IBM Cognos Report Studio
Version 10.2.0

User Guide

IBM
Contents

Introduction xxxv

Chapter 1. What's New?............................. 1

New features in version 10.2.0 1
- Updated world and Africa maps 1
- Interactive repeater tables 1
- Improved IBM Cognos Active Report integration with IBM Cognos Workspace 2
- Improved support for bidirectional languages 2
- Macro tab in expression editor 2
- Inherited table styles in lists and crosstabs 3
- Enhanced crosstab headers 3
- Prompt API ... 3
- Excel 2007 Data report output format 3
- Global classes for accessible reports 4

Changed features in version 10.2.0 4
- Support for inline prompts in reports viewed on mobile devices 4
- Cognos Business Insight and Cognos Business Insight Advanced are renamed 4

Removed Features in Version 10.2.0 5
- Saving and opening reports on your computer 5

New features in version 10.1.1 5
- New active report controls 5
- Conversion of controls to other types of controls 5
- Improved user experience when authoring active reports 5
- Active report access code 6
- New startup options ... 6
- Keyboard shortcuts for accessibility 6
- Updated maps ... 6
- Custom groups .. 7
- Larger worksheet sizes for Microsoft Excel 2007 report outputs 7
- Microsoft Excel 2007 supported as an external data source 7

Changed features in version 10.1.1 8
- Specify how to show no data contents 8

What's new in version 10.1.0 8
- New Features in Version 10.1.0 8
- Changed Features in Version 10.1.0 9
- Removed Features in Version 10.1.0 10

Chapter 2. Getting started with Report Studio 19

Building IBM Cognos Business Intelligence Applications 19
Relational and dimensional reporting styles 20
The User Interface ... 23
Work in design or structure view 27
Report Layout and Queries ... 28
 Layout .. 28
 Queries .. 29
Report Objects .. 29
 Find Objects in a Report ... 31
Options ... 31
Web Browser Settings .. 35
The IBM Cognos Software Development Kit 36

Chapter 3. Creating a report .. 37

Specify the Data Package ... 37
Refresh the Package ... 37
Choose a Basic Report Layout ... 38
Building Cases in IBM Cognos Statistics

- **Descriptive Statistics**
 - Basic Descriptive Statistics
 - Create a Descriptives Table
 - Histograms
 - Create a Histogram
 - Boxplots
 - Create a Boxplot
 - Create a Q-Q Plot
 - Q-Q Plot Options

- **Means Comparison**
 - t-Tests
 - Create a One-Sample t-Test
 - Using One-Way ANOVA to Compare Means
 - ANOVA Options
 - Nonparametric Tests
 - Create A One-Way Chi-Square Test
 - Example: Specify the Proportion for Expected Values in a Chi-Square Test
 - Create a Two-Way Chi-Square Test

- **Basic Correlation and Linear Regression**
 - Showing Correlation Between Variables
 - Correlation Options
 - Use Linear Regression
 - Linear Regression Options
 - Create a Curve Estimate
 - Curve Estimation Options

- **Statistical Process Control**
 - Control Charts
 - Create Process Capability Charts
 - Create X-Bar, R, and S Charts
 - Create Moving Range Charts
 - Create Individuals Charts
 - Create p,n,p Charts
 - Create c,u Charts
 - Cases are Units or Cases are Subgroups
 - Specification Limits
 - Control Rules
 - Process Capability Indices
 - Process Performance Indices

Chapter 10. Relational Reporting Style

- Add Relational Data to a Report
- Group Relational Data
 - Perform Advanced Grouping
 - Creating relational custom groups
 - Set the Group Span for a Column
 - Divide Data into Sections
- Summarizing Data Relationally
 - Add a Simple Summary
 - Set the Auto Group & Summarize Property
 - Specify Detail or Summary Aggregation in the Model
 - Specify Aggregation Properties for a Data Item
 - Use Summary Functions in Data Item Expressions
 - Summary Functions
- Create a Detail or Summary Filter
 - Ignoring the Time Component in Date Columns
- Focusing Relational Data
 - Edit or remove a filter
- Sorting Relational Data
 - Perform Advanced Layout Sorting
- Working with Relational Queries
Specify a List of Data Items for an Object

- Add a Query to a Relational Report
- Create a Union Query
- Create a Join Relationship
- Reference a Package Item in a Child Query
- Create a Master Detail Relationship
- Working with Queries in SQL

Relate a Query to a Layout

- Using Relational Calculations
- Create a Simple Calculation
- Insert a Query Calculation
- Create a Layout Calculation

Connecting Queries Between Different Data Sources

- Chapter 11. Dimensional Reporting Style
- Add Dimensional Data to a Report
- Customize the Source Tree
- Insert a Member
- Search for a Member
- Nest Members
- Insert a Hierarchy
- Insert a Member Property
- Create a Set of Members
- Edit a Set
- Extended Data Items
- Tips for Working with Ragged or Unbalanced Hierarchies
- Creating dimensional custom groups
- Summarizing Data Dimensionally
- Add a Simple Summary
- Summarizing Values in Crosstabs
- Summarizing Member Sets
- Rolling and Moving Averages
- Show Data for Specific Time Periods
- Summary Functions
- Focusing Dimensional Data
- Create a Context Filter
- Sorting Dimensional Data
- Sort Sets by Label
- Sort Sets in the Opposite Axis by Value
- Perform Advanced Set Sorting
- Working with Dimensional Queries
- Specify a List of Data Items for an Object
- Relate a Query to a Layout
- Using Dimensional Data Sources with Queries
- Connecting Queries Between Different Data Sources
- Multiple-fact Queries
- Add a Query to a Dimensional Report
- Add Dimension Information to a Query
- Create a Master Detail Relationship
- Working with Queries in SQL or MDX
- Example - Create a Dynamic Report That Shows Period-to-date Data

Using Dimensional Calculations

- Create a Simple Member Calculation
- Insert a Query Calculation
- Create a Layout Calculation
- Create an Intersection (Tuple)
- Assigning a Hierarchy or Dimension
- Browse or Search the Values of a Data Item

Drilling Up and Drilling Down in Dimensional Reports

- Member Sets
- Create a Drill-up and Drill-down Report
Chapter 23. Upgrading Reports... 525
Upgrading Reports from IBM Cognos BI Version 8.4................. 525
 Upgrading Report Styles... 525
 Upgrading Legacy Charts... 526
 New Default for Hidden or Deleted Axis Titles.................. 526
 Upgrading Reports with SAP BW Prompt Variables................ 526
Upgrading Reports from IBM Cognos BI Version 8.1 or 8.2............ 527
 Members Containing No Data Are Not Suppressed for SAP BW.... 527
 Thousands Separators Missing.................................. 527
 RQP-DEF-0177 Error When Upgrading Reports..................... 527
Upgrading Reports from IBM Cognos ReportNet......................... 528
 Undocumented and Unsupported Features........................ 528
 No Sort Order.. 528
 Layout Errors.. 528
 Report Format.. 528
 Customized Style Sheets....................................... 528
 PDF Reports.. 528
 IF-THEN-ELSE Statements..................................... 529
 Solve Order.. 529
 Chart Behavior.. 529
Database Only Processing of Queries.................................. 529
 Changes in the Behavior of Functions Between ReportNet 1.1 and IBM Cognos BI.... 529

Appendix A. Accessibility Features..................................... 531
Accessibility features in IBM Cognos Report Studio.................... 531
 Keyboard Shortcuts... 531
Considerations to Improve Report Accessibility....................... 532
 Enable Accessible Report Outputs.............................. 532
 Alternate text and summary text.............................. 534
 Designate Cells Headers in Tables............................. 535
 Headings and emphasis.. 535
 Prompt control labels.. 536
 Example - Conditionally Show a List Below a Chart for an Accessible Report . 537
IBM and accessibility... 539

Appendix B. Troubleshooting... 541
Problems Creating Reports.. 541
 Division by Zero Operation Appears Differently in Lists and Crosstabs........ 541
 Application Error Appears When Upgrading a Report................ 541
 Nested List Report Containing a Data Item That is Grouped More Than Once Does Not Run After Upgrade 541
 Background Color in Template Does not Appear.................... 542
 Subtotals in Grouped Lists...................................... 542
 Chart Labels Overwrite One Another............................ 542
 Chart Shows Only Every Second Label............................ 542
 Chart Gradient Backgrounds Appear Gray in Internet Explorer........ 543
 Metadata Change in Oracle Essbase Not Reflected in Reports and in the Studios... 543
 Relationships Not Maintained in a Report With Overlapping Set Levels........ 543
 Summaries in Query Calculations Include Nulls with SAP BW Data Sources........ 544
 Creating Sections on Reports That Access SAP BW Data Sources............. 544
 Error Characters (--) Appear in Reports.......................... 544
 Columns, Rows, or Data Disappear With SSAS 2005 Cubes................ 545
 Function Unreliable with Sets.................................. 546
 Report Differences Between TM1 Executive Viewer and IBM Cognos Business Intelligence with TM1 Data Sources.................. 546
 Order of Metadata Tree Diffs for TM1 Data Sources................ 546
 IBM Cognos Statistics Do Not Support CSV and XML Output.................. 546
 Chi-square Test of Independence Generates a Warning about Counts When Using IBM Cognos Statistics............... 547
 MSR-PD-0012 error when importing external data.................... 548
MSR-PD-0013 error when importing external data .. 548
Problems Calculating Data .. 548
Unexpected Summary Values in Nested Sets ... 548
Null Results for Calculations Using SAP BW Data Sources ... 549
Incorrect Results with IBM Cognos PowerCubes and Time Measures 549
Incorrect Results in Summaries When Using OLAP Data Sources 550
Problems Filtering Data ... 551
Unexplained Discrepancies in Number Calculations ... 551
HRESULT= DB_E_CANTCONVERTVALUE Error When Filtering on a _make_timestamp Column . 553
Problems Running Reports ... 553
Report Runs Slowly ... 553
Summaries in a report do not correspond to the visible members 556
Cannot Find the Database in the Content Store (Error QE-DEF-0288) 558
Parse Errors When Opening or Running an Upgraded Report 558
Overflow Error Occurs When a Value in a Crosstab Is More Than 19 Characters 558
The ORA-00907 Error Appears When Running a Report .. 558
A Report or Analysis Does Not Run Because of Missing Items 558
Cannot View Burst Report ... 559
A report upgraded from ReportNet does not retain its original look 559
Measure Format Disappears in SSAS 2005 ... 560
Drill-through Links are Not Active in the Safari Browser ... 560
Data Does Not Appear in a Target Report or the Wrong Data Appears 560
A Running Total in Grouped Reports Gives Unexpected Results 561
PCA-ERR-0057 Recursive Evaluation Error ... 561
Arithmetic Overflow Error When Running a Report in PDF Format 562
RQP-DEF-0177 An error occurred while performing operation 'sqlPrepareWithOptions' status='-69'
UDA-SQL-0043 Error ... 562
Unable to View Active Reports in Mozilla Firefox ... 562
Running Large SAP BW Queries .. 563
Master Detail or Burst Reports with Charts or Crosstabs May Result in Denial of Service .. 563
Problems When Drilling Through .. 563
Cannot Drill Through Between PowerCubes Because MUNs Do Not Match 563
Unexpected or Empty Results When Drilling Through ... 564
Cannot Drill Through From a Relational Source to a Cube .. 565
Drill-through links in active reports do not work ... 566

Appendix C. Sample Reports and Packages ... 567
The Sample Outdoors Company ... 567
The Sample Outdoors Group of Companies .. 568
Employees ... 570
Sales and marketing .. 570
Sample Outdoors database, models, and packages ... 571
Samples in the Sample Outdoors Sales (cube) package ... 573
Consecutive Periods Comparison ... 573
Samples in the Sales and Marketing (Cube) Package ... 573
Actual vs. Planned Revenue ... 573
Historical Revenue .. 574
Revenue by Date Range ... 574
Revenue by Product Brand (2011) .. 574
Running Total For Promotion ... 574
Sales Revenue Expectation .. 574
Same Month Prior Year .. 575
Selected Retailer Country or Region ... 575
Top Retailers by Country or Region .. 575
Tree Prompt Retailers Set .. 576
Samples in the GO Data Warehouse (analysis) Package .. 576
Budget vs. Actual ... 576
Core products results ... 576
Customer Returns and Satisfaction .. 576
Employee Satisfaction 2012 ... 577
Employee Training by Year ... 577

Contents xiii
Appendix D. Limitations when using dimensional data sources. 595
Running a Report Against a Dimensional Data Source .. 595
Limitations When Using Set Expressions in List Reports .. 596
Limitations When UsingClauses in Summary Functions .. 596
Limited Support for Relational Functions When Used with OLAP Data Sources 597
Limitations When Summarizing Measures in DMR Data Sources 598
Limitations When Filtering Dimensional Data Sources .. 598
 Error Characters (--) When Filtering ... 599
 Limitations When Specifying the Scope of Summary Filters with Dimensional Data Sources........... 599
 Limitations When Filtering Data Using an SAP BW Data Source 600
Considerations when Creating Calculations ... 601
 Calculation Solve Order ... 601
 Length of Expressions ... 601
 Quality of Service Indicators .. 601
 Using Quotation Marks in Literal Strings .. 602
 Limitations of Calculations .. 602
 Creating Expressions Using SAP BW Data Sources ... 602
 Using Microsoft Excel Functions with SSAS 2005 Data Sources 603
 Concatenating Strings .. 603
 Intersecting Calculations in Crosstabs and Charts ... 603
 Null (Missing) Values in Calculations and Summaries 606
 Dimensional Coercion Rules ... 607
 Recommendation - Use Member Unique Name (MUN) Aliases 611
Limitations When Formatting Empty Cells in SAP BW Data Sources 612

Appendix E. Limitations When Producing Reports in Microsoft Excel Format 613
Unable to Load Images from the IBM Cognos Business Intelligence Content Store in a Report........... 613
Blank Worksheet Appears .. 613
Warning Message Appears When Excel Opens an IBM Cognos Business Intelligence Report 613
Spreadsheet Content Not Saved for Reports Saved in XLS Format 613
Unable to Load Excel Report in Netscape 7.01 ... 614
Unable to Nest Labels in Charts ... 614
Data Series Are Truncated .. 614
Colors Different From Those in HTML or PDF ... 614
Repeating Pie Charts ... 614
Unable to Skip Discrete Axis Labels .. 614
Unsupported IBM Cognos BI Formatting .. 614
Cells Contain Series of # .. 615
Table and Column Widths .. 615

Contents xv
Secure Socket Layer (SSL) Is Not Supported in Some Excel Formats and Versions 615
Number Formats Become Currency Formats in Japanese Excel 616
Reports Show Data in Wrong Columns 616
Unable to Access Reports on Remote Servers 616
Drill-through Reports Are Not Supported in Excel 616
Map Reports Are Not Supported in Excel 616
Unsupported Excel Formatting 616
Hyperlink Buttons Are Not Supported in Excel 617
Unable to View Reports in Excel Format Sent as Email Attachments 617
Unsupported Chart Properties in Excel 617
Unsupported Chart Types in Excel 617
Cell Height and Width Are Incorrect 618

Appendix F. Using the expression editor. 619
Calculation components 619
Operators 619
Summaries 626
Member Summaries 636
Constants 640
Constructs 641
Business Date/Time Functions. 642
Block Functions 647
Aster Data 648
DB2 653
Greenplum 670
Informix 676
MS Access 682
MySQL 689
Netezza 693
Oracle 699
Paracel 708
Postgres 710
Red Brick 716
SAP BW 721
Salesforce.com 722
SQL Server 726
Sybase 733
Teradata 742
Vectorwise 747
Vertica 750
Macro Functions 755
Common Functions 768
Dimensional Functions 777
Report Functions 802
Data Type Casting Functions 809

Appendix G. Report Studio Object and Property Reference 821
Report Studio Objects 821
3-D Area 821
3-D Bar 821
3-D Combination Chart 822
3-D Line 822
3-D Scatter Chart 822
Angular Axis 823
Angular Measure 823
Area 823
Area 823
As of Time Expression 823
Axis Labels 824
Axis Title 824
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crosstab Columns</td>
<td>838</td>
</tr>
<tr>
<td>Crosstab Corner</td>
<td>838</td>
</tr>
<tr>
<td>Crosstab Fact Cells</td>
<td>839</td>
</tr>
<tr>
<td>Crosstab Intersection</td>
<td>839</td>
</tr>
<tr>
<td>Crosstab Member Fact Cells</td>
<td>839</td>
</tr>
<tr>
<td>Crosstab Node Member</td>
<td>840</td>
</tr>
<tr>
<td>Crosstab Rows</td>
<td>840</td>
</tr>
<tr>
<td>Crosstab Rows</td>
<td>840</td>
</tr>
<tr>
<td>Crosstab Space</td>
<td>841</td>
</tr>
<tr>
<td>Crosstab Summary</td>
<td>841</td>
</tr>
<tr>
<td>Cumulation Label</td>
<td>841</td>
</tr>
<tr>
<td>Cumulation Line</td>
<td>841</td>
</tr>
<tr>
<td>Cumulation Line</td>
<td>842</td>
</tr>
<tr>
<td>Cumulation Line</td>
<td>842</td>
</tr>
<tr>
<td>Cumulation Line Axis</td>
<td>842</td>
</tr>
<tr>
<td>Cumulation Line Label</td>
<td>842</td>
</tr>
<tr>
<td>Custom Groups</td>
<td>842</td>
</tr>
<tr>
<td>Data Button Bar</td>
<td>843</td>
</tr>
<tr>
<td>Data Check Box Group</td>
<td>843</td>
</tr>
<tr>
<td>Data Deck</td>
<td>843</td>
</tr>
<tr>
<td>Data Discrete Values Slider</td>
<td>843</td>
</tr>
<tr>
<td>Data Drop-Down List</td>
<td>844</td>
</tr>
<tr>
<td>Data Item</td>
<td>844</td>
</tr>
<tr>
<td>Data Iterator</td>
<td>844</td>
</tr>
<tr>
<td>Data List Box</td>
<td>844</td>
</tr>
<tr>
<td>Data Radio Button Group</td>
<td>845</td>
</tr>
<tr>
<td>Data Tab Control</td>
<td>845</td>
</tr>
<tr>
<td>Data Toggle Button Bar</td>
<td>845</td>
</tr>
<tr>
<td>Date</td>
<td>845</td>
</tr>
<tr>
<td>Date & Time Prompt</td>
<td>846</td>
</tr>
<tr>
<td>Date Prompt</td>
<td>846</td>
</tr>
<tr>
<td>Deck</td>
<td>846</td>
</tr>
<tr>
<td>Default Measure</td>
<td>846</td>
</tr>
<tr>
<td>Default Measure</td>
<td>847</td>
</tr>
<tr>
<td>Detail Filter</td>
<td>847</td>
</tr>
<tr>
<td>Dimension</td>
<td>847</td>
</tr>
<tr>
<td>Dimensional Edge Summary</td>
<td>847</td>
</tr>
<tr>
<td>Discrete Values Slider</td>
<td>847</td>
</tr>
<tr>
<td>Display Layer</td>
<td>848</td>
</tr>
<tr>
<td>Drop-Down List</td>
<td>848</td>
</tr>
<tr>
<td>Edge Summary</td>
<td>848</td>
</tr>
<tr>
<td>Equation Label</td>
<td>848</td>
</tr>
<tr>
<td>Explicit Member Set</td>
<td>848</td>
</tr>
<tr>
<td>Fact</td>
<td>848</td>
</tr>
<tr>
<td>Field Set</td>
<td>849</td>
</tr>
<tr>
<td>Gauge Axis</td>
<td>849</td>
</tr>
<tr>
<td>Gauge Chart</td>
<td>849</td>
</tr>
<tr>
<td>Gauge Chart</td>
<td>850</td>
</tr>
<tr>
<td>Gauge Labels</td>
<td>850</td>
</tr>
<tr>
<td>Gauge Numerical Axis</td>
<td>850</td>
</tr>
<tr>
<td>Generated Prompt</td>
<td>851</td>
</tr>
<tr>
<td>Hierarchy Set</td>
<td>851</td>
</tr>
<tr>
<td>HTML Item</td>
<td>851</td>
</tr>
<tr>
<td>Hyperlink</td>
<td>852</td>
</tr>
<tr>
<td>Hyperlink Button</td>
<td>852</td>
</tr>
<tr>
<td>Image</td>
<td>852</td>
</tr>
<tr>
<td>Intersection (Tuple)</td>
<td>852</td>
</tr>
<tr>
<td>Interval Prompt</td>
<td>853</td>
</tr>
<tr>
<td>Iterator</td>
<td>853</td>
</tr>
<tr>
<td>Iterator First</td>
<td>853</td>
</tr>
<tr>
<td>Iterator Label Area</td>
<td>854</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Set Expression</td>
<td>883</td>
</tr>
<tr>
<td>Singleton</td>
<td>884</td>
</tr>
<tr>
<td>Slicer Member Set</td>
<td>884</td>
</tr>
<tr>
<td>SQL</td>
<td>884</td>
</tr>
<tr>
<td>Static Repeater Table</td>
<td>884</td>
</tr>
<tr>
<td>Summary Filter</td>
<td>884</td>
</tr>
<tr>
<td>Tab</td>
<td>885</td>
</tr>
<tr>
<td>Tab Control</td>
<td>885</td>
</tr>
<tr>
<td>Tab Icon</td>
<td>885</td>
</tr>
<tr>
<td>Tab Label</td>
<td>885</td>
</tr>
<tr>
<td>Table</td>
<td>885</td>
</tr>
<tr>
<td>Table Cell</td>
<td>886</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>886</td>
</tr>
<tr>
<td>Table of Contents Entry</td>
<td>886</td>
</tr>
<tr>
<td>Table Row</td>
<td>886</td>
</tr>
<tr>
<td>Tab Value</td>
<td>887</td>
</tr>
<tr>
<td>Target Measure</td>
<td>887</td>
</tr>
<tr>
<td>Text Box Prompt</td>
<td>887</td>
</tr>
<tr>
<td>Text Item</td>
<td>887</td>
</tr>
<tr>
<td>Time</td>
<td>888</td>
</tr>
<tr>
<td>Time Prompt</td>
<td>888</td>
</tr>
<tr>
<td>Toggle Button Bar</td>
<td>888</td>
</tr>
<tr>
<td>Tolerance Measure</td>
<td>888</td>
</tr>
<tr>
<td>Total Column</td>
<td>889</td>
</tr>
<tr>
<td>Total Column Label</td>
<td>889</td>
</tr>
<tr>
<td>Tree Prompt</td>
<td>889</td>
</tr>
<tr>
<td>Trendline</td>
<td>889</td>
</tr>
<tr>
<td>Trendline Label</td>
<td>889</td>
</tr>
<tr>
<td>Value</td>
<td>890</td>
</tr>
<tr>
<td>Value Prompt</td>
<td>890</td>
</tr>
<tr>
<td>Variable</td>
<td>890</td>
</tr>
<tr>
<td>Variable Text Item</td>
<td>890</td>
</tr>
<tr>
<td>Win-Loss Chart</td>
<td>891</td>
</tr>
<tr>
<td>Win-Loss Measure</td>
<td>891</td>
</tr>
<tr>
<td>X Axis</td>
<td>891</td>
</tr>
<tr>
<td>X Axis</td>
<td>891</td>
</tr>
<tr>
<td>X Axis</td>
<td>892</td>
</tr>
<tr>
<td>X Axis Measure</td>
<td>892</td>
</tr>
<tr>
<td>Y1 Axis</td>
<td>892</td>
</tr>
<tr>
<td>Y2 Axis</td>
<td>892</td>
</tr>
<tr>
<td>Y Axis</td>
<td>892</td>
</tr>
<tr>
<td>Y Axis</td>
<td>893</td>
</tr>
<tr>
<td>Y Axis</td>
<td>893</td>
</tr>
<tr>
<td>Y Axis Measure</td>
<td>893</td>
</tr>
<tr>
<td>Z Axis</td>
<td>893</td>
</tr>
<tr>
<td>Z Axis</td>
<td>894</td>
</tr>
<tr>
<td>Z Axis Measure</td>
<td>894</td>
</tr>
<tr>
<td>Report Studio Properties</td>
<td>894</td>
</tr>
<tr>
<td>3-D Viewing Angle</td>
<td>894</td>
</tr>
<tr>
<td>Absolute Position</td>
<td>894</td>
</tr>
<tr>
<td>Across</td>
<td>894</td>
</tr>
<tr>
<td>Active Dot Color</td>
<td>895</td>
</tr>
<tr>
<td>Active Report Variable</td>
<td>895</td>
</tr>
<tr>
<td>Aggregate Data Item</td>
<td>895</td>
</tr>
<tr>
<td>Aggregate Function</td>
<td>895</td>
</tr>
<tr>
<td>Aggregation Method</td>
<td>895</td>
</tr>
<tr>
<td>Aggregation Method</td>
<td>896</td>
</tr>
<tr>
<td>Allow 45° Rotation</td>
<td>896</td>
</tr>
<tr>
<td>Allow 90° Rotation</td>
<td>896</td>
</tr>
</tbody>
</table>

