></td>
<td>retrieving files. The options are: SSH File Transfer Protocol (SFTP),</td>
</tr>
<tr>
<td></td>
<td>File Transfer Protocol (FTP), or Secure Copy (SCP). The default is SFTP.</td>
</tr>
<tr>
<td>Remote IP or Hostname</td>
<td>Type the IP address or hostname of the host from which you want to receive</td>
</tr>
<tr>
<td></td>
<td>files.</td>
</tr>
<tr>
<td>Remote Port</td>
<td>Type the TCP port on the remote host that is running the selected Service</td>
</tr>
<tr>
<td></td>
<td>Type. If you configure the Service Type as FTP, the default is 21. If you</td>
</tr>
<tr>
<td></td>
<td>configure the Service Type as SFTP or SCP, the default is 22. The valid</td>
</tr>
<tr>
<td></td>
<td>range is 1 to 65535.</td>
</tr>
<tr>
<td>Remote User</td>
<td>Type the username necessary to log in to the host running the selected</td>
</tr>
<tr>
<td></td>
<td>Service Type. The username can be up to 255 characters in length.</td>
</tr>
<tr>
<td>Remote Password</td>
<td>Type the password necessary to log in to the host running the selected</td>
</tr>
<tr>
<td></td>
<td>Service Type.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the Remote Password to log in to the host running the selected</td>
</tr>
<tr>
<td></td>
<td>Service Type.</td>
</tr>
</tbody>
</table>
If you select SCP or SFTP as the Service Type, this parameter allows you to define an SSH private key file. Also, when you provide an SSH Key File, the Remote Password option is ignored.

Type the directory location on the remote host from which the files are retrieved.

Select this check box if you want the file pattern to also search sub folders. The Recursive parameter is not used if you configure SCP as the Service Type. By default, the check box is clear.

If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing.

For example, if you want to list all files starting with the word server, followed by one or more digits and ending with .log, use the following entry: server[0-9]+\.log. Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website: http://download.oracle.com/javase/tutorial/essential/regex/

This option only appears if you select FTP as the Service Type. The FTP Transfer Mode parameter allows you to define the file transfer mode when retrieving log files over FTP.

From the list, select the transfer mode you want to apply to this log source:

- **Binary** - Select a binary FTP transfer mode for log sources that require binary data files or compressed .zip, .gzip, .tar, or .tar.gz archive files.
- **ASCII** - Select ASCII for log sources that require an ASCII FTP file transfer. You must select `NONE` for the Processor parameter and `LINEBYLINE` the Event Generator parameter when using ASCII as the FTP Transfer Mode.

If you select SCP as the Service Type you must type the file name of the remote file.

Type the time of day you want the processing to begin. This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: HH:MM.

Type the frequency, beginning at the Start Time, that you want the remote directory to be scanned. Type this value in hours (H), minutes (M), or days (D).

For example, type 2H if you want the directory to be scanned every 2 hours. The default is 1H.
Table 80-5 Log File Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run On Save</td>
<td>Select this check box if you want the log file protocol to run immediately after you click Save. After the Run On Save completes, the log file protocol follows your configured start time and recurrence schedule. Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File(s) parameter.</td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The valid range is 100 to 5000.</td>
</tr>
<tr>
<td>Processor</td>
<td>If the files located on the remote host are stored in a .zip, .gzip, .tar, or .tar.gz archive format, select the processor that allows the archives to be expanded and contents processed.</td>
</tr>
<tr>
<td>Ignore Previously Processed File(s)</td>
<td>Select this check box to track files that have already been processed and you do not want the files to be processed a second time. This only applies to FTP and SFTP Service Types.</td>
</tr>
<tr>
<td>Change Local Directory?</td>
<td>Select this check box to define the local directory on your QRadar system that you want to use for storing downloaded files during processing. We recommend that you leave the check box clear. When the check box is selected, the Local Directory field is displayed, which allows you to configure the local directory to use for storing files.</td>
</tr>
<tr>
<td>Event Generator</td>
<td>From the Event Generator list, select Oracle BEA WebLogic.</td>
</tr>
</tbody>
</table>

Step 8 Click **Save**.

Step 9 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.
You can use IBM Security QRadar to collect events from Oracle Acme Packet Session Border Controller (SBC) installations in your network.

Configuration overview

The Oracle Acme Packet SBC installations generate events from syslog and SNMP traps. SNMP trap events are converted to syslog and all events are forwarded to QRadar over syslog. QRadar does not automatically discover syslog events that are forwarded from Oracle Communications SBC. QRadar supports syslog events from Oracle Acme Packet SBC V6.2 and later.

To collect Oracle Acme Packet SBC events, you must complete the following tasks:

1. On your QRadar system, configure a log source with the Oracle Acme Packet Session Border Controller DSM.
2. On your Oracle Acme Packet SBC installation, enable SNMP and configure the destination IP address for syslog events.
3. On your Oracle Acme Packet SBC installation, enable syslog settings on the media-manager object.
4. Restart your Oracle Acme Packet SBC installation.
5. Optional. Ensure that no firewall rules block syslog communication between your Oracle Acme Packet SBC installation and the QRadar Console or managed host that collects syslog events.

Supported Oracle Acme Packet event types that are logged by QRadar

The Oracle Acme Packet SBC DSM for QRadar can collect syslog events from authorization and the system monitor event categories.

Each event category can contain low-level events that describe the action that is taken within the event category. For example, authorization events can have low-level categories of a login success or login failed.
Configuring an Oracle Acme Packet SBC log source

To collect syslog events from Oracle Acme Packet SBC, you must configure a log source in QRadar. Oracle Acme Packet SBC syslog events do not automatically discover in QRadar.

Procedure

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 In the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 Optional. In the Log Source Description field, type a description for your log source.
Step 8 From the Log Source Type list, select Oracle Acme Packet SBC.
Step 9 From the Protocol Configuration list, select Syslog.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 80-6 Syslog protocol parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Enabled</td>
</tr>
<tr>
<td>Credibility</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Target Event Collector</td>
</tr>
<tr>
<td>Coalescing Events</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Incoming Event Payload</td>
</tr>
</tbody>
</table>
Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

What’s next

You are now ready to configure your Oracle Acme Packet SBC installation.

Configuring SNMP to syslog conversion on Oracle Acme Packet SBC

To collect events in a format compatible with QRadar, you must enable SNMP to syslog conversion and configure a syslog destination.

Procedure

Step 1 Using SSH, log in to the command-line interface of your Oracle Acme Packet SBC installation as an administrator.

Step 2 Type the following command to start the configuration mode:

```
config t
```

Step 3 Type the following commands to start the system configuration:

```
(system)# system
(system)# system-config
(system-config)# sel
```

The sel command is required to select a single-instance of the system configuration object.

Step 4 Type the following commands to configure your QRadar system as a syslog destination:

```
(system-config)# syslog-servers
(syslog-config)# address <QRadar IP address>
(syslog-config)# done
```

Step 5 Type the following commands to enable SNMP traps and syslog conversion for SNMP trap notifications:

```
(system-config)# enable-snmp-auth-traps enabled
(system-config)# enable-snmp-syslog-notify enabled
(system-config)# enable-snmp-monitor-traps enabled
(system-config)# ids-syslog-facility 4
(system-config)# done
```
Step 6 Type the following commands to return to configuration mode:

```
(system-config)# exit
(system)# exit
(configure)#
```

Enabling syslog settings on the media manager object

The media-manager object configuration enables syslog notifications when the Intrusion Detection System (IDS) completes an action on an IP address. The available action for the event might be dependent on your firmware version.

Procedure

Step 1 Type the following command to list the firmware version for your Oracle Acme Packet SBC installation:

```
(configure)# show ver
```

ACME Net-Net OSVM Firmware SCZ 6.3.9 MR-2 Patch 2 (Build 465)
Build Date=03/13/13

The underlined text is the major and minor version number for the firmware.

Step 2 Type the following commands to configure the media-manager object:

```
(configure)# media-manager
(media-manager)#
(media-manager)# media-manager
(media-manager)# sel
(media-manager-config)#
```

The sel command is required to select a single-instance of the media-manager object.

Step 3 Type the following command to enable syslog messages when an IP is demoted by the IDS system to the denied queue.

```
(media-manager-config)# syslog-on-demote-to-deny enabled
```

Step 4 For firmware version C6.3.0 and later, type the following command to enable syslog message when sessions are rejected.

```
(media-manager-config)# syslog-on-call-reject enabled
```

Step 5 For firmware version C6.4.0 and later, type the following command to enable syslog messages when an IP is demoted to the untrusted queue.

```
(media-manager-config)# syslog-on-demote-to-untrusted enabled
```

Step 6 Type the following commands to return to configuration mode:

```
(media-manager-config)# done
(media-manager-config)# exit
(media-manager)# exit
(configure)# exit
```

Step 7 Type the following commands to save and activate the configuration:

```
# save
Save complete
# activate
```
Step 8 Type `reboot` to restart your Oracle Acme Packet SBC installation. After the system restarts, events are forwarded to QRadar and displayed on the Log Activity tab.

Oracle Fine Grained Auditing

The Oracle Fine Grained Auditing DSM can poll for database audit events from Oracle 9i and later by using the Java Database Connectivity (JDBC) protocol.

Configuration overview

To collect events, administrators must enable fine grained auditing on their Oracle databases. Fine grained auditing provides events on select, update, delete, and insert actions that occur in the source database and the records the data changed. The database table `dba_fga_audit_trail` is updated with a new row each time a change occurs on a database table where the administrator enabled an audit policy.

To configure Oracle fine grained auditing, administrators can complete the following tasks:

1. Configure on audit on any tables that require policy monitoring in the Oracle database.
2. Configure a log source for the Oracle Fine Grained Auditing DSM to poll the Oracle database for events.
3. Verify that the events polled are collected and displayed on the Log Activity tab of QRadar.

Configure a log source

After the database administrator has configured database policies, a log source can be configured to access the Oracle database with the JDBC protocol.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 Using the Log Source Type list, select Oracle Fine Grained Auditing.

Step 7 Using the Protocol Configuration list, select JDBC.

Step 8 Configure the following values:
Table 80-7 Oracle Fine Grained Auditing JDBC parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the log source identifier in the following format: <database>@<hostname> or <table name></td>
</tr>
<tr>
<td>Database Type</td>
<td>Select MSDE as the database type.</td>
</tr>
<tr>
<td>Database Name</td>
<td>Type the name of the database to which you want to connect. The table name can be up to 255 alphanumeric characters in length. The table name can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period(.).</td>
</tr>
<tr>
<td>IP or Hostname</td>
<td>Type the IP address or hostname of the database.</td>
</tr>
<tr>
<td>Port</td>
<td>Type the port number used by the database server. The default that is displayed depends on the selected Database Type. The valid range is 0 to 65536. The JDBC configuration port must match the listener port of the database. The database must have incoming TCP connections enabled to communicate with QRadar. The default port number for all options include: DB2 - 50000, MSDE - 1433, Oracle - 1521. Note: If you define a Database Instance when using MSDE as the database type, you must leave the Port parameter blank in your configuration.</td>
</tr>
<tr>
<td>Username</td>
<td>Type the database username. The username can be up to 255 alphanumeric characters in length. The username can also include underscores (_).</td>
</tr>
<tr>
<td>Password</td>
<td>Type the database password. The password can be up to 255 characters in length.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password to access the database.</td>
</tr>
</tbody>
</table>
If you select MSDE as the Database Type, the Authentication Domain field is displayed. If your network is configured to validate users with domain credentials, you must define a Windows Authentication Domain. Otherwise, leave this field blank.

The authentication domain must contain alphanumeric characters. The domain can include the following special characters: underscore (_), en dash (-), and period (.)

If you select MSDE as the Database Type, the Database Instance field is displayed.

Type the type the instance to which you want to connect, if you have multiple SQL server instances on one server.

Note: If you use a non-standard port in your database configuration, or have blocked access to port 1434 for SQL database resolution, you must leave the Database Instance parameter blank in your configuration.

From the list, select None.

Type dba_fga_audit_trail as the name of the table that includes the event records. If you change the value of this field from the default, events cannot be properly collected by the JDBC protocol.

Type * to include all fields from the table or view.

You can use a comma-separated list to define specific fields from tables or views, if required for your configuration. The list must contain the field defined in the Compare Field parameter. The comma-separated list can be up to 255 alphanumeric characters in length. The list can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period (.)

Type extended_timestamp to identify new events added between queries to the table by their timestamp.

Select the Use Prepared Statements check box. Prepared statements allows the JDBC protocol source to setup the SQL statement one time, then run the SQL statement many times with different parameters. For security and performance reasons, we recommend that you use prepared statements.

Clearing this check box requires you to use an alternative method of querying that does not use pre-compiled statements.

Optional. Configure the start date and time for database polling.
Table 80-7 Oracle Fine Grained Auditing JDBC parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polling Interval</td>
<td>Type the polling interval in seconds, which is the amount of time between queries to the database table. The default polling interval is 30 seconds. You can define a longer polling interval by appending H for hours or M for minutes to the numeric value. The maximum polling interval is 1 week in any time format. Numeric values without an H or M designator poll in seconds.</td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The default value is 20000 EPS.</td>
</tr>
<tr>
<td>Use Named Pipe Communication</td>
<td>If you select MSDE as the Database Type, the Use Named Pipe Communications check box is displayed. By default, this check box is clear. Select this check box to use an alternative method to a TCP/IP port connection. When using a Named Pipe connection, the username and password must be the appropriate Windows authentication username and password and not the database username and password. Also, you must use the default Named Pipe.</td>
</tr>
<tr>
<td>Use NTLMv2</td>
<td>If you select MSDE as the Database Type, the Use NTLMv2 check box is displayed. Select the Use NTLMv2 check box to force MSDE connections to use the NTLMv2 protocol when communicating with SQL servers that require NTLMv2 authentication. The default value of the check box is selected. If the Use NTLMv2 check box is selected, it has no effect on MSDE connections to SQL servers that do not require NTLMv2 authentication.</td>
</tr>
<tr>
<td>Use SSL</td>
<td>Select this check box if your connection supports SSL communication. This option requires additional configuration on your SharePoint database and also requires administrators to configure certificates on both appliances.</td>
</tr>
<tr>
<td>Database Cluster Name</td>
<td>If you select the Use Named Pipe Communication check box, the Database Cluster Name parameter is displayed. If you are running your SQL server in a cluster environment, define the cluster name to ensure Named Pipe communication functions properly.</td>
</tr>
</tbody>
</table>

Step 9 Click **Save**.

Step 10 On the **Admin** tab, click **Deploy Changes**.
OSSEC

The OSSEC DSM for IBM Security QRadar accepts events forwarded from OSSEC installations using syslog.

OSSEC is an open source Host-based Intrusion Detection System (HIDS) that can provide intrusion events to QRadar. If you have OSSEC agents installed, you must configure syslog on the OSSEC management server. If you have local or stand-alone installations of OSSEC, then you must configure syslog on each stand-alone OSSEC to forward syslog events to QRadar.

Configure OSSEC

To configure syslog for OSSEC on a stand-alone installation or management server:

Step 1 Using SSH, log in to your OSSEC device.
Step 2 Edit the OSSEC configuration file ossec.conf.
 <installation_directory>/ossec/etc/ossec.conf
Step 3 Add the following syslog configuration.
 The syslog configuration should be added after the alerts entry and before the localfile entry.
 </alerts>
 <syslog_output>
 <server>(QRadar IP Address)</server>
 <port>514</port>
 </syslog_output>
 <localfile>
 For example,
 <syslog_output>
 <server>10.100.100.2</server>
 <port>514</port>
 </syslog_output>

Step 4 Save the OSSEC configuration file.
Step 5 Type the following command to enable the syslog daemon:
 <installation_directory>/ossec/bin/ossec-control enable client-syslog
Step 6 Type the following command to restart the syslog daemon:

 <installation directory>/ossec/bin/ossec-control restart

The configuration is complete. The log source is added to QRadar as OSSEC events are automatically discovered. Events forwarded to QRadar by OSSEC are displayed on the Log Activity tab of QRadar.

Configure a log source

QRadar automatically discovers and creates a log source for syslog events from OSSEC. The following configuration steps are optional.

To manually configure a log source for OSSEC:

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
 The Data Sources panel is displayed.
Step 4 Click the Log Sources icon.
 The Log Sources window is displayed.
Step 5 Click Add.
 The Add a log source window is displayed.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select OSSEC.
Step 9 Using the Protocol Configuration list, select Syslog.
 The syslog protocol configuration is displayed.
Step 10 Configure the following values:

 Table 81-8 Syslog Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your OSSEC installation.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.
Step 12 On the Admin tab, click Deploy Changes.
 The configuration is complete.
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
The Pirean Access: One DSM for IBM Security QRadar collects events by polling the DB2 audit database for access management and authentication events.

Supported versions
QRadar supports Pirean Access: One software installations at v2.2 that use a DB2 v9.7 database to store access management and authentication events.

Before you begin
Before you configure QRadar to integrate with Pirean Access: One, you can create a database user account and password for QRadar. Creating a QRadar account is not required, but is beneficial as it allows you to secure your access management and authentication event table data for the QRadar user. Your QRadar user must have read permissions for the database table that contains your events. The JDBC protocol allows QRadar to log in and poll for events from the database based on the timestamp to ensure the latest data is retrieved.

Note: Ensure that no firewall rules block communication between your Pirean Access: One installation and the QRadar Console or managed host responsible for event polling with JDBC.

Configuring a log source
To collect events, you must configure a log source in QRadar to poll your Access: One installation database with the JDBC protocol.

Procedure

Step 1 Click the **Admin** tab.

Step 2 On the navigation menu, click **Data Sources**.

Step 3 Click the **Log Sources** icon.

Step 4 Click **Add**.

Step 5 In the **Log Source Name** field, type a name for your log source.

Step 6 In the **Log Source Description** field, type a description for the log source.

Step 7 From the **Log Source Type** list, select **Pirean Access: One**.

Step 8 Using the **Protocol Configuration** list, select **JDBC**.

Step 9 Configure the following values:

IBM Security QRadar DSM Configuration Guide
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Log Source Identifier | Type the identifier for the log source. The log source identifier must be defined in the following format:
\[
<\text{database}>@<\text{hostname}>
\]
Where:
\[
<\text{database}>
\] is the database name, as defined in the Database Name parameter. The database name is a required parameter.
\[
<\text{hostname}>
\] is the hostname or IP address for the log source as defined in the IP or Hostname parameter. The hostname is a required parameter.
The log source identifier must be unique for the log source type. |
| Database Type | From the list, select **DB2** as the type of database to use for the event source. |
| Database Name | Type the name of the database to which you want to connect. The default database name is **LOGINAUD**. |
| IP or Hostname | Type the IP address or hostname of the database server. |
| Port | Type the TCP port number used by the audit database DB2 instance.
Your DB2 administrator can provide you with the TCP port required for this field. |
| Username | Type a username that has access to the DB2 database server and audit table.
The username can be up to 255 alphanumeric characters in length. The username can also include underscores (_). |
| Password | Type the database password.
The password can be up to 255 characters in length. |
| Confirm Password | Confirm the password to access the database. |
| Table Name | Type **AUDITDATA** as the name of the table or view that includes the event records.
The table name can be up to 255 alphanumeric characters in length. The table name can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period(.). |
| Select List | Type * to include all fields from the table or view.
You can use a comma-separated list to define specific fields from tables or views, if required for your configuration. The list must contain the field defined in the Compare Field parameter. The comma-separated list can be up to 255 alphanumeric characters in length. The list can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period(.). |
Table 83-9 Pirean Access: One log source parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compare Field</td>
<td>Type <code>TIMESTAMP</code> to identify new events added between queries to the table. The compare field can be up to 255 alphanumeric characters in length. The list can include the special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period(.)</td>
</tr>
<tr>
<td>Use Prepared Statements</td>
<td>Select this check box to use prepared statements, which allows the JDBC protocol source to setup the SQL statement one time, then run the SQL statement many times with different parameters. For security and performance reasons, we recommend that you use prepared statements. Clear this check box to use an alternative method of querying that does not use pre-compiled statements.</td>
</tr>
<tr>
<td>Start Date and Time</td>
<td>Optional. Configure the start date and time for database polling. The Start Date and Time parameter must be formatted as <code>yyyy-MM-dd HH:mm</code> with <code>HH</code> specified using a 24 hour clock. If the start date or time is clear, polling begins immediately and repeats at the specified polling interval.</td>
</tr>
<tr>
<td>Polling Interval</td>
<td>Type the polling interval, which is the amount of time between queries to the event table. The default polling interval is 10 seconds. You can define a longer polling interval by appending <code>H</code> for hours or <code>M</code> for minutes to the numeric value. The maximum polling interval is 1 week in any time format. Numeric values without an <code>H</code> or <code>M</code> designator poll in seconds.</td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The default value is 20000 EPS.</td>
</tr>
<tr>
<td>Enabled</td>
<td>Select this check box to enable the Pirean Access: One log source.</td>
</tr>
</tbody>
</table>

Step 10 Click **Save**.

Step 11 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete. Access management and authentication events for Pirean Access: One are displayed on the **Log Activity** tab of QRadar.
IBM Security QRadar can collect and categorize syslog mail events from PostFix Mail Transfer Agents (MTA) installed in your network.

Configuration overview

To collect syslog events, you must configure PostFix MTA installation to forward syslog events to QRadar. QRadar does not automatically discover syslog events that are forwarded from PostFix MTA installations as they are multiline events. QRadar supports syslog events from PostFix MTA V2.6.6.

To configure PostFix MTA, complete the following tasks:

1. On your PostFix MTA system, configure syslog.conf to forward mail events to QRadar.
2. On your QRadar system, create a log source for PostFix MTA to use the UDP multiline syslog protocol.
3. On your QRadar system, configure iptables to redirect events to the port defined for UDP multiline syslog events.
4. On your QRadar system, verify that your PostFix MTA events are displayed on the Log Activity tab.

If you have multiple PostFix MTA installations where events go to different QRadar systems, you must configure a log source and IPtables for each QRadar system that receives PostFix MTA multiline UDP syslog events.

Configuring syslog for PostFix Mail Transfer Agent

To collect events, you must configure syslog on your PostFix MTA installation to forward mail events to QRadar.

Procedure

Step 1 Using SSH, log in to your PostFix MTA installation as a root user.

Step 2 Edit the following file:

`/etc/syslog.conf`

Step 3 To forward all mail events, type the following command to change `- /var/log/maillog/` to an IP address. Make sure all other lines remain intact:

```
mail.*  @<IP address>
```

IBM Security QRadar DSM Configuration Guide
Where <IP address> is the IP address of the QRadar Console, Event Processor, or Event Collector, or all-in-one system.

Step 4 Save and exit the file.
Step 5 Restart your syslog daemon to save the changes.

Configuring a PostFix MTA log source

To collect syslog events, you must configure a log source for PostFix MTA to use the UDP Multiline Syslog protocol.

Procedure

1. Click the **Admin** tab.
2. Click the **Log Sources** icon.
3. Click **Add**.
4. In the **Log Source Name** field, type a name for your log source.
5. From the **Log Source Type** list, select **PostFix Mail Transfer Agent**.
6. From the **Protocol Configuration** list, select **UDP Multiline Syslog**.
7. Configure the following values:

Table 84-10 PostFix MTA log source parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address, host name, or name to identify your PostFix MTA installation.</td>
</tr>
<tr>
<td>Listen Port</td>
<td>Type 517 as the port number used by QRadar to accept incoming UDP Multiline Syslog events. The valid port range is 1 to 65535. To edit a saved configuration to use a new port number: 1. In the Listen Port field, type the new port number for receiving UDP Multiline Syslog events. 2. Click Save. 3. On the Admin tab, select Advanced > Deploy Full Configuration. After the full deploy completes, QRadar is capable of receiving events on the updated listen port. Note: When you click Deploy Full Configuration, QRadar restarts all services, which results in a gap in data collection for events and flows until the deployment completes.</td>
</tr>
<tr>
<td>Message ID Pattern</td>
<td>Type the following regular expression (regex) required to filter the event payload messages.</td>
</tr>
<tr>
<td>**postfix/.*?[[]\d{ }()]?: -</td>
<td>Select this check box to enable or disable the log source.</td>
</tr>
</tbody>
</table>
Step 8 Click **Save**.

Step 9 On the **Admin** tab, click **Deploy Changes**.

Configure IPtables for multiline UDP syslog events

To collect events, you must redirect events from the standard PostFix MTA port to port 517 for the UDP multiline protocol.

Procedure

Step 1 Using SSH, log in to QRadar as the root user.

Step 2 To edit the IPtables file, type the following command:

```
vi /opt/qradar/conf/iptables-nat.post
```

Step 3 To instruct QRadar to redirect syslog events from UDP port 514 to UDP port 517, type the following command:

```
-A PREROUTING -p udp --dport 514 --j REDIRECT --to-port <new-port> -s <IP address>
```

Where:

<IP address> is the IP address of your PostFix MTA installation.

Table 84-10 PostFix MTA log source parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credibility</td>
<td>Select the credibility of the log source. The range is 0 - 10. The credibility indicates the integrity of an event or offense as determined by the credibility rating from the source devices. Credibility increases if multiple sources report the same event. The default is 5.</td>
</tr>
<tr>
<td>Target Event Collector</td>
<td>Select the Event Collector to use as the target for the log source.</td>
</tr>
<tr>
<td>Coalescing Events</td>
<td>Select this check box to enable the log source to coalesce (bundle) events. By default, automatically discovered log sources inherit the value of the Coalescing Events list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
<tr>
<td>Incoming Payload Encoding</td>
<td>Select the character encoding required to parse the event logs.</td>
</tr>
<tr>
<td>Store Event Payload</td>
<td>Select this check box to enable the log source to store event payload information. By default, automatically discovered log sources inherit the value of the Store Event Payload list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
<tr>
<td>Log Source Language</td>
<td>Select the language of the events generated by PostFix MTA.</td>
</tr>
</tbody>
</table>
<New port> is the port number configured in the UDP Multiline protocol for PostFix MTA.

For example, if you had three PostFix MTA installations that communicate to QRadar, you can type the following:

```
-A PREROUTING -p udp --dport 514 -j REDIRECT --to-port 517 -s 10.10.10.10
-A PREROUTING -p udp --dport 514 -j REDIRECT --to-port 517 -s 10.10.10.11
-A PREROUTING -p udp --dport 514 -j REDIRECT --to-port 517 -s 10.10.10.12
```

Step 4 Save your IPtables NAT configuration.

You are now ready to configure IPtables on your QRadar Console or Event Collector to accept events from your PostFix MTA installation.

Step 5 Type the following command to edit the IPtables file:

```
vi /opt/qradar/conf/iptables.post
```

Step 6 Type the following command to instruct QRadar to allow communication from your PostFix MTA installations:

```
-I QChain 1 -m udp -p udp --src <IP address> --dport <New port> -j ACCEPT
```

Where:

- `<IP address>` is the IP address of your PostFix MTA installation.
- `<New port>` is the port number configured in the UDP Multiline protocol.

For example, if you had three PostFix MTA installations communicating to an Event Collector, you can type the following:

```
-I QChain 1 -m udp -p udp --src 10.10.10.10 --dport 517 -j ACCEPT
-I QChain 1 -m udp -p udp --src 10.10.10.11 --dport 517 -j ACCEPT
-I QChain 1 -m udp -p udp --src 10.10.10.12 --dport 517 -j ACCEPT
```

Step 7 To save the changes and update IPtables, type the following command:

```
./opt/qradar/bin/iptables_update.pl
```
IBM Security QRadar can collect events from a ProFTP server through syslog.

By default, ProFTPd logs authentication related messages to the local syslog using the auth (or authpriv) facility. All other logging is done using the daemon facility. To log ProFTPd messages to QRadar, use the SyslogFacility directive to change the default facility.

Configure ProFTPd

To configure syslog on a ProFTPd device:

Step 1 Open the /etc/proftd.conf file.

Step 2 Below the LogFormat directives add the following:

SyslogFacility <facility>

Where <facility> is one of the following options: AUTH (or AUTHPRIV), CRON, DAEMON, KERN, LPR, MAIL, NEWS, USER, UUCP, LOCAL0, LOCAL1, LOCAL2, LOCAL3, LOCAL4, LOCAL5, LOCAL6, or LOCAL7.

Step 3 Save the file and exit.

Step 4 Open the /etc/syslog.conf file

Step 5 Add the following line at the end of the file:

<facility> @<QRadar host>

Where:

<facility> matches the facility chosen in Step 2. The facility must be typed in lower case.

<QRadar host> is the IP address of your QRadar Console or Event Collector.

Step 6 Restart syslog and ProFTPd:

/etc/init.d/syslog restart
/etc/init.d/proftpd restart

You are now ready to configure the log source in QRadar.
Configure a log source

QRadar automatically discovers and creates a log source for syslog events from ProFTPd. The following configuration steps are optional.

To manually configure a log source for ProFTPd:

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**. The Data Sources panel is displayed.

Step 4 Click the **Log Sources** icon. The Log Sources window is displayed.

Step 5 Click **Add**. The Add a log source window is displayed.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **ProFTPd Server**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**. The syslog protocol configuration is displayed.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your ProFTPd installation.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**. The configuration is complete.
IBM Security QRadar can collect and categorize syslog events from Proofpoint Enterprise Protection and Enterprise Privacy systems that are installed within your network.

The following events types are supported for Proofpoint installations:

- System events for Proofpoint Enterprise Protection
- Email security threat classification events for Proofpoint Enterprise Protection
- System events for Proofpoint Enterprise Privacy
- Email audit and encryption events for Proofpoint Enterprise Privacy

Configuration overview

To collect syslog events, administrators must configure the Proofpoint appliance to forward syslog events. QRadar does not automatically discover syslog events that are forwarded from Proofpoint installations. QRadar supports syslog events from Proofpoint Enterprise Protection or Proofpoint Enterprise Privacy installations that use software version 7.0.2, 7.1, or 7.2.

To collect events from Proofpoint Enterprise, administrators must complete the following tasks:

1. On your Proofpoint system, configure the log settings to forward syslog events.
2. On your QRadar system, create a log source for Proofpoint Enterprise.

Configuring syslog for Proofpoint Enterprise

To collect events, you must configure syslog on your Proofpoint installation to forward syslog events.

Procedure

Step 1 Log in to the Proofpoint Enterprise interface.
Step 2 Click Logs and Reports.
Step 3 Click Log Settings.
Step 4 From the Remote Log Settings pane, configure the following options to enable syslog communication:
 a. Select Syslog as the communication protocol.
 b. Type the IP address of the QRadar Console or Event Collector.
To collect syslog events, you must configure a log source for Proofpoint Enterprise because the DSM does not support automatic discovery.

Procedure

1. Step 1: Click the **Admin** tab.
2. Step 2: Click the **Log Sources** icon.
3. Step 3: Click **Add**.
4. Step 4: In the **Log Source Name** field, type a name for your log source.
5. Step 5: In the **Log Source Description** field, type a description for your log source.
6. Step 6: From the **Log Source Type** list, select **Proofpoint Enterprise Protection/Enterprise Privacy**.
7. Step 7: From the **Protocol Configuration** list, select **Syslog**.
8. Step 8: Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address, host name, or name to identify your Proofpoint Enterprise appliance.</td>
</tr>
<tr>
<td>Enabled</td>
<td>Select this check box to enable the log source.</td>
</tr>
<tr>
<td>Credibility</td>
<td>Select the credibility of the log source. The range is 0 - 10. The credibility indicates the integrity of an event or offense as determined by the credibility rating from the source devices. Credibility increases if multiple sources report the same event. The default is 5.</td>
</tr>
<tr>
<td>Target Event Collector</td>
<td>Select the Event Collector to use as the target for the log source.</td>
</tr>
<tr>
<td>Coalescing Events</td>
<td>Select this check box to enable the log source to coalesce (bundle) events. By default, automatically discovered log sources inherit the value of the Coalescing Events list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
<tr>
<td>Incoming Payload Encoding</td>
<td>Select the character encoding that is required to parse the event logs.</td>
</tr>
</tbody>
</table>
Table 86-12 Proofpoint Enterprise log source parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store Event Payload</td>
<td>Select this check box to enable the log source to store event payload information. By default, automatically discovered log sources inherit the value of the Store Event Payload list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
<tr>
<td>Log Source Language</td>
<td>Select the language of the events that are generated by the Proofpoint Enterprise appliance.</td>
</tr>
</tbody>
</table>

Step 9 Click Save.

