Table of Contents

IBM WebSphere Developer Technical Journal

Issue 14.6 : September 21, 2011

From the editor

In this issue of the IBM® WebSphere® Developer Technical Journal, you'll find several pieces that discuss bridging the old and the new. That includes introducing new ways to streamline traditional batch processing, finding new life for "green screen" applications on smart mobile devices, and using new products and technologies to keep even your most current applications fresh, efficient, and relevant. The theme also extends to this issue's columns, with guidelines for modernizing applications with Web 2.0, and new tips for keeping an eye on your exisiting applications' behavior.

Your required reading begins below…

Feature articles

 • - CollapseSkip-record processing enhances the efficiency and resiliency of WebSphere Compute Grid batch applications
 by
 Robert Alderman
 IBM WebSphere Extended Deployment Compute Grid V8 offers a new feature called skip-record processing for controlling how a batch application responds to error conditions. Skip-record processing enables a batch data stream to automatically skip records that encounter read or write exceptions. This feature is useful when dealing with very large datasets that could contain a few bad records. The batch application can log the skip, discard the bad record, and continue processing the remaining records without interruption, thereby improving the efficiency of the batch environment. The environment is also more resilient, in that a single bad record does not interrupt the entire batch job. This article explains how skip-record processing works and how batch applications can use this new feature.
 • - CollapseUsing a recommendation engine to personalize your web application
 by
 Emilio Zegarra and Tony Efremenko
 Most businesses are interested in finding new ways to drive traffic and generate revenue from their online investments. One way to address this challenge is to use a recommendation engine, which can make informed suggestions to drive visitors to explore further offerings on your web site. These engines apply a variety of patterns and analyze user habits to offer recommendations to users, and can be helpful in presenting offerings that a user might not otherwise know about. This article explains how to integrate Apache Mahout, an open source recommendation engine, with IBM WebSphere Application Server V8.0 and IBM Rational Application Developer for WebSphere Software V8.0.3.

 • - CollapseReusing rules within a ruleset to avoid creating redundant business rule variations
 by
 Raj Rao
 IBM WebSphere ILOG JRules is IBM's Business Rule Management System (BRMS) that enables business users to dynamically control automated business decisions with business rules. One of the advantages of using BRMS is that rulesets can be reused across different client applications – but this article is not about that. Instead, this article focuses on those situations where an unwitting practitioner might clone business rules within a ruleset to apply the same business policy to disparate business entities or different contexts. This article presents such a scenario and outlines different techniques for reusing the rules across different contexts, thereby avoiding duplication and improving maintainability and performance.

 • - CollapseBridging Web 2.0 and SOA using WebSphere DataPower
 by
 Robert Peterson and Gerald Kaplan
 As you probably know, REST (Representational State Transfer) is an important Web 2.0 technology that has become a popular alternative to other Web-based services, such as SOAP-based Web services and Enterprise JavaBeans (EJB). Many Internet-facing companies provide REST-based services; a common scenario is to expose a RESTful interface in front of an existing legacy system or peer system (SOAPful services). This article explains how to build a JSON-enabled RESTful service on an IBM WebSphere DataPower SOA Appliance, bridging it to a SOAPful backend Web service. Sample REST/JSON code is included to demonstrate best practices, along with explanations of how the example was implemented and configuredto one that leverages WebSphere eXtreme Scale as the dynamic cache provider.
 • Create an ILOG Dojo Diagrammer application for touch-enabled mobile devices
 by
 Stéphane Lizeray
 This article introduces Dojo Mobile and IBM ILOG Dojo Diagrammer, and explains how to write a simple application for mobile devices using Web 2.0 technologies; namely the Dojo Mobile library that comes with the Dojo Toolkit, and IBM ILOG Dojo Diagrammer, which is part of the WebSphere Application Server Feature Pack for Web 2.0 and Mobile V1.1. Out of the box, IBM ILOG Dojo Diagrammer automatically detects touch-enabled devices and provides standard touch interactions with common touch gestures. You'll see how to add custom actions by connecting application code to mouse events, which are triggered by the native touch events of the mobile device, and create a diagram application with the native look and feel of the mobile device.

The Support Authority

Innovations within reach

 • The parameters that matter most for creating interactive diagrams on mobile devices
 by
 Adrian Vasiliu
 IBM ILOG Dojo Diagrammer includes a comprehensive set of graph layout algorithms that come with a vast number of customization parameters. This article provides a quick reference guide of the most important parameters you need to know about for each algorithm, along with tips on the parameters that can significantly influence performance. and hints for optimizing the diagramming applications using graph layouts on mobile devices.

Comment lines

 • Ensuring enterprise availability when deploying Enterprise JavaBeans in WebSphere Application Server
 by Hendrik van Run
 IBM WebSphere Application Server Network Deployment provides workload management-type capabilities for multiple protocols. This enables the distribution of an application’s workload across Network Deployment application servers. While the majority of new Java EE applications employ HTTP protocol workloads, there are still many Java EE applications that employ IIOP protocol workloads, with EJB applications deployed in dedicated application servers or clusters. Sometimes the client even resides in a different cell, which complicates the deployment and configuration …”
 • - CollapseTools for modernizing enterprise applications and the way you develop them
 by
 Reginaldo Barosa
 We all know how fast technology changes. Remember pagers, for example? It is not a stretch to assume that any new technology adopted now probably will be obsolete or at least considered 'ancient' in ten or twenty years, perhaps even sooner. That might be one reason why there is a strong, ongoing desire to modernize existing applications. And besides, no one wants to use the ugly 'green screens' anymore …”

- CollapsedeveloperWorks

Throughout this document ** indicates a link that will open a Web browser.

Visit the IBM WebSphere Developer Technical Journal** on IBM developerWorks WebSphere**.

© Copyright IBM Corporation 2011. All rights reserved.

Skip-record processing enhances the efficiency and resiliency of WebSphere Compute Grid batch applications

Robert Alderman, Advisory Software Engineer, IBM

Summary: IBM® WebSphere® Extended Deployment Compute Grid V8 offers a new feature called skip-record processing for controlling how a batch application responds to error conditions. Skip-record processing enables a batch data stream to automatically skip records that encounter read or write exceptions. This feature is useful when dealing with very large datasets that could contain a few bad records. The batch application can log the skip, discard the bad record, and continue processing the remaining records without interruption, thereby improving the efficiency of the batch environment. The environment is also more resilient, in that a single bad record does not interrupt the entire batch job. This content is part of the IBM WebSphere Developer Technical Journal**.

© Copyright IBM Corporation 2011. All rights reserved.

Throughout this document ** indicates a link that will open a Web browser.

Date: 21 Sep 2011
Level: Intermediate

Introduction

Batch applications can encounter errors when reading or writing records that could terminate the batch job. If a particular error is not explicitly handled by the application, the record gets thrown back to the batch container, which rolls back the current checkpoint transaction and ends the job in restartable state. The job can be restarted from the previous checkpoint, but this requires some type of external intervention; typically, a user must log in to the Job Management Console and click Restart. Until then, all records subsequent to the errant record are inefficiently left unprocessed until the job is restarted. Furthermore, if the errant record is not corrected, then the restarted job will most likely experience the same error. The error must be corrected before the job can proceed to completion, which means the remaining records go unprocessed until the errant record can be fixed.

This failure scenario, though familiar and historical, presents a challenge in creating an efficient and resilient batch environment. One way of handling the failure is to code the resiliency directly into the batch application; the batch application could catch and handle read and write exceptions itself. However, this approach conflicts with the conventional paradigm that separates business logic from infrastructure responsibilities. The batch application should only be concerned with the business logic necessary to process a record; it should not be concerned with building a resilient batch infrastructure. That’s the batch container’s responsibility.

IBM WebSphere Extended Deployment Compute Grid V8 provides a new feature for handling this type of failure scenario called skip-record processing.

Skip-record processing enables a batch data stream to skip records that encounter read or write exceptions. You can specify which types of exceptions are "skippable" and how many skips are permitted. The batch container handles the skippable exception and skips the record automatically, beneath the awareness of the batch application. The batch application moves on to the next record, automatically and uninterrupted. If a batch data stream encounters an exception that is not in the skippable list, or if it has reached the skip limit, it throws the exception back to the batch application.

The batch application can listen for skipped records by registering a SkipListener with the batch data stream. The SkipListener callback gives the batch application a hook point that it can use to gain control for every record that is skipped, in case the application wishes to log the failure or take some other action. Registering a SkipListener is recommended for the purpose of logging and auditing skipped records.

This article explains how skip-record processing works and how batch applications can use this new feature. For illustrative purposes, an example application that uses skip-record capabilities, SkipRetrySample, is included with this article.

Configuring and activating a skip-record policy

Skip-record processing is enabled by specifying a non-zero value for the com.ibm.batch.bds.skip.count property. This property is defined in the xJCL within the <props> element of a <bds>.

(Only batch data streams that inherit from com.ibm.websphere.batch.devframework.datastreams.bdsadapter.AbstractBatchDataInputStreamRecordMetrics or com.ibm.websphere.batch.devframework.datastreams.bdsadapter.AbstractBatchDataOutputStreamRecordMetrics support skip-record processing. All batch data streams provided by the WebSphere Compute Grid v8 batch data stream framework inherit from one of these two classes, and therefore all support skip-record processing.)

Each batch data stream has its own skip-record policy configuration. The optional properties below control the behavior of the skip-record policy for a particular batch data stream. Each is defined in the <props> element of a <bds>:

 • com.ibm.batch.bds.skip.count

Specifies the number of records that can be skipped. This is also known as the skip limit. Once the skip limit is reached, no further records are skipped. Any further record-access exceptions are percolated to the caller.

 • com.ibm.batch.bds.skip.include.exception.class.n

Specifies a list of exceptions that are skippable; n is an integer, starting at 1 and incrementing by 1 for each exception. If no exceptions are specified, then all exceptions are included in the skippable list.

 • com.ibm.batch.bds.skip.exclude.exception.class.n

Specifies a list of exceptions that are not skippable. If no exceptions are specified, then no exceptions are excluded from the skippable list (that is, all exceptions are skippable).

Be aware that com.ibm.batch.bds.skip.include.exception.class.n and com.ibm.batch.bds.skip.exclude.exception.class.n are mutually exclusive properties. It doesn’t make sense to define both at the same time: if you define a single exception in the include list, then all other exceptions are excluded; if you define a single exception in the exclude list, then all other exceptions are included.

How the batch container handles skipped records

When a batch data stream encounters a skippable exception:

 1. The batch data stream consumes the exception and increments the running skip count.
 2. The skip is logged with this message:

CWLRB5852I: Record skipped by batch data stream inputEmp in job SkipRetrySample:00035 step SkipRetryStep1 due to error java.lang.NumberFormatException: For input string: "BAD"

 1. The SkipListener callback is invoked, if one is registered.
 2. When an input record is skipped, the batch data stream immediately attempts to read the next record. Control does not return to the caller until either:
 • A record is read successfully.
 • A non-skippable exception occurs.
 • The skip limit is reached.
 3. When an output record is skipped, the batch data stream returns to the caller normally.

Skip-record processing is contained entirely within the batch data stream. The batch application is unaware that records have been skipped, but it can optionally be notified when records are skipped by registering a SkipListener with the batch data stream. SkipListeners are discussed in the next section.

The running skip count is persisted with the batch data stream at checkpoints. Any skips that occur during a checkpoint that eventually rolls back are not included in the count when the job is restarted. The batch data stream resumes with the skip count from the last committed checkpoint.

Registering a SkipListener

A batch application can register a SkipListener with the batch data stream in order to listen for skipped records. The primary purpose of the SkipListener is to provide the batch application with a mechanism for logging and auditing skipped records.

The batch container logs a message for every skipped record, and also logs a message at the end of the job to indicate the total number of skips. However, it is strongly recommended to implement a SkipListener, as the SkipListener can access the state of the batch application, if it wishes, to log a detailed account of which records were skipped and why.

The logging of skipped records is crucial for auditing the skips later, after the job has finished. A job that skips some records will still end in the normal "ended" state (as long as the number of skipped records is below the skip limit). Therefore, you should use a SkipListener to make it very apparent to job auditors that records were skipped, and to provide a detailed accounting of those skips so that the errors can be rectified and the records re-processed.

The batch data stream invokes the SkipListener each time a record is skipped. The SkipListener must implement the com.ibm.websphere.batch.SkipListener interface. The interface consists of these methods:

 • public void onSkippedRead(Throwable t);

Invoked when an input record is skipped. The exception is passed as an argument.

 • public void onSkippedWrite(Object record, Throwable t);

Invoked when an output record is skipped. The record that failed and the exception are passed as arguments.

The SkipListener is registered with the batch data stream via the AbstractBatchDataStreamRecordMetrics.addSkipListener method.

The batch data stream must be cast to com.ibm.websphere.batch.devframework.datastreams.bdsadapter.AbstractBatchDataStreamRecordMetrics in order to access the addSkipListener method. All batch data streams provided by the WebSphere Compute Grid V8 batch data stream framework support skip-record processing, and so they all implement the AbstractBatchDataStreamRecordMetrics interface.

Example application

A sample application that utilizes the various capabilities of skip-record processing is included with this article for demonstration purposes. The SkipRetrySample is a very simple batch application that updates employee records. The records are read from a text file, updated by the application, then written to another text file. The key classes from the application are:

Further testing with the sample application

The SkipRetrySample application also contains code that is capable of utilizing the various capabilities of retry-step processing. This code is disabled for the purpose of this article, but it can be easily enabled by adding a retry-step policy to the xJCL. To learn more about retry-step processing, refer to the WebSphere Compute Grid V8 Information Center.

 • com.ibm.ws.batch.srs.EmpProcessor

Implements the BatchJobStepInterface.

 • com.ibm.ws.batch.srs.bds.EmpFileReader

FileReaderPattern for input BDS.

 • com.ibm.ws.batch.srs.bds.EmpFileWriter

FileWriterPattern for output BDS.

 • com.ibm.ws.batch.srs.EmpRecord

Encapsulates an employee record.

 • com.ibm.ws.batch.srs.MySkipListener

SkipListener implementation.

Simulating record-access errors and using skip-record processing

In order to simulate skippable exceptions, the input data contains a handful of records with bad data. Specifically, the bad records contain text data in a field that is expected to contain only numeric data (instead of a number, they contain the text BAD). This causes a NumberFormatException when the batch application’s FileReaderPattern, EmpFileReader, attempts to read the record and construct an EmpRecord object out of it.

The SkipRetrySample xJCL lists java.lang.NumberFormatException as a skippable exception for the batch data stream. Therefore, the batch data stream will skip these bad records and immediately move on and fetch the next record from the stream.

Configuring and activating the skip-record policy

Listing 1 shows an excerpt from the xJCL showing the skip-record policy definition for the batch data stream named "inputEmp."

Listing 1. xJCL excerpt showing skip-record policy configuration

<batch-data-streams>
 <bds>
 <logical-name>inputEmp</logical-name>
 <props>
 <prop name="PATTERN_IMPL_CLASS" value="com.ibm.ws.batch.srs.bds.EmpFileReader"/>
 <prop name="file.encoding" value="${fileEncoding}"/>
 <prop name="FILENAME" value="${inputEmpFile}" />
 <prop name="com.ibm.batch.bds.skip.count" value="3" />
 <prop name="com.ibm.batch.bds.skip.include.exception.class.1"
 value="java.lang.NumberFormatException" />
 </props>
 <impl-class>
 com.ibm.websphere.batch.devframework.datastreams.patterns.TextFileReader
 </impl-class>
 </bds>

...

The skip limit is set to 3, meaning the batch data stream will tolerate up to three skipped records. Only java.lang.NumberFormatExceptions will be skipped, as it is the only class listed in the include list. If the batch data stream encounters any other type of error, or if it encounters a fourth NumberFormatException (which means it has exceeded the skip limit), then the exception will percolate to the caller and the record will not be skipped.

When the SkipRetrySample job is executed, the bad records will generate NumberFormatExceptions, which will be detected by the batch data stream. The batch data stream will skip those records and continue processing the input data, enabling the job to complete despite the presence of the errant records.

Adding a SkipListener and auditing skipped records

The SkipRetrySample also illustrates the use of a SkipListener. The SkipListener is registered with the batch data stream under EmpProcessor.createJobStep (Listing 2).

Listing 2. Registering a SkipListener with a batch data stream

public void createJobStep()
{
 ...
 // Open BDS
 _inputEmpBDS=(AbstractBatchDataInputStream)BatchDataStreamMgr.getBatchDataStream(
 "inputEmp", getJobStepID());

 // Add SkipListener
 _mySkipListener = new MySkipListener();
 ((AbstractBatchDataStreamRecordMetrics)_inputEmpBDS).addSkipListener(_mySkipListener);
 ...

}

Whenever an input record is skipped, the batch data stream will call SkipListener.onSkippedRead. The MySkipListener implementation is very simple: it logs the last "clean" record (that is, the last record that was successfully read from the stream) for auditing purposes. After the job completes, you will likely want to know whether or not records were skipped, and if so, which records were bad. Since the actual bad record is not accessible (because it failed to be read), MySkipListener logs the previously loaded record. This will help you quickly locate the failing record. The code excerpt is shown in Listing 3.

Listing 3. Sample SkipListener implementation that logs skip errors

public void onSkippedRead(Throwable t)
{
 logger.log(Level.FINE,"onSkippedRead called for failure", t);
 logger.log(Level.FINE,"last clean record", _lastCleanRecord);

}

The last clean record is set into MySkipListener under EmpProcessor.processJobStep whenever a record is read successfully (Listing 4).

Listing 4. EmpProcessor.processJobStep supplies record info to SkipListener

public int processJobStep()
 throws Exception
{
 ...
 if (_inputEmpBDS.hasNext())
 {
 EmpRecord empRecord = (EmpRecord)_inputEmpBDS.read();
 _mySkipListener.setLastCleanRecord(empRecord);
 ...
 }
 ...

}

Logging the skip-record count with record metrics

The batch data stream framework keeps track of these metrics for each batch data stream:

 • skip: the number of skipped records
 • rps: the record processing rate, in records per second.

Only batch data streams that inherit from com.ibm.websphere.batch.devframework.datastreams.bdsadapter.AbstractBatchDataInputStreamRecordMetrics or com.ibm.websphere.batch.devframework.datastreams.bdsadapter.AbstractBatchDataOutputStreamRecordMetrics maintain record metrics. Because all batch data stream classes provided by WebSphere Compute Grid inherit from one of these two classes, they all maintain record metrics.

These metrics are reported at the end of the job in the messages. Notice that each batch data stream has its own set of metrics.

Listing 5. Record metric messages logged at the end of the job step

CWLRB5844I: [06/11/11 11:37:47:906 EDT] Job Step Batch Data Stream
[SkipRetrySample:00035,SkipRetryStep1,outputEmp]: Metric = skip Value = 0
CWLRB5844I: [06/11/11 11:37:47:906 EDT] Job Step Batch Data Stream
[SkipRetrySample:00035,SkipRetryStep1,outputEmp]: Metric = rps Value = 82,074
CWLRB5844I: [06/11/11 11:37:47:906 EDT] Job Step Batch Data Stream
[SkipRetrySample:00035,SkipRetryStep1,inputEmp]: Metric = skip Value = 2
CWLRB5844I: [06/11/11 11:37:47:906 EDT] Job Step Batch Data Stream

[SkipRetrySample:00035,SkipRetryStep1,inputEmp]: Metric = rps Value = 78,265

The batch data stream record metrics are also available to the batch application at run time. They can be retrieved from the JobStepContext via JobStepContext.getRecordMetrics. The SkipRetrySample illustrates how to retrieve the metrics in the EmpProcessor.checkMetrics method (Listing 6).

Listing 6. Retrieving RecordMetrics in the batch application

private void checkMetrics()
{
 ...
 RecordMetrics inputEmpRM = JobStepContextMgr.getContext().getRecordMetrics("inputEmp");
 long skips = inputEmpRM.getMetric(RecordMetrics.MetricName.skip);
 long rps = inputEmpRM.getMetric(RecordMetrics.MetricName.rps);

 logger.fine("RecordMetric data for inputEmp BDS. Number of skipped records = " + skips
 + ". Records/second = " + rps);

}

Record metrics are persisted in the LOCALJOBSTATUS table of the LRSCHED database.

Conclusion

By adding a skip-record policy configuration to your batch application, you can enhance its efficiency by enabling the job to process large data sets to completion – even if the data contains a few bad records that would otherwise interrupt the job, leaving the remaining records unprocessed until the errant record is corrected. A skip-record policy also improves the resiliency of the batch application by responding dynamically to record failures.

Download

View this article online** for full access to these resources

Resources

View this article online** for full access to these resources

Learn

Get products and technologies

 • Download Extended Deployment Compute Grid trial version

About the author

Rob Alderman is an Advisory Software Engineer at IBM. He works in the WebSphere development group, specializing in WebSphere Compute Grid and WebSphere Application Server for z/OS. Rob earned a dual BS degree in computer systems engineering and computer science from Rensselaer Polytechnic Institute (RPI) in Troy, NY.