Contents xxi
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calendar Type</td>
<td>910</td>
</tr>
<tr>
<td>Caption</td>
<td>910</td>
</tr>
<tr>
<td>Caption</td>
<td>910</td>
</tr>
<tr>
<td>Cardinality</td>
<td>910</td>
</tr>
<tr>
<td>Cascade Source</td>
<td>910</td>
</tr>
<tr>
<td>Case Insensitive</td>
<td>910</td>
</tr>
<tr>
<td>Catalog</td>
<td>910</td>
</tr>
<tr>
<td>Category Axis</td>
<td>911</td>
</tr>
<tr>
<td>Category Baselines</td>
<td>911</td>
</tr>
<tr>
<td>Chart Orientation</td>
<td>911</td>
</tr>
<tr>
<td>Chart Orientation</td>
<td>911</td>
</tr>
<tr>
<td>Chart Type</td>
<td>911</td>
</tr>
<tr>
<td>Chart Type</td>
<td>911</td>
</tr>
<tr>
<td>Check Boxes Definition</td>
<td>911</td>
</tr>
<tr>
<td>Choices Deselect All Text</td>
<td>912</td>
</tr>
<tr>
<td>Choices Select All Text</td>
<td>912</td>
</tr>
<tr>
<td>Choices Text</td>
<td>912</td>
</tr>
<tr>
<td>Classes</td>
<td>912</td>
</tr>
<tr>
<td>Clickable Region</td>
<td>913</td>
</tr>
<tr>
<td>Clickable Region</td>
<td>913</td>
</tr>
<tr>
<td>Clickable Regions</td>
<td>913</td>
</tr>
<tr>
<td>Clock Mode</td>
<td>914</td>
</tr>
<tr>
<td>Color by Value</td>
<td>914</td>
</tr>
<tr>
<td>Colored Regions</td>
<td>914</td>
</tr>
<tr>
<td>Color Legend Title</td>
<td>914</td>
</tr>
<tr>
<td>Color Legend Title</td>
<td>915</td>
</tr>
<tr>
<td>Column Coordinate</td>
<td>915</td>
</tr>
<tr>
<td>Column Titles</td>
<td>915</td>
</tr>
<tr>
<td>Column Visibility</td>
<td>915</td>
</tr>
<tr>
<td>Combinations</td>
<td>915</td>
</tr>
<tr>
<td>Component Reference</td>
<td>915</td>
</tr>
<tr>
<td>Component Reference</td>
<td>915</td>
</tr>
<tr>
<td>Conditional Palette</td>
<td>916</td>
</tr>
<tr>
<td>Conditional Palette</td>
<td>916</td>
</tr>
<tr>
<td>Conditional Styles</td>
<td>916</td>
</tr>
<tr>
<td>Connecting Lines</td>
<td>917</td>
</tr>
<tr>
<td>Connecting Lines</td>
<td>917</td>
</tr>
<tr>
<td>Contained Text Direction</td>
<td>917</td>
</tr>
<tr>
<td>Container Filter</td>
<td>918</td>
</tr>
<tr>
<td>Container Select</td>
<td>918</td>
</tr>
<tr>
<td>Contents Height</td>
<td>918</td>
</tr>
<tr>
<td>Control Data Item Value</td>
<td>919</td>
</tr>
<tr>
<td>Control Data Item Value</td>
<td>919</td>
</tr>
<tr>
<td>Control Data Item Value</td>
<td>919</td>
</tr>
<tr>
<td>Control Enable</td>
<td>919</td>
</tr>
<tr>
<td>Cross Product Allowed</td>
<td>919</td>
</tr>
<tr>
<td>Cumulation Axis</td>
<td>920</td>
</tr>
<tr>
<td>Cumulation Label</td>
<td>920</td>
</tr>
<tr>
<td>Cumulation Label</td>
<td>920</td>
</tr>
<tr>
<td>Cumulative Line</td>
<td>920</td>
</tr>
<tr>
<td>Cumulative Line</td>
<td>920</td>
</tr>
<tr>
<td>Current Block</td>
<td>920</td>
</tr>
<tr>
<td>Current Card</td>
<td>920</td>
</tr>
<tr>
<td>Current Tab</td>
<td>921</td>
</tr>
<tr>
<td>Custom Label</td>
<td>921</td>
</tr>
<tr>
<td>Custom Label</td>
<td>921</td>
</tr>
<tr>
<td>Data Format</td>
<td>921</td>
</tr>
<tr>
<td>Data Format</td>
<td>922</td>
</tr>
<tr>
<td>Data Item</td>
<td>922</td>
</tr>
<tr>
<td>Data Item</td>
<td>922</td>
</tr>
<tr>
<td>Data Item Label</td>
<td>922</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Face Color</td>
<td>934</td>
</tr>
<tr>
<td>Fact Cells Precedence</td>
<td>934</td>
</tr>
<tr>
<td>Fill Effects</td>
<td>934</td>
</tr>
<tr>
<td>First Column Color</td>
<td>934</td>
</tr>
<tr>
<td>First Date</td>
<td>934</td>
</tr>
<tr>
<td>First Label Index</td>
<td>935</td>
</tr>
<tr>
<td>First Slice Angle</td>
<td>935</td>
</tr>
<tr>
<td>Floating</td>
<td>935</td>
</tr>
<tr>
<td>Font</td>
<td>936</td>
</tr>
<tr>
<td>Font Auto-Sizing</td>
<td>936</td>
</tr>
<tr>
<td>Footer</td>
<td>936</td>
</tr>
<tr>
<td>Foreground Color</td>
<td>937</td>
</tr>
<tr>
<td>From Text</td>
<td>937</td>
</tr>
<tr>
<td>Gauge Axes</td>
<td>937</td>
</tr>
<tr>
<td>Gauge Axis Colors</td>
<td>937</td>
</tr>
<tr>
<td>Gauge Axis Inner Radius</td>
<td>937</td>
</tr>
<tr>
<td>Gauge Axis Outer Radius</td>
<td>938</td>
</tr>
<tr>
<td>Gauge Border</td>
<td>938</td>
</tr>
<tr>
<td>Gauge Labels</td>
<td>938</td>
</tr>
<tr>
<td>Gauge Needle</td>
<td>938</td>
</tr>
<tr>
<td>Gauge Palette</td>
<td>938</td>
</tr>
<tr>
<td>Gauge Pivot</td>
<td>938</td>
</tr>
<tr>
<td>Generated SQL</td>
<td>939</td>
</tr>
<tr>
<td>Gradient</td>
<td>939</td>
</tr>
<tr>
<td>Gridlines</td>
<td>939</td>
</tr>
<tr>
<td>Gridlines</td>
<td>939</td>
</tr>
<tr>
<td>Gridlines</td>
<td>939</td>
</tr>
<tr>
<td>Grouping & Sorting</td>
<td>939</td>
</tr>
<tr>
<td>Grouping Type</td>
<td>940</td>
</tr>
<tr>
<td>Group Span</td>
<td>940</td>
</tr>
<tr>
<td>Has Fact Cells</td>
<td>940</td>
</tr>
<tr>
<td>Header Text</td>
<td>940</td>
</tr>
<tr>
<td>Heading Level</td>
<td>940</td>
</tr>
<tr>
<td>Height (px)</td>
<td>940</td>
</tr>
<tr>
<td>Hide Adornments</td>
<td>941</td>
</tr>
<tr>
<td>Hide Text</td>
<td>941</td>
</tr>
<tr>
<td>Hierarchy</td>
<td>941</td>
</tr>
<tr>
<td>Hierarchy Unique Name</td>
<td>941</td>
</tr>
<tr>
<td>Highest Value Text</td>
<td>942</td>
</tr>
<tr>
<td>Hole Size (%)</td>
<td>942</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>942</td>
</tr>
<tr>
<td>Hours Text</td>
<td>943</td>
</tr>
<tr>
<td>HTML</td>
<td>943</td>
</tr>
<tr>
<td>HTML Source Variable</td>
<td>943</td>
</tr>
<tr>
<td>Icon</td>
<td>943</td>
</tr>
<tr>
<td>Ignore Data with No Features</td>
<td>943</td>
</tr>
<tr>
<td>Include Zero For Auto Scale</td>
<td>943</td>
</tr>
<tr>
<td>Insert Text</td>
<td>944</td>
</tr>
<tr>
<td>Iterator First</td>
<td>944</td>
</tr>
<tr>
<td>Iterator Label Area</td>
<td>944</td>
</tr>
<tr>
<td>Iterator Last</td>
<td>944</td>
</tr>
<tr>
<td>Iterator Next</td>
<td>944</td>
</tr>
<tr>
<td>Iterator Previous</td>
<td>944</td>
</tr>
<tr>
<td>Iterator Values Definition</td>
<td>944</td>
</tr>
<tr>
<td>Join Relationships</td>
<td>945</td>
</tr>
<tr>
<td>Keywords Text</td>
<td>945</td>
</tr>
<tr>
<td>Label</td>
<td>945</td>
</tr>
<tr>
<td>Label</td>
<td>945</td>
</tr>
<tr>
<td>Label</td>
<td>945</td>
</tr>
<tr>
<td>Label</td>
<td>945</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Label</td>
<td>945</td>
</tr>
<tr>
<td>Label</td>
<td>946</td>
</tr>
<tr>
<td>Label</td>
<td>946</td>
</tr>
<tr>
<td>Label</td>
<td>946</td>
</tr>
<tr>
<td>Label</td>
<td>946</td>
</tr>
<tr>
<td>Label Color</td>
<td>946</td>
</tr>
<tr>
<td>Label Control</td>
<td>946</td>
</tr>
<tr>
<td>Label Location</td>
<td>946</td>
</tr>
<tr>
<td>Labels</td>
<td>947</td>
</tr>
<tr>
<td>Last Date</td>
<td>947</td>
</tr>
<tr>
<td>Left Position</td>
<td>947</td>
</tr>
<tr>
<td>Left Position (px)</td>
<td>947</td>
</tr>
<tr>
<td>Legend</td>
<td>947</td>
</tr>
<tr>
<td>Legend Label</td>
<td>948</td>
</tr>
<tr>
<td>Legend Separator</td>
<td>948</td>
</tr>
<tr>
<td>Legend Title</td>
<td>948</td>
</tr>
<tr>
<td>Legend Title</td>
<td>948</td>
</tr>
<tr>
<td>Level</td>
<td>949</td>
</tr>
<tr>
<td>Level Indentation</td>
<td>949</td>
</tr>
<tr>
<td>Level Unique Name</td>
<td>949</td>
</tr>
<tr>
<td>Line and Markers</td>
<td>949</td>
</tr>
<tr>
<td>Line Shape</td>
<td>950</td>
</tr>
<tr>
<td>Line Style</td>
<td>950</td>
</tr>
<tr>
<td>Line Style</td>
<td>950</td>
</tr>
<tr>
<td>Line Style</td>
<td>950</td>
</tr>
<tr>
<td>Line Styles</td>
<td>950</td>
</tr>
<tr>
<td>Line Type</td>
<td>950</td>
</tr>
<tr>
<td>Line Weight (pt)</td>
<td>950</td>
</tr>
<tr>
<td>List Items Definition</td>
<td>951</td>
</tr>
<tr>
<td>Loss Color</td>
<td>951</td>
</tr>
<tr>
<td>Lowest Value Text</td>
<td>951</td>
</tr>
<tr>
<td>Map & Layers</td>
<td>951</td>
</tr>
<tr>
<td>Map Drills</td>
<td>951</td>
</tr>
<tr>
<td>Margin</td>
<td>951</td>
</tr>
<tr>
<td>Marimekko Totals</td>
<td>952</td>
</tr>
<tr>
<td>Marker Color</td>
<td>952</td>
</tr>
<tr>
<td>Marker Color</td>
<td>952</td>
</tr>
<tr>
<td>Marker Label</td>
<td>952</td>
</tr>
<tr>
<td>Markers</td>
<td>952</td>
</tr>
<tr>
<td>Marker Shape</td>
<td>953</td>
</tr>
<tr>
<td>Marker Shape</td>
<td>953</td>
</tr>
<tr>
<td>Marker Size (pt)</td>
<td>953</td>
</tr>
<tr>
<td>Marker Size (pt)</td>
<td>953</td>
</tr>
<tr>
<td>Marker Style</td>
<td>953</td>
</tr>
<tr>
<td>Marker Text Location</td>
<td>954</td>
</tr>
<tr>
<td>Master Detail Relationships</td>
<td>954</td>
</tr>
<tr>
<td>Material Effects</td>
<td>954</td>
</tr>
<tr>
<td>Matrix Rows and Columns</td>
<td>955</td>
</tr>
<tr>
<td>Maximum Characters</td>
<td>955</td>
</tr>
<tr>
<td>Maximum Execution Time</td>
<td>955</td>
</tr>
<tr>
<td>Maximum Hotspots</td>
<td>955</td>
</tr>
<tr>
<td>Maximum Rows Retrieved</td>
<td>956</td>
</tr>
<tr>
<td>Maximum Size (pt)</td>
<td>956</td>
</tr>
<tr>
<td>Maximum Tables</td>
<td>956</td>
</tr>
<tr>
<td>Maximum Text Blob Characters</td>
<td>956</td>
</tr>
</tbody>
</table>
Maximum Truncation Characters 956
Maximum Value .. 957
Maximum Value .. 957
MDX ... 957
Member ... 957
Member Offset (%) ... 957
Members .. 958
Members .. 958
Member Unique Name ... 958
Milliseconds Text .. 958
Minimum Size (pt) ... 958
Minimum Value .. 958
Minimum Value .. 958
Minor Gridlines ... 959
Minor Gridlines ... 959
Minor Gridlines ... 959
Minor Gridlines ... 959
Minutes Text ... 960
Multi-Line .. 960
Multi-Select ... 960
Name ... 960
Name ... 960
Name ... 960
Name ... 961
Name ... 961
Name ... 961
Name ... 961
Name ... 962
Name ... 963
Negative Column Color ... 963
Nested Label Display ... 963
No Data Contents .. 963
No Data Features Size (pt) 963
Node Coordinate .. 964
Note Border .. 964
Notes ... 964
Notes ... 964
Note Text .. 964
No Value List Item ... 964
Number of Minor Intervals 965
Number of Minor Intervals 965
Number of Regression Lines 965
Numbers Only .. 965
Number Style ... 965
Number Style ... 965
Numerical Axis ... 966
Numerical Axis ... 966
Numeric Baselines ... 966
Numeric Value ... 966
Numeric Value ... 966
Numeric Value ... 966
Options Text ... 967
Orientation .. 967
Outer Join Allowed .. 967
Output Aggregation Method 967
Output Aggregation Method 967
Override Dimension Info 967
Report Expression 980
Report Expression 980
Report Expression 981
Report Expression 981
Report Expression 981
Required 981
Results Deselect All Text.............................. 981
Results Select All Text 982
Results Text.................................. 982
Reverse Category Order.............................. 982
Right Position 982
Right Position (px) 982
Rollup Aggregate Function............................. 983
Rollup Processing 983
Root Members Only 983
Rotate Values 983
Row Coordinate 983
Rows Per Page................................. 984
Scale 984
Scale Interval 984
Scope 984
Search Instructions Text.............................. 984
Search Text 984
Seconds Text 985
Select UI 985
Set Definition 986
Set Operation 987
Set Sorting 987
Set Variable Values............................... 987
Share Result Set 988
Show Caption 988
Show Data Points................................. 988
Show Data Range in Legend............................ 988
Show Features with No Data............................ 988
Show Feelers 988
Show Hover 988
Show Icon 989
Show Legend Values............................... 989
Show line 989
Show Pointer Cursor............................... 989
Show Tooltip 990
Show Values.................................. 990
Size 991
Size & Overflow 991
Size Legend Title 992
Slice Direction 992
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Column</td>
<td>1003</td>
</tr>
<tr>
<td>Total Column</td>
<td>1003</td>
</tr>
<tr>
<td>Total Column Color</td>
<td>1003</td>
</tr>
<tr>
<td>To Text</td>
<td>1004</td>
</tr>
<tr>
<td>Track Length</td>
<td>1004</td>
</tr>
<tr>
<td>Trendline Label</td>
<td>1004</td>
</tr>
<tr>
<td>Trendlines</td>
<td>1004</td>
</tr>
<tr>
<td>Truncation</td>
<td>1004</td>
</tr>
<tr>
<td>Truncation Text</td>
<td>1004</td>
</tr>
<tr>
<td>Type</td>
<td>1005</td>
</tr>
<tr>
<td>Type</td>
<td>1005</td>
</tr>
<tr>
<td>Type</td>
<td>1005</td>
</tr>
<tr>
<td>Type</td>
<td>1005</td>
</tr>
<tr>
<td>Update Variables Live</td>
<td>1005</td>
</tr>
<tr>
<td>Upper Range Skew (%)</td>
<td>1005</td>
</tr>
<tr>
<td>URL</td>
<td>1006</td>
</tr>
<tr>
<td>URL Source Variable</td>
<td>1006</td>
</tr>
<tr>
<td>Usage</td>
<td>1006</td>
</tr>
<tr>
<td>Use 1.x Behavior</td>
<td>1006</td>
</tr>
<tr>
<td>Use Aggregate Cache</td>
<td>1006</td>
</tr>
<tr>
<td>Use Detail Value on Page</td>
<td>1007</td>
</tr>
<tr>
<td>Use for Parameter Info</td>
<td>1007</td>
</tr>
<tr>
<td>Use Local Cache</td>
<td>1007</td>
</tr>
<tr>
<td>User SAP Member Cache</td>
<td>1007</td>
</tr>
<tr>
<td>Use Same Range For All Instances</td>
<td>1007</td>
</tr>
<tr>
<td>Use SAP MUN as Business Key</td>
<td>1008</td>
</tr>
<tr>
<td>Use Set Aggregation</td>
<td>1008</td>
</tr>
<tr>
<td>Use SQL Parameters</td>
<td>1008</td>
</tr>
<tr>
<td>Use SQL With Clause</td>
<td>1008</td>
</tr>
<tr>
<td>Use Thousands Separator</td>
<td>1008</td>
</tr>
<tr>
<td>Use Value</td>
<td>1008</td>
</tr>
<tr>
<td>Use Value</td>
<td>1009</td>
</tr>
<tr>
<td>Value Location</td>
<td>1009</td>
</tr>
<tr>
<td>Value Markers</td>
<td>1009</td>
</tr>
<tr>
<td>Value Representation</td>
<td>1009</td>
</tr>
<tr>
<td>Values</td>
<td>1009</td>
</tr>
<tr>
<td>Values</td>
<td>1010</td>
</tr>
<tr>
<td>Values</td>
<td>1010</td>
</tr>
<tr>
<td>Values</td>
<td>1010</td>
</tr>
<tr>
<td>Value Type</td>
<td>1010</td>
</tr>
<tr>
<td>Variable</td>
<td>1010</td>
</tr>
<tr>
<td>Variable for Maximum</td>
<td>1010</td>
</tr>
<tr>
<td>Variable for Minimum</td>
<td>1010</td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td>1010</td>
</tr>
<tr>
<td>Visible</td>
<td>1011</td>
</tr>
<tr>
<td>Visible</td>
<td>1011</td>
</tr>
<tr>
<td>Visual Angle</td>
<td>1011</td>
</tr>
<tr>
<td>White Space</td>
<td>1012</td>
</tr>
<tr>
<td>Width (px)</td>
<td>1012</td>
</tr>
<tr>
<td>Win Color</td>
<td>1012</td>
</tr>
<tr>
<td>Win-Loss Threshold</td>
<td>1013</td>
</tr>
<tr>
<td>X Axis</td>
<td>1013</td>
</tr>
<tr>
<td>X Axis</td>
<td>1013</td>
</tr>
<tr>
<td>X-Axis Data Item Value</td>
<td>1013</td>
</tr>
<tr>
<td>Y1 Axis</td>
<td>1013</td>
</tr>
<tr>
<td>Y2 Axis</td>
<td>1013</td>
</tr>
<tr>
<td>Y2 Axis Position</td>
<td>1013</td>
</tr>
<tr>
<td>Y Axis</td>
<td>1014</td>
</tr>
<tr>
<td>Y Axis</td>
<td>1014</td>
</tr>
<tr>
<td>Y-Axis Data Item Value</td>
<td>1014</td>
</tr>
</tbody>
</table>
Data Formatting Properties ... 1014
"Not Applicable" Characters .. 1014
Any Error Characters .. 1014
Calendar Type ... 1014
Clock .. 1015
Currency ... 1015
Currency Display .. 1015
Currency Symbol .. 1015
Currency Symbol Position ... 1015
Date Ordering ... 1015
Date Separator ... 1015
Date Style .. 1015
Decimal Separator ... 1015
Digit Shaping ... 1015
Display AM / PM Symbols ... 1016
Display As Exponent ... 1016
Display Days .. 1016
Display Eras .. 1016
Display Hours .. 1016
Display Milliseconds .. 1016
Display Minutes ... 1016
Display Months .. 1017
Display Months .. 1017
Display Seconds .. 1017
Display Time Zone .. 1017
Display Weekdays .. 1017
Display Years .. 1017
Display Years ... 1017
Divide By Zero Characters .. 1017
Exponent Symbol ... 1017
Group Size (digits) .. 1017
International Currency Symbol 1017
Mantissa (digits) ... 1018
Maximum No. of Digits .. 1018
Minimum No. of Digits .. 1018
Missing Value Characters .. 1018
Negative Pattern .. 1018
Negative Sign Position .. 1018
Negative Sign Symbol .. 1018
No. of Decimal Places ... 1018
Numeric Overflow Characters 1018
Padding Character ... 1018
Pattern ... 1019
Percentage Symbol .. 1019
Percent Scale (integer) ... 1019
Scale ... 1019
Secondary Group Size (digits) 1019
Security Error Characters .. 1019
Thousands Separator .. 1019
Time Separator .. 1019
Time Style ... 1019
Time Unit ... 1020
Use Thousands Separator ... 1020
Zero Value Characters ... 1020

Appendix H. Prompt API for IBM Cognos BI. 1021
cognos.Prompt object .. 1021
cognos.Prompt.getControlByName method 1021
cognos.Prompt.getControls method 1021
cognos.Prompt.Control object 1022
Introduction

This document is intended for use with IBM® Cognos® Report Studio. It provides step-by-step procedures and background information to help you create standard and complex reports. Report Studio is a Web product for creating reports that analyze corporate data according to specific information needs.

Finding information

To find IBM Cognos product documentation on the web, including all translated documentation, access one of the IBM Cognos Information Centers (http://publib.boulder.ibm.com/infocenter/cogic/v1r0m0/index.jsp). Release Notes are published directly to Information Centers, and include links to the latest technotes and APARs.

You can also read PDF versions of the product release notes and installation guides directly from IBM Cognos product disks.

Accessibility features

Accessibility features help users who have a physical disability, such as restricted mobility or limited vision, to use information technology products. Report Studio has accessibility features. For more information, see Appendix A, “Accessibility Features,” on page 531.

IBM Cognos HTML documentation has accessibility features. PDF documents are supplemental and, as such, include no added accessibility features.

Forward-looking statements

This documentation describes the current functionality of the product. References to items that are not currently available may be included. No implication of any future availability should be inferred. Any such references are not a commitment, promise, or legal obligation to deliver any material, code, or functionality. The development, release, and timing of features or functionality remain at the sole discretion of IBM.

Samples disclaimer

The Great Outdoors Company, GO Sales, any variation of the Great Outdoors name, and Planning Sample depict fictitious business operations with sample data used to develop sample applications for IBM and IBM customers. These fictitious records include sample data for sales transactions, product distribution, finance, and human resources. Any resemblance to actual names, addresses, contact numbers, or transaction values is coincidental. Other sample files may contain fictional data manually or machine generated, factual data compiled from academic or public sources, or data used with permission of the copyright holder, for use as sample data to develop sample applications. Product names referenced may be the trademarks of their respective owners. Unauthorized duplication is prohibited.
Chapter 1. What's New?

This section contains a list of new, changed, and removed features for this release. It will help you plan your upgrade and application deployment strategies and the training requirements for your users.

For information about upgrading, see the IBM Cognos Business Intelligence Installation and Configuration Guide for your product.

For information about other new features for this release, see the IBM Cognos Business Intelligence New Features Guide.

To view What's New information for past releases, including version 8.4, access one of the IBM Cognos Information Centers (http://publib.boulder.ibm.com/infocenter/cogic/v1r0m0/index.jsp).

To review an up-to-date list of the environments that are supported by IBM Cognos products, including information about operating systems, patches, browsers, web servers, directory servers, database servers, and application servers, visit the IBM Cognos Customer Center (http://www.ibm.com/software/data/cognos/customercenter/).

New features in version 10.2.0

This section describes new features in this release.

Updated world and Africa maps

The world and Africa maps were updated to include the region of South Sudan in IBM Cognos Report Studio version 10.2.0.

Related tasks:

"Use maps from previous versions" on page 7

The old versions of the World, Europe, Africa, and India maps that were included with IBM Cognos Business Intelligence prior to version 10.1.1 are still available. To continue using the previous maps, your IBM Cognos BI administrator must enable them.

Interactive repeater tables

You can now add interactive behavior to repeater tables in IBM Cognos Active Report.

Adding interactive behavior to repeater tables is useful for creating button bars and grids of custom content. For example, you can insert a data item in a repeater table that shows a different chart for each data value. You can customize the repeater table so that the data values appear as buttons in a two-column grid.
IBM Cognos Active Report offers several active report controls. For many controls, two different versions are available, a static version and a data-driven version.

Improved IBM Cognos Active Report integration with IBM Cognos Workspace

Check boxes and sliders in workspaces in IBM Cognos Workspace can now drive IBM Cognos Active Report.

You can define public variables and range variables in Cognos Active Report that allow Cognos Workspace check boxes and sliders to drive active reports in a workspace.

Related tasks:

“Create and Manage Active Report Variables” on page 173

Create active report variables to allow controls in a report to interact with each other. Active report variables pass information from one control to another control.

Improved support for bidirectional languages

IBM Cognos Report Studio offers improved support for bidirectional languages.

The improved support for bidirectional languages includes the following capabilities:

- Base text direction for text in more report objects, such as charts, maps, and prompts
- Control of object direction for charts, maps, and prompts
- Digit shaping

In addition, the improved support for bidirectional languages includes the report formats PDF, Microsoft Excel, and IBM Cognos Active Report.

Related concepts:

“Support for bidirectional languages” on page 51

You can author reports that support bidirectional languages. You can specify base text direction, digit shaping, and container direction.

Macro tab in expression editor

A macro tab is now available in the IBM Cognos Report Studio expression editor. With the macro tab, you can add parameter maps, session parameters, and macro functions to expressions.
Related tasks:

“Insert a Query Calculation” on page 315
Insert a query calculation into your report to add a new row or column with values that are based on a calculation.

“Insert a Query Calculation” on page 366
When working with dimensional data, insert a query calculation into your report to add a new row or column with values that are based on a calculation. For example, you create a query calculation named Euros that converts dollars to euros by multiplying an existing dollar measure by a conversion rate. Euros can then be displayed to end users in a separate row or column.

Inherited table styles in lists and crosstabs
When an item is inserted in a list or crosstab, the item inherits the table style of one of the items in the data container.

By default, items inherit the style of an item of the same type. For example, if you insert a measure in a list, the measure inherits the style of a measure that is in the list, if one exists. Inheritance rules control which style is inherited.

Related tasks:

“Apply a Table Style” on page 406
Apply a table style to quickly format tables. You can also apply a table style to lists, crosstabs, and repeater tables.

Enhanced crosstab headers
In crosstabs, you can display headers that indicate the parent categories of the data items in the columns and rows. The headers help users to understand where the data is located in the hierarchy.