Step 10 On the Admin tab, click Deploy Changes.
The Radware DefensePro DSM for IBM Security QRadar accepts events using syslog. Event traps can also be mirrored to a syslog server.

Before you configure QRadar to integrate with a Radware DefensePro device, you must configure your Radware DefensePro device to forward syslog events to QRadar. You must configure the appropriate information using the Device > Trap and SMTP option.

Any traps generated by the Radware device are mirrored to the specified syslog server. The current Radware Syslog server enables you to define the status and the event log server address.

You can also define additional notification criteria, such as Facility and Severity, which are expressed by numerical values:

• Facility is a user-defined value indicating the type of device used by the sender. This criteria is applied when the device sends syslog messages. The default value is 21, meaning Local Use 6.
• Severity indicates the importance or impact of the reported event. The Severity is determined dynamically by the device for each message sent.

In the Security Settings window, you must enable security reporting using the connect and protect/security settings. You must enable security reports to syslog and configure the severity (syslog risk).

You are now ready to configure the log source in QRadar.

Configure a log source

 QRadar automatically discovers and creates a log source for syslog events from Radware DefensePro. The following configuration steps are optional.

To manually configure a log source for Radware DefensePro:

1. **Step 1** Log in to QRadar.
2. **Step 2** Click the Admin tab.
3. **Step 3** On the navigation menu, click Data Sources.
 The Data Sources panel is displayed.
4. **Step 4** Click the Log Sources icon.
The Log Sources window is displayed.

Step 5 Click **Add**.

The Add a log source window is displayed.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Radware DefensePro**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

The syslog protocol configuration is displayed.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 87-13</th>
<th>Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Radware DefensePro installation.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.
IBM Security QRadar that can collect and parse syslog events forwarded from Raz-Lee iSecurity installations on IBM iSeries® infrastructure.

Supported versions
QRadar supports events from Raz-Lee iSecurity installations with Firewall v15.7 and Audit v11.7.

Supported event types
Raz-Lee iSecurity installations on IBM AS/400 iSeries are can forward syslog events for security, compliance, and auditing to QRadar.

All syslog events forwarded by Raz-Lee iSecurity automatically discover and the events are parsed and categorized with the IBM AS/400 iSeries DSM.

Configuring Raz-Lee iSecurity
To collect security and audit events, you must configure your Raz-Lee iSecurity installation to forward syslog events to QRadar.

Procedure

1. **Step 1**
 Log in to the IBM System i command-line interface.

2. **Step 2**
 Type the following command to access the audit menu options:

 STRAUD

3. **Step 3**
 From the Audit menu, select **81. System Configuration**.

4. **Step 4**
 From the iSecurity/Base System Configuration menu, select **31. SYSLOG Definitions**.

5. **Step 5**
 Configure the following parameters:
 a. **Send SYSLOG message** - Select **Yes**.
 b. **Destination address** - Type the IP address of QRadar.
 c. **Facility** to use - Type a facility level.
 d. **Severity** range to auto send - Type a severity level.
 e. **Message structure** - Type any additional message structure parameters required for your syslog messages.
Next steps
Syslog events forwarded by Raz-Lee iSecurity are automatically discovered by QRadar by the IBM AS/400 iSeries DSM. In most cases, the log source is automatically created in QRadar after a small number of events are detected. If the event rate is extremely low, then you might be required to manually create a log source for Raz-Lee iSecurity in QRadar. Until the log source is automatically discovered and identified, the event type displays as Unknown on the Log Activity tab of QRadar. Automatically discovered log sources can be viewed on the Admin tab of QRadar by clicking the Log Sources icon.

Configuring a log source
QRadar automatically discovers and creates a log source for syslog events forwarded from Raz-Lee iSecurity. This procedure is optional.

Procedure

Step 1 Click the Admin tab.
Step 2 Click the Log Sources icon.
Step 3 Click Add.
Step 4 In the Log Source Name field, type a name for your log source.
Step 5 In the Log Source Description field, type a description for the log source.
Step 6 From the Log Source Type list, select IBM AS/400 iSeries.
Step 7 Using the Protocol Configuration list, select Syslog.
Step 8 Configure the following values:

Table 88-14 Syslog Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your IBM AS/400 iSeries device with Raz-Lee iSecurity.</td>
</tr>
<tr>
<td>Enabled</td>
<td>Select this check box to enable the log source. By default, the check box is selected.</td>
</tr>
<tr>
<td>Credibility</td>
<td>Select the credibility of the log source. The range is 0 - 10. The credibility indicates the integrity of an event or offense as determined by the credibility rating from the source devices. Credibility increases if multiple sources report the same event. The default is 5.</td>
</tr>
<tr>
<td>Target Event Collector</td>
<td>Select the Event Collector to use as the target for the log source.</td>
</tr>
</tbody>
</table>
Table 88-14 Syslog Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coalescing Events</td>
<td>Select this check box to enable the log source to coalesce (bundle) events. By default, automatically discovered log sources inherit the value of the Coalescing Events list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
<tr>
<td>Incoming Event Payload</td>
<td>From the list, select the incoming payload encoder for parsing and storing the logs.</td>
</tr>
<tr>
<td>Store Event Payload</td>
<td>Select this check box to enable the log source to store event payload information. By default, automatically discovered log sources inherit the value of the Store Event Payload list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
</tbody>
</table>

Step 9 Click **Save**.

Step 10 On the **Admin** tab, click **Deploy Changes**.
The Redback ASE DSM for IBM Security QRadar accepts events using syslog.

The Redback ASE device can send log messages to the Redback device console or to a log server that is integrated with QRadar to generate deployment specific reports. Before configuring a Redback ASE device in QRadar, you must configure your device to forward syslog events.

Configure Redback ASE

To configure the device to send syslog events to QRadar:

Step 1 Log in to your Redback ASE device user interface.

Step 2 Start the CLI configuration mode.

Step 3 In global configuration mode, configure the default settings for the security service:

```
asp security default
```

Step 4 In ASP security default configuration mode, configure the IP address of the log server and the optional transport protocol:

```
log server <IP address> transport udp port 9345
```

Where `<IP address>` is the IP address of the QRadar.

Step 5 Configure the IP address that you want to use as the source IP address in the log messages:

```
log source <source IP address>
```

Where `<source IP address>` is the IP address of the loopback interface in context local.

Step 6 Commit the transaction.

For more information about Redback ASE device configuration, see your vendor documentation.

For example, if you want to configure:

- Log source server IP address 10.172.55.55
- Default transport protocol: UDP
- Default server port: 514
The source IP address used for log messages is 10.192.22.24. This address must be an IP address of a loopback interface in context local.

```
asp security default
log server 10.172.55.55
log source 10.192.22.24
```

You are now ready to configure the log sources QRadar.

Configure a log source

QRadar automatically discovers and creates a log source for syslog events from Redback ASE. The following configuration steps are optional.

To manually configure a log source for Redback ASE:

1. Log in to QRadar.
2. Click the **Admin** tab.
3. On the navigation menu, click **Data Sources**. The Data Sources panel is displayed.
4. Click the **Log Sources** icon. The Log Sources window is displayed.
5. Click **Add**. The Add a log source window is displayed.
6. In the **Log Source Name** field, type a name for your log source.
7. In the **Log Source Description** field, type a description for the log source.
8. From the **Log Source Type** list, select **Redback ASE**.
9. Using the **Protocol Configuration** list, select **Syslog**. The syslog protocol configuration is displayed.
10. Configure the following values:

<table>
<thead>
<tr>
<th>Table 89-15</th>
<th>Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Redback ASE appliance.</td>
</tr>
</tbody>
</table>

11. Click **Save**.
12. On the **Admin** tab, click **Deploy Changes**. The configuration is complete.
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum
An RSA Authentication Manager DSM allows you to integrate IBM Security QRadar with an RSA Authentication Manager using syslog or the log file protocol.

Before you configure QRadar to integrate with RSA Authentication Manager, select your configuration preference:

- Configuring syslog for RSA
- Configuring the log file protocol for RSA

Note: You must apply the most recent hot fix on RSA Authentication Manager 7.1 primary, replica, node, database and radius installations before configuring syslog.

Configuring syslog for RSA

The procedure to configure your RSA Authentication Manager using syslog depends on the operating system version for your RSA Authentication Manager or SecureID 3.0 appliance:

- If you are using RSA Authentication Manager on Linux, see Configuring Linux.
- If you are using RSA Authentication Manager on Windows, see Configuring Windows.

Configuring Linux

To configure RSA Authentication Manager for syslog on Linux-based operating systems:

Step 1 Log in to the RSA Security Console command-line interface (CLI).

Step 2 Open the following file for editing based on your operating system:

```
/usr/local/RSASecurity/RSAAuthenticationManager/utils/resources/ims.properties
```

Step 3 Add the following entries to the `ims.properties` file:

```
ims.logging.audit.admin.syslog_host       = <IP address>
ims.logging.audit.admin.use_os_logger     = true
ims.logging.audit.runtime.syslog_host     = <IP address>
ims.logging.audit.runtime.use_os_logger   = true
ims.logging.system.syslog_host            = <IP address>
ims.logging.system.use_os_logger          = true
```

Where `<IP address>` is the IP address or hostname of QRadar.
Step 4 Save the ims.properties files.

Step 5 Open the following file for editing:
/etc/syslog.conf

Step 6 Type the following command to add QRadar as a syslog entry:

```
*.@<IP address>
```

Where `<IP address>` is the IP address or hostname of QRadar.

Step 7 Type the following command to restart the syslog services for Linux.
```
service syslog restart
```

You are now ready to configure the log sources and protocol in QRadar: To configure QRadar to receive events from your RSA Authentication Manager:

- From the Log Source Type list, select the RSA Authentication Manager option.

For more information, see the IBM Security QRadar Log Sources User Guide. For more information on configuring syslog forwarding, see your RSA Authentication Manager documentation.

Configuring Windows

To configure RSA Authentication Manager for syslog using Microsoft Windows:

Step 1 Log in to the system hosting your RSA Security Console.

Step 2 Open the following file for editing based on your operating system:
```
/Program Files/RSASecurity/RSAAuthenticationManager/utils/resources/ims.properties
```

Step 3 Add the following entries to the ims.properties file:

```python
ims.logging.audit.admin.syslog_host       = <IP address>
ims.logging.audit.admin.use_os_logger     = true
ims.logging.audit.runtime.syslog_host     = <IP address>
ims.logging.audit.runtime.use_os_logger   = true
ims.logging.system.syslog_host            = <IP address>
ims.logging.system.use_os_logger          = true
```

Where `<IP address>` is the IP address or hostname of QRadar.

Step 4 Save the ims.properties files.

Step 5 Restart RSA services.

You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from your RSA Authentication Manager:

- From the Log Source Type list, select the RSA Authentication Manager option.
For more information, see the *IBM Security QRadar Log Sources User Guide*. For more information on configuring syslog forwarding, see your RSA Authentication Manager documentation.

Configuring the log file protocol for RSA

The log file protocol allows QRadar to retrieve archived log files from a remote host. The RSA Authentication Manager DSM supports the bulk loading of log files using the log file protocol source.

The procedure to configure your RSA Authentication Manager using the log file protocol depends on the version of RSA Authentication Manager:

- If you are using RSA Authentication Manager v7.x, see **Configuring RSA Authentication Manager 7.x**.
- If you are using RSA Authentication Manager v6.x, see **Configuring RSA Authentication Manager 6.x**.

Configuring RSA Authentication Manager 7.x

To configure your RSA Authentication Manager v7.x device:

Step 1
Log in to the RSA Security Console.

Step 2
Click **Administration > Log Management > Recurring Log Archive Jobs**.

Step 3
In the Schedule section, configure values for the **Job Starts**, **Frequency**, **Run Time**, and **Job Expires** parameters.

Step 4
For the **Operations** field, select **Export Only** or **Export and Purge** for the following settings: **Administration Log Settings**, **Runtime Log Settings**, and **System Log Settings**.

Note: The **Export and Purge** operation exports log records from the database to the archive and then purges the logs from the database. The **Export Only** operation exports log records from the database to the archive and the records remain in the database.

Step 5
For **Administration**, **Runtime**, and **System**, configure an Export Directory to which you want to export your archive files.

We recommend you make sure you can access the Administration Log, Runtime Log, and System Log using FTP before you continue.

Step 6
For **Administration**, **Runtime**, and **System** parameters, set the **Days Kept Online** parameter to 1. Logs older than 1 day are exported. If you selected **Export and Purge**, the logs are also purged from the database.

Step 7
Click **Save**.

You are now ready to configure the log sources and protocol within QRadar:

Step 1
To configure QRadar to receive events from a RSA device, you must select the **RSA Authentication Manager** option from the **Log Source Type** list.

Step 2
To configure the log file protocol, you must select the **Log File** option from the **Protocol Configuration** list.
For more information on configuring log sources and protocols, see the *Log Sources User Guide*.

Configuring RSA Authentication Manager 6.x

To configure your RSA Authentication Manager v6.x device:

Step 1 Log in to the RSA Security Console.

Step 2 Log in to the RSA Database Administration tool:

a. Click the **Advanced** tool.

 The system prompts you to login again.

b. Click **Database Administration**.

 For complete information on using SecurID, see your vendor documentation.

Step 3 From the **Log** list, select **Automate Log Maintenance**.

 The Automatic Log Maintenance window is displayed.

Step 4 Select the **Enable Automatic Audit Log Maintenance** check box.

Step 5 Select **Delete and Archive**.

Step 6 Select **Replace files**.

Step 7 Type an archive filename.

Step 8 In the **Cycle Through Version(s)** field, type a value.

 For example, 1.

Step 9 Select **Select all Logs**.

Step 10 Select a frequency.

Step 11 Click **OK**.

You are now ready to configure the log sources and protocol in QRadar:

Step 1 To configure QRadar to receive events from a RSA device, you must select the **RSA Authentication Manager** option from the **Log Source Type** list.

Step 2 To configure the log file protocol, you must select the **Log File** option from the **Protocol Configuration** list.

For more information on configuring log sources and protocols, see the *IBM Security QRadar Log Sources User Guide*.
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
SALESFORCE SECURITY AUDITING AND MONITORING

For instructions about how to integrate these DSMs, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
The Samhain Labs Host-Based Intrusion Detection System (HIDS) monitors changes to files on the system.

The Samhain HIDS DSM for IBM Security QRadar supports Samhain version 2.4 when used for File Integrity Monitoring (FIM).

You can configure the Samhain HIDS DSM to accept one of the following log types:

- Configuring syslog to collect Samhain events
- Configuring JDBC to collect Samhain events

Configuring syslog to collect Samhain events

Before you configure QRadar to integrate with Samhain HIDS using syslog, you must configure the Samhain HIDS system to forward logs to your QRadar system.

Note: The following procedure is based on the default samhainrc file. If the samhainrc file has been modified, some values might be different, such as the syslog facility,

Procedure

Step 1 Log in to Samhain HIDS from the command-line interface.

Step 2 Open the following file:

/etc/samhainrc

Step 3 Remove the comment marker (#) from the following line:

SetLogServer=info

Step 4 Save and exit the file.

Alerts are sent to the local system using syslog.

Step 5 Open the following file:

/etc/syslog.conf

Step 6 Add the following line:

local2.* @<IP Address>

Where `<IP Address>` is the IP address of your QRadar.
Step 7 Save and exit the file.

Step 8 Restart syslog:

```
/etc/init.d/syslog restart
```

Samhain sends logs using syslog to QRadar. You are now ready to configure Samhain HIDS DSM in QRadar.

To configure QRadar to receive events from Samhain:

- From the **Log Source Type** list, select the **Samhain HIDS** option.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*.

Configuring JDBC to collect Samhain events

You can configure Samhain HIDS to send log alerts to a database. Oracle, PostgreSQL, and MySQL are natively supported by Samhain. You can also configure QRadar to collect events from these databases using the JDBC protocol.

Note: IBM Security QRadar does not include a MySQL driver for JDBC. If you are using a DSM or protocol that requires a MySQL JDBC driver, you must download and install the platform independent MySQL Connector/J from http://dev.mysql.com/downloads/connector/j/. For instruction on installing MySQL Connector/J for the JDBC protocol, see the *IBM Security QRadar Log Sources User Guide*.

Procedure

Step 1 Log into QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 Click **Add**.

Step 6 From the **Log Source Type** list, select the **Samhain HIDS** option.

Step 7 Using the **Protocol Configuration** list, select **JDBC**.

Step 8 Update the JDBC configuration to include the following values:

- Database Type: `<Samhain Database Type>`
- Database Name: `<Samhain SetDBName>`
- Table Name: `<Samhain SetDBTable>`
- Select List: `*`
- Compare Field: `log_index`
- IP or Hostname: `<Samhain SetDBHost>`
- Port: `<Default Port>`
- Username: `<Samhain SetDBUser>`
i Password: <Samhain SetDBPassword>

j Polling Interval: <Default Interval>

Where:

<Samhain Database Type> is the database type used by Samhain (see your Samhain system administrator).

<Samhain SetDBName> is the database name specified in the samhainrc file.

<Samhain SetDBTable> is the database table specified in the samhainrc file.

<Samhain SetDBHost> is the database host specified in the samhainrc file.

<Samhain SetDBUser> is the database user specified in the samhainrc file.

<Samhain SetDBPassword> is the database password specified in the samhainrc file.

You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from Samhain:

► From the Log Source Type list, select the Samhain HIDS option.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide. For more information about Samhain, see http://www.la-samhna.de/samhain/manual.
The Imperva SecureSphere DSM for IBM Security QRadar records all relevant events forwarded using syslog.

Configuration overview

To collect syslog events, you must configure your Imperva SecureSphere appliance with an alert and a system event action that can be associated to a firewall or system policy. Each time a firewall policy triggers an alert action or a system event policy triggers an event action a syslog event is sent to QRadar.

To configure events for your SecureSphere appliance, complete the following tasks:

1. On your Imperva SecureSphere appliance, create an alert action and associate the alert action to your SecureSphere firewall policies.
2. On your Imperva SecureSphere appliance, create a system alert action and associate the action to your SecureSphere system event policies.
3. On your QRadar system, verify that the syslog events are forwarded and that a log source is automatically discovered.

Configuring an alert action for Imperva SecureSphere

You can configure your Imperva SecureSphere appliance to forward syslog events for firewall policy alerts to QRadar.

Procedure

Step 1
Log in to your SecureSphere device user interface using administrative privileges.

Step 2
Click the **Policies** tab.

Step 3
Click the **Action Sets** tab.

Step 4
To generate events for each alert generated by the SecureSphere device:

a. Click **New** to create a new action set for an alert.

b. Move the action to the **Selected Actions** list.

c. Expand the **System Log** action group.

d. In the **Action Name** field, type a name for your alert action.

e. Configure the following parameters:

- **Syslog host** - Type the IP address of QRadar to which you want to send events.
- **Syslog log level** - Select **INFO**.
- **Message** - Define a message string for your event type from Table 95-1.

Table 95-1 Imperva SecureSphere alert message strings

<table>
<thead>
<tr>
<th>Type</th>
<th>Version</th>
<th>Message string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database alerts</td>
<td>V9.5 and V10</td>
<td>LEEF:1.0</td>
</tr>
<tr>
<td>File server alerts</td>
<td>V9.5 and V10</td>
<td>LEEF:1.0</td>
</tr>
<tr>
<td>Web application firewall alerts</td>
<td>V9.5 and V10</td>
<td>LEEF:1.0</td>
</tr>
<tr>
<td>All alerts v6.2 and v7.x</td>
<td>Release Enterprise Edition</td>
<td>DeviceType=ImpervaSecureSphere</td>
</tr>
</tbody>
</table>

Note: The devTimeFormat does not include a value as the time format can be configured on the SecureSphere appliance. Administrators must review the time format of their SecureSphere appliance and specify the appropriate time format. For example, `dd MMM yyy HH:mm:ss or yyyy-MM-dd HH:mm:ss.S`.

- Select the **Run on Every Event** check box.
- Click **Save**.
- Repeat this process to create an alert with another message type from Table 95-1.

Step 5 To trigger syslog events, you must associate your firewall policies to use your alert actions.

- From the navigation menu, select **Policies > Security > Firewall Policy**.
- Select the policy you want to edit to use the alert action.
- Click the **Policy** tab.
d. From the Followed Action list, select your new action.

e. Ensure your policy is configured as enabled and is applied to the appropriate server groups.

f. Click Save.

g. Repeat this step for all policies that require an alert.

Configuring a system event action for Imperva SecureSphere

You can configure your Imperva SecureSphere appliance to forward syslog system policy events to QRadar.

Step 1 Click the Policies tab.

Step 2 Click the Action Sets tab.

Step 3 To generate events for each event generated by the SecureSphere device:

a. Click New to create a new action set for an event.

b. Move the action to the Selected Actions list.

c. Expand the System Log action group.

d. In the Action Name field, type a name for your event action.

e. Configure the following parameters:

- **Syslog host** - Type the IP address of QRadar to which you want to send events.

- **Syslog log level** - Select INFO.

- **Message** - Define a message string for your event type from Table 95-2.

Table 95-2 Imperva SecureSphere system event message strings

<table>
<thead>
<tr>
<th>Type</th>
<th>Version</th>
<th>Message string</th>
</tr>
</thead>
<tbody>
<tr>
<td>System events</td>
<td>V9.5 and V10</td>
<td>LEEF:1.0</td>
</tr>
</tbody>
</table>
Note: The devTimeFormat does not include a value as the time format can be configured on the SecureSphere appliance. Administrators must review the time format of their SecureSphere appliance and specify the appropriate time format. For example, dd MMM yyyy HH:mm:ss or yyyy-MM-dd HH:mm:ss S.

f Select the Run on Every Event check box.

g Click Save.

h Repeat this process to create an alert with another message type from Table 95-2.

Step 4 To enable the action, you must edit your system event policies to use the action. The below procedure details the steps to configure the action for a system event policy. Repeat this procedure for all required policies.

a Go to Policies > System Events.
b Select or create the system event policy you want to edit to use the event action.

c Click the **Followed Action** tab.

d From the **Followed Action** list, select your system event action.

e Click **Save**.

f Repeat this step for all system event policies that require an action.

Configuring a log source

QRadar automatically discovers and creates a log source for syslog events from Imperva SecureSphere. The following configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 Click the **Log Sources** icon.

Step 4 Click **Add**.

Step 5 In the **Log Source Name** field, type a name for your log source.

Step 6 From the **Log Source Type** list, select **Imperva SecureSphere**.

Step 7 Using the **Protocol Configuration** list, select **Syslog**.

Step 8 Configure the following values:

<table>
<thead>
<tr>
<th>Table 95-3</th>
<th>Syslog protocol parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Imperva SecureSphere appliance.</td>
</tr>
<tr>
<td>Enabled</td>
<td>Select this check box to enable the log source. By default, the check box is selected.</td>
</tr>
<tr>
<td>Credibility</td>
<td>Select the credibility of the log source. The range is 0 - 10. The credibility indicates the integrity of an event or offense as determined by the credibility rating from the source devices. Credibility increases if multiple sources report the same event. The default is 5.</td>
</tr>
<tr>
<td>Target Event Collector</td>
<td>Select the Event Collector to use as the target for the log source.</td>
</tr>
<tr>
<td>Coalescing Events</td>
<td>Select this check box to enable the log source to coalesce (bundle) events. By default, automatically discovered log sources inherit the value of the Coalescing Events list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
</tbody>
</table>
Table 95-3 Syslog protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Event Payload</td>
<td>From the list, select the incoming payload encoder for parsing and storing the logs.</td>
</tr>
<tr>
<td>Store Event Payload</td>
<td>Select this check box to enable the log source to store event payload information. By default, automatically discovered log sources inherit the value of the Store Event Payload list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
</tbody>
</table>

Step 9 Click Save.

Step 10 On the Admin tab, click Deploy Changes.
You can integrate a Sentrigo Hedgehog device with IBM Security QRadar.

A Sentrigo Hedgehog device accepts LEEF events using syslog. Before you configure QRadar to integrate with a Sentrigo Hedgehog device, you must:

Step 1 Log in to the Sentrigo Hedgehog command-line interface (CLI).

Step 2 Open the following file for editing:

```
<Installation directory>/conf/sentrigo-custom.properties
```

Where `<Installation directory>` is the directory containing your Sentrigo Hedgehog installation.

Step 3 Add the following log.format entries to the custom properties file:

Note: Depending on your Sentrigo Hedgehog configuration or installation, you might be required to replace or overwrite the existing log.format entry.

```
sentrigo.comm.ListenAddress=1996
log.format.body.custom=usrName=$osUser:20$|duser=$execUser:20$|
  severity=$severity$|identHost=sourceHost|$src=$sourceIP$|
  dst=$agent.ip$|devTime=$logonTime$|devTimeFormat=EEE MMM dd
  HH:mm:ss z yyyy|cmdType=$cmdType$|externalId=$id$|
  execTime=$executionTime.time$|dstServiceName=$database.name:20$
  |srcHost=$sourceHost:30$|execProgram=$execProgram:20$
  |cmdType=$cmdType:15$|oper=$operation:225$|
  accessedObj=$accessedObjects.name:200$
log.format.header.custom=LEEF:1.0|Sentrigo|Hedgehog|$serverVers
  ion$|$rules.name:150$|
log.format.header.escaping.custom=\|
log.format.header.separator.custom=,
log.format.header.escape.char.custom=\n
log.format.body.escaping.custom=\=
log.format.body.escape.char.custom=\n
log.format.empty.value.custom=NULL
log.format.length.value.custom=10000
log.format.convert.newline.custom=true
```

Step 4 Save the custom properties file.
Step 5 Stop and restart your Sentrigo Hedgehog service to implement the log.format changes.
You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Sentrigo Hedgehog device:

- From the Log Source Type list, select the Sentrigo Hedgehog option.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide. For more information about Sentrigo Hedgehog see your vendor documentation.
The Sidewinder DSM for IBM Security QRadar SIEM records all relevant Sidewinder events using syslog.

Before you configure QRadar SIEM to integrate with a Sidewinder device, you must configure syslog within your Sidewinder device. When configuring the Sidewinder device to forward syslog to QRadar SIEM, make sure that the logs are exported in Sidewinder Export format (SEF).

For more information on configuring Sidewinder, see your vendor documentation.

After you configure syslog to forward events to QRadar SIEM, you are ready to configure the log source in QRadar SIEM.

To configure QRadar SIEM to receive events from a Sidewinder device:

From the **Log Source Type** list, select **Sidewinder G2 Security Appliance** option.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*.
The SolarWinds Orion DSM for IBM Security QRadar supports SNMPv2 and SNMPv3 configured alerts from the SolarWinds Alert Manager.

The events are sent to QRadar using syslog. Before you can integrate QRadar, you must configure the SolarWinds Alert Manager to create SNMP traps and forward syslog events.

To configure SNMP traps in the SolarWinds Orion Alert Manager:

Step 1 Select Start > All Programs > SolarWinds Orion > Alerting, Reporting, and Mapping > Advanced Alert Manager.

The Alert Manager Quick Start is displayed.

Step 2 Click Configure Alerts.

The Manage Alerts window is displayed.

Step 3 Select an existing alert and click Edit.

Step 4 Select the Triggered Actions tab.

Step 5 Click Add New Action.

The Select an Action window is displayed.

Step 6 Select Send an SNMP Trap and click OK.

Step 7 Configure the following values:

a. **SNMP Trap Definitions** - Type the IP address of the QRadar Console or Event Collector.

b. **Trap Template** - Select ForwardSyslog.

c. **SNMP Version** - Select the SNMP Version to use to forward the event. QRadar supports SNMPv2c or SNMPv3.

 - **SNMPv2c** - Type the **SNMP Community String** to use for SNMPv2c authentication. The default Community String value is public.

 - **SNMPv3** - Type the **Username** and select the **Authentication Method** to use for SNMPv3.

 QRadar supports MD5 or SH1 as methods of authentication and DES56 or AES128 bit encryption.

Step 8 Click OK to save the SNMP trigger action.
The Manage Alerts window is displayed.

Note: To verify that your SNMP trap is configured properly, select an alert you’ve edited and click **Test**. The action should trigger and forward the syslog event to QRadar.

Step 9 Repeat **Step 3** to **Step 8** to configure the Alert Manager with all of the SNMP trap alerts you want to monitor in QRadar.

You are now ready to configure the log source in QRadar.

QRadar automatically detects syslog events from properly configured SNMP trap alert triggers. However, if you want to manually configure QRadar to receive events from SolarWinds Orion:

- From the **Log Source Type** list, select **SolarWinds Orion**.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources Users Guide*.
The SonicWALL SonicOS DSM accepts events using syslog.

IBM Security QRadar records all relevant syslog events forwarded from SonicWALL appliances using SonicOS firmware. Before you can integrate with a SonicWALL SonicOS device, you must configure syslog forwarding on your SonicWALL SonicOS appliance.

Procedure

Step 1 Log in to your SonicWALL web interface.

Step 2 From the navigation menu, select **Log > Syslog**.

Step 3 From the Syslog Servers pane, click **Add**.

Step 4 In the **Name or IP Address** field, type the IP address of your QRadar Console or Event Collector.

Step 5 In the **Port** field, type **514**.

SonicWALL syslog forwarders send events to QRadar using UDP port 514.

Step 6 Click **OK**.

Step 7 From the **Syslog Format** list, select **Default**.

Step 8 Click **Apply**.

Syslog events are forwarded to QRadar. SonicWALL events forwarded to QRadar are automatically discovered and log sources are created automatically. For more information on configuring your SonicWALL appliance or for information on specific events, see your vendor documentation.
Configure a log source

QRadar automatically discovers and creates a log source for syslog events from SonicWALL appliances. The following configuration steps are optional.

To manually configure a log source for SonicWALL syslog events:

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 Click the **Log Sources** icon.

Step 4 Click **Add**.

Step 5 In the **Log Source Name** field, type a name for your log source.

Step 6 In the **Log Source Description** field, type a description for the log source.

Step 7 From the **Log Source Type** list, select **SonicWALL SonicOS**.

Step 8 Using the **Protocol Configuration** list, select **Syslog**.

Step 9 Configure the following values:

<table>
<thead>
<tr>
<th>Table 99-4</th>
<th>Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for the log source as an identifier for events from SonicWALL appliances. Each log source you create for your SonicWALL SonicOS appliance should include a unique identifier, such as an IP address or host name.</td>
</tr>
</tbody>
</table>

Step 10 Click **Save**.

Step 11 On the **Admin** tab, click **Deploy Changes**.

The log source is added to QRadar. Events forwarded to QRadar by SonicWALL SonicOS appliances are displayed on the **Log Activity** tab. For more information, see the *IBM Security QRadar Users Guide*.

IBM Security QRadar has two options for gathering events from a Sophos Enterprise Console using JDBC.

Select the method that best applies to your Sophos Enterprise Console installation:

- Configure QRadar using the Sophos Enterprise Console Protocol
- Configure QRadar using the JDBC protocol

Note: To use the Sophos Enterprise Console protocol, you must ensure that the Sophos Reporting Interface is installed with your Sophos Enterprise Console. If you do not have the Sophos Reporting Interface, you must configure QRadar using the JDBC protocol. For information on installing the Sophos Reporting Interface, see your Sophos Enterprise Console documentation.