Using a recommendation engine to personalize your web application

Enhancing the user experience with Apache Mahout and WebSphere Application Server

Emilio Zegarra, Senior Software Engineer, IBM

Tony Efremenko, Senior Software Engineer, IBM

Summary: Most businesses are interested in finding new ways to drive traffic and generate revenue from their online investments. However, increasing the amount of information and services that are available online makes it challenging for a business to make such information available to customers in a quick and personalized way. One way to address this challenge is to use a recommendation engine, which can drive visitors to your web site to explore further offerings. These engines apply a variety of patterns and analyze user habits to offer recommendations to users, and can be helpful in presenting offerings that a user might not otherwise know about. This article explains how to integrate Apache Mahout, an open source recommendation engine, with IBM® WebSphere® Application Server V8.0 and IBM Rational® Application Developer for WebSphere Software V8.0.3. This content is part of the IBM WebSphere Developer Technical Journal**.

© Copyright IBM Corporation 2011. All rights reserved.

Throughout this document ** indicates a link that will open a Web browser.

Date: 21 Sep 2011
Level: Intermediate

Introduction

To stay relevant in a fast paced, global industry, technical professionals must keep track of the big trends in IT and find ways to incorporate the important ones in their company’s technology portfolio. One such trend is the use of recommendation engines to drive users to explore further offerings from your web site or business. These engines provide recommendations to users based on a variety of patterns, and are helpful in guiding users to consider offerings that they might not otherwise be aware of, based on their specific user habits.

Some very popular web sites make extensive use of recommendation engines. Visitors to Amazon or Netflix, for example, often see personalized recommendations phrased something like, “If you liked that item, you might like also like this one...” These sites use recommendations to help drive users (and revenue) to other things they offer in an intelligent, meaningful way, tailored specifically to the user and the user’s preferences.

Even if your business doesn’t offer books or movies, there could be plenty of reasons for implementing something similar. You can recommend related products that your business provides, especially if you have a broad portfolio of offerings. You can offer recommendations for more abstract concepts, such as relevant pages you’d like the user to visit, a list of popular services, applicable educational opportunities, special offers, or access to helpful technical support documents.

Instead of trying to guess what your broad user base is interested in, personalization by means of recommendations enables you to identify the likes and dislikes of individual users unobtrusively and intelligently, and use this information to customize each user’s experience. The task of recommending a new choice based on past behavior is one that has broad uses across many applications and industries, and so this is the example that will be referred to throughout this article.

Apache Mahout is an open source recommendation engine that provides a good application of these concepts, and is small but powerful enough to implement in small to medium business cases. This article outlines how to integrate Apache Mahout V0.5 with IBM WebSphere Application Server V8 using IBM Rational Application Developer for WebSphere Software V8.0.3. It begins with an overview of recommendation engines, describes Apache Mahout at a high level, explains how you can integrate it with WebSphere Application Server and Rational Application Developer, and then offers some next steps for finding out more about this technology.

Overview of a recommendation engine

The main purpose of a recommendation engine is to make inferences on existing data to show relationships between objects. Objects can be many things, including users, items, products, and so on. Relationships provide a degree of likeness or belonging between objects. For example, relationships can represent ratings of how much a user likes an item (scalar), or indicate if a user bookmarked a particular page (binary).

To make a recommendation, recommendation engines perform several steps to mine the data. Initially, you begin with input data that represents the objects as well as their relationships. Input data consists of object identifiers and the relationships to other objects. Figure 1 shows this at a high level.

Figure 1. The big picture
Figure 1. The big picture

Consider the ratings users give to items. Using this input data, a recommendation engine computes a similarity between objects. Computing the similarity between objects can take a great deal of time depending on the size of the data or the particular algorithm. Distributed algorithms such as Apache Hadoop can be used to parallelize the computation of the similarities. There are different types of algorithms to compute similarities. Finally, using the similarity information, the recommendation engine can make recommendation requests based on the parameters requested.

It could be that you believed recommendation engines were helpful, but stayed away because you thought they were too complicated to try. The recommendation engine domain is in fact large and can be very complex. Fortunately, there are tools available that make it easy to show the necessary concepts within the time and space of a single article. Even better, once taught, those same tools can be used to apply the lesson to the real world. The designers of Apache Mahout made scalability and availability a central part of the project, so you can build out your solution as your needs expand.

There are a few important decisions to make when you decide to start personalizing your application and want to use recommendation engine:

 • Which algorithm to apply

The most important decision you’ll need to make is what algorithm to apply to your data. The selection of the algorithm depends on what you want to identify and what type of relationship is specified in your data. Some of the common approaches used for recommendations include:

 • Collaborative filtering: This approach relies on the social interaction between users. The recommendations are based on rakings provided by other users.
 • Clustering: With this approach, the recommendation engine tries to build recommendations based on the similarities between either the users or the items themselves.
 • Categorization: This approach automatically groups items together into categories using common attributes. In categorization, the computer attempts to classify all the items.

This article will focus on collaborative filtering to help you learn about the social aspects of your users; this is also a good starting point for adding recommendations to Web applications.

Collaborative filtering is an easy and popular technique. It’s easy because your customers do the important work for you – they drive the criteria of what you want to highlight. Collaborative filtering analyzes ratings from other users or items to make recommendations. There are two approaches within collaborative filtering: the main difference between them lies in the ability of each to scale as the number of users in the system grows:

 • User-based recommendation

This type of recommendation builds similarities between users by looking at the commonalities of the items rated by each user. For example, if the items are courses, two users could be considered very similar if they both took the same courses. In the other extreme, their similarity would be low if they did not take any similar course. To make recommendations, the algorithms rely on the ratings that similar users gave to those courses not taken by the user. This recommendation is the most basic one; however, its main limitation is that in order to generate the similarities, it needs to compare each user to every other user. This is acceptable for an application with a low number of users, but if the number of users increases, the time to perform this evaluation increases exponentially.

 • Item-based recommendation

Item-based recommendation, on the other hand, begins by looking at the items that are associated with the user. For each item associated with the user, the algorithm computes how similar it is to the other items in the collection to build the list of recommendations. In order to determine how likely the user is to like a recommended item, the algorithm looks at the ratings that the user has given to the item and gives a weighted rating to each recommended item. The main issue with item-based recommendation is that it needs to build a similarity index for every available item. Changes in the items, however, are less frequent than changes in users and, therefore, it is feasible with this type of recommendation to pre-compute similarities offline and update them at specific periods.

 • How to scale the process out to your users

The actual process of calculating similarity between users and items is a process-intensive operation. Depending on the size of your data set, the operation could take a few milliseconds to several minutes. When working with Web-based applications, response time becomes an issue if users need to wait for an extended period of time to receive a recommendation.

While it is possible to compute similarities between users and items in real time, you need to evaluate this carefully when you work with larger datasets. For both user- and item-based recommendation approaches, best practices recommend performing these calculations offline if the data sets are larger (for example, over 1 million ratings). Using offline calculations becomes feasible in cases where new items are added infrequently or users rate items only occasionally, because similarities only need to be computed when a new item is added or a new rating is applied to an item. In such as scenario, the recommendation engine can work using similarities that would be eventually consistent.

One approach for pre-computing similarities offline is by leveraging the distributed computation capabilities of products such as Apache Hadoop, an open source implementation of the MapReduce technique. This is why you’ll often hear about those systems mentioned along with recommendation engines. If you’re trying to recommend based on a vast, scattered array of data, you’ll need to boil the data down, and these systems enable you to do that.

Fortunately, Apache Mahout provides jobs that can be submitted to Apache Hadoop to help you compute your similarities. Once this calculation is complete, you can load the results into your desired data source so that your Web application can make use of it.

 • Where to store your data

Finally, you need to determine where to store your data. This data can contain the raw input data or the data with the similarities already computed by an offline process, such as Apache Hadoop. If the source of your data is a vast archive of raw data, you might need to mine it to get something to feed the recommendation engine. You can store your data sets in a file system or in a distributed data source. In the case where your data sets are small, you can have your programs read the data from the file system and store it in working memory. However, if the data sets are large, you might want to consider using a database management system such as IBM DB2®, Apache Derby, and so on. If you select a distributed data source, you will want to ensure that proper query optimization settings (such as indexes) are properly configured.

But it doesn’t have to be that complicated. To keep things simple, assume here that your pool of data is small enough to fit into a small database, such as Apache Derby, the Java™-based open source database management system shipped with WebSphere Application Server V8. The important thing is that when moving forward in your approach, you’ll need to determine, based on your particular data, whether you will need to make use of a distributed file system or a traditional relational database management system.

Sample scenario

As described in the developerWorks article Introducing Apache Mahout**, the goal of the Apache Mahout project is to build scalable machine learning libraries. Apache Mahout is implemented on top of Apache Hadoop but is not restricted to distributed file systems.

This brings us to the focus of this article, namely the machine-learning algorithms provided by Apache Mahout to process your data into a recommendation. For purpose of this article, we'll focus on the user-based filtering machine-learning task that Apache Mahout currently implements. Social references are used in this example because there are many of ways to get this data and the data is simple to log into a database.

Assume that you want to create a Web application that enables users to get item recommendations based on ratings provided by other users. The data set available contains ratings made by users about items. For simplicity, the sample data included with this article is generic, as we will only work with the identifiers of the users and the items. In a real world application, you will want to replace the unique identifier of a recommended item by its display name before presenting to user.

Figure 2. Sample topology
Figure 2. Flowchart

So, as shown in Figure 2, users would request a servlet in the application. The application will make a call to the recommendation engine to come up with a set of recommendations for the user. The recommendation engine will retrieve the data from a data source and calculate the similarities in real time.

Configure the development environment

To perform the steps outlined in this article, you will need to set up your development environment as described here:

 1. Download Apache Mahout
 1. Visit the the Apache Mahout web site and download the latest version of Apache Mahout. As the time of this writing, the latest version was 0.5 (mahout-distribution-0.5.zip).
 2. Extract the contents of the archive to a known location. These content files will be referenced later.
 2. Create the Java EE application project
 1. Start Rational Application Developer for WebSphere Software V8.0.3.
 2. Switch to the Java EE perspective.
 3. Select File > New > Enterprise Application Project.
 4. For Project Name, enter RecommenderApp.
 5. Ensure the target runtime is set to WebSphere Application Server v8.0 and click Next.
 6. On the next panel, click New module... and from the popup, select Web module only and set its name to RecommenderWeb.
 7. Click OK and then Finish.
 3. Create and populate database with sample data

Apache Derby is a Java-based database that uses a file store for storage. Apache Derby is used in this example because it is included with Rational Application Developer.

 1. Select Window > Show View > Data Source Explorer.
 2. Right click on Database Connections and select New ...
 3. For JDBC driver, select Derby 10.5 – Embedded JDBC Driver Default.
 4. Since Derby stores databases in the file system, you need to specify where it will reside. For Database location, enter the path and name to use for the database. For this sample, PREFERENCES is used as the as the database name.
 5. Leave the username and password fields blank and click Finish.

Next, you will define your data model using a script (Listing 1). The script first creates a schema called PREFERENCES and a table called taste_preferences. This table holds all the ratings users make about each item. It contains four columns: user_id, item_id, preferences and timestamp. Each tuple in the table represents that user user_id has ranked item item_id and given it a rating of preference.

Listing 1. Data source schema

CREATE SCHEMA PREFERENCES;
CREATE TABLE PREFERENCES.taste_preferences
 (
 user_id BIGINT NOT NULL,
 item_id BIGINT NOT NULL,
 preference FLOAT NOT NULL,
 "timestamp" BIGINT,
 PRIMARY KEY (user_id, item_id)
);

Because of the large number of accesses required to the database, it is very important to also define two indexes to speed up search time (Listing 2).

Listing 2. Table indexes SQL

CREATE INDEX PREFERENCES.user_id_idx ON PREFERENCES.taste_preferences (user_id);
CREATE INDEX PREFERENCES.item_id_idx ON PREFERENCES.taste_preferences (item_id);

Next, create the data model:

 1. Download createtable.sql (included with this article) and save it within the RecommenderWeb project.
 2. From the Java EE perspective, right click on the RecommenderWeb project and select Refresh. The createtable.sql script should now show up.
 3. Right click on the createtable.sql script and select Execute SQL Files.
 4. Verify server type is set to Derby _10.x and the connection profile and Database names are correct and click OK.
 5. You can verify that the script completed successfully by reviewing the SQL Results view (Figure 3).

 Figure 3. SQL Results view after table creation
 Figure 3. SQL Results view after table creation

Now that you have your table created, you can load it with some data:

 1. Download file u.data (included with this article) . This is a comma-separated list of about 10K user ratings from the MovieLens data set. As you did with the SQL script, save this file to the RecommderWeb project.
 2. From the Java EE perspective, right click on the RecommenderWeb project and select Refresh. The u.data file should now display.
 3. From the Data Source Explorer view, expand Database Connections > PREFERENCES > PREFERENCES > Schemas > PREFERENCES > Tables.
 4. Right click on table TASTE_PREFERENCES and select Load...
 5. For Input File, click Browse and navigate to the RecommenderWeb folder and select u.data and click OK.
 6. For Column delimiter, select Tab. Ensure the Replace existing data is checked and click Finish.
 7. The load process should now start. It could take up to 60 seconds for the entire dataset to be loaded. You can verify the successful completion of the loading from the SQL Results view (Figure 4).

 Figure 4. SQL Results view after data loaded into database
 Figure 4. Data loaded

 8. You can verify the data loaded by right clicking on the TASTE_PREFERENCES table and selecting Data > Sample Contents.
 9. Disconnect from the database by selecting the Data Source Explorer view and expanding Database Connections.
 10. Right click on PREFERENCES and select Disconnect.

You have now completed creating your data storage and your sample data.

 1. Configure the Apache Mahout libraries

In order to develop the recommender code, you need to import the required Apache Mahout libraries into your enterprise application. (If you are going to share the Apache Mahout libraries among multiple enterprise projects in your environment, then the recommended method would be to configure a shared library.)

11. Expand EAR Projects, right click on RecommenderApp, and select Import > Import ...

12. Select General > File System and click Next.

13. In From directory, browse to the location where you extracted the Apache Mahout files and click OK.

14. Select the files listed in the table below from the import dialog:

Library name

Location

mahout-core-0.5.jar

mahout-distribution-0.5/

mahout-core-0.5-job.jar

mahout-distribution-0.5/

slf4j-jcl-1.6.0.jar

mahout-distribution-0.5/lib

15. Click Finish.

16. Now add these references to the Web application so you can define your class path for compilation. Right click on the RecommenderWeb project and select Properties.

17. Select Java Build Path and click Add JARs ...

18. From the popup dialog, expand RecommenderApp, select mahout-core-0.5.jar and mahout-core-0.5-job.jar and click OK (Figure 5).

Figure 5. Java Build Path editor for the RecommenderWeb project
Java Build Path editor for the RecommenderWeb project

19. From the RecommenderWeb project, expand WebContent > META-INF and double click on MANIFEST.MF.

20. Under Dependencies > Jar or Module place a checkmark next to all three libraries (Figure 6).

Figure 6. Dependencies editor for the RecommenderWeb project
Dependencies editor for the RecommenderWeb project

21. Save and close the editor.

At this point, you have finished configuring the development environment and are ready to begin writing recommender code.

Building the recommendation engine

Next, you will create the servlet that will handle the recommendation engine code from Apache Mahout.

 1. Create a servlet class

Begin by creating the servlet class that will represent your Web application.

 1. Right click on the RecommenderWeb project and select New > Servlet.
 2. For Java Package, enter com.ibm.sample.recommender.
 3. For Class Name enter TestServlet.

 Figure 7. Create Servlet – Specify class file destination panel
 Create Servlet – Specify class file destination panel

 4. Click Next.
 5. On the next panel, accept the defaults and click Next.
 6. On the next panel, uncheck doPost and click Finish (Figure 8).

 Figure 8. Create Servlet – Specify method stubs to generate panel
 Create Servlet – Specify method stubs to generate panel

At the completion of this step, you will have an empty servlet class where you can add your code for the recommendation engine.

 1. Import the source code

Sample source code for the servlet class is included with this article, contained in file snippet1.txt. Download this file and use it to replace the contents of the TestServlet.java source file.

This is a good time to review the important pieces of the code to help you understand what is being done.

 1. Create the data model

Previously, you created the database and loaded the data set. In this step, you define a data model object that provides the access to this data set by using JDBC calls. Apache Mahout provides JDBC implementation classes for MySQL and PostgreSQL data sources only. If you want to use a different data source you have three options:

 • Use the GenericJDBCDataModel class and provide all needed SQL queries in the constructor method.
 • Extend the AbstractJDBCDataModel to add an implementation for your data source.
 • Try one of the existing implementations to verify it is compatible.

For the case of Derby, the PostgreSQL implementation is compatible so it is used here (Listing 3). However, for a more robust implementation, you might want to opt for the second option of extending the AbstractJDBCDataModel implementation.

Listing 3. Datamodel definition

private @Resource (name="jdbc/taste") DataSource tasteDS;

dataModel = new PostgreSQLJDBCDataModel(tasteDS,
"PREFERENCES.TASTE_PREFERENCES",
"USER_ID", "ITEM_ID", "PREFERENCE",
"TIMESTAMP");

The org.apache.mahout.cf.taste.model.DataModel interface class represents the data model which is accessed by the Similarity and Recommender classes. There are different implementations for this interface (File, JDBC, and so on). In order to manage the data used after your application is initialized, you can use the methods shown in the table below.

Method name

Description

FastIDSet
getItemIDsFromUser(long userID)

Returns all item IDs of items user expresses a preference for

Float getPreferenceValue(long userID, long itemID)

preference value from the given user for the given item or null if none exists

int getNumUsers()

Total number of users known to the model.

void setPreference(long userID, long itemID, float value)

Sets a particular preference (item plus rating) for a user.

void removePreference(long userID, long itemID)

Removes a particular preference for a user.

 1. Generate the user similarity

Once you have defined the data model, the next thing you need to do is compute the similarity of the data. Apache Mahout provides several algorithms to compute similarity between users. These include: City Block Similarity, Euclidean Distance Similarity, LogLikelihood Similarity, Pearson Correlation Similarity, SpearmanCorrelationSimilarity, TanimotoCoefficientSimilarity, UncenteredCosineSimilarity, and others. (See the the javadoc documentation included in the Mahout distribution for more information about these algorithms.)

The length of the process to compute the similarity between users increases as the number of items and ratings increases. For this reason, you should perform similarity calculations offline for large data sets; for example, by creating jobs for Apache Mahout. Similarity results from these offline tasks can then be included in the data model.

The example used in this article makes use of the PearsonCorrelationSimilarity algorithm, which performs the calculations in real time eliminating the need to perform offline computations.

So, let’s perform the similarity calculation for your data model:

UserSimilarity similarity = new
PearsonCorrelationSimilarity(dataModel);

The similarity variable now contains the similarity information for all the users available in the data model.

 1. Define the user neighborhood

The user-based recommendation algorithm makes use of a user neighborhood to specify what users should be considered like a given user. This example uses the NearestNUserNeighborhood implementation, which enables you to specify a limit for how many users should be included in a neighborhood. In this sample, membership in the neighborhood consists of the five most similar users, thus the neighborhood is defined as follows:

UserNeighborhood neighborhood = new NearestNUserNeighborhood(5, similarity, dataModel);

Members in a neighborhood are considered to be very similar to the user. Therefore, as the membership increases, the number of recommended items also increases as more members would have recommended more items.

 1. Make the recommendations

Now that you have calculated the similarity between users and specified the neighborhood of a user, you can proceed and make user recommendations. Apache Mahout provides the Recommender interface to access the recommendations for users:

Recommender recommender = new GenericUserBasedRecommender(dataModel, neighborhood, similarity);

With the recommender defined, you can make recommendations by invoking the recommend(long, int) method and passing the user ID and the max number of recommended items you want to receive. From there, you use an Iterator to process each recommendation.

Listing 4 shows how to extract recommendations for a user.

Listing 4. Iterating thru the recommendations

java.util.List<RecommendedItem> list = recommender.recommend(USER_ID, 10);
Iterator<RecommendedItem>iter = list.iterator();

while (iter.hasNext()) {
 RecommendedItem item = iter.next();
 out.println("<tr><td>" +
item.getItemID() + "</td><td>" +
 item.getValue() + "</td></tr>");
}

So, in summary, the user-based recommendation first computed the similarity between users from the dataset, and then used a neighborhood item to specify what users should be considered similar to the current user. With this information, the recommender algorithm is able to make recommendations based on what items similar users have rated and use this information to estimate how much the current user might like those items.

 1. Test the engine in a Web application

Before testing the application in WebSphere Application Server V8, you need to configure the data source on the server and define the JNDI reference for the data source so servlet can access it.

To configure the data source:

1. From the Servers view, right click on WebSphere Application Server at localhost and select Start.

2. Once the server has started, right click on the server and select Administration > Run Administrative Console.

3. If authentication is enabled, enter your userID and password when the console opens. Click Login.

4. Expand Resources > JDBC > JDBC Providers.

5. For scope, select Server scope.

6. Click New ...

7. Enter values as shown in Figure 9.

Figure 9. New JDBC provider panel
New JDBC provider panel

8. Click Next.

9. Verify configuration and click Finish.

10. Back in the JDBC Providers list, click on Derby JDBC Provider.

11. Under Additional Properties click Data sources.

12. Click New ...

0. For JNDI name enter jdbc/taste (Figure 10).

Figure 10. Data source JDNI name definition panel
Data source JDNI name definition panel

1. Click Next.

2. For Database name enter the file path location to the Derby data source you created for loading the data model. Uncheck Use this data source in contained managed persistence (CMP) (Figure 11).