Related tasks:

“Creating headers automatically for sets in crosstabs” on page 68
You can automatically add header labels on columns and rows when working with sets in a crosstab that uses a dimensional data source. The headers help consumers of the report to understand where the data is in the hierarchy.

Prompt API
A JavaScript Prompt API is available to provide report authors with a method of customizing prompt interaction in the reports that they author.

With the prompt API, JavaScript applications can interact with IBM Cognos Business Intelligence report prompts for the purposes of validation or custom interaction. The prompt API can query and set user selections, validate typed-in values using patterns, set default values using expressions or query data, and more. Sample reports exist to demonstrate various usage scenarios of the prompt API.

Related reference:

Appendix H, “Prompt API for IBM Cognos BI,” on page 1021
The JavaScript Prompt API provides report authors with a method of customizing prompt interaction in the reports they author.

Excel 2007 Data report output format
This format is similar to a comma-separated values file (.csv). It has no formatting such as headers, footers, styling, or data formatting.

Related concepts:
“Producing a Report in Microsoft Excel Format” on page 46
You can export your report output to several different Microsoft Excel spreadsheet software formats.

Global classes for accessible reports
New global classes that you can apply to text objects were added to IBM Cognos Report Studio. The new classes make text easier to read for visually impaired users.

The new global classes are as follows:
• Heading 1 to heading 6
• Emphasize text
• Strong text

Related concepts:
“Headings and emphasis” on page 535
You can apply certain global classes to text objects to make the text easier to read for visually impaired users.

Changed features in version 10.2.0
This section describes changed features since the last release.

Support for inline prompts in reports viewed on mobile devices
IBM Cognos Mobile now supports several inline prompt types. Previously, all inline prompts in reports viewed on a mobile device appeared in a prompt page.

The prompt types that Cognos Mobile supports as inline prompts are as follows:
• Text Box
• Value
• Date
• Time
• Date & Time
• Interval

Related concepts:
“Unsupported report features” on page 56
The following report features are not supported for reports that are viewed on mobile devices with IBM Cognos Mobile.

Cognos Business Insight and Cognos Business Insight Advanced are renamed
Two product components are renamed in this release to avoid confusion with the names of other components. IBM Cognos Business Insight is now IBM Cognos Workspace. IBM Cognos Business Insight Advanced is now IBM Cognos Workspace Advanced.
Removed Features in Version 10.2.0

This section describes features that were removed since the last release.

Saving and opening reports on your computer

The ability to save and open reports locally on your computer by enabling the Allow local file access option was removed in this release.

To save and open reports on your computer, use the Copy Report to Clipboard and Open Report from Clipboard commands in the Tools menu instead.

Related concepts:

“Copy a Report to the Clipboard” on page 517
You can copy a report specification to the clipboard so you can open it from the clipboard later.

Related tasks:

“Open a Report from the Clipboard” on page 517
You can open a report specification that was previously copied to the clipboard.

New features in version 10.1.1

Listed below are new features since the last release.

New active report controls

IBM Cognos Active Report offers new controls, including iterators, sliders, and row numbers.

Related concepts:

“Adding Controls to a Report” on page 175
IBM Cognos Active Report offers several active report controls. For many controls, two different versions are available, a static version and a data-driven version.

Conversion of controls to other types of controls

You can now convert a control in an active report to another type of control that is compatible to the original control. For example, you can convert a radio button group control to a check box group control.

Related concepts:

“Adding Controls to a Report” on page 175
IBM Cognos Active Report offers several active report controls. For many controls, two different versions are available, a static version and a data-driven version.

Improved user experience when authoring active reports

Improvements were made to the IBM Cognos Report Studio user interface for authoring active reports. For example, there are two new tabs that respectively show the controls and variables defined in a report.

Controls are shown in a hierarchical structure, allowing you to see their relationships to one another as well as the variables that drive them. For each variable in a report, you can see the default values defined for each one, as well as the controls to which they are linked.
Related tasks:

“Create and Manage Active Report Variables” on page 173
Create active report variables to allow controls in a report to interact with each other. Active report variables pass information from one control to another control.

“Define a Connection Between Controls” on page 182
Define a connection between controls to link them together. When you link controls, an action performed on one control affects the behavior of the other control.

Active report access code

You can now specify an access code that users will have to enter before they can view an active report.

Related tasks:

“Specify Active Report Properties” on page 173
You can specify properties for active reports, such as the text that appears in the browser window title bar, the maximum number of rows that a report can contain, and an access code that users must enter to view a report.

New startup options

Related concepts:

“Options” on page 31
You can set various options that control the appearance and behavior of IBM Cognos Report Studio (Tools, Options).

Keyboard shortcuts for accessibility

To make the report authoring experience more accessible to people who have a physical disability, such as restricted mobility or limited vision, IBM Cognos Report Studio now includes new keyboard shortcuts to allow navigating the user interface with a keyboard.

Related concepts:

“Keyboard Shortcuts” on page 531
This product uses some standard Microsoft Windows and accessibility shortcut keys.

Updated maps

Some maps included with IBM Cognos Report Studio version 10.1.1 were updated.

- The World and Europe maps were updated to include the countries and regions of Montenegro and Kosovo.
- The India map was updated to include the northern region of Kashmir.
IBM Cognos Report Studio provides a set of maps that you can use to represent tabular data in a spatial context. For example, on a map of the world, countries and regions can be colored to represent the level of revenue.

Use maps from previous versions
The old versions of the World, Europe, Africa, and India maps that were included with IBM Cognos Business Intelligence prior to version 10.1.1 are still available. To continue using the previous maps, your IBM Cognos BI administrator must enable them.

Procedure
1. Go to the `c10_location/maps` directory.
2. Rename the files `world.cmf`, `europe.cmf`, `africa.cmf`, and `india.cmf` to remove the `.cmf` extension, as follows: `world_default_cmf`, `europe_default_cmf`, `africa_default_cmf`, and `india_default_cmf`.
3. Rename the files `world8_4_cmf`, `europe8_4_cmf`, `africa8_4_cmf`, and `indiaUN_cmf` to remove `8_4` and add the `.cmf` extension, as follows: `world.cmf`, `europe.cmf`, `africa.cmf`, and `india.cmf`.

Custom groups
You can create custom groups of existing data items based on elements that you define and that are meaningful to you.

For example, you can create custom groups for product names based on their alphabetical order. You might create groups for products that start with the letters A to C, D to F, G to H, and so on.

Related tasks:
- **“Creating relational custom groups” on page 281**
 Create custom groups to classify existing data items into groups that are meaningful to you.
- **“Creating dimensional custom groups” on page 329**
 Create custom groups to classify existing data items into groups that are meaningful to you.

Larger worksheet sizes for Microsoft Excel 2007 report outputs
IBM Cognos Business Intelligence now supports a larger worksheet size for report outputs exported in Microsoft Excel 2007 format.

In previous versions of IBM Cognos Business Intelligence, report output in Microsoft Excel format was limited to a maximum of 256 columns by 65,000 rows. Although this remains as the default worksheet size, administrators can now enable larger worksheets and change the maximum number of rows in a worksheet - up to a maximum of 16,384 columns by 1,048,576 rows - by using advanced server properties. This number matches the Microsoft Excel 2007 worksheet size limitations.

For more information, see the *IBM Cognos Business Intelligence Administration and Security Guide*.
For an up-to-date list of environments supported by IBM Cognos products, such as operating systems, patches, browsers, Web servers, directory servers, database servers, and application servers, visit http://www.ibm.com/.

Related concepts:
"Producing a Report in Microsoft Excel Format" on page 46
You can export your report output to several different Microsoft Excel spreadsheet software formats.

Microsoft Excel 2007 supported as an external data source

IBM Cognos Business Intelligence now supports external data sources from Microsoft Excel up to version Microsoft Excel 2007.

For an up-to-date list of environments supported by IBM Cognos products, such as operating systems, patches, browsers, Web servers, directory servers, database servers, and application servers, visit http://www.ibm.com/.

Related concepts:
"Use Your Own External Data” on page 9
You can now supplement your enterprise data with your own external data file.

Changed features in version 10.1.1

Listed below are changed features since the last release.

Specify how to show no data contents

The user interface for specifying what appears for data containers that contain no data was modified.

You can now select between showing an empty data container, alternate content that you specify, or text that you specify.

The new default for data containers that have no data available is to show the text **No Data Available** instead of showing an empty data container.

Related tasks:
"Specify what appears for data containers that contain no data” on page 459
You can specify what appears in a data container when no data is available from the database.

What's new in version 10.1.0

This section contains a list of new, changed, and removed features for past releases.

Knowing this information will help you plan your upgrade and application deployment strategies and the training requirements for your users.

To review an up-to-date list of environments supported by IBM Cognos products, such as operating systems, patches, browsers, Web servers, directory servers, database servers, and application servers, visit http://www.ibm.com/.

For information about upgrading, see the IBM Cognos Business Intelligence *Installation and Configuration Guide* for your product.

For an overview of new features for this release, see the IBM Cognos Business Intelligence *New Features Guide*.
New Features in Version 10.1.0

Listed below are new features since the last release.

Use Your Own External Data
You can now supplement your enterprise data with your own external data file.

You can import an .xls, .txt, .csv, or .xml file into IBM Cognos and create reports that contain your own data. This allows you to leverage the IBM Cognos platform, including the security, data integrity, and full range of reporting functionality.

You can perform self-service reporting without the need to ask your IT department or administrator to set up a data source connection to your file. You import your own data file and start reporting on it right away.

After importing, your external data file is protected by the same IBM Cognos security as your enterprise data, thus allowing you to report on your data in a secure environment.

Active Reports
You can now use IBM Cognos Report Studio to create active reports.

IBM Cognos Active Report is a report output type that provides a highly interactive and easy-to-use managed report. Active reports are built for business users, allowing them to explore their data and derive additional insight.

Active reports make business intelligence easier for the casual user. Report authors build reports targeted at their users' needs, keeping the user experience simple and engaging. Active reports can be consumed by users who are offline, making them an ideal solution for remote users such as the sales force.

Statistical Analysis
IBM Cognos Report Studio now offers statistical functionality in an add-on package called IBM Cognos Statistics.

Report Studio integrates statistical analysis and reporting, providing you with the capability to distribute reports that now can include statistical information. Unlike specialized statistical tools, this functionality is easy to use within the IBM Cognos Business Intelligence authoring environment.

This functionality covers three main areas in statistical analysis:

- the distribution of data
- data analysis and testing
- statistical process control
Related concepts:

Chapter 9, “Statistical Analysis,” on page 201

If your installation of IBM Cognos Business Intelligence contains IBM Cognos Statistics, and if your administrator has granted you the required capabilities, you can use statistical objects in your reports.

Mozilla Firefox Support

Versions 3.5 and 3.6 of the Mozilla Firefox Web browser are now supported for IBM Cognos Report Studio.

For a full list of supported software environments, see http://www.ibm.com/.

Enhanced charts

Chart enhancements concentrate on improved effectiveness of communication. The new bullet chart and extensions to pie and gauge charts are especially beneficial in dashboard reports. Additional enhancements provide superior presentation through conditional notes and markers and improved legends.

Current Default Charts and Legacy Charts:

IBM Cognos Report Studio has a new default chart technology. Any new charts added to a report use the current default charts.

The current default charts use more properties that allow you to customize more aspects of the chart. In addition, the current default charts offer you a preview of the style changes that you make to your chart.

If you prefer to continue working with the legacy charts, you can select the Use legacy chart authoring option.

You can also convert legacy charts to the current default charts. When you convert a chart to a different chart type, Report Studio maps the chart properties that exist in the new chart type. For more information, see “Upgrading Legacy Charts” on page 526 and “Convert Charts From One Type to Another” on page 100.

Related concepts:

“Current Default Charts and Legacy Charts” on page 73

IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Bullet Charts:

You can now create bullet charts to complement your dashboard reports and as an alternative to gauge charts.

A bullet chart features a single primary measure, such as current revenue, compares that measure to one or more other measures to enrich its meaning, such as the target or planned revenue, and displays it in the context of a qualitative range of performance, such as poor, satisfactory, or good.

Related concepts:

“Bullet Charts” on page 88

Bullet charts are a variation of bar charts. They compare a featured measure (the bullet) to a targeted measure (the target). They also relate the compared measures against colored regions in the background that provide additional qualitative measurements, such as good, satisfactory, and poor.

Chart Matrix:
You can now convert a complex nested chart into a matrix configuration that shows multiple small charts arranged in rows and columns.

The numeric scale of all the charts is the same so that you can easily compare and analyze values from each chart.

Related tasks:

- Create a Matrix of Current Default Charts” on page 140

You can view a complex chart that includes nested series or categories into a matrix, or crosstab, that shows multiple small charts arranged in rows and columns.

Customize the Legend:

You can hide or show the legend and change its position relative to the chart object, chart area, or using a specific report expression.

For more information, see “Customize the Legend in a Current Default Chart” on page 122.

If your legend includes items that are too long, you can truncate long legend items at a specific number of characters. You can also show the values of the data items in your legend. For more information, see “Customize the Items in the Legend of a Current Default Chart” on page 123.

Legends can display trend lines and conditional item entries.

Colored Regions:

You can now define colored regions in the body of a chart to make your chart more informative.

For example, you can divide the background of a scatter chart into quadrants and color each quadrant. For more information, see “Add Colored Regions in a Current Default Chart” on page 115.

Enhanced Pie Charts:

You can customize how data labels appear in a pie chart, including their format and placement.

For more information, see “Showing data values in current default pie and donut charts” on page 135.

To make your pie charts easier to read and analyze, you can now:

- pull out pie slices from the rest of the pie to highlight them. For more information, see “Pull Out Pie Slices in a Current Default Pie Chart” on page 148.
- set the position at which the first slice in a pie chart appears. For more information, see “Set the Position of the First Slice in a Current Default Pie Chart” on page 147.
- summarize the smaller slices in a pie chart to avoid having many tiny slices in your pie. For more information, see “Summarize Small Slices, Bars, or Columns in Current Default Charts” on page 137.

Enhanced Chart Styles:
You can customize the palette, drop shadows, gridlines, backgrounds, and bar shapes in charts.

You can create a new chart palette or edit an existing chart palette, including specifying colors, fill types, and patterns. For more information, see "Customizing the Color Palette of a Chart" on page 106.

You can add drop shadows to chart elements, such as lines in line charts. For more information, please see "Add Background Effects to a Chart Object in a Legacy Chart" on page 114.

You can customize the color, style, and weight of chart gridlines or set the background of your chart to display bands of color. For more information, see "Show Gridlines in a Current Default Chart" on page 121.

You can change the bar shape in a bar or column chart to one of the following two dimensional and three dimensional shapes: box, cylinder, cone, pyramid, rectangle, and triangle. You can also change the width of the bars or columns in a bar or column chart to a percentage of the chart body, such as 80% or 25%.

Chart Axes:

To make your charts easier to read, you can now customize the color, style, weight, and transparency of chart axis lines and specify where to display major and minor gridlines on the chart.

For more information, see "Customize the Axes of a Current Default Chart" on page 118.

Color by Value in Scatter and Bubble Charts:

In scatter and bubble charts, you can now specify data to appear in different colors based on the data values.

The color of the points or bubbles adds an additional aspect to the chart to assist you in finding relationships in large amounts of data. An entry appears in the legend to identify the color and its value. For more information, see "Define Color by Value in Current Default Scatter and Bubble Charts" on page 145.

Bubble Size:

In a bubble chart, you can now set the maximum and minimum bubble size and specify the smallest bubble to show in the chart.

For more information, see "Specify the Bubble Size in a Current Default Bubble Chart" on page 146.

Positioning and Formatting Notes:

When you add a note to a chart, you can now set the note's position relative to the sides of the chart area or chart body. You can also use a report expression to position the note next to a data item within the chart.

For example, in a bar chart showing revenue for each product line by country or region, you could type [Country or Region]='Canada' to position the note relative
to the Canada bar. You can also customize the background of the note with color and background images. For more information, see “Add a Note to a Current Default Chart” on page 125.

Insert Charts With the Toolbar Button:

You can now insert a specific chart type from any report with the insert chart button on the toolbar. When you insert a chart into a report that already contains a list, the list data is added to the chart automatically.

Enhancements to the User Interface

IBM Cognos Report Studio includes enhancements to the user interface layout, buttons, tooltips, and visual aids.

These enhancements include the following:

- You can now position the content and Properties panes to the right of the work area, to match the user interface of IBM Cognos Business Insight and IBM Cognos Business Insight Advanced. For more information, see “Options” on page 31.
- When working with dimensional data sources, the insert individual members button and the insert member with children button have moved to the Source tab. These buttons have the same function as they did in the previous release. For more information, see “Insert a Member” on page 321.
- When working with dimensional and mixed model data sources, you can now switch between viewing the full data tree and the dimensional-only data tree by clicking the view package tree button and the view members tree button. For more information, see “Add Dimensional Data to a Report” on page 319.

These same buttons are available in the expression editor.
- You can now remove all of the filters at once from your report with new options in the filters button. For more information, see “Focusing Dimensional Data” on page 342 and “Focusing Relational Data” on page 299.
- Expanded tooltips for toolbar buttons now include a description of what the button does. To see a tooltip, pause the pointer over a button in the toolbar. You can turn off the expanded tooltips (Tools, Options).
- A new Show Container Selectors visual aid allows you to select list, crosstab, repeater table, table of contents, active report application objects, and table container objects with one click. When enabled, a small clickable region (three orange dots) appears in the top left corner of these report objects. This selector provides easier access to the container objects’ properties and allows you to easily move containers with one mouse gesture. For more information, see “Visual Aids Button” on page 26.

Improved Set Operations

You can now perform more operations on a set of members when working with dimensional data sources.

You can do the following by right-clicking a set, and clicking Edit Set:

- Exclude members from the initial set or from the set as it is currently shown.
For more information, see “Exclude Members from a Set” on page 325.

- Move members to the top or bottom of the set.
 For more information, see “Move Members Within a Set” on page 325.
- Show only the members with the top or bottom values.
 For more information, see “Limit Data to Top or Bottom Values” on page 325.
- Filter the members in a set.
 For more information, see “Filter the Members Within a Set” on page 326.
- Expand and collapse members to add its child members below it as new rows.
 For more information, see “Expand and Collapse a Member Within a Set” on page 327.

Preview Reports when Opening and Saving

You can now see a preview of the report when you open or save it (Tools, Options, Display report preview).

For more information, see “Options” on page 31.

Report Name Used for the Exported Output File Name

When you run a report in an export format such as PDF, delimited text (CSV), Microsoft Excel (XLS), the IBM Cognos report name is now used as the exported file name.

This allows you to save the report output using the same name as the original report. For more information, see “Run a Report” on page 42.

Enhancements for SAP BW Data Sources

IBM Cognos Business Intelligence includes prompting for SAP BW variables and time-dependent hierarchies when creating reports with SAP BW data sources.

Prompting for SAP BW Variables

SAP BW variables are parameters in a SAP BW query that your business warehouse administrator sets up. When the queries run, the SAP BW variables are filled with values. SAP BW variables are automatically exposed as prompts when you run a report or when you add data to a report.

Prompting for SAP BW variables in IBM Cognos BI has improved. You are prompted for optional variables when you initially drag and drop data items.

Time-dependent Hierarchies

Time-dependant hierarchies now automatically reflect hierarchy or structure changes. When a structure is imported into IBM Cognos Framework Manager, each SAP BW time hierarchy is depicted as an individual level. IBM Cognos Report Studio users can use these structures to report on and compare levels that are valid for a specific time period.

Column Titles When Drilling up or Down

When you drill down or up, you can now specify whether the column title shows the member caption value or the level label value.

For more information, see “Create a Drill-up and Drill-down Report” on page 372.
Custom Properties for Prompts
You can now customize the text that instructs your report users how to use report prompts.

For example, you can now change the default text that appears above a search text box from **Keywords** to the text of your choice. For more information, see "Customize Prompt Text" on page 390.

Simplified Calculations
To add a calculation, you now choose to add either a **Query Calculation** or **Layout Calculation** object from the toolbox tab.

For more information, see "Using Relational Calculations" on page 313 and "Using Dimensional Calculations" on page 365.

Function Description Improvements:
The functions that you can use to create calculations now include improved descriptions and more examples.

The descriptions and examples appear in the Report Studio user interface and in this user guide. For more information about functions, see "Calculation components" on page 619.

New Vendor-specific Functions:
Functions that are specific to Postgres, Vertica, Netezza, Paracel, MySQL, and Greenplum now appear in the expression editor in the **Vendor Specific Functions** folder.

For more information, see "Calculation components" on page 619.

New Report Style
IBM Cognos Business Intelligence includes a new default report style with updated colors and gradients.

If your report uses a custom report template, your report will appear the same in this version of IBM Cognos Report Studio as it did in previous versions. By default, new reports appear in the new report style. For more information, see "Create and Modify Report and Object Styles" on page 417.

If you want to create new reports with the custom template style, you can edit the default template for new reports to match your custom template. For more information about custom templates, see Chapter 21, “Creating Report Templates,” on page 515.

List Enhancements
Report Studio includes enhancements to aggregate summaries, grouping, and hiding columns in lists.

You can now specify whether to automatically include an overall aggregate summary in the list footer. For more information, see Chapter 4, “Lists,” on page 59.

You can also specify whether grouping a column automatically makes it the first column in the list. For more information, see "Group Relational Data" on page 279.
You enable these behaviors in the IBM Cognos Report Studio options, by selecting the **Group and automatic summary behavior for lists** check box.

A new Render property allows you to hide columns from the output of list reports. For more information, see “Hide Columns in List Reports” on page 60.

Accessible Report Output

IBM Cognos Report Studio now includes features that allow you to create reports that are more accessible to people who have a physical disability, such as restricted mobility or limited vision.

Accessible reports contain features that allow users with disabilities to access report content using assistive technologies, such as screen readers. You can
- add alternative text for non-text objects, such as images, charts, and maps.
- add summary text for crosstabs, lists, repeater tables, and tables.
- specify whether table cells are table headers.
- use command keys, or shortcut keys, to navigate through IBM Cognos Business Insight Advanced.
- use a screen-reader software with a digital speech synthesizer to listen to what is displayed on the screen.
- set your system’s display settings for high-contrast displays.

In addition, the documentation now includes alternate text for all graphics so that screen readers can interpret graphics.

Braces and Parentheses are Breakable

When you run a report in PDF format, braces {} and parentheses () no longer stay on the same line as the text before them.

For example, **Products(2004)** may now break to a new line between **Products** and (2004).

Changed Features in Version 10.1.0

Listed below are changes to features since the last release.

Report Studio Express Authoring Mode Replaced by Business Insight Advanced

The two authoring modes in IBM Cognos Report Studio, Professional and Express, no longer exist.

Report Studio is still the tool that professional report authors use to create advanced and managed reports. The Express authoring mode is now replaced by IBM Cognos Business Insight Advanced. Business Insight Advanced is part of a new report consumption experience that provides an integrated business intelligence experience for business users. It offers much greater capability, such as full support for list reports, charts, and relational data sources. It offers an entirely different user experience that is designed for data exploration.

For more information, see the Business Insight Advanced *User Guide*.

Order of Drawing Bars in Bar Charts

In a horizontal bar chart, the new default chart type draws bars from bottom to top. Legacy charts draw the bars or columns in the reverse order.
To control the order of the bars, use the property for the category axis.

Line break rules in PDFs have changed

Line break rules for word wrapping in PDFs have changed slightly from the last release. Brackets and parenthesis such as [] and () are now treated as breakable. For example, in past releases, the following string would be treated as a single non-breaking string.

Boilers (Steam)

In this release, "Boilers" and "(Steam)" are treated as separate strings which might result in the following when the string occurs at the end of a line.

Boilers

(Steam)

Removed Features in Version 10.1.0

Listed below are features that are removed since the last release.

Analyze with Analysis Studio

The ability to open a report with IBM Cognos Analysis Studio from within IBM Cognos Report Studio (*Tools* or right-click, *Analyze*) was removed in this release.

Conformed Dimensions on SAP BW Data Sources

Support for conformed dimensions generated by IBM Cognos Framework Manager for SAP BW data sources was removed in this release.

The Microsoft Excel 2000 spreadsheet software and Excel 2000 Single Sheet spreadsheet software report outputs are no longer supported in this release.
Chapter 2. Getting started with Report Studio

IBM Cognos Report Studio is a Web-based report authoring tool that professional report authors and developers use to build sophisticated, multiple-page, multiple-query reports against multiple databases. With Report Studio, you can create any reports that your organization requires, such as invoices, statements, and weekly sales and inventory reports.

Use Report Studio for reports that
• are intended for a wide audience
• exist long enough to require maintenance for changing requirements and data
• require detailed control over the appearance

Your reports can contain any number of report objects, such as charts, crosstabs, and lists, as well as non-BI components such as images, logos, and live embedded applications that you can link to other information.

Building IBM Cognos Business Intelligence Applications

You use the IBM Cognos Business Intelligence components to build reporting and analysis applications.

The lifetime of an IBM Cognos Business Intelligence application can be months, or even years. During that time, data may change and new requirements appear. As the underlying data changes, authors must modify existing content and develop new content. Administrators must also update models and data sources over time. For more information about using data sources, see the IBM Cognos Business Intelligence Administration and Security Guide and the IBM Cognos Framework Manager User Guide.

In a working application, the technical and security infrastructure and the portal are in place, as well as processes for change management, data control, and so on. For information about the workflow associated with creating IBM Cognos BI content, see the IBM Cognos Architecture and Deployment Guide. For additional information, see the IBM Cognos Solutions Implementation Methodology toolkit, which includes implementation roadmaps and supporting documents. Information about the toolkit is available on the IBM Cognos Customer Center (http://www.ibm.com/software/data/cognos/customercenter/).

The following graphic provides an overview for how to use IBM Cognos BI to build applications across all of your IBM Cognos BI components.
1. Locate and prepare data sources and models

IBM Cognos BI can report from a wide variety of data sources, both relational and dimensional. Database connections are created in the Web administration interface, and are used for modeling, for authoring, and for running the application.

To use data for authoring and viewing, the business intelligence studios need a subset of a model of the metadata (called a package). The metadata may need extensive modeling in Framework Manager.