Configure QRadar using the Sophos Enterprise Console Protocol

The Sophos Enterprise Console DSM for IBM Security QRadar accepts events using Java Database Connectivity (JDBC).

The Sophos Enterprise Console DSM works in coordination with the Sophos Enterprise Console protocol to combine payload information from anti-virus, application control, device control, data control, tamper protection, and firewall logs in the vEventsCommonData table and provide these events to QRadar. You must install the Sophos Enterprise Console protocol before configuring QRadar.

To configure QRadar to access the Sophos database using the JDBC protocol:

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.
The Data Sources panel is displayed.

Step 4 Click the **Log Sources** icon.

The Log Sources window is displayed.

Step 5 Click **Add**.

The Add a log source window is displayed.

Step 6 From the **Log Source Type** list, select **Sophos Enterprise Console**.

Step 7 From the **Protocol Configuration** list, select **Sophos Enterprise Console JDBC**.

Note: You must refer to the Configure Database Settings on your Sophos Enterprise Console to define the parameters required to configure the Sophos Enterprise Console JDBC protocol in QRadar.

Step 8 Configure the following values:

Table 100-1 Sophos Enterprise Console JDBC Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the identifier for the log source. Type the log source identifier in the following format:</td>
</tr>
<tr>
<td></td>
<td><code><Sophos Database>@<Sophos Database Server IP or Host Name></code></td>
</tr>
<tr>
<td></td>
<td>Where:</td>
</tr>
<tr>
<td></td>
<td><code><Sophos Database></code> is the database name, as entered in the Database Name parameter.</td>
</tr>
<tr>
<td></td>
<td><code><Sophos Database Server IP or Host Name></code> is the hostname or IP address for this log source, as entered in the IP or Hostname parameter.</td>
</tr>
<tr>
<td></td>
<td>Note: When defining a name for your log source identifier, you must use the values of the Sophos Database and Database Server IP address or hostname from the Management Enterprise Console.</td>
</tr>
<tr>
<td>Database Type</td>
<td>From the list, select MSDE.</td>
</tr>
<tr>
<td>Database Name</td>
<td>Type the exact name of the Sophos database.</td>
</tr>
<tr>
<td>IP or Hostname</td>
<td>Type the IP address or host name of the Sophos SQL Server.</td>
</tr>
<tr>
<td>Port</td>
<td>Type the port number used by the database server. The default port for MSDE in Sophos Enterprise Console is 1168.</td>
</tr>
<tr>
<td></td>
<td>The JDBC configuration port must match the listener port of the Sophos database. The Sophos database must have incoming TCP connections enabled to communicate with QRadar.</td>
</tr>
<tr>
<td></td>
<td>Note: If you define a Database Instance when using MSDE as the database type, you must leave the Port parameter blank in your configuration.</td>
</tr>
<tr>
<td>Username</td>
<td>Type the username required to access the database.</td>
</tr>
<tr>
<td>Password</td>
<td>Type the password required to access the database. The password can be up to 255 characters in length.</td>
</tr>
</tbody>
</table>
Confirm Password
Confirm the password required to access the database. The confirmation password must be identical to the password entered in the Password parameter.

Authentication Domain
If you select MSDE as the Database Type and the database is configured for Windows, you must define a Window Authentication Domain. Otherwise, leave this field blank.

Database Instance
Optional. Type the database instance, if you have multiple SQL server instances on your database server.

Note: If you use a non-standard port in your database configuration, or have blocked access to port 1434 for SQL database resolution, you must leave the Database Instance parameter blank in your configuration.

Table Name
Type vEventsCommonData as the name of the table or view that includes the event records.

Select List
Type * for all fields from the table or view.

You can use a comma-separated list to define specific fields from tables or views, if required for your configuration. The list must contain the field defined in the Compare Field parameter. The comma-separated list can be up to 255 alphanumeric characters in length. The list can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period(.).

Compare Field
Type InsertedAt as the compare field. The compare field is used to identify new events added between queries to the table.

Start Date and Time
Optional. Type the start date and time for database polling.

The Start Date and Time parameter must be formatted as yyyy-MM-dd HH:mm with HH specified using a 24 hour clock. If the start date or time is clear, polling begins immediately and repeats at the specified polling interval.

Polling Interval
Type the polling interval, which is the amount of time between queries to the event table. The default polling interval is 10 seconds.

You can define a longer polling interval by appending H for hours or M for minutes to the numeric value. The maximum polling interval is 1 week in any time format. Numeric values entered without an H or M poll in seconds.

EPS Throttle
Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The default value is 20000 EPS.

Use Named Pipe Communication
Clear the Use Named Pipe Communications check box.

When using a Named Pipe connection, the username and password must be the appropriate Windows authentication username and password and not the database username and password. Also, you must use the default Named Pipe.
Configure QRadar using the JDBC protocol

The Sophos Enterprise Console DSM for IBM Security QRadar accepts events using Java Database Connectivity (JDBC).

QRadar records all relevant anti-virus events. This document provides information on configuring QRadar to access the Sophos Enterprise Console database using the JDBC protocol.

Configure the database view

To integrate QRadar with Sophos Enterprise Console:

Step 1 Log in to your Sophos Enterprise Console device command-line interface (CLI).

Step 2 Type the following command to create a custom view in your Sophos database to support QRadar:

```sql
```

Table 100-1 Sophos Enterprise Console JDBC Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database Cluster Name</td>
<td>If you select the Use Named Pipe Communication check box, the Database Cluster Name parameter is displayed. If you are running your SQL server in a cluster environment, define the cluster name to ensure Named Pipe communication functions properly.</td>
</tr>
<tr>
<td>Use NTLMv2</td>
<td>If you select MSDE as the Database Type, the Use NTLMv2 check box is displayed. Select the Use NTLMv2 check box to force MSDE connections to use the NTLMv2 protocol when communicating with SQL servers that require NTLMv2 authentication. The default value of the check box is selected. If the Use NTLMv2 check box is selected, it has no effect on MSDE connections to SQL servers that do not require NTLMv2 authentication.</td>
</tr>
</tbody>
</table>

Note: Selecting a value for the Credibility parameter greater than 5 will weight your Sophos log source with a higher importance compared to other log sources in QRadar.

Step 9 Click **Save**.

Step 10 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.
Where `<Database Name>` is the name of the Sophos database.

Note: The database name must not contain any spaces.

After you have created your custom view, you must configure QRadar to receive event information using the JDBC protocol.

To configure the Sophos Enterprise Console DSM with QRadar, see **Configure a JDBC log source in QRadar**.

Configure a JDBC log source in QRadar

To configure QRadar to access the Sophos database using the JDBC protocol:

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

The Data Sources panel is displayed.

Step 4 Click the Log Sources icon.

The Log Sources window is displayed.

Step 5 Click Add.

The Add a log source window is displayed.

Step 6 Using the Log Source Type list, select Sophos Enterprise Console.

Step 7 Using the Protocol Configuration list, select JDBC.

Note: You must refer to the Configure Database Settings on your Sophos Enterprise Console to define the parameters required to configure the Sophos Enterprise Console DSM in QRadar.

Step 8 Configure the following values:

Table 100-2 Sophos Enterprise Console JDBC Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the identifier for the log source. Type the log source identifier in the following format:</td>
</tr>
<tr>
<td></td>
<td><code><Sophos Database>@<Sophos Database Server IP or Host Name></code></td>
</tr>
<tr>
<td></td>
<td>Where:</td>
</tr>
<tr>
<td></td>
<td><code><Sophos Database></code> is the database name, as entered in the Database Name parameter.</td>
</tr>
<tr>
<td></td>
<td><code><Sophos Database Server IP or Host Name></code> is the hostname or IP address for this log source, as entered in the IP or Hostname parameter.</td>
</tr>
<tr>
<td></td>
<td>Note: When defining a name for your log source identifier, you must use the values of the Sophos Database and Database Server IP address or hostname from the Management Enterprise Console.</td>
</tr>
<tr>
<td>Database Type</td>
<td>From the list, select MSDE.</td>
</tr>
</tbody>
</table>
Table 100-2 Sophos Enterprise Console JDBC Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database Name</td>
<td>Type the exact name of the Sophos database.</td>
</tr>
<tr>
<td>IP or Hostname</td>
<td>Type the IP address or host name of the Sophos SQL Server.</td>
</tr>
<tr>
<td>Port</td>
<td>Type the port number used by the database server. The default port for MSDE is 1433. The JDBC configuration port must match the listener port of</td>
</tr>
<tr>
<td></td>
<td>the Sophos database. The Sophos database must have incoming TCP connections enabled to communicate with QRadar.</td>
</tr>
<tr>
<td></td>
<td>Note: If you define a Database Instance when using MSDE as the database type, you must leave the Port parameter blank in your configuration.</td>
</tr>
<tr>
<td>Username</td>
<td>Type the username required to access the database.</td>
</tr>
<tr>
<td>Password</td>
<td>Type the password required to access the database. The password can be up to 255 characters in length.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password required to access the database. The confirmation password must be identical to the password entered in the Password parameter.</td>
</tr>
<tr>
<td>Authentication Domain</td>
<td>If you select MSDE as the Database Type and the database is configured for Windows, you must define a Window Authentication Domain. Otherwise, leave this field blank.</td>
</tr>
<tr>
<td>Database Instance</td>
<td>Optional. Type the database instance, if you have multiple SQL server instances on your database server.</td>
</tr>
<tr>
<td></td>
<td>Note: If you use a non-standard port in your database configuration, or have blocked access to port 1434 for SQL database resolution, you must leave the Database Instance parameter blank in your configuration.</td>
</tr>
<tr>
<td>Table Name</td>
<td>Type <code>threats_view</code> as the name of the table or view that includes the event records.</td>
</tr>
<tr>
<td>Select List</td>
<td>Type <code>*</code> for all fields from the table or view. You can use a comma-separated list to define specific fields from tables or views, if required for your configuration. The list must contain the field defined in the Compare Field parameter. The comma-separated list can be up to 255 alphanumeric characters in length. The list can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period (.).</td>
</tr>
<tr>
<td>Compare Field</td>
<td>Type <code>ThreatInstanceId</code> as the compare field. The compare field is used to identify new events added between queries to the table.</td>
</tr>
<tr>
<td>Start Date and Time</td>
<td>Optional. Type the start date and time for database polling. The Start Date and Time parameter must be formatted as yyyy-MM-dd HH:mm with HH specified using a 24 hour clock. If the start date or time is clear, polling begins immediately and repeats at the specified polling interval.</td>
</tr>
</tbody>
</table>
Note: Selecting a value for the Credibility parameter greater than 5 will weight your Sophos log source with a higher importance compared to other log sources in QRadar.

Step 9 Click Save.

Step 10 On the Admin tab, click Deploy Changes.

The configuration is complete.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide.

The Sophos PureMessage DSM for IBM Security QRadar accepts events using Java Database Connectivity (JDBC).

QRadar records all relevant quarantined email events. This document provides information on configuring QRadar to access the Sophos PureMessage database using the JDBC protocol.
QRadar supports the following Sophos PureMessage versions:

- **Sophos PureMessage for Microsoft Exchange** - Stores events in a Microsoft SQL Server database specified as savexquar.
- **Sophos PureMessage for Linux** - Stores events in a PostgreSQL database specified as pmx_quarantine.

This section provides information on the following:

- Integrate QRadar with Sophos PureMessage for Microsoft Exchange
- Integrate QRadar with Sophos PureMessage for Linux

Integrate QRadar with Sophos PureMessage for Microsoft Exchange

To integrate QRadar with Sophos PureMessage for Microsoft Exchange:

Step 1 Log in to the Microsoft SQL Server command-line interface (CLI):

```
osql -E -S localhost\sophos
```

Step 2 Type which database you want to integrate with QRadar:

```
use savexquar;
go
```

Step 3 Type the following command to create a SIEM view in your Sophos database to support QRadar:

```
create view siem_view as select 'Windows PureMessage' as application, id, reason, timecreated, emailonly as sender, filesize, subject, messageid, filename from dbo.quaritems, dbo.quaraddresses where ItemID = ID and Field = 76;
go
```

After you create your SIEM view, you must configure QRadar to receive event information using the JDBC protocol.

To configure the Sophos PureMessage DSM with QRadar, see **Configure a JDBC log source for Sophos PureMessage**.

Configure a JDBC log source for Sophos PureMessage

To configure QRadar to access the Sophos PureMessage for Microsoft Exchange database using the JDBC protocol:

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources. The Data Sources panel is displayed.

Step 4 Click the Log Sources icon. The Log Sources window is displayed.
Step 5 Click Add.
The Add a log source window is displayed.

Step 6 From the Log Source Type list, select Sophos PureMessage.

Step 7 From the Protocol Configuration list, select JDBC.

Note: You must refer to the database configuration settings on your Sophos PureMessage device to define the parameters required to configure the Sophos PureMessage DSM in QRadar.

Step 8 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the identifier for the log source. Type the log source identifier in the following format: <code><Sophos PureMessage Database>@<Sophos PureMessage Database Server IP or Host Name></code> Where: <code><Sophos PureMessage Database></code> is the database name, as entered in the Database Name parameter. <code><Sophos PureMessage Database Server IP or Host Name></code> is the hostname or IP address for this log source, as entered in the IP or Hostname parameter. When defining a name for your log source identifier, you must use the values of the Database and Database Server IP address or hostname of the Sophos PureMessage device.</td>
</tr>
<tr>
<td>Database Type</td>
<td>From the list, select MSDE.</td>
</tr>
<tr>
<td>Database Name</td>
<td>Type savexquar.</td>
</tr>
<tr>
<td>IP or Hostname</td>
<td>Type the IP address or host name of the Sophos PureMessage server.</td>
</tr>
</tbody>
</table>
| Port | Type the port number used by the database server. The default port for MSDE is 1433. Sophos installations typically use 24033. You can confirm port usage using the SQL Server Configuration Manager utility. For more information, see your vendor documentation. The JDBC configuration port must match the listener port of the Sophos database. The Sophos database must have incoming TCP connections enabled to communicate with QRadar.
 Note: If you define a database instance in the Database Instance parameter, you must leave the Port parameter blank. You can only define a database instance if the database server uses the default port of 1433. This is not the standard Sophos configuration. |
| Username | Type the username required to access the database. |
| Password | Type the password required to access the database. The password can be up to 255 characters in length. |
Table 100-3 Sophos PureMessage JDBC Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirm Password</td>
<td>Confirm the password required to access the database. The confirmation password must be identical to the password entered in the Password parameter.</td>
</tr>
<tr>
<td>Authentication Domain</td>
<td>If you select MSDE as the Database Type and the database is configured for Windows, you must define a Window Authentication Domain. Otherwise, leave this field blank.</td>
</tr>
<tr>
<td>Database Instance</td>
<td>Optional. Type the database instance, if you have multiple SQL server instances on your database server.</td>
</tr>
<tr>
<td></td>
<td>Note: If you define a port number other than the default in the Port parameter, or have blocked access to port 1434 for SQL database resolution, you must leave the Database Instance parameter blank.</td>
</tr>
<tr>
<td>Table Name</td>
<td>Type <code>siem_view</code> as the name of the table or view that includes the event records.</td>
</tr>
<tr>
<td>Select List</td>
<td>Select <code>*</code> for all fields from the table or view.</td>
</tr>
<tr>
<td></td>
<td>You can use a comma-separated list to define specific fields from tables or views, if required for your configuration. The list must contain the field defined in the Compare Field parameter. The comma-separated list can be up to 255 alphanumeric characters in length. The list can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period(.).</td>
</tr>
<tr>
<td>Compare Field</td>
<td>Type <code>ID</code>. The Compare Field parameter is used to identify new events added between queries to the table.</td>
</tr>
<tr>
<td>Use Prepared Statements</td>
<td>Select this check box to use prepared statements.</td>
</tr>
<tr>
<td></td>
<td>Prepared statements allows the JDBC protocol source to set up the SQL statement one time, then run the SQL statement many times with different parameters. For security and performance reasons, we recommend that you use prepared statements.</td>
</tr>
<tr>
<td></td>
<td>Clearing this check box requires you to use an alternative method of querying that does not use pre-compiled statements.</td>
</tr>
<tr>
<td>Start Date and Time</td>
<td>Optional. Type the start date and time for database polling.</td>
</tr>
<tr>
<td></td>
<td>The Start Date and Time parameter must be formatted as <code>yyyy-MM-dd HH:mm</code> with <code>HH</code> specified using a 24-hour clock. If the Start Date and Time parameter is clear, polling begins immediately and repeats at the specified polling interval.</td>
</tr>
<tr>
<td>Polling Interval</td>
<td>Type the polling interval, which is the amount of time between queries to the event table. The default polling interval is 10 seconds.</td>
</tr>
<tr>
<td></td>
<td>You can define a longer polling interval by appending <code>H</code> for hours or <code>M</code> for minutes to the numeric value. The maximum polling interval is 1 week in any time format. Numeric values entered without an <code>H</code> or <code>M</code> poll in seconds.</td>
</tr>
</tbody>
</table>
Step 9. Click **Save**.

Step 10. On the **Admin** tab, click **Deploy Changes**.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*.

Integrate QRadar with Sophos PureMessage for Linux

To integrate QRadar with Sophos PureMessage for Linux:

Step 1. Navigate to your Sophos PureMessage PostgreSQL database directory:

```
cd /opt/pmx/postgres-8.3.3/bin
```

Step 2. Access the pmx_quarantine database SQL prompt:

```
./psql -d pmx_quarantine
```

Step 3. Type the following command to create a SIEM view in your Sophos database to support QRadar:

```sql
create view siem_view as select 'Linux PureMessage' as application, id, b.name, m_date, h_from_local, h_from_domain, m_global_id, m_message_size, outbound, h_to, c_subject_utf8 from message a, m_reason b where a.reason_id = b.reason_id;
```

After you create your database view, you must configure QRadar to receive event information using the JDBC protocol.

Configure a log source for Sophos PureMessage for Microsoft Exchange

To configure QRadar to access the Sophos PureMessage database using the JDBC protocol:

Step 1. Log in to QRadar.

Step 2. Click the **Admin** tab.
Step 3 On the navigation menu, click Data Sources.

The Data Sources panel is displayed.

Step 4 Click the Log Sources icon.

The Log Sources window is displayed.

Step 5 Click Add.

The Add a log source window is displayed.

Step 6 From the Log Source Type list, select Sophos PureMessage.

Step 7 From the Protocol Configuration list, select JDBC.

Note: You must refer to the Configure Database Settings on your Sophos PureMessage to define the parameters required to configure the Sophos PureMessage DSM in QRadar.

Step 8 Configure the following values:

Table 100-4 Sophos PureMessage JDBC Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Log Source Identifier | Type the identifier for the log source. Type the log source identifier in the following format:
| | <Sophos PureMessage Database>@<Sophos PureMessage Database Server IP or Host Name>
| | Where:
| | <Sophos PureMessage Database> is the database name, as entered in the Database Name parameter.
| | <Sophos PureMessage Database Server IP or Host Name> is the hostname or IP address for this log source, as entered in the IP or Hostname parameter.
| | When defining a name for your log source identifier, you must use the values of the Database and Database Server IP address or hostname of the Sophos PureMessage device. |
| Database Type | From the list, select Postgres. |
| Database Name | Type pmx_quarantine. |
| IP or Hostname | Type the IP address or host name of the Sophos PureMessage server. |
| Port | Type the port number used by the database server. The default port is 1532.
| | The JDBC configuration port must match the listener port of the Sophos database. The Sophos database must have incoming TCP connections enabled to communicate with QRadar. |
| Username | Type the username required to access the database. |
| Password | Type the password required to access the database. The password can be up to 255 characters in length. |
Table 100-4 Sophos PureMessage JDBC Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirm Password</td>
<td>Confirm the password required to access the database. The confirmation password must be identical to the password entered in the Password parameter.</td>
</tr>
<tr>
<td>Database Instance</td>
<td>Optional. Type the database instance, if you have multiple SQL server instances on your database server.</td>
</tr>
<tr>
<td>Note: If you use a non-standard port in your database configuration, or have blocked access to port 1434 for SQL database resolution, you must leave the Database Instance parameter blank in your configuration.</td>
<td></td>
</tr>
<tr>
<td>Table Name</td>
<td>Type <code>siem_view</code> as the name of the table or view that includes the event records.</td>
</tr>
<tr>
<td>Select List</td>
<td>Type <code>*</code> for all fields from the table or view.</td>
</tr>
<tr>
<td>Note: You can use a comma-separated list to define specific fields from tables or views, if required for your configuration. The list must contain the field defined in the Compare Field parameter. The comma-separated list can be up to 255 alphanumeric characters in length. The list can include the following special characters: dollar sign ($), number sign (#), underscore (_), en dash (-), and period (.).</td>
<td></td>
</tr>
<tr>
<td>Compare Field</td>
<td>Type <code>id</code>.</td>
</tr>
<tr>
<td>Note: The Compare Field parameter is used to identify new events added between queries to the table.</td>
<td></td>
</tr>
<tr>
<td>Use Prepared Statements</td>
<td>Select this check box to use prepared statements.</td>
</tr>
<tr>
<td>Note: Prepared statements allows the JDBC protocol source to set up the SQL statement one time, then run the SQL statement many times with different parameters. For security and performance reasons, we recommend that you use prepared statements. Clearing this check box requires you to use an alternative method of querying that does not use pre-compiled statements.</td>
<td></td>
</tr>
<tr>
<td>Start Date and Time</td>
<td>Optional. Type the start date and time for database polling.</td>
</tr>
<tr>
<td>Note: The Start Date and Time parameter must be formatted as <code>yyyy-MM-dd HH:mm</code> with <code>HH</code> specified using a 24-hour clock. If the Start Date and Time parameter is clear, polling begins immediately and repeats at the specified polling interval.</td>
<td></td>
</tr>
<tr>
<td>Polling Interval</td>
<td>Type the polling interval, which is the amount of time between queries to the event table. The default polling interval is 10 seconds.</td>
</tr>
<tr>
<td>Note: You can define a longer polling interval by appending <code>H</code> for hours or <code>M</code> for minutes to the numeric value. The maximum polling interval is 1 week in any time format. Numeric values entered without an <code>H</code> or <code>M</code> poll in seconds.</td>
<td></td>
</tr>
</tbody>
</table>

Note: Selecting a value for the Credibility parameter greater than 5 will weight your Sophos PureMessage log source with a higher importance compared to other log sources in QRadar.
Step 9 Click **Save**.

Step 10 On the **Admin** tab, click **Deploy Changes**.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*.
The Sophos Astaro Security Gateway DSM for IBM Security QRadar accepts events using syslog, enabling QRadar to record all relevant events.

Configure syslog for Sophos Astaro

To configure syslog for Sophos Astaro Security Gateway:

Step 1 Log in to the Sophos Astaro Security Gateway console.

Step 2 From the navigation menu, select **Logging > Settings**.

Step 3 Click the **Remote Syslog Server** tab.

The Remote Syslog Status window is displayed.

Step 4 From **Syslog Servers** panel, click the + icon.

The Add Syslog Server window is displayed.

Step 5 Configure the following parameters:

- **Name** - Type a name for the syslog server.
- **Server** - Click the folder icon to add a pre-defined host, or click + and type in new network definition.
- **Port** - Click the folder icon to add a pre-defined port, or click + and type in a new service definition.

By default, QRadar communicates using the syslog protocol on UDP/TCP port 514.

Step 6 Click **Save**.

Step 7 From the **Remote syslog log selection** field, you must select check boxes for the following logs:

- **POP3 Proxy** - Select this check box.
- **Packet Filter** - Select this check box.
- **Intrusion Prevention System** - Select this check box.
- **Content Filter(HTTPS)** - Select this check box.
- **High availability** - Select this check box.
- **FTP Proxy** - Select this check box.
- **SSL VPN** - Select this check box.
- **PPTP daemon** - Select this check box.
- **IPSEC VPN** - Select this check box.
- **HTTP daemon** - Select this check box.
- **User authentication daemon** - Select this check box.
- **SMTP proxy** - Select this check box.

Step 8 Click **Apply**.

Step 9 From **Remote syslog status** section, click **Enable**.
Step 10 You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from your Sophos Astaro Security Gateway device:

- From the Log Source Type list, select Sophos Astaro Security Gateway.

For more information on configuring log sources, see IBM Security QRadar Log Sources User Guide.

Sophos Web Security Appliance

The Sophos Web Security Appliance (WSA) DSM for IBM Security QRadar accepts events using syslog.

QRadar records all relevant events forwarded from the transaction log of the Sophos Web Security Appliance. Before configuring QRadar, you must configure your Sophos WSA appliance to forward syslog events.

Configure syslog for Sophos Web Security Appliance

To configure your Sophos Web Security Appliance to forward syslog events:

1. Log in to your Sophos Web Security Appliance.
2. From the menu, select Configuration > System > Alerts & Monitoring.
3. Select the Syslog tab.
4. Select the Enable syslog transfer of web traffic check box.
5. In the Hostname/IP text box, type the IP address or hostname of QRadar.
6. In the Port text box, type 514.
7. From the Protocol list, select a protocol. The options are:
 - TCP - The TCP protocol is supported with QRadar on port 514.
 - UDP - The UDP protocol is supported with QRadar on port 514.
 - TCP - Encrypted - TCP Encrypted is an unsupported protocol for QRadar.
8. Click Apply.

You are now ready to configure the Sophos Web Security Appliance DSM in QRadar.

QRadar automatically detects syslog data from a Sophos Web Security Appliance. To manually configure QRadar to receive events from Sophos Web Security Appliance:

- From the Log Source Type list, select Sophos Web Security Appliance.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide.
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
IBM Security QRadar accepts and parses multiple event types forwarded from Splunk appliances.

Note: For Check Point events forwarded from Splunk, see [Integrating Check Point Firewall events from external syslog forwarders](#).

Collect Windows events forwarded from Splunk appliances

To collect events, you can configure your Windows end points to forward events to your QRadar Console and your Splunk indexer.

Forwarding Windows events from aggregation nodes in your Splunk deployment is not suggested. Splunk indexers that forward events from multiple Windows end points to QRadar can obscure the true source of the events with the IP address of the Splunk indexer. To prevent a situation where an incorrect IP address association might occur in the log source, you can update your Windows end point systems to forward to both the indexer and your QRadar Console.

Splunk events are parsed by using the Microsoft Windows Security Event Log DSM with the TCP multiline syslog protocol. The regular expression configured in the protocol defines where a Splunk event starts or ends in the event payload. The event pattern allows QRadar to assemble the raw Windows event payload as a single-line event that is readable by QRadar. The regular expression required to collect Windows events is outlined in the log source configuration.
To configure event collection for Splunk syslog events, you must complete the following tasks:

1. On your QRadar appliance, configure a log source to use the Microsoft Windows Security Event Log DSM.

 Note: You must configure one log source for Splunk events. QRadar can use the first log source to autodiscover additional Windows end points.

2. On your Splunk appliance, configure each Splunk Forwarder on the Windows instance to send Windows event data to your QRadar Console or Event Collector.

 To configure a Splunk Forwarder, you must edit the props, transforms, and output configuration files. For more information on event forwarding, see your Splunk documentation.

3. Ensure that no firewall rules block communication between your Splunk appliance and the QRadar Console or managed host that is responsible for retrieving events.

4. On your QRadar appliance, verify the **Log Activity** tab to ensure that the Splunk events are forwarded to QRadar.

Configuring a log source for Splunk forwarded events

To collect raw events forwarded from Splunk, you must configure a log source in QRadar.

Procedure

1. Log in to QRadar.
2. Click the **Admin** tab.
3. In the navigation menu, click **Data Sources**.
4. Click the **Log Sources** icon.
5. Click **Add**.
6. In the **Log Source Name** field, type a name for your log source.
7. Optional. In the **Log Source Description** field, type a description for your log source.
8. From the **Log Source Type** list, select **Microsoft Windows Security Event Log**.
9. From the **Protocol Configuration** list, select **TCP Multiline Syslog**.
10. Configure the following values:

Parameter	Description
Log Source Identifier	Type the IP address or host name for the log source as an identifier for events from your Splunk appliance. The log source identifier must be unique value.

IBM Security QRadar DSM Configuration Guide
Collect Windows events forwarded from Splunk appliances

Listen Port
Type the port number used by QRadar to accept incoming TCP multiline syslog events from Splunk. The default listen port is 12468. The port number you configure must match the port that you configured on your Splunk Forwarder. You can use the listen port to collect events from up to 50 event sources that have a common event pattern. You cannot specify port 514 in this field.

Event Formatter
From the list, select **Windows Multiline**. The event formatter ensures the format of the TCP multiline event matches the event pattern for the event type you selected.

Event Start Pattern
Type the following regular expression (regex) to identify the start of your Splunk windows event:

```
(?::<\d+>\s?\w{3}\s\d{2}\s\d{2}:\d{2}:\d{2})\s\d{2}/\d{2}/\d{4}\s\d{2}:\d{2}:\d{2}[AP]M)
```

The TCP multiline syslog protocol captures all the information between each occurrence of the defined regex pattern to create single-line syslog events.

Event End Pattern
This field can be cleared of any regex patterns.

Enabled
Select this check box to enable the log source. By default, the check box is selected.

Credibility
From the list, select the credibility of the log source. The range is 0 - 10. The credibility indicates the integrity of an event or offense as determined by the credibility rating from the source devices. Credibility increases if multiple sources report the same event. The default is 5.

Target Event Collector
From the list, select the Event Collector to use as the target for the log source.

Coalescing Events
Select this check box to enable the log source to coalesce (bundle) events. By default, automatically discovered log sources inherit the value of the Coalescing Events list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.

Incoming Event Payload
From the list, select the incoming payload encoder for parsing and storing the logs.

Table 103-5 Protocol parameters for TCP multiline syslog (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listen Port</td>
<td>Type the port number used by QRadar to accept incoming TCP multiline syslog events from Splunk. The default listen port is 12468. The port number you configure must match the port that you configured on your Splunk Forwarder. You can use the listen port to collect events from up to 50 event sources that have a common event pattern. You cannot specify port 514 in this field.</td>
</tr>
<tr>
<td>Event Formatter</td>
<td>From the list, select Windows Multiline. The event formatter ensures the format of the TCP multiline event matches the event pattern for the event type you selected.</td>
</tr>
<tr>
<td>Event Start Pattern</td>
<td>Type the following regular expression (regex) to identify the start of your Splunk windows event: <code>(?::<\d+>\s?\w{3}\s\d{2}\s\d{2}:\d{2}:\d{2})\s\d{2}/\d{2}/\d{4}\s\d{2}:\d{2}:\d{2}[AP]M)</code> The TCP multiline syslog protocol captures all the information between each occurrence of the defined regex pattern to create single-line syslog events.</td>
</tr>
<tr>
<td>Event End Pattern</td>
<td>This field can be cleared of any regex patterns.</td>
</tr>
<tr>
<td>Enabled</td>
<td>Select this check box to enable the log source. By default, the check box is selected.</td>
</tr>
<tr>
<td>Credibility</td>
<td>From the list, select the credibility of the log source. The range is 0 - 10. The credibility indicates the integrity of an event or offense as determined by the credibility rating from the source devices. Credibility increases if multiple sources report the same event. The default is 5.</td>
</tr>
<tr>
<td>Target Event Collector</td>
<td>From the list, select the Event Collector to use as the target for the log source.</td>
</tr>
<tr>
<td>Coalescing Events</td>
<td>Select this check box to enable the log source to coalesce (bundle) events. By default, automatically discovered log sources inherit the value of the Coalescing Events list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
<tr>
<td>Incoming Event Payload</td>
<td>From the list, select the incoming payload encoder for parsing and storing the logs.</td>
</tr>
</tbody>
</table>
Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

Step 13 Optional. If you have 50 or more Windows sources, you must repeat this process to create another log source.