Figure 11. Database name specification panel
Database name specification panel

3. Click Next.

4. For Step 3, leave the security configuration blank and click Next.

5. For Step 4, verify the settings defined and click Finish.

6. Save the configuration by clicking on Save.

Those are all of the changes you need to make on WebSphere Application Server V8. The data source binding information is already defined in the servlet code using Servlet 2.5 annotations (refer to snippet1.txt), therefore it is not necessary to configure it in the Web module deployment descriptor. The last step is to install the application to the server:

 • From the Servers view, right click on the WebSphere Application Server V8 test server and select Add or Remove ...
 • Select RecommenderApp and click Add.
 • Click Finish.

That’s it. The application is now installed and you are finally ready to test.

To test the application:

 1. Start the WebSphere Application Server V8 test server from the Servers view, if it is not already started.
 2. Expand Dynamic Web Projects > RecommenderWeb > RecommenderWeb > Servlets (Figure 12).

 Figure 12. Dynamic Web Projects view
 Dynamic Web Projects view

 3. Right click on TestServlet and select Run As > Run on Server.
 4. Select WebSphere Application Server V8 at localhost and click Finish.
 5. The internal browser should not launch and the results of the recommendation can be displayed (Figure 13).

 Figure 13. Recommendation results
 Recommendation results

As you can see from the example, the user you want to retrieve recommendations for is user 400. This user has already rated 22 items. Based on the data model and the recommendation algorithm, Apache Mahout was able to recommend a set of items along with a predicted rating that this user might have given them.

Where to go from here

Now that you know something about recommendation engines, what next?

For starters, you can begin to see the extra value provided by products that already include a recommendation engine. For example, IBM WebSphere Portal and IBM WebSphere Commerce Suite include a recommendation engine as part of their base offerings. Through software products such as these, IBM has refined and improved support in these areas while managing concerns about online privacy, performance, and integration. (Keep these built-in features of these products in mind should you need to consider any “build or buy” decisions.)

This article did not address one big possible flow, namely the processing of huge volumes of data using map reduce jobs. It wasn’t addressed here, but it has been addressed by IBM. IBM’s Big Data initiatives can help to manage huge amounts of data required by certain applications. As mentioned earlier, the example solution presented here will not scale past a certain point due to the resource limits of greatly increasing the number of users. Big processing problems are becoming more common and don’t need to stop your progress. Using Big Data initiatives, there’s no reason to be held back by any scale of processing.

You do not need a large data center to use Apache Mahout. Of course, with cloud computing, you don’t need a data center for any solution. Cloud computing is not directly related to the recommendation engine space, but it’s worth mentioning that IBM’s cloud initiatives can give you capacity to try some of these things in ways that might not otherwise be practical.

Conclusion

You can see that recommendation engines can add a powerful new dimension to your web applications by driving users to other products or web offerings, based on their individual characteristics or behavior. This article provided a brief introduction of techniques used by recommendation engines, and what you would need to do to make them more scalable. You also saw how Apache Mahout leverages these techniques and helps you integrate them into your Web applications. By integrating these concepts into IBM WebSphere Application Server, you learned that you can extend your existing Web applications and add effective personalization to them.

Download

View this article online** for full access to these resources

Resources

View this article online** for full access to these resources

Learn

Get products and technologies

 • GroupLens Research -MovieLens Data Sets

About the authors

Emilio Zegarra is a Senior Software Engineer in the IBM Software Services for WebSphere organization based in Pittsburgh, PA. His areas of interest include user interface design, distributed and collaborative systems, and object-oriented development. You can contact Emilio at ezegarra@us.ibm.com.

Tony Efremenko is a Certified Master IT Specialist with IBM, with over 24 years of experience in the software industry.

Reusing rules within a ruleset to avoid creating redundant business rule variations

Raj Rao, ILOG Solution Architect, IBM

Summary: IBM® WebSphere® ILOG® JRules is IBM's Business Rule Management System (BRMS) that enables business users to dynamically control automated business decisions with business rules. One of the advantages of using BRMS is that rulesets can be reused across different client applications – but this article is not about that. Instead, this article focuses on those situations where a naďve practitioner might clone business rules within a ruleset to apply the same business policy to disparate business entities or different contexts. This article presents such a scenario and outlines different techniques for reusing the rules across different contexts, thereby avoiding duplication and improving maintainability and performance. This content is part of the IBM WebSphere Developer Technical Journal**.

© Copyright IBM Corporation 2011. All rights reserved.

Throughout this document ** indicates a link that will open a Web browser.

Date: 21 Sep 2011
Level: Intermediate

Introduction

Occasionally, you come across situations where an inefficient implementation leads to the presence of multiple variants of the same business rule in a ruleset. One such scenario is described in this article, along with implementation options to overcome this problem.

In this sample scenario, a (fictional) shipping company called Magic Carpet Worldwide Shipping handles the logistics and paperwork related to international shipments. The company receives shipment orders from customers over the Internet. International shipping requirements change frequently, and so to handle this in an agile fashion, Magic Carpet uses BRMS to automatically validate all shipment orders.

A shipment consists of shipment packages, as shown in the shipment model in Figure 1. A shipment object identifies the import and export country. Each shipment package has information about its weight and dimensions. Both shipment and shipment packages contain an excise code, which is a code used to categorize the item from an excise duty perspective.

Figure 1. Shipment model
Figure 1. Shipment model

The business policies that Magic Carpet wants to implement are:

 • Shipment tracking number must be 14 characters.
 • Import and export country must be valid.
 • If export country is US, import country cannot be Cuba or Iran.
 • Weight of package must not exceed 50 lbs or 22.5 kgs.

In addition, Magic Carpet has a number of policies that apply to excise code (on shipment as well as package). Some of these are general policies that check the format and syntax, while other rules are county specific:

 • Rules that check the format of excise code:
 • Length must be 9 or 12 or 13.
 • If length of excise code is 9, the fifth character must be B or Y.
 • If length of excise code is 12 or 13, the seventh character must be L or P.
 • Excise code must not end with 9999.
 • Country specific rules for validating excise codes:
 • If shipping to Puerto Rico or Mexico, excise code must start with MC.
 • If shipping to Euro zone countries, excise code must have 13 characters.
 • However, if shipping to or from India, Pakistan or Sri Lanka, excise code must be 12 chars and the eigth character must be I. This takes higher precedence.

The number and scope of the rules are limited in this scenario to illustrate the main points, but it should be very easy to imagine a typical rule implementation having hundreds of such rules.

Prerequisites and download material

This article is written for the intermediate JRules developer, focuses on a specific area of implementation, and assumes a basic understanding of WebSphere ILOG JRules from a developer's perspective. See Resources for links to help you acquire the prerequisite knowledge for proceeding with this article. The product versions used in this article are:

 • WebSphere ILOG Rule Studio V7.1.x
 • WebSphere ILOG Rule Execution Server V7.1.x

In this article, only the relevant details of the JRules workspace are discussed. However, if you have Rule Studio 7.1.x installed, you can download the entire workspace, containing the different implementation options, and browse through all the details as a supplement to this article. Separate projects are used to illustrate each of the implementation options discussed in the next section. The projects associated with each implementation are listed in Table 1.

Table 1

Inplementation option

XOM

Rule project

Option A: Clone rules

ShipmentJavaXOM

ShipmentRules_A

Option B: Common interface

ShipmentJavaXOM_B

ShipmentRules_B

ShipmentJavaXOM

ShipmentRules_B2

Option C: Internal model

ShipmentJavaXOM_C

ShipmentRules_C

Option D: Separate project

ShipmentJavaXOM

ShipmentRules_D

none

ExciseRules_D

Implementation options

As you can see from the Magic Carpet business rules above, there are some rules that apply at the shipment level while others apply at the package level. Four different options for implementing these requirements are presented here. Common to all the implementation options is the base Java™-based execution object model (XOM) containing the business entities shown in Figure 1. The rule project simply takes the shipment as the input parameter and returns an array of error messages as the output parameter, shown in Figure 2.

Figure 2. Ruleset parameters
Figure 2. Ruleset parameters

Unless specified otherwise, all the implementations use a simple ruleflow with one ruletask, as shown in Figure 3.

Figure 3. Validation ruleflow
Figure 3. Validation ruleflow

Option A: Clone rules

The naďve approach is to clone the rules individually for shipments and shipment packages. For example, consider the business policy:

If length of excise code is 9, the fifth char must be B or Y.

This policy applies to excise codes in shipments and well as shipment packages. The shipment business rule that implements this policy is shown in Listing 1.

Listing 1

if
 the excise code of shipment is not empty and
 the length of the excise code of shipment is 9
 and the char at 5 in the excise code of shipment is not one of { "B", "Y"}
then
 add error: "Excise code " + the excise code of shipment +
 ": Fifth char must be B or Y";

The same business policy is implemented for shipment packages with the rule variant in Listing 2.

Listing 2

definitions
 set package to a shipment package in the packages of shipment ;
if
 the excise code of package is not empty and
 the length of the excise code of package is 9
 and the char at 5 in the excise code of package is not one of { "B", "Y"}
then
 add error: "Excise code " + the excise code of package +
 ": Fifth char must be B or Y";

Even though the basic logic is the same, multiple variants of the business rule are required to implement the logic for different contexts. As shown in Figure 4, all the excise code business policies are implemented separately for shipments and shipment packages.

Figure 4. Rule project structure
Figure 4. Rule project structure

This approach causes maintenance issues, since any change to the business logic implies code changes in multiple rules. Additionally, this can lead to rule-bloat, which has negative implications for authoring and execution performance.

Option B: Apply common interface in domain model

The second option for implementing this relies on modifying the XOM to provide a common underpinning to the different contexts for which the rules apply. In this scenario, this option takes the form of creating an interface called ExciseItem with a getExciseCode() method defined. Shipment and ShipmentPackage implement this interface, as shown in Figure 5.

Figure 5. Modified shipment model with ExciseItem interface
Figure 5. Modified shipment model with ExciseItem interface

With this modified shipment model, it is possible to write the excise code rules based on ExciseItem. A single rule can be written to implement the business policy:

If length of excise code is 9, the 5rd char must be B or Y.

The business rule implementation that works on both Shipment and ShipmentPackage is shown in Listing 3.

Listing 3

definitions
 set exciseItem to an excise item ;
if
 the excise code of exciseItem is not empty and
 the length of the excise code of exciseItem is 9
 and the char at 5 in the excise code of exciseItem is not one of { "B", "Y"}
then
 add error: "Excise code " + the excise code of exciseItem +
 ": Fifth char must be B or Y";

These rules rely on having instances of the ExciseItem in the rule engine working memory. This is handled by the initial action of the ruleflow, where you insert the shipment and all the packages into the working memory (Listing 4).

Listing 4

insert(shipment);
java.util.Iterator it = shipment.packages.iterator();
while (it.hasNext()) {
 insert (it.next());
}

Using this approach, only one variant of the business rule suffices for both shipments and shipment packages. This results in far fewer rules, as seen in the product structure in Figure 6.

Figure 6. Project structure with common rules using ExciseItem
Figure 6. Project structure with common rules using ExciseItem

This option, as described, is only feasible when the rule developer is permitted to change the domain model. In situations where the XOM is controlled by an external group, you take a slightly different tack (Option B2 in the downloadable workspace). Instead of creating an ExciseItem class in the XOM, a virtual class is created in the BOM with one member called exciseCode, as shown in Figure 7.

Figure 7. Virtual ExciseItem in the BOM
Figure 7. Virtual ExciseItem in the BOM

In the Shipment and ShipmentPackage BOM classes, add this virtual ExciseItem as a superclass, as shown in Figure 8.

Figure 8. ExciseItem added as a superclass
Figure 8. ExciseItem added as a superclass

The member exciseCode in ExciseItem is marked as read-only in the BOM and is supplied with a BOM to XOM mapping that retrieves the value from either a Shipment or a ShipmentPackage.

Listing 5

if (this instanceof Shipment)
 return ((Shipment)this).exciseCode;
else
 return ((ShipmentPackage)this).exciseCode;

The rest of the code, including the business rules using this approach, are identical to those described earlier with the ExciseItem defined in the XOM.

Option C: Use internal model

This approach is similar to option B, in that you add to the object model to achieve your goal of not having multiple rule variants. In this case, however, instead of modifying the original domain model, you add some internal classes strictly to be used by rules. This can be defined in its own Java project if necessary, although for the purpose of this article, it is defined in the same XOM as the other domain classes. An internal class called ExciseItem is added to the com.magic.rule.internal package, as shown in Figure 9. This class basically contains an excise code and an attribute indicating the source of this excise code.

Figure 9. Model addendum with internal classes used only by the rules
Figure 9. Model addendum with internal classes used only by the rules

During the initial action of the ruleflow, instances of ExciseItem are created from the shipment and shipment packages and inserted into the working memory of the rule engine. The code is excerpted in Listing 6.

Listing 6

insert (new ExciseItem(shipment.exciseCode, ExciseItemType.SHIPMENT));
java.util.Iterator it = shipment.packages.iterator();
while (it.hasNext()) {
 ShipmentPackage pkg = (ShipmentPackage)it.next();
 insert (new ExciseItem(pkg.exciseCode, ExciseItemType.SHIPMENT_PACKAGE));
}

The rule structure and rules are identical to that which you’ve seen in Option B. Therefore, you achieve the same benefits outlined earlier with the additional advantage that the external domain model is not modified. While not necessary for this scenario, know that it is possible to define more complex internal requests using this technique.

Option D: Create separate rule project

Yet another alternative is to isolate the excise code validation rules into its own rule project and use them from other rule projects. In this implementation approach, you add a separate subflow task to validate the excise codes in the main ruleflow of the shipment rules. This subflow task uses the ruleflow defined in the excise code validation rule project, as illustrated in Figure 10. This figure shows the ruleflow of ShipmentRules on the left and the ruleflow of the “embedded” rule project ExciseRules on the right.

Figure 10. Shipment ruleflow with validate excise codes subflow
Figure 10. Shipment ruleflow with validate excise codes subflow

Because the ruleflow in ExciseRules is only used as a subflow, the main flow task property must be set to false.

The rule project for validation of excise codes does not use the shipment domain model at all. It uses a simpler model by leveraging the fact that validation of an excise code only depends on the import country and the export country. These are simply represented as strings in the "params" variable set. This is shown in Figure 11, which depicts the new rule project to validate excise codes.

Figure 11. Project structure of rules to validate excise codes
Figure 11. Project structure of rules to validate excise codes

The excise code validation rules use these variables in the rule conditions and actions. For example, the rule that checks the format of a 9-character excise code is shown in Listing 7. Notice that there is no reference to a shipment or a package, but merely to variables such as ‘excise codes’. Errors are added to the exciseErrors variable.

Listing 7

definitions
 set exciseCode to a string in 'excise codes';
if
 exciseCode is not empty and
 the length of exciseCode is 9
 and the char at 5 in exciseCode is not one of { "B", "Y"}
then
 add error: "Excise code " + exciseCode + ": Fifth char must be B or Y";

So the question that arises is: where do these input variables get set? Well, these are set in the invoking ruleflow (in ShipmentRules). The initial action of the Validate Excise Code rule task sets the import country, export country, and the list of excise codes to validate, as shown in Listing 8. Here, virtual.Helper.addExciseCode is simply a virtual method that adds an excise code to the ruleset variable exciseCodes.

Listing 8

virtual.Helper.addExciseCode(shipment.exciseCode);
importCountry = shipment.importCountry;
exportCountry = shipment.exportCountry;
java.util.Iterator it = shipment.packages.iterator();
while (it.hasNext()) {
 ShipmentPackage pkg = (ShipmentPackage)it.next();
 virtual.Helper.addExciseCode (pkg.exciseCode);
}

In the final action of Validate Excise Code, the errors found during processing of the excise codes (that is, exciseErrors) are added to the output (Listing 9).

Listing 9

int i;
for (i=0; i<exciseErrors.length; i++) {
 virtual.Helper.addError(exciseErrors[i]);
}

To recap, validation occurs as follows:

 1. The Validate Shipment and Packages rule task in ShipmentRules applies all validation rules with the exception of excise codes.
 2. In the initial action of the Validate Excise Code rule task in ShipmentRules, the ruleset variables of ExciseRules (import country, export country, excise codes) are set.
 3. Rules in ExciseRules are executed by the rule task Validate Excise Code.
 4. The final task of Validate Excise Code takes the errors generated during excise code validation and adds it to the output.

Notice that the rule project, ShipmentRules, can access rules and variables defined in ExciseRules only because ExciseRules is marked as a project reference for ShipmentRules, as illustrated in the Project References property of ShipmentRules in Figure 12.

Figure 12. ExciseCodeRules used as a project reference in ShipmentRules
Figure 12. ExciseCodeRules used as a project reference in ShipmentRules

Now that the business rules for validating excise codes are moved to a different rule project, the ShipmentRules project structure is much simpler, as illustrated in Figure 13.

Figure 13. Rules in rule project ShipmentRules
Figure 13. Rules in rule project ShipmentRules

Even though the excise code rules are moved to a different rule project, they are deployed as part of the shipment validation ruleset. In other words, you still have a single ruleset that includes rules from both the projects.

However, an interesting possibility arises – that of being able to deploy the excise code validation rules independently as a decision service. This service can then be used by any application capable of invoking a web service, if it needs validation at that granular level. Considerations relating to performance and business suitability (which are beyond the scope of this article) determine if this service granularity is warranted.

In addition to avoiding redundant cloning of rules, this approach has the advantage that the excise code validation rules can be reused by other rule projects in the future, even if these rule projects have a very different domain model. This also means that the excise code validation rules are insulated from changes in the Shipment domain model. Moreover, this approach enables different groups to be responsible for different aspects of validation; one group can handle shipment validation rules, while another handles excise code validation. Of course, this approach by no means precludes a single group from being responsible for both rule projects.

On the flip side, because these rules are in two different rule projects, a rule author using Rule Team Server would have to switch between these projects to edit them. Furthermore, as excise code rules evolve, they might need to use additional parameters. For example, if in the future the excise code rules depend not just on import and export country, but also on a shipment type, then this would need to be passed in as a new variable. This will necessitate creation of new ruleset variables and changing the enclosing ruleflows to populate these variables.

Comparison of options

Table 2 summarizes the pros and cons associated with each of the implementation options discussed here.

Table 2

Option

Pros

Cons

Option A: Clone rules

 • Straightforward implementation.
 • Multiple rules implementing the same business logic leads to maintenance issues.
 • Rule bloat negatively impacts performance.

Option B: Common interface

 • Overcomes need for multiple rule variants. Therefore, easier to maintain.
 • If domain model is controlled by an external group, this requires somewhat complex BOM changes to implement virtual classes.

Option C: Internal model

 • Overcomes need for multiple rule variants. Therefore, easier to maintain.
 • Need to define additional internal classes in XOM.

Option D: Separate project

 • Overcomes need for multiple rule variants. Therefore, easier to maintain.
 • Can be reused by other rule projects as well.
 • Excise code rules are insulated from changes in Shipment domain model.
 • Rule authoring responsibilities can be distributed to different groups.
 • Need to define new rule project.
 • More complex ruleflows.
 • Using the Rule Team Server, a rule author will have to switch to a different rule project just to view or edit these rules.
 • May need to add more variables to support rule evolution (when they start using more inputs).

Conclusion

If you find yourself in the sticky, uncomfortable situation of creating multiple variants of a business rule simply because a business policy needs to be applied in different contexts, take a step back and know that you have several options for avoiding this. As discussed in this article, each of these options have their pros and cons, so be sure to evaluate these options in the context of your development environment and future needs and select the best one.

Download

View this article online** for full access to these resources

Resources

View this article online** for full access to these resources

Learn

Get products and technologies

 • WebSphere ILOG JRules V7.1 trial download

Discuss

 • Blog: Good Decision! a decision management blog

About the author

Rajesh (Raj) Rao has been working in the area of expert systems and business rule management systems for over 20 years, during which time he has applied business rules technology to build diagnostic, scheduling, qualification and configuration applications across various domains such as manufacturing, transportation and finance. He has been with IBM for close to 2 years. With a background in Artificial Intelligence, his interests include Natural Language Processing and Semantic Web.

Bridging Web 2.0 and SOA using WebSphere DataPower

Robert Peterson (rrpeters@us.ibm.com), Tivoli Integration Architect, IBM

Robert R. Peterson is an Integration Architect for Tivoli’s monitoring and application discovery portfolio. He is a frequent conference speaker, author, and IBM Master Inventor with over fifty filed patent applications. You can read more about Robert on his website.
(An IBM developerWorks Contributing Author)

Gerald Kaplan (kaplang@us.ibm.com), DataPower Technical Specialist, IBM

Gerald Kaplan is a Senior IT Specialist with a focus on IBM WebSphere DataPower service-oriented architecture (SOA) appliances. He joined IBM in 2006 and has more than 25 years of experience in software development and engineering. He is the author of the DataPower Proof of Technology, as well as several other IBM Redbooks publications.

Robert Peterson, Tivoli Integration Architect, IBM

Gerald Kaplan, DataPower Technical Specialist, IBM

Summary: Learn how to build a JSON-enabled RESTful service on an IBM® WebSphere® DataPower® SOA Appliance, bridging it to a SOAPful backend Web service. Sample REST/JSON code is included to demonstrate best practices, along with explanations of how the example was implemented and configured. REST and Web 2.0 is supported on firmware level 3.8.0 or higher (sample created with 4.1.2). This content is part of the IBM WebSphere Developer Technical Journal**.

© Copyright IBM Corporation 2011. All rights reserved.

Throughout this document ** indicates a link that will open a Web browser.