2. Build and publish the content

Reports, scorecards, analyses, workspaces, and more are created in the business intelligence studios of IBM Cognos BI. Which studio you use depends on the content, lifespan, and audience of the report, and whether the data is modeled dimensionally or relationally. For example, self-service reporting and analysis are done through IBM Cognos Workspace Advanced, IBM Cognos Query Studio, and IBM Cognos Analysis Studio, and scheduled reports are created in IBM Cognos Report Studio. Report Studio reports and scorecards are usually prepared for a wider audience, published to IBM Cognos Connection or another portal, and scheduled there for bursting, distribution, and so on. You can also use Report Studio to prepare templates for self-service reporting.

3. Deliver and view the information

You deliver content from the IBM Cognos portal or other supported portals, and view information that has been saved to portals, or delivered by other mechanisms. You can also run reports, analyses, scorecards, and more from within the business intelligence studio in which they were created.

Relational and dimensional reporting styles

You can create reports in IBM Cognos Report Studio using either a relational reporting style or a dimensional reporting style.

The Report Studio tools and query language are the same for both styles. However, it is important to choose a reporting style to ensure that you are making the most of your data and to avoid mixing dimensional and relational concepts.

How to choose a reporting style

When authoring a report, first choose your preferred reporting style for working with data: relational or dimensional. You can choose a reporting style from your viewpoint:

- If you think about your data as tables and columns, you have a relational viewpoint and should use a relational reporting style.
- If you think about your data as a number of dimensions intersecting at cells, you have a dimensional viewpoint and should use a dimensional reporting style.

Relational reporting style

The relational reporting style consists of lists. You focus the data with filters and summarize with header and footer summaries.

- If your data is purely relational, then only query subjects and query items appear in the Source tab, and you must use the relational reporting style.
If your data is dimensional, then dimensions appear in the Source tab, and you can still use a relational reporting style, but instead of query items (columns) and query subjects (tables), you use measures, levels, and level properties.

To see an example of relational style reporting with dimensional data, see the Manager Profile sample report in the GO Data Warehouse (analysis) package.

The relational reporting style is similar to report authoring in IBM Cognos Query Studio.

Dimensional reporting style

The dimensional reporting style consists of measures and members from different hierarchies arranged in a crosstab with cell values at the intersections. You focus the data with set expressions that navigate from specific members in the hierarchy and summarize with set summaries.

To see an example of dimensional style reporting with dimensional data, see the GO Balance Sheet as at Dec 31, 2006 sample report in the GO Data Warehouse (analysis) package.

The dimensional reporting style is similar to report authoring in IBM Cognos Analysis Studio.

Guidelines for each reporting style

This user guide is divided into relational and dimensional reporting sections so that you can follow the best practices for using this product with the reporting style that you have chosen. The following table outlines the best practices for both reporting styles.

<table>
<thead>
<tr>
<th>Item</th>
<th>Relational reporting</th>
<th>Dimensional reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report type</td>
<td>Lists</td>
<td>Crosstabs</td>
</tr>
<tr>
<td></td>
<td>Crosstabs pivoted from lists</td>
<td>Charts created from scratch or from crosstabs</td>
</tr>
<tr>
<td></td>
<td>Charts created from lists</td>
<td>Maps created from scratch or from crosstabs</td>
</tr>
<tr>
<td></td>
<td>Maps created from scratch or from lists</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Relational reporting</td>
<td>Dimensional reporting</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Package tree</td>
<td>In the Source tab, click the view members tree button. If you are using dimensional data, hide members in the source tree by right-clicking the tree, clicking Package Tree Settings, and clearing the check boxes for Members and Members for each level. The view will include the following: package, folder, namespace, query subject, query item, measure, level.</td>
<td>In the Source tab, click the view members tree button. Ensure that the source tree tool bar is set to Create sets for members: The view will include the following: package, folder, measure, member, named set.</td>
</tr>
<tr>
<td>Inserting data</td>
<td>From the package tree, add query items or levels to the report. Avoid using hierarchies directly in the report. Avoid using named sets.</td>
<td>From the package tree, add sets of members to the report. You can also choose to insert just the member, just the children of the member, or the member and its children.</td>
</tr>
<tr>
<td>Calculating data</td>
<td>Add query calculations using only relational and common constructs. Choose only Other expression.</td>
<td>Add query calculations using only dimensional and common constructs. Use Other expression only for value calculations. Avoid Common functions that are marked with an exclamation mark (!) because they have limited support.</td>
</tr>
<tr>
<td>Summarizing data</td>
<td>Headers and footers in lists Crosstab member summaries; for example, aggregate within detail</td>
<td>Member set summaries; for example, aggregate within set</td>
</tr>
<tr>
<td>Item</td>
<td>Relational reporting</td>
<td>Dimensional reporting</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Focusing data</td>
<td>Add detail or summary filters to view only the data you want to see. For example, add the Quarter query item to a list and filter by Q3.</td>
<td>Add only the relevant members to an edge of the crosstab or to the context filter. For example, only add the Q3 member to your report. Use a set expression such as Topcount or Filter.</td>
</tr>
<tr>
<td>Drilling</td>
<td>Drilling through by value</td>
<td>Drilling through by member Drilling up and down</td>
</tr>
<tr>
<td>Page and section breaks</td>
<td>Simple page breaks Page sets Sections Master detail relationships using parameterized filters</td>
<td>Simple page breaks Page sets Page layers Master detail relationships using parameterized edge or slicer expressions</td>
</tr>
</tbody>
</table>

The User Interface

The IBM Cognos Report Studio user interface has two panes, an explorer bar, and a work area to help you create reports.
We recommend that you use a screen resolution of at least 1024 by 768 pixels.

Content Pane

The content pane contains objects that you can add to a report. You add objects to a report by dragging them to the work area. The content pane contains these tabs:

- The **Source** tab contains items from the package selected for the report, such as data items and calculations.

- The **Data Items** tab describes the queries created in the report.

- The **Toolbox** tab contains a variety of objects that you can add to the report, such as text and graphics.

- The **Search** tab contains the results when you perform a search for members. You can insert the members found in a search directly into a report.

- If you are authoring an active report, the **Active Report Controls** tab shows the controls and active report variables inserted in a report and their relationships to one another. You can click a control in this tab to quickly locate the control in the report as well as set default values for variables.

- If you are authoring an active report, the **Active Report Variables** tab shows the active report variables defined in a report. Use this tab to create new variables and set default values.
Properties Pane

The Properties pane lists the properties that you can set for an object in a report.

You can obtain additional information about a property by selecting it and pressing F1. For example, you can view the list of objects that use each property.

When you specify a value for a property, press Enter, click another property, or save the report to ensure that the value is saved.

Tip: To view a description of the currently selected property at the bottom of the pane, from the View menu, click Property Descriptions.

Explorer Bar

Pause the pointer over the following buttons on the Explorer bar to work with different parts of a report:

- the page explorer button
 You use Page Explorer to view or create new report pages and prompt pages or to create and modify classes.

- the query explorer button
 You use Query Explorer to create or modify queries in relational reporting or dimensional reporting and to perform complex tasks, such as defining union joins and writing SQL statements.

- the condition explorer button
 You use Condition Explorer to work with variables to define conditions in a report.

Page Layers Area

Use the Page layers area to create sections, or page breaks, in a report to show values for each member on a separate page. For example, you can drag Northern Europe sales territory from the Source tab to the Page layers area. The report is broken into a separate page for each territory within northern Europe. Each page's context appears in the report header.

For more information, see “Create Page Layers” on page 513.

Context Filter Area

When working with dimensional data, use the Context filter area to filter your report to show values, or context, for only a specific data item. This technique is also known as a slicer filter. For example, you can drag Sales Territory from the Source tab to the Context filter area. When you click a specific territory from the list, the values in the crosstab change to represent data for that territory.

For more information, see “Create a Context Filter” on page 342.
Visual Aids Button

The visual aids button ![Visual Aids Button](image) provides the following options to help you when you are designing reports in the layout.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show Boundary Lines</td>
<td>Shows all boundary lines around objects.</td>
</tr>
<tr>
<td>Show Repeating</td>
<td>Repeats objects when you insert them. For example, when you insert a data item in a crosstab, the data item appears in each row or in each column of the crosstab.</td>
</tr>
<tr>
<td>Show Page Header & Footer</td>
<td>Shows the page header and page footer.</td>
</tr>
<tr>
<td>Show Drag & Drop Padding</td>
<td>Shows drag-and-drop zone when the Padding property for an object is set to 0. If the Padding property is set to a value that is greater than the minimum padding that IBM Cognos Report Studio uses to show drag-and-drop zones, only the minimum padding is shown.</td>
</tr>
<tr>
<td>Show Hidden Objects</td>
<td>Shows objects for which the Box Type property was set to None or for which the Visible property was set to No.</td>
</tr>
<tr>
<td>Show Sorting</td>
<td>Shows the sorting icon for data items for which a sort order was specified. For more information about sorting data, see "Sorting Relational Data" on page 306 or "Sorting Dimensional Data" on page 345.</td>
</tr>
<tr>
<td>Show Grouping</td>
<td>Shows the grouping icon for grouped data items.</td>
</tr>
<tr>
<td>Show Source Type</td>
<td>Shows the icon for the source type of objects, such as layout calculation.</td>
</tr>
<tr>
<td>Show Data Item Type</td>
<td>Shows the icon for the type of data item, such as query item, member, or measure.</td>
</tr>
<tr>
<td>Show Drill-through Definitions</td>
<td>Shows data items for which the drill-through definition was defined as a hyperlink.</td>
</tr>
<tr>
<td>Show Table of Contents Entries</td>
<td>Shows table of contents entries inserted in the report.</td>
</tr>
<tr>
<td>Show Bookmarks</td>
<td>Shows bookmarks inserted in the report.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Show Master Detail Relationships</td>
<td>Shows master detail relationships defined in the report.</td>
</tr>
<tr>
<td></td>
<td>Tip: Pausing the pointer over the master detail relationship icon shows the relationship.</td>
</tr>
<tr>
<td>Show No Data Contents Tab Control</td>
<td>Shows tabs if the data container’s No Data Contents property is set to Yes.</td>
</tr>
<tr>
<td>Show Repeater and Singleton Containers</td>
<td>Shows repeater and singleton containers inserted in the report.</td>
</tr>
<tr>
<td>Show Interactive Object Controls</td>
<td>Shows controls in the top right corner of active report application objects. For more information about active reports, see Chapter 8, “Active Reports,” on page 171.</td>
</tr>
<tr>
<td>Show Container Selectors</td>
<td>Shows a small selector (three orange dots) in the top left corner of the following container objects and allows you to select all the objects within them: list, crosstab, repeater table, table of contents, table, and active report application objects.</td>
</tr>
</tbody>
</table>

Work in design or structure view

IBM Cognos Report Studio has two views in which you can author reports: Page Design view and Page Structure view. You can choose a report authoring view on the View menu.

Different options are available in each view, so you often need to use both views. For example, you must use both views to remove sections in relational reporting.

Page design view

Page Design view is the default view in IBM Cognos Report Studio. In this view, you can see what your report will look like after you run it.

Page structure view

Page Structure view displays an overview of all of the report objects in your report in a tree structure, which is organized by page.
Report Layout and Queries

All reports have two components: a layout component that defines the report appearance and a query component that defines report data. Understanding these components will help you design effective reports.

Layout

A layout is a set of pages that defines the appearance and formatting of a report.

When you design the layout of a report, you
- present the data in a meaningful way by using lists, crosstabs, charts, and maps
- add formatting, such as borders, color, images, and page numbers
- specify how the data flows from one page to the next

Pages

Pages are containers for the layout objects that you use to build a report. A page is made up of the following mandatory and optional components:
- page header (optional)
- page body (mandatory)
- page footer (optional)

When you run a report, the amount of data queried often exceeds one page. As a result, a page will repeat until all the data is shown. You have control over how data flows from one page to the next. For example, here are alternative representations of a report that contains a chart and a lengthy list.

1. The chart appears on its own page. The list begins on the next page and fills subsequent pages until all rows appear.
2. The chart and the first few rows of the list appear on the first page. The rest of the data in the list appears on the subsequent pages.
Objects

You add layout objects to a page when you create a report. Below are objects that you will use often when building reports in IBM Cognos Report Studio:

- **list**
 Add a list to show data in rows and columns.

- **crosstab**
 Add a crosstab to show data in a grid with dimensions along the rows and columns and measures in the cells or intersection points.

- **chart**
- **map**
- **repeater**
 Add a repeater to show each instance of a certain column or data item in a separate frame.

- **text**
- **block**
 Add a block to hold text or other information. Blocks are often used to lay out horizontal bands of information.

- **table**

Related tasks:
"Insert a Formatting Object in a Report" on page 402

In addition to text and images, the Toolbox tab contains other objects that you can add to the report layout.

Queries

Queries determine what data items appear in the report. Sometimes you want detailed rows of data, which you obtain by using a simple SELECT statement. Other times you must calculate totals or averages using summary functions and grouped columns or must apply filters to show only the data you want.

IBM Cognos Report Studio automatically creates the queries you need as you build reports. However, you can modify these queries or create your own custom queries to get the results you want.

Related concepts:
"Working with Relational Queries" on page 301
Queries specify what data appears in the report. In IBM Cognos Report Studio, you create and modify queries using Query Explorer.
"Working with Dimensional Queries" on page 347
Queries specify what data appears in the report. In IBM Cognos Report Studio, you create and modify queries using Query Explorer.

Report Objects

You build reports by adding objects and manipulating them to obtain the results you want. To understand how to work with objects in IBM Cognos Report Studio, you must be familiar with the following concepts:

- **object types**
- **objects as containers**
- **locking and unlocking objects**
Object Types

In IBM Cognos Report Studio, layout objects are either inline or block. You can insert other objects on the same line as an inline object, but not on the same line as a block object. When you insert an object to the left or to the right of a block object, the object appears on the line above or below the block object, respectively. Examples of inline objects include graphics and text items. Examples of block objects include any report type (list, crosstab, chart, map, or repeater) and tables.

You can also use an object's floating property to define how other objects flow around the object. For example, you can specify how text flows around an image.

Objects as Containers

Objects, such as tables, blocks, and any report frame, are containers in which you can insert other objects. For example, you can insert a list in one cell of a table and a chart in another.

You can also nest objects to create a sophisticated layout. For example, you can insert a table in a cell of another table.

Locking and Unlocking Objects

To manipulate the contents of some objects, you must first unlock the object. For example, you have a list that contains the column Product Name. You want to insert a graphic inside the Product Name column to show an image of each product. Unlocking the list allows you to insert the image object inside a list column.

Tip: From the Structure menu, click Lock Page Objects. Toggling this menu item locks and unlocks all layout objects in a report. However, this setting is not saved with the report.

Hierarchy of Objects

In IBM Cognos Report Studio, objects are organized hierarchically. For example, a list contains list columns, and each list column contains a text item, which is the name of the inserted data item.

The hierarchy of objects is useful to remember when you apply formatting because formatting is applied to the child objects of the object. For example, you can specify that all list column titles in a list have red as the background color. The formatting is automatically applied to any new columns you add to the list because the formatting is applied to the list and is therefore applied to the objects in the list. If you apply formatting to a specific object, it will override the same formatting specified for the parent object.
Find Objects in a Report

You can quickly locate specific objects in a report by using **Find**.

Procedure
1. From the **Edit** menu, click **Find**.
2. Click **Find what** and choose the type of object to find.
3. In the **Options** box, specify the search criteria.

 For example, if you want to find the objects that reference a specific data item, you must specify the query that contains the data item and the data item name.
4. Click **Find Next**.

Results

The first object that meets the search criteria is selected in the report. Continue clicking **Find Next** to show all other objects that meet the search criteria.

Note: In some cases, such as searching for a data item that is used to define a conditional style, IBM Cognos Report Studio cannot directly select the object in the report. Instead, Report Studio selects the object that uses the object for which you are searching.

Options

You can set various options that control the appearance and behavior of IBM Cognos Report Studio (**Tools, Options**).

View Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Windows skin</td>
<td>Replaces the current appearance of the interface with the display scheme specified by the Windows settings.</td>
</tr>
<tr>
<td>Show startup dialog</td>
<td>Shows the Welcome dialog box at startup.</td>
</tr>
<tr>
<td>Reuse IBM Cognos Viewer window</td>
<td>Reuses the same IBM Cognos Viewer window when you rerun a report without first closing the window.</td>
</tr>
<tr>
<td>Resize IBM Cognos Viewer window</td>
<td>Maximizes the IBM Cognos Viewer window when you run a report.</td>
</tr>
<tr>
<td>Enable animation</td>
<td>Animates the appearance of dialog boxes, menus, and panes.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Window startup size</td>
<td>Specifies the size of the Report Studio window at startup.</td>
</tr>
<tr>
<td>Position pane on the right (requires restart)</td>
<td>Moves the content and Properties panes to the right of the work area. This check box is cleared by default. For the change to take effect, you must close and then restart Report Studio.</td>
</tr>
<tr>
<td>Show rich tooltips (requires restart)</td>
<td>Specifies whether to show descriptive tooltips when you hover over a button in the toolbar. This check box is selected by default. For the change to take effect, you must close and then restart Report Studio.</td>
</tr>
<tr>
<td>Display report preview</td>
<td>Shows a preview of the report when you open or save a report, within the Open, Save, and Save As dialog boxes.</td>
</tr>
<tr>
<td>Start page view</td>
<td>Enables you to start Report Studio in Page Design or Page Structure view. For the change to take effect, you must close and then restart Report Studio.</td>
</tr>
</tbody>
</table>

Edit Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrap text in editors</td>
<td>Automatically wraps text in all editors where you can define expressions.</td>
</tr>
<tr>
<td>Automatically populate values list</td>
<td>When building expressions in the expression editor, automatically shows values when you browse the data of a data item.</td>
</tr>
<tr>
<td>Automatically validate expressions</td>
<td>Automatically validates calculations, such as filters, created in the expression editor. For more information, see "Using Relational Calculations" on page 313 or "Using Dimensional Calculations" on page 365.</td>
</tr>
<tr>
<td>In-place edit</td>
<td>Enables the editing of text in place when double-clicking.</td>
</tr>
<tr>
<td>Use chart flyouts in Design View</td>
<td>When in Page Design view, shows the chart drop zones as flyouts that appear only when you hover your mouse over the chart. When cleared, the chart drop zones are always displayed.</td>
</tr>
<tr>
<td></td>
<td>By default, this option is not enabled.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Drop replace on crosstab and chart nodes</td>
<td>Specifies what the existing members are replaced with when you drag a new member onto a report.</td>
</tr>
<tr>
<td>Double-click on member action</td>
<td>When working with dimensional data, specifies what happens when you double-click a member data item. By default, you drill down or up on the item that you double-click.</td>
</tr>
<tr>
<td>Layout dimensions</td>
<td>Specifies the width and height of the area where you will create reports.</td>
</tr>
</tbody>
</table>

Report Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias member unique names</td>
<td>When working with a dimensional data source, creates an alias when you add a member to the report or to an expression.</td>
</tr>
<tr>
<td>Delete unreferenced query objects</td>
<td>Automatically deletes query objects linked to another object. For example, if you delete a list, the query linked to the list is deleted as well.</td>
</tr>
<tr>
<td>Delete unreferenced conditional styles and palettes</td>
<td>Automatically deletes conditional styles or palettes when the last data item that refers to the conditional style or palette is also deleted.</td>
</tr>
<tr>
<td>Always create extended data items for new reports</td>
<td>When working with dimensional data sources, determines whether Report Studio creates extended data items or expression-based data items for new reports.</td>
</tr>
</tbody>
</table>

Expression-based data items allow you to view or edit the expression by double-clicking the **Expression** property for the item.

If you are working with a dimensional data source and this option is not selected, the appropriate dimensional data item is added when you insert items such as members, levels, or calculated members. For example, if you insert a level, a level set is created. This makes it easier to work with dimensional data items because Report Studio knows the data item type of the items that are in the report.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table Style inheritance</td>
<td>When a table style is applied to a list or crosstab, specifies whether new objects inserted in the list or crosstab should inherit the style. For more information, see “Apply a Table Style” on page 406.</td>
</tr>
<tr>
<td>Automatic group and summary behavior for lists</td>
<td>When working with lists, automatically adds an overall aggregate summary in the list footer and a summary for any groups in the list. When grouping a column, automatically makes it the first column in the list.</td>
</tr>
<tr>
<td>Automatically create crosstab headers for sets</td>
<td>When adding sets in a crosstab that uses a dimensional data source, automatically adds header labels on new columns and rows. The headers help consumers of the report to understand where the data is in the hierarchy.</td>
</tr>
<tr>
<td>Limit on inserted individual members</td>
<td>When working with a dimensional data source, limits the number of child members that are inserted. For example, you specify 3 for this option and, in the toolbar, you specify the option to insert children when you drag a member to a data container. You then drag the Camping Equipment member to the rows of a crosstab. What you see as rows are the child members Cooking Gear, Tents, and Sleeping Bags and a row named Others (Camping Equipment) for the remaining child members of Camping Equipment.</td>
</tr>
</tbody>
</table>

Advanced Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use operating system clipboard</td>
<td>Uses the Microsoft Windows (or other operating system) clipboard instead of the internal Report Studio clipboard.</td>
</tr>
<tr>
<td>Use legacy chart authoring</td>
<td>Enables you to create new reports using the legacy charts instead of the default charts and disables the automatic upgrade of charts in existing reports to the current default charts. Select this check box if you do not want to upgrade the charts in your existing reports.</td>
</tr>
<tr>
<td>Disable chart preview in design view</td>
<td>When in Page Design view, displays a static image for a chart instead of updating the chart with a preview of your chart, using simulated data.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Override 10.x styles with 8.x styles on new reports</td>
<td>Specifies whether to use the Version 8.x report styles by default when creating new reports. For more information about report styles, see "Create and Modify Report and Object Styles" on page 417.</td>
</tr>
<tr>
<td>Map feature display limit</td>
<td>When working with maps, specifies the maximum number of features that can appear in a map.</td>
</tr>
<tr>
<td>Member display count limit (in source tree)</td>
<td>When working with dimensional data, specifies the maximum number of members that can appear in the Source tab before you must perform a search.</td>
</tr>
</tbody>
</table>

Related concepts:
"Recommendation - Use Member Unique Name (MUN) Aliases" on page 611
If you are working with a dimensional data source, use MUN aliases to simplify building reports and expressions. In addition, you can tie the MUN back to the member in the package.

Web Browser Settings

IBM Cognos Report Studio can be used in the Microsoft Internet Explorer and Mozilla Firefox Web browsers.

To review an up-to-date list of the environments that are supported by IBM Cognos products, including information about operating systems, patches, browsers, web servers, directory servers, database servers, and application servers, visit the [IBM Cognos Customer Center](http://www.ibm.com/software/data/cognos/customercenter/).

IBM Cognos Business Intelligence uses the default browser configurations provided by Internet Explorer and Firefox. Additional required settings are specific to the browser.

For Internet Explorer, the following settings are required:
- Allow Cookies
- Active Scripting
- Allow META REFRESH
- Run ActiveX controls and plug-ins
- Script ActiveX controls marked safe for scripting
- Binary and Script Behaviors
- Allow programmatic clipboard access
- Enable pop-ups for the IBM Cognos BI server

For Firefox, the following settings are required:
- Enable JavaScript
• Accept Cookies
• Allow Scripts to disable or replace context menus
• Enable pop-ups for the IBM Cognos BI server

Report Studio uses the native Microsoft Internet Explorer XML support, which is a component of the browser. ActiveX support must be enabled because Microsoft implements XML using ActiveX. IBM Cognos BI does not provide or download ActiveX controls. Only the ActiveX controls that are installed as part of Internet Explorer are enabled through this configuration.

For more information about the Web browser configuration and cookies used by IBM Cognos BI, see the IBM Cognos Business Intelligence Installation and Configuration Guide.

The IBM Cognos Software Development Kit

When you create a report, you are creating a report specification.

A report specification is an XML file that you can view (Tools, Show Specification). In addition, you can view the specification for a selected object with the Show Specification (Selection) menu option.

You can also programmatically create or modify reports by using an editing tool to work with report specifications. You then use the IBM Cognos Software Development Kit to implement the reports in your IBM Cognos Business Intelligence environment. This is useful if, for example, you must make the same modification in many reports. Rather than opening each report and making the change, you can automate the process using the Software Development Kit, thereby saving you time. For more information about the Software Development Kit, contact your local sales office.

Tips
• When you are viewing the report specification, you cannot modify or copy parts of it.
• You can also modify the XML code in a report specification by saving the report specification on your computer.
Chapter 3. Creating a report

When you create a report, you are actually creating a report specification. The report specification defines the queries and prompts that are used to retrieve data and the layouts and styles used to present the data. For simplicity, the report specification is named by the same name as the report.

Specify the Data Package

Specify the package that will provide items for the report.

The packages that you use to generate reports are based on models that are created in the modeling tool, IBM Cognos Framework Manager. A model is a set of related objects, such as query subjects, dimensions, filters, and calculations. When you open a package in IBM Cognos Business Intelligence, these model objects are visible in the left frame.

Before you begin

The package must be previously created and published to the IBM Cognos Connection portal. For more information, see the Framework Manager User Guide.

Procedure

1. Open IBM Cognos Report Studio with the package you want to use.
2. In the Welcome dialog box, choose whether to open a new or existing report or template:
 • To create a new report or template, click Create a new report or template and choose a basic report layout.
 Tip: You can specify a language other than the default language for your package by clicking on the ellipsis (...) button to the right of the Package field, clicking the Language ellipsis button in the Report Package dialog box, highlighting the desired language, and then clicking OK. As stated on the language selection dialog box, items such as separators and decimals may need to be manually updated for language-specific syntax rules as a result of your selection.
 • To open an existing report or template, click Open an existing report or template and select a report.

Results

Objects from the selected package, such as query items, appear on the Source tab.

Tip: You can later change packages.

Refresh the Package

If the package that a report is using has changed, refresh it to ensure that you are working with the latest version.
Procedure

In the Source tab, click the refresh button.

Tip: You can also close and reopen the report to upgrade it to the latest version of the package.

Choose a Basic Report Layout

IBM Cognos Report Studio includes several basic report layouts that include report objects, such as lists, crosstabs, maps, repeaters, and headers and footers. You can also choose to start with a blank report or open an existing report.