Events provided by the Splunk Forwarder to QRadar are displayed on the **Log Activity** tab.

Table 103-5 Protocol parameters for TCP multiline syslog (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store Event Payload</td>
<td>Select this check box to enable the log source to store event payload information. By default, automatically discovered log sources inherit the value of the Store Event Payload list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
</tbody>
</table>
The Squid Web Proxy DSM for IBM Security QRadar records all cache and access log events using syslog.

To integrate QRadar with Squid Web Proxy, you must configure your Squid Web Proxy to forward your cache and access logs using syslog.

Configure syslog forwarding

To configure Squid Web Proxy to forward your access and cache events using syslog:

Step 1 Using SSH, log in to the Squid device command-line interface (CLI).

Step 2 Open the following file:

```
/etc/rc3.d/S99local
```

Step 3 Add the following line:

```
tail -f /var/log/squid/access.log | logger -p <facility>.<priority> &
```

Where:

- `<facility>` is any valid syslog facility (such as, authpriv, daemon, local0 to local7, or user) written in lowercase.
- `<priority>` is any valid priority (such as, err, warning, notice, info, debug) written in lowercase.

Step 4 Save and close the file.

Logging begins the next time the system is rebooted.

Step 5 To begin logging immediately, type the following command:

```
nohup tail -f /var/log/squid/access.log | logger -p <facility>.<priority> &
```

Where `<facility>` and `<priority>` are the same values entered in Step 3.

Step 6 Open the following file:

```
/etc/squid/squid.conf
```
Step 7 Add the following line to send the logs to the QRadar:

```bash
<priority>.<facility> @<QRadar_IP_address>
```

Where:
- `<priority>` is the priority of your Squid messages
- `<facility>` is the facility of your Squid messages
- `<QRadar_IP_address>` is the IP address or hostname of your QRadar.

For example:

```
info.local4 @172.16.210.50
```

Step 8 Add the following line to squid.conf to turn off Squid httpd log emulation:

```
emulate_httpd_log off
```

Step 9 Save and close the file.

Step 10 Type the following command to restart the syslog daemon:

```
/etc/init.d/syslog restart
```

For more information on configuring Squid Web Proxy, consult your vendor documentation. After you configure syslog forwarding your cache and access logs, the configuration is complete. QRadar can automatically discover syslog events forwarded from Squid Web Proxy.

Create a log source

QRadar automatically discovers and creates a log source for syslog events forwarded from Squid Web Proxy appliances. These configuration steps for creating a log source are optional.

To manually configure a log source for Squid Web Proxy:

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

The Data Sources panel is displayed.

Step 4 Click the Log Sources icon.

The Log Sources window is displayed.

Step 5 Click Add.

The Add a log source window is displayed.

Step 6 In the Log Source Name field, type a name for the log source.

Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select Squid Web Proxy.

Step 9 From the Protocol Configuration list, select Syslog.

The syslog protocol configuration is displayed.

For more information on configuring Squid Web Proxy, consult your vendor documentation. After you configure syslog forwarding your cache and access logs, the configuration is complete. QRadar can automatically discover syslog events forwarded from Squid Web Proxy.

Create a log source

QRadar automatically discovers and creates a log source for syslog events forwarded from Squid Web Proxy appliances. These configuration steps for creating a log source are optional.

To manually configure a log source for Squid Web Proxy:

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

The Data Sources panel is displayed.

Step 4 Click the Log Sources icon.

The Log Sources window is displayed.

Step 5 Click Add.

The Add a log source window is displayed.

Step 6 In the Log Source Name field, type a name for the log source.

Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select Squid Web Proxy.

Step 9 From the Protocol Configuration list, select Syslog.

The syslog protocol configuration is displayed.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for the log source as an identifier for events from the Squid Web Proxy.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.
The Starent Networks DSM for IBM Security QRadar accepts Event, Trace, Active, and Monitor events.

Before configuring a Starent Networks device in QRadar, you must configure your Starent Networks device to forward syslog events to QRadar.

To configure the device to send syslog events to QRadar:

Step 1 Log in to your Starent Networks device.

Step 2 Configure the syslog server:

```
logging syslog <IP address> [facility <facilities>] [<rate value>] [pdu-verbosity <pdu_level>] [pdu-data <format>] [event-verbosity <event_level>]
```

The following table provides the necessary parameters:

Table 105-1 Syslog Server Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>syslog <IP address></td>
<td>Type the IP address of your QRadar</td>
</tr>
<tr>
<td>facility <facilities></td>
<td>Type the local facility for which the logging options shall be applied. The options are:</td>
</tr>
<tr>
<td></td>
<td>• local0</td>
</tr>
<tr>
<td></td>
<td>• local1</td>
</tr>
<tr>
<td></td>
<td>• local2</td>
</tr>
<tr>
<td></td>
<td>• local3</td>
</tr>
<tr>
<td></td>
<td>• local4</td>
</tr>
<tr>
<td></td>
<td>• local5</td>
</tr>
<tr>
<td></td>
<td>• local6</td>
</tr>
<tr>
<td></td>
<td>• local7</td>
</tr>
<tr>
<td></td>
<td>The default is local7.</td>
</tr>
<tr>
<td>rate value</td>
<td>Type the rate that you want log entries to be sent to the system log server. This value must be an integer from 0 to 100000. The default is 1000 events per second.</td>
</tr>
</tbody>
</table>
Table 105-1 Syslog Server Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdu-verbosity <pdu-level></td>
<td>Type the level of verboseness you want to use in logging the Protocol Data Units (PDUs). The range is 1 to 5 where 5 is the most detailed. This parameter only affects protocol logs.</td>
</tr>
</tbody>
</table>
| pdu-data <format> | Type the output format for the PDU when logged as one of following formats:
 - none - Displays results in raw or unformatted text.
 - hex - Displays results in hexadecimal format.
 - hex-ascii - Displays results in hexadecimal and ASCII format similar to a main frame dump. |
| event-verbosity <event_level> | Type the level of detail you want to use in logging of events, including:
 - min - Provides minimal information about the event, such as, event name, facility, event ID, severity level, data, and time.
 - concise - Provides detailed information about the event, but does not provide the event source.
 - full - Provides detailed information about the event including the source information identifying the task or subsystem that generated the event. |

Step 3 From the root prompt for the Exec mode, identify the session for which the trace log is to be generated:

```
logging trace {callid <call_id> | ipaddr <IP address> | msid <ms_id> | name <username>}
```

The following table provides the necessary parameters:

Table 105-2 Trace Log Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>callid <call_id></td>
<td>Indicates a trace log is generated for a session identified by the call identification number. This value is a 4-byte hexadecimal number.</td>
</tr>
<tr>
<td>ipaddr <IP address></td>
<td>Indicates a trace log is generated for a session identified by the specified IP address.</td>
</tr>
<tr>
<td>msid <ms_id></td>
<td>Indicates a trace log is generated for a session identified by the mobile station identification (MSID) number. This value must be from 7 to 16 digits, specified as an IMSI, MIN, or RMI.</td>
</tr>
<tr>
<td>name <username></td>
<td>Indicates a trace log is generated for a session identified by the username. This value is the name of the subscriber that was previously configured.</td>
</tr>
</tbody>
</table>

Step 4 To write active logs to the active memory buffer, in the config mode:

```
logging runtime buffer store all-events
```

Step 5 Configure a filter for the active logs:
logging filter active facility <facility> level <report_level> [critical-info | no-critical-info]

The following table provides the necessary parameters:

Table 105-3 Active Log Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| facility <facility> | Type the facility message level. A facility is a protocol or task that is in use by the system. The local facility defines which logging options shall be applied for processes running locally. The options are:
 • local0
 • local1
 • local2
 • local3
 • local4
 • local5
 • local6
 • local7
 The default is local7. |
| level <report_level> | Type the log severity level, including:
 • **critical** - Logs only those events indicating a serious error has occurred that is causing the system or a system component to cease functioning. This is the highest level severity.
 • **error** - Logs events that indicate an error has occurred that is causing the system or a system component to operate in a degraded state. This level also logs events with a higher severity level.
 • **warning** - Logs events that can indicate a potential problem. This level also logs events with a higher severity level.
 • **unusual** - Logs events that are very unusual and might need to be investigated. This level also logs events with a higher severity level.
 • **info** - Logs informational events and events with a higher severity level.
 • **debug** - Logs all events regardless of the severity.
We recommend that a level of error or critical can be configured to maximize the value of the logged information while minimizing the quantity of logs generated. |
| critical-info | The critical-info parameter identifies and displays events with a category attribute of critical information. Examples of these types of events can be seen at bootup when system processes or tasks are being initiated. |
Step 6 Configure the monitor log targets:

```
logging monitor {msid <ms_id>|username <username>}
```

The following table provides the necessary parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no-critical-info</td>
<td>The no-critical-info parameter specifies that events with a category attribute of critical information are not displayed.</td>
</tr>
</tbody>
</table>

Table 105-3 Active Log Parameters (continued)

The following table provides the necessary parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>msid <md_id></td>
<td>Type an msid to define that a monitor log is generated for a session identified using the Mobile Station Identification (MDID) number. This value must be between 7 and 16 digits specified as a IMSI, MIN, or RMI.</td>
</tr>
<tr>
<td>username <username></td>
<td>Type username to identify a monitor log generated for a session by the username. The username is the name of the subscriber that was previously configured.</td>
</tr>
</tbody>
</table>

Table 105-4 Monitor Log Parameters

You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Starent device:

1. From the Log Source Type list, select the Starent Networks Home Agent (HA) option.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide. For more information about the device, see your vendor documentation.
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum STEALTHbits StealthINTERCEPT DSM integration process.
The Stonesoft Management Center DSM for IBM Security QRadar accepts events using syslog.

QRadar records all relevant LEEF formatted syslog events. Before configuring QRadar, you must configure your Stonesoft Management Center to export LEEF formatted syslog events.

This document includes the steps required to edit LogServerConfiguration.txt file. Configuring the text file allows Stonesoft Management Center to export event data in LEEF format using syslog to QRadar. For detailed configuration instructions, see the StoneGate Management Center Administrator’s Guide.

To configure Stonesoft Management Center:

Procedure

Step 1 Log in to the appliance hosting your Stonesoft Management Center.

Step 2 Stop the Stonesoft Management Center Log Server:

- **Windows** - Select one of the following methods to stop the Log Server:
 - Stop the Log Server in the Windows Services list.
 - Run the batch file `<installation path>/bin/sgStopLogSrv.bat`.
- **Linux** - To stop the Log Server in Linux, run the script `<installation path>/bin/sgStopLogSrv.sh`.

Step 3 Edit the LogServerConfiguration.txt file. The configuration file is located in the following directory:

`<installation path>/data/LogServerConfiguration.txt`

Step 4 Configure the following parameters in the LogServerConfiguration.txt file:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSLOG_EXPORT_FORMAT</td>
<td>LEEF</td>
<td>Type LEEF as the export format to use for syslog.</td>
</tr>
</tbody>
</table>

IBM Security QRadar DSM Configuration Guide
Save the LogServerConfiguration.txt file.

Start the Log Server:
- **Windows** - Type `<installation path>/bin/sgStartLogSrv.bat`.
- **Linux** - Type `<installation path>/bin/sgStartLogSrv.sh`.

You are now ready to configure a traffic rule for syslog.

Note: A firewall rule is only required if your QRadar Console or Event Collector is separated by a firewall from the Stonesoft Management Server. If no firewall exists between the Management Server and QRadar, you need to configure the log source in QRadar.

Configure a syslog traffic rule: If the Stonesoft Management Center and QRadar are separated by a firewall in your network, you must modify your firewall or IPS policy to allow traffic between the Stonesoft Management Center and QRadar.

Procedure

Step 1 From the Stonesoft Management Center, select one of the following methods for modifying a traffic rule:
- **Firewall policies** - Select **Configuration > Configuration > Firewall**.
- **IPS policies** - Select **Configuration > Configuration > IPS**.

Step 2 Select the type of policy to modify:
- **Firewall** - Select **Firewall Policies > Edit Firewall Policy**.
- **IPS** - Select **IPS Policies > Edit Firewall Policy**.

Table 107-1 Log Server Configuration Options (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSLOG_EXPORT_ALERT</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Yes - Exports alert entries to QRadar using syslog.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- No - Alert entries are not exported using syslog.</td>
</tr>
<tr>
<td>SYSLOG_EXPORT_FW</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Yes - Exports firewall and VPN entries to QRadar using syslog.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- No - Firewall and VPN entries are not exported using syslog.</td>
</tr>
<tr>
<td>SYSLOG_EXPORT_IPS</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Yes - Exports IPS log file entries to QRadar using syslog.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- No - IPS entries are not exported using syslog.</td>
</tr>
<tr>
<td>SYSLOG_PORT</td>
<td>514</td>
<td>Type 514 as the UDP port for forwarding syslog events to QRadar.</td>
</tr>
<tr>
<td>SYSLOG_SERVER_ADDRESS</td>
<td>QRadar IPv4 Address</td>
<td>Type the IPv4 address of your QRadar Console or Event Collector.</td>
</tr>
</tbody>
</table>
Step 3 Add an IPv4 Access rule with the following values to the firewall policy:
 a **Source** - Type the IPv4 address of your Stonesoft Management Center Log Server.
 b **Destination** - Type the IPv4 address of your QRadar Console or Event Collector.
 c **Service** - Select **Syslog (UDP)**.
 d **Action** - Select **Allow**.
 e **Logging** - Select **None**.
 Note: In most cases, we recommend setting the logging value to **None**. Logging syslog connections without configuring a syslog filter can create a loop. For more information, see the *StoneGate Management Center Administrator’s Guide*.

Step 4 Save your changes and refresh the policy on the firewall or IPS.
You are now ready to configure the log source in QRadar.

Configuring a log source
QRadar automatically discovers and creates a log source for syslog events from Stonesoft Management Center. The following configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 Click **Add**.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Stonesoft Management Center**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Stonesoft Management Center appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.
The configuration is complete.
This section provides DSM configuration information on the following:

- Sun Solaris
- Sun Solaris DHCP
- Sun Solaris Basic Security Mode (BSM)

<table>
<thead>
<tr>
<th>Sun Solaris</th>
<th>The Sun Solaris DSM for records all relevant Solaris authentication events using syslog.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Sun Solaris</td>
<td>To collect authentication events from Sun Solaris, you must configure syslog to forward events to QRadar.</td>
</tr>
</tbody>
</table>

Procedure

Step 1
Log in to the Sun Solaris command-line interface.

Step 2
Open the `/etc/syslog.conf` file.

Step 3
To forward system authentication logs to QRadar, add the following line to the file:

```
*.err;auth.notice;auth.info                   @<IP address>
```

Where `<IP address>` is the IP address of your QRadar. Use tabs instead of spaces to format the line.

Note: Depending on the version of Solaris you are running, you might need to add additional log types to the file. Contact your system administrator for more information.

Step 4
Save and exit the file.

Step 5
Type the following command:

```
kill -HUP `cat /etc/syslog.pid`
```

You are now ready to configure the log source QRadar.
Configuring a Sun Solaris DHCP log source

QRadar automatically discovers and creates a log source for syslog events from Sun Solaris DHCP installations. The following configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 Click **Add**.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Solaris Operating System Authentication Messages**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 108-3 Syslog parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
</tbody>
</table>
| Log Source Identifier | Type the IP address or hostname for the log source as an identifier for events from Sun Solaris installations.
| | Each additional log source you create when you have multiple installations should include a unique identifier, such as an IP address or host name. |

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The log source is added to QRadar. Events forwarded to QRadar by Solaris Sendmail is displayed on the **Log Activity** tab.

Sun Solaris DHCP

The Sun Solaris DHCP DSM for IBM Security QRadar records all relevant DHCP events using syslog.

Configuring Sun Solaris DHCP

To collect events from Sun Solaris DHCP, you must configure syslog to forward events to QRadar.

Procedure

Step 1 Log in to the Sun Solaris command-line interface.

Step 2 Edit the `/etc/default/dhcp` file.

Step 3 Enable logging of DHCP transactions to syslog by adding the following line:

```
LOGGING_FACILITY=X
```
Where \(x \) is the number corresponding to a local syslog facility, for example, a number from 0 to 7.

Step 4
Save and exit the file.

Step 5
Edit the `/etc/syslog.conf` file.

Step 6
To forward system authentication logs to QRadar, add the following line to the file:
```
localX.notice @<IP address>
```
Where:
- \(x \) is the logging facility number you specified in **Step 3**.
- `<IP address>` is the IP address of your QRadar. Use tabs instead of spaces to format the line.

Step 7
Save and exit the file.

Step 8
Type the following command:
```
kill -HUP 'cat /etc/syslog.pid'
```
You are now ready to configure the log source in QRadar.

Configuring a Sun Solaris DHCP log source

QRadar automatically discovers and creates a log source for syslog events from Sun Solaris DHCP installations. The following configuration steps are optional.

Procedure

1. **Step 1**
 Log in to QRadar.

2. **Step 2**
 Click the **Admin** tab.

3. **Step 3**
 On the navigation menu, click **Data Sources**.

4. **Step 4**
 Click the **Log Sources** icon.

5. **Step 5**
 Click **Add**.

6. **Step 6**
 In the **Log Source Name** field, type a name for your log source.

7. **Step 7**
 In the **Log Source Description** field, type a description for the log source.

8. **Step 8**
 From the **Log Source Type** list, select **Solaris Operating System DHCP Logs**.

9. **Step 9**
 Using the **Protocol Configuration** list, select **Syslog**.

10. **Step 10**
 Configure the following values:

Parameter	Description
Log Source Identifier	Type the IP address or hostname for the log source as an identifier for events from Sun Solaris DHCP installations. Each additional log source you create when you have multiple installations should include a unique identifier, such as an IP address or host name.

11. **Step 11**
 Click **Save**.
Sun Solaris Basic Security Mode (BSM)

Sun Solaris Basic Security Mode (BSM) is an audit tracking tool for system administrator to retrieve detailed auditing events from Sun Solaris systems.

IBM Security QRadar retrieves Sun Solaris BSM events using the Log File protocol. To configure QRadar to integrate with Solaris Basic Security Mode, you must:

1. Enable Solaris Basic Security Mode.
2. Convert audit logs from binary to a human-readable format.
3. Schedule a cron job to run the conversion script on a schedule.
4. Collect Sun Solaris events in QRadar using the Log File protocol.

Enabling Basic Security Mode

To configure Sun Solaris BSM, you must enable Solaris Basic Security Mode and configure the classes of events the system logs to an audit log file.

Procedure

Step 1
Log in to your Solaris console as a superuser or root user.

Step 2
Enable single-user mode on your Solaris console.

Step 3
Type the following command to run the bsmconv script and enable auditing:

```
/etc/security/bsmconv
```

The bsmconv script enables Solaris Basic Security Mode and starts the auditing service auditd.

Step 4
Type the following command to open the audit control log for editing:

```
vi /etc/security/audit_control
```

Step 5
Edit the audit control file to contain the following information:

```
dir:/var/audit
flags:lo,ad,ex,-fw,-fc,-fd,-fr
nflags:lo,ad
```

Step 6
Save the changes to the audit_control file, then reboot the Solaris console to start auditd.

Step 7
Type the following command to verify auditd has started:

```
/user/sbin/auditconfig -getcond
```

If the auditd process is started, the following string is returned:

```
audit condition = auditing
```

You are now ready to convert the binary Solaris Basic Security Mode logs to a human-readable log format.
Converting Sun Solaris BSM audit logs

QRadar cannot process binary files directly from Sun Solaris BSM. You must convert the audit log from the existing binary format to a human-readable log format using praudit before the audit log data can be retrieved by QRadar.

Procedure

Step 1 Type the following command to create a new script on your Sun Solaris console:

```
vi /etc/security/newauditlog.sh
```

Step 2 Add the following information to the newauditlog.sh script:

```bash
#!/bin/bash
#
# newauditlog.sh - Start a new audit file and expire the old logs
#
AUDIT_EXPIRE=30
AUDIT_DIR="/var/audit"
LOG_DIR="/var/log/"

/usr/sbin/audit -n

cd $AUDIT_DIR # in case it is a link

# Get a listing of the files based on creation date that are not current in use
FILES=$(ls -lrt | tr -s " " | cut -d" " -f9 | grep -v "not_terminated")

# We just created a new audit log by doing 'audit -n', so we can # be sure that the last file in the list will be the latest # archived binary log file.
lastFile=""
for file in $FILES; do
    lastFile=$file
    done

done

# Extract a human-readable file from the binary log file
echo "Beginning praudit of $lastFile"
praudit -l $lastFile > "$LOG_DIR$lastFile.log"
echo "Done praudit, creating log file at: $LOG_DIR$lastFile.log"

/usr/bin/find . $AUDIT_DIR -type f -mtime +$AUDIT_EXPIRE \
-exec rm {} > /dev/null 2>&1 \;
# End script
```

The script outputs log files in the `<starttime>.<endtime>.<hostname>.log` format.
For example, the log directory in /var/log would contain a file with the following name:

20111026030000.20111027030000.qasparc10.log

Step 3 Optional. Edit the script to change the default directory for the log files.

- **AUDIT_DIR**="/var/audit" - The Audit directory must match the location specified by the audit control file you configured in Step 5.

- **LOG_DIR**="/var/log/" - The log directory is the location of the human-readable log files of your Sun Solaris system that are ready to be retrieved by QRadar.

Step 4 Save your changes to the newauditlog.sh script.

You are now ready to automate the this script using CRON to convert the Sun Solaris Basic Security Mode log to human-readable format.

Creating a cron job

Cron is a Solaris daemon utility that automates scripts and commands to run system-wide on a scheduled basis.

The following steps provide an example for automating newauditlog.sh to run daily at midnight. If you need to retrieve log files multiple times a day from your Solaris system, you must alter your cron schedule accordingly.

Procedure

Step 1 Type the following command to create a copy of your cron file:

```
crontab -l > cronfile
```

Step 2 Type the following command to edit the cronfile:

```
vi cronfile
```

Step 3 Add the following information to your cronfile:

```
0 0 * * * /etc/security/newauditlog.sh
```

Step 4 Save the change to the cronfile.

Step 5 Type the following command to add the cronfile to crontab:

```
crontab cronfile
```

Step 6 You are now ready to configure the log source in QRadar to retrieve the Sun Solaris BSM audit log files.

What to do next

You are now ready to configure a log source in QRadar.

Configuring a log source for Sun Solaris BSM

A log file protocol source allows QRadar to retrieve archived log files from a remote host. Sun Solaris BSM supports the bulk loading of audit log files using the log file protocol.
Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 From the **Log Source Type** list, select **Solaris BSM**.

Step 6 Using the **Protocol Configuration** list, select **Log File**.

Step 7 Configure the following parameters:

Table 108-1 Log File Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for the log source. The log source identifier must be unique for the log source type.</td>
</tr>
<tr>
<td>Service Type</td>
<td>From the list, select the protocol you want to use when retrieving log files from a remote server. The default is SFTP.</td>
</tr>
<tr>
<td></td>
<td>• SFTP - SSH File Transfer Protocol</td>
</tr>
<tr>
<td></td>
<td>• FTP - File Transfer Protocol</td>
</tr>
<tr>
<td></td>
<td>• SCP - Secure Copy</td>
</tr>
<tr>
<td>Note: The underlying protocol used to retrieve log files for the SCP and SFTP service types requires that the server specified in the Remote IP or Hostname field has the SFTP subsystem enabled.</td>
<td></td>
</tr>
<tr>
<td>Remote IP or Hostname</td>
<td>Type the IP address or hostname of the Sun Solaris BSM system.</td>
</tr>
<tr>
<td>Remote Port</td>
<td>Type the TCP port on the remote host that is running the selected Service Type. If you configure the Service Type as FTP, the default is 21. If you configure the Service Type as SFTP or SCP, the default is 22. The valid range is 1 to 65535.</td>
</tr>
<tr>
<td>Remote User</td>
<td>Type the username necessary to log in to your Sun Solaris system.</td>
</tr>
<tr>
<td></td>
<td>The username can be up to 255 characters in length.</td>
</tr>
<tr>
<td>Remote Password</td>
<td>Type the password necessary to log in to your Sun Solaris system.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the Remote Password to log in to your Sun Solaris system.</td>
</tr>
<tr>
<td>SSH Key File</td>
<td>If you select SCP or SFTP from the Service Type field you can define a directory path to an SSH private key file. The SSH Private Key File allows you to ignore the Remote Password field.</td>
</tr>
<tr>
<td>Remote Directory</td>
<td>Type the directory location on the remote host from which the files are retrieved. By default, the newauditlog.sh script writes the human-readable logs files to the <code>/var/log/</code> directory.</td>
</tr>
</tbody>
</table>
Recursive | Select this check box if you want the file pattern to also search sub folders. The Recursive parameter is not used if you configure SCP as the Service Type. By default, the check box is clear.

FTP File Pattern | If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing. For example, if you want to retrieve all files in the \<starttime\>,\<endtime\>,\<hostname\>.log format, use the following entry: \d+\..\d+\..\w+\..log. Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website: http://download.oracle.com/javase/tutorial/essential/regex/

FTP Transfer Mode | This option only appears if you select FTP as the Service Type. The FTP Transfer Mode parameter allows you to define the file transfer mode when retrieving log files over FTP. From the list, select the transfer mode you want to apply to this log source:

- **Binary** - Select Binary for log sources that require binary data files or compressed .zip, .gzip, .tar, or .tar+gzip archive files.

- **ASCII** - Select ASCII for log sources that require an ASCII FTP file transfer. You must select **NONE** for the Processor field and **LINEBYLINE** the Event Generator field when using ASCII as the transfer mode.

SCP Remote File | If you select SCP as the Service Type, you must type the file name of the remote file.

Start Time | Type the time of day you want the processing to begin. This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: HH:MM.

Recurrence | Type the frequency, beginning at the Start Time, that you want the remote directory to be scanned. This value in hours (H), minutes (M), or days (D). For example, type 2H if you want the directory to be scanned every 2 hours. The default is 1H.

Run On Save | Select this check box if you want the log file protocol to run immediately after you click Save. After the Run On Save completes, the log file protocol follows your configured start time and recurrence schedule. Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File(s) parameter.
<table>
<thead>
<tr>
<th>Remote Password</th>
<th>Type the password necessary to log in to your Sun Solaris system.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirm Password</td>
<td>Confirm the Remote Password to log in to your Sun Solaris system.</td>
</tr>
<tr>
<td>SSH Key File</td>
<td>If you select SCP or SFTP from the Service Type field you can define a directory path to an SSH private key file. The SSH Private Key File allows you to ignore the Remote Password field.</td>
</tr>
<tr>
<td>Remote Directory</td>
<td>Type the directory location on the remote host from which the files are retrieved. By default, the newauditlog.sh script writes the human-readable logs files to the /var/log/ directory.</td>
</tr>
</tbody>
</table>
Step 8 Click **Save**.

The configuration is complete. Events that are retrieved using the log file protocol are displayed on the **Log Activity** tab of QRadar.
You can integrate a Sybase Adaptive Server Enterprise (ASE) device with IBM Security QRadar SIEM to record all relevant events using JDBC.

To configure a Sybase ASE device:

Step 1 Configure Sybase auditing.
For information about configuring Sybase auditing, see your Sybase documentation.

Step 2 Log in to the Sybase database as an sa user:
```
isql -Usa -P<password>
```
Where `<password>` is the password necessary to access the database.

Step 3 Switch to the security database:
```
use sybsecurity
```
go

Step 4 Create a view for QRadar SIEM.
```
create view audit_view
as
select audit_event_name(event) as event_name, * from <audit_table_1>
union
select audit_event_name(event) as event_name, * from <audit_table_2>
```
go

Step 5 For each additional audit table in the audit configuration, make sure the union select parameter is repeated for each additional audit table.
For example, if you want to configure auditing with four audit tables (sysaudits_01, sysaudits_02,sysaudits_03, sysaudits_04), type the following:
```
create view audit_view as select audit_event_name(event) as event_name, * from sysaudits_01
union select audit_event_name(event) as event_name, * from sysaudits_02,
```
You are now ready to configure the log source QRadar SIEM.

To configure QRadar SIEM to receive events from a Sybase ASE device:

Step 1 Log in to QRadar SIEM.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

The Data Sources panel is displayed.

Step 4 Click the **Log Sources** icon.

The Log Sources window is displayed.

Step 5 Click **Add**.

The Add a log source window is displayed.

Step 1 From the **Log Source Type** list, select the **Sybase ASE** option.

Step 2 Using the **Protocol Configuration** list, select **JDBC**.

The JDBC protocol configuration is displayed.

Step 3 Update the JDBC configuration to include the following values:

- Database Name: *sybsecurity*
- Port: 5000 (Default)
- Username: *sa*
- Table Name: *audit_view*
- Compare Field: *eventtime*

The Database Name and Table Name parameters are case sensitive.

For more information on configuring log sources and protocols, see the *IBM Security QRadar Log Sources User Guide*. For more information about the Sybase ASE device, see your vendor documentation.
This section provides information on the following DSMs:

- Symantec Endpoint Protection
- Symantec SGS
- Symantec System Center
- Symantec Data Loss Prevention (DLP)
- Symantec PGP Universal Server

Symantec Endpoint Protection

The Symantec Endpoint Protection DSM for IBM Security QRadar accepts events using syslog.

QRadar records all Audit and Security log events. Before configuring a Symantec Endpoint Protection device in QRadar, you must configure your device to forward syslog events.

Procedure

Step 1 Log in to the Symantec Endpoint Protection Manager

Step 2 On the left panel, click the **Admin** icon.

The View Servers option is displayed.

Step 3 From the bottom of the View Servers panel, click **Servers**.

Step 4 From the View Servers panel, click **Local Site**.

Step 5 From the Tasks panel, click **Configure External Logging**.

Step 6 On the **Generals** tab:

- Select the **Enable Transmission of Logs to a Syslog Server** check box.
- In the Syslog Server field, type the IP address of your QRadar you want to parse the logs.
- In the **UDP Destination Port** field, type **514**.
- In the **Log Facility** field, type **6**.

Step 7 In the Log Filter tab:

- Under the Management Server Logs, select the **Audit Logs** check box.
Under the Client Log panel, select the Security Logs check box.
Under the Client Log panel, select the Risks check box.

Step 8 Click OK.
You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Symantec Endpoint Protection device:

- From the Log Source Type list, select the Symantec Endpoint Protection option.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide.

Symantec SGS

QRadar records all relevant events from SGS. Before you configure QRadar to integrate with an SGS, you must configure syslog within your SGS appliance. For more information on Symantec SGS, see your vendor documentation.

After you configure syslog to forward events to QRadar, the configuration is complete. Events forward from Symantec SGS to QRadar using syslog are automatically discovered. However, if you want to manually create a log source for Symantec SGS:

- From the Log Source Type list, select the Symantec Gateway Security (SGS) Appliance option.

For more information on configuring devices, see the IBM Security QRadar Log Sources User Guide.

Symantec System Center
The Symantec System Center (SSC) DSM for IBM Security QRadar retrieves events from an SSC database using a custom view created for QRadar.

QRadar records all SSC events. You must configure the SSC database with a user that has read and write privileges for the custom QRadar view to be able to poll the view for information. Symantec System Center (SSC) only supports the JDBC protocol.

Configuring a database view for Symantec System Center
A database view is required by the JDBC protocol to poll for SSC events.