Date: 21 Sep 2011
Level: Intermediate

Introduction

Representational State Transfer (REST) is an important Web 2.0 technology that has become a popular alternative to other Web-based services, such as SOAP-based Web services and Enterprise JavaBeans (EJB). Many Internet-facing companies provide REST-based services; a common scenario is to expose a RESTful interface in front of an existing legacy system or peer system (SOAPful services). This article briefly explains what it means to be "RESTful," and then provides a comprehensive example of how to use an IBM WebSphere DataPower SOA Appliance to expose a RESTful facade (with JSON as the representational format) to bridge an existing SOAPful Web service.

Web 2.0 includes a proliferation of new technologies; some of them brand new and others old but newly invigorated as they are applied to Web 2.0. There is a growing demand to use these new protocols and technologies to interact with existing enterprise systems. DataPower is uniquely positioned to bridge Web 2.0 and SOA. DataPower can service Web 2.0 requests, such as an ATOM feed message or a REST invocation, and bridge to enterprise protocols, such as Web services, JMS, or even mainframe connectivity (for example, with IMS Connect). The case this article addresses is that of bridging REST client requests, which use JSON as the representational format, to a traditional SOAPful Web service back-end system.

REST overview

REST is a term coined by Roy Fielding in his Ph.D dissertation, and it denotes an architectural style for Web services and applications that manipulate media content. It can be considered a set of best practices for using the HTTP specification (RFC 2616) as an application layer protocol. There are no standards or APIs, and the primary ingredients are found in all HTTP-based Web applications and services. A good analogy for REST is "object-oriented" Web programming in which the resource specified by the URI is the object, the method is specified by the HTTP verb, and the parameters are specified by the HTTP headers, such as Accept or the URI query. Finally, the HTTP response code is the return code. For example, the following RESTful HTTP request results in the HTTP 201 (created) response code:

PUT /library/book/9780596529260 HTTP 1.1
Content-Type: application/json
Accept: text/xml
....
{ "name" : "Treasure Island" }

A Web service provider (and consumer for that matter) will pay close attention to the following RESTful precepts:

Named resources

Computation is over Web resources that are named through URIs.

· A resource is anything important enough to be referenced as a thing in itself, such as /software/releases/1.0.3.tar.gz, /weblog/jim/2008/12/24/0300, or /bug/12345.

· Consumers interact with resources using their URIs and the uniform interface.

Uniform interface

Web resources are accessed through a generic interface that mimics the CRUD persistent storage pattern:

· GET -- Retrieve a resource representation.

· POST -- Create a new resource.

· PUT -- Modify or create a new resource (if client can make URI).

· DELETE -- Remove an existing resource.

· HEAD -- Retrieve metadata-only representation (can just be headers).

Interconnected resource representations

URL links interconnect resources, thereby driving all state transfers.

· Representations are hypermedia (consider the duality of XHTML and micro-formats).

· A web of resources.

· Axiom: "Hypermedia as the engine of application state" -- Roy Fielding.

· Application state is therefore the pathway the client follows, not an HTTP session on a server.

· Cookies break the REST model of state transfer.

Stateless

Each request stands on its own without correlation to the server-side state.

· States of a server are represented by URI addressable resources.

· Every HTTP request happens in complete isolation, and is not dependent on previous requests.

· Client moves through states by navigating representational formats (URIs) or going to known waypoints.

· Consider the FTP "working directory" as an analogy.

· Easy to distribute a stateless application across load-balanced services.

· Client is in charge of managing "application state," while server manages "resource state."

The result of applying RESTful precepts is not only the simplicity and consistency of developing and invoking Web services, but also an advantage in service performance. When RESTful services are deployed, they can naturally participate in the HTTP caching mechanism. Therefore caching intermediaries or response caches can leverage the additional information supplied not only by the HTTP method, but also by the cache control headers (including the last-modified header) rendered by the RESTful service provider. Leveraging caching in this way can dramatically improve response time. In addition, the stateless nature of RESTful service not only makes horizontal scaling trivial, but also eases the burden on load balancers (no session affinity is necessary), and allows application-aware caching intermediaries to execute more efficiently because the payload often does not have to be processed or parsed.

Exposing REST with DataPower

Figure 1 shows an overview of WebSphere DataPower exposing a REST facade against a SOAPful Web service as the back end. The representational format (media type) used by the REST facade is JSON. The Multi-Protocol Gateway accepts RESTful method requests (GET, PUT, POST, DELETE) from the service consumer and then transforms the requests to corresponding SOAP requests. The Web Service Proxy is optional; the SOAP requests could be sent directly to the back end, but this practice is strongly discouraged because the configuration might require monitoring or security in the future. Thus, a best practice is to include a Web Service Proxy as part of a REST transformation configuration.

Figure 1. Topology of a RESTful client passing JSON to DataPower, which mediates a SOAPful Web service
RESTful facade topology

The ProjectService example

For simplification, the example configuration shown in this article and the accompanying download material does not include a WS-Proxy. However, its use is recommended for production environments.

The remainder of this article uses a common example to show how DataPower can expose a RESTful Web service interface, enabled for JSON, for a SOAPful Web service back end. The sample ProjectService Web service is a simple project organizer with which projects can be created, edited, and queried. The operations available for ProjectService are shown in Table 1.

Operations available for DemoService

Operation

Description

createProject

Creates a project on the server consisting of a project name, description, and identifier. The identifier is generated and returned in the response.

updateProject

Makes a change to a project. The project identifier, name, and description must be provided.

getProject

Fetches name and description of a project. The identifier of the project must be provided in the request.

listProject

Returns all projects.

deleteProject

Removes a project from the server. The identifier of the project must be provided in the request.

The next sections show how to map these operations to a REST interface consisting of all the HTTP methods, GET, POST, PUT, and DELETE.

Install ProjectService

Download the sample ProjectService application included with this article, and then follow these steps to install ProjectService.ear on WebSphere Application Server V7 or later:

 1. From the Admin console, select Applications > Install New Application > New Enterprise Application.
 2. Select Browse and then select the ProjectService.ear file, as shown in Figure 2.
 3. Select Next.

 Figure 2. Install ProjectService application
 Install ProjectService application

 4. Select Fast Path and click Next.
 5. Accept the defaults on all subsequent pages, then click Finish.
 6. After the installation completes successfully, click Save to save the changes to the master configuration.
 7. Navigate to Applications > Application Types > WebSphere enterprise applications and Start ProjectServiceEar.

Verify application installation

It’s a good idea to verify that ProjectService is up and running. One way to verify this is to request the service’s WSDL. In a browser, navigate to http://MyAppServer:9080/ProjectService/ProjectService?WSDL. If the service’s WSDL is displayed in the browser, then the service is up and running. Alternatively, you can use soapUI, a freely available vendor tool to test the service. A soapUI project for the ProjectService is available in the downloads material included with this article. Once downloaded, select File > Import Packed Project and select soapUITestSOAP.zip from the soapUI File menu.

Import example DataPower configuration

To import the DataPower configuration into your appliance:

 1. In the DataPower Admin Console, select Administration > Configuration > Import Configuration.
 2. Click Browse, select RESTDataPowerExportV2.zip (included in the download file), and then select Next:

 Figure 3. DataPower domain import
 Figure 3. DataPower domain import
 3. Select Import.

REST Multi-Protocol Gateway

If you inspect the Multi-Protocol Gateway service definition by selecting the Advanced tab, you'll notice an option label "Process messages whose body is empty," as shown in Figure 4. This option is useful for message patterns that can include bodiless requests and responses. This is common with RESTful Web services where messages may or may not include a body, but still require the processing policy to run in order to perform mediations. Unlike SOAPful Web services, which always have a payload (message body), RESTful Web services often, but not always, have a message body, as with HTTP DELETE.

Since your RESTful façade will support HTTP DELETE and GET, you must configure the service to support bodiless messages. If you don't select this option, DataPower defaults to a processing mode called "One way exchange pattern," in which messages flow straight to the backside server, bypassing any processing rules. You also have to configure the HTTP frontside handler to accept the HTTP methods that you plan on supporting in your policy. In addition, since you are dealing with JSON as the representational format, the request and response payload types will be non-XML.

Figure 4. Process messages whose body is empty
Process messages whose body is empty

Backend URL and front side handler port

On the main Multi-Protocol Gateway page, change the backend URL to match the application server that your ProjectServiceEar project is running on, as shown in Figure 5.

Figure 5. Updated backend URL
Figure 5. Updated backend URL

You can optionally change the port that the Multi-Protocol Gateway is listening to for request REST messages. The imported configuration uses port 44601, but you can change this by selecting restfulProjectService_FSH in the drop-down under Front Side Protocol and then selecting the ellipses (...) and entering the Port Number desired.

Rewriting the URL

The ProjectService specifies /ProjectService/ProjectService as the service URI, while RESTful Web services use URIs not as the service end-point, but rather as the resource to apply the uniform interface. Because of this dramatic difference in usage, a URL rewrite policy is associated with the multi-protocol gateway, as shown in Figure 6 below. In this way, all incoming RESTful URI's are rewritten to the single SOAP service URI.

Figure 6. URL rewrite policy attached to the Multi-Protocol Gateway
Figure 6. URL rewrite policy attached to the Multi-Protocol Gateway

Using REST verbs

When building a RESTful service, it is a best practice to set up processing rules for each HTTP method. This is because the REST uniform interface can be applied to each RESTful URI but require different processing behavior, such as HTTP DELETE on /library/book/12345679001 and HTTP GET on /library/book/12345679001.

The Multi-Protocol Gateway matches on HTTP methods by creating a Match Action with a Matching Rule and then specifying a Matching Type of HTTP Method for each REST verb supported by the service, as depicted in Figure 7. This matching rule can be combined with any other match criteria to create personalized processing rules based on URI and/or HTTP headers.

Figure 7. A Multi-Protocol Gateway using the HTTP method match criteria
A Multi-Protocol Gateway using the HTTP method match criteria

The next sections describe the implementation of the REST Multi-Protocol Gateway policy, shown in Figure 8. They can be used as an exercise in DataPower REST development, as a working configuration to use as a starting point for other REST projects, or simply as a gauge for what transformation from REST/JSON to SOAP looks like with DataPower.

Figure 8. REST/JSON processing policy
REST/JSON processing policy

These sections are presented by each DataPower processing rule: POST, GET, DELETE, and PUT. The same format is used to describe the implementation for each processing rule, which includes:

If you prefer to use soapUI instead of cURL to test the REST API, a soapUI projecte has been included in the download material, called soapUITestREST.zip.

 • Request payload: An example of the REST request payload using JSON as the representational format.
 • Response payload: An example of the REST response payload or headers.
 • Actions: Includes an image representing the processing rule with its processing actions. The numbering indicates the sequence of the processing actions.
 • Code listings: For the stylesheets defined in the processing rules. Each listing is numbered according to the sequence numbers in the corresponding Actions figure.
 • Test command: cURL is a command-line tool that can be used to send http requests to test the REST operations. An example cURL command to invoke the REST service with the corresponding HTTP method.

POST

The POST processing rule corresponds to the createProject operation for the SOAP API.

(1) convert-http action: This http-convert action specifies JSON (Figure 10 below) as the message encoding that automatically parses and transforms it into JSONx, which is an IBM internal standard format for representing JSON as XML. Once the JSON is transformed into JSONx, the usual DataPower transformation capabilities are available to further process the message as XML if necessary. For the JSON request payload in Listing 2, the resulting JSONx is shown in Listing 3.

Listing 3. JSONx

<?xml version="1.0" encoding="UTF-8"?>
<json:object xsi:schemaLocation="http://www.datapower.com/schemas/json jsonx.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:json="http://www.ibm.com/xmlns/prod/2009/jsonx">
 <json:string name="description">Research of ancient cultures</json:string>
 <json:string name="owner">Alice</json:string>

</json:object>

Figure 10. JSON specified as the default input encoding
JSON specified as the default input encoding

(2) createProjJSONx2SOAP.xsl transform: This custom stylesheet provided by the user transforms the REST project payload (now as JSONx) to the equivalent SOAP payload. The project description and owner are copied from the JSONx message request.

Listing 4. createProjJSONx2SOAP.xsl

<xsl:stylesheet xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:dp="http://www.datapower.com/extensions"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:json="http://www.ibm.com/xmlns/prod/2009/jsonx"
 extension-element-prefixes="dp"
 exclude-result-prefixes="dp" version="1.0">
 <xsl:template match="/">

 <xsl:variable name="url" select="dp:variable('var://service/URL-in')"/>
 <xsl:message><xsl:value-of select="$url"/></xsl:message>

 <soapenv:Envelope>
 <soapenv:Body>
 <updateProjectRequest xmlns="http://www.ibm.com/datapower/ProjectService/">
 <project>
 <id>
 <xsl:value-of select="substring-after($url,'/projects/')"/>
 </id>
 <description>
 <xsl:value-of select="/json:object/json:string[@name='description']"/>
 </description>
 <owner>
 <xsl:value-of select="/json:object/json:string[@name='owner']"/>
 </owner>
 </project>
 </updateProjectRequest>
 </soapenv:Body>
 </soapenv:Envelope>

 </xsl:template>

</xsl:stylesheet>

(3) Setvar action: This action sets the SOAPAction header to http://www.ibm.com/datapower/ProjectService/createProject before the message is sent to the ProjectService application.

POST response rule: set-location-header.xsl transform: This stylesheet selects the ID from the SOAP response and sets the location HTTP header with the URL for the newly created resource.

Listing 5. set-location-header.xsl

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:dp="http://www.datapower.com/extensions"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" extension-element-prefixes="dp"
 exclude-result-prefixes="dp" version="1.0">

 <xsl:template match="/"
xmlns:proj="http://www.ibm.com/datapower/ProjectService/">
 <dp:set-http-response-header name="'Location'"
 value="concat('/projects/',//proj:id)"/>
 </xsl:template>

</xsl:stylesheet>

An example JSON request is needed to test the POST REST method. A text file called RESTPostRequest.json is provided in the download archive under the folder named RESTRequests with the contents of Listing 2; for example, RESTPostRequest.json. To send the request to DataPower, use this cURL command:

curl --data-binary @RESTPostRequest.json http://DPHOST:44601/projects -v

The -v flag enables you to see the headers returned from DataPower. There is no response payload, but pay special attention to the Location header, which returns the URL of the newly created project. For example, it returns /projects/3 when the third project is created.

GET

The GET processing rule corresponds to the getProject and listProject operations for the SOAP API. It can either retrieve a single project or a list of projects (collection).

In order to test listing mulitple projects, add another project using the POST method as shown in the last section. Use a project called “Training Project” owned by “Barbara.”

Listing 7. GET JSON project list response payload

[{ "id":1, "name":"My Research Project", "owner":"Alice" },

{ "id":2, "name":"Training Project", "owner":"Barbara" }]

(1) rest-get-to-soap.xsl transform:
This stylesheet constructs the SOAP request to get a project or list all projects. It corresponds to the getProject and listProject SOAP operations. The ID is retrieved from the URL and then either a listProjectRequest or getProjectRequest SOAP payload.

Listing 8. rest-get-to-soap.xsl

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:dp="http://www.datapower.com/extensions"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 extension-element-prefixes="dp" exclude-result-prefixes="dp" version="1.0">

 <xsl:template match="/">

 <xsl:variable name="url" select="dp:variable('var://service/URL-in')"/>

 <soapenv:Envelope>
 <soapenv:Body>
 <xsl:choose>
 <xsl:when test="contains ($url, '/projects/')">
 <getProjectRequest
xmlns="http://www.ibm.com/datapower/ProjectService/">
 <id>
 <xsl:value-of select="substring-after($url,'/projects/')"/>
 </id>
 </getProjectRequest>
 <dp:set-http-request-header name="'SOAPAction'"
value="'http://www.ibm.com/datapower/ProjectService/getProjects'"/>
 </xsl:when>
 <xsl:otherwise>
 <listProjectsRequest
xmlns="http://www.ibm.com/datapower/ProjectService/"/>
 <dp:set-http-request-header name="'SOAPAction'"
value="'http://www.ibm.com/datapower/ProjectService/listProjects'"/>
 </xsl:otherwise>
 </xsl:choose>
 </soapenv:Body>
 </soapenv:Envelope>

 </xsl:template>

</xsl:stylesheet>

(2) Method Rewrite advanced processing action: Prior to sending the SOAP message to the back end, you need to rewrite the HTTP method from the originating GET to HTTP POST that the SOAP service expects. Do this by using the Method Rewrite advanced processing action. You can even do this by setting var://service/protocol-method to the value POST.

GET response rule(1) listProjResp2JSONx.xsl: Once the SOAP response is retrieved from the back end, it needs to be transformed into a JSONx RESTful payload. The project ID, description, and owner are retrieved from the input SOAP message and are used to construct the JSONx REST response. This process is repeated if a project list is being returned.

Listing 9. listProjRest2JSONx.xsl

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:template match="/">
 <json:array xsi:schemaLocation="http://www.datapower.com/schemas/json jsonx.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:json="http://www.ibm.com/xmlns/prod/2009/jsonx">
 <xsl:for-each select="//*[local-name()='project']">
 <json:object>
 <json:number name="id">
 <xsl:value-of select="*[local-name()='id']"/>
 </json:number>

 <json:string name="name">
 <xsl:value-of select="*[local-name()='description']"/>
 </json:string>

 <json:string name="owner">
 <xsl:value-of select="*[local-name()='owner']"/>
 </json:string>
 </json:object>
 </xsl:for-each>
 </json:array>
 </xsl:template>
</xsl:stylesheet>

GET response rule(2) jsonx2json.xsl: Now that you have the payload converted to JSONx, apply the DataPower supplied jsonx2json.xsl stylesheet to convert the result to JSON, which the client expects. To send a single GET request to DataPower, use this cURL command (the project ID is 1 in this example):

curl http://DPHOST:44601/projects/1

To send a GET request for a list of all projects, use this cURL command; notice the project ID is omitted:

curl http://DPHOST:44601/projects

DELETE

The DELETE processing rule corresponds to the removeProject operation for the SOAP API.

(1) rest-delete-to-soap.xsl transform:
This stylesheet constructs the SOAP payload to delete a project. It corresponds to the deleteProject SOAP operation. The project ID is retrieved from the URL and then used to construct the SOAP payload.

Listing 10. rest-delete-to-soap.xsl

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:dp="http://www.datapower.com/extensions"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 extension-element-prefixes="dp" exclude-result-prefixes="dp" version="1.0">

 <xsl:template match="/">

 <xsl:variable name="url" select="dp:variable('var://service/URL-in')"/>

 <soapenv:Envelope>
 <soapenv:Header/>
 <soapenv:Body>
 <deleteProjectRequest
xmlns="http://www.ibm.com/datapower/ProjectService/">
 <id>
 <xsl:value-of select="substring-after($url,'/projects/')"/>
 </id>
 </deleteProjectRequest>
 </soapenv:Body>
 </soapenv:Envelope>

 </xsl:template>
</xsl:stylesheet>

(2) Setvar action: This action sets the SOAPAction header to http://www.ibm.com/datapower/ProjectService/deleteProject before the message is sent to the ProjectService Web service proxy.

(3) Method Rewrite advanced processing action: Prior to sending the SOAP message to the backend, you need to rewrite the HTTP method from the originating DELETE to HTTP POST, which the SOAP service expects. Do this by using the Method Rewrite advanced processing action. You can even do this by setting var://service/protocol-method to the value POST.

DELETE response rule(1) set-response-code.xsl: Once the SOAP response is retrieved from the backend, it needs to be transformed into a RESTful response code, which is typically 204 (No Content) when a DELETE is performed. To send a DELETE request to DataPower, use this cURL command:

curl -X DELETE http://DPHOST:44601/projects/1

(If you get this error message: curl: (18) transfer closed with outstanding read dat remaining, this is due to a known WebSphere DataPower issue which should be fixed in an upcoming release. The DELETE operation should still succeed.)

PUT

The PUT processing rule corresponds to the updateProject operation for the SOAP API.

(1) convert-http action:
This http-convert action specifies JSON as the message encoding, which automatically parses and transforms it into JSONx, an IBM internal standard format for representing JSON as XML. Once the JSON is transformed into JSONx, the usual DataPower transformation capabilities are available to further process the message as XML if necessary.

(2) updateProjJSONx2SOAP.xsl transform: This stylesheet transforms the REST JSONx project payload to the equivalent SOAP payload. The project ID, project description, and owner are copied from the JSONx REST request.

Listing 12. updateProjJSONx2SOAP.xsl

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:dp="http://www.datapower.com/extensions"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:json="http://www.ibm.com/xmlns/prod/2009/jsonx"
 extension-element-prefixes="dp"
 exclude-result-prefixes="dp" version="1.0">
 <xsl:template match="/">

 <xsl:variable name="url" select="dp:variable('var://service/URL-in')"/>
 <xsl:message><xsl:value-of select="$url"/></xsl:message>

 <soapenv:Envelope>
 <soapenv:Body>
 <updateProjectRequest xmlns="http://www.ibm.com/datapower/ProjectService/">
 <project>
 <id>
 <xsl:value-of select="substring-after($url,'/projects/')"/>
 </id>
 <description>
 <xsl:value-of select="/json:object/json:string[@name='description']"/>
 </description>
 <owner>
 <xsl:value-of select="/json:object/json:string[@name='owner']"/>
 </owner>
 </project>
 </updateProjectRequest>
 </soapenv:Body>
 </soapenv:Envelope>

 </xsl:template>
</xsl:stylesheet>

(3) Setvar action: This action sets the SOAPAction header to http://www.ibm.com/datapower/ProjectService/updateProject before the message is sent to the ProjectService Web service proxy.