Tip: The Budget vs. Actual sample report in the GO Data Warehouse (analysis) package is based on a basic report layout. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Procedure

1. From the File menu, click New.
2. If you want to change the package, click the ellipsis (...) button and click a different package.
3. Choose a basic report layout:
 - To create a report from a blank layout, double-click Blank.
 - To create a report using one of Report Studio’s predefined report layouts, double-click the layout.
 - To create a new report template that can be applied to reports created in IBM Cognos Query Studio or IBM Cognos Analysis Studio, double-click Report Template.
 - To create a financial report using the basic financial report layout, double-click Financial Report. For more information about creating report templates, see Chapter 21, “Creating Report Templates,” on page 515
 - To create a new report using another report, double-click Existing, locate the report, and click Open.
 Tip: In the Type box, click Templates to see only existing templates.

Results

The basic report layout appears in the report page.

Add Data

Select the data items you want to appear in your report.

For more information about adding data to a relational style report, see “Add Relational Data to a Report” on page 279. For more information about adding data to a dimensional style report, see “Add Dimensional Data to a Report” on page 319.
Procedure

From the Source tab, drag data items to the report object. A flashing black bar indicates where you can drop a data item. Data items in the report appear on the Data Items tab.

Data Source Icons

Each object in the data source has a representative icon. You can insert all of the following objects in a report, except for packages and dimensions.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Package icon]</td>
<td>Package, which contains the objects you can insert in a report.</td>
</tr>
<tr>
<td>![Namespace icon]</td>
<td>Namespace, used to organize objects.</td>
</tr>
<tr>
<td>![Query subject icon]</td>
<td>Query subject, which represents a table in the database.</td>
</tr>
<tr>
<td>![Query item icon]</td>
<td>In relational data sources, query item, which represents a column of qualitative data in the database, such as product name or country or region. In dimensional data sources, level attribute, which represents a property of a level.</td>
</tr>
<tr>
<td>![Member icon]</td>
<td>A member is a unique item within a hierarchy. For example, Camping Equipment and 4 Man tent are members of the Products Hierarchy.</td>
</tr>
<tr>
<td>![Dimension icon]</td>
<td>Dimension, which represents a broad grouping of descriptive data about a major aspect of a business, such as products, dates, or markets.</td>
</tr>
<tr>
<td>![Hierarchy icon]</td>
<td>Hierarchy, which represents a collection of dimensional members organized into a tree structure.</td>
</tr>
<tr>
<td>![Level icon]</td>
<td>Level, which is a set of members that have common attributes. For example, a geographical dimension might contain levels for country or region or city. Multiple levels can exist within a level hierarchy, beginning with the root level. The root level is the parent and rollup of all members in the first level. It is used to obtain a rollup of all values across the hierarchy and to provide a convenient point to start drilling. For example, a Years level hierarchy may contain the following levels: • Root level Years • First level Year • Second level Quarter • Third level Month</td>
</tr>
<tr>
<td>![Measure icon]</td>
<td>Measure or fact, a query item that represents a column of quantitative data in the database, such as revenue or quantity.</td>
</tr>
</tbody>
</table>
Insert a Single Data Item

You can insert a single data item anywhere in your report using the singleton object. The singleton object retrieves only the first row value for that query. Inserting a single data item is useful when you want to show a value that is independent from the rest of the values in the report or when you want to insert some boilerplate text, such as a company name and address. For example, you can add the total revenue value in the header of each page in a report.

You can associate multiple singleton objects with a single query in relational reporting and dimensional reporting to optimize performance, such as when all the data items in the singleton are from the same database table. In addition, two or more singletons can reference data items from the same query. This is useful when using a single query is more efficient to display a set of single values than using multiple queries.

You can also filter the data item in the singleton. For example, you can show the total revenue for only the year 2007.

Queries that are associated to a singleton object are not supported when producing report output in delimited text (CSV) format.

Tip: The Returns by Damage, Failed Orders and Complaints in 2006 sample report in the GO Data Warehouse (analysis) package includes a singleton. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Procedure

1. From the **Toolbox** tab, drag **Singleton** to the report. An empty data container is created.

2. From the **Source** tab, drag a data item into the **Singleton** container.

 Tip: To create a singleton, you can also drag a data item anywhere in your report layout.

3. To change the query associated to the singleton object, in the **Properties** pane, double-click the **Query** property and make changes.
Results

When the report is run, the first row value for the data item is retrieved.

Validate a Report

Validate your report to ensure that it contains no errors.

When you open a report created in a previous version of IBM Cognos Business Intelligence, it is automatically upgraded and validated. For more information, see Chapter 23, “Upgrading Reports,” on page 525.

Procedure

1. From the Tools menu, click Validate Report. A message box appears indicating whether any errors were found in the report.
2. If you require more detail from the validation process, from the Tools menu, click Validate Options and do the following:
 • Click one of the following validation levels:

<table>
<thead>
<tr>
<th>Validation level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>Retrieves all errors returned from the query.</td>
</tr>
<tr>
<td>Warning</td>
<td>Retrieves all errors and warnings returned from the query. This is the default validation level.</td>
</tr>
<tr>
<td>Key Transformation</td>
<td>In addition to errors and warnings, retrieves informational messages describing important transformation steps from the report specification to the native query sent to the data source. These messages can show the cause of errors and warnings returned from the query. This feature is only partially implemented at present.</td>
</tr>
<tr>
<td>Information</td>
<td>Retrieves errors, warnings, key transformations, and other information related to query planning and execution.</td>
</tr>
</tbody>
</table>

• Select the Interactive data check box to specify that no query optimization is to be used.

The Interactive data check box controls how queries will be processed during validation.

Clear the Interactive data check box to set the Execution Optimization property to All Rows.

A message box appears indicating whether any errors were found in the report.

- Revalidate your report.

3. If you encounter validation errors and want IBM Cognos Report Studio to identify incorrect objects in your report, from the Tools menu, click Auto Correct.

Report Studio provides a list of such objects that you can remove individually to successfully run your report.

In some cases, the information or error message is linked to the location of the issue in your report. To go to the location of the issue, click the message, and then click Select. If only warnings and information appear in the dialog box, these will disappear when you click OK.

Save a Report

Save your report to preserve the modifications you made.

Reports are saved to the IBM Cognos Business Intelligence server. You can also save your report on your computer.

Procedure

1. From the File menu, click Save or click Save As to save a copy of the report under a different name.

2. If you are saving the report for the first time, specify where to save the report and type a file name.

 For information about setting up folders in IBM Cognos Connection for your reports, see the IBM Cognos Connection User Guide.

3. Click Save.

Run a Report

Run your report to see the data that is retrieved. Save time by validating it first to check for errors.

You can also run a report or a group of reports in IBM Cognos Connection. Furthermore, you can save report outputs to a file system. For more information, see the IBM Cognos Business Intelligence Administration and Security Guide.

You can specify not to render a report page if it does not contain any data.

When you run a report in an export format such as PDF, delimited text (CSV), Microsoft Excel spreadsheet software (XLS), the IBM Cognos report name is used as the exported file name.

If you run a report that uses functions or features not supported by the data source, an error message appears. We recommend that you periodically test your reports while you author them in IBM Cognos Report Studio to ensure that you do not encounter multiple error messages when you run the report.

Procedure

1. Open a report.
2. If you want to clear parameter values stored on the IBM Cognos Business Intelligence server, from the File menu, click Clear Parameter Values. Parameter values stored by the IBM Cognos BI server include signon, validation, and prompt information. For example, if you define two data source connections in IBM Cognos Connection that point to the same data source, you are prompted to choose one when you run a report. This information is stored so that you are not prompted each time you run the report.

3. If you want to view only the tabular data, from the Run menu, click View Tabular Data.

 Tip: You can also view tabular data in Query Explorer, which is useful when you are building queries.

4. If you want to set run options, from the Run menu, click Run Options. The default value is the value of the selected corresponding run option in IBM Cognos Connection.

 Note: The run options that you set apply only to the current session. When you close Report Studio, the options return to the default settings.

5. Change any values for the current session.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>Specify to change the default format from HTML.</td>
</tr>
<tr>
<td>Paper size</td>
<td>Specify only if the output format is PDF.</td>
</tr>
<tr>
<td>Paper orientation</td>
<td>Specify only if the output format is PDF.</td>
</tr>
<tr>
<td>Data mode</td>
<td>Specify how much data is returned:</td>
</tr>
<tr>
<td></td>
<td>• All Data returns all data.</td>
</tr>
<tr>
<td></td>
<td>• Limited Data limits the amount of data returned based on design mode filters defined in the package.</td>
</tr>
<tr>
<td></td>
<td>• No Data returns artificial data instead of actual data from the data source.</td>
</tr>
<tr>
<td></td>
<td>For more information about design mode filters, see the Framework Manager User Guide.</td>
</tr>
<tr>
<td>Language</td>
<td>The content language sets the preferred language for the data, IBM Cognos Viewer, dates, and so on.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Rows per page</td>
<td>Specifies the number of rows to appear on each page.</td>
</tr>
<tr>
<td></td>
<td>A Rows Per Page property exists in the Properties pane for lists and crosstabs. If you set this property, the setting overrides the same-named run option. This property applies to both HTML and PDF outputs. For more information about this property, see “Controlling the Rows Per Page for Multiple Containers in HTML and PDF” on page 45.</td>
</tr>
<tr>
<td>Prompt</td>
<td>Select to be prompted for each prompt defined unless the prompt is defined in a report page.</td>
</tr>
<tr>
<td></td>
<td>If you clear the Prompt check box, you are prompted only if the report cannot run without user intervention. For example, if a report has a single parameterized filter that is optional, you are not prompted when you run the report.</td>
</tr>
<tr>
<td>Include accessibility features</td>
<td>Specifies whether accessibility features, such as alternate text on images and charts and summary text in tables, are included in the report output.</td>
</tr>
<tr>
<td></td>
<td>This option is also used for conditional layouts in Report Studio. When the option is selected, you can specify that a crosstab is rendered as an accessible alternate to a chart.</td>
</tr>
<tr>
<td></td>
<td>For more information about how to create accessible reports, see “Considerations to Improve Report Accessibility” on page 532.</td>
</tr>
<tr>
<td>Enable bidirectional support</td>
<td>Specifies whether to enable bidirectional support in the report output. Tip: You can also enable bidirectional support in Cognos Connection by modifying your user preferences (My Preferences link). If you enable bidirectional support in Cognos Connection, this run option will be automatically selected.</td>
</tr>
</tbody>
</table>

6. From the **Run** menu, click one of the options to produce the report in the format you want.

You can produce a report in HTML, PDF, CSV, various Microsoft Excel formats, and XML. You cannot produce a report in CSV format if you have more than one query defined in the report unless the additional queries are used for prompts.
Results

The report runs in IBM Cognos Viewer. Once the report has finished running, you can run the report again in the same format or in a different format. If you run the report again in CSV or XLS format, the report will appear in a new browser window.

The options available in IBM Cognos Viewer depend on the capabilities set by the administrator for each user. For more information, see the IBM Cognos Business Intelligence Administration and Security Guide.

Related concepts:
“Running a Report Against a Dimensional Data Source” on page 595
You can cancel a report that is running against Microsoft SQL Server Analysis Services only during the initial portion of its execution. After this time, the report runs to completion.

Specify Not to Render a Page If It Does Not Contain Data

You can specify not to render a report page if the page does not contain any data when the report is run.

Procedure

1. In the report page, click a data container.
2. In the Properties pane, click the select ancestor button \(\text{fast} \) and click the data container type.
 For example, if the data container is a list, click List.
 Tip: You can also click the container selector (three orange dots) of the container to select it.
3. Set the Render Page when Empty property to No.
4. Repeat steps 1 to 3 for all other data containers in the page and any table of contents objects.

Results

When you run the report, if no data is produced in all data containers and table of contents objects in a page, the page is not rendered. The page is not rendered even if the page contains other objects, such as text items or images.

Controlling the Rows Per Page for Multiple Containers in HTML and PDF

If you have more than one data container in a report, such as a list and a crosstab, you can control how the report is rendered in HTML and PDF by setting the Rows Per Page property for each container.

For HTML output, the report property option Page break by data container for interactive HTML controls whether the default number of rows is rendered for each data container on each page.

IBM Cognos Business Intelligence uses the following rules when rendering reports in HTML and PDF:
If the **Rows Per Page** property is not set for any of the data containers, 20 rows per page are rendered in HTML and each page is completely filled in PDF. The first data container is rendered until there is no more data, followed by the next container, and so on.

Tip: The number of rows that appear on a PDF page depends on the font size set in the report.

- If the **Rows Per Page** property is set for each data container, the specified numbers of rows are rendered in HTML and PDF on each page until there is no more data.
- If the property is set for only some of the containers, the specified numbers of rows are rendered in HTML and PDF on each page until there is no more data. For the remaining containers, 20 rows per page are rendered on each page in HTML and each page is completely filled in PDF.
- For example, you have two lists, List1 and List2. You set the **Rows Per Page** property to 5 for List1. When you run the report in HTML, the first page contains the first 5 rows from List1 followed by the first 15 rows of List2.
- If no data is returned for a data container, an empty container is rendered.

Producing a Report in CSV Format

IBM Cognos Business Intelligence can produce reports in CSV format so you can open them in other applications, such as Microsoft Excel spreadsheet software.

Reports saved in CSV format
- support Unicode data across many client operating systems
- are UTF-16 Little Endian data encoded
- include a BOM (Byte Order Mark) at the beginning of the file
- are tab-delimited
- do not enclose strings in quotation marks
- use a new line character to delimit rows

You can open reports saved in CSV format using a variety of spreadsheet software applications. By default, reports produced in CSV format will appear in the application associated with the .csv file type.

You cannot produce the following in CSV format:
- maps
- charts that do not have at least one category or series
- reports that have more than one query defined in the report, unless the additional queries are used for prompts

In IBM Cognos Connection, you can configure the CSV output to suit your environment. For example, you can specify the character used to delimit fields. For more information, see the IBM Cognos Business Intelligence *Administration and Security Guide*.

Producing a Report in Microsoft Excel Format

You can export your report output to several different Microsoft Excel spreadsheet software formats.

Excel 2007 and **Excel 2007 Data** formats render report output in native Excel XML format, also known as XLSX. This format provides a fast way to deliver native

The output is similar to other Excel formats, with the following exceptions:
- Charts are rendered as static images.
- Row height can change in the rendered report to achieve greater fidelity.
- Column widths that are explicitly specified in reports are ignored in Microsoft Excel 2007.
- Merged cells are used to improve the appearance of reports.
- The default size of worksheets is 65,536 rows by 256 columns.

Your IBM Cognos administrator can enable larger worksheets and change the maximum number of rows in a worksheet, up to a maximum of 16,384 columns by 1,048,576 rows, by using advanced server properties. For more information, see the *IBM Cognos Business Intelligence Administration and Security Guide*.

Excel 2007 Data provides data for use in Microsoft Excel version 2007. These reports only contain minimal formatting. Default data formatting is applied to the data based on data type and assumes that each column has a single data type.

The output is similar to other Excel formats, with the following exceptions:
- The generated output includes only the first list query in the report. If a report contains multiple queries and the first query is a multi-dimensional query for a crosstab or for a chart, an error message is displayed when the report runs.
- Nested frames and master-detail links are not supported.
- Cells in the Microsoft Excel file have a default width and height. You must adjust the column width and height if the data is larger than the default size.
- Style specifications are not rendered, including color, background color, and fonts.
- Borders are not rendered.
- User-specified data formatting in the report specification are not applied, including exception highlighting and color rules for negative numbers.

Excel 2002 provides fully formatted reports for use in Microsoft Excel versions earlier than 2007. Excel 2002 format also offers the following benefits:
- Spreadsheets are contained in a single file for reliable spreadsheet navigation.
- The maximum size of worksheets is 65,536 rows by 256 columns.

Related concepts:
- "Larger worksheet sizes for Microsoft Excel 2007 report outputs" on page 7
- IBM Cognos Business Intelligence now supports a larger worksheet size for report outputs exported in Microsoft Excel 2007 format.
- Appendix E, “Limitations When Producing Reports in Microsoft Excel Format,” on page 613

There are limitations when producing reports in Microsoft Excel format.

Producing a Report in XML Format
XML report outputs save the report data in a format that conforms to an internal schema, xmldata.xsd.
You can find this schema file in c10_location/bin.

This format consists of a dataset element, which contains a metadata element and a data element. The metadata element contains the data item information in item elements. The data element contains all the row and value elements.

You can create models from reports and other data that conform to the xmldata.xsd schema. This is useful if you want to use a report as a data source for another report, or if you use a database that cannot be read by IBM Cognos Framework Manager. In this case, export the data from the data source to an XML file, in conformance with the xmldata schema, and then open the XML file in Framework Manager.

For more information, see the Framework Manager User Guide.

You cannot produce the following in XML format:

- maps
- charts that do not have at least one category or series
- reports that have more than one query defined in the report, unless the additional queries are used for prompts

If a report contains more than one data container, such as a crosstab and a list, and both containers use the same query, only the output for the list is produced. If a report contains multiple lists, only the output for the first list is produced. If a report contains multiple crosstabs and multiple lists, only the output for the first list is produced.

Set PDF Page Options

Set PDF page options, such as page orientation and paper size, to control how report pages appear in PDF. You can set PDF page options for individual report pages or for all report pages in a layout.

Tip: The PDF Page Properties sample report in the GO Sales (analysis) package includes PDF page options. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

You can also set PDF page options in IBM Cognos Connection. For more information, see the IBM Cognos Connection User Guide.

The paper size for PDF output can be a maximum of 200 x 200 inches or 500 x 500 centimeters. A larger paper size produces a blank page.

Procedure

1. To set PDF page options for all report pages in a layout, do the following:
 - From the File menu, click PDF Page Setup and set the page options.
2. To set PDF page options for an individual page, do the following:
 - Pause the pointer over the page explorer button and click the page.
 - In the work area, click anywhere on the page.
 - In the Properties pane, click the select ancestor button and click Page.
 - Double-click the PDF Page Setup property, select the Override the page setup for this page check box, and set the page options.
View Lineage Information for a Data Item

View lineage information of a data item to see what the item represents before you add it to a report.

Lineage information traces the metadata of an item back through the package and the data sources used by the package. Lineage also displays any data item filters that were added by the report author or that were defined in the data model. Viewing lineage information ensures that you add the correct data items to a report. For example, you can view the lineage information of a model calculation to see how it was created.

Note: Lineage is available only after your administrator has configured it. For more information, see the IBM Cognos Business Intelligence Administration and Security Guide. In addition, lineage is not supported in reports that are not linked to packages.

You can use the lineage tool that comes with IBM Cognos Business Intelligence, or you can use another lineage tool by specifying the URL to the tool in IBM Cognos Administration. Note that if the URL source is secured, the source must be able to prompt users for a password because IBM Cognos BI does not pass security information. IBM Cognos BI also supports the IBM Metadata Workbench as a lineage tool. For more information about configuring other lineage tools, see the IBM Cognos Business Intelligence Administration and Security Guide.

Tip: The Customer Returns and Satisfaction sample report "Customer Returns and Satisfaction" on page 576 in the GO Data Warehouse (analysis) package includes lineage information. For more information about The Sample Outdoors Company samples, see Appendix C, "Sample Reports and Packages," on page 567.

You cannot use lineage information to troubleshoot queries. For example, lineage information will not explain why a data item is double counted. Also, you cannot view lineage information when running a report from a mobile device.

Before you begin

Before you can access lineage information for a report, your administrator must configure lineage in IBM Cognos Administration. Also, the administrator must enable the lineage capability and grant read permission for you on the report.

Note: The IBM Cognos BI lineage tool shows lineage on a report at its highest level. The lineage does not change after you drill down on a report. Because the selection context used to launch lineage can be affected by drill-down operations, we recommend that you always launch lineage at the highest report level before drilling down on the report. Otherwise, the lineage may not start properly.

Procedure

From the Source tab, right-click the data item and click Lineage.

Tip: You can view lineage information for multiple data items at the same time by first Ctrl+clicking the items. The IBM Metadata Workbench does not support viewing lineage for multiple data items at once.
Results

The lineage tool opens showing the lineage information of the selected data item.

The IBM Cognos Business Intelligence Lineage Tool

The IBM Cognos Business Intelligence lineage tool includes two views: the business view and the technical view.

The business view displays high-level textual information that describes the data item and the package from which it comes. This information is taken from IBM Cognos Connection and the IBM Cognos Framework Manager model.

The technical view is a graphical representation of the lineage of the selected data item. The lineage traces the data item from the package to the data sources used by the package.

When you click an item, its properties appear below it. If you click an item in the Package area, you see the model properties of the item. If you click an item in the Data Sources area, you see the data source properties of the item.
You can also view lineage information in IBM Cognos Viewer after you run a report. For example, you can click a cell in a crosstab to see how the cell value was calculated. To view lineage information in IBM Cognos Viewer, right-click an item in the report and then click Lineage. If you or an administrator runs a saved report with the IBM Cognos BI lineage tool, both the business view and the technical view are visible. Report consumers can see only the business view. In addition to the Package and Data Sources areas, a Report area exists when looking at the technical view.

Access the IBM WebSphere Business Glossary

Business glossaries help you manage and share an enterprise vocabulary and classification system.

If you use the IBM WebSphere® Business Glossary, you can access the glossary from any of the following data objects:

- Query subject
- Query item
- Measure
- Dimension
- Hierarchy
- Level
- Property/attribute
- Top node member
- Member
- Level item

Procedure

Right-click the data item and click Glossary.

The IBM WebSphere Business Glossary appears.

Support for bidirectional languages

You can author reports that support bidirectional languages. You can specify base text direction, digit shaping, and container direction.

Arabic, Hebrew, Urdu, and Farsi are languages written from right to left, using the Arabic or Hebrew scripts. However, numbers in those languages, as well as embedded segments of Latin, Cyrillic, or Greek text, are written from left to right. Using the bidirectional settings in IBM Cognos Report Studio, you can control the direction in this type of text in reports.

Report formats

Bidirectional languages are supported for reports produced in HTML, PDF, and Microsoft Excel. IBM Cognos Active Report also supports bidirectional languages.

Enabling bidirectional support

To enable support for bidirectional languages when a report is run, in IBM Cognos Connection, users must open their My Preferences page and select the Enable bidirectional support check box.
To enable support for bidirectional languages when a report is run from Report Studio, select the Enable bidirectional support check box in the Run Options window.

Tip: If you enable bidirectional support in Cognos Connection and you then start Report Studio, the bidirectional support run option in Report Studio is selected. If you disable bidirectional support in Cognos Connection and you then start Report Studio, the run option in Report Studio is cleared.

Base text direction

Base text direction sets the text direction as left-to-right or right-to-left. You can specify the base text direction for any text object in a report. You specify the base text direction for text by clicking the Direction & Justification property for the text or for the object that contains the text, such as a list column.

A contextual option also exists in the Direction & Justification property that sets the text direction based on the first letter in the text.

For compound objects that contain text, you specify the base text direction of the text contained in the object by clicking the Contained Text Direction property for the object. Examples of compound objects are charts, prompts, and active reports.

Digit shaping

Digit shaping allows users to consume reports with numbers that they can read after they select the content language in IBM Cognos Connection. You can specify digit shaping at the following levels:

- Report
- Container (except for charts and maps)
- Text
- Number

You specify digit shaping for an object by clicking the Data Format property for the object. To specify digit shaping at the report level, click the Default Data Formats option in the Data menu.

Tip: Digit shaping has no impact on reports produced in Excel format, since the shaping of digits in Excel depends on Windows regional settings.

Container direction

Container direction sets the direction of container objects in a report as left to right or right to left. You specify container direction for an object by clicking the Direction & Justification property for the object.

Tip: Container direction is not supported in reports produced in Excel format. Excel spreadsheets do not natively support mirroring at the container level.
Related concepts:
“Digit shaping in charts and maps” on page 454
When working with bidirectional content, you cannot specify digit shaping at the chart or map level. You can specify digit shaping for the objects in charts and maps.

Related tasks:
“Run a Report” on page 42
Run your report to see the data that is retrieved. Save time by validating it first to check for errors.
“Specify text and container direction” on page 413
You can specify text and container direction by choosing any of these options.
“Set the Default Data Formats” on page 453
Set the default data properties for each type of data, including text, number, currency, percent, date, time, date/time, and time interval.
“Specify the Data Format for an Object” on page 454
Specify the format for a particular object if you are not getting the results you want.

Reports for workspaces in Cognos Workspace

When building a workspace in IBM Cognos Workspace, business users can insert an entire IBM Cognos Report Studio report or insert only individual objects from within a report.

To create effective reports for use in workspaces in Cognos Workspace:

• Ensure that all the objects and pages within the report have meaningful names.
 Report Studio gives each object in a report a default name such as List 1, List2, and so on. In Cognos Workspace, these names appear in the Content tree. To help business users recognize the report objects, rename them to something more meaningful (Properties pane, Name property).
 If you do not want an object to be added in a workspace, clear the Name property for that object. The object will then not appear in the Content tree of Cognos Workspace.

• Create a container report that includes all the report objects that workspace users might want to add in a report. Such a report is not meant to be run and does not need to show report objects in a proper layout. It is only used as a container for the various report parts. Each page of a report appears as a folder within the Cognos Workspace Content pane.
 For example, on one page named Prompts you can insert all the possible prompts that users might want to add to a workspace, and give each prompt a useful business name, such as Value Prompt for Region. On a second page named Charts, you can insert a number of charts useful for workspaces.

• Ensure that the titles and labels used in your report are understandable by business users.

• Ensure that you use report objects that are well suited for dashboards. They convey the most information in as little space as possible. For example, if you include a chart, use bullet charts, microcharts, line charts, or column and bar charts. Use conditional blocks to show business indicators.

• If your report includes charts, customize the font sizes so that the charts appear correctly in a dashboard. You may need to reduce the font sizes.

• If your report includes embedded objects, such as a list with an embedded chart and crosstab, and business users insert the list object in their dashboard, the
embedded objects appear as blank. Users must insert the entire report. Therefore, you may want to hide the list and embedded objects from business users by clearing the Name property and allowing them to only insert the entire report.

- If your report includes a map, customize the colors of the map in Report Studio so that they match the color palette of the dashboard. You cannot edit the color palette of a map from within a workspace in Cognos Workspace.

Prompts in workspaces in Cognos Workspace

A prompt control, when assigned a Name property in IBM Cognos Report Studio, appears as an object that you can insert from the Content pane in a workspace in IBM Cognos Workspace.