IBM Security QRadar DSM Configuration Guide
Procedure
Step 1 In the Microsoft SQL Server database used by the SSC device, configure a custom default view to support QRadar:

The database name must not contain any spaces.

```sql
CREATE VIEW dbo.vw_qradar AS SELECT
dbo.alerts.Idx AS idx,
dbo.inventory.IP_Address AS ip,
dbo.inventory.Computer AS computer_name,
dbo.virus.Virusname AS virus_name,
dbo.alerts.Filepath AS filepath,
dbo.alerts.NoOfViruses AS no_of_virus,
dbo.actualaction.Actualaction AS [action],
dbo.alerts.Alertdatetime AS [date],
dbo.clientuser.Clientuser AS user_name FROM
dbo.alerts INNER JOIN
dbo.virus ON dbo.alerts.Virusname_Idx =
dbo.virus.Virusname_Idx INNER JOIN
dbo.inventory ON dbo.alerts.Computer_Idx =
dbo.inventory.Computer_Idx INNER JOIN
dbo.actualaction ON dbo.alerts.Actualaction_Idx =
dbo.actualaction.Actualaction_Idx INNER JOIN
dbo.clientuser ON dbo.alerts.Clientuser_Idx =
dbo.clientuser.Clientuser_Idx
```

After you create your custom view, you must configure QRadar to receive event information using the JDBC protocol.

Configuring a log source
To configure QRadar to access the SSC database using the JDBC protocol.

Procedure
Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 Using the Log Source Type list, select Symantec System Center.
Step 7 Using the Protocol Configuration list, select JDBC.
Step 8 Configure the following:
Table 110-1 Symantec System Center JDBC Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Log Source Identifier | Type the identifier for the log source. Type the log source identifier in the following format:
<SSC Database>@<SSC Database Server IP or Host Name>
Where:
<SSC Database> is the database name, as entered in the Database Name parameter.
<SSC Database Server IP or Host Name> is the hostname or IP address for this log source, as entered in the IP or Hostname parameter. |
| Database Type | From the list, select **MSDE**. |
| Database Name | Type **Reporting** as the name of the Symantec System Center database. |
| IP or Hostname | Type the IP address or host name of the Symantec System Center SQL Server. |
| Port | Type the port number used by the database server. The default port for MSDE is 1433.
The JDBC configuration port must match the listener port of the Symantec System Center database. The Symantec System Center database must have incoming TCP connections enabled to communicate with QRadar.
Note: If you define a Database Instance when using MSDE as the database type, you must leave the Port parameter blank in your configuration. |
| Username | Type the username required to access the database. |
| Password | Type the password required to access the database. The password can be up to 255 characters in length. |
| Confirm Password | Confirm the password required to access the database. The confirmation password must be identical to the password entered in the Password parameter. |
| Authentication Domain | If you select MSDE as the Database Type and the database is configured for Windows, you must define a Windows Authentication Domain. Otherwise, leave this field blank. |
| Database Instance | Optional. Type the database instance, if you have multiple SQL server instances on your database server.
Note: If you use a non-standard port in your database configuration, or have blocked access to port 1434 for SQL database resolution, you must leave the Database Instance parameter blank in your configuration. |
| Table Name | Type **vw_qradar** as the name of the table or view that includes the event records. |
Step 9 Click Save.

Step 10 On the Admin tab, click Deploy Changes.
The configuration is complete.

| Symantec Data Loss Prevention (DLP) | The Symantec Data Loss Protection (DLP) DSM for IBM Security QRadar accepts events from a Symantec DLP appliance using syslog. Before configuring QRadar, you must configure response rules on your Symantec DLP. The response rule allows the Symantec DLP appliance to forward syslog events to QRadar when a data loss policy violation occurs. Integrating Symantec DLP requires you to create two protocol response rules (SMTP and None of SMTP) for QRadar. These protocol response rules create an action to forward the event information, using syslog, when an incident is triggered. To configure Symantec DLP with QRadar, you must: 1 Create an SMTP response rule. 2 Create a None of SMTP response rule. 3 Configure a log source in QRadar. 4 Map Symantec DLP events in QRadar. |

Creating an SMTP response rule

<table>
<thead>
<tr>
<th>Procedure</th>
<th>To configure an SMTP response rule in Symantec DLP:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Log in to your Symantec DLP user interface.</td>
</tr>
<tr>
<td>Step 2</td>
<td>From the menu, select the Manage > Policies > Response Rules.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click Add Response Rule.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Select one of the following response rule types:</td>
</tr>
<tr>
<td>• Automated Response</td>
<td>Automated response rules are triggered automatically as incidents occur. This is the default value.</td>
</tr>
<tr>
<td>• Smart Response</td>
<td>Smart response rules are added to the Incident Command screen and handled by an authorized Symantec DLP user.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click Next.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Configure the following values:</td>
</tr>
<tr>
<td>a Rule Name</td>
<td>Type a name for the rule you are creating. This name should be descriptive enough for policy authors to identify the rule. For example, QRadar Syslog SMTP.</td>
</tr>
<tr>
<td>b Description</td>
<td>Optional. Type a description for the rule you are creating.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Click Add Condition.</td>
</tr>
<tr>
<td>Step 8</td>
<td>On the Conditions panel, select the following conditions:</td>
</tr>
<tr>
<td>• From the first list, select Protocol or Endpoint Monitoring.</td>
<td></td>
</tr>
<tr>
<td>• From the second list, select Is Any Of.</td>
<td></td>
</tr>
<tr>
<td>• From the third list, select SMTP.</td>
<td></td>
</tr>
</tbody>
</table>
Step 9 On the Actions panel, click Add Action.

Step 10 From the Actions list, select All: Log to a Syslog Server.

Step 11 Configure the following options:

a Host - Type the IP address of your QRadar.

b Port - Type 514 as the syslog port.

c Message - Type the following string to add a message for SMTP events:

LEEF:1.0|Symantec|DLP|2:medium|$POLICY$|suser=$SENDER$|duser=$RECIPIENTS$|rules=$RULES$|matchCount=$MATCH_COUNT$|blocked=$BLOCKED$|incidentID=$INCIDENT_ID$|incidentSnapshot=$INCIDENT_SNAPSHOT$|subject=$SUBJECT$|fileName=$FILE_NAME$|parentPath=$PARENT_PATH$|parentPath=$QUARANTINE_PARENT_PATH$|path=$PATH$|quarantineParentPath=$QUARANTINE_PARENT_PATH$|scan=$SCAN$|target=$TARGET$

d Level - From this list, select 6 - Informational.

Step 12 Click Save.

You are now ready to configure your None Of SMTP response rule.

Creating a none of SMTP response rule

To configure a None Of SMTP response rule in Symantec DLP:

Procedure

Step 1 From the menu, select the Manage > Policies > Response Rules.

Step 2 Click Add Response Rule.

Step 3 Select one of the following response rule types:

- Automated Response - Automated response rules are triggered automatically as incidents occur. This is the default value.

- Smart Response - Smart response rules are added to the Incident Command screen and handled by an authorized Symantec DLP user.

Step 4 Click Next.

Step 5 Configure the following values:

a Rule Name - Type a name for the rule you are creating. This name should be descriptive enough for policy authors to identify the rule. For example, QRadar Syslog None Of SMTP.

b Description - Optional. Type a description for the rule you are creating.

Step 6 Click Add Condition.

Step 7 On the Conditions panel, select the following conditions:

- From the first list, select Protocol or Endpoint Monitoring.

- From the second list, select Is Any Of.

- From the third list, select None Of SMTP.

Step 8 On the Actions panel, click Add Action.
Step 9 From the **Actions** list, select **All: Log to a Syslog Server**.

Step 10 Configure the following options:

a **Host** - Type the IP address of your QRadar.

b **Port** - Type **514** as the syslog port.

c **Message** - Type the following string to add a message for None Of SMTP events.

```
LEEF:1.0|Symantec|DLP|2:medium|$POLICY$|src=$SENDER$|dst=$RECIPIENT$|rules=$RULES$|matchCount=$MATCH_COUNT$|blocked=$BLOCKED$|incidentID=$INCIDENT_ID$|incidentSnapshot=$INCIDENT_SNAPSHOT$|subject=$SUBJECT$|fileName=$FILE_NAME$|parentPath=$PARENT_PATH$|path=$PATH$|quarantineParentPath=$QUARANTINE_PARENT_PATH$|scan=$SCAN$|target=$TARGET$
```

d **Level** - From this list, select **6 - Informational**.

Step 11 Click **Save**.

You are now ready to configure QRadar.

Configuring a log source

You are now ready to configure the log source in QRadar.

QRadar automatically detects syslog events for the SMTP and None of SMTP response rules you created. However, if you want to manually configure QRadar to receive events from a Symantec DLP appliance:

- From the **Log Source Type** list, select the **Symantec DLP** option.

For more information on configuring log sources, see the **IBM Security QRadar Log Sources User Guide**. For more information about Symantec DLP, see your vendor documentation.

Creating an event map for Symantec DLP events

Event mapping is required for a number of Symantec DLP events. Due to the customizable nature of policy rules, most events, except the default policy events do not contain a predefined QRadar Identifier (QID) map to categorize security events.

You can individually map each event for your device to an event category in QRadar. Mapping events allows QRadar to identify, coalesce, and track reoccurring events from your network devices. Until you map an event, all events that are displayed in the **Log Activity** tab for Symantec DLP are categorized as unknown. Unknown events are easily identified as the Event Name column and Low Level Category columns display Unknown.

Discovering unknown events

As your device forwards events to QRadar, it can take time to categorize all of the events for a device, as some events might not be generated immediately by the event source appliance or software. It is helpful to know how to quickly search for unknown events. When you know how to search for unknown events, we
recommend you repeat this search until you are comfortable that you have identified the majority of your events.

Procedure
Step 1 Log in to QRadar.
Step 1 Click the Log Activity tab.
Step 2 Click Add Filter.
Step 3 From the first list, select Log Source.
Step 4 From the Log Source Group list, select the log source group or Other.
 Log sources that are not assigned to a group are categorized as Other.
Step 5 From the Log Source list, select your Symantec DLP log source.
Step 6 Click Add Filter.
 The Log Activity tab is displayed with a filter for your log source.
Step 7 From the View list, select Last Hour.
 Any events generated by the Symantec DLP DSM in the last hour are displayed.
 Events displayed as unknown in the Event Name column or Low Level Category column require event mapping in QRadar.

 Note: You can save your existing search filter by clicking Save Criteria.

You are now ready to modify the event map.

Modifying the event map
Modifying an event map allows you to manually categorize events to a QRadar Identifier (QID) map. Any event categorized to a log source can be remapped to a new QRadar Identifier (QID).

Note: Events that do not have a defined log source cannot be mapped to an event. Events without a log source display SIM Generic Log in the Log Source column.

Procedure
Step 1 On the Event Name column, double-click an unknown event for Symantec DLP.
 The detailed event information is displayed.
Step 2 Click Map Event.
Step 3 From the Browse for QID pane, select any of the following search options to narrow the event categories for a QRadar Identifier (QID):
 a From the High-Level Category list, select a high-level event categorization.
 For a full list of high-level and low-level event categories or category definitions, see the Event Categories section of the IBM Security QRadar Administration Guide.
 b From the Low-Level Category list, select a low-level event categorization.
 c From the Log Source Type list, select a log source type.
The Log Source Type list allows you to search for QIDs from other log sources. Searching for QIDs by log source is useful when events are similar to another existing network device. For example, Symantec provides policy and data loss prevention events, you might select another product that likely captures similar events.

d To search for a QID by name, type a name in the QID/Name field.

The QID/Name field allows you to filter the full list of QIDs for a specific word, for example, policy.

Step 4 Click Search.

A list of QIDs are displayed.

Step 5 Select the QID you want to associate to your unknown event.

Step 6 Click OK.

QRadar maps any additional events forwarded from your device with the same QID that matches the event payload. The event count increases each time the event is identified by QRadar.

If you update an event with a new QRadar Identifier (QID) map, past events stored in QRadar are not updated. Only new events are categorized with the new QID.

<table>
<thead>
<tr>
<th>Symantec PGP Universal Server</th>
<th>The PGP Universal Server DSM for IBM Security QRadar accepts syslog events from PGP Universal Servers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported event types</td>
<td>QRadar accepts all relevant events from the following categories:</td>
</tr>
<tr>
<td></td>
<td>• Administration</td>
</tr>
<tr>
<td></td>
<td>• Software updates</td>
</tr>
<tr>
<td></td>
<td>• Clustering</td>
</tr>
<tr>
<td></td>
<td>• Backups</td>
</tr>
<tr>
<td></td>
<td>• Web Messenger</td>
</tr>
<tr>
<td></td>
<td>• Verified Directory</td>
</tr>
<tr>
<td></td>
<td>• Postfix</td>
</tr>
<tr>
<td></td>
<td>• Client logs</td>
</tr>
<tr>
<td></td>
<td>• Mail</td>
</tr>
</tbody>
</table>

Before you can integrate PGP Universal Server events with QRadar, you must enable and configure PGP Universal Server to forward syslog events to QRadar.
Configure syslog for PGP Universal Server

To enable external logging to forward syslog events to QRadar:

Procedure

Step 1
In a web browser, log in to your PGP server’s administrative interface.
https://<PGP Server IP address>:9000

Step 2
Click **Settings**.

Step 3
Select the **Enable External Syslog** check box.

Step 4
From the **Protocol** list, select the either **UDP** or **TCP**.
By default, QRadar uses port 514 to receive UDP syslog or TCP syslog event messages.

Step 5
In the **Hostname** field, type the IP address of your QRadar Console or Event Collector.

Step 6
In the **Port** field, type **514**.

Step 7
Click **Save**.

The configuration is complete. The log source is added to QRadar as PGP Universal Server events are automatically discovered. Events forwarded to QRadar by the PGP Universal Servers are displayed on the **Log Activity** tab of QRadar.

Configure a log source

QRadar automatically discovers and creates a log source for syslog events from PGP Universal Servers. The following configuration steps are optional.

Procedure

Step 1
Log in to QRadar.

Step 2
Click the **Admin** tab.

Step 3
On the navigation menu, click **Data Sources**.

Step 4
Click the **Log Sources** icon.

Step 5
Click **Add**.

Step 6
In the **Log Source Name** field, type a name for your log source.

Step 7
In the **Log Source Description** field, type a description for the log source.

Step 8
From the **Log Source Type** list, select **PGP Universal Server**.

Step 9
Using the **Protocol Configuration** list, select **Syslog**.

Step 10
Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your PGP Universal Server.</td>
</tr>
</tbody>
</table>

Step 11
Click **Save**.

IBM Security QRadar DSM Configuration Guide
Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete.
To integrate Motorola SymbolAP with QRadar, you must manually create a log source to receive events.

QRadar does not automatically discover or create log sources for syslog events from Motorola SymbolAP appliances. In cases where the log source is not automatically discovered, we recommend you create a log source before forwarding events to QRadar.

To configure a log source:

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**. The Data Sources panel is displayed.

Step 4 Click the **Log Sources** icon. The Log Sources window is displayed.

Step 5 Click **Add**. The Add a log source window is displayed.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Motorola SymbolAP**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**. The syslog protocol configuration is displayed.

Step 10 Configure the following values:

Table 111-1 Syslog Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Motorola SymbolAP appliance.</td>
</tr>
</tbody>
</table>
Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

 The log source is added to QRadar.

Configure syslog events for Motorola Symbol AP

To configure the device to forward syslog events to QRadar:

Step 1 Log in to your Symbol AP device user interface.

Step 2 From the menu, select **System Configuration > Logging Configuration**.

 The Access Point window is displayed.

Step 3 Using the **Logging Level** list, select the desired log level for tracking system events. The options are:

 - 0 - Emergency
 - 1 - Alert
 - 2 - Critical
 - 3 - Errors
 - 4 - Warning
 - 5 - Notice
 - 6 - Info. This is the default.
 - 7 - Debug

Step 4 Select the **Enable logging to an external syslog server** check box.

Step 5 In the **Syslog Server IP Address** field, type the IP address of an external syslog server, such as QRadar.

 This is required to route the syslog events to QRadar.

Step 6 Click **Apply**.

Step 7 Click **Logout**.

 A confirmation window is displayed.

Step 8 Click **OK** to exit the application.

 The configuration is complete. Events forwarded to QRadar are displayed on the **Log Activity** tab.
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
Symark PowerBroker logs all events to a multi-line format in a single event log file, which is viewed using Symark’s pblog utility.

PowerBroker pblogs must be re-formatted using a script and forwarded to IBM Security QRadar. This configuration requires you download and configure a script for your Symark PowerBroker appliance before you can forward events to QRadar.

Configure Symark PowerBroker

To configure a Symark PowerBroker device to forward syslog to QRadar:

Step 1 On the IBM support website, download the following file:

\texttt{pbforwarder.pl.gz}

The script can be downloaded from the following website:

\url{http://www.ibm.com/support}

Step 2 Copy the file to the device that hosts Symark PowerBroker.

Note: Perl 5.8 must be installed on the device that hosts Symark PowerBroker.

Step 3 Type the following command to extract the file:

\texttt{gzip -d pbforwarder.pl.gz}

Step 4 Type the following command to set the script file permissions:

\texttt{chmod +x pbforwarder.pl}

Step 5 Using SSH, log in to the device that hosts Symark PowerBroker.

The credentials used to log in must have read, write, and execute permissions for the log file.

Step 6 Type the appropriate parameters:

\begin{table}[h]
\centering
\begin{tabular}{ll}
\hline
Parameters & Description \\
\hline
-h & The \texttt{-h} parameter defines the syslog host receiving the events from Symark PowerBroker. This is the IP address of your QRadar or Event Collector. \\
\hline
\end{tabular}
\end{table}
Step 7 Type the following command to start the pbforwarder.pl script.

```bash
pbforwarder.pl -h <IP address> -t "pblog -l -t"
```

Where `<IP address>` is the IP address of your QRadar or Event Collector.

Step 8 Type the following command to stop the pbforwarder.pl script:

```bash
kill -QUIT `cat /var/run/pbforwarder.pl.pid`
```

Step 9 Type the following command to reconnect the pbforwarder.pl script:

```bash
kill -HUP `cat /var/run/pbforwarder.pl.pid`
```

QRadar automatically detects and creates a log source from the syslog events forwarded from a Symark PowerBroker.

Table 113-1 Command Parameters (continued)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-t</code></td>
<td>The <code>-t</code> parameter defines that the command-line is used to tail the log file and monitor for new output from the listener. For PowerBroker this must be specified as <code>"pblog -l -t"</code>.</td>
</tr>
<tr>
<td><code>-p</code></td>
<td>The <code>-p</code> parameter defines the TCP port to be used when forwarding events. If nothing is specified, the default is port 514.</td>
</tr>
<tr>
<td><code>-H</code></td>
<td>The <code>-H</code> parameter defines the hostname or IP address for the syslog header of all sent events. It is recommended that this be the IP address of the Symark PowerBroker.</td>
</tr>
<tr>
<td><code>-r</code></td>
<td>The <code>-r</code> parameter defines the directory name where you want to create the process ID (.pid) file. The default is <code>/var/run</code>. This parameter is ignored if <code>-D</code> is specified.</td>
</tr>
<tr>
<td><code>-l</code></td>
<td>The <code>-l</code> parameter defines the directory name where you want to create the lock file. The default is <code>/var/lock</code>. This parameter is ignored if <code>-D</code> is specified.</td>
</tr>
<tr>
<td><code>-D</code></td>
<td>The <code>-D</code> parameter defines that the script should run in the foreground. The default setting is to run as a daemon and log all internal messages to the local syslog service.</td>
</tr>
<tr>
<td><code>-f</code></td>
<td>The <code>-f</code> parameter defines the syslog facility and (optionally) the severity for messages sent to the Event Collector. If no value is specified, <code>user.info</code> is used.</td>
</tr>
<tr>
<td><code>-a</code></td>
<td>The <code>-a</code> parameter enables an AIX compatible ps method. This command is only required when using Symark PowerBroker on AIX systems.</td>
</tr>
<tr>
<td><code>-d</code></td>
<td>The <code>-d</code> parameter enables debug logging.</td>
</tr>
<tr>
<td><code>-v</code></td>
<td>The <code>-v</code> parameter displays the script version information.</td>
</tr>
</tbody>
</table>
Configure a log source QRadar automatically discovers and identifies most incoming syslog events from external sources. The following configuration steps are optional.

To create a log source:

Step 1 Click the **Admin** tab.

Step 2 On the navigation menu, click **Data Sources**.

The Data Sources panel is displayed.

Step 3 Click the **Log Sources** icon.

The Log Sources window is displayed.

Step 4 In the **Log Source Name** field, type a name for your Symark PowerBroker log source.

Step 5 In the **Log Source Description** field, type a description for the log source.

Step 6 From the **Log Source Type** list, select **Symark PowerBroker**.

Step 7 From the **Protocol Configuration** list, select **Syslog**.

The syslog protocol parameters are displayed.

Step 8 Configure the following values:

<table>
<thead>
<tr>
<th>Table 113-2 Adding a Syslog Log Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
<tr>
<td>Enabled</td>
</tr>
<tr>
<td>Credibility</td>
</tr>
<tr>
<td>Target Event Collector</td>
</tr>
<tr>
<td>Coalescing Events</td>
</tr>
</tbody>
</table>
Table 113-2 Adding a Syslog Log Source (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store Event Payload</td>
<td>Select this check box to enable or disable QRadar from storing the event payload.</td>
</tr>
<tr>
<td></td>
<td>Automatically discovered log sources use the default value from the Store Event Payload list in the System Settings window, which is accessible on the Admin tab. However, when you create a new log source or update the configuration for an automatically discovered log source you can override the default value by configuring this check box for each log source. For more information on Settings, see the IBM Security QRadar Administration Guide.</td>
</tr>
</tbody>
</table>

Step 9 Click **Save**.

Step 10 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.
The ThreatGRID Malware Threat Intelligence Platform DSM for IBM Security QRadar collects malware events by using the log file protocol or syslog.

Supported versions of ThreatGRID Malware Threat Intelligence

QRadar supports ThreatGRID Malware Threat Intelligence Platform appliances with v2.0 software that use the QRadar Log Enhanced Event Format (LEEF) Creation script.

Supported event collection protocols for ThreatGRID Malware Threat Intelligence

ThreatGRID Malware Threat Intelligence Platform writes malware events that are readable by QRadar.

The LEEF creation script is configured on the ThreatGRID appliance and queries the ThreatGRID API to write LEEF events that are readable by QRadar. The event collection protocol your log source uses to collect malware events is based on the script you install on your ThreatGRID appliance.

Two script options are available for collecting LEEF formatted events:

- **Syslog** - The syslog version of the LEEF creation script allows your ThreatGRID appliance to forward events directly to QRadar. Events that are forwarded by the syslog script are automatically discovered by QRadar.

- **Log File** - The Log File protocol version of the LEEF creation script allows the ThreatGRID appliance to write malware events to a file. QRadar uses the Log File protocol to communicate with the event log host to retrieve and parse malware events.

The LEEF creation script is available from ThreatGRID customer support. For more information, see the ThreatGRID website (http://www.threatgrid.com) or email ThreatGRID support at support@threatgrid.com.
To integrate ThreatGRID Malware Threat Intelligence events with QRadar, you must complete the following tasks:

1. Download the QRadar Log Enhanced Event Format Creation script for your collection type from the ThreatGRID support website to your appliance.
2. On your ThreatGRID appliance, install and configure the script to poll the ThreatGRID API for events.
3. On your QRadar appliance, configure a log source to collect events based on the script you installed on your ThreatGRID appliance.
4. Ensure that no firewall rules block communication between your ThreatGRID installation and the QRadar Console or managed host that is responsible for retrieving events.

QRadar automatically discovers and creates a log source for malware events that are forwarded from the ThreatGRID Malware Threat Intelligence Platform. This procedure is optional.

Procedure

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select ThreatGRID Malware Intelligence Platform.
Step 9 From the Protocol Configuration list, select Syslog.
Step 10 Configure the following values:

Table 114-3 Syslog protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your ThreatGRID Malware Intelligence Platform. The log source identifier must be unique for the log source type.</td>
</tr>
<tr>
<td>Enabled</td>
<td>Select this check box to enable the log source. By default, the check box is selected.</td>
</tr>
</tbody>
</table>
Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

Malware events that are forwarded to QRadar are displayed on the **Log Activity** tab of QRadar.

Configuring a ThreatGRID log file protocol log source

To use the log file protocol to collect events, you must configure a log source in QRadar to poll for the event log that contains your malware events.

Procedure

Step 13 Click the **Admin** tab.

Step 14 On the navigation menu, click **Data Sources**.

Step 15 Click the **Log Sources** icon.

Step 16 Click **Add**.

Step 17 In the **Log Source Name** field, type a name for the log source.

Step 18 In the **Log Source Description** field, type a description for the log source.

Step 19 From the **Log Source Type** list, select **ThreatGRID Malware Threat Intelligence Platform**.

Table 114-3 Syslog protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credibility</td>
<td>From the list, select the credibility of the log source. The range is 0 - 10. The credibility indicates the integrity of an event or offense as determined by the credibility rating from the source devices. Credibility increases if multiple sources report the same event. The default is 5.</td>
</tr>
<tr>
<td>Target Event Collector</td>
<td>From the list, select the Event Collector to use as the target for the log source.</td>
</tr>
<tr>
<td>Coalescing Events</td>
<td>Select this check box to enable the log source to coalesce (bundle) events. By default, automatically discovered log sources inherit the value of the Coalescing Events list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
<tr>
<td>Incoming Event Payload</td>
<td>From the list, select the incoming payload encoder for parsing and storing the logs.</td>
</tr>
<tr>
<td>Store Event Payload</td>
<td>Select this check box to enable the log source to store event payload information. By default, automatically discovered log sources inherit the value of the Store Event Payload list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
</tbody>
</table>
Step 20 From the **Protocol Configuration** list, select **Log File**.

Step 21 Configure the following values:

Table 114-4 Log file protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type an IP address, host name, or name to identify the event source.</td>
</tr>
<tr>
<td></td>
<td>The log source identifier must be unique for the log source type.</td>
</tr>
<tr>
<td>Service Type</td>
<td>From the list, select the protocol that you want to use to retrieve log files from a remote server. The default is SFTP.</td>
</tr>
<tr>
<td></td>
<td>• SFTP - SSH File Transfer Protocol</td>
</tr>
<tr>
<td></td>
<td>• FTP - File Transfer Protocol</td>
</tr>
<tr>
<td></td>
<td>• SCP - Secure Copy Protocol</td>
</tr>
<tr>
<td></td>
<td>The SCP and SFTP service type requires that the host server in the Remote IP or Hostname field has the SFTP subsystem enabled.</td>
</tr>
<tr>
<td>Remote IP or Hostname</td>
<td>Type the IP address or host name of the ThreatGRID server that contains your event log files.</td>
</tr>
<tr>
<td>Remote Port</td>
<td>Type the port number for the protocol that is selected to retrieve the event logs from your ThreatGRID server. The valid range is 1 - 65535.</td>
</tr>
<tr>
<td></td>
<td>The list of default service type port numbers:</td>
</tr>
<tr>
<td></td>
<td>• FTP - TCP Port 21</td>
</tr>
<tr>
<td></td>
<td>• SFTP - TCP Port 22</td>
</tr>
<tr>
<td></td>
<td>• SCP - TCP Port 22</td>
</tr>
<tr>
<td>Remote User</td>
<td>Type the user name that is required to log in to the ThreatGRID web server that contains your audit event logs.</td>
</tr>
<tr>
<td></td>
<td>The user name can be up to 255 characters in length.</td>
</tr>
<tr>
<td>Remote Password</td>
<td>Type the password to log in to your ThreatGRID server.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password to log in to your ThreatGRID server.</td>
</tr>
<tr>
<td>SSH Key File</td>
<td>If you select SCP or SFTP as the Service Type, use this parameter to define an SSH private key file. When you provide an SSH Key File, the Remote Password field is ignored.</td>
</tr>
<tr>
<td>Remote Directory</td>
<td>Type the directory location on the remote host from which the files are retrieved, relative to the user account you are using to log in.</td>
</tr>
</tbody>
</table>

Note: For **FTP** only. If your log files are in the remote user’s home directory, you can leave the remote directory blank. Blank values in the **Remote Directory** field support operating systems where a change in the working directory (CWD) command is restricted.
Recursive
Select this check box if you want the file pattern to search subfolders in the remote directory. By default, the check box is clear.

The **Recursive** parameter is ignored if you configure SCP as the **Service Type**.

FTP File Pattern
Type the regular expression (regex) required to filter the list of files that are specified in the Remote Directory. All files that match the regular expression are retrieved and processed.

The FTP file pattern must match the name that you assigned to your ThreatGRID event log. For example, to collect files that start with leef or LEEF and ends with a text file extension, type the following value:

```
(\leef|LEEF)+.*\.txt
```

Use of this parameter requires knowledge of regular expressions (regex). This parameter applies to log sources that are configured to use FTP or SFTP.

FTP Transfer Mode
If you select **FTP** as the **Service Type**, from the list, select **ASCII**.

ASCII is required for text-based event logs.

SCP Remote File
If you select **SCP** as the **Service Type**, type the file name of the remote file.

Start Time
Type a time value to represent the time of day you want the log file protocol to start. The start time is based on a 24 hour clock and uses the following format: HH:MM.

For example, type **00:00** to schedule the Log File protocol to collect event files at midnight.

This parameter functions with the **Recurrence** field value to establish when your ThreatGRID server is polled for new event log files.

Recurrence
Type the frequency that you want to scan the remote directory on your ThreatGRID server for new event log files. Type this value in hours (H), minutes (M), or days (D).

For example, type **2H** to scan the remote directory every 2 hours from the start time. The default recurrence value is **1H**. The minimum time interval is **15M**.

Run On Save
Select this check box if you want the log file protocol to run immediately after you click **Save**.

After the save action completes, the log file protocol follows your configured start time and recurrence schedule.

Selecting **Run On Save** clears the list of previously processed files for the **Ignore Previously Processed File** parameter.

EPS Throttle
Type the number of events per second (EPS) that you do not want this protocol to exceed. The valid range is **100 - 5000**.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursive</td>
<td>Select this check box if you want the file pattern to search subfolders in the remote directory. By default, the check box is clear. The Recursive parameter is ignored if you configure SCP as the Service Type.</td>
</tr>
<tr>
<td>FTP File Pattern</td>
<td>Type the regular expression (regex) required to filter the list of files that are specified in the Remote Directory. All files that match the regular expression are retrieved and processed. The FTP file pattern must match the name that you assigned to your ThreatGRID event log. For example, to collect files that start with leef or LEF and ends with a text file extension, type the following value: `(leef</td>
</tr>
<tr>
<td>FTP Transfer Mode</td>
<td>If you select FTP as the Service Type, from the list, select ASCII. ASCII is required for text-based event logs.</td>
</tr>
<tr>
<td>SCP Remote File</td>
<td>If you select SCP as the Service Type, type the file name of the remote file.</td>
</tr>
<tr>
<td>Start Time</td>
<td>Type a time value to represent the time of day you want the log file protocol to start. The start time is based on a 24 hour clock and uses the following format: HH:MM. For example, type 00:00 to schedule the Log File protocol to collect event files at midnight. This parameter functions with the Recurrence field value to establish when your ThreatGRID server is polled for new event log files.</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Type the frequency that you want to scan the remote directory on your ThreatGRID server for new event log files. Type this value in hours (H), minutes (M), or days (D). For example, type 2H to scan the remote directory every 2 hours from the start time. The default recurrence value is 1H. The minimum time interval is 15M.</td>
</tr>
<tr>
<td>Run On Save</td>
<td>Select this check box if you want the log file protocol to run immediately after you click Save. After the save action completes, the log file protocol follows your configured start time and recurrence schedule. Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File parameter.</td>
</tr>
<tr>
<td>EPS Throttle</td>
<td>Type the number of events per second (EPS) that you do not want this protocol to exceed. The valid range is 100 - 5000.</td>
</tr>
</tbody>
</table>
Table 114-4 Log file protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>From the list, select NONE. Processors allow event file archives to be expanded and processed for their events. Files are processed after they are downloaded. QRadar can process files in zip, gzip, tar, or tar+gzip archive format.</td>
</tr>
<tr>
<td>Ignore Previously Processed File(s)</td>
<td>Select this check box to track and ignore files that are already processed. QRadar examines the log files in the remote directory to determine whether the event log was processed by the log source. If a previously processed file is detected, the log source does not download the file. Only new or unprocessed event log files are downloaded by QRadar. This option applies to FTP and SFTP service types.</td>
</tr>
<tr>
<td>Change Local Directory?</td>
<td>Select this check box to define a local directory on your QRadar appliance to store event log files during processing. In most scenarios, you can leave this check box not selected. When this check box is selected, the Local Directory field is displayed. You can configure a local directory to temporarily store event log files. After the event log is processed, the events added to QRadar and event logs in the local directory are deleted.</td>
</tr>
<tr>
<td>Event Generator</td>
<td>From the Event Generator list, select LineByLine. The Event Generator applies extra processing to the retrieved event files. Each line of the file is a single event. For example, if a file has 10 lines of text, 10 separate events are created.</td>
</tr>
</tbody>
</table>

Step 22 Click **Save**.