(4) Method Rewrite advanced processing action: Prior to sending the SOAP message to the back end, you need to rewrite the HTTP method from the originating PUT to HTTP POST, which the SOAP service expects. Do this by using the Method Rewrite advanced processing action, or by setting var://service/protocol-method to the value PUT.

PUT response rule(1) set-response-code.xsl: Once the SOAP response is retrieved from the back end, it needs to be transformed into a RESTful response code, which is typically 204 (No Content) when a PUT is performed. An example request is needed to test the PUT REST method;l RESTPutRequest.json has been provided in the download archive under RESTRequests which is identical to Listing 11. Assuming the request payload was saved as RESTPutRequest.json, to send the request to DataPower, use this cURL command:

curl -X PUT --data-binary @RESTPutRequest.json http://DPHOST:44601/projects/2

A blank response is normal and expected.

Conclusion

This article explained how IBM WebSphere DataPower fits in the Web 2.0 space, provided an overview of REST, described the recommended patterns to use for exposing REST and JSON with WebSphere DataPower, and included a comprehensive example with a DataPower domain export and the ProjectService Web service back-end application. You should now have a good understanding of what REST is, and how you can develop REST services on WebSphere DataPower so you can configure your own Web 2.0 appliance.

Download

View this article online** for full access to these resources

Resources

View this article online** for full access to these resources

Learn

Discuss

 • WebSphere DataPower SOA Appliances forum

About the authors

Robert R. Peterson is an Integration Architect for Tivoli’s monitoring and application discovery portfolio. He is a frequent conference speaker, author, and IBM Master Inventor with over fifty filed patent applications.

Gerald Kaplan is a Senior IT Specialist with a focus on IBM WebSphere DataPower service-oriented architecture (SOA) appliances. He joined IBM in 2006 and has more than 25 years of experience in software development and engineering. He is the author of the DataPower Proof of Technology, as well as several other IBM Redbooks publications.

Create an ILOG Dojo Diagrammer application for touch-enabled mobile devices

Developing with Dojo Mobile and the WebSphere Application Server Feature Pack for Web 2.0 and Mobile

Stéphane Lizeray, Advisory Software Engineer, IBM

Summary: This article introduces both Dojo Mobile and IBM® ILOG® Dojo Diagrammer, and explains how you can create a diagram application for mobile devices with the Dojo Toolkit and IBM ILOG Dojo Diagrammer. In addition, you'll see how the application can add custom actions invoked by a touch gesture. This content is part of the IBM WebSphere Developer Technical Journal**.

© Copyright IBM Corporation 2011. All rights reserved.

Throughout this document ** indicates a link that will open a Web browser.

Date: 21 Sep 2011
Level: Intermediate

Introduction

IBM ILOG Dojo Diagrammer provides a set of services and user interface components for writing interactive diagrams for both the Web and for mobile devices. To demonstrate this, this article describes how you can use the IBM ILOG Dojo Diagrammer library to create a simple organizational chart application for touch-enabled mobile devices. To make things easy and focus on the process, the sample application developed here will be kept very simple, with an organization chart that represents employees and their managerial relationships.

This exercise uses the IBM WebSphere® Application Server Feature Pack for Web 2.0 and Mobile V1.1. The feature pack is a set of components, libraries, and tools for helping you build applications for these platforms. The feature pack includes an early release of Dojo 1.7 and IBM ILOG Dojo Diagrammer.

Dojo Mobile

There are essentially three main approaches to writing applications for mobile devices. One possibility is to use the proprietary toolkit of the mobile device. A second approach is to use web standards. Today’s major smartphones support the Web 2.0 stack (HTML5/CSS3 and Ajax). With this approach, there is nothing to install on the device. A third, hybrid approach (such as PhoneGap) that combines web development and SDK programming, uses a framework that enables you to author native applications with web technologies and get access to the native APIs. Each of these approaches has its own advantages and disadvantages.

Dojo Mobile belongs to the second approach. It is a JavaScript™ framework, part of the Dojo Toolkit, which enables you to easily write applications with a native iPhone, iPad, or Android look and feel. It provides lightweight widgets optimized for mobile devices using advanced CSS3 features, such as animations and transformations. This approach requires only web programming knowledge, and there is no deployment. You get access to your application through the browser that’s available on the mobile device.

Views and widgets

Dojo Mobile provides widgets for creating device-like applications. This example uses:

 • dojox.mobile.View: A container widget that fits the entire screen of the device. It is a "virtual page," because several views can be defined within the same HTML page.
 • dojox.mobile.Heading: The typical navigation bar of mobile applications that displays on the top of screen, just below the status bar of the device. It can contain a back button to go back to the previous view.
 • dojox.mobile.TabBar: The typical bar at the bottom of the screen, it is a container widget that contains buttons.
 • dojox.mobile.TabBarButton: A button widget designed for the Tab Bar widget.
 • dojox.mobile.RoundRectList: A widget container that contains items.
 • dojox.mobile.ListItem: Items for a list container widget.

CSS3 animations

Dojo Mobile makes an extensive use of CSS3, leveraging all the latest CSS3 features, such as transformation, transition, and animation implemented in browsers such as Safari or Chrome. A compatibility module is offered so that if CSS3 is not supported, the older browser versions degrade gracefully.

Mobile themes

At the time of this writing (the current release of Dojo is version 1.6.1), Dojo Mobile provides iOS (iPhone and iPad) and Android themes. Other themes, such as Blackberry 6 and WebOS are in progress. Changing from an iOS look and feel to an Android look and feel is simply a matter of changing the CSS.

IBM ILOG Dojo Diagrammer

IBM ILOG Dojo Diagrammer is a Dojo widget with advanced diagramming and graph layout capabilities. The purpose of ILOG Dojo Diagrammer is to provide a solution for Ajax applications to display graphs (or networks) of nodes connected by links. The diagramming component includes sophisticated graph layout algorithms which position the nodes and route the links automatically.

IBM ILOG Dojo Diagrammer also provides a set of services (interactors) that enable you to interact with the nodes and the links. The basic interactions are selection, panning, and zooming. Before the appearance of the touch-based screens, these interactions were done either with the mouse or with the keyboard. With the latest release, IBM ILOG Dojo Diagrammer automatically detects touch-enabled devices, enabling the user to interact with the diagram with touch gestures such as tap, pan, or pinch.

Touch support

IBM ILOG Dojo Diagrammer automatically detects touch-based devices. The Diagram widget supports these touch gestures:

 • Simple tap: User can select the nodes or the links simply by touching them.
 • Panning: User can move the entire diagram by putting a finger on the screen and moving it around while keeping contact with the screen.
 • Pinching in and out: User can zoom progressively in or out by moving apart the thumb and the forefinger.

Event handling

The event handling for touch-enabled devices uses mouse events already provided by the Diagram widget. For example, to add an action when the user double taps on a node, you use the event that is triggered for mouse double click events through a dojo.connect on the onNodeDblClick event, as shown in Listing 1.

Listing 1. Connecting a touch event to a custom action

diagram = dijit.byId("diagram");
dojo.connect(diagram, "onNodeDblClick", null, function(node,event){
// your action
});

Table 1 shows all the events that can be triggered by the Dojo Diagram widget.

Table 1

Gesture

Associated event in a node

Associated event in a link

Touch down

onNodeMouseDown

onLinkMouseDown

Panning

onNodeMouseMove

onLinkMouseMove

Touch up

onNodeMouseUp

onLinkMouseUp

Simple tap

onNodeMouseClick

onLinkMouseClick

Double tap

onNodeMouseDblClick

onLinkMouseDblClick

Creating the sample application

This section explains how to write a basic organization chart application based on Dojo Diagrammer. Figure 1 shows the high level architecture of the sample application that will be used throughout this article.

Figure 1. Overall architecture of an application with Dojo Mobile and IBM ILOG Dojo diagrammer
Figure 1. Overall architecture of an application with Dojo Mobile and IBM ILOG Dojo diagrammer

In this sample application :

 • IBM ILOG Dojo Diagrammer displays the nodes and the links of the organization chart.
 • Each item of the data store will be represented by a graphical node. The hierarchical relationships between items defined in the data store will be represented as links.
 • Dojo Mobile displays views with the native look and feel of the mobile device it is running on.

This organizational chart application will provide two different views:

 • Organization chart view: Displays only a given employee, his manager, and his direct reports, if any.
 • Detail view: Displays detail information for the selected employee, such as e-mail address, position, and location

A button bar will enable switching between the different views. When complete, the sample application will look similar to Figure 2.

Figure 2. Organization chart application
Figure 2. Organization chart application

By touching the Information button on the button bar, you switch to the detail view (Figure 3).

Figure 3. The detail view
Figure 2. Organization chart application

To build this sample application, perform the steps that follow.

 1. Configure HTML page

Start building the application by the configuring the HTML page.

 1. Choose the DOCTYPE.

The HTML page should have the HTML 5 DOCTYPE (Listing 2) so that it triggers the standard HTML rendering mode (as opposed to the old “quirks” mode).

Listing 2. HTML5 DOCTYPE

<!DOCTYPE html>

 1. Configure the viewport.

Most mobile browsers like iOS Safari or the Android default browser support the <meta name=”viewport”> tag. What is the purpose of this tag? On a desktop browser, the viewport is the visible part of you HTML page and has the width and the height of the browser window. The width of the viewport determines the layout of the HTML page. The user can resize the viewport by resizing the browser window.

On mobile devices, browsers have a fixed size. The user can pan the page or zoom in/out. Most web sites are optimized for 1024 x 768 or 800 x 600 screen sizes, whereas a typical mobile device size is 320 x 480 or 640 x 960. Therefore, most web sites wouldn’t render properly on mobile devices if the HTML layout was using the mobile device size. Instead, the HTML layout uses a much larger area and scales the page to fit it on the device screen. This is where the meta viewport tag comes into action. You can define the width that is used for the HTML layout and the initial scale.

Dojo Mobile widgets are optimized for mobile devices and designed to behave like a native mobile application. Therefore, the default mobile browser behaviour should be disabled by adding the element shown in Listing 3 to the head section of your web page.

Listing 3. Viewport configuration

<meta name="viewport" content="width=device-width,initial-scale=1,
maximum-scale=1,minimum-scale=1,user-scalable=no"/>

 1. Hide Safari UI components.

iOS Safari provides a special meta tag to run your application in full-screen mode; that is, without the address bar, which consumes 60 pixels of real estate, and the button bar at the bottom of the screen, which consumes 44 pixels. Web-app-capable mode (Listing 4) enables your web application to be launched from the Home screen of your iOS device.

Listing 4. Webapp mode

<meta name="apple-mobile-web-app-capable" content="yes" />

After you have set the DOCTYPE and the meta tags, your resulting HTML page should look like Listing 5.

Listing 5. HTML head of the organization chart application

<!DOCTYPE html">
<html lang="en">
<head>
 <title>Dojo Diagrammer Demos</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <meta name="viewport" content="width=device-width,initial-scale=1,
 maximum-scale=1,minimum-scale=1,user-scalable=no"/>
 <meta name="apple-mobile-web-app-capable" content="yes" />
</head>
</html>

 1. Configure Dojo

Because you define statically with HTML tags your widgets, the Dojo parser must be enabled while loading the HTML page with djConfig.parseOnLoad. The code for configuring Dojo is shown in Listing 6.

Listing 6. Dojo configuration

<script type="text/javascript">
 var djConfig = {
 parseOnLoad : true
 };
</script>

 1. Load modules

In this step, you need to load Dojo Mobile modules, Dodjo modules, amnd the mobile device theme into the applications. To load the Dojo Mobile modules, include the code shown in Listing 7.

Listing 7. Loading Dojo Mobile modules

<script type="text/javascript">
// Load the lightweight Dojo Mobile parser
dojo.require("dojox.mobile.parser");
// Load the Dojo Mobile lib
dojo.require("dojox.mobile");
// Load the Dojo Mobile Tab Bar
dojo.require("dojox.mobile.TabBar");
// Load the modules for non webkit browsers
dojo.requireIf(!dojo.isWebKit, "dojox.mobile.compat");
dojo.requireIf(!dojo.isWebKit, "dojo.fx");
dojo.requireIf(!dojo.isWebKit, "dojo.fx.easing");
</script>

The modules listed in the code shown in Listing 8 are required for the organization chart example.

Listing 8. Loading Dojo modules

<script type="text/javascript">
 dojo.require("dojo.data.ItemFileWriteStore");
 dojo.require("ibm_ilog.diagram.widget.Diagram");
 dojo.require('ibm_ilog.graphlayout.tree.TreeLayout');
</script>

It’s possible that in the future, Dojo Mobile might be able to detect automatically the appropriate CSS to be loaded for your device. Until then, you need to add the JavaScript code shown in Listing 9 to the application. This code checks the user agent for the type of device and adds the corresponding CSS.

Listing 9. Loading CSS theme for the mobile device

<script type="text/javascript">
 var loadCSS = function(theme){
 var addcss = function(path) {
 var e = document.createElement("link");
 e.setAttribute("href", path);
 e.setAttribute("rel", "stylesheet");
 e.setAttribute("type", "text/css");
 document.getElementsByTagName("head")[0].appendChild(e);
 };
 if (theme == "auto"){
 var device = navigator.userAgent.toLowerCase();

 if (device.search("android") > -1) {
 addcss("../../../dojox/mobile/themes/android/android.css");
 } else {
 addcss("../../../dojox/mobile/themes/iphone/iphone.css");
 }
 }
 else if (theme == "iphone"){
 addcss("../../../dojox/mobile/themes/iphone/iphone.css");
 }
 else if (theme == "android"){
 addcss("../../../dojox/mobile/themes/android/android.css");
 }
 }

 loadCSS("auto");

 </script>

 1. Define the data

The standard pattern with Dojo for accessing data is to use the Dojo Data Store API. More precisely, this example will use the ItemFileWriteStore data store that is provided by Dojo out of the box (Listing 10). This data store reads JSON files.

Listing 10. Data Store creation

<div jsId="graphModel" dojoType="dojo.data.ItemFileWriteStore"
 url="./mycompany.json">
</div>

Listing 11 lists the contents of the JSON file mycompany.json, which defines the hierarchy of the employees. For the sake of simplicity, only three employees are defined.

Listing 11. JSON file for the graph model

 "identifier": "Name",
 "label": "Name",
 "items": [
 {
 "ManagerName": "",
 "children": [{
 "_reference": "Margaretha Blaise"
 },
 {
 "_reference": "Helena Camp"
 }],
 "Layout": "rightHanging",
 "Name": "Maurice Conners",
 "EMail": "mconners@my.com",
 "Position": "Developer",
 "Location": "San Francisco",
 "Picture": "male"
 },
 {
 "ManagerName": "Maurice Conners",
 "Layout": "standard",
 "Name": "Margaretha Blaise",
 "EMail": "mblaise@my.com",
 "Position": "Developer",
 "Location": "San Francisco",
 "Picture": "female"
 },
 {
 "ManagerName": "Maurice Conners",
 "Layout": "standard",
 "Name": "Helena Camp",
 "EMail": "hcamp@my.com",
 "Position": "Developer",
 "Location": "San Francisco",
 "Picture": "female"
 }

]
}

The employees are items of a JSON array. The JSON objects for the managers have a children property which is an array of objects, each of them has a _reference property whose value is the name of a manager employee.

For exemple, the children property of the employee "Maurice Conners" contains only one subordinate: "Margaretha Blaise." The other properties are displayed by the organization chart application.

Why should you use the ItemFileWriteStore and not ItemFileReadStore? For the local view, you want to display only a small subset of the employees depending on the selected node. To do this, the query feature of the Dojo data store is used to filter the nodes with a visible Boolean property. Therefore, you must be able to set or unset this visible property, which is only possible with the ItemFileWriteStore.

 1. Define the graphical representation of the nodes and bindings to data store items

The IBM ILOG Diagrammer makes extensive use of GFX, the Dojo Toolkit cross-platform vector graphics API, for the rendering of the nodes and links in a diagram (Figure 4).

Figure 4. Dojo GFX
Figure 4. Dojo GFX

IBM ILOG Dojo Diagrammer provides a template mechanism for defining the graphical representation of the nodes. The template format is based on the dojox.gfx serialization specification. IBM ILOG Dojo Diagrammer also provides a binding mechanism that enables initializing properties of the GFX shapes from the objects of the data store. For example, the name of an employee in the data store can be bound to a text label in the graphic representation.

The data property of the node always refers to the corresponding item in the data store. Inside a template, you can use this property to define bindings to properties of the data store item.

The node template for the organizational chart is shown in Listing 12. It defines a rectangle with a size of 200 x 80 pixels (shape of type rect), an icon whose name is bound to the Picture property of the items of the data store (shape of type image), and three text fields (shape of type text) bound to the Name, Position and EMail properties of the items. The graphical result is shown in Figure 5.

Listing 12. Node template

var orgChartNodeTemplate = [{
 'shape': {
 'r': 10,
 'height': 80,
 'width': 200,
 'y': 10,
 'x': 10,
 'type': 'rect'
 },
 'stroke': {
 'type': 'stroke',
 'color': 'gray',
 'width': 2
 },
 'fill': '#FFEFF4F8',
 selectedStyle: { fill: '#FF4974C8' }
 }, {
 'shape': {
 'src': './images/{{data.Picture}}.png',
 'height': 65,
 'width': 48,
 'y': 20,
 'x': 10,
 'type': 'image'
 }
 }, {
 'shape': {
 'align': 'start',
 'text': '{{data.Name}}',
 'y': 30,
 'x': 70,
 'type': 'text'
 },
 'fill': {
 'r': 0,
 'g': 0,
 'b': 0,
 'a': 1
 },
 'font': {
 'type': 'font',
 'weight': 'bold',
 'size': '10pt',
 'family': 'sans-serif'
 }
 }, {
 'shape': {
 'align': 'start',
 'text': '{{data.Position}}',
 'y': 50,
 'x': 70,
 'type': 'text'
 },
 'fill': {
 'r': 0,
 'g': 0,
 'b': 0,
 'a': 1
 },
 'font': {
 'type': 'font',
 'weight': 'normal',
 'size': '9pt',
 'family': 'sans-serif'
 }
 }, {
 'shape': {
 'align': 'start',
 'text': '{{data.EMail}}',
 'y': 75,
 'x': 70,
 'type': 'text'
 },
 'fill': {
 'r': 0,
 'g': 0,
 'b': 0,
 'a': 1
 },
 'font': {
 'type': 'font',
 'weight': 300,
 'size': '9pt',
 'family': 'sans-serif'
 }
 }];

Figure 5. Node representation
Figure 5. Node representation

This node template is defined in the file orgcharnode.js that you import in the HTML page with a script tag (Listing 13).

Listing 13. Node template import

<script type="text/javascript" src="orgchartnode.js"></script>

 1. Define the Organization Chart view

The Organization Chart view is the main view of your application (Listing 14). It displays the organizational chart with the Dojo Diagram widget.

Listing 14. Organization Chart view

<div id="orgchartView" dojoType="dojox.mobile.View" selected="true">
 <h1 dojoType="dojox.mobile.Heading">Mobile Org Chart Demo</h1>
 <div class="diagramView">
 <div id="diagram" class="diagram"
 dojoType='ibm_ilog.diagram.widget.Diagram'
 childBinding="children"
 nodesStore="graphModel"
 nodesQuery="{visible:'true'}"
 linkStyle="{ strokeWidth: 2, strokeColor: '#65B4D2' }"
 createLinksForHierarchy="true"
 >
 </div>
 </div>

 <ul dojoType="dojox.mobile.TabBar" >
 <li id = "info" dojoType="dojox.mobile.TabBarButton"
 icon1="../../../dojox/mobile/tests/images/tab-icon-12.png"
 icon2="../../../dojox/mobile/tests/images/tab-icon-12h.png"
 moveTo="infoView">
 Info

</div>

The childBinding attribute indicates that the hierarchical relationships of the graph is defined by a property (in this example, children) that links a node to all the nodes referenced in the children array. If you remember the structure of the JSON file, each employee has a children property that represents the array of subordinates.

The createLinksForHierarchy attribute indicates that the hierarchical relationships are represented as links.

The nodesQuery attribute is used to filter the nodes that should be displayed. At any moment, you display an employee, his manager, and his direct reports; all other nodes are hidden. As you move though the employees of the company, you change the visible property of the items of the data store in order to show only the required nodes.

 1. Define the Details view

The Details view displays some detail information for the selected employee (Listing 15). You access this view by touching the “Info” button of the Tab Bar at the bottom of the screen.

Listing 15. Details view

<div id="infoView" dojoType="dojox.mobile.View">
<h1 dojoType="dojox.mobile.Heading" back="Org Chart"
 moveTo="orgchartView">Details</h1>
 <ul dojoType="dojox.mobile.RoundRectList">
 <li id="name" dojoType="dojox.mobile.ListItem" >
 Name

 <li id="manager" dojoType="dojox.mobile.ListItem">
 Manager

 <li id="mail" dojoType="dojox.mobile.ListItem">
 Mail

 <li id="position" dojoType="dojox.mobile.ListItem">
 Position

 <li id="location" dojoType="dojox.mobile.ListItem">
 Location

</div>

 1. Apply CSS rules

You need to add styling instructions in order to layout all the widgets properly and resize them when the mobile devices change their orientation (Listing 16).