If a workspace includes reports and report parts from the same model, prompts automatically filter the appropriate data item in all the widgets in the dashboard. For example, a prompt filters on Product Line. Any widget in the dashboard that includes the Product Line data item is filtered when you select a value from this prompt control. If you do not want a prompt to control a widget in the dashboard, you can disable communication between the two widgets.

If a dashboard includes prompted reports or report parts from different models, ensure that the prompts use the same parameter names. For example, a year prompt should use the same parameter p_Years in reports from both models. Otherwise, the prompt control is unable to control reports from another package.

Enable filters in workspaces in Cognos Workspace

You can include a data item in the query of the report, but not show that data item in the actual report. This is useful for creating calculations and filters. If you want IBM Cognos Workspace users to filter content in a workspace based on a data item that is not visible in the report, you must include this data item in its own query and name it _BusinessInsight_ within the IBM Cognos Report Studio report. Therefore, the data item must exist in both the query used for the data container (such as the list, crosstab, or chart) and in this separate query.

For example, a chart shows the revenue for the product lines for each region. You want to filter the chart to show only data for the year 2008. When you author the report, in addition to including Year in the Query1 used for the chart data container, you create a new query named _BusinessInsight_ that includes Year.

Procedure

1. Pause your pointer over the Query Explorer and click Queries.

2. From the Toolbox tab, drag a Query object to the work area.

3. Click the Query object, and in the Properties pane, in the Name box, type _BusinessInsight_.

4. Double-click the Query object, and from the Source tab, add the data item to use as a filter.

 Ensure that the same data item also exists in the query used for the data container.
Creating Reports for IBM Cognos for Microsoft Office

IBM Cognos for Microsoft Office provides an integrated environment for IBM Cognos products and Microsoft Office. You can use IBM Cognos for Microsoft Office to select pieces of reports to embed in Microsoft Excel workbooks, Microsoft Word documents, or Microsoft PowerPoint presentations, including data, metadata, headers, footers, and charts. You can use predefined reports or you can create new content using IBM Cognos PowerPlay® Web, IBM Cognos Query Studio, IBM Cognos Workspace Advanced, or IBM Cognos Report Studio.

Note: Note that to access PowerPlay content, your administrator must configure PowerPlay to work with IBM Cognos Business Intelligence. PowerPlay content that is published only to Upfront is not available to IBM Cognos for Microsoft Office.

Because IBM Cognos for Microsoft Office cannot fully convert highly formatted reports into Excel or other Microsoft document output types, you may not get the results that you want.

To create effective reports for IBM Cognos for Microsoft Office, follow these recommendations:

• Create content to meet specific Microsoft Office integration needs.
 For example, in IBM Cognos BI, many options are available to format data. Use less formatting to make data more accessible to Office applications.

• Organize reports.
 You can publish workbooks to IBM Cognos Connection and organize them with your reports in Public Folders or My Folders. For more information, see the IBM Cognos Connection User Guide. By organizing your content, you can quickly retrieve the information that you want.

Tip: Workbooks, documents, and presentations that are enabled for IBM Cognos for Microsoft Office are identified by their own unique icons, helping you to distinguish them from other types of files.

• Optimize report templates for Microsoft Office.
 If you rely on IT personnel or other report authors to create content, request report templates that are optimized for your Microsoft Office integration needs. You may want to request only the data elements or queries that you need and request minimal formatting so that you can more easily use Microsoft Office formatting capabilities with the IBM Cognos content. For example, reports authored in Report Studio can contain list objects embedded within list objects with specific formatting applied. When converted to the tabular representation available in Excel, these reports may not be rendered in the same way in which they appear in IBM Cognos BI.

• Format elements in the Office application.
 Instead of formatting objects in IBM Cognos BI, add the formatting in the Office application. By applying less formatting in IBM Cognos BI, you can import more data into the desired locations.

• Label report elements using descriptive names.
 This practice makes them more easier to find after you import them. Examples of report elements include lists, crosstabs, and charts.

• Do not nest report objects.
 If you nested report objects, some objects may not appear in the correct location, or they may not appear at all. In addition, nesting report objects may cause the following error message to appear:
RDS-ERR-1000 Report Data Service could not process from the content provider.

For example, this error occurs if a repeater or repeater table is inside a block or table. It also appears when layout objects, such as lists, crosstabs, and charts, are in a conditional block that is inside another block or table.

- Keep table sizes small.
 For example, because of the size of slides, the maximum number of rows and columns that you can have in Microsoft PowerPoint tables is 25. Although Word and Excel permit larger tables, it takes more time to download and render them.

- Use images with transparent backgrounds.
 The background will show through the image in the Office application, making the image look like part of the presentation. If you want, you can then supply your own background color.

- Specify the height and width of images in a list.
 This practice ensures that the image appears in the correct size in the Office application.

- Remember that graphs and charts are imported as images.
 Images in IBM Cognos BI have image maps associated with them to enable tooltips and hotspots. IBM Cognos BI for Microsoft Office cannot import tooltips and hotspots into Office applications.

- Consider the additional limitations that exist when producing reports in Excel format.

Creating Reports for Mobile Devices

You can send IBM Cognos Report Studio reports to mobile devices that have IBM Cognos Mobile installed, or that are using the IBM Cognos Mobile Web portal.

Creating location-aware reports

A location-aware report filters report data based on the user's current location as determined by the GPS coordinates of the mobile device. For example, a Vice President of Sales travels frequently to visit his Regional Sales Managers. When he arrives at an airport, he wants to filter his sales report to show information about the region that he is visiting.

You can create location-aware reports in IBM Cognos Report Studio if your IBM Cognos Mobile administrator has set up location-aware parameters. For more information, check with your IBM Cognos Mobile administrator or see the IBM Cognos Mobile *Installation and Administration Guide*.

Location-aware reports must include at least one prompt that requests the location information. This location information, as defined by your IBM Cognos Mobile administrator, could use either coordinates or defined regions, such as states, provinces, cities, or voter regions. Your administrator also defines the parameter names for the prompts, which you must provide when adding the location prompt.

Unsupported report features

The following report features are not supported for reports that are viewed on mobile devices with IBM Cognos Mobile.

For more information about IBM Cognos Mobile, see the IBM Cognos Mobile *Installation and Administration Guide*.
Formatting

- **Font size**
 Font size is supported for reports that are viewed on the Web portal and on the Apple iPad native application.

- **Line-through font style**
 Line-through font style is supported for reports that are viewed on the Web portal and on the Apple iPad native application.

- **HTML items**
 HTML items are supported for reports that are viewed on the Web portal and on the Apple iPad native application.

- **Rich text items**

- **HTML links**
 HTML links are supported for reports that are viewed on the Web portal and on the Apple iPad native application.

- **Chart border colors, patterns (such as dotted lines), and widths**

- **Chart sizes**

- **Borders on any objects other than crosstabs or lists**

- **Padding**

- **Chart frames inside blocks, table cells, or field sets**

- **Vertical text alignment**

- **Line height**

- **Letter spacing**

- **Page number background**

- **Text rotation**

- **White space for formatting, such as tabs**

Report Features

- **Multi-page widgets in workspaces in IBM Cognos Workspace**
 Only the first page is shown for reports that are viewed on mobile devices or on the Web portal.

- **Cognos Workspace iWidgets**

- **Cognos Workspace layout**
 In all cases, widgets are laid out sequentially in order.

- **Cognos Workspace Prompted widgets**

- **Cognos Workspace slider control**

- **Static images that are protected with NTLM in reports**
 Set NTLM security only on the cgi-bin directory. If you choose to enforce NTLM across your static content as well, you will encounter missing static images in your reports.

- **Image backgrounds in cells**

- **Image animations**

- **Hyperlink buttons**

- **Hyperlinks**
 Hyperlinks are supported on the Web portal, where the browser will open the destination. On the iPad native app, the browser will launch and be directed to the destination.

- **Bookmarks**
• JavaScript (or any client-side scripting)
• Field sets
• Frames
• Drill definitions across packages
• Drilling through on multiple values
• Drill definitions to bookmarks and pre-run or scheduled target reports
• IBM Cognos PowerPlay 8 reports used as a source report

Authentication
• JavaScript

Prompting
• Some inline prompts ("in-page prompts") are not supported.
 The prompt types that are supported as inline prompts are Text Box, Value, Date, Time, Date & Time, and Interval.
 Unsupported inline prompts are not shown within the report, but the user is prompted instead when they run the report.
• Value prompts displayed as check boxes are supported on the iPad native app
• Customized prompt pages and conditional display of prompts
• Multi-select range prompts, such as a prompt that allows users to view data for January 1 to February 15 and February 17 to March 2
 Multi-select range prompts are supported for reports that are viewed on the Web portal and the iPad native app.
• Japanese Imperial calendar control
• Prompt page layout
 Prompt page layout is supported for reports that are viewed on the Web portal and the iPad native app.
• Select & Search prompt options
 IBM Cognos hardcodes the includes and case insensitive options which are the least restrictive options.
• Seconds and milliseconds in time prompts
• Prompts for data source connections, such as to provide credentials or choose a database
Chapter 4. Lists

Use lists to show detailed information from your database, such as product lists and customer lists.

A list shows data in rows and columns. Each column shows all the values for a data item in the database or a calculation based on data items in the database.

You can specify whether to automatically add an overall aggregate summary in the list footer and a summary for any groups in the list by selecting **Automatic group and summary behavior for lists** in the IBM Cognos Report Studio options. The default aggregation as specified in your enterprise data source is used.

Tip: The Order Invoices - Donald Chow, Sales Person sample report in the GO Sales (query) package includes a list. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Related concepts:

“Limitations When Using Set Expressions in List Reports” on page 596

In list reports, we recommend that you avoid using set expressions. When in a list, set expressions, such as TopCount, may produce fewer rows than in the corresponding crosstab.

Related tasks:

“Change a List into a Crosstab” on page 69

Change a list into a crosstab to view your data from a different perspective.

Set List Properties

Format lists to give them the appearance you want. You can specify formatting for individual column titles or bodies or for all columns in a list. When you specify formatting for all columns in a list, the formatting is automatically applied to new columns you subsequently add.

You can also quickly format lists by applying table styles.

Formatting for specific columns overrides formatting for entire columns. For example, you specify red as the background color for a specific column body and green as the background color for all columns. When you run the report, the specific column body is red and the remaining columns in the list are green. New columns added to the list will be green.
Procedure

1. To format an individual column, do the following:
 a. Click the column title or column body.
 b. To format the text in the column title or the data in the column body, click the unlock button in the toolbar and then click the title or body.
 c. To format the whole column, click the select ancestor button in the title bar of the Properties pane and click List Column.
 d. In the Properties pane, set the property value.
 For example, to specify a background color, click Background Color and choose the color.

2. To format all columns, do the following:
 a. Click a column in the list.
 b. To format list column bodies, click the select ancestor button in the title bar of the Properties pane and click List Columns Body Style.
 c. To format list column titles, click the select ancestor button in the title bar of the Properties pane and click List Columns Title Style.
 d. To format entire columns, click the select ancestor button in the title bar of the Properties pane and click List Columns.
 e. To format the entire list, click the select ancestor button in the title bar of the Properties pane and click List.

 Tip: You can also click the container selector (three orange dots) of the list to select it.
 f. In the Properties pane, set the property value.
 For example, to specify a background color, click Background Color and choose the color.

Related concepts:

Chapter 13, “Laying Out a Report,” on page 395

When creating a report, a good layout is essential to ensure that the information in the report is presented in a clear and effective manner.

Hide Columns in List Reports

You can hide columns from the output of list reports. If you select to hide a column, the query for that column is still executed.

Procedure

1. Select the column that you want to hide.
2. Click the select ancestor button in the title bar of the Properties pane and click List Column.
3. Set the Render property to No.

Results

When you run your report, the column is hidden in the report output.

Using Repeaters

Use repeaters to repeat items when you run the report. For example, you can use repeaters to create mailing labels, including customer names and addresses.
To build a repeater, drag the Repeater or Repeater Table object from the Toolbox tab to the work area. Use repeaters to repeat items across a single row without a particular structure. For example, you want to create a list that contains Year, and Product line. For each year, you want all product lines to appear in a single row. To do this, create a list with Year as a column and with a repeater as a second column. Then insert Product line into the repeater. Use repeater tables to repeat items in a table structure. Drop the items in the repeater, and modify the properties of the repeater to obtain the results you want. For example, you can specify how many frames appear per page in a repeater table by typing values in the Across and Down properties.

Horizontal pagination is not supported for data containers, such as lists or crosstabs, that are nested in repeater tables.

Convert a List into a Repeater

You can convert a list into a repeater table to take advantage of an existing list.

Procedure

1. Click any part of the list.
2. From the Structure menu, click Convert List to Repeater.

Example - Create Mailing Labels

You are a report author at The Sample Outdoors Company, which sells sporting equipment. You are requested to create mailing labels for all of the company’s retailers.

Procedure

1. Open IBM Cognos Report Studio with the GO Data Warehouse (query) package.
2. In the Welcome dialog box, click Create a new report or template.
3. In the New dialog box, click Repeater Table and click OK.
4. Click the repeater, click the select ancestor button in the Properties pane title bar, and click Repeater Table.

 Tip: You can also click the container selector (three orange dots) of the repeater table to select it.
5. In the Properties pane, set the following properties:
 - Set the Across property to 2.
 - Set the Down property to 5.
 - Double-click the Table Properties property, select the Fixed size check box, and click OK.
6. From the Toolbox tab, drag the Table object to the repeater. The Insert Table dialog box appears.
7. In the Number of columns box, type 1 and click OK.
8. Click the table, ensure that you see Table Cell in the Properties pane title bar, and modify the following properties:
 - Double-click Background Image, click Specified and click Browse.
 - Click logo.jpg and click OK.
 - In the Background Image dialog box, under Position, click the align top right button.
• Under Tiling, click Do not tile and click OK.
• Double-click Size & Overflow, and in the Height box, type 175, and click OK.

9. Click the table, click the select ancestor button in the Properties pane title bar, and click Table.

Tip: You can also click the container selector (three orange dots) of the table to select it.

10. In the Properties pane, specify properties for the table:
 • Double-click Border.
 • In the Style box, click Solid line.
 • In the Width box, click 1 pt.
 • In the Color box, click Black.
 • Under Preview, click the apply all borders button and click OK.
 • Double-click Font, and under the Size box, click 8pt, and click OK.

11. From the Toolbox tab, drag the Block object to the repeater 8 times to create 8 blocks.

12. Drag the Text Item object to the first block:
 • In the Text dialog box, type To: and click OK.
 • Select the text item.
 • Double-click the Font property, set the weight to Bold, and click OK.

13. Click the first block, and, in the Properties pane, specify properties for the first block:
 • Double-click the Padding property, type 35 in the box on the right, click mm as the unit, and click OK.
 • Set the Horizontal Alignment property to Center.

14. From the Source tab, expand Sales and Marketing (query), Sales (query), and Retailer site and drag seven data items to the remaining seven blocks.

15. Ctrl+click the seven blocks to select them, and in the Properties pane, specify properties for the seven blocks:
 • Double-click the Padding property, type 25 in the box on the left, click mm as the unit, and click OK.
 • Set the Horizontal Alignment property to Left.

Results

When you run the report, each page contains 10 mailing labels in two columns.
Chapter 5. Crosstabs

Use crosstab reports, also known as matrix reports, to show the relationships between three or more query items. Crosstab reports show data in rows and columns with information summarized at the intersection points.

For example, the crosstab below shows the gross profit and revenue by product line for each year.

![Profitability by Product Line](image)

Tip: The Same Month Prior Year sample report in the Sales and Marketing (cube) package includes a crosstab. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Related tasks:
“Insert a Microchart into a Crosstab” on page 150
You can use microcharts to improve the visualization of data in crosstabs.

Crosstab Nodes and Crosstab Node Members

When you add data items to crosstabs, you create crosstab nodes and crosstab node members. These objects allow you to easily create crosstabs, by dragging data items to crosstabs.

Crosstabs are dimensional objects that have row edges and column edges. Each edge is composed of a set of crosstab nodes. Each crosstab node contains the following:

- One or more crosstab node members.
- Zero or one nested crosstab node, which contains one or more crosstab node members or nested crosstab nodes.

Each crosstab node member refers to a data item that contains an expression to define the members in the crosstab.

The following crosstab contains four crosstab nodes.
1. Crosstab node 1 contains a single node member for the total. This node refers to the data item `Total(Product line)`.

2. Crosstab node 2 contains a crosstab node member that refers to the data item `Product line`. This member has a nested crosstab node containing a crosstab node member that refers to the data item `Product type`.

3. Crosstab node 3 contains a single node member for the average. This node refers to the data item `Average(Product line)`.

4. Crosstab node 4 contains a crosstab node member that refers to the data item `Order year`. This member has two nested crosstab nodes. The first node contains a crosstab node member that refers to the data item `Order month`. The second node contains a crosstab node member for the total. This node refers to the data item `Total(Order month)`.

Tip: Nodes are also created when you add data items to charts.

Moving Crosstab Nodes

Crosstab nodes can be placed anywhere in the crosstab. For example, in the previous diagram, you can drag `Order month` under `Average(Product line)` to create a row edge.

To move nested items from one edge to another, ensure that you select the crosstab node and not the crosstab node member. For example, in the previous diagram, you want to move `Product line` and `Product type` to the column edge. To do this, click `Product line` and, in the Properties pane, click the select ancestor button and click Crosstab Node. Both `Product line` and `Product type` are selected.

Crosstab Node Creation Option

In the Structure menu, the Create Crosstab Nodes option affects the drag-and-drop behavior in crosstabs. When the option is turned on and you add a data item to a crosstab, the item is created as a crosstab node. If the option is turned off, the item is created as a crosstab node member to an existing crosstab node.

For example, in the previous diagram, if the option is turned on and you drag `Country or Region` from the Source tab to beneath `Product line`, `Country or Region` becomes a new peer node to `Product line`. If the option is turned off, `Country or Region` becomes a new peer node to `Product line` and has Product
type as a nested crosstab node. This happens because instead of adding a new node, you are adding a new member to the existing node that already contains Product line.

Tip: To create discontinuous crosstabs, turn the Create Crosstab Nodes option on. If you want the items on the edges of crosstabs to be related (contain the same nested items), turn the Create Crosstab Nodes option off.

Set Crosstab Properties

Format crosstabs to give them the appearance you want. You can specify formatting for rows, columns, and fact cells in a crosstab or for the entire crosstab. When you specify formatting for all rows, columns, fact cells, or the crosstab, the formatting is automatically applied to any new items you add.

If you apply the same styles, such as font color, to crosstab rows, columns, and crosstab intersections, the styles are applied in the following order:

1. crosstab fact cells
2. fact cells in the outermost rows
3. fact cells in the innermost rows
4. fact cells in the outermost columns
5. fact cells in the innermost columns
6. crosstab intersections

The style applied to the last object in the list overrides styles applied to previous objects. In addition, class styles are applied before styles that you apply manually.

You can also quickly format crosstabs by applying table styles and add white space to a crosstab by inserting crosstab space objects.

Tip: In cases where fact cell formatting applied to rows conflicts with fact cell formatting applied to columns, you can set the Fact Cells Precedence property in the Properties pane to determine whether the row formatting or the column formatting has precedence. To set this property, click anywhere in the crosstab, click the select ancestor button in the title bar of the Properties pane, and click Crosstab. Or you can click the container selector (three orange dots) of the crosstab to select it.

Procedure

1. To format the entire crosstab, do the following:
 a. Click anywhere in the crosstab.
 b. Click the select ancestor button in the title bar of the Properties pane and click Crosstab.
 c. In the Properties pane, set the property value. For example, to specify a background color, click Background Color and choose a color.

2. To format all rows, columns, or fact cells, click a row, column, or fact cell in the crosstab and then do the following:
 a. If you clicked a row, click the select ancestor button in the title bar of the Properties pane and click Crosstab Rows.
 b. If you clicked a column, click the select ancestor button in the title bar of the Properties pane and click Crosstab Columns.
C. If you clicked a fact cell, click the select ancestor button in the title bar of the Properties pane and click Crosstab Fact Cells.

D. In the Properties pane, set the property value. For example, to specify a background color, click Background Color and choose the color.

Tip: You can also right-click the row or column and click Select Fact Cells.

3. To format all crosstab cells for a specific row or column, do the following:
 a. Click the row or column.
 b. Click the select ancestor button in the title bar of the Properties pane and click Crosstab Member Fact Cells.

 Tip: You can also right-click the row or column and click Select Member Fact Cells.
 c. In the Properties pane, set the property value. For example, to specify a background color, click Background Color and choose the color.
 d.

4. To format all row or column titles, do the following:
 a. Click a row or column title.
 b. Click the select ancestor button in the title bar of the Properties pane and click Crosstab Rows or Crosstab Columns.
 c. In the Properties pane, set the property value. For example, to specify a background color, click Background Color and choose the color.
 d.

5. To format an individual row, column, or intersection, do the following:
 a. Click the row, column, or intersection.

 Tip: To format the data in a row, column, or intersection, click the unlock button in the toolbar and then click the text item to format.
 b. In the Properties pane, set the property value. For example, to specify a background color, click Background Color and choose the color.

Related concepts:

Chapter 13, “Laying Out a Report,” on page 395

When creating a report, a good layout is essential to ensure that the information in the report is presented in a clear and effective manner.

Create a Single-Edge Crosstab

Create a single-edge crosstab report to show data in a list-like form. For example, to show the quantity of products sold for each year and for each order method, you could create a crosstab with Order Year and Order Method as rows and Quantity as the measure.

Procedure

1. From the Toolbox tab, insert a crosstab object to the work area.

2. From the Source tab, drag data items to the Rows or Columns drop zone.
 A black bar indicates where you can drop the data item.

3. Repeat step 2 to insert additional data items:
 - If you dragged the data item in step 2 to the Rows drop zone, drag the additional items above or below the first item.
If you dragged the data item in step 2 to the **Columns** drop zone, drag the additional items to the left or right of the first item.

4. To add measures to the crosstab, drag the measures to the **Measures** drop zone.

Results

When you run the report, a crosstab is produced that has only one edge.

Create a Nested Crosstab

Nest data in a crosstab report to compare information by using more than one data item in a column or row. For example, a report shows the number of sales by product line for the past fiscal year. You decide to add a data item to further break down the number of sales by quarter.

When nesting columns in a crosstab report, there are four distinct drop zones where you can insert a new data item. The drop zone you choose will define the relationship between the data item and the column.

The following relationships are created when you insert a data item as a row:

- Inserting a data item to the left or right of a column creates a parent-child relationship between them.

 When you insert a data item to the left of a column, the data item becomes a parent to the column. When you insert a data item to the right of a column, the data item becomes a child of the column.

- Inserting a data item above or below a column creates a union relationship between them.

The following relationships are created when you insert a data item as a column:

- Inserting a data item to the left or right of a column creates a union relationship between them.

- Inserting a data item above or below a column creates a parent-child relationship between them.

When you insert a data item above a column, the data item becomes a parent to the column. When you insert a data item below a column, the data item becomes a child of the column.

For example, you have a crosstab with Product line as rows and Quantity and Revenue as nested rows. For columns, you have Order method with Country or Region as a nested column. In this crosstab,

- Product line is a parent to Quantity and Revenue.
- Quantity and Revenue are peers.
- Order method is a parent to Country or Region.

Procedure

1. From the **Source** tab, click the data item to add.
2. Drag the data item to the report as a nested column or nested row.
 - A black bar indicates where you can drop the data item.
3. Repeat steps 1 to 2 to add other nested columns or rows.
Tip: If you add more than one measure to a crosstab, all measures appear as columns. You cannot have one measure appear as a row and another as a column. To make all measures appear as rows, swap columns and rows.

Creating headers automatically for sets in crosstabs

You can automatically add header labels on columns and rows when working with sets in a crosstab that uses a dimensional data source. The headers help consumers of the report to understand where the data is in the hierarchy.

Header labels are added only when you add new sets to your crosstab. The labels are not added to existing sets. After you enable this option, it remains on until you disable it, and applies to any new crosstabs that you create.

Procedure
1. From the Tools menu, click Options, then click the Report tab.
2. Select Automatically create crosstab headers for sets.
3. Click OK.

Results

Header labels are created in the rows and columns in a crosstab.

Specify the Default Measure

You can specify the default measure for crosstabs and certain chart types. Specify the default measure to be used when the measures cannot be determined by what is on the edges. For example, you create a crosstab with Order method as rows and Product line as columns. You add Quantity and Revenue as nested rows, making Order method their parent. You then add Country or Region under Order method. Since there is no measure specified for Country or Region, you specify the default measure so that data is returned for each country or region.

Note: In crosstabs, IBM Cognos Report Studio automatically sets the default measure when you insert a measure into the crosstab cells.

Procedure
1. To specify the default measure for a crosstab, do the following:
 a. Click any part of the crosstab, and then click the select ancestor button in the title bar of the Properties pane.
 b. Click Crosstab.

 Tip: You can also click the container selector (three orange dots) of the crosstab to select it.
 c. Set the Default Measure property to the default measure.
2. To specify the default measure for a chart, drag the measure to the Default measure box in the chart.

Swap Columns and Rows

Swap columns and rows to look at information from a different perspective. This may help you discover high and low points in the data that you hadn't previously noted.
You can only swap columns and rows in a crosstab or chart. In a chart, you swap
the x- and y-axes.

Procedure

From the toolbar, click the swap rows and columns button.

Results

In the report, the rows become the columns and the columns become the rows.

Indent Data

You can indent crosstab node members to set them apart from surrounding data.

When you insert a hierarchy in rows, all members are automatically indented
according to their level. By default, the first member in a set is not indented. If you
insert a hierarchy in columns, the members are not automatically indented. You
can change the indentation properties of members in the report.

Relative indentation means that the member will shift by one tab when the
member's level increases relative to the previous member in the hierarchy.

Indenting based on the level in the hierarchy means that the member will shift the
number of tabs equivalent to the level in the hierarchy.

You can also indent objects by applying padding.

Procedure

1. Click the crosstab node member to indent.
2. In the *Properties* pane, set the *Level Indentation* property to your indentation
type, length, and direction.

Change a List into a Crosstab

Change a list into a crosstab to view your data from a different perspective.

Procedure

1. Click the columns to appear as columns or nested columns in the crosstab.
2. From the *Structure* menu, click *Pivot List to Crosstab*.