Step 23 On the **Admin** tab, click **Deploy Changes**.

Malware events that are retrieved by the log source are displayed on the **Log Activity** tab of QRadar.
This section provides information on the following DSMs:

- **Tipping Point Intrusion Prevention System**
- **Tipping Point X505/X506 Device**

Tipping Point Intrusion Prevention System

The Tipping Point Intrusion Prevention System (IPS) DSM for IBM Security QRadar accepts Tipping Point events using syslog.

QRadar records all relevant events from either a Local Security Management (LMS) device or multiple devices with a Security Management System (SMS).

Before you configure QRadar to integrate with Tipping Point, you must configure your device based on type:

- If you are using an SMS, see [Configure remote syslog for SMS](#).
- If you are using an LSM, see [Configure notification contacts for LSM](#).

Configure remote syslog for SMS

To configure Tipping Point for SMS, you must enable and configure your appliance to forward events to a remote host using syslog.

To configure your Tipping Point SMS:

Step 1 Log in to the Tipping Point system.

Step 2 On the Admin Navigation menu, select **Server Properties**.

Step 3 Select the **Management** tab.

Step 4 Click **Add**.

The Edit Syslog Notification window is displayed.

Step 5 Select the **Enable** check box.

Step 6 Configure the following values:

- **Syslog Server** - Type the IP address of the QRadar to receive syslog event messages.
- **Port** - Type **514** as the port address.
- **Log Type** - Select **SMS 2.0 / 2.1 Syslog format** from the list.
d Facility - Select Log Audit from the list.
e Severity - Select Severity in Event from the list.
f Delimiter - Select TAB as the delimiter for the generated logs.
g Include Timestamp in Header - Select Use original event timestamp.

Step 7 Select the Include SMS Hostname in Header check box.

Step 8 Click OK.

You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Tipping Point device:

1. From the Log Source Type list, select the Tipping Point Intrusion
 Prevention System (IPS) option.

For more information on configuring log sources, see the IBM Security QRadar
Log Sources User Guide. For more information about your Tipping Point device,
see your vendor documentation.

Configure notification contacts for LSM

To configure LSM notification contacts:

Step 1 Log in to the Tipping Point system.

Step 2 From the LSM menu, select IPS > Action Sets.
 The IPS Profile - Action Sets window is displayed.

Step 3 Click the Notification Contacts tab.

Step 4 In the Contacts List, click Remote System Log.
 The Edit Notification Contact page is displayed.

Step 5 Configure the following values:

a Syslog Server - Type the IP address of the QRadar to receive syslog event
 messages.

b Port - Type 514 as the port address.

c Alert Facility - Select none or a numeric value 0-31 from the list. Syslog uses
 these numbers to identify the message source.

d Block Facility - Select none or a numeric value 0-31 from the list. Syslog uses
 these numbers to identify the message source.

e Delimiter - Select TAB from the list.

Step 6 Click Add to table below.

Step 7 Configure a Remote system log aggregation period in minutes.

Note: If your QRadar resides in a different subnet than your Tipping Point device,
you might have to add static routes. For more information, see your vendor
documentation.
Step 8 Click Save.
You are now ready to configure the action set for your LSM, see Configuring an Action Set for LSM.

Configuring an Action Set for LSM

To configure an action set for your LSM:

Step 1 Log in to the Tipping Point system.
Step 2 From the LSM menu, select IPS > Action Sets.
The IPS Profile - Action Sets window is displayed.
Step 3 Click Create Action Set.
The Create/Edit Action Set window is displayed.
Step 4 Type the Action Set Name.
Step 5 For Actions, select a flow control action setting:
 • Permit - Allows traffic.
 • Rate Limit - Limits the speed of traffic. If you select Rate Limit, you must also select the desired rate.
 • Block - Does not permit traffic.
 • TCP Reset - When used with the Block action, resets the source, destination, or both IP addresses of an attack. This option resets blocked TCP flows.
 • Quarantine - When used with the Block action, blocks an IP address (source or destination) that triggers the filter.
Step 6 Select the Remote System Log check box for each action you have selected.
Step 7 Click Create.
Step 8 You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Tipping Point device.

 ▶ From the Log Source Type list, select the Tipping Point Intrusion Prevention System (IPS) option.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide. For more information about your Tipping Point device, see your vendor documentation.
The Tipping Point X505/X506 DSM for IBM Security QRadar accepts events using syslog.

Supported event types
QRadar records all relevant system, audit, VPN, and firewall session events.

Configure syslog
To configure your device to forward events to QRadar:

Step 1 Log in to the Tipping Point X505/X506 device.

Step 2 From the LSM menu, select **System > Configuration > Syslog Servers**.

The Syslog Servers window is displayed.

Step 3 For each log type you want to forward, select a check box and type the IP address of your QRadar.

Note: If your QRadar resides in a different subnet than your Tipping Point device, you might have to add static routes. For more information, see your vendor documentation.

Step 4 You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Tipping Point X505/X506 device:

- From the **Log Source Type** list, select the **Tipping Point X Series Appliances** option.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*.

Note: If you have a previously configured Tipping Point X505/X506 DSM installed and configured on your QRadar, the **Tipping Point X Series Appliances** option is still displayed in the **Log Source Type** list. However, any new Tipping Point X505/X506 DSM you configure, you must select the Tipping Point **Intrusion Prevention System (IPS)** option.
The Top Layer IPS DSM for IBM Security QRadar accepts Top Layer IPS events using syslog.

QRadar records and processes Top Layer events. Before you configure QRadar to integrate with a Top Layer device, you must configure syslog within your Top Layer IPS device. For more information on configuring Top Layer, see your Top Layer documentation.

The configuration is complete. The log source is added to QRadar as Top Layer IPS events are automatically discovered. Events forwarded to QRadar by Top Layer IPS are displayed on the Log Activity tab of QRadar.

To configure QRadar to receive events from a Top Layer IPS device:

- From the Log Source Type list, select the Top Layer Intrusion Prevention System (IPS) option.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide. For more information about your Top Layer device, see your vendor documentation.
This section provides information on the following DSMs:

- Trend Micro InterScan VirusWall
- Trend Micro Control Manager
- Trend Micro Office Scan
- Trend Micro Deep Discovery

Trend Micro InterScan VirusWall

The Trend Micro InterScan VirusWall DSM for IBM Security QRadar accepts events using syslog.

You can integrate InterScan VirusWall logs with QRadar using the Adaptive Log Exporter. For more information on the Adaptive Log Exporter, see the *IBM Security QRadar Adaptive Log Exporter Users Guide*.

After you configure the Adaptive Log Exporter, the configuration is complete. The log source is added to QRadar as Trend Micro InterScan VirusWall events are automatically discovered. Events forwarded to QRadar by Trend Micro InterScan VirusWall are displayed on the **Log Activity** tab of QRadar.

To manually configure QRadar to receive events from an InterScan VirusWall device:

- From the **Log Source Type** list, select the **Trend InterScan VirusWall** option.

For more information on configuring devices, see the *IBM Security QRadar Log Sources User Guide*. For more information about your Trend Micro InterScan VirusWall device, see your vendor documentation.
You can integrate a Trend Micro Control Manager device with IBM Security QRadar.

A Trend Micro Control Manager accepts events using SNMPv1 or SNMPv2. Before you configure QRadar to integrate with a Trend Micro Control Manager device, you must configure a log source, then configure SNMP trap settings for your Trend Micro Control Manager.

Configure a log source

QRadar does not automatically discover SNMP events from Trend Micro Control Manager.

You must configure an SNMP log source for your Trend Micro Control Manager to use the SNMPv1 or SNMPv2 protocol. SNMPv3 is not supported by Trend Micro Control Manager.

Procedure

1. Log in to QRadar.
2. Click the **Admin** tab.
3. On the navigation menu, click **Data Sources**.
4. Click the **Log Sources** icon.
5. Click **Add**.
6. In the **Log Source Name** field, type a name for your log source.
7. In the **Log Source Description** field, type a description for the log source.
8. From the **Log Source Type** list, select **Trend Micro Control Manager**.
9. Using the **Protocol Configuration** list, select **SNMPv2**. SNMPv3 is not supported by Trend Micro Control Manager.
10. Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Trend Micro Control Manager appliance.</td>
</tr>
<tr>
<td>Community</td>
<td>Type the SNMP community name required to access the system containing SNMP events. The default is Public.</td>
</tr>
<tr>
<td>Include OIDs in Event Payload</td>
<td>Clear the Include OIDs in Event Payload check box, if selected. This option allows the SNMP event payload to be constructed using name-value pairs instead of the standard event payload format. Including OIDs in the event payload is required for processing SNMPv2 or SNMPv3 events from certain DSMs.</td>
</tr>
</tbody>
</table>
Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.

Configure SNMP traps

To configure SNMP traps for Trend Micro Control Manager:

Note: Trend Micro Control Manager v5.5 requires hotfix 1697 or hotfix 1713 after Service Pack 1 Patch 1 to provide correctly formatted SNMPv2c events. For more information, see your vendor documentation.

Procedure

Step 1 Log in to the Trend Micro Control Manager device.

Step 2 Select **Administration > Settings > Event Center Settings**.

Step 3 Set the SNMP trap notifications:

- In the **SNMP Trap Settings** field, type the Community Name.
- Type the QRadar server IP address.

Step 4 Click **Save**.

You are now ready to configure events in the Event Center.

Step 1 Select **Administration > Event Center**.

Step 2 From the Event Category list, expand **Alert**.

Step 3 Click **Recipients** for an alert.

Step 4 In Notification methods, select the **SNMP Trap Notification** check box.

Step 5 Click **Save**.

The Edit Recipients Result window is displayed.

Step 6 Click **OK**.

Step 7 Repeat **Step 2** to **Step 6** for every alert that requires an SNMP Trap Notification.

The configuration is complete. Events from Trend Micro Control Manager are displayed on the **Log Activity** tab of QRadar. For more information on Trend Micro Control Manager, see your vendor documentation.
A Trend Micro Office Scan DSM for IBM Security QRadar accepts events using SNMPv2.

QRadar records events relevant to virus and spyware events. Before configuring a Trend Micro device in QRadar, you must configure your device to forward SNMPv2 events.

QRadar has two options for integrating with a Trend Micro device depending on your device version:

- Integrating with Trend Micro Office Scan 8.x
- Integrating with Trend Micro Office Scan 10.x

Integrating with Trend Micro Office Scan 8.x

To integrate a Trend Micro Office Scan 8.x device with QRadar:

Procedure

1. Log in to the Office Scan Administration interface.
2. Select **Notifications**.
3. Configure the General Settings for SNMP Traps:
 a. In the **Server IP Address** field, type the IP address of the QRadar.

 Note: Do not change the community trap information.

 b. Click **Save**.
4. Configure the Standard Alert Notification:
 a. Select **Standard Notifications**.
 b. Click the **SNMP Trap** tab.
 c. Select the **Enable notification via SNMP Trap for Virus/Malware Detections** check box.
 d. Type the following message in the field (this should be the default):

 Virus/Malware: %v
 Computer: %s
 Domain: %m
 File: %p
 Date/Time: %y
 Result: %a
 e. Select the **Enable notification via SNMP Trap for Spyware/Grayware Detections** check box.
 f. Type the following message in the field (this should be the default):

 Spyware/Grayware: %v
 Computer: %s
 Domain: %m
 Date/Time: %y
 Result: %a
Step 5 Click Save.

Step 6 Configure Outbreak Alert Notifications:

a Select Out Notifications.

b Click the SNMP Trap tab.

c Select the Enable notification via SNMP Trap for Virus/Malware Outbreaks check box.

d Type the following message in the field (this should be the default):

Number of viruses/malware: %CV
Number of computers: %CC
Log Type Exceeded: %A
Number of firewall violation logs: %C
Number of shared folder sessions: %S
Time Period: %T

e Select the Enable notification via SNMP Trap for Spyware/Grayware Outbreaks check box.

f Type the following message in the field (this should be the default):

Number of spyware/grayware: %CV
Number of computers: %CC
Log Type Exceeded: %A
Number of firewall violation logs: %C
Number of shared folder sessions: %S
Time Period: %T

g Click Save.

Step 7 You are now ready to configure the log sources in QRadar.

To configure the Trend Micro Office Scan device:

Step 1 From the Log Source Type list, select the Trend Micro Office Scan option.

Step 2 From the Protocol Configuration list, select the SNMPv2 option.

For more information on configuring log sources, see the IBM Security QRadar Log Sources User Guide.
Integrating with Trend Micro Office Scan 10.x

Before you configure QRadar to integrate with a Trend Micro Office Scan 10.x device, you must:

1. Configure the SNMP settings for Trend Micro Office Scan 10.x.
2. Configure standard notifications.
3. Configure outbreak criteria and alert notifications.

Configure General Settings

To integrate a Trend Micro Office Scan 10.x device with QRadar:

Step 1 Log in to the Office Scan Administration interface.

Step 2 Select Notifications > Administrator Notifications > General Settings.

Step 3 Configure the General Settings for SNMP Traps:
 a. In the Server IP Address field, type the IP address of your QRadar.
 b. Type a community name for your Trend Micro Office Scan device.
 c. Click Save.

You must now configure the Standard Notifications for Office Scan.

Configure Standard Notifications

To configure standard notifications:

Step 1 Select Notifications > Administrator Notifications > Standard Notifications.

Step 2 Define the Criteria settings.
 a. Click the Criteria tab.
 b. Select the option to alert administrators on the detection of virus/malware and spyware/grayware, or when the action on these security risks is unsuccessful.

Step 3 To enable notifications:
 a. Configure the SNMP Trap tab.
 b. Select the Enable notification via SNMP Trap check box.
 c. Type the following message in the field:

```
Virus/Malware: %v
Spyware/Grayware: %T
Computer: %s
IP address: %i
Domain: %m
File: %p
Date/Time: %y
Result: %a
User name: %n
```

Step 4 Click Save.

You must now configure Outbreak Notifications.
Configure Outbreak Criteria and Alert Notifications
To configure outbreak criteria and alert notifications:

Step 1 Select **Notifications > Administrator Notifications > Outbreak Notifications**.

Step 2 Click the **Criteria** tab.

Step 3 Type the number of detections and detection period for each security risk.

Notification messages are sent to an administrator when the criteria exceeds the specified detection limit.

Note: Trend Micro recommends using the default values for the detection number and detection period.

Step 4 Select **Shared Folder Session Link** and enable Office Scan to monitor for firewall violations and shared folder sessions.

Note: To view computers on the network with shared folders or computers currently browsing shared folders you can select the number link in the interface.

Step 5 Click the **SNMP Trap** tab.

a. Select the **Enable notification via SNMP Trap** check box.

b. Type the following message in the field:

 - Number of viruses/malware: %CV
 - Number of computers: %CC
 - Log Type Exceeded: %A
 - Number of firewall violation logs: %C
 - Number of shared folder sessions: %S
 - Time Period: %T

Step 6 Click **Save**.

Step 7 You are now ready to configure the log source in QRadar.

To configure the Trend Micro Office Scan device:

Step 1 From the **Log Source Type** list, select the **Trend Micro Office Scan** option.

Step 2 From the **Protocol Configuration** list, select the **SNMPv2** option.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*.
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
The Tripwire DSM for IBM Security QRadar accepts resource additions, removal, and modification events using syslog.

Procedure

Step 1 Log in to the Tripwire interface.

Step 2 On the left-hand navigation, click **Actions**.

Step 3 Click **New Action**.

Step 4 Configure the new action.

Step 5 Select **Rules** and click on the desired rule you wish to monitor.

Step 6 Select the **Actions** tab.

Step 7 Make sure the new action is selected.

Step 8 Click **OK**.

Step 9 Repeat **Step 5 to Step 8** for each rule you want to monitor.

You are now ready to configure the log source in QRadar.

To configure QRadar to receive events from a Tripwire device:

- From the **Log Source Type** list, select the **Tripwire Enterprise** option.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*. For more information about your Tripwire device, see your vendor documentation.
The Tropos Control DSM for IBM Security QRadar accepts events using syslog.

QRadar is capable of recording all fault management, login and logout events, provisioning events, and device image upload events. Before configuring QRadar, you must configure your Tropos Control to forward syslog events.

You can configure Tropos Control to forward logs using syslog to QRadar.

Procedure

Step 1 Using SSH, log in to your Tropos Control device as a root user.

Step 2 Open the following file for editing:

```
/opt/ControlServer/ems/conf/logging.properties
```

Step 3 To enable syslog, remove the comment marker (#) from the following line:

```
#log4j.category.syslog = INFO, syslog
```

Step 4 To configure the IP address for the syslog destination, edit the following line:

```
log4j.appender.syslog.SyslogHost = <IP address>
```

Where `<IP address>` is the IP address or hostname of QRadar.

By default, Tropos Control uses a facility of USER and a default log level of INFO. These default settings are correct for syslog event collection from a Tropos Control device.

Step 5 Save and exit the file.

You are now ready to configure the Tropos Control DSM in QRadar.

To configure QRadar to receive events from Tropos Control:

- From the **Log Source Type** list, select **Tropos Control**.

For more information on configuring log sources, see the *IBM Security QRadar Log Sources User Guide*.
IBM Security QRadar can collect and categorize malware, exploit, and data exfiltration detection events from Trusteer Apex Local Event Aggregator.

Configuration overview

To collect syslog events, you must configure your Trusteer Apex Local Event Aggregator to forward syslog events to QRadar. Administrators can use the Apex L.E.A. management console interface to configure a syslog target for events. QRadar automatically discovers and creates log sources for syslog events that are forwarded from Trusteer Apex Local Event Aggregator appliances. QRadar supports syslog events from Trusteer Apex Local Event Aggregator V1304.x and later.

To integrate events with QRadar, administrators can complete the following tasks:

1. On your Trusteer Apex Local Event Aggregator appliance, configure syslog server.
2. On your QRadar system, verify that the forwarded events are automatically discovered.

Configuring syslog for Trusteer Apex Local Event Aggregator

To collect events, you must configure a syslog server on your Trusteer Apex Local Event Aggregator to forward syslog events.

Procedure

Step 1 Log in to the Trusteer Apex L.E.A. management console.
Step 2 From the navigation menu, select Configuration.
Step 3 To export the current Trusteer Apex Local Event Aggregator configuration, click Export and save the file.
Step 4 Open the configuration file with a text editor.
Step 5 From the syslog.event_targets section, add the following information:

```
{
    "host": "<QRadar IP address>",
    "port": "514",
    "proto": "tcp"
}
```

Step 6 Save the configuration file.
Step 7 From the navigation menu, select Configuration.
Step 8 Click **Choose file** and select the new configuration file that contains the event target IP address.

Step 9 Click **Import**.

Result
As syslog events are generated by the Trusteer Apex Local Event Aggregator, they are forwarded to the target specified in the configuration file. The log source is automatically discovered after enough events are forwarded to QRadar. It typically takes a minimum of 25 events to automatically discover a log source.

What to do next
Administrators can log in to the QRadar Console and verify that the log source is created. The **Log Activity** tab displays events from Trusteer Apex Local Event Aggregator.
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
QRadar can collect and correlates events from any network infrastructure or security device using the Universal DSM.

After the events are collected and before the correlation can begin. The individual events from your devices must be properly parsed to determine the event name, IP addresses, protocol, and ports. For common network devices, such as Cisco Firewalls, predefined DSMs have been engineered for QRadar to properly parse and classify the event messages from the respective devices. After the events from a device have been parsed by the DSM, QRadar can continue to correlate events into offenses.

If an enterprise network has one or more network or security devices that are not officially supported, where no specific DSM for the device exists, you can use the Universal DSM. The Universal DSM allows you to forward events and messages from unsupported devices and use the Universal DSM to categorize the events for QRadar. QRadar can integrate with virtually any device or any common protocol source using the Universal DSM. For more information on the available protocols for retrieving events or logs from devices, see the IBM Security QRadar Log Sources User Guide.

To configure the Universal DSM, you must use device extensions to associate a Universal DSM to devices. Before you define device extension information using the log sources window in the Admin tab, you must create an extensions document for the log source.

For more information on writing and testing a Universal DSM, see our support forum at https://www.ibm.com/developerworks/community/forums.
The Universal LEEF DSM for IBM Security QRadar can accept events from devices that produce events using the Log Event Extended Format (LEEF).

The LEEF event format is a proprietary event format, which allows hardware manufacturers and software product manufacturers to read and map device events specifically designed for QRadar integration.

LEEF formatted events sent to QRadar outside of the partnership program require you to have installed the Universal LEEF DSM and manually identify each event forwarded to QRadar by mapping unknown events. The Universal LEEF DSM can parse events forwarded from syslog or files containing events in the LEEF format polled from a device or directory using the Log File protocol.

To configure events in QRadar using Universal LEEF, you must:

1. Configure a Universal LEEF log source in QRadar.
2. Send LEEF formatted events from your device to QRadar. For more information on forwarding events, see your vendor documentation.
3. Map unknown events to QRadar Identifiers (QIDs).

Configuring a Universal LEEF log source

Before you configure your device to send events to QRadar, you must add a log source for the device providing LEEF events.

QRadar can receive events from a real-time source using syslog or files stored on a device or a repository using the Log File protocol.

Configuring syslog to collect Universal LEEF events

To configure a log source for Universal LEEF using syslog:

Procedure

1. Log in to QRadar.
2. Click the **Admin** tab.
3. On the navigation menu, click **Data Sources**.
4. Click the **Log Sources** icon.
5. Click **Add**.
Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Universal LEEF**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for the log source as an identifier for Universal LEEF events.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The log source is added to QRadar. You are now ready to forward LEEF events to QRadar.

Configuring the log file protocol to collect Universal LEEF events

The Log File protocol allows QRadar to retrieve archived event or log files from a remote host or file repository.

The files are transferred, one at a time, to QRadar for processing. QRadar reads the event files and updates the log source with new events. Due to the Log File protocol polling for archive files, the events are not provided in real-time, but added in bulk. The log file protocol can manage plain text, compressed files, or archives.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 In the **Log Source Name** field, type a name for the Universal LEEF log source.

Step 6 In the **Log Source Description** field, type a description for the Universal LEEF log source.

Step 7 From the **Log Source Type** list, select **Universal LEEF**.

Step 8 Using the **Protocol Configuration** list, select **Log File**.

Step 9 Configure the following parameters:
Log file protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for your Universal LEEF log source. This value must match the value configured in the Remote Host IP or Hostname parameter. The log source identifier must be unique for the log source type.</td>
</tr>
<tr>
<td>Service Type</td>
<td>From the list, select the protocol you want to use when retrieving log files from a remote server. The default is SFTP.</td>
</tr>
<tr>
<td></td>
<td>• SFTP - SSH File Transfer Protocol</td>
</tr>
<tr>
<td></td>
<td>• FTP - File Transfer Protocol</td>
</tr>
<tr>
<td></td>
<td>• SCP - Secure Copy</td>
</tr>
<tr>
<td></td>
<td>Note: The underlying protocol used to retrieve log files for the SCP and SFTP service type requires that the server specified in the Remote IP or Hostname field has the SFTP subsystem enabled.</td>
</tr>
<tr>
<td>Remote IP or Hostname</td>
<td>Type the IP address or hostname of the host from which you want to receive files.</td>
</tr>
<tr>
<td>Remote Port</td>
<td>Type the TCP port on the remote host that is running the selected Service Type. If you configure the Service Type as FTP, the default is 21. If you configure the Service Type as SFTP or SCP, the default is 22. The valid range is 1 to 65535.</td>
</tr>
<tr>
<td>Remote User</td>
<td>Type the username necessary to log in to the host running the selected Service Type. The username can be up to 255 characters in length.</td>
</tr>
<tr>
<td>Remote Password</td>
<td>Type the password necessary to log in to the host containing the LEEF event files.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the Remote Password to log in to the host containing the LEEF event files.</td>
</tr>
<tr>
<td>SSH Key File</td>
<td>If you select SCP or SFTP as the Service Type, this parameter allows you to define an SSH private key file. When you provide an SSH Key File, the Remote Password option is ignored.</td>
</tr>
<tr>
<td>Remote Directory</td>
<td>Type the directory location on the remote host from which the files are retrieved.</td>
</tr>
<tr>
<td></td>
<td>Note: For FTP only. If your log files reside in the remote user’s home directory, you can leave the remote directory blank. This is to support operating systems where a change in the working directory (CWD) command is restricted.</td>
</tr>
<tr>
<td>Recursive</td>
<td>Select this check box if you want the file pattern to search subfolders. By default, the check box is clear.</td>
</tr>
<tr>
<td></td>
<td>The Recursive parameter is not used if you configure SCP as the Service Type.</td>
</tr>
</tbody>
</table>
FTP File Pattern

If you select SFTP or FTP as the Service Type, this option allows you to configure the regular expression (regex) required to filter the list of files specified in the Remote Directory. All matching files are included in the processing.

For example, if you want to list all files starting with the word log, followed by one or more digits and ending with tar.gz, use the following entry: log[0-9]+\..tar\..gz. Use of this parameter requires knowledge of regular expressions (regex). For more information, see the following website:
http://download.oracle.com/javase/tutorial/essential/regex/

FTP Transfer Mode

This option is only displayed if you select FTP as the Service Type. The FTP Transfer Mode parameter allows you to define the file transfer mode when retrieving log files over FTP.

From the list, select the transfer mode you want to apply to this log source:

- **Binary** - Select Binary for log sources that require binary data files or compressed zip, gzip, tar, or tar+gzip archive files.

- **ASCII** - Select ASCII for log sources that require an ASCII FTP file transfer.

You must select **NONE** as the Processor and **LINEBYLINE** as the Event Generator when using ASCII as the FTP Transfer Mode.

SCP Remote File

If you select SCP as the Service Type you must type the file name of the remote file.

Start Time

Type the time of day you want processing to begin. This parameter functions with the Recurrence value to establish when and how often the Remote Directory is scanned for files. Type the start time, based on a 24 hour clock, in the following format: HH:MM.

Recurrence

Type the frequency, beginning at the Start Time, that you want the remote directory to be scanned. Type this value in hours (H), minutes (M), or days (D).

For example, type 2H if you want the directory to be scanned every 2 hours. The default is 1H.

Run On Save

Select this check box if you want the log file protocol to run immediately after you click **Save**. After the Run On Save completes, the log file protocol follows your configured start time and recurrence schedule.

Selecting Run On Save clears the list of previously processed files for the Ignore Previously Processed File parameter.

EPS Throttle

Type the number of Events Per Second (EPS) that you do not want this protocol to exceed. The valid range is 100 to 5000.
Step 10 Click Save.

Step 11 On the Admin tab, click Deploy Changes.

The log source is added to QRadar. You are now ready to write LEEF events that can be retrieved using the Log File protocol.

Table 123-1 Log file protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>If the files located on the remote host are stored in a zip, gzip, tar, or tar+gzip archive format, select the processor that allows the archives to be expanded and contents processed.</td>
</tr>
<tr>
<td>Ignore Previously Processed File(s)</td>
<td>Select this check box to track files that have already been processed that you do not want to be processed a second time. This only applies to FTP and SFTP Service Types.</td>
</tr>
<tr>
<td>Change Local Directory?</td>
<td>Select this check box to define the local directory on your QRadar system that you want to use for storing downloaded files during processing. We recommend that you leave this check box clear. When the check box is selected, the Local Directory field is displayed, allowing you to configure the local directory to use for storing files.</td>
</tr>
<tr>
<td>Event Generator</td>
<td>From the Event Generator list, select LineByLine. The Event Generator applies additional processing to the retrieved event files. The LineByLine option reads each line of the file as single event. For example, if a file has 10 lines of text, 10 separate events are created.</td>
</tr>
</tbody>
</table>

Forwarding events to QRadar

After you have created your log source, you are ready to forward or retrieve events for QRadar. Forwarding events using syslog might require additional configuration from your network device.

As events are discovered by QRadar, either using syslog or polling for log files, events are displayed in the Log Activity tab. The events for your device forwarding LEEF events are identified by the name you typed in the Log Source Name field. The events for your log source are not categorized by default in QRadar and require categorization. For more information on categorizing your Universal LEEF events, see Creating a Universal LEEF event map.

Creating a Universal LEEF event map

Event mapping is required for the Universal LEEF DSM, as Universal LEEF events do not contain a predefined QRadar Identifier (QID) map to categorize security events.

Members of the SIPP partner program have QID maps designed for their network devices, the configuration documented, and the QID maps tested by IBM Corp.
The Universal LEEF DSM requires that you individually map each event for your device to an event category in QRadar. Mapping events allows QRadar to identify, coalesce, and track reoccurring events from your network devices. Until you map an event, all events that are displayed in the Log Activity tab for the Universal LEEF DSM are categorized as unknown. Unknown events are easily identified as the Event Name column and Low Level Category columns display Unknown.

Discovering unknown events

As your device forwards events to QRadar, it can take time to categorize all of the events for a device, as some events might not be generated immediately by the event source appliance or software. It is helpful to know how to quickly search for unknown events. When you know how to search for unknown events, we recommend you repeat this search until you are comfortable that you have identified the majority of your Universal LEEF events.

Procedure

1. Log in to QRadar.
2. Click the Log Activity tab.
3. Click Add Filter.
4. From the first list, select Log Source.
5. From the Log Source Group list, select the log source group or Other.
6. From the Log Source list, select your Universal LEEF log source.
7. Click Add Filter.

 The Log Activity tab is displayed with a filter for your Universal LEEF DSM.
8. From the View list, select Last Hour.

 Any events generated by your Universal LEEF DSM in the last hour are displayed. Events displayed as unknown in the Event Name column or Low Level Category column require event mapping in QRadar.

 Note: You can save your existing search filter by clicking Save Criteria.

 You are now ready to modify the event map for your Universal LEEF DSM.

Modifying an event map

Modifying an event map allows you to manually categorize events to a QRadar Identifier (QID) map. Any event categorized to a log source can be remapped to a new QRadar Identifier (QID). By default, the Universal LEEF DSM categorizes all events as unknown.

Note: Events that do not have a defined log source cannot be mapped to an event. Events without a log source display SIM Generic Log in the Log Source column.

Procedure

1. On the Event Name column, double-click an unknown event for your Universal LEEF DSM.

 The detailed event information is displayed.
Step 2 Click **Map Event**.

Step 3 From the Browse for QID pane, select any of the following search options to narrow the event categories for a QRadar Identifier (QID):

a From the **High-Level Category** list, select a high-level event categorization.