Listing 16. CSS rules

<style type="text/css">
 html, body {
 height: 100%;
 width:100%;
 }
 .mblView {
 height: 100%;
 }
 .mblTabBar {
 position: absolute;
 bottom:0;
 width:100%;
 }
 .diagramView {
 position:absolute;
 top:44px;
 bottom:49px;
 left:0;
 right:0;
 }
 .diagram {
 width:100%;
 height:100%;
 }
</style>

You must set the width and the height of the HTML and body elements such that the nested div elements (in this example, the Dojo Mobile views) can be given a proportional size, otherwise the Dojo Mobile view won’t fit the whole screen. Here, the height of all the elements of class mblView (that is, Dojo Mobile views) are set.

An absolute position is given to the Tab Bar to attach its bottom border to the bottom of the screen (or more precisely to the bottom of the first parent that has a position other than static; in this case, a dojox.mobile.view widget which itself fits the entire screen).

An absolute position is also given to the diagramView to attach its top border at 44 pixels from the top border of the Dojo Mobile view, because the heading bar is 44 pixel high. The bottom border of the diagramView is attached at 49 pixels from the bottom border of the Dojo Mobile view because the Tab Bar is 49 pixel high. The left and right borders are attached to the corresponding borders of the Dojo Mobile view so the Diagram widget will fit the entire width of the screen.

Finally, the Dojo Diagram widget is styled so that it fits its parent div with the diagramView class.

 1. Implement JavaScript code

All the code of the application is defined in a file named orgchart.js (Listing 17). The code is embedded in a self invoking function; this is a common JavaScript pattern to avoid creating global variables.

Listing 17. JavaScript application code

(function (){
// diagram: ibm_ilog.diagram.widget.Diagram
 var diagram = null;

 // The items of the data store of the Diagram widget
 var allItems = null;

// Returns the parent of the given item
var getParent = function(nodesStore,items,item){

 for (var i = 0; i < items.length; i++) {
 var children = nodesStore.getValues(items[i], "children");
 if (dojo.some(children, function(child) {
 return item === child;
 }))
 return items[i];
 }

 return null;

};

// Show the selected node, its parent and its children
var showGraph = function(event){
 var selection = diagram.getSelection().get();
 var selectedItem = null;
 var parentItem = null;
 var nodesStore = diagram.nodesStore;
 // If several selected nodes, take the first one
 if (selection.count > 0) {
 selectedItem = selection.item(0);
 }

 dojo.forEach(allItems,function(item){
 nodesStore.unsetAttribute(item, "visible");
 var managerName = nodesStore.getValue(item,"ManagerName");
 // If there is no seleced item, take the first item we find
 if (!managerName && !selectedItem)
 selectedItem = item;
 });

 // All the children of the selected item should be visible
 var children = nodesStore.getValues(selectedItem, "children");
 dojo.forEach(children,function(child){
 nodesStore.setValue(child, "visible","true");
 });

 // The selected item should be visible
 nodesStore.setValue(selectedItem, "visible", "true");

 // Get the parent of the selected node
 parentItem = getParent(nodesStore,allItems,selectedItem);

 // The parent item, if any, should be visible
 if (parentItem != null)
 nodesStore.setValue(parentItem, "visible", "true");

 // When the Diagram is loaded
 // reselect the previously selected item
 // Perform the layout
 var handle = dojo.connect(diagram,"onLoaded",function(){

 diagram.getSelection().add(selectedItem);

 var graph = diagram.getGraph();
 graph.performGraphLayout();
 dojo.disconnect(handle);
 });

 // Loads the data store and creates the diagram
 diagram.load();

};

// Handle the navigation through the hierarchy
// of employees
// when the user double tap on a node
// show that node, its parent and its children
var onNodeDblClick = function(entity, event){
// Prevent the default action and stop the bubbling
 dojo.stopEvent(event);
 // Show the new graph
 showGraph();
};

// When the layout is finished, perform a fitToContents
var onLayoutStepPerformed = function(layoutStarted, layoutFinished){
 if (layoutFinished){
 //Changes the transform of the diagram
 //so that the whole graph is visible in its parent surface.
 diagram.fitToContents(20,false);
 }
};

// Show the detail information for the selected employee
var showInfo = function(event){

 // deselect the tab bar button "info"
 dijit.byId("info").deselect();

 // get the selection object
 var selection = diagram.getSelection().get();
 // get the data store
 var nodesStore = diagram.nodesStore;
 var selectedItem = null;
 // If no selected item, reset the list items
 if (selection.count == 0) {
 dijit.byId("name").set("rightText","");
 dijit.byId("manager").set("rightText","");
 dijit.byId("mail").set("rightText","");
 dijit.byId("position").set("rightText","");
 dijit.byId("location").set("rightText","");
 return;
 } else
 selectedItem = selection.item(0);

 // get the attributes of the selected item
 // set them to the list item widgets

 var value = nodesStore.getValue(selectedItem,"Name");
 dijit.byId("name").set("rightText",value);

 value = nodesStore.getValue(selectedItem,"ManagerName");
 dijit.byId("manager").set("rightText",value);

 value = nodesStore.getValue(selectedItem,"EMail");
 dijit.byId("mail").set("rightText",value);

 value = nodesStore.getValue(selectedItem,"Position");
 dijit.byId("position").set("rightText",value);

 value = nodesStore.getValue(selectedItem,"Location");
 dijit.byId("location").set("rightText",value);

};

var orgchartViewHeight = function(){
 var orgChartView = dojo.byId("orgchartView");
 orgChartView.style.height =
 (dojo.global.innerHeight||dojo.doc.documentElement.clientHeight) + "px";

};

// initialization function, invoked once dojo is loaded
var init = function() {

 // initialization of the diagram variable defined in the closure
 diagram = dijit.byId("diagram");

 dojo.connect(diagram, "onNodeDblClick", null, onNodeDblClick);

 dojo.connect(dijit.byId("infoView"),"onBeforeTransitionIn", null, showInfo);
 if(dojo.config["mblHideAddressBar"] !== false &&
 navigator.appVersion.indexOf("Mobile") != -1){
 dojo.subscribe("/dojox/mobile/resizeAll", function(){
 orgchartViewHeight();
 dijit.byId("orgchartView").resize();
 });

 }

 var layout = new ibm_ilog.graphlayout.tree.TreeLayout();
 dojo.connect(layout, "onLayoutStepPerformed", null, onLayoutStepPerformed);

 // Layout configuration
 layout
 .setGlobalLinkStyle(ibm_ilog.graphlayout.tree.TreeLayout.ORTHOGONAL_STYLE);
 layout.setFlowDirection(ibm_ilog.graphlayout.Direction.BOTTOM);
 layout.setLayoutMode(ibm_ilog.graphlayout.tree.TreeLayout.TIP_LEAVES_OVER);
 layout.setGlobalAlignment(ibm_ilog.graphlayout.tree.TreeLayout.CENTER);

 var graph = diagram.getGraph();
 graph.setNodeLayout(layout);

 var onCompleteFetch = function(items, request) {
 // remembers all the items of the data store
 allItems = items;
 // Show the graph
 showGraph();
 };

 // load the data store
 var nodesStore = diagram.nodesStore;
 nodesStore.fetch({
 query : {},
 onComplete : onCompleteFetch
 });

};

dojo.addOnLoad(init);
})();

Refer to the comments in the above self-documented code for further programmatic explanations.

Conclusion

This article described how to write a simple application for mobile devices, such as iPhone, iPad, or Android devices using Web 2.0 technologies; namely the Dojo Mobile library that comes with the Dojo Toolkit and IBM ILOG Diagrammer, which is part of the WebSphere Application Server Feature Pack for Web 2.0 and Mobile V1.1. Out of the box, IBM ILOG Dojo Diagrammer automatically detects touch-enabled devices and provides standard touch interactions (such as selection, panning, zooming) with common touch gestures (such as simple tap, double tap, panning). This article demonstrated how to add custom actions by connecting application code to mouse events provided by the IBM ILOG Dojo Diagrammer widget. These mouse events are triggered by the native touch events of the mobile device. With Dojo Mobile, the diagram application has the native look and feel of the mobile device.

Resources

View this article online** for full access to these resources

About the author

Stéphane Lizeray is an Advisory Software Engineer at IBM France. He leads the IBM ILOG GraphLayout for Eclipse project and contributes to IBM ILOG Dojo Diagrammer. Before joining IBM, Stéphane worked for ILOG during several years developing advanced graphical user interface components for ILOG JViews.

The Support Authority: JVM enhancements that help you see how your WebSphere Application Server is behaving

Ian Partridge, J9CORE Java Service Team, IBM

Adam Pilkington, Advisory Software Engineer, J9 RAS, IBM

Dr. Mahesh Rathi, WebSphere Application Server SWAT Team, IBM

Summary: Recently, a number of new enhancements have been made to the serviceability features within the IBM® Java™ Virtual Machine. These improvements have been delivered as part of Java 6 R2.6, the latest release from the IBM Java Technology Centre, which underpins IBM WebSphere® Application Server V8. Some of the improvements have also been delivered in Service Refreshes of Java 6. 1.This article discusses each category of improvements that have been made, and how they can help you better understand the behavior of your application running on WebSphere Application Server V8. This content is part of the IBM WebSphere Developer Technical Journal**.

© Copyright IBM Corporation 2011. All rights reserved.

Throughout this document ** indicates a link that will open a Web browser.

Date: 21 Sep 2011
Level: Intermediate

In each column, The Support Authority discusses resources, tools, and other elements of IBM® Technical Support that are available for WebSphere® products, plus techniques and new ideas that can further enhance your IBM support experience.

This just in...

As always, we begin with some new items of interest for the WebSphere community at large:

 • Check out the WebSphere and CICS Support Blog on developerWorks, as well as the brand new IBM WebSphere SWAT Blog by Kevin Grigorenko.
 • Keep up to date on the upcoming IBM Conferences and Events** on developerWorks.
 • Learn, share, and network at the IBM Electronic Support Community blog on developerWorks.
 • Find out about the new Global WebSphere Community (GWC) at websphereusergroup.org. Customize the content on your personalized GWC page and connect to other "WebSpherians" with the same interests.
 • Several exciting webcasts are planned for the upcoming months at the WebSphere Technical Exchange. Visit the site for details and become a fan on Facebook!
 • IBM Support Assistant 4.1.2 is now available. IBM Support Assistant 4.1.2 delivers several defect fixes and a new version of its quick data collection tool, ISA Lite.

Continue to monitor the various support-related Web sites, as well as this column, for news about other tools as we encounter them.

And now, on to our main topic...

JVM serviceability enhancements

Several enhancements have been made to the serviceability features within the IBM Java Virtual Machine, delivered as part of Java 6 R2.6, which underpins IBM WebSphere Application Server V8. These improvements can be categorized into five main areas:

Details on each of these areas are described in the sections that follow.

JVM dump support (-Xdump)

The -Xdump option in the JVM configures the behaviour of the dump engine. You've probably used some of the features of the dump engine before without realizing you were doing so. For example, if you've ever seen a PHD heapdump file generated when a java/lang/OutOfMemoryError was thrown, that process was controlled by the dump engine.

The dump engine works by using the concept of agents. Each dump agent represents an instruction to the JVM of what type of dump to generate under which condition. There are default dump agents, such as the one which writes a PHD heapdump when an OutOfMemoryError is thrown, but you can also specify your own on the command line.

When a dump event occurs, the JVM reviews the list of active dump agents and executes any that are applicable to the event in question. The resulting action could be to write a javacore file, a heapdump file, a system dump file, or to execute an external tool, for example.

There are a variety of different dump events you can use. Table 1 shows some of the most useful ones.

Table 1

Event

Triggered when

gpf

A general protection fault (GPF) occurs.

user

The JVM receives the SIGQUIT (Linux®, AIX®, z/OS®, and i5/OS®) or SIGBREAK (Windows®) signal.

vmstart

The JVM is started.

vmstop

The JVM stops (for example, System.exit() is called).

load

A class is loaded.

systhrow

An exception is about to be thrown by the JVM.

fullgc

A garbage collection cycle is started.

allocation

An object is allocated with a size matching the given “filter” expression.

If you want to write a heapdump when a certain exception is thrown, try this command:

-Xdump:heap:events=systhrow,filter=com/acme/MyException

If you want to write a javacore file when the JVM starts up (for example, to check that custom options you have specified are being picked up), then try adding:

-Xdump:java:events=vmstart

Most of the improvements made to -Xdump support relate to javacore files. Javacore files are human-readable text files that summarise the state of the JVM. By default, they are generated when SIGQUIT is sent to the JVM. Here are the improvements which have been made to these files:

 • Native stack traces

Although javacore files contained a list of the threads currently running, they previously only listed each thread's Java stack. This is only half the story. As well as a Java stack, each thread also has a native stack. Being able to see the native stack can be really useful, especially in applications that make use of the Java Native Interface (JNI) to transition between Java and native code. Listing1 shows an extract of the output you now see in a javacore file.

Listing 1

THREADS subcomponent dump routine
=================================
Current thread

"main" J9VMThread:0x41481300, j9thread_t:0x002A5284, java/lang/Thread:0x00431CB0,
state:R, prio=5
(native thread ID:0xB7C, native priority:0x5, native policy:UNKNOWN)
Java callstack:
at gpf.action(Native Method)
at gpf.main(gpf.java:8)
Native callstack:
_Java_gpf_action@8+0xe (gpf.c:14, 0x42181025 [gpf+0x1025])
VMprJavaSendNative+0x421 (jnisend.asm:432, 0x7FF0B321 [j9vm24+0x1b321])
gpProtectedRunCallInMethod+0x1c (jnicsup.c:313, 0x7FF0748C [j9vm24+0x1748c])
signalProtectAndRunGlue+0xa (jnicsup.c:1840, 0x7FF07F2A [j9vm24+0x17f2a])
j9sig_protect+0x41 (j9signal.c:144, 0x7FECC161 [J9PRT24+0xc161])
gpProtectAndRun+0x38 (jnicsup.c:410, 0x7FF08788 [j9vm24+0x18788])
gpCheckCallin+0x3a (jnicsup.c:558, 0x7FF0883A [j9vm24+0x1883a])
callStaticVoidMethod+0x44 (jnicgen.c:303, 0x7FF06E84 [j9vm24+0x16e84])
getString646_USChars+0x5b (jni_util.c:488, 0x00403750 [java+0x3750])
canonicalize+0x61 (canonicalize_md.c:249, 0x00409A7E [java+0x9a7e])
GetModuleFileNameA+0x1ba (0x7C80B729 [kernel32+0xb729])

You can see that by also having the native callstack, you can glean useful information about the state of the JVM. For example, you can see the filename and line number of the native method currently being executed. This can really help to track down why crashes in native code are occurring.

As a bonus, anonymous native threads are also listed in javacore files. Previously, only Java threads were listed. Now, if your application is using native threads as well (for example, you are creating threads directly from native code using operating system APIs, such as pthreads) these will be listed in javacore files. Listing 2 is an example from a javacore, showing the JIT sampler thread. The JIT sampler thread is a background thread started by the JVM. It monitors what Java code is being executed so that the JIT compiler can make good decisions about which Java methods to select for compilation to native code.

Listing 2

Anonymous native thread
(native thread ID:0x9A8, native priority: 0x0, native policy:UNKNOWN)
Native callstack:
KiFastSystemCallRet+0x0 (0x7C90E514 [ntdll+0xe514])
WaitForSingleObject+0x12 (0x7C802542 [kernel32+0x2542])
j9thread_sleep_interruptable+0x101 (j9thread.c:1458, 0x7FFA1311 [J9THR24+0x1311
samplerThreadProc+0x5f6 (hookedbythejit.cpp:3301, 0x7F82E826 [j9jit24+0xe826])
thread_wrapper+0xbf (j9thread.c:971, 0x7FFA3F4F [J9THR24+0x3f4f])
_threadstart+0x6c (thread.c:196, 0x7C34940F [msvcr71+0x940f])
GetModuleFileNameA+0x1ba (0x7C80B729 [kernel32+0xb729])

At the time of this writing, there are a few limitations with native stack trace support. It is not currently available on z/OS or 64-bit Windows. Also, the ability to see filenames and line numbers depends on the compiler options that were used, whether your binaries are stripped, and whether appropriate side-files (for example, PDB files on Windows) are available.

 • Environment variables

Javacore files now include details of the environment variables that are set (Listing 3).

Listing 3

Environment Variables
--
_CXX_WORK_SPACE=(32000,(150,150))
_CXX_PMSGS=EDCPMSGE
MAIL=/usr/mail/CHAMBER
_CC_CNAME=CCNDRVR
PATH=/u/sovbld/bldsys:/usr/local/perl/bin:/u/java/bin:/bin:/usr/sbin:/u/chamb....
_C89_WORK_SPACE=(32000,(150,150))
_CXX_WORK_UNIT=SYSDA
_CXX_INCDIRS=/usr/include //DD:SYSLIB //'PP.ADLE370.ZOS180.SCEEH.NET.H'....
_C89_PNAME=EDCPRLK
TMPDIR=/tmp

Since there are certain legacy environment variables which can affect the behaviour of the JVM, it's useful to have this information included. Users also sometimes have problems relating to the setting of the LIBPATH environment variable. It's now easy to see what that's been set to.

 • ulimits

Javacore files also now include details of the operating system ulimit settings (Listing 4).

Listing 4

User Limits (in bytes except for NOFILE and NPROC)

type soft limit hard limit
RLIMIT_AS unlimited unlimited
RLIMIT_CORE 0 unlimited
RLIMIT_CPU unlimited unlimited
RLIMIT_DATA unlimited unlimited
RLIMIT_FSIZE unlimited unlimited
RLIMIT_LOCKS unlimited unlimited
RLIMIT_MEMLOCK 32768 32768
RLIMIT_NOFILE 1024 1024
RLIMIT_NPROC 16382 16382
RLIMIT_RSS unlimited unlimited
RLIMIT_STACK 10485760 unlimited
RLIMIT_MSGQUEUE 819200 819200
RLIMIT_NICE 0 0
RLIMIT_RTPRIO 0 0
RLIMIT_SIGPENDING 16382 16382

One of the most common reasons why users are unable to collect a full valid core file is because their ulimit settings are too restrictive. By having this information easily at hand in javacores you might be able to diagnose that problem more quickly.

 • Native memory usage counters

A major new feature in javacore files is a summary of the native memory usage of the JVM, organized by component in a tree. Listing 5 shows how it looks.

Listing 5

NATIVEMEMINFO subcomponent dump routine
=======================================
JRE: 555,698,264 bytes / 1208 allocations
|
+--VM: 552,977,664 bytes / 856 allocations
| |
| +--Classes: 1,949,664 bytes / 92 allocations
| |
| +--Memory Manager (GC): 547,705,848 bytes / 146 allocations
| | |
| | +--Java Heap: 536,875,008 bytes / 1 allocation
| | |
| | +--Other: 10,830,840 bytes / 145 allocations
| |
| +--Threads: 2,660,804 bytes / 104 allocations
| | |
| | +--Java Stack: 64,944 bytes / 9 allocations
| | |
| | +--Native Stack: 2,523,136 bytes / 11 allocations
| | |
| | +--Other: 72,724 bytes / 84 allocations
| |
| +--Trace: 92,464 bytes / 208 allocations
| |
| +--Trace: 92,464 bytes / 208 allocations
| |
| +--JVMTI: 17,328 bytes / 13 allocations
| |
| +--JNI: 15,944 bytes / 32 allocations
| |
| +--Port Library: 6,824 bytes / 56 allocations
| |
| +--Other: 528,788 bytes / 205 allocations
|
+--JIT: 1,748,808 bytes / 82 allocations
| |
| +--JIT Code Cache: 524,320 bytes / 1 allocation
| |
| +--JIT Data Cache: 524,336 bytes / 1 allocation
| |
| +--Other: 700,152 bytes / 80 allocations
|
+--Class Libraries: 971,792 bytes / 270 allocations

You can easily see how much memory is being used by threads, for example. This new feature will be really useful when memory leaks are being diagnosed. The feature has been designed so that it will be easy to improve the granularity of the data in future. By the way, the huge size of the Memory Manager (GC) section reflects the Java heap size you've set using the -Xmx option.

JVM Trace Support (-Xtrace)

The JVM trace engine is a flexible component that you can use to trace the execution flow of your application. You could use it to generate a javacore file when a certain Java method is entered or exited, or you could use it to calculate exactly how much time each JDBC transaction is taking, for example.

The JVM itself also has internal tracepoints built-in, which are invaluable to the IBM support team. In Java 6 R2.6 the number of internal tracepoints has been increased, providing greater granularity to the JVM's internal data logging. Of course, work has been done to minimise the performance impact of tracepoints, so they remain with extremely low overhead.

An important user-facing feature added to the trace engine is the ability to trigger printouts of Java stacktraces when a certain Java method is executed (Listing 6).

Listing 6

java -Xtrace:methods={myHello.*},trigger=method{myHello.*,jstacktrace} myHello,print=mt

09:58:56.546*0x123700 mt.3 > myHello.<clinit>()V Bytecode static method
09:58:56.562 0x123700 j9trc_aux.0 - jstacktrace:
09:58:56.562 0x123700 j9trc_aux.1 - [1] myHello.<clinit> (myHello.java:21)
09:58:56.578 0x123700 j9trc_aux.1 - [2] java.lang.J9VMInternals.initializeImpl
 (Native Method)
09:58:56.578 0x123700 j9trc_aux.1 - [3] java.lang.J9VMInternals.initialize
 (J9VMInternals.java
09:58:56.593 0x123700 mt.9 < myHello.<clinit>()V Bytecode static method
09:58:56.593 0x123700 mt.3 > myHello.main([Ljava/lang/String;)V Bytecode static method
09:58:56.609 0x123700 j9trc_aux.0 - jstacktrace:
09:58:56.609 0x123700 j9trc_aux.1 - [1] myHello.main (myHello.java:26)
Hello World

09:58:56.625 0x123700 mt.9 > myHello.main([Ljava/lang/String;)V Bytecode static method

The -Xtrace option here is split into three different components:

 • methods={myHello.*}

This enables method trace for all methods in the myHello class.