Results

The list becomes a crosstab with the columns you selected in step 2 appearing as
columns and nested columns. The unselected columns, except for measures, appear
as rows and nested rows. If you have one measure, it becomes the cells of the
crosstab. If you have more than one measure, they appear as columns.

Tip: To make all measures appear as rows, swap columns and rows.
Example - Add Aggregate Data to a Crosstab

You are a report author at The Sample Outdoors Company, which sells sporting equipment. You are requested to create a report showing sales by order method to determine which methods are generating the most revenue and the highest sales volume.

Procedure

1. Open IBM Cognos Report Studio with the GO Data Warehouse (query) package.
2. In the Welcome dialog box, click Create a new report or template.
3. In the New dialog box, click Crosstab and click OK.
4. From the Source tab:
 - Expand Sales and Marketing (query) and Sales (query).
 - Expand Product and double-click Product line to add it as rows.
 - Expand Order method and double-click Order method to add it as columns.
 - Click Product type and drag it just to the right of Product line.
 Product type is now nested in Product line.
 - Expand Sales fact and drag Quantity to the Measures drop zone to add it as a measure.
 - Drag Revenue to the right of Quantity to add it as a second measure.

 Tip: Drop Revenue into the crosstab when you see a vertical bar between the Product type column and the Order method column.
5. Click any part of the crosstab, and then click the select ancestor button in the title bar of the Properties pane.
6. Click Crosstab.

 Tip: You can also click the container selector (three orange dots) of the crosstab to select it.
7. In the Properties pane, double-click the Font property.
8. In the Size box, click 8pt and click OK.
9. Click one of the measures.
10. Click the summarize button and click Maximum.

Results

When you run the report, you can see that for camping equipment, Cooking Gear generated the highest sales volume for the Special order method and Tents generated the most revenue. Tents ordered by the Web order method generated the largest revenue.
Example - Create a Discontinuous Crosstab

You are a report author at The Sample Outdoors Company, which sells sporting equipment. You are requested to create a report showing sales for each product line by quarter and by order method. Since the report will have columns with data from different dimensions, you create a discontinuous crosstab report. Discontinuous crosstabs are also known as disconnected or disjoint crosstabs or crosstabs with unrelated columns.

Procedure

1. Open IBM Cognos Report Studio with the GO Data Warehouse (query) package.
2. In the Welcome dialog box, click Create a new report or template.
3. In the New dialog box, click Crosstab and click OK.
4. From the Source tab:
 - Expand Sales and Marketing (query) and Sales (query).
 - Expand Product and drag Product line to the Rows area.
 - Expand Order method and drag Order method to the Columns area.
 - Expand Sales fact and drag Revenue to the Measures area.
5. On the Source tab, expand Retailer site and drag Region to the left of Order method.

 Tip: Drop Region into the crosstab when a flashing vertical bar appears between the Product line column and the Order method column. Otherwise, Region may appear as a nested row instead of a column.
6. Click Region.

<table>
<thead>
<tr>
<th>Email</th>
<th>Quantity</th>
<th>Revenue</th>
<th>Email</th>
<th>Quantity</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear</td>
<td>667,254</td>
<td>12,660,160.31</td>
<td>Gear</td>
<td>171,358</td>
<td>3,375,065.31</td>
</tr>
<tr>
<td>Goods</td>
<td>263,324</td>
<td>6,286,981.44</td>
<td>Goods</td>
<td>54,134</td>
<td>3,275,879.23</td>
</tr>
<tr>
<td>Tents</td>
<td>156,132</td>
<td>22,162,109.89</td>
<td>Tents</td>
<td>41,806</td>
<td>5,322,997.49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Golf Equipment</th>
<th>Quantity</th>
<th>Revenue</th>
<th>Golf Equipment</th>
<th>Quantity</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clubs</td>
<td>194,500</td>
<td>3,446,977.94</td>
<td>Clubs</td>
<td>60,001</td>
<td>1,004,105.81</td>
</tr>
<tr>
<td>Irons</td>
<td>23,707</td>
<td>15,000,210.28</td>
<td>Irons</td>
<td>8,201</td>
<td>5,247,364.13</td>
</tr>
<tr>
<td>Woods</td>
<td>15,269</td>
<td>20,168,010.46</td>
<td>Woods</td>
<td>6,999</td>
<td>6,718,961.77</td>
</tr>
<tr>
<td>Maximum (Product Type)</td>
<td>194,508</td>
<td>20,108,010.69</td>
<td>Maximum (Product Type)</td>
<td>68,031</td>
<td>6,715,961.77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mountaineering Equipment</th>
<th>Quantity</th>
<th>Revenue</th>
<th>Mountaineering Equipment</th>
<th>Quantity</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boots</td>
<td>138,242</td>
<td>2,538,855.77</td>
<td>Boots</td>
<td>172,805</td>
<td>2,300,328.78</td>
</tr>
<tr>
<td>Safety</td>
<td>8,118</td>
<td>2,337,177.54</td>
<td>Safety</td>
<td>10,904</td>
<td>3,006,507.53</td>
</tr>
<tr>
<td>Maxima</td>
<td>120,118</td>
<td>1,283,131.17</td>
<td>Maxima</td>
<td>10,904</td>
<td>3,006,507.53</td>
</tr>
<tr>
<td>Maximum (Product Type)</td>
<td>138,242</td>
<td>2,537,177.54</td>
<td>Maximum (Product Type)</td>
<td>172,805</td>
<td>2,300,328.78</td>
</tr>
</tbody>
</table>
7. In the Properties pane, double-click the Sorting property.
8. From the Data Items pane, drag Region to the Sort List pane.
9. Click the sort order button ▼ to sort quarters in ascending order and click OK.
10. Run the report.

Results

<table>
<thead>
<tr>
<th>Revenue</th>
<th>Americas</th>
<th>Asia Pacific</th>
<th>Central Europe</th>
<th>Northern Europe</th>
<th>Southern Europe</th>
<th>Email</th>
<th>Fax</th>
<th>Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camping Equipment</td>
<td>217,262,915.22</td>
<td>136,677,873.66</td>
<td>153,632,333.39</td>
<td>85,424,300.8</td>
<td>77,413,064.7</td>
<td>47,933,729.16</td>
<td>15,241,303.27</td>
<td>12,693,287.48</td>
</tr>
<tr>
<td>Mountaineering Equipment</td>
<td>123,277,977.98</td>
<td>107,808,775.91</td>
<td>88,051,532.62</td>
<td>46,061,118.04</td>
<td>44,004,319.88</td>
<td>7,416,451.56</td>
<td>11,985,370.08</td>
<td>3,531,658.66</td>
</tr>
<tr>
<td>Outdoor Protection</td>
<td>25,002,647.38</td>
<td>19,716,018.32</td>
<td>42,989,870.77</td>
<td>8,396,431.17</td>
<td>7,140,328.31</td>
<td>5,882,177.87</td>
<td>1,965,684.72</td>
<td>2,098,381.71</td>
</tr>
<tr>
<td>Personal Accessories</td>
<td>132,249,058.98</td>
<td>116,715,219.51</td>
<td>1,540,675,699.15</td>
<td>49,025,913.97</td>
<td>46,207,416.17</td>
<td>42,651,086.54</td>
<td>17,962,985.46</td>
<td>6,419,357.03</td>
</tr>
</tbody>
</table>
Chapter 6. Charts

You can use IBM Cognos Report Studio to create many chart types, such as column, bar, area, and line charts.

Current Default Charts and Legacy Charts

IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

You will find procedures in this chapter for using both the legacy charts and the current default charts. To use the legacy chart type, set the Use legacy chart authoring option (Tools > Options > Advanced tab).

Related concepts:
“Limitations When Converting Legacy Charts” on page 101

When you convert a legacy chart to the current default chart, some chart types or chart properties might not be migrated properly. For example, clustered area charts and 100% stacked line charts are not available in the current default charts. If your exact chart configuration is not available, select the closest matching template.

Related tasks:
“Convert Legacy Charts to Current Default Charts” on page 100

You can convert charts from the legacy charts to the current default charts. When you convert a legacy chart, select the template that most closely matches your legacy chart in order to preserve as many settings as possible.

Creating Charts

Before creating charts, review the available chart types to select the best chart for your needs. Also review the chart objects that make up charts.

Tip: To view the available chart types, from the File menu, click New, and then double-click the chart icon . You can also view the available chart types by adding a Chart object from the Toolbox tab in the Insertable Objects pane to an existing report.

To create charts, drag data items from the Source tab to the measures, data series and categories drop zones.

To help you when creating charts, you can do the following:

• Preview your chart style changes.

As you author your chart and edit the chart properties, IBM Cognos Report Studio provides you with a preview of your chart, using simulated data. This allows you to view your style changes without running your report. You need to run your report to see the chart with your actual data. You can disable the chart preview in the options.

• Resize your charts.

• Move the chart drop zones into flyouts so that they appear only when you pause your pointer over the chart.
After you create a basic chart, modify the various chart objects to customize your chart.

Chart Objects

The following shows the most common chart objects as they appear in your report output in IBM Cognos Viewer.

The following shows the same chart as it appears in the IBM Cognos Report Studio user interface. The Y-axis is selected, and the axis titles are displayed.
Click chart objects to specify properties

The default charts have more properties that allow you to customize more aspects of the chart than in earlier versions. You can click in different areas of the chart to get access to different properties.

For example, by clicking the axis, you can customize the color, style, weight, and transparency of chart axis lines and specify where to display major and minor gridlines on the chart.
Data Series
A data series is a group of related data points that are plotted in a chart. Each series has a unique color or pattern and is described in the legend. You can plot one or more data series in a chart; pie charts have only one data series.

In the example chart, the data series are order years 2004, 2005, 2006, and 2007.

Categories
Categories are groups of related data from the data series that are plotted on the X-axis. Categories of multiple data series are shown together using clustered and stacked data markers.

In the example chart, the categories are the product lines of The Sample Outdoors Company in clustered columns.

Axes
Axes are lines that provide references for measurement or comparison.

The primary axis (or Y-axis) refers to measures of quantitative data, such as sales figures or quantities. Charts can have more than one primary axis.
The category axis (X-axis or ordinal axis) plots qualitative data, such as products or regions. It runs horizontally, except in bar charts.

The z-axis is the vertical axis in a 3-D chart.

Major gridlines extend from the tick marks on an axis and run behind the data markers.

Related concepts:

"Customizing the Axes of a Chart” on page 117

Chart axes are lines that border the chart area and provide a reference for measurements. They act as a vehicle for tick marks and scales and form a frame around the chart. The Y-axis is usually the vertical axis and contains data. The X-axis is usually the horizontal axis and contains categories.

Legend

A legend is a key to the patterns or colors assigned to the data series or categories in a chart.

Columns, Lines, and Areas

Charts use graphical elements such as columns, horizontal bars, points, bubbles, lines, and areas as visual representations of data points.

Chart Types

IBM Cognos Report Studio provides many types of charts for presenting your data in a way that is meaningful for your users.

You can select from a variety of chart types (such as pie, bar, line, gauge, scatter, and so on) and you can select from a variety of chart configurations (such as stacked columns, 3-D pies). Combination charts allow you to use more than one chart type within your chart.

Some chart types are not supported for Microsoft Excel output or appear differently in Excel. For more information, see Appendix E, “Limitations When Producing Reports in Microsoft Excel Format,” on page 613.

Choosing a Chart Type and Configuration

To choose a chart type, consider what you want the chart to illustrate. Different chart types and configurations emphasize different things.

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Chart type or configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show contributions of parts to a whole</td>
<td>Bar Charts</td>
</tr>
<tr>
<td></td>
<td>Pie Charts</td>
</tr>
<tr>
<td></td>
<td>Stacked Charts</td>
</tr>
<tr>
<td></td>
<td>100 Percent Stacked Charts</td>
</tr>
<tr>
<td></td>
<td>100 Percent Stacked Charts</td>
</tr>
<tr>
<td>Purpose</td>
<td>Chart type or configuration</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Show trends in time or contrast values across different categories</td>
<td>Line Charts</td>
</tr>
<tr>
<td></td>
<td>Area Charts</td>
</tr>
<tr>
<td></td>
<td>Bar Charts</td>
</tr>
<tr>
<td></td>
<td>Column Charts</td>
</tr>
<tr>
<td></td>
<td>Always place time in the horizontal axis.</td>
</tr>
<tr>
<td>Compare groups of related information against actual values</td>
<td>Bar Charts</td>
</tr>
<tr>
<td></td>
<td>Radar Charts</td>
</tr>
<tr>
<td>Compare different kinds of quantitative information</td>
<td>Combination Charts</td>
</tr>
<tr>
<td>Rank values in descending or ascending order</td>
<td>Bar Charts</td>
</tr>
<tr>
<td></td>
<td>Column Charts</td>
</tr>
<tr>
<td>Show correlation between two sets of measures</td>
<td>Point Charts</td>
</tr>
<tr>
<td>Show key performance indicators in an executive dashboard report</td>
<td>Gauge Charts</td>
</tr>
<tr>
<td></td>
<td>Bullet Charts</td>
</tr>
</tbody>
</table>

Column Charts

Column charts are useful for comparing discrete data or showing trends over time.

Column charts use vertical data markers to compare individual values.

Note: The Sales Growth Year Over Year sample report “Sales Growth Year Over Year” on page 583 in the GO Data Warehouse (analysis) package includes a column chart. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

The following example shows the revenue for each product line.
Column charts can plot data using standard, stacked, 100 percent stacked, and three-dimensional configurations.

Line Charts

Line charts are useful for showing trends over time and comparing many data series.

Line charts plot data at regular points connected by lines.

Line charts can plot data using standard, stacked, 100 percent stacked, and three-dimensional configurations. It is best not to use stacked line charts because they are difficult to distinguish from unstacked line charts with multiple data series.

The following example shows a rising revenue trend in every territory.
Pie Charts

Pie charts are useful for highlighting proportions.

They use segments of a circle to show the relationship of parts to the whole. To highlight actual values, use another chart type, such as a stacked chart.

Pie charts plot a single data series. If you need to plot multiple data series, use a 100 percent stacked chart.

Reports in PDF or HTML format show a maximum of 16 pies or gauges per chart.

Note: The Returns by Failed Orders in 2006 sample report "Returns by Failed Orders in 2012" on page 581 in the GO Data Warehouse (analysis) package includes a pie chart. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

The following example shows that the largest proportion of revenue comes from the Americas, followed closely by the Asia Pacific region.
Pie charts can plot data using standard, 100 percent, and three-dimensional configurations.

Related tasks:

“Set the Position of the First Slice in a Current Default Pie Chart” on page 147
You can specify the angle in a pie chart where the first pie slice starts. You can also change the direction of the slices so they appear clockwise or counter-clockwise.

“Create a Donut Chart from a Current Default Pie Chart” on page 147
You can add a hole to the middle of your pie chart to create a donut chart. You can then display something in the hole, such as a company logo, a calculation, or the legend.

“Pull Out Pie Slices in a Current Default Pie Chart” on page 148
You can highlight pie slices by pulling them out from the rest of the pie. For example, the following chart shows revenue by product line with slices of less than 1,000,000,000 in revenue pulled out by 25%.

Bar Charts

Bar charts are useful for showing trends over time and plotting many data series.

Bar charts use horizontal data markers to compare individual values.

Note: The Manager Profile sample report “Manager Profile” on page 579 in the GO Data Warehouse (analysis) package includes a bar chart. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

The following example shows revenue for every country or region.
Bar charts can plot data using standard, stacked, and 100 percent stacked configurations.

Area Charts

Area charts are useful for emphasizing the magnitude of change over time. Stacked area charts are also used to show the relationship of parts to the whole.

Area charts are like line charts, but the areas below the lines are filled with colors or patterns.

Do not use standard area charts to show multiple data series because it is possible for areas with lower values to be covered by others. For multiple data series, use a stacked area chart.

The following example is a stacked area chart showing the quantity of products sold over a two-year period in multiple territories.
Area charts can plot data using standard, stacked, 100 percent stacked, and three-dimensional configurations.

Point Charts

Point charts are useful for showing quantitative data in an uncluttered fashion.

Point charts use multiple points to plot data along an ordinal axis. A point chart the same as a line chart without the lines. Only the data points are shown.

The following example shows the revenue for each product line.
Combination Charts

Combination charts plot multiple data series by using combinations of columns, areas, and lines within one chart. They are useful for highlighting relationships between the various data series.

Note: The Quantity Sold vs. Shipped and Inventory sample report in the GO Data Warehouse (analysis) package includes a combination chart. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

The following example shows a combination chart that includes planned revenue as a column chart and actual revenue as an area chart.
Combination charts can plot data using

- standard
- stacked
- 100 percent stacked
- three-dimensional

configurations.

Scatter Charts

Scatter charts use data points to plot two measures anywhere along a scale, not only at regular tick marks.

You can also specify a default measure. For example, you might need to specify a default measure to give context to a calculated measure in the chart. For more information about the default measure, see “Specify the Default Measure” on page 68.

 Scatter charts are useful for exploring correlations between different sets of data.

Note: The Employee Satisfaction 2006 sample report in the GO Data Warehouse (analysis) package includes a scatter chart. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

The following example shows the correlation between production cost and gross profit for each product line.
In a scatter or bubble chart you can specify that data points or bubbles appear in different colors based on an additional measure or fact. The color of the points or bubbles adds an additional aspect to the chart to assist you in finding relationships in large amounts of data.

Bubble Charts

Bubble charts, like scatter charts, use data points and bubbles to plot measures anywhere along a scale. The size of the bubble represents a third measure.

You can also specify a default measure. For example, you might need to specify a default measure to give context to a calculated measure in the chart. For more information about the default measure, see “Specify the Default Measure” on page 68.

Bubble charts are useful for representing financial data. These charts are not supported for Microsoft Excel output.

The following example plots quantity and revenue by product line. The size of the bubble represents the amount of gross profit.
In a scatter or bubble chart you can specify that data points or bubbles appear in different colors based on an additional measure or fact. The color of the points or bubbles adds an additional aspect to the chart to assist you in finding relationships in large amounts of data.

In a bubble chart, you use a measure or fact to determine the size of the bubbles.

Quadrant Charts

Quadrant charts are bubble charts with a background that is divided into four equal sections. Quadrant charts are useful for plotting data that contains three measures using an X-axis, a Y-axis, and a bubble size that represents the value of the third measure.

You can also specify a default measure. For example, you might need to specify a default measure to give context to a calculated measure in the chart. For more information about the default measure, see “Specify the Default Measure” on page 68.

Legacy quadrant charts use baselines to create the quadrants. Current default charts use colored regions.

Use a quadrant chart to present data that can be categorized into quadrants, such as a SWOT (strengths, weaknesses, opportunities, and threats) analysis.
The following example shows the relationship between production cost and gross profit. The size of the bubble represents the quantity of units sold.

Bullet Charts

Bullet charts are a variation of bar charts. They compare a featured measure (the bullet) to a targeted measure (the target). They also relate the compared measures against colored regions in the background that provide additional qualitative measurements, such as good, satisfactory, and poor.

Bullet charts are often used instead of gauge charts in executive dashboards. Bullet charts can be horizontal or vertical.

Note: This chart type applies only to the current default charts, and does not apply to the legacy charts.

A bullet chart contains the following components:

- A bullet measure. The bullet measure, Revenue, appears as the blue bar in the chart below.
- A target measure. The target measure, Planned revenue, appears as the black indicator in the chart below.
- From zero to five colored regions along the numeric scale to provide information about the featured measures' qualitative state. The chart below includes three colored regions: 0-50%, 50-75%, and 75-100%.
- A label that identifies the measures.
• A numeric scale.

Related tasks:
“Customize a Current Default Bullet Chart” on page 150
After you create a bullet chart, you can customize the shape, color, and size of the bullet and target indicators.

Gauge Charts

Gauge charts, also known as dial charts or speedometer charts, use needles to show information as a reading on a dial.

On a gauge chart, the value for each needle is read against the colored data range or chart axis. This chart type is often used in executive dashboard reports to show key business indicators.

Gauge charts are useful for comparing values between a small number of variables either by using multiple needles on the same gauge or by using multiple gauges.

Reports in PDF or HTML format are limited to show a maximum of 16 pies or gauges per chart. These charts are not supported for Microsoft Excel output.

A gauge chart consists of a gauge axis (which contains the data range, color ranges, and intervals markers), needles, and a center pivot point. The following example shows a basic gauge chart with default attributes. It is a degree dial chart with two axes.
Related tasks:

“Customize a Current Default Gauge Chart” on page 143
When you create a gauge chart, you can choose from a variety of chart templates, which offer different shape, axis, and border options.

“Customize a Legacy Gauge Chart” on page 144
You can customize the colors and threshold boundaries of the gauge axis areas and whether they use numbers instead of percentages. You can also change the colors of the gauge face and outline and hide gauge labels. By default, the legacy gauge chart uses a band divided into thirds that runs from green to red.

Pareto Charts

Pareto charts help you to improve processes by identifying the primary causes of an event. They rank categories from the most frequent to the least frequent. These charts are frequently used for quality control data, so that you can identify and reduce the primary cause of problems.

Pareto charts include a cumulation line, which shows the percentage of the accumulated total of all the columns or bars.

You can create before and after comparisons of Pareto charts to show the impact of corrective actions. These charts are not supported for Microsoft Excel output.

The following example shows that the most frequent reason for product returns is unsatisfactory product.
You can also create Pareto charts using horizontal bars.

Related tasks:

1. “Define the Cumulation Line in a Current Default Pareto Chart” on page 149
 The cumulation line on a Pareto chart displays the percentage of the accumulated total of all the columns or bars. For example, if your chart displays revenue by product line by year, the cumulation line at the second year’s column would be the total revenue of the first and second years.

2. “Define the Cumulation Line in a Legacy Pareto Chart” on page 149
 The cumulation line on a Pareto chart displays the percentage of the accumulated total of all the columns or bars. For example, if your chart displays revenue by product line by year, the cumulation line at the second year’s column would be the total revenue of the first and second years.

Progressive Column Charts

Progressive column charts, also known as waterfall charts, are like stacked charts with each segment of a single stack displaced vertically from the next segment.

Progressive column charts are useful for emphasizing the contribution of the individual segments to the whole.

These charts are not supported for Microsoft Excel output.

The following example analyzes the contribution of each product line to revenue.
Progressive column charts can plot data using standard and three-dimensional configurations. You can also create progressive charts using horizontal bars.

Microcharts

Microcharts are smaller versions of column charts, bar charts, and line charts that you can use in crosstabs and dashboards. Microcharts include column microcharts and bar microcharts, which are available in stacked and 100 percent stacked configurations, and win-loss charts and modified line charts that contain the following:

- A closing value marker.
- Opening, closing, high, and low value markers.
- A reference line.

Note: If you specify custom labels for a microchart, the custom labels appear in the tooltips, not on the chart itself. For more information about custom labels, see “Specify Custom Label Text” on page 117.
Win-loss charts are microcharts in which the value of each column is either 1 or -1, often denoting a win or loss.

Win-loss charts use two measures (the default and the win-loss measure) and no series. The win-loss measure is the measure or calculation that you define. You can also specify a default measure. For example, you might need to specify a default measure to give context to a calculated measure in the chart. For more information about the default measure, see “Specify the Default Measure” on page 68.

The following example shows the quarters that have a margin of less than 10,000 in red.

Marimekko Charts

Marimekko charts are 100 percent stacked charts in which the width of a column is proportional to the total of the column’s values. Individual segment height is a percentage of the respective column total value.

The following example shows the contribution of revenues for product lines in different regions.
Radar Charts

Radar charts integrate multiple axes into a single radial figure. For each figure, data is plotted along a separate axis that starts at the center of the chart.

The following example shows the revenue from multiple retailer types in multiple territories.

Radar charts can plot data using standard and stacked configurations.

Polar Charts

Polar charts are useful for showing scientific data.

They are circular charts that use values and angles to show information as polar coordinates.

You can specify a default measure. For example, you might need to specify a default measure to give context to a calculated measure in the chart. For more information about the default measure, see “Specify the Default Measure” on page 68.

The following example shows the revenue and quantity for each product line. The distance along the radial axis represents quantity, and the angle around the polar axis represents revenue.
Range Indicator Charts

Range indicator, or metrics range, charts are useful for showing a target range and a tolerance range.

A range indicator chart adds a target and range marker to a column, line, or area chart.

The following example shows actual revenue versus planned revenue. The markers indicate the planned revenue, and the range and tolerance lines are defined by the chart author.
You can also insert IBM Cognos Metric Studio diagrams in your report to show the relationship between metrics. For more information, see “Add a Static Metric Studio Diagram to a Report” on page 157 and “Add a Data-driven Metric Studio Diagram to a Report” on page 157.

Chart Configurations

Chart configurations specify the grouping type of the columns, bars, lines, and areas in a chart. Some examples are standard, stacked, and 100 percent stacked charts.

Standard Charts

Standard or absolute charts are useful for comparing specific values and for representing discrete data, such as data for different regions or individual employees. For example, a standard column chart that plots regional sales emphasizes the actual value that each region achieves in sales.

Standard charts plot the actual value of each data series from a common axis.

When you create charts using multiple data series, you can distinguish each series by the color or pattern of its data marker. Related data series are shown together in clusters for easy comparison.

In standard area and radar charts that have multiple data series, the colored areas that represent lower values might be covered by the larger colored areas that represent higher values. Use the stacked configuration for area and radar charts with multiple data series.
The following example shows the revenue values for each product line within each territory.

Stacked Charts

Stacked charts are useful for comparing proportional contributions within a category. They plot the relative value that each data series contributes to the total. For example, a stacked column chart that plots product line sales will emphasize the proportion that each product line contributes to the total in each territory.

You can distinguish each data series by the color or pattern of its section in the stack. The top of each stack represents the accumulated totals for each category.

Do not use the stacked configuration in line charts that have multiple data series because it is difficult to distinguish between unstacked and stacked configurations, and your chart consumers might misunderstand your data.

The following example shows that camping equipment contributed a large proportion of the actual revenue in most sales territories.
100 Percent Stacked Charts

100 percent stacked charts are useful for comparing proportional contributions across all categories. They plot the relative contribution of each data series to the total as a percentage. For example, a 100 percent stacked column chart that plots product line sales emphasizes the percentage within each region without referring to actual values.

You can distinguish each data series by the color or pattern of its section in the stack. Each stack represents 100 percent.

100 percent stacked charts highlight proportions. When actual values are important, use another chart configuration.