 For a full list of high-level and low-level event categories or category definitions, see the Event Categories section of the *IBM Security QRadar Administration Guide*.

b From the **Low-Level Category** list, select a low-level event categorization.

c From the **Log Source Type** list, select a log source type.

 The **Log Source Type** list allows you to search for QIDs from other individual log sources. Searching for QIDs by log source is useful when the events from your Universal LEEF DSM are similar to another existing network device. For example, if your Universal DSM provides firewall events, you might select Cisco ASA, as another firewall product that likely captures similar events.

d To search for a QID by name, type a name in the **QID/Name** field.

 The QID/Name field allows you to filter the full list of QIDs for a specific word, for example, MySQL.

Step 4 Click **Search**.

 A list of QIDs are displayed.

Step 5 Select the QID you want to associate to your unknown Universal LEEF DSM event.

Step 6 Click **OK**.

 QRadar maps any additional events forwarded from your device with the same QID that matches the event payload. The event count increases each time the event is identified by QRadar.

 Note: If you update an event with a new QRadar Identifier (QID) map, past events stored in QRadar are not updated. Only new events are categorized with the new QID.
The Venustech Venusense DSM for IBM Security QRadar can collect events from Venusense appliances using syslog.

Supported Venusense events and appliances
QRadar records all relevant unified threat, firewall, or network intrusion prevention events forwarded using syslog on port 514.

The following Venustech appliances are supported by QRadar:
- Venustech Venusense Security Platform
- Venustech Venusense Unified Threat Management (UTM)
- Venustech Firewall
- Venustech Network Intrusion Prevention System (NIPS)

Venustech configuration overview
QRadar can collect events from Venustech appliances that are configured to forward filtered event logs in syslog format to QRadar.

The following process outlines the steps required to collect events from a Venustech Venusense appliance:

1. Configure the syslog server on your Venusense appliance.
2. Configure a log filter on your Venusense appliance to forward specific event logs.
3. Configure a log source in QRadar to correspond to the filtered log events.

Configuring a Venustech syslog server
To forward events to QRadar, you must configure and enable a syslog server on your Venusense appliance with the IP address of your QRadar Console or Event Collector.

Procedure

Step 1 Log in to the configuration interface for your Venusense appliance.

Step 2 From the navigation menu, select **Logs > Log Configuration > Log Servers**.

Step 3 In the **IP Address** field, type the IP address of your QRadar Console or Event Collector.

Step 4 In the **Port** field, type **514**.

Step 5 Select the **Enable** check box.

IBM Security QRadar DSM Configuration Guide
Configuring Venusense event filtering

Event filtering allows you to determine which events your Venusense appliance forwards to QRadar.

Procedure

Step 1 From the navigation menu, select Logs > Log Configuration > Log Filtering.

Step 2 In the Syslog Log column, select a check box for each event log you want to forward to QRadar.

Step 3 From the list, select a syslog facility for the event log you enabled.

Step 4 Repeat **Step 2** and **Step 3** to configure any additional syslog event filters.

Step 5 Click **OK**.

Next Steps

You are ready to configure your Venusense appliance to filter which events are forwarded to QRadar.

Configuring a Venusense log source

To integrate Venusense syslog events, you must manually create a log source in QRadar as Venusense events to not automatically discover.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 In the Log Source Name field, type a name for your log source.

Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the **Log Source Type** list, select your Venustech Venusense appliance. The type of log source you select is determined by the event filtering configured on your Venusense appliance. The options include:

- **Venustech Venusense Security Platform** - Select this option if you enabled all event filtering options.
- **Venustech Venusense UTM** - Select this option if you enabled unified filtering events.
- **Venustech Venusense Firewall** - Select this option if you enabled filtering for firewall events.
- **Venustech Venusense NIPS** - Select this option if you enabled filtering for firewall events.

Step 9 From the **Protocol Configuration** list, select **Syslog**.

Step 10 In the **Log Source Identifier** field, type the IP address or host name for the log source as an identifier for your Venusense appliance.

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete. Events forwarded to QRadar by your Venusense appliance are displayed on the **Log Activity** tab.
The Verdasys Digital Guardian DSM for IBM Security QRadar accepts and categorizes all alert events from Verdasys Digital Guardian appliances.

About Verdasys Digital Guardian

Verdasys Digital Guardian is a comprehensive Enterprise Information Protection (EIP) platform. Digital Guardian serves as a cornerstone of policy driven, data-centric security by enabling organizations to solve the information risk challenges that exist in today’s highly collaborative and mobile business environment. Digital Guardian’s endpoint agent architecture makes it possible to implement a data-centric security framework.

Verdasys Digital Guardian allows business and IT managers to:

- Discover and classify sensitive data by context and content
- Monitor data access and usage by user or process
- Automatically implement policy driven information protection
- Alert, block, and record high risk behavior to prevent costly and damaging data loss incidents.

Digital Guardian’s integration with QRadar provides context from the endpoint and enables a new level of detection and mitigation for Insider Threat and Cyber Threat (Advanced Persistent Threat).

Digital Guardian provides QRadar with a rich data stream from the end-point which includes; visibility of every data access by users or processes including the file name, file classification, application used to access the data and other contextual variables.

Supported event types

QRadar supports all QRadar LEEF or syslog formatted alert events you configure in your data export from Verdasys Digital Guardian.

Supported versions

QRadar supports Verdasys Digital Guardian versions:

- v6.1.1 and later with the QRadar LEEF event format
- v6.0.x with the Syslog event format

IBM Security QRadar DSM Configuration Guide
Configuring IPtables

Before configuring your Verdasys Digital Guardian to forward events, you must configure IPtables in QRadar to allow ICMP requests from Verdasys Digital Guardian.

Procedure

Step 1 Using SSH, log in to QRadar as the root user.
Login: root
Password: <password>

Step 2 Type the following command to edit the IPtables file:
```
vi /opt/qradar/conf/iptables.post
```
The IPtables configuration file is displayed.

Step 3 Type the following command to allow QRadar to accept ICMP requests from Verdasys Digital Guardian:
```
-I QChain 1 -m icmp -p icmp --src <IP address> -j ACCEPT
```
Where `<IP address>` is the IP address of your Verdasys Digital Guardian appliance. For example,
```
-I QChain 1 -m icmp -p icmp --src 10.100.100.101 -j ACCEPT
```

Step 4 Save your IPtables configuration.

Step 5 Type the following command to update IPtables in QRadar:
```
./opt/qradar/bin/iptables_update.pl
```

Step 6 To verify QRadar accepts ICMP traffic from your Verdasys Digital Guardian, type the following command:
```
iptables --list --line-numbers
```
The following output is displayed:
```
[root@Qradar bin]# iptables --list --line-numbers
Chain QChain (1 references)
num target    prot     opt    source           destination
1   ACCEPT  icmp     --    10.100.100.101   anywhere       icmp any
2   ACCEPT  tcp      --    anywhere         anywhere       state NEW tcp dpt:https
3   ACCEPT  tcp      --    anywhere         anywhere       state NEW tcp dpt:http
```
The IPtables configuration for QRadar is complete.

Configuring a data export

Data exports allow you to configure the events Verdasys Digital Guardian forwards to QRadar.

Procedure

Step 1 Log in to the Digital Guardian Management Console.

Step 2 Select Workspace > Data Export > Create Export.

Step 3 From the Data Sources list, select Alerts or Events as the data source.

Step 4 From the Export type list, select QRadar LEEF.
If your Verdasys Digital Guardian is v6.0.x, you can select **Syslog** as the **Export Type**. QRadar LEEF is the preferred export type format for all Verdasys Digital Guardian appliances with v6.1.1 and later.

Step 5 From the **Type** list, select **UDP** or **TCP** as the transport protocol.
QRadar can accept syslog events from either transport protocol. If the length of your alert events typically exceed 1024 bytes, then you should select **TCP** to prevent the events from being truncated.

Step 6 In the **Server** field, type the IP address of your QRadar Console or Event Collector.

Step 7 In the **Port** field, type **514**.

Step 8 From the **Severity Level** list, select a severity level.

Step 9 Select the **Is Active** check box.

Step 10 Click **Next**.

Step 11 From the list of available fields, add the following Alert or Event fields for your data export:

- Agent Local Time
- Application
- Computer Name
- Detail File Size
- IP Address
- Local Port
- Operation (required)
- Policy
- Remote Port
- Rule
- Severity
- Source IP Address
- User Name
- Was Blocked
- Was Classified

Step 12 Select a Criteria for the fields in your data export and click **Next**.
By default, the Criteria is blank.

Step 13 Select a group for the criteria and click **Next**.
By default, the Group is blank.

Step 14 Click **Test Query**.
A Test Query ensures the database runs properly.

Step 15 Click **Next**.
Step 16 Save the data export.

The configuration is complete.

Next steps

The data export from Verdasys Digital Guardian occurs on a 5 minute interval. You can adjust this timing with the job scheduler in Verdasys Digital Guardian, if required. Events exported to QRadar by Verdasys Digital Guardian are displayed on the Log Activity tab.

Configuring a log source

QRadar automatically discovers and creates a log source for data exports from Verdasys Digital Guardian appliances. The following procedure is optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 On the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 In the Log Source Name field, type a name for your log source.

Step 7 In the Log Source Description field, type a description for the log source.

Step 8 From the Log Source Type list, select Verdasys Digital Guardian.

Step 9 Using the Protocol Configuration list, select Syslog.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for the log source as an identifier for events from Verdasys Digital Guardian appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click Save.

Step 12 On the Admin tab, click Deploy Changes.

The log source is added to QRadar.
The Vericept Content 360 DSM for IBM Security QRadar accepts Vericept events using syslog.

QRadar records all relevant and available information from the event. Before configuring a Vericept device in QRadar, you must configure your device to forward syslog. For more information on configuring your Vericept device, consult your vendor documentation.

After you configure syslog to forward events to QRadar the configuration is complete. The log source is added to QRadar as Vericept Content 360 events are automatically discovered. Events forwarded to QRadar by your Vericept Content 360 appliance are displayed on the Log Activity tab.

To manually configure a log source for QRadar to receive events from a Vericept device:

> From the Log Source Type list, select the Vericept Content 360 option.

For more information on configuring devices, see the IBM Security QRadar Log Sources User Guide.
The VMWare DSM for IBM Security QRadar can collect events from VMWare ESX and ESXi, vCenter, vCloud Director, vShield servers.

VMware ESX and ESXi

The EMC VMware DSM for IBM Security QRadar collects ESX and ESXi server events by using the VMware protocol or syslog. The EMC VMware DSM supports events from VMWare ESX or ESXi 3.x, 4.x, or 5.x servers.

To collect VMware ESX or ESXi events, you can select one of the following event collection methods:

- Configuring syslog on VMWare ESX and ESXi servers
- Configuring the VMWare protocol for ESX or ESXi servers

Configuring syslog on VMWare ESX and ESXi servers

To collect syslog events for VMWare, you must configure the server to forward events by using syslogd from your ESXi server to QRadar.

Procedure

Step 1 Log in to your VMWare vSphere Client.
Step 2 Select the host that manages your VMWare inventory.
Step 3 Click the Configuration tab.
Step 4 From the Software panel, click Advanced Settings.
Step 5 In the navigation menu, click Syslog.
Step 6 Configure values for the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ESX version</th>
<th>Description</th>
</tr>
</thead>
</table>
| Syslog.Local.DatastorePath | ESX or ESXi 3.5.x or 4.x | Type the directory path for the local syslog messages on your ESXi server.
 | | The default directory path is [] /scratch/log/messages. |
| Syslog.Remote.Hostname | ESX or ESXi 3.5.x or 4.x | Type the IP address or host name of QRadar. |

IBM Security QRadar DSM Configuration Guide
Table 127-1 VMWare syslog protocol parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ESX version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syslog.Remote.Port</td>
<td>ESX or ESXi 3.5.x or 4.x</td>
<td>Type the port number the ESXi server uses to forward syslog data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The default is port 514.</td>
</tr>
<tr>
<td>Syslog.global.logHost</td>
<td>ESXi v5.x</td>
<td>Type the URL and port number that the ESXi server uses to forward syslog data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Examples:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>udp://<QRadar IP address>:514</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tcp://<QRadar IP address>:514</td>
</tr>
</tbody>
</table>

Step 7 Click **OK** to save the configuration.

Firewall settings for VMWare products

The default firewall configuration on VMWare ESXi v5.x servers disable outgoing connections by default. Disabled outgoing syslog connections restrict the internal syslog forwarder from sending security and access events to QRadar

CAUTION: By default, the syslog firewall configuration for VMWare products allow only outgoing syslog communications. To prevent security risks, do not edit the default syslog firewall rule to enable incoming syslog connections.

Enabling syslog firewall settings on vSphere Clients

To forward syslog events from ESXi v5.x server, you must edit your security policy to enable outgoing syslog connections for events.

Procedure

Step 1 Log in to your ESXi v5.x Server from a vSphere client.

Step 2 From the inventory list, select your ESXi Server.

Step 3 Click the **Manage** tab and select **Security Profile**.

Step 4 In the Firewall section, click **Properties**.

Step 5 In the Firewall Properties window, select the **syslog** check box.

Step 6 Click **OK**.
Configuring a syslog log source for VMware ESX or ESXi

QRadar automatically discovers and creates a log source for syslog events from VMWare. The following configuration steps are optional.

Procedure

Step 1 Click the Admin tab.
Step 2 Click the Log Sources icon.
Step 3 Click Add.
Step 4 In the Log Source Name field, type a name for your log source.
Step 5 From the Log Source Type list, select EMC VMWare.
Step 6 Using the Protocol Configuration list, select Syslog.
Step 7 Configure the following values:

Table 127-2 Syslog protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your EMC VMWare server.</td>
</tr>
<tr>
<td>Enabled</td>
<td>Select this check box to enable the log source. By default, the check box is selected.</td>
</tr>
<tr>
<td>Credibility</td>
<td>From the list, select the credibility of the log source. The range is 0 - 10.</td>
</tr>
<tr>
<td></td>
<td>The credibility indicates the integrity of an event or offense as determined by the credibility rating from the source devices. Credibility increases if multiple sources report the same event. The default is 5.</td>
</tr>
<tr>
<td>Target Event Collector</td>
<td>From the list, select the Event Collector to use as the target for the log source.</td>
</tr>
<tr>
<td>Coalescing Events</td>
<td>Select this check box to enable the log source to coalesce (bundle) events. By default, automatically discovered log sources inherit the value of the Coalescing Events list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
<tr>
<td>Incoming Event Payload</td>
<td>From the list, select the incoming payload encoder for parsing and storing the logs.</td>
</tr>
<tr>
<td>Store Event Payload</td>
<td>Select this check box to enable the log source to store event payload information. By default, automatically discovered log sources inherit the value of the Store Event Payload list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
</tbody>
</table>

Step 8 Click Save.
Step 9 On the Admin tab, click Deploy Changes.

Configuring the VMWare protocol for ESX or ESXi servers

You can configure the VMWare protocol to read events from your VMWare ESXi server. The VMWare protocol uses HTTPS to poll for ESX and ESXi servers for events.

Before you configure your log source to use the VMWare protocol, we suggest you create a unique user to poll for events. This user can be created as a member of the root or administrative group, but you must provide the user with an assigned role of read-only permission. This ensures that QRadar can collect the maximum number of events and retain a level of security for your virtual servers. For more information on user roles, see your VMWare documentation.

To integrate EMC VMWare with QRadar, you must complete the following tasks:

1. Create an ESX account for QRadar.
2. Configure account permissions for the QRadar user.
3. Configure the VMWare protocol in QRadar.

CAUTION: Creating a user who is not part of the root or an administrative group might lead to some events not being collected by QRadar. We suggest that you create your QRadar user to include administrative privileges, but assign this custom user a read-only role.

Creating an account for QRadar in ESX

You can create a QRadar user account for EMC VMWare to allow the protocol to properly poll for events.

Procedure

Step 1 Log in to your ESX host by using the vSphere Client.

Step 2 Click the Local Users & Groups tab.

Step 3 Click Users.

Step 4 Right-click and select Add.

Step 5 Configure the following parameters:

a. **Login** - Type a login name for the new user.

b. **UID** - Optional. Type a user ID.

c. **User Name** - Optional. Type a user name for the account.

d. **Password** - Type a password for the account.

e. **Confirm Password** - Type the password again as confirmation.

f. **Group** - From the Group list, select root.

Step 6 Click Add.

Step 7 Click OK.
Configuring read-only account permissions
For security reasons, we suggest you configure your QRadar user account as a member of your root or admin group, but select an assigned role of read-only permissions.

Read-only permission allows the QRadar user account to view and collect events by using the VMWare protocol.

Procedure
Step 1 Click the Permissions tab.
Step 2 Right-click and select Add Permissions.
Step 3 On the Users and Groups window, click Add.
Step 4 Select your QRadar user and click Add.
Step 5 Click OK.
Step 6 From the Assigned Role list, select Read-only.
Step 7 Click OK.

Configuring a log source for the VMWare Protocol
You can configure a log source with the VMWare protocol to poll for EMC VMWare events.

Procedure
Step 1 Click the Admin tab.
Step 2 Click the Log Sources icon.
Step 3 Click Add.
Step 4 In the Log Source Name field, type a name for your log source.
Step 5 From the Log Source Type list, select EMC VMWare.
Step 6 Using the Protocol Configuration list, select EMC VMWare.
Step 7 Configure the following values:

Table 127-3 VMWare protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for the log source. This value must match the value configured in the ESX IP field.</td>
</tr>
<tr>
<td>ESX IP</td>
<td>Type the IP address of the VMWare ESX or ESXi server.</td>
</tr>
<tr>
<td></td>
<td>For example, 1.1.1.1.</td>
</tr>
<tr>
<td></td>
<td>The VMware protocol prepends the IP address of your VMware ESX or ESXi server with HTTPS before the protocol requests event data.</td>
</tr>
<tr>
<td>User Name</td>
<td>Type the username required to access the VMWare server.</td>
</tr>
<tr>
<td>Password</td>
<td>Type the password required to access the VMWare server.</td>
</tr>
</tbody>
</table>
Step 8 Click Save.
Step 9 On the Admin tab, click Deploy Changes.

VMware vCenter

The VMware vCenter DSM for IBM Security QRadar collects vCenter server events by using the VMware protocol.

The VMware protocol uses HTTPS to poll for vCenter appliances for events. You must configure a log source in QRadar to collect VMware vCenter events.

Before you configure your log source to use the VMWare protocol, we suggest you create a unique user to poll for events. This user can be created as a member of the root or administrative group, but you must provide the user with an assigned role of read-only permission. This ensures that QRadar can collect the maximum number of events and retain a level of security for your virtual servers. For more information on user roles, see your VMWare documentation.

Configuring a log source for the VMware vCenter

To collect vCenter events with the VMware protocol, you must configure a log source in QRadar.

Procedure

Step 1 Click the Admin tab.

Step 2 Click the Log Sources icon.

Step 3 Click Add.

Step 4 In the Log Source Name field, type a name for your log source.

Step 5 From the Log Source Type list, select VMWare vCenter.

Step 6 Using the Protocol Configuration list, select EMC VMWare.

Step 7 The syslog protocol is listed in the

Step 8 Configure the following values:

Table 127-4 VMware protocol parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or hostname for the log source. This value must match the value configured in the ESX IP field.</td>
</tr>
<tr>
<td>ESX IP</td>
<td>Type the IP address of the VMWare vCenter server. For example, 1.1.1.1. The VMware protocol prepends the IP address of your VMWare vCenter server with HTTPS before the protocol requests event data.</td>
</tr>
<tr>
<td>User Name</td>
<td>Type the username required to access the VMWare vCenter server.</td>
</tr>
<tr>
<td>Password</td>
<td>Type the password required to access the VMWare vCenter server.</td>
</tr>
</tbody>
</table>
Step 9 Click Save.

Step 10 On the Admin tab, click Deploy Changes.

<table>
<thead>
<tr>
<th>VMware vCloud Director</th>
<th>You can use the VMware vCloud Director DSM and the vCloud protocol for IBM Security QRadar to poll the vCloud REST API for events.</th>
</tr>
</thead>
</table>
| Configuration overview | QRadar supports polling for VMware vCloud Director events from vCloud Directory 5.1 appliances. Events collected by using the vCloud REST API are assembled as Log Extended Event Format (LEEF) events. To integrate vCloud events with QRadar, you must complete the following tasks:
1 On your vCloud appliance, configure a public address for the vCloud REST API.
2 On your QRadar appliance, configure a log source to poll for vCloud events.
3 Ensure that no firewall rules block communication between your vCloud appliance and the QRadar Console or the managed host that is responsible for polling the vCloud REST API. |
| Supported vCloud event types logged by QRadar | The VMware vCloud DSM for QRadar can collect events from several categories. Each event category contains low level events that describe the action taken within the event category. For example, user events can have user created or user deleted as low level event. The following list are the default event categories collected by QRadar from vCloud Director:
 - User events
 - Group events
 - User role events
 - Session events
 - Organization events
 - Network events
 - Catalog events
 - Virtual data center (VDC) events
 - Virtual application (vApp) events
 - Virtual machine (VM) events
 - Media events
 - Task operation events |
Configuring the vCloud REST API public address

QRadar collects security data from the vCloud API by polling the REST API of the vCloud appliance for events. Before QRadar can collect any data, you must configure the public REST API base URL.

Procedure

Step 1 Log in to your vCloud appliance as an administrator.

Step 2 Click the Administration tab.

Step 3 From the Administration menu, select System Settings > Public Addresses.

Step 4 In the VCD public REST API base URL field, type an IP address or host name. The address that you specify becomes a publically available address outside of the firewall or NAT on your vCloud appliance. For example, https://1.1.1.1/.

Step 5 Click Apply.

The public API URL is created on the vCloud appliance.

What to do next

You are now ready to configure a log source in QRadar.

Configuring a vCloud log source in QRadar

To collect vCloud events, you must configure a log source in QRadar with the location and credentials that are required to poll the vCloud API.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the Admin tab.

Step 3 In the navigation menu, click Data Sources.

Step 4 Click the Log Sources icon.

Step 5 Click Add.

Step 6 In the Log Source Name field, type a name for your log source.

Step 7 Optional. In the Log Source Description field, type a description for your log source.

Step 8 From the Log Source Type list, select VMware vCloud Director.

Step 9 From the Protocol Configuration list, select VMware vCloud Director.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 127-5 VMware vCloud Director log source parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
</tbody>
</table>
VMware vCloud Director log source parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCloud URL</td>
<td>Type the URL configured on your vCloud appliance to access the REST API. The URL you type must match the address you configured in the VCD public REST API base URL field on your vCloud Server. For example, https://10.10.10.1.</td>
</tr>
<tr>
<td>User Name</td>
<td>Type the user name that is required to remotely access the vCloud Server. For example, console/user@organization. If you want to configure a read-only account to use with QRadar, you can create a vCloud user in your organization who has the Console Access Only permission.</td>
</tr>
<tr>
<td>Password</td>
<td>Type the password that is required to remotely access the vCloud Server.</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>Confirm the password that is required to remotely access the vCloud Server.</td>
</tr>
<tr>
<td>Polling Interval</td>
<td>Type a polling interval, which is the amount of time between queries to the vCloud Server for new events. The default polling interval is 10 seconds.</td>
</tr>
<tr>
<td>Enabled</td>
<td>Select this check box to enable the log source. By default, the check box is selected.</td>
</tr>
<tr>
<td>Credibility</td>
<td>From the list, select the credibility of the log source. The range is 0 - 10. The credibility indicates the integrity of an event or offense as determined by the credibility rating from the source devices. Credibility increases if multiple sources report the same event. The default is 5.</td>
</tr>
<tr>
<td>Target Event Collector</td>
<td>From the list, select the Event Collector to use as the target for the log source.</td>
</tr>
<tr>
<td>Coalescing Events</td>
<td>Select this check box to enable the log source to coalesce (bundle) events. By default, automatically discovered log sources inherit the value of the Coalescing Events list from the System Settings in QRadar. When you create a log source or edit an existing configuration, you can override the default value by configuring this option for each log source.</td>
</tr>
<tr>
<td>Incoming Event Payload</td>
<td>From the list, select the incoming payload encoder for parsing and storing the logs.</td>
</tr>
</tbody>
</table>
Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

vCloud events that are forwarded to QRadar are displayed on the **Log Activity** tab of QRadar.

VMware vShield

The IBM Security QRadar DSM for VMware vShield can collect event logs from your VMware vShield servers.

The following table identifies the specifications for the VMware vShield Server DSM:

Table 127-1 VMware vShield DSM specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>VMware</td>
</tr>
<tr>
<td>DSM</td>
<td>vShield</td>
</tr>
<tr>
<td>RPM file name</td>
<td>DSM-VMwarevShield-build_number.noarch.rpm</td>
</tr>
<tr>
<td>Supported versions</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>Syslog</td>
</tr>
<tr>
<td>QRadar recorded events</td>
<td>All events</td>
</tr>
<tr>
<td>Automatically discovered</td>
<td>Yes</td>
</tr>
<tr>
<td>Includes identity</td>
<td>No</td>
</tr>
</tbody>
</table>
VMware vShield DSM integration process

To integrate VMware vShield DSM with QRadar, use the following procedures:

1. If automatic updates are not enabled, download and install the most recent version of the VMware vShield RPM on your QRadar Console.
2. For each instance of VMware vShield, configure your VMware vShield system to enable communication with QRadar. This procedure must be performed for each instance of VMware vShield.
3. If QRadar does not automatically discover the log source, for each VMware vShield server that you want to integrate, create a log source on the QRadar Console.

Related tasks
Manually installing a DSM
Configuring your VMware vShield system for communication with QRadar
Configuring a VMware vShield log source in QRadar

Configuring your VMware vShield system for communication with QRadar

To collect all audit logs and system events from VMware vShield, you must configure the vShield Manager. When you configure VMware vShield, you must specify QRadar as the syslog server.

Procedure

Step 1 Access your vShield Manager inventory panel.
Step 2 Click Settings & Reports.
Step 3 Click Configuration > General.
Step 4 Click Edit next to the Syslog Server option.
Step 5 Type the IP address of your QRadar Console.
Step 6 Optional. Type the port for your QRadar Console. If you do not specify a port, the default UDP port for the IP address/host name of your QRadar Console is used.
Step 7 Click OK.

Configuring a VMware vShield log source in QRadar

To collect VMware vShield events, configure a log source in QRadar.

Procedure

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 In the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 From the Log Source Type list, select VMware vShield.
Step 7 From the Protocol Configuration list, select Syslog.
Step 8 Configure the remaining parameters.
Step 9 Click Save.
Step 10 On the Admin tab, click Deploy Changes.
The Vormetric Data Security DSM for IBM Security QRadar can collect event logs from your Vormetric Data Security servers.

The following table identifies the specifications for the Vormetric Data Security DSM:

Table 128-1 Vormetric Data Security DSM specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Vormetric, Inc.</td>
</tr>
<tr>
<td>DSM</td>
<td>Vormetric Data Security</td>
</tr>
<tr>
<td>RPM file name</td>
<td>DSM-VormetricDataSecurity-7.1-804377.noarch.rpm</td>
</tr>
<tr>
<td></td>
<td>DSM-VormetricDataSecurity-7.2-804381.noarch.rpm</td>
</tr>
<tr>
<td>Supported versions</td>
<td>Vormetric Data Security Manager v5.1.3 and later</td>
</tr>
<tr>
<td></td>
<td>Vormetric Data Firewall FS Agent v5.2 and later</td>
</tr>
<tr>
<td>Protocol</td>
<td>Syslog (LEEF)</td>
</tr>
<tr>
<td>QRadar recorded events</td>
<td>Audit, Alarm, Warn, Learn Mode, System</td>
</tr>
<tr>
<td>Auto discovered</td>
<td>Yes</td>
</tr>
<tr>
<td>Includes identity</td>
<td>No</td>
</tr>
<tr>
<td>More information</td>
<td>Vormetric website (http://www.vormetric.com)</td>
</tr>
</tbody>
</table>

Vormetric Data Security DSM integration process

To integrate Vormetric Data Security DSM with QRadar, use the following procedures:

1. If automatic updates are not enabled, download and install the most recent version of the following RPMs on your QRadar Console:
 - Syslog protocol RPM
 - DSMCommon RPM

 The minimum version of the DSMCommon RPM that you can use are the
 DSM-DSMCommon-7.1-530016.noarch.rpm or
 DSM-DSMCommon-7.2-572972.noarch.rpm
For each instance of Vormetric Data Security, configure your Vormetric Data Security system to enable communication with QRadar.

3 If QRadar does not automatically discover the DSM, for each Vormetric Data Security server you want to integrate, create a log source on the QRadar Console.

Related tasks

- Manually installing a DSM
- Configuring your Vormetric Data Security systems for communication with QRadar
- Configuring a Vormetric Data Security log source in QRadar

Configuring your Vormetric Data Security systems for communication with QRadar

To collect all audit logs and system events from Vormetric Data Security, you must configure your Vormetric Data Security Manager to enable communication with QRadar.

Before you begin

Your Vormetric Data Security Manager user account must have System Administrator permissions.

Procedure

- **Step 1** Log in to your Vormetric Data Security Manager as an administrator that is assigned System Administrator permissions.
- **Step 2** On the navigation menu, click **Log > Syslog**.
- **Step 3** Click **Add**.
- **Step 4** In the **Server Name** field, type the IP address or host name of your QRadar system.
- **Step 5** From the **Transport Protocol** list, select **TCP** or a value that matches the log source protocol configuration on your QRadar system.
- **Step 6** In the **Port Number** field, type **514** or a value that matches the log source protocol configuration on your QRadar system.
- **Step 7** From the **Message Format** list, select **LEEF**.
- **Step 8** Click **OK**.
- **Step 9** On the Syslog Server summary screen, verify the details you have entered for your QRadar system. If the **Logging to SysLog** value is **OFF**, complete the following steps.
 - **a** On the navigation menu, click **System > General Preferences**.
 - **b** Click the **System** tab.
 - **c** In the **Syslog Settings** pane, select the **Syslog Enabled** check box.
Configuring Vormetric Data Firewall FS Agents to bypass Vormetric Data Security Manager

When the Vormetric Data Security Manager is enabled to communicate with QRadar, all events from the Vormetric Data Firewall FS Agents are also forwarded to the QRadar system through the Vormetric Data Security Manager. To bypass the Vormetric Data Security Manager, you can configure Vormetric Data Firewall FS Agents to send LEEF events directly to the QRadar system.

Before you begin
Your Vormetric Data Security Manager user account must have System Administrator permissions.

Procedure
Step 1 Log in to your Vormetric Data Security Manager.
Step 2 On the navigation menu, click System > Log Preferences.
Step 3 Click the FS Agent Log tab.
Step 4 In the Policy Evaluation row, configure the following parameters:
 a Select the Log to Syslog/Event Log check box.
 b Clear the Upload to Server check box.
 c From the Level list, select INFO.
 This set up enables a full audit trail from the policy evaluation module to be sent directly to a syslog server, and not to the Security Manager. Leaving both destinations enabled may result in duplication of events to the QRadar system.
Step 5 Under the Syslog Settings section, configure the following parameters.
 a In the Server field, use the following syntax to type the IP address or host name and port number of your QRadar system.

 qradar_IP address_or_host:port

 b From the Protocol list, select TCP or a value that will match the log source configuration on your QRadar system.
 c From the Message Format list, select LEEF.