 • trigger=method{myHello.*,jstacktrace}

This sets the JVM to emit a Java stacktrace when any method in the myHello class is entered.

 • print=mt

This tells the JVM that all the method trace output should be printed to the console.

In the example output shown in Listing 6, you can see that the jstacktrace trigger occurred twice: once when a myHello object was constructed (myHello.<clinit>) and once when myHello.main() was entered.

You can also be more specific; for example, only start to print stacktraces after a given method is entered for the fifth time:

java -Xtrace:methods={myHello.main},trigger=method{myHello.main,jstacktrace,,5} myHello,print=mt

JVM Logging (-Xlog)

The -Xlog parameter is used to control the logging of JVM messages. These are the messages prefixed with a unique identifier, for example:

JVMDUMP032I JVM requested Java dump using 'C:\javacore.20110526.152519.2636.0001.txt' in response to an event

All these messages are sent to stderr by default, but selected messages are also sent to the system log as well. Table 2 shows how this is implemented on different platforms.

Table 2

Platform

System log

Windows

Event log (Event Viewer)

Linux

syslog

AIX

errlog or syslog

z/OS

MVS console

You can control which messages are sent to the system log via the -Xlog command. By default, the JVM logs all messages in the Error and Vital category to the system log. To log every message, specify -Xlog:all. To log only error and warning messages, specify -Xlog:error,warn. To disable all logging to the system log, specify -Xlog:none. Be aware that if you specify -Xlog:none, logging to stderr is unaffected.

RAS extension APIs in JVMTI

The JVM Tool Interface (JVMTI) is a programming interface that can be used by external tools to query the state of the JVM and the application it is running. There is a comprehensive set of APIs provided for inspecting the behaviour of threads, objects, classes, and the JVM's memory management.

The JVMTI specification also provides a way for JVMs to implement their own custom interfaces via the Extension Mechanism. JVMTI agent can discover the list of custom APIs exposed by a JVM via the GetExtensionFunctions() function. This returns an array of jvmtiExtensionFunctionInfo structures, one for each extension function the JVM defines.

The IBM JVM defines a number of extension functions, and these have been expanded in Java 6 R2.6 to include functions for controlling the behaviour of the dump engine at run time. These are defined in the ibmjvmti.h header file which ships in the Java SDK. The functions include:

 • QueryVmDump()

Query the VM dump options that are currently defined and enabled. The function returns a list of dump option specifications as ASCII strings.

 • SetVmDump()

Modify the current settings of the dump engine at run time using the same syntax as the -Xdump option (with the initial -Xdump: omitted).

 • TriggerVmDump()

Trigger a VM dump. The type of dump required is specified as a char* string (for example, java or heap).

 • ResetVmDump()

Resets the VM's list of dump agents back to the settings which were in force when the JVM started.

There are also two JVMTI Event functions defined in ibmjvmti.h. One is VMDumpStart(), which is triggered whenever a JVM dump starts, and the other is VMDumpEnd(), which is triggered whenever a JVM dump ends. The parameters to these callback functions enable the receiver to determine the dump event in question, the extension event name, and the dump filename that is being written to by the dump agent. These event functions can be useful if you want to write complex custom native code to be executed in a failure scenario.

Simplification of the postprocessing requirements for system dumps

Previous versions of the JDK required you to run the jextract postprocessing tool on IBM system dumps before tools such as Memory Analyzer would be able to load and process the dump. This requirement has now been removed and these tools will be able to work immediately on the system dump. Although this is a new feature, there is built-in support for other versions of the JDK , specifically Java 6 Service Refresh (SR) 9 and later, and Java 5 SR 12 and later. System dumps generated from these JDKs can be loaded into a post mortem analysis tool without processing by jextract.

Native code analysis

In order to analyze native code, for example a JNI invoked function, a tool might also require the presence of the native libraries that were loaded by the VM at that time. Typically, the most common use of these libraries is to resolve any native symbols contained within a stack trace. Some platforms such as Windows and z/OS produce system dumps that already contain the native libraries and so no further collection steps are required. If they are not included in the system dump and the analysis is being carried out on the machine which generated the dump, then the locally found libraries will be used. However, if the core file is moved to another machine, then the native libraries will also need to be transferred. The are currently two mechanisms provided for doing this. The first is to use IBM Diagnostics Collector, which can either be enabled when the VM starts or can be used following the generation of a system dump. The alternative method is to run jextract as before. Both of these tools generate a compressed archive which will contain the dump and any other required artifacts, such as the native libraries.

Conclusion

There are a number of new features available in the Java 6 R2.6 release which underpin WebSphere Application Server V8. For more information, consult the IBM SDK Java Technology Edition Version 6 Supplement Information Center, which documents the differences between Java 6 and the new Java 6 R2.6 release. This document should be read in conjunction with the Java 6 Diagnostics Guide.

Resources

View this article online** for full access to these resources

Learn

Get products and technologies

 • IBM Software Support Toolbar
 • IBM Support Assistant

Discuss

 • Forums and newsgroups
 • Java technology Forums
 • WebSphere Support Technical Exchange on Facebook
 • Global WebSphere Community on WebSphere.org
 • Follow IBM Support on Twitter!
 • WebSphere Electronic Support
 • WebSphere Application Server information
 • WebSphere Process Server
 • WebSphere MQ
 • WebSphere Business Process Management
 • WebSphere Business Modeler
 • WebSphere Adapters
 • WebSphere DataPower Appliances
 • WebSphere Commerce
 • IBM Support Assistant Tools

About the authors

Ian Partridge joined IBM in 2003 as a member of the JVM development team. He initially worked in the garbage collection development team, before taking roles in the shared classes and RAS components. In 2009 he moved to the Java service organisation to pass on his knowledge of JVM debugging and troubleshooting to customers.

Before joining IBM in 2006, Adam Pilkington was a J2EE technical architect for a large financial services organisation in the UK. He is now part of the Java Technology Centre team based in the Hursley Park Development Lab and has worked in both the Java performance and Diagnostic Tooling Framework for Java (DTFJ) teams. He is currently working in the RAS team where he is the lead for IBM's strategic technology for enabling JVM post mortem diagnostics. He is currently focussing on ways to leverage this technology beyond its initial scope, whilst working with both the development and service organisations across IBM labs to ensure it's adoption and ways that it can be enhanced to deliver greater business value. Adam is a developerWorks Contributing Author and was appointed an IBM Senior Inventor in 2008.

Dr. Mahesh Rathi has been involved with WebSphere Application Server product since its inception. He led the security development team before joining the L2 Support team, and joined the SWAT team in 2005. He thoroughly enjoys working with demanding customers, on hot issues, and thrives in pressure situations. He received his PhD in Computer Sciences from Purdue University and taught Software Engineering at Wichita State University before joining IBM.

Innovations within reach: The parameters that matter most for creating interactive diagrams on mobile devices

Algorithm tips and performance hints for using IBM ILOG Dojo Diagrammer

Adrian Vasiliu, Software Engineer, IBM

Summary: IBM® ILOG® Dojo Diagrammer includes a comprehensive set of graph layout algorithms that come with a vast number of customization parameters. This article provides a quick reference guide of the most important parameters for each algorithm, along with the parameters that can significantly influence performance. It also provides hints for optimizing the diagramming applications using graph layout on mobile devices. This content is part of the IBM WebSphere Developer Technical Journal**.

© Copyright IBM Corporation 2011. All rights reserved.

Throughout this document ** indicates a link that will open a Web browser.

Date: 21 Sep 2011
Level: Introductory

Each installment of Innovations within reach features new information and discussions on topics related to emerging technologies, from both developer and practitioner standpoints, plus behind-the-scenes looks at leading edge IBM® WebSphere® products.

Introduction

IBM ILOG Dojo Diagrammer is a component of the newly released IBM WebSphere® Application Server Feature Pack for Web 2.0 and Mobile V1.1. Dojo Diagrammer enables applications to display and edit graphs (diagrams) and provides a comprehensive set of graph layout algorithms for the automatic placement of the nodes and to ensure the links have optimal shapes. Figure 1 is an example of a business process management (BPM) application using Dojo Diagrammer.

Figure 1. Example of graph layout in BPM applications
Figure 1. Example of graph layout in BPM applications

In a recent blog entry, I provided some quick guidance about how to make a choice among the graph layout algorithms provided by Dojo Diagrammer, while mentioning that each algorithm can be fine-tuned using a number of parameters. Expanding on this, the tables in the next section list the critical parameters that you need to know about, based on graph format, along with tips that describe how these parameters can affect your application performance:

 1. Hierarchical layout
 2. Tree layout
 3. Force-directed layout
 4. Circular layout
 5. Grid layout
 6. Short link layout
 7. Long link layout

The graph layout parameters that matter the most

1. Hierarchical layout

Parameter

Values

Comments

flowDirection

left, right, top, bottom

Defines the direction toward which most links of the diagram "flow."

globalLinkStyle

orthogonal, polyline, straight

Different styles can be intermixed in the same diagram..

recursiveMode

true, false

When enabled (which is the default), the algorithm optimizes the layout globally for an entire nested graph, instead of a local optimization for each subgraph (a subgraph is a graph contained in a node of another graph). Also, when enabled, it lays out the “intergraph” links (that is, links that interconnect nodes from different subgraphs).

The hierarchical layout algorithm provides many other customization options, including various spacing parameters, an incremental mode, and a fine-grain constraint system.

Impact of parameters on performance:

 • The speed of hierarchical layout depends mostly on the characteristics of the graph itself. In particular, it depends on the density of the graph; that is, the ratio between the number of links and the number of nodes. The algorithm can handle very large graphs that have only a few links, but it might be too slow for smaller graphs that have a huge number of links.
 • Among the parameters, the “hierarchical constraints” have the highest influence on the speed. The constraints are a mechanism for the user to customize the layout in a fine-grain manner. The fewer the constraints, the more freedom the layout has to place nodes, and the faster the layout. In particular, you should avoid unfeasible constraint conflicts, because the detection of these conflicts is very slow.

2. Tree layout

Parameter

Values

Comments

layoutMode

free, level, balloon, radial, alternating radial, various variants of tip-over modes

The arrangement differs quite significantly depending on this parameter, and so it is therefore interesting to experiment with the modes for choosing the one that fits better.

flowDirection

left, right, top, bottom

Defines the direction towards which the diagram "flows."

globalLinkStyle

orthogonal, straight

Both styles can be intermixed in the same diagram.

The tree layout algorithm provides many other customization options, including various spacing parameters.

Impact of parameters on performance:

 • The layout modes free and level are the fastest.
 • The radial layout modes are a bit slower, but usually fast enough even for large graphs.
 • The tip-over layout modes are slow and should only be used for small or medium graphs.

3. Force-directed layout

Parameter

Values

Comments

layoutMode

incremental, non-incremental, fast multilevel

The most useful is the fast multilevel mode because it is often faster for large graphs. The incremental mode helps in case it is important that the layout preserves as much as possible in the initial positions of the nodes, thus preserving the so-called "mental map" of the user.

preferredLinksLength

number

Increase the value to spread the nodes over a larger area, or decrease the value to get a more dense arrangement.

Impact of parameters on performance:

 • To fit a variety of needs, the algorithm provides three optional modes: incremental, non-incremental and fast multilevel. The latter is generally the fastest for medium and large graphs.

4. Circular layout

Parameter

Values

Comments

clusteringMode

bySubgraphs, byClusterIds, Automatic

Determines how the clusters are specified: either each subgraph forms a cluster, or the clusters are specified per node by an id, or the clusters are automatically determined from the graph topology without any additional specification.

addClusterId

number

When the clustering mode is byClusterIds, then specifying clusters, star centers, ordering indexes change the layout most.

minimumClusterSize, maximumClusterSize, clusterByBiconnectivity

number and true, false

When the clustering mode is Automatic, these parameters influence how the nodes of the graph are grouped into clusters.

The circular layout algorithm provides other customization options, including various spacing options.

Impact of parameters on performance:

 • The automatic clustering mode is usually the slowest mode, because it requires the computation of an optimal clustering, while in the other modes the clustering is provided as input to the algorithm.

5. Grid layout

Parameter

Values

Comments

layoutMode

rows, columns, matrix with fixed total width, matrix with fixed total height

The nodes can be arranged either on rows, or on columns, or in a matrix (grid) for which either the total width or the total height is specified.

horizontalGridOffset, verticalGridOffset

number

If the layoutMode is matrix, define the spacing of the grid lines. If the layoutMode is rows or columns, these parameters are not used.

leftMargin, rightMargin, topMargin, bottomMargin

If the layoutMode is rows or columns, define the minimum distance between the border of the nodes and the border of the grid cell. If the layoutMode is matrix, defines the minimum distance between two adjacent nodes.

The grid layout algorithm provides other customization options, including an incremental mode and ordering options.

Impact of parameters on performance:

 • The grid layout in general is very fast and can handle huge graphs.
 • However, in layout mode tile to matrix, the speed depends on the grid mesh size (the distance between gridlines). The smaller the grid mesh size, the slower the layout.
 • If the layout mode is rows or columns, the grid mesh size has no influence on the performance.

6. Short link layout

Parameter

Values

Comments

globalLinkStyle

orthogonal, direct

Different styles can be mixed in the same diagram.

linkOffset

number

Defines the minimum offset between links connected to the same node.

The short link layout algorithm provides other customization options, including various spacing options.

Impact of parameters on performance:

 • The speed mostly depends on the number of links. This layout is suitable for small and medium size graphs.

7. Long link layout

Parameter

Values

Comments

globalLinkStyle

orthogonal, direct

Different styles can be mixed in the same diagram.

horizontaGridOffset, verticalGridOffset

number

Key dimensional parameters that define how dense is the grid where link points are placed. A finer grid (lower grid size) usually improves the quality of the layout, but at the price of slower computation and an increased memory footprint.

The long link layout algorithm provides other customization options, including various spacing options.

Impact of parameters on performance:

 • The speed depends on the number of links. This layout is suitable for small and medium size graphs.
 • The grid mesh size parameter (the distance between the grid lines) has a high influence of the performance. The smaller the grid mesh size, the slower the layout.
 • The algorithm provides an exhaustiveSearchMode which should be avoided when performance is a concern.

Optimizing graph layout applications for mobile devices

Mobile devices have specific constraints compared to a typical desktop or laptop computer:

 • Screen size is much smaller (holds for tablets and especially for smartphones).
 • Specific interaction paradigms (using touch gestures).
 • Less available memory.
 • Lower CPU power.
 • Slower network access, in particular for a GSM connection.

The small screen size and the interaction paradigms require you to design the graphical user interface in a way that suits the mobile devices. Dojo Diagrammer benefits from the mobile dojo package, dojox.mobile, which makes this adaptation easy.

Mobile applications also need to take CPU, memory, and network speed constraints into account. In the case of diagramming applications using graph layout, all three of these factors are critical. Indeed, most graph layout algorithms are computational intensive by their mathematical nature, and the mobile device needs to receive the data describing the graph via the network, which can be slow for large graphs.

Here are some key hints for optimizing your graph layout application on mobile devices:

 • Design the application such that it presents to the user small or medium graphs. If the business data involves large graphs, extract small relevant portions of the data (Figure 2 illustrates this idea). Besides saving computational power, this also provides a view on the data which fits the size of the screen.
 • Among the graph layout algorithms, lean toward using the fastest ones, in particular for large graphs. The fastest algorithms are the tree and grid layouts. Hierarchical and link layouts are slower and should be used for small or medium graphs. The slowest algorithm is the force-directed layout.
 • Pay attention to customization parameters of graph layouts that can strongly impact performance.
 • Try the server-side execution of graph layout. Dojo Diagrammer enables you to execute the layout algorithm either as Dojo code inside the browser, or as Java™ code running on a server (thanks to a ready-to-use RESTfull/JAX-RS service, included in the product). When running the layout algorithm on the server, the CPU and memory of the actual devices matter much less. Additionally, the mobile device needs to download less JavaScript™ code, because it won’t need the algorithm code, and this reduces the initial loading time of the application. On the other hand, the execution on the server requires passing the graph description, serialized in JavaScript Object Notation (JSON), between the mobile client and the server, and this can be slow with a GSM connection. Either the client-side or the server-side will fit better, depending on the size or speed characteristics of the graph, layout algorithm, mobile device and network. Dojo Diagrammer provides both solutions to give you the freedom to use the one that is the most appropriate for each case.

Figure 2. Example of graph layout application tailored for a mobile device using a local view of an orgchart
Figure 2. Example of graph layout application tailored for a mobile device using a local view of an orgchart

Resources

View this article online** for full access to these resources

 • IBM Dojo Diagrammer Information Center
 • Web 2.0 and Mobile Feature Pack Showcase
 • Installation instructions for WebSphere Application Server V8
 • Installation Instructions for WebSphere Application Server V7

 • Online version of the showcase sample, which includes the live versions of the following graph layout samples:
 • Graph Layout Browser
 • Organization Chart
 • Business Process Diagram
 • Graph Layout Explorer
 • Client-side Graph Layout for Mobile
 • Server-side Graph Layout for Mobile

About the author

Adrian Vasiliu has been an architect and developer of diagramming and graph layout technologies at ILOG since 1997 and IBM since 2009. Adrian has a PhD in Computer Science from Ecole Centrale Paris (1997).

Comment lines: Ensuring enterprise availability when deploying Enterprise JavaBeans in WebSphere Application Server

Hendrik van Run, Consulting IT Specialist, IBM

Summary: IBM® WebSphere® Application Server Network Deployment can provide high availability for EJB applications. However, achieving actual high availability for EJB applications in the enterprise can be a daunting task. This article presents a number of key best practices from the field for application developers and system administrators that can dramatically improve the resilience of EJB applications. This content is part of the IBM WebSphere Developer Technical Journal**.

© Copyright IBM Corporation 2011. All rights reserved.

Throughout this document ** indicates a link that will open a Web browser.

Date: 21 Sep 2011
Level: Advanced

Implementing workload management principles across the enterprise

IBM WebSphere Application Server Network Deployment provides workload management-type capabilities for multiple protocols. This enables the distribution of an application’s workload across Network Deployment application servers. While the majority of new Java™ EE applications employ HTTP protocol workloads, there are still many Java EE applications that employ IIOP protocol workloads, with EJB applications deployed in dedicated application servers or clusters. Sometimes the client even resides in a different cell, which complicates the deployment and configuration.

This article looks at the mechanics of EJB workload management (WLM) in WebSphere Application Server Network Deployment where the client runs in a different cell. The configuration options that control the behaviour of the runtime will be described. Because it can be difficult to find all applicable best practices for this type of scenario, this article also discusses several application development recommendations for EJB client applications to both consolidate and update these recommendations which may have changed over time.

Overview

Before looking at the EJB workload management mechanism, let’s revisit revisit a typical flow for a (remote) EJB call. Figure 1 shows two different WebSphere Application Server cells, one hosting the EJB client application and the other one the EJB (server) application. Both applications run in a (WebSphere Application Server) Java EE container, but in this case the client application cannot rely on the naming service in its own cell to lookup the EJB.

This is what happens when the client makes its first remote EJB call:

 1. The EJB client application first needs to create an InitialContext before it can perform a lookup. Creating the InitialContext requires the use of a CORBA object URL, which includes one or more servers and their corresponding bootstrap ports. When creating the new InitialContext, a request is send by the client’s ORB to the server’s bootstrap port and returns a JNDI context for the server’s naming service.
 2. The actual lookup will use the JNDI context of the server and return a home object of the bean. This is an indirect IOR pointing to the location service daemon (LSD) of the nodeagent on the same node.
 3. Now, the client can create a new bean using the home interface. A request is sent to the LSD which selects one of the cluster members hosting the EJB workload management plug-in in the LSD.
 4. A direct IOR pointing to the selected cluster member is returned to the client, which can now be used to call a method on the bean’s remote interface.
 5. When the client calls a method on the bean’s remote interface, a request is sent to the actual bean instance on the cluster member selected by the LSD.
 6. The response of the above request contains the cluster configuration information. The EJB client workload management plug-in stores this information so it can use this data for subsequent requests.

Figure 1. Different steps for a remote EJB call that involves the EJB workload management mechanism
Figure 1. Different steps for a remote EJB call that involves the EJB workload management mechanism

EJB client development best practices

Ensuring high availability of EJB client applications is best achieved by taking a number of application development best practices into account. Below is a list of best practices specific to EJB client applications:

 • Use cluster members when bootstrapping from outside the cell

When making remote EJB calls to another cell, the EJB client application needs to create an InitialContext before it can perform a lookup. Creating the InitialContext involves the use of a CORBA object URL. To avoid a single point of failure, you should specify multiple servers for the remote cluster using a CORBALOC provider URL for the InitalContext() method.

Unless you are running WebSphere Application Server on z/OS®, nodeagents should not be employed for the InitialContext call. Moreover, it is a requirement to bootstrap to cluster members rather than the node agent. This is because bootstrapping to a nodeagent returns a non-WLM-enabled initial context, while boot strapping to the cluster members returns a WLM-enabled initial context. This is very important because the client side naming cache is built on a per host/port basis. If the client tries to bootstrap to the nodeagent, and the nodeagent subsequently fails, a re-bootstrap will reuse the naming cache, which now contains an unusable Initial context. If the client tries to bootstrap to more than one cluster member, as long as one cluster member is alive, it will find it.