What to do next
This configuration is applied to all hosts or host groups subsequently added to the Vormetric Data Security Manager. For each existing host or host group, select the required host or host group from the Hosts list and repeat the procedure.
<table>
<thead>
<tr>
<th>Configuring a Vormetric Data Security log source in QRadar</th>
<th>To collect Vormetric Data Security events, configure a log source in QRadar.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure</td>
<td></td>
</tr>
<tr>
<td>Step 1</td>
<td>Log in to QRadar.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Click the Admin tab.</td>
</tr>
<tr>
<td>Step 3</td>
<td>In the navigation menu, click Data Sources.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Click the Log Sources icon.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click Add.</td>
</tr>
<tr>
<td>Step 6</td>
<td>From the Log Source Type list, select Vormetric Data Security.</td>
</tr>
<tr>
<td>Step 7</td>
<td>From the Protocol Configuration list, select Syslog.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Configure the remaining parameters.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Click Save.</td>
</tr>
<tr>
<td>Step 10</td>
<td>On the Admin tab, click Deploy Changes.</td>
</tr>
</tbody>
</table>
For instructions about how to integrate this DSM, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
This section provides information on the following DSMs:

• Websense TRITON
• Websense V-Series Data Security Suite
• Websense V-Series Content Gateway

Websense TRITON

Websense TRITON collects and streams event information to QRadar using the Websense Multiplexer component. Before configuring QRadar, you must configure the Websense TRITON solution to provide LEEF formatted syslog events.

Before You Begin

Before you can configure Websense TRITON Web Security solutions to forward events to QRadar, you must ensure your deployment contains a Websense Multiplexer.

The Websense Multiplexer is supported on Windows, Linux, and on Websense V-Series appliances.

To configure a Websense Multiplexer on a Websense Triton or V-Series appliance:

Step 1

Install an instance of Websense Multiplexer for each Websense Policy Server component in your network.

- **For Microsoft Windows** - To install the Websense Multiplexer on Windows, use the TRITON Unified Installer. The Triton Unified Installer is available for download at http://www.mywebsense.com.

- **For Linux** - To install the Websense Multiplexer on Linux, use the Web Security Linux Installer. The Web Security Linux Installer is available for download at http://www.mywebsense.com.

For information on adding a Websense Multiplexer to software installations, see your Websense Security Information Management (SIEM) Solutions documentation.

IBM Security QRadar DSM Configuration Guide
Step 2 Enable the Websense Multiplexer on a V-Series appliance configured as a full policy source or user directory and filtering appliance:

a. Log in to your Websense TRITON Web Security Console or V-Series appliance.

b. From the Appliance Manager, select **Administration > Toolbox > Command Line Utility**.

c. Click the **Websense Web Security** tab.

d. From the **Command** list, select **multiplexer**, then use the **enable** command.

Step 3 Repeat **Step 1** and **Step 2** to enable one Multiplexer instance for each Policy Server instance in your network.

If more than one Multiplexer is installed for a Policy Server, only the last installed instance of the Websense Multiplexer is used. The configuration for each Websense Multiplexer instance is stored by its Policy Server.

You are now ready to configure your Websense TRITON appliance to forward syslog events in LEEF format to QRadar.

Configuring syslog for Websense TRITON

To collect events, you must configure syslog forwarding for Websense TRITON.

Procedure

Step 1 Log in to your Websense TRITON Web Security Console.

Step 2 On the **Settings** tab, select **General > SIEM Integration**.

Step 3 Select the **Enable SIEM integration for this Policy Server** check box.

Step 4 In the **IP address or hostname** field, type the IP address of your QRadar.

Step 5 In the **Port** field, type **514**.

Step 6 From the **Transport protocol** list, select either the **TCP** or **UDP** protocol option. QRadar supports syslog events for TCP and UDP protocols on port 514.

Step 7 From the **SIEM format** list, select **syslog/LEEF (QRadar)**.

Step 8 Click **OK** to cache any changes.

Step 9 Click **Deploy** to update your Websense Triton security components or V-Series appliances.

The Websense Multiplexer connects to Websense Filtering Service and ensures that event log information is provided to QRadar.

Configure a log source

QRadar automatically discovers and creates a log source for syslog events in LEEF format from Websense TRITON and V-Series appliances. The configuration steps for creating a log source are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.
Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 Click **Add**.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Websense V Series Content Gateway**.

Note: Websense TRITON uses the Websense V Series Content Gateway DSM for parsing events. When you manually add a log source to QRadar for Websense TRITON, you should select the Websense V Series Content Gateway.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 130-1 Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Log Source Identifier</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The log source is added to QRadar.

Websense V-Series Data Security Suite

Configuring syslog for Websense V-Series DSS

The Websense V-Series Data Security Suite DSM accepts events using syslog. Before you can integrate QRadar, you must enable the Websense V-Series appliance to forward syslog events in the Data Security Suite (DSS) Management Console.

Procedure

Step 1 Select **Policies > Policy Components > Notification Templates**.

Step 2 Select an existing Notification Template or create a new template.

Step 3 Click the **General** tab.

Step 4 Click **Send Syslog Message**.

Step 5 Select **Options > Settings > Syslog** to access the Syslog window.

The syslog window enables administrators to define the IP address/hostname and port number of the syslog in their organization. The defined syslog receives incident messages from the Websense Data Security Suite DSS Manager.
Step 6 The syslog is composed of the following fields:

DSS Incident|ID={value}|action={display value - max}|urgency={coded}|policy categories={values,,}|source={value-display name}|destinations={values...}|channel={display name}|matches={value}|details={value}

- Max length for policy categories is 200 characters.
- Max length for destinations is 200 characters.
- Details and source are reduced to 30 characters.

Step 7 Click Test Connection to verify that your syslog is accessible.

You are now ready to configure the log source in QRadar.

The configuration is complete. The log source is added to QRadar as OSSEC events are automatically discovered. Events forwarded to QRadar by OSSEC are displayed on the Log Activity tab of QRadar.

Configuring a log source

QRadar automatically discovers and creates a log source for syslog events from Websense V-Series Data Security Suite. The following configuration steps are optional.

Procedure

Step 1 Log in to QRadar.
Step 2 Click the Admin tab.
Step 3 On the navigation menu, click Data Sources.
Step 4 Click the Log Sources icon.
Step 5 Click Add.
Step 6 In the Log Source Name field, type a name for your log source.
Step 7 In the Log Source Description field, type a description for the log source.
Step 8 From the Log Source Type list, select Websense V Series.
Step 9 Using the Protocol Configuration list, select Syslog.
Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Table 130-2</th>
<th>Syslog Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Websense V-Series Data Security Suite DSM</td>
</tr>
</tbody>
</table>

Step 11 Click Save.
Step 12 On the Admin tab, click Deploy Changes.

The configuration is complete.
The Websense V-Series Content Gateway DSM for IBM Security QRadar supports events for web content on Websense V-Series appliances with the Content Gateway software.

The Websense V-Series Content Gateway DSM accepts events using syslog to stream events or using the Log File protocol to provide events to QRadar. Before you can integrate your appliance with QRadar, you must select one of the following configuration methods:

- To configure syslog for your Websense V-Series, see Configure syslog for Websense V-Series Content Gateway.
- To configure the log file protocol for your Websense V-Series, see Configuring a log file protocol for Websense V-Series Content Gateway.

Configure syslog for Websense V-Series Content Gateway

The Websense V-Series DSM supports Websense V-Series appliances running the Websense Content Gateway on Linux software installations.

Before configuring QRadar, you must configure the Websense Content Gateway to provide LEEF formatted syslog events.

Configure the Management Console

To configure event logging in the Content Gateway Manager:

Step 1 Log into your Websense Content Gateway Manager.

Step 1 Click the Configure tab.

Step 2 Select Subsystems > Logging.

The General Logging Configuration window is displayed.

Step 3 Select Log Transactions and Errors.

Step 4 Select Log Directory to specify the directory path of the stored event log files.

The directory you define must already exist and the Websense user must have read and write permissions for the specified directory. The default directory is `/opt/WGC/logs`

Step 5 Click Apply.

Step 6 Click the Custom tab.
Step 7 In the **Custom Log File Definitions** window, type the following text for the LEEF format.

```xml
<LogFormat>
  <Name = "leef"/>
  <Format = "LEEF:1.0|Websense|WCG|7.6|%<wsds>|cat=%<wc> src=%<chi> devTime=%<cqtn>
    devTimeFormat=dd/MMM/yyyy:HH:mm:ss Z
    http-username=%<caun> url=%<cquc>
    method=%<cqhm> httpversion=%<cqhv> cachecode=%<crc>
    dstBytes=%<sscl> dst=%<pqsi> proxy-status-code=%<pssc>
    server-status-code=%<sssc> usrName=%<wui>
    duration=%<ttms>"/>
</LogFormat>

<LogObject>
  <Format = "leef"/>
  <Filename = "leef"/>
</LogObject>
```

Note: The fields in the LEEF format string are tab separated. You might be required to type the LEEF format in a text editor and then cut and paste it into your web browser to retain the tab separations. The definitions file ignores extra white space, blank lines, and all comments.

Step 8 Select **Enabled** to enable the custom logging definition.

Step 9 Click **Apply**.

You are now ready to enable event logging for your Websense Content Gateway.

Enable Event Logging

If you are using a Websense V-Series appliance, you need to contact Websense Technical Support to enable this feature.

Procedure

Step 1 Log in to the command-line Interface (CLI) of the server running Websense Content Gateway.

Step 2 Add the following lines to the end of the `/etc/rc.local` file:

```bash
( while [ 1 ] ; do
tail -n1000 -F /opt/WCG/logs/leef.log | nc <IP Address> 514
  sleep 1
done ) &
```

Where `<IP Address>` is the IP address for QRadar.

Step 3 To start logging immediately, type the following command:

```bash
nohup /bin/bash -c "while [ 1 ] ; do tail -F
  /opt/WCG/logs/leef.log | nc <IP Address> 514; sleep 1; done" &
```

Note: You might need to type the logging command in **Step 3** or copy the command to a text editor to interpret the quotation marks.

The configuration is complete. The log source is added to QRadar as syslog events from Websense V-Series Content Gateway are automatically discovered. Events forwarded by Websense V-Series Content Gateway are displayed on the
Configuring a log source

QRadar automatically discovers and creates a log source for syslog events from Websense V-Series Content Gateway. The following configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 Click **Add**.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select **Websense V Series**.

Step 9 Using the **Protocol Configuration** list, select **Syslog**.

Step 10 Configure the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Source Identifier</td>
<td>Type the IP address or host name for the log source as an identifier for events from your Websense V-Series Content Gateway appliance.</td>
</tr>
</tbody>
</table>

Step 11 Click **Save**.

Step 12 On the **Admin** tab, click **Deploy Changes**.

The configuration is complete.

Configuring a log file protocol for Websense V-Series Content Gateway

The log file protocol allows QRadar to retrieve archived log files from a remote host.

The Websense V-Series DSM supports the bulk loading of log files from your Websense V-Series Content Gateway using the log file protocol to provide events on a scheduled interval. The log files contain transaction and error events for your Websense V-Series Content Gateway:

Configure the management console

To configure event logging in the Content Management Console:

Step 1 Log into your Websense Content Gateway interface.

Step 1 Click the **Configure** tab.

Step 2 Select **Subsystems > Logging**.
Step 3 Select **Log Transactions and Errors**.

Step 4 Select **Log Directory** to specify the directory path of the stored event log files.

The directory you define must already exist and the Websense user must have read and write permissions for the specified directory. The default directory is `/opt/WGC/logs`.

Step 5 Click **Apply**.

Step 6 Click the **Formats** tab.

Step 7 Select **Netscape Extended Format** as your format type.

Step 8 Click **Apply**.

You are now ready to enable event logging for your Websense V-Series Content Gateway.

Configuring a log file protocol log source

When configuring your Websense V-Series DSM to use the log file protocol, make sure the hostname or IP address configured in the Websense V-Series is the same as configured in the Remote Host parameter in the Log File protocol configuration.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 On the navigation menu, click **Data Sources**.

Step 4 Click the **Log Sources** icon.

Step 5 Click **Add**.

Step 6 In the **Log Source Name** field, type a name for your log source.

Step 7 In the **Log Source Description** field, type a description for the log source.

Step 8 From the **Log Source Type** list, select the **Websense V Series**.

Step 9 From the **Protocol Configuration** list, select the **Log File**.

Step 10 From the **Service Type** list, select the Secure File Transfer Protocol (**SFTP**) option.

Step 11 In the **FTP File Pattern** field, type `extended.log_.*.old`.

Step 12 In the **Remote Directory** field, type `/opt/WCG/logs`.

This is the default directory for storing the Websense V-Series log files you specified in Step 4.

Step 13 From the **Event Generator** list, select **LINEBYLINE**.

Step 14 Click **Save**.

Step 15 On the **Admin** tab, click **Deploy Changes**.

The log source is added to QRadar. For the entire list of Log File protocol parameters, see the *IBM Security QRadar Log Sources User Guide*.
IBM Security QRadar can collect and categorize events from Zscaler Nanolog Streaming Service (NSS) log feeds that forward syslog event to QRadar.

Configuration overview
To collect syslog events, you must configure your Zscaler NSS with an NSS feed to forward TCP syslog events to QRadar. QRadar automatically discovers and creates log sources for syslog events that are forwarded from Zscaler NSS log feeds. QRadar supports syslog events from Zscaler NSS V4.1.

To configure Zscaler NSS, complete the following tasks:
1. On your Zscaler NSS appliance, create a log feed for QRadar.
2. On your QRadar system, verify that the forwarded events are automatically discovered.

Supported event types for Zscaler NSS
The ZScaler NSS DSM for QRadar collects information about web browsing events from Zscaler NSS installations.

Each Zscaler NSS event contains information on the action that is taken on the web browsing in the event category. For example, web browsing events can have a category that is allowed or blocked website traffic. Each event defines the website that was allowed or blocked and includes all of the event details in the event payload.

Configuring a syslog feed in Zscaler NSS
To collect events, you must configure a log feed on your Zscaler NSS to forward syslog events to QRadar.

Procedure

Step 1 Log in to the administration portal for Zscaler NSS.

Step 2 In the navigation menu, select **Policy > Administration > Configure Nanolog Streaming Service**.

Step 3 Click **Add Feed**.

Step 4 In the **Feed Name** field, type a name for the NSS feed.

Step 5 From the **NSS Name** list, select the ZScaler NSS system.

Step 6 From the **Status** list, select **Enabled**.
Step 7 In the **SIEM IP** field, type the IP address of your QRadar system.

Step 8 In the **TCP Port** field, type the 514.

Step 9 From the **Log Type** list, select **Web Log**.

Step 10 From the **Feed Output Type** list, select **Custom**.

Step 11 In the **Feed Output Format** field, type the following custom format:

```
%s{mon} %02d{dd} %02d{mm}:%02d{ss} zscaler-nss: LEEF:1.0|Zscaler|NSS|4.1|%s{reason}|cat=%s{action}\tdevTime=
%s{mon} %02d{dd} %d{yy}
%02d{hh}:%02d{mm}:%02d{ss} %s{tz}\tdevTimeFormat=MMM dd yyyy
HH:mm:ss z\tsrc=%s{cip}\tdst=%s{sip}
\tsrcPostNAT=%s{cintip}\ttrealm=%s{location}\ttusrName=%s{login}\n\ttsrcBytes=%d{reqsize}\tdstBytes=%d{respsize}\ttrole=%s{dept}\tspo
licy=%s{reason}\tturl=%s{url}\ttrecordid=%d{recordid}\tbwthrottle
=%s{bwthrottle}\tuseragent=%s{ua}\treferer=%s{referer}\thostnam
e=%s{host}\ttappproto=%s{proto}\tturlcategory=%s{urlcat}\tturlsupe
rcategory=%s{urlsupercat}\ttappclass=%s{appclass}\ttappname=%s{appname}\ntmalwaretype=%s{malwarecat}\ntmalwareclass=%s{malwareclass}\ntthreatname=%s{threatname}\n\ttriskscore=%d{riskscore}\tdlpdict=%s{dlpdict}\tdlpeng=%s{dlpeng}\ntfilecla
ss=%s{fileclass}\ntfiletype=%s{filetype}\treqmethod=%s{reqmethod}
\trespcode=%s{respcode}\n```

Step 12 Click **Done**.

QRadar automatically discovers and creates a log source for Zscaler NSS appliances. Events that are forwarded to QRadar are viewable on the **Log Activity** tab.

Configuring a Zscaler NSS log source

QRadar automatically discovers and creates a log source for syslog events that are forwarded from Zscaler NSS. These configuration steps are optional.

Procedure

Step 1 Log in to QRadar.

Step 2 Click the **Admin** tab.

Step 3 Click the **Log Sources** icon.

Step 4 Click **Add**.

Step 5 In the **Log Source Name** field, type a name for your log source.

Step 6 Optional. In the **Log Source Description** field, type a description for your log source.

Step 7 From the **Log Source Type** list, select **Zscaler NSS**.

Step 8 From the **Protocol Configuration** list, select **Syslog**.

Step 9 Configure the following values:
Step 10  Click **Save**.

Step 11  On the **Admin** tab, click **Deploy Changes**.
SUPPORTED THIRD-PARTY DEVICES

For the complete list of supported DSMs, see the IBM Security QRadar Integration Documentation Addendum (http://www-01.ibm.com/support/docview.wss?uid=swg27042162).
What's in this appendix:

- **Notices**
- **Trademarks**

This section describes some important notices, trademarks, and compliance information.

### Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

**IBM Director of Licensing**

**IBM Corporation**

**North Castle Drive**

**Armonk, NY 10504-1785 U.S.A.**

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

**Intellectual Property Licensing**

**Legal and Intellectual Property Law**

**IBM Japan Ltd.**

**19-21, Nihonbashi-Hakozakicho, Chuo-ku**

**Tokyo 103-8510, Japan**

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
170 Tracer Lane,
Waltham MA 02451, USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

**Trademarks**

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at [www.ibm.com/legal/copytrade.shtml](http://www.ibm.com/legal/copytrade.shtml).

The following terms are trademarks or registered trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
<table>
<thead>
<tr>
<th>Numerics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3Com 8800 Series Switch 27</td>
<td>3Com Switch 8800 19</td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>AccessData InSight 19</td>
<td></td>
</tr>
<tr>
<td>AhnLab Policy Center 19</td>
<td>31, 87</td>
</tr>
<tr>
<td>Ahnlab Policy Center 19, 31, 87</td>
<td></td>
</tr>
<tr>
<td>Ambiron TrustWave ipAngel 29</td>
<td></td>
</tr>
<tr>
<td>Ambiron Trust Wave ipAngel 19</td>
<td></td>
</tr>
<tr>
<td>Apache HTTP Server 33</td>
<td>19</td>
</tr>
<tr>
<td>APC UPS 19, 39</td>
<td></td>
</tr>
<tr>
<td>Apple Mac OS 45</td>
<td></td>
</tr>
<tr>
<td>Application Security DbProtect 49</td>
<td></td>
</tr>
<tr>
<td>Arbor Networks Peakflow SP 53</td>
<td></td>
</tr>
<tr>
<td>Arbor Networks Pravail 19</td>
<td></td>
</tr>
<tr>
<td>Arpeggio SIFT-IT 61</td>
<td></td>
</tr>
<tr>
<td>Array Networks SSL VPN 65, 383</td>
<td>19</td>
</tr>
<tr>
<td>Aruba Mobility Controllers 67</td>
<td></td>
</tr>
<tr>
<td>audience 15</td>
<td></td>
</tr>
<tr>
<td>automatic updates 21</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>BalaBit IT Security for Microsoft ISA and TMG Events 77</td>
<td></td>
</tr>
<tr>
<td>BalaBit IT Security for Microsoft Windows Events 73</td>
<td></td>
</tr>
<tr>
<td>Barracuda Spam &amp; Virus Firewall 83</td>
<td></td>
</tr>
<tr>
<td>Barracuda Web Application Firewall 19</td>
<td></td>
</tr>
<tr>
<td>Barracuda Web Filler 85</td>
<td></td>
</tr>
<tr>
<td>Bit9 Security Platform 19</td>
<td></td>
</tr>
<tr>
<td>Blue Coat SG 19, 93</td>
<td></td>
</tr>
<tr>
<td>BlueCat Networks Adonis 89</td>
<td>19</td>
</tr>
<tr>
<td>Bridgewater Systems 103</td>
<td></td>
</tr>
<tr>
<td>Brocade Fabric OS 105</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>CA ACF2 107, 112</td>
<td></td>
</tr>
<tr>
<td>CA SiteMinder 121</td>
<td></td>
</tr>
<tr>
<td>CA Top Secret 123</td>
<td></td>
</tr>
<tr>
<td>Check Point FireWall-1 137</td>
<td></td>
</tr>
<tr>
<td>Check Point Provider-1 150</td>
<td></td>
</tr>
<tr>
<td>Cilasoft QJRN/400 155</td>
<td></td>
</tr>
<tr>
<td>Cisco ACE Firewall 159</td>
<td></td>
</tr>
<tr>
<td>Cisco ACS 163</td>
<td></td>
</tr>
<tr>
<td>Cisco Aironet 161</td>
<td></td>
</tr>
<tr>
<td>Cisco ASA 167</td>
<td></td>
</tr>
<tr>
<td>Cisco CallManager 172</td>
<td></td>
</tr>
<tr>
<td>Cisco Catalyst Switch 173</td>
<td></td>
</tr>
<tr>
<td>Cisco CatOS for Catalyst Switches 173</td>
<td></td>
</tr>
<tr>
<td>Cisco CSA 175</td>
<td></td>
</tr>
<tr>
<td>Cisco FWSM 177</td>
<td></td>
</tr>
<tr>
<td>Cisco Identity Services Engine 196</td>
<td></td>
</tr>
<tr>
<td>Cisco IDS/IPS 178</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS 183</td>
<td></td>
</tr>
<tr>
<td>Cisco Ironport 19</td>
<td></td>
</tr>
<tr>
<td>Cisco NAC appliance 180</td>
<td></td>
</tr>
<tr>
<td>Cisco Nexus 182</td>
<td></td>
</tr>
<tr>
<td>Cisco PIX Firewall 185</td>
<td></td>
</tr>
<tr>
<td>Cisco VPN 3000 Concentrator 18</td>
<td></td>
</tr>
<tr>
<td>Cisco Wireless LAN Controllers 196</td>
<td>191</td>
</tr>
<tr>
<td>Cisco Wireless Services Module (WiSM) 188</td>
<td></td>
</tr>
<tr>
<td>Citrix Access Gateway 203</td>
<td></td>
</tr>
<tr>
<td>Citrix NetScaler 201</td>
<td></td>
</tr>
<tr>
<td>CloudPassage Halo 19, 205</td>
<td></td>
</tr>
<tr>
<td>conventions 15</td>
<td></td>
</tr>
<tr>
<td>Correlog Agent 207</td>
<td></td>
</tr>
<tr>
<td>Correlog Agent for IBM z/OS 19</td>
<td></td>
</tr>
<tr>
<td>CRYPTOCard CRYPTO-Shield 209</td>
<td></td>
</tr>
<tr>
<td>Cyber-Ark Vault 211</td>
<td>209</td>
</tr>
<tr>
<td>CyberGuard Firewall/VPN 213</td>
<td>19, 205</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Damballa Failsafe 215</td>
<td></td>
</tr>
<tr>
<td>Deep Discovery Analyzer 20</td>
<td></td>
</tr>
<tr>
<td>DG Technology MEAS 19, 217</td>
<td>19, 217</td>
</tr>
<tr>
<td>Digital China Networks DCS/DCRS Series Switch 219</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Enterasys 800-Series Switch 239</td>
<td>239</td>
</tr>
<tr>
<td>Enterasys Dragon 223</td>
<td></td>
</tr>
<tr>
<td>Enterasys HiGuard Wireless IPS 230</td>
<td>230</td>
</tr>
<tr>
<td>Enterasys HiPath Wireless Controller 231</td>
<td></td>
</tr>
<tr>
<td>Enterasys Matrix K/N/S Series Switch 237</td>
<td></td>
</tr>
<tr>
<td>Enterasys Matrix Router 236</td>
<td></td>
</tr>
<tr>
<td>Enterasys Matrix Series 237</td>
<td></td>
</tr>
<tr>
<td>Enterasys NAC 239</td>
<td></td>
</tr>
<tr>
<td>Enterasys NetSight Automatic Security Manager 236</td>
<td></td>
</tr>
<tr>
<td>Enterasys Stackable and Standalone Switches 233</td>
<td></td>
</tr>
<tr>
<td>Enterasys XSR Security Router 235</td>
<td>233</td>
</tr>
<tr>
<td>Extreme Networks ExtremeWare 243</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F5 Networks BIG-IP AFM 245</td>
<td></td>
</tr>
<tr>
<td>F5 Networks BIG-IP APM 250</td>
<td></td>
</tr>
<tr>
<td>F5 Networks BIG-IP ASM 251</td>
<td></td>
</tr>
<tr>
<td>F5 Networks BIG-IP LTM 253</td>
<td></td>
</tr>
<tr>
<td>F5 Networks FirePass 255</td>
<td></td>
</tr>
<tr>
<td>Fair Warning 259</td>
<td></td>
</tr>
<tr>
<td>Fidelis XPS 261</td>
<td></td>
</tr>
<tr>
<td>FireEye 19, 263, 419</td>
<td></td>
</tr>
<tr>
<td>ForeScout CounterACT 265</td>
<td></td>
</tr>
<tr>
<td>Fortinet FortiGate 269</td>
<td></td>
</tr>
</tbody>
</table>

IBM Security QRadar DSM Configuration Guide
G
Generic Authentication Server 277
Generic Firewall 273
Great Bay Beacon 281

H
HBGary Active Defense 283
Hewlett Packard UniX 291
high availability 21
Honeycomb Lexicon File Integrity Monitor 285
HP ProCurve 289
Huawei AR Series Router 293
Huawei S Series Switch 295

I
IBM 19
IBM AIX Audit 19
IBM AIX Server 19
IBM AS/400 iSeries 19
IBM CICS 299
IBM DB2 323
IBM Federated Directory Server 19
IBM Federated Directory Service 303
IBM Fiberlink MaaS360 19
IBM Guardium 346
IBM IMS 340
IBM Informix Audit 339
IBM ISS Proventia 310
IBM Lotus Domino 303
IBM Privileged Session Recorder 19
IBM Proventia Management SiteProtector 306
IBM RACF 310
IBM Security Access Manager for Enterprise Single Sign-On 368
IBM Security Identity Manager 361
IBM Security Network IPS 19
IBM Security Network Protection (XGS) 366
IBM SmartCloud Orchestrator 20
IBM Tivoli Access Manager for e-business 354
IBM Tivoli Endpoint Manager 20
IBM WebSphere DataPower 20
IBM WebSphere Application Server 334
IBM zSecure Alert 360
Imperva SecureSphere 603
Infoblox NIOS 377
installing DSM bundle 25
installing DSMs 21
Internet System Consortium (ISC) Bind 373
ISC Bind 373
IT-CUBE agileSI 379
Itron Smart Meter 383

J
Juniper DDoS Secure 387
Juniper DX Application Acceleration Platform 387
Juniper EX Series Ethernet Switch 388
Juniper IDP 389
Juniper Infranet Controller 394
Juniper Junos OS 397
Juniper Junos WebApp Secure 407
Juniper Networks AVT 385
Juniper Networks Firewall and VPN 395
Juniper Networks NSM 395
Juniper Networks Secure Access 391
Juniper Networks vGW 402
Juniper Secure Services Gateway (SSG) 395
Juniper Security Binary Log Collector 404
Juniper Steel-Belted Radius 400

K
Kaspersky Security Center 20
Kisco Information System SafeNet/i 20

L
Lastline Enterprise 20
Lieberman Random Password Generator 421
Linux DHCP Servers 423
Linux iptables 424
Linux OS 427
LOGbinder EX event collection from Microsoft Exchange Server 20, 456
LOGbinder SP event collection from Microsoft SharePoint 20
LOGbinder SQL event collection from Microsoft SQL Server 20

M
manually installing DSMs 24
McAfee Application / Change Control 437
McAfee ePolicy Orchestrator 20, 431
McAfee Intrushield 431
McAfee Web Gateway 439
MetalInfo MetalIP 447
Microsoft DHCP Server 456
Microsoft Endpoint Protection 478
Microsoft Exchange Server 20, 449
Microsoft IAS 456
Microsoft IIS Server 457
Microsoft Internet and Acceleration Server 463
Microsoft ISA 463
Microsoft Operations Manager (MOM) 472
Microsoft SharePoint 464
Microsoft SQL Server 20
Microsoft System Center Operations Manager (SCOM) 475
Motorola Symbol AP 681

N
Name Value Pair 421, 487
NetApp Data ONTAP 485
Niksun NetVCR 2005 491
Nokia Firewall 493
Nominum Vantio 499
Nortel Application Switch 504
Nortel ARN 27
Nortel Contivity 505
Nortel Ethernet Routing Switch 2500/4500/5500 505
Nortel Ethernet Routing Switch 8300/8600 506
Nortel Multiprotocol Router 501
Nortel Secure Network Access Switch 509
Nortel Secure Router 508
Nortel Switched Firewall 5100 510
Nortel Switched Firewall 6000 512
Nortel VPN Gateway 515
Novell eDirectory 517

O
Open LDAP Software 531
Open Source SNORT 535
OpenBSD 529
OpenStack 20
Openstack 537
Oracle Acme Packet Session Border Control 555
Oracle Audit Records 539
Oracle Audit Vault 547
Oracle BEA WebLogic 550
Oracle DB Listener 542
Oracle Fine Grained Auditing 559
Oracle OS Audit 548
OSSEC 563
overview 17

P
Palo Alto Networks 20, 565
PGP Universal Server 678
Pirean Access One 567
PostFix Mail Transfer Agent 571
ProFTpd 575
Proofpoint Enterprise Privacy 577
Proofpoint Enterprise Protection 577

R
Radware DefensePro 581
Raz-Lee iSecurity for IBM i 583
Redback Networks ASE 587
Riverbed 589
Riverbed SteelCentral NetProfiler (Cascade Profiler) Alert 20
RSA Authentication Manager 591

S
SafeNet DataSecure 20
Safenet/DataSecure 595
Salesforce Security Auditing 20, 597, 753
Salesforce Security Monitoring 20, 597, 753
Samhain 599
Secure Computing Sidewinder 611
Sentrigo Hedgehog 609

SolarWinds Orion 613
SonicWALL 615
Sophos Astaro Security Gateway 631
Sophos Enterprise Console 617, 620
Sophos PureMessage 623
Sophos Web Security Appliance 632
Sourcefire 633
Sourcefire Defense Center (DC) 20
Sourcefire Intrusion Sensor 20, 47, 635
Splunk 637
Squid Web Proxy 641
SSH CryptoAuditor 20
Starent Networks 645
Stonesoft Management Center 653
stored events 22
Sun Solaris 657
Sun Solaris Basic Security Mode (BSM) 660
Sun Solaris DHCP 658
Sybase ASE 667
Symantec Critical System Protection 20
Symantec Data Loss Prevention (DLP) 674
Symantec Endpoint Protection 669
Symantec PGP Universal Server 678
Symantec SGS 670
Symantec SSC 670
Symark PowerBroker 685

T
ThreatGRID Malware Threat Intelligence Platform 689
TippingPoint Intrusion Prevention System 695
TippingPoint X Series Appliances 698
Top Layer IPS 699
Trend Micro Control Manager 702
Trend Micro Deep Discovery 708
Trend Micro InterScan VirusWall 701
Trend Micro Office Scan 704
Trend MicroWatchGuard Fireware OS 20
Tripwire 709
Tropos Control 711
Trusteer Apex Local Event Aggregator 713

U
Universal
Configurable Authentication Server 277
Device Support Module (DSM) 717
Generic Firewall 273
LEEF 719
Universal CEF 20, 715

V
Venustech Venusense 727
Verdasys Digital Guardian 731
Vericept Content 360 735
VMWare 737
VMware vCloud 743
W
Watchguard Fireware OS 20
Websense Content Gateway 759
Websense Data Security Suite 757
Websense TRITON 755

Z
Zscaler NSS 410, 763