The cluster used for bootstrapping can be the EJB target cluster, or a separate cluster just for the purpose of bootstrapping. Using a dedicated cluster for bootstrapping can simplify system administration. The cluster members hosting the EJB server components can now be restarted individually (that is, ripple start) without impacting the bootstrapping of the EJB clients. However, using a dedicated cluster obviously does require additional system resources.

An example of a corbaloc URL with multiple addresses is shown in Listing 1.

Listing 1

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.ibm.websphere.naming.WsnInitialContextFactory");
// All of the servers in the provider URL below are members of
// the same cluster.
env.put(Context.PROVIDER_URL,
 "corbaloc::myhost1:9810,:myhost1:9811,:myhost2:9810");
Context initialContext = new InitialContext(env);

 • Leverage WebSphere Application Server JNDI cache

When establishing a new InitialContext, you have to make sure that the WebSphere Application Server JNDI cache is enabled. As long as this cache on the EJB client is enabled, there is no need to cache home or bean references in the EJB client application, which greatly simplifies the EJB client application.

Although the WebSphere Application Server JNDI cache is enabled by default, EJB client applications can explicitly disable the WebSphere Application Server JNDI cache. Below are examples of how this cache can be disabled; all of these items should be avoided:

 • Java commandline argument:
 -Dcom.ibm.websphere.naming.jndicache.cacheobject=none

 • Explicit call from application to set the following system property:
 System.setProperty("com.ibm.websphere.naming.jndicache.cacheobject", "none");

 • Using jndi.properties anywhere in the classpath of the client:
 com.ibm.websphere.naming.jndicache.cacheobject=none

 • Explicit call when creating a new InitialContext:
env = new Hashtable();
env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE);
// env.put("com.ibm.websphere.naming.jndicache.cacheobject", "none");
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL,
"corbaloc::myhost1:9810,:myhost1:9811,:myhost2:9810");
ctx = new InitialContext(env);

At one time, caching home or bean references brought substantial performance benefits. However, with the introduction of the runtime JNDI cache in WebSphere Application Server V4, this no longer enhances application performance and only increases complexity.

In summary, with the WebSphere Application Server JNDI cache enabled, there is no need to cache home or bean references in the EJB client application.

Configuration best practices

Running EJB client applications that are inline with the best practices above is important. However, there are situations where certain configuration best practices also need to be applied. Below is a list of the most important parameters and their impact. Figure 2 shows these various configuration parameters and where they are set.

Figure 2. Overview of important configuration parameters
Figure 2. Overview of important configuration parameters

Configuration recommendations include:

 • Change the EJB WLM unusable interval

When one of the EJB target cluster members is stopped or crashes, the EJB workload management plug-in on the client will mark that server as unavailable. It will not send any requests to that server for a period of time. This period is also referred to as the unusable interval and is set by default to 300 seconds (5 minutes).

It is vital that administrators be aware of the existence of this unusable interval. For example, when restarting an EJB cluster member it can take up to the unusable interval before it starts processing EJB client requests from outside the cell. The default unusable interval of 300 seconds will keep the number of EJB client calls to an unavailable server at a minimum. In many cases, however, the interval can be safely lowered to ensure a faster discovery of newly restarted cluster members.

You can adjust the unusable interval by setting the JVM custom property com.ibm.websphere.wlm.unusable.interval to a value more suitable to your environment. This would need to be set on each application server that hosts the EJB client application.

 • Client ORB configuration

Configuration best practices for remote EJB calls obviously involve the Object Request Broker (ORB). Below are a number of client ORB timeouts that should be reviewed. The default ORB timeouts are rather generous; many clients prefer to configure more aggressive ones, taking into account typical application response times.

 • Connect timeout

Before the client ORB can even send a request to a server, it needs to establish an IIOP connection (or re-use an existing one). Under normal circumstances, the IIOP and underlying TCP connect operations should complete very fast. However, contention on the network or another unforeseen factor could slow this down. The default connect timeout is indefinite, but the ORB custom property com.ibm.CORBA.ConnectTimeout (in seconds) can be used to change the timeout.

 • Locate request timeout

Once a connection has been established and a client sends an RMI request to the server, then LocateRequestTimeout can be used to limit the time for the CORBA LocateRequest (a CORBA “ping”) for the object. As a result, the LocateRequestTimeout should be less than or equal to the RequestTimeout because it is a much shorter operation in terms of data sent back and forth. Like the RequestTimeout, the LocateRequestTimeout defaults to 180 seconds.

 • Request timeout

Once the client ORB has an established TCP connection to the server, it will send the request across. However, it will not wait indefinitely for a response, by default it will wait for 180 seconds. This is the ORB request timeout interval. This can typically be lowered, but it should be in line with the expected application response times from the server.

 • Server ORB configuration

Of course, configuration best practices for remote EJB calls involve the object.

Use the com.ibm.websphere.orb.threadPoolTimeout custom property to specify the length of time in which the ORB waits for an available thread from the ORB thread pool before rejecting a request. Unless this custom property has been set, the client ORB will wait until the request timeout threshold is reached. This custom property is available in WebSphere Application Server Network Deployment V6.1.0.5 and later.

 • Enable preload of workload management cluster data and disable callback timeout

New EJB client workload management behaviour was introduced with WebSphere Application Server Network Deployment V6.0. This can cause undesirable behaviour when none of the target EJB cluster members are running. The EJB client will wait for 30 seconds to enable any starting EJB cluster members to complete their startup cycle. This timeout interval was initially hardcoded but can now be set through a cell custom property called IBM_CLUSTER_CALLBACK_TIMEOUT.

When the target EJB cluster is down, many clients prefer to have the EJB client fail immediately instead of waiting for 30 seconds. This would involve setting the IBM_CLUSTER_CALLBACK_TIMEOUT to 0. Unfortunately, the workload management code in the EJB cluster cell uses a lazy mechanism to load the workload management cluster information. In order to use an aggressive timeout of 0, you would need to ensure that the workload management cluster information is loaded immediately upon startup of the cluster member. This can be achieved by setting the cell custom property IBM_CLUSTER_ENABLE_PRELOAD to true.

You should have both these two cell custom properties in place for the cell hosting the EJB servers. The minimum version required for this is WebSphere Application Server Network Deployment V6.0.2.21 or 6.1.0.1. Take special care when setting IBM_CLUSTER_CALLBACK_TIMEOUT to 0 in V7.0. There is a known issue that can cause nodeagent instability; PM08450 resolves this and is included with V7.0.0.13 and later. Know that there are no specific requirements for V8.0.

 • Control EJB workload management cluster feedback mechanism

The EJB workload management plug-in distributes requests across the different EJB target cluster members. By default, the plug-in uses a combination of the cluster member weights and the number of outstanding requests for each cluster member.

This feedback mechanism can be changed by setting the cell custom property IBM_CLUSTER_FEEDBACK_MECHANISM on the target cell. The following options (and their values) are available, even though they are typically not necessary:

 • 0: Use only the configured weights to determine routing.
 • 1: Use blending of weights and outstanding requests (default behavior).
 • 2: Use only the outstanding requests to determine routing.
 • 3: No extra feedback mechanism, does not take configured weights or outstanding requests into account. This is functionally equivalent to routing based on all servers having equal weights; any changes to the configured weights would be ignored.

Conclusion

Achieving high availability for EJB applications running on WebSphere Application Server Network Deployment is affected by a number of aspects. First, the EJB client applications should be developed with best practices in mind. But a number of best practices to fine tune the configuration can be required in order to achieve the best possible result.

Acknowledgements

I would like to thank Tom Alcott, Jason Durheim, and Michael Cheng for their input and feedback for this article.

Resources

View this article online** for full access to these resources

About the author

Hendrik van Run is Consulting IT Specialist within IBM Software Services for WebSphere in Hursley. In this role, he spends most of his time working with customers using WebSphere products. He has extensive experience in designing, implementing and reviewing WebSphere Network Deployment, WebSphere Virtual Enterprise and WebSphere eXtreme Scale infrastructure.

Comment lines: Tools for modernizing enterprise applications and the way you develop them

Reginaldo Barosa, Executive IT Specialist, IBM

Summary: The newly announced IBM® Rational® Developer for System z® Unit Test can dramatically enhance the way you develop, maintain, and test mainframe applications. This article explains how this solution, along with other IBM Rational Enterprise Modernization products, can be used in a typical scenario to transform an existing mainframe "green screen" application into a smartphone interface using modern techniques. This content is part of the IBM WebSphere Developer Technical Journal**.

© Copyright IBM Corporation 2011. All rights reserved.

Throughout this document ** indicates a link that will open a Web browser.

Date: 21 Sep 2011
Level: Introductory

Remember when green screens were cool?

We all know how fast technology changes. Remember pagers, for example? Not more than ten years ago, when smaller cell phones were first introduced, a friend of mine at the time was ecstatic to have acquired a new “flip” cell phone. While state-of-the-art back then, he might actually be embarrassed if he were to use this device today.

It is not a stretch to assume that any new technology adopted now probably will be obsolete or at least considered "ancient" in ten or twenty years, perhaps even sooner. That might be one reason why there is a strong, ongoing desire to modernize existing applications. And besides, no one wants to use the ugly "green screens" anymore.

So, the question for developers becomes: How can you modernize in an efficient way without being quickly obsolete?

You might decide to redesign and rewrite an existing application using a new technology, but of course there is no guarantee how long that technology will remain current. Adding in the considerable expense of rewriting an application brings even more uncertainty to the mix. These points provide good reasons why you might want to consider reusing available code that is performing well, rather than rewrite or replace it. There is also a need to implement transformations that are as agile as possible, without losing governance or the development control.

This article takes a very simple mainframe modernization example and shows how analysts, architects, and developers can get quick, effective, and reliable results transforming heritage applications using selected IBM Rational products and service-oriented architecture (SOA). It will show how you can reuse existing code and implement a fast transformation using a structured, modern method.

The transformation scenario

The sample scenario we will use here is very simple and common: You must reuse an existing COBOL/CICS® application and transform its old 3270 terminal interface into an iPhone interface – but you must do it with no new application code (other than the presentation layer), and the existing mainframe application must remain functional. Oh, and one more very important and mandatory requirement: the performance of the transformed application must remain at least as good as it is today.

There are several tools and technologies available to help you and your colleagues achieve this objective. The ones highlighted in this example include:

 • IBM Rational Team Concert
 • IBM Rational Asset Analyzer
 • IBM Rational Developer for System z
 • IBM Rational Developer for System z Unit Test
 • Service-oriented architecture (SOA)
 • CICS web services
 • CICS Explorer®
 • IBM Debug Tool for z/OS®
 • Web 2.0

Figure 1 shows the hardware and software architecture used in the implementation of this sample scenario. Notice that there are three laptops in this example: Two (a Mac and a Lenovo T60as) are clients, and theother (a Lenovo W510) was used as a server.

The sections that follow each present a task or problem that one or more members of the project team must address, and the tools or technologies that can help achieve the desired result.

Figure 1. Hardware and software architecture used in our scenario
Figure 1. Hardware and software architecture used in our scenario

1. You need an agile development environment using a z/OS system

To save mainframe MIPS and get an agile z/OS development environment, you can run Rational Developer for System z Unit Test on your server laptop. In this example, CICS V4.1 runs in z/OS under Rational Developer for System z Unit Test, where you can connect to and run the application to be transformed. Figure 2 shows the green screen terminal that results from a simple query using this application running on the Rational Developer for System z system. The user types the CICS transaction BKXX, selects the View option, and types a customer number (in this example, customer number 000002). After pressing Enter the data is displayed.

Figure 2. Existing CICS application current 3270 interface
Figure 2. Existing CICS application current 3270 interface

2. You need a structured way to create the requirements and control the transformation changes

Instead of sending e-mails and using disconnected tools to create the requirements, you can use Rational Team Concert with extensions to your z/OS system that is running on Rational Developer for System z Unit Test.

Using Rational Team Concert, an architect or analyst can create the requirements and pass it along to the developer. This requirement is called a work item. Notice that even though your components are deployed in the z/OS system under CICS, the source code in is stored in the Rational Team Concert repository that is installed on Linux® -- the same Linux where the z/OS system and Rational Developer are running (Figure 1). (Rational Team Concert can run on many different platforms, as well as under z/OS, but in this example it is running under native Linux.)

Rational Team Concert can be accessed via web browser or Eclipse interface. Here, the work item is created using the browser, as shown in Figure 3.

Figure 3. Architect uses Rational Team Concert to create a work item
Figure 3. Architect uses Rational Team Concert to create a work item

3. You need a tool to identify which existing z/OS components can be deployed as a web service

The analyst mission now is to investigate the CICS transaction BKXX, which needs the transformation.

You could use TSO/ISPF to search the z/OS components used in this CICS transaction to identify which components can be deployed to CICS as a web service, but why not use an automated tool for this instead? Also, what would be the impact of a possible transformation on the existing deployed assets?

Rational Asset Analyzer provides these capabilities. In this scenario, Rational Asset Analyzer is installed on the z/OS system (Figure 1) and can be accessed by anyone with a web browser who needs to understand the existing application and its components. Here, the analyst is uses a browser for this task, and later, the developer will also access the Rational Asset Analyzer database using the Eclipse plug-in that’s installed in Rational Developer.

Using a browser, the architect analyzes the BKXX transaction and determines that this transaction is composed of other transactions and programs, and specifically that a COBOL CICS program called BKPXXS1 is a perfect candidate to be deployed to CICS as a web service.

Figure 4 shows these Rational Asset Analyzer results.

Figure 4. Rational Asset Analyzer browser results during code transformation analysis
Figure 4. Rational Asset Analyzer browser results during code transformation analysis

With this information, the developer will have the mission to complete the transformation activities after further analysis. Using Rational Team Concert, the analyst updates the work item and assigns the work to the developer, passing screen captures and details about the COBOL program to be deployed as a web service (BKPXXS1).

The work item now has a new owner (the developer) and the analyst’s mission is complete, although he could later review and approve the work done by the developer in Rational Team Concert.

4. You need a simple and efficient way to understand how to transform the code

The developer receives an e-mail notification indicating there is development activity to perform and to access Rational Team Concert to start the work. He accesses Rational Team Concert using Rational Developer for System z, which is his development tool, to access the work item assigned to him.

Figure 5 shows the Rational Developer Work Items perspective, which displays the work assignment with all necessary documentation to enable the developer to start his analysis of the COBOL program to be deployed as web service.

When he starts working on the assigned task he might update the work item, adding planned completion date, time required, and so on. When he updates the work item, anyone subscribing to the task can receive e-mail updates of work in progress.

Figure 5. Accessing Rational Team Concert via Rational Developer interface to update a work item
Figure 5. Accessing Rational Team Concert via Rational Developer interface to update a work item

5. You need to perform deep analysis on the required COBOL code

Using Rational Asset Analyzer, the developer can perform impact analysis in case he decides he needs to make COBOL code changes (none are made in this scenario), identify dead code, and so on. Figure 6 shows an example where the user is analyzing the program BKPXXS1 and understands its logic using Rational Developer for System z.

Figure 6. Developer using Rational Asset Analyzer integrated with Rational Developer
Figure 6. Developer using Rational Asset Analyzer integrated with Rational Developer

6. You need a tool to create and deploy web services

The developer will wrap the existing COBOL code and deploy a CICS web service, without any COBOL code modifications. This way there will be no impact on the existing application. The developer will use Rational Developer for System z to create, test, and deploy the CICS web services. (See Resources for several articles on creating web services.) Figure 7 shows the Enterprise Services perspective of Rational Developer, which features a wizard for creating a CICS web service.

Figure 7. Creating a CICS Web Services using Rational Developer
Figure 7. Creating a CICS Web Services using Rational Developer

It’s important to remember that because Rational Developer is running z/OS, there is no impact on the mainframe. When the service is successfully tested in Rational Developer, the code will just need to be redeployed on the actual mainframe for further testing and finally production.

With Rational Developer and the necessary CICS authorizations, you can deploy CICS web services from the generated components (Figure 8).

Figure 8. Deploying a CICS Web Service from Rational Developer
Figure 8. Deploying a CICS Web Service from Rational Developer

When the SOAP web service is generated, a WSDL is also created. As you can see, the use of these tools makes it easy to understand how z/OS development can be agile.

7. You need a tool to test and debug the web services to be deployed

Once the web service is deployed, it needs to be tested it. If there are problems, the COBOL code running on z/OS might need to be debugged.

The web service can be tested using the generated WSDL and the Web Services Explorer included in Rational Developer for System z. Figure 9 shows the Web Services Explorer in action. The developer types the input message and receives the response back.

Figure 9. Testing the CICS web service
Figure 9. Testing the CICS web service

In case of unexpected results, the z/OS components can be debugged using the integrated Rational Developer debug capability. Using the Rational Developer CICS Explorer capability, you can select the COBOL program to be debugged, and specify the TCP/IP address of the laptop as well the port number that the client is listening on. The z/OS debugger that is running on Rational Developer is activated and the Debug perspective can be used for code debugging, as seen in Figure 10.

(The Rational Developer Debug perspective is the same perspective for debugging other code, such as Java.)

Figure 10. z/OS debug in action
Figure 10. z/OS debug in action

8. You need a modern language to create a Web 2.0 interface

At this point, the scenario is almost complete. The CICS web service is created, deployed, and tested. Now the smartphone interface needs to be created and tested also. This is my favorite piece of the scenario: creating a modern Web 2.0 component that reuses a very old and mature technology. Also in this scenario, this activity is the only one that requires new coding.

See Resources for more on Web 2.0 and its wonders, the advantages of using EGL over other technologies like JavaScript™, Ajax, and so on, as these topics are beyond the scope of this article. The developer’s mission here is creating a Web 2.0 interface from an existing generated WSDL that specifies the web services deployed.

Rational Developer with EGL has a dialog that creates an EGL interface that can be used in the EGL code to invoke the CICS web service. The wizard uses the provided WSDL and creates a simple EGL code. This code will use in an EGL call statement that will invoke the CICS service. You can see this EGL code in Figure 11. Notice that this is an asynchronous call to CICS web services. In other words, when running as JavaScript in the browser, the user doesn’t need to wait for the data to be returned from CICS. The web browser is available for other operations. This is one of the benefits of using Web 2.0. The EGL wizards in Rational Developer makes the invocation of the CICS web services very easy.

Figure 11. EGL code to invoke the CICS web service
Figure 11. EGL code to invoke the CICS web service

You can also use the EGL Web 2.0 graphical editor to drag and drop the user interface component like buttons, drop downs, Dojo widgets, or customized interfaces, as seen in Figure 12. When you click on the Source tab, you’ll see the EGL code resulting from this drag and drop.

Figure 12. Creating the Web 2.0 interface using EGL graphical editor
Figure 12. Creating the Web 2.0 interface using EGL graphical editor

This EGL graphical editor provides three tabs: Design, Source, and Preview (Figure 12). The Preview tab is useful for testing the Web 2.0 components (Figure 13) and displays the web interface exactly as the user will see it.

Figure 13. Preview EGL editor tab with the data returned from CICS web services
Figure 13. Preview EGL editor tab with the data returned from CICS web services

At this point, the mission is accomplished. Using a simple EGL line of code you can check the CICS web services response time. When this sample was initially run, response times of milliseconds were recorded. Remember that the data being sent to CICS is XML; CICS is parsing it, invoking the COBOL program that gets the data from the database, sends the data to be parsed again, and returns it to the client in XML format again.

This impressive speed makes this technology very well accepted. You can use an iPhone emulator to test whether the application can run in the Safari browser (Figure 14).

Figure 14. The existing COBOL/CICS application with iPhone interface
Figure 14. The existing COBOL/CICS application with iPhone interface

9. You need to communicate the completed work and request approvals

The developer can use Rational Team Concert again, update his assigned work item, and, if necessary, request approval form other people on the team for other tests and a final promotion for production.

We could expend lots of time here, but to make life simpler, we will just end as the developer closing this work item. Figure 15 shows this while he still using Rational Developer.

Figure 15. Resolving the Rational Team Concert work item
Figure 15. Resolving the Rational Team Concert work item

This scenario could continue and you could use other capabilities of Rational Team Concert to build and deploy components and perform another level of tests, or even move the new code to production, but hopefully you get the idea that the tools available make the entire process very easy and practical.

Conclusion

This article illustrated a scenario that used state-of-the-art development tools to modernize an existing COBOL/CICS green screen application by moving it to the Internet using Web 2.0 technology, while also transforming the application development infrastructure.

If you are concerned about modernizing existing applications using modern tools, you owe it to yourself to experiment with the products and technologies described here. You might be surprised with the results. IBM even provides a System z Sandbox web site where you can even try some of the products described here.

Resources

View this article online** for full access to these resources

Learn

Discuss

 • Forum: Rational Developer for System z

About the author

Reginaldo W. Barosa is an IBM Executive IT Specialist. He provides sales support, helping customers with enterprise modernization solutions and development tools, such as Rational Developer for System z. Before joining IBM U.S. more than ten years ago, Reginaldo worked for 27 years for IBM Brazil. He has co-authored IBM Redbooks and has written two books, as well as other articles and tutorials for IBM developerWorks. He holds a degree in electrical engineering from Instituto Maua de Tecnologia, Sao Paulo, Brazil