The following example shows the percentage of sales for each product line in each region.
Three-dimensional Charts

Three-dimensional charts provide a visually effective display that is suitable for presentations.

Three-dimensional column, bar, line, and area charts plot data by using three axes.

Three-dimensional pie charts have a three-dimensional visual effect.

Do not use three-dimensional charts when you need to show exact values, such as for control or monitoring purposes. The distortion in three-dimensional charts can make them difficult to read accurately. For example, the following chart shows actual revenue for each product line in each territory, but some data labels are omitted because there is not enough room to display them all.
Convert Charts From One Type to Another

You can convert a chart from one type (for example, a bar chart) to another type (for example, a line chart).

When you convert an existing chart to a new chart type, IBM Cognos Report Studio keeps the properties from the existing chart if those properties exist in the new chart type. For example, if you convert a pie chart to a bar chart, Report Studio maps your chart palette to the new chart, but does not map the exploding slices, because the exploding slices property does not exist in a bar chart.

Note: Report Studio converts legacy charts to the current default chart types automatically if you change the chart type unless you select the Use legacy chart authoring option. You can convert legacy charts to current default charts, but you cannot convert current default charts back to legacy charts.

Procedure
1. Right-click a chart and click Convert Chart.
2. Select a new chart type, and click OK.

 If some chart properties cannot be converted, the Chart Property Changes dialog box appears notifying you of the properties that cannot be converted.

Convert Legacy Charts to Current Default Charts

You can convert charts from the legacy charts to the current default charts. When you convert a legacy chart, select the template that most closely matches your legacy chart in order to preserve as many settings as possible.

Note: You can convert legacy charts to current default charts, but you cannot convert current default charts back to legacy charts.
Procedure
1. From the Tools menu, click Options.
2. From the Advanced tab, clear the Use legacy chart authoring check box.
3. Right-click the legacy chart and click Convert Chart.
4. Select a new chart type, and click OK.

If some chart properties cannot be converted, the Chart Property Changes dialog box appears notifying you of the properties that cannot be converted.

Related concepts:
“Current Default Charts and Legacy Charts” on page 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Limitations When Converting Legacy Charts
When you convert a legacy chart to the current default chart, some chart types or chart properties might not be migrated properly. For example, clustered area charts and 100% stacked line charts are not available in the current default charts. If your exact chart configuration is not available, select the closest matching template.

The following legacy chart properties are not migrated to the current default charts:
- Conditional Palette
- Style Variable
- Display Frequency and First Label Index on the category axis
- Visual Angle
- Rotate Values
- Value Location
- Conditional Style, Style Variable, and Drill-Through Definitions on pie labels and gauge labels
- Connecting Lines on combination charts
- line styles; only four line styles are supported in the current default charts

The following table outlines some behavior differences between legacy charts and the current default charts.

<table>
<thead>
<tr>
<th>Legacy Charts</th>
<th>Current Default Charts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combination charts are always ordered from back to front - area, bar, and line.</td>
<td>Combination charts support any order.</td>
</tr>
<tr>
<td>In bar charts, multiple bar definitions for the Y1-axis are placed side-by-side.</td>
<td>In bar charts, multiple bars are placed on top of one another and you can control the width of the bars.</td>
</tr>
<tr>
<td>In combination charts, the color palette is continued over multiple bars, lines, and areas.</td>
<td>In combination charts, color palettes are restarted for each bar, line, and area.</td>
</tr>
<tr>
<td>The legend order respects the order in which bars, lines, and areas are specified. For example, bars can appear before areas in the legend.</td>
<td>The legend order is the same as the order specified in the chart.</td>
</tr>
</tbody>
</table>
The following chart types continue to use the legacy chart technology and therefore cannot be upgraded to the current default chart technology. If you want to convert these chart types to the current default charts, upgrade them to a different chart type, such as a column or line chart.

- Win loss
- Radar
- Polar
- 3-D Bar, 3-D Line, 3-D Area, and 3-D Combination
- 3-D Scatter
- Metrics range
- Marimekko

Related concepts:
“Current Default Charts and Legacy Charts” on page 73

IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Customizing Chart Properties

After you create a chart, you can customize it by changing its properties.

You select the chart object in IBM Cognos Report Studio to view its properties. Some properties are dependent on the existence of other properties.

If you are familiar with using conditional variables, you can customize the chart to change its appearance or provide information in response to expressions or conditions.

As you edit the chart properties, Report Studio provides you with a preview of your chart, using simulated data. This allows you to view your style changes without running the report. You can disable the chart preview in the options.

The following table shows some of the properties you can change in charts. These properties are available when you select the chart object unless specified otherwise in the **Action to perform in the Properties pane** column.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Action to perform in the Properties pane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hide or show the title, subtitle, or footer</td>
<td>Select the chart. Under Chart Titles, set the Title, Subtitle, or Footer property.</td>
</tr>
</tbody>
</table>
| Hide or show the legend | Select the chart. Under **Chart Annotations**, set the **Legend** property.
For more information, see “Customize the Legend in a Current Default Chart” on page 122. |
| Hide or show baselines | Select the chart. Under **Chart Annotations**, set the **Baselines** property.
For more information, see “Add a Baseline to a Current Default Chart” on page 128. |
<table>
<thead>
<tr>
<th>Goal</th>
<th>Action to perform in the Properties pane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hide or show trendlines or regression lines</td>
<td>Select the chart. Under Chart Annotations, set the Trendlines or Regression Line property. For more information, see “Display Trendlines in Current Default Charts” on page 132 or “Display Regression Lines in Legacy Scatter or Bubble Charts” on page 134.</td>
</tr>
<tr>
<td>Hide or show markers</td>
<td>Select the chart. Under Chart Annotations, set the Markers property. For more information, see “Add a Marker to a Current Default Chart” on page 130.</td>
</tr>
<tr>
<td>Hide or show notes</td>
<td>Select the chart. Under Chart Annotations, set the Notes property. For more information, see “Add a Note to a Current Default Chart” on page 125.</td>
</tr>
<tr>
<td>Hide or show the axes</td>
<td>Select the chart. Under Axes, set the Y1 Axis, Y2 Axis, or Category Axis property. For more information, see “Customize the Axes of a Current Default Chart” on page 118.</td>
</tr>
<tr>
<td>Hide or show the axis title or axis line</td>
<td>Select the axis. Under General, set the Axis Line or Axis Title property. For more information, see “Customize the Axes of a Current Default Chart” on page 118.</td>
</tr>
<tr>
<td>Change an axis title</td>
<td>Select the axis title. Under General, set the Default Title property to No, and then double-click the axis title and type a new title. Tip: You can use the Properties pane to change the axis title properties, such as font, positioning, color, and so on. For more information, see “Customize the Axes of a Current Default Chart” on page 118.</td>
</tr>
<tr>
<td>Change axis properties, such as range, scale interval, and so on</td>
<td>Select the numeric axis. Under General, set the Minimum Value, Maximum Value, Scale Interval, or Scale property. For more information, see “Change the Axis Scale of a Current Default Chart” on page 118.</td>
</tr>
<tr>
<td>Goal</td>
<td>Action to perform in the Properties pane</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Hide or show the tooltips</td>
<td>Select the chart. Under Chart Labels, set the Tooltips property. When you pause your pointer over a data marker in the report output, the corresponding absolute or cumulative value appears in a tooltip. Tooltips are not supported in PDF output.</td>
</tr>
<tr>
<td>Change the data format</td>
<td>Select the numeric axis. Under Data, set the Data Format property.</td>
</tr>
<tr>
<td>Change the white space around the chart</td>
<td>Select the chart. Under Box, set the Padding or Margin property. For more information, see "Apply Padding to an Object" on page 408 and "Set Margins for an Object" on page 408.</td>
</tr>
<tr>
<td>Change the color or pattern in the palette for columns, lines, and areas</td>
<td>Select the chart object. Under Color & Background, set the Palette or Conditional Palette property. For more information, see "Customizing the Color Palette of a Chart" on page 106 and "Create a Simple Conditional Palette for a Current Default Chart" on page 109.</td>
</tr>
<tr>
<td>Change the chart orientation</td>
<td>Select the chart. In the Properties pane, under Chart Orientation, select Vertical or Horizontal.</td>
</tr>
<tr>
<td>Change the default color or font for all chart objects</td>
<td>Select the chart. Under Color & Background, set the Background Color, Foreground Color, or Fill Effects property. For more information, see "Change a Chart Background in a Legacy Chart" on page 113. Under Font & Text, set the Font or Relative Alignment property. Tip: The 2005 Quarterly Sales Forecast sample report in the GO Sales (analysis) package includes text alignment. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.</td>
</tr>
<tr>
<td>Override the default font or color for axes and chart values</td>
<td>Click the unlock button in the toolbar to unlock the chart object, select the chart body by clicking between the axes, and set the Font, Background Color, Foreground Color, or Fill Effects property.</td>
</tr>
<tr>
<td>Goal</td>
<td>Action to perform in the Properties pane</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Change the three-dimensional appearance of a chart</td>
<td>Select the chart. Under General, set the Depth or Visual Angle property. For example, for a pie chart, a Depth value of 0 (zero) leaves the pie flat, or two-dimensional. A value of 100 raises the pie almost to a round ball shape. Tip: You can select a value from the Depth list or type a value that is not listed.</td>
</tr>
<tr>
<td>Insert a background image or watermark in the chart body.</td>
<td>Click the lock button in the toolbar to unlock the chart object, select the chart body by clicking between the axes. Under Color & Background, set the Background Image property. For more information, see “Change a Chart Background in a Legacy Chart” on page 113.</td>
</tr>
<tr>
<td>Go to another report</td>
<td>Select the chart. Under Data, set the Drill-Through Definitions property. For more information, see Chapter 19, “Using Drill-through Access,” on page 479.</td>
</tr>
<tr>
<td>Specify which labels and values to use when generating the text shown on the chart</td>
<td>Select the chart. Under Chart Labels, set the Values property. Note: When you show all the labels and values on some chart types, such as scatter charts, bubble charts, and polar charts, the text shown might be too long.</td>
</tr>
</tbody>
</table>

Resize a Current Default Chart

You can change the size of a current default chart by dragging the resize handle in the lower right corner of the chart.

Procedure

1. Select the chart object.
2. Click the resize handle in the lower right corner of the chart. Use Shift+drag to maintain the aspect ratio of the chart.
3. To see the actual size of the chart as it will appear in the report output, collapse the chart objects with the minus (-) button in the upper left corner of the chart.

Results

The new chart size appears in the **Size & Overflow** property. You can also edit the chart size with this property.
Resize a Legacy Chart

You can resize a legacy chart by defining the height and width in the **Size & Overflow** property.

The options available with this property are detailed in **“Specify the Height and Width of an Object” on page 415**.

Procedure

1. Select the chart object.
2. In the Properties pane, double-click the **Size & Overflow** property and specify the height and width.

Related concepts:

“Current Default Charts and Legacy Charts” on page 73

IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Customizing the Color Palette of a Chart

You can use the chart palette to control the colors or patterns used in the columns, lines, data markers or areas in a chart. For example, if "Telephone" is the first in a data series of order methods, and you want it to appear in blue, use the palette to make the first item in the series blue.

You can customize the color palette for area, bar, bubble, gauge, Pareto, pie, and scatter charts.

You can also apply background effects to chart objects or change the colors of specific chart elements.

Related tasks:

“Add Background Effects to a Chart Object in a Legacy Chart” on page 114

You can change the look of certain charts and chart objects by applying visual effects such as drop shadows, borders, fills, texture effects, and bevel effects.

Customize the Color Palette of a Current Default Chart

You can use the chart palette to control the colors or patterns used in the columns, lines, data markers or areas in a chart.

Progressive charts and legacy charts have different steps.

If specified, the default color is used for outputs that do not support the palette definition. For example, if the palette is defined to use a radial rectangle gradient and you run the report as PDF output, the default color is used because radial rectangle gradients are not supported in PDF output.

Procedure

1. Select the chart object. For combination charts, select the bar, line, or area objects.
2. To choose a preset color palette, click the chart palette presets button on the style toolbar, and then click a palette.
3. To change the existing color palette:
• In the Properties pane, under Color & Background, double-click the Palette property.

• On the Entries tab, click the palette entry that you want to change.

• Under Fill, select fill type, color, transparency, and other fill settings. The options in the Fill type list depend on the chart type you are using.

 Linear Gradient displays a gradient that changes color horizontally. You can specify the position of each color in the gradient and add or remove colors from the gradient.

 Radial Line Gradient displays a gradient that changes color outwards from a central point, or focus. You can specify the position of each color in the gradient and the size and position of the focus. You can also add or remove colors from the gradient.

 Radial Rectangle Gradient displays a gradient that changes color outwards from a rectangle. You can specify the position of each color in the gradient and the size of the rectangle. You can also add or remove colors from the gradient.

 Pattern displays a colored pattern that you choose from a preset list. You can specify the foreground and background colors.

 Color displays a solid color. You can specify the transparency.

 Image displays an image. You can specify the image to use.

• To change the color of this palette definition, click the color in the Colors list, click Color, specify the color properties, and click OK.

4. Under Style, depending on the chart type you are customizing and the fill type you chose in step 2, you can change the marker shape, line style, default color, and line weight.

5. To add a new palette entry, click the new button and specify the new palette settings.

6. To change the order in which the colors, gradients, or patterns appear in the chart, use the arrow buttons under the Palette box to change their position.

7. To copy and paste a palette, open the palette dialog box and press Ctrl+C to copy the palette to the clipboard. Close the palette dialog box. Select another chart, open the palette dialog box, and press Ctrl+V to paste the palette from the clipboard.

8. To customize the data markers, on the Properties tab, depending on the chart type you are customizing and the fill type you chose in step 2, you can specify whether data markers are shown and change their color and size.

Related concepts:

“Current Default Charts and Legacy Charts” on page 73

IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Customize the Color Palette of a Current Default Progressive Chart

You can use the chart palette to control the colors or patterns used in the columns, lines, data markers or areas in a chart.

Legacy charts and other types of current default charts have different steps.

If specified, the default color is used for outputs that do not support the palette definition. For example, if the palette is defined to use a radial rectangle gradient and you run the report as PDF output, the default color is used because radial rectangle gradients are not supported in PDF output.
Procedure
1. Select the progressive chart object.
2. In the Properties pane, double-click the Progressive Palette property.
 You can specify the following:
 - **Positive value fill** defines the appearance of the positive bars or columns on the chart.
 - **Negative value fill** defines the appearance of the negative bars or columns on the chart.
 - **First value fill** defines the appearance of the first bar or column on the chart.
 - **Total value fill** defines the appearance of the total bar or column on the chart, if a total bar or column is present.
3. To change the appearance of a fill:
 - Click the colored box beside the fill name.
 - Click a fill type from the Fill type list.
 - **Linear Gradient** displays a gradient that changes color horizontally. You can specify the position of each color in the gradient and add or remove colors from the gradient.
 - **Radial Line Gradient** displays a gradient that changes color outwards from a central point, or focus. You can specify the position of each color in the gradient and the size and position of the focus. You can also add or remove colors from the gradient.
 - **Radial Rectangle Gradient** displays a gradient that changes color outwards from a rectangle. You can specify the position of each color in the gradient and the size of the rectangle. You can also add or remove colors from the gradient.
 - **Pattern** displays a colored pattern that you choose from a preset list. You can specify the foreground and background colors.
 - **Color** displays a solid color. You can specify the transparency.
 - **Image** displays an image. You can specify the image to use.
 - To change the color of this fill, click the color in the Colors list, click Color, specify the color properties, and click OK.
4. To change the text of the label that appears next to a bar, double-click the text box beside the fill name and specify the text.

Related concepts:
“Current Default Charts and Legacy Charts” on page 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Customize the Color Palette of a Legacy Chart
You can use the chart palette to control the colors or patterns used in the columns, lines, data markers or areas in a chart.

Current default charts have different steps.

Procedure
1. Select the chart object.
2. In the Color & Background section of the Properties pane, double-click the Palette property.
3. In the Palette dialog box, click the new palette entry button to define a new palette entry:
To apply color, click **Color**, specify the color properties, and click **OK**.

To apply a gradient, click **Gradient**, specify the **Direction**, **From color**, and **To color** properties, and click **OK**.

To apply a pattern, click **Pattern**, specify the **Pattern**, **Foreground color**, and **Background color** properties, and click **OK**.

Tip: You can also select a predefined palette from the **Palettes** box.

4. To change the order in which the colors, gradients, or patterns appear in the chart, use the arrow buttons under the **Palette** box to change their position.

5. To copy and paste a palette, open the palette dialog box and press Ctrl+C to copy the palette to the clipboard. Close the palette dialog box. Select another chart, open the palette dialog box, and press Ctrl+V to paste the palette from the clipboard.

6. Repeat step 3 for each chart series.

Related concepts:

“Current Default Charts and Legacy Charts” on page 73

IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Creating a Conditional Color Palette in a Chart

You can create a conditional palette to color data items in your chart in different ways depending on a condition. For example, in a column chart that shows revenue per month, you want to make the columns for the months that have a revenue greater than $1000000 green.

You can also use conditional styles to highlight exceptional data and use conditions to control the layout of your report.

Related concepts:

Chapter 15, “Using Conditions,” on page 431

You can define conditions to control what users see when they run a report. Conditions can apply to specific items in a report. For example, you can define a conditional style to highlight exceptional data, such as product revenue that exceeds your target.

Create a Simple Conditional Palette for a Current Default Chart

You can create a simple conditional palette based on a string data item or a numeric data item. For example, if you want to create a condition to display only Revenues over one million dollars, you can create a numeric condition; whereas, if you want to create a condition to display only product codes with the letter A in them, you can create a string condition.

Procedure

1. Select the chart series to which you want to apply the conditional palette.
2. In the **Properties** pane, under **Color & Background**, double-click the **Conditional Palette** property.
3. Click the new button and click **New Condition**.
4. If you want to create a conditional palette based on a string, do the following:
 a. Select the string data item to determine the condition.
 b. In the **Type of conditional style** list, click **String**, and click **OK**.
 c. Click the new button and select how to define the condition:
 * To select more than one individual value, click **Select Multiple Values** and click the values.
• To type specific values, click **Enter Values** and type the values.
• To specify your own criteria, such as values that begin with the letter A, click **Enter String Criteria** and specify the condition.

5. If you want to create a conditional palette based on a numeric range, date/time range, interval range, date range, or time range, do the following:
 a. Select a numeric data item to determine the condition.
 b. In the **Type of conditional style** list, click the type of condition you want to create, and click **OK**.
 c. Click the new button and type a value to define a threshold.
 The value appears in the **Range** column, and two ranges are created.
 d. For each range, under **Style**, click the edit button to define the palette entry fill type, colors, and angle, and then click **OK**.
 e. Repeat the steps above to add other conditions.

 Tip: Under **Style**, pause the pointer over each range to see the condition produced for that range.

6. If you want to use the default palette for the lowest range instead of specifying a conditional palette select the **Use default palette for lowest range** check box.

 g. To move a value above or below a threshold, click the arrow button next to the value.
 For example, you insert a threshold value of five million. By default, the ranges are less than or equal to five million and greater than five million. Moving the five million value above the threshold changes the ranges to less than five million and greater than or equal to five million.

7. Specify the order in which to evaluate the conditions by clicking a condition and then clicking the move up or move down arrow.
 Conditions are evaluated from top to bottom, and the first condition that is met is applied.
Create an Advanced Conditional Palette for Current Default Charts

Advanced conditions allow you to use a calculations or expression to evaluate the condition. If multiple advanced conditions are met, only the first conditional style is applied.

Procedure

1. Select the chart series to which you want to apply the conditional palette.
2. In the Properties pane, under Color & Background, double-click the Conditional Palette property.
3. Click the add button and click Advanced Condition.
4. Click the new advanced condition button and specify the expression that defines the condition.
 The new advanced condition appears in the Conditional Palette - Advanced dialog box.
5. Under Palette Entry, beside the new advanced condition, click the edit button.
6. Define the palette entry fill type, colors, and angle, and click OK.
7. Specify the order in which to evaluate the conditions by clicking a condition and then clicking the move up or move down arrow.
 Conditions are evaluated from top to bottom, and the first condition that is met is applied.

Create a Conditional Color Palette for a Legacy Chart

You can create a color palette that appears differently depending on a yes or no answer, an expression or calculation, or the report language.

Procedure

1. Click the chart object.
2. In the Properties pane, under Color & Background, double-click the Conditional Palette property.
3. If you want to create a variable that has only two possible values, Yes and No, do the following:
 a. Under Variable, click New boolean variable.
 b. In the New Variable dialog box, type a name for the variable.
 c. In the Expression Definition box, define the condition and click OK.
 For example, the following expression returns the value Yes if revenue is less than one million and the value No if revenue is greater than or equal to one million:
 \[
 \text{[Revenue]} < 1000000
 \]
For information about creating expressions, see "Using Relational Calculations" on page 313 or "Using Dimensional Calculations" on page 365 and "Calculation components" on page 619.

d. In the Value box, select whether the expression evaluates to Yes or No.

e. Under Effects, specify the color palette to use for the condition.

4. If you want to create a variable whose values are string-based, do the following:

 a. Under Variable, select New string variable.

 b. In the Expression Definition box, define the condition and click OK.

 For example, the following expression returns the value high if revenue is greater than one million and the value low if revenue is less than or equal to one million:

 if ([Revenue]>1000000) then ('high') else ('low')

 For information about creating expressions, see "Using Relational Calculations" on page 313 or "Using Dimensional Calculations" on page 365 and "Calculation components" on page 619.

 c. Click the add button in the Values pane.

 d. For each value that the variable can assume, type the name of the value that corresponds with the possible outcomes defined in the expression.

 For example, in the previous expression, you must create two values for the variable, high and low.

 Tip: You can create a group by clicking two or more values and then clicking the group values button . For example, you can create a group that includes the available French languages.

5. If you want to create a variable whose values are different languages, do the following:

 b. In the Languages dialog box, select the languages to support.

6. Click OK to close the expression editor and leave the Conditional Palette dialog box open.

7. Under Effect, click Pattern.

8. Under Pattern, select a pattern and click OK.

9. In the Box section of the Properties pane, set the Borders property to Show.

Related concepts:
"Current Default Charts and Legacy Charts" on page 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Change a Chart Background in a Current Default Chart

You can use a gradient, pattern, color, or image to customize the chart background.

Procedure

1. Click the chart object

2. Click the unlock button , select the chart body by clicking between the axes, and, in the Properties pane, under Color & Background, double-click the Plot Area Fill property.

3. Click a fill type from the Fill type list.
• **Linear Gradient** displays a gradient that changes color horizontally. You can specify the position of each color in the gradient and add or remove colors from the gradient.

• **Radial Line Gradient** displays a gradient that changes color outwards from a central point, or focus. You can specify the position of each color in the gradient and the size and position of the focus. You can also add or remove colors from the gradient.

• **Radial Rectangle Gradient** displays a gradient that changes color outwards from a rectangle. You can specify the position of each color in the gradient and the size of the rectangle. You can also add or remove colors from the gradient.

• **Pattern** displays a colored pattern that you choose from a preset list. You can specify the foreground and background colors.

• **Color** displays a solid color. You can specify the transparency.

• **Image** displays an image. You can specify the image to use.

Related concepts:

“Current Default Charts and Legacy Charts” on page 73

IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Change a Chart Background in a Legacy Chart

You can use a solid color, a pattern, or a gradient fill effect to customize the chart background.

You can also use an image as a background for a chart.

Procedure

1. Click the chart object.

2. Click the unlock button[^1] or select the chart body by clicking between the axes, and, in the Properties pane, under **Color & Background**, double-click the **Fill Effects** property.

3. In the Effect box, choose a color, a gradient fill effect, or a pattern:
 - To apply a color, click **Color** and specify the color properties.
 - To apply a gradient fill effect, click **Gradient** and then specify the **Direction**, **From color**, and **To color** properties.
 - To apply a pattern effect, click **Pattern** and specify the **Pattern**, **Foreground Color**, and **Background Color** properties.
 The foreground color is the color of the selected pattern. The background color is the color of the area behind the pattern.

4. To remove a background fill effect, click **None**.
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Add Background Effects to a Chart Object in a Legacy Chart

You can change the look of certain charts and chart objects by applying visual effects such as drop shadows, borders, fills, texture effects, and bevel effects.

Procedure

1. Select the chart object.
2. To apply a preset background fill effect, from the toolbar, click the background effects presets button.
3. To add a custom fill effect and border do the following:
 a. In the Properties pane, under Color & Background, double-click the Background Effects property.
 b. Click Border and specify settings for border style, width, color, corner radius for rounded rectangles, and transparency.
 If the object also includes a fill with a transparency setting, select the Allow transparent bleed check box to apply the same transparency to the border.
 c. Click Fill and specify the settings.
 The fill effect can either be a solid color, a gradient, or a pattern.
4. To add a texture effect, in the Properties pane, under Color & Background, select an option under Material Effects.
5. To add a drop shadow, do the following:
 a. In the Properties pane, under Color & Background, double-click the Drop Shadow property.
 b. Select the Drop shadow check box.
 c. From the Shadow color list, click a color.
 d. Under Blur, click an intensity to set the drop shadow's blur.
 e. Under Offset, enter a value and a unit to define the width and height of the drop shadow.
 f. Under Transparency, type a percentage to determine the transparency of the shadow.
6. To add a bevel, in the Properties pane, under Color & Background, double-click the Bevel property and click a bevel effect.
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

You can use the chart palette to control the colors or patterns used in the columns, lines, data markers or areas in a chart. For example, if "Telephone" is the first in a data series of order methods, and you want it to appear in blue, use the palette to make the first item in the series blue.

You can add background and foreground color to objects in the report. The foreground color applies to the text within objects.

Add Colored Regions in a Current Default Chart

You can define colored regions in the body of a chart. For example, you can divide the background of a scatter chart into quadrants and color each quadrant.

You can add colored regions to bubble, bullet, combination, Pareto, progressive column, and scatter charts.

In bullet charts, colored regions are automatically added.

You can use the following criteria to position the colored regions.

<table>
<thead>
<tr>
<th>Option</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent on Axis (%)</td>
<td>Uses a percentage of the full range of the axis.</td>
</tr>
<tr>
<td></td>
<td>For example, if the axis range is -500 to 1100, a Percent on Axis value of 25% puts the baseline at -100 (25% of the range, 1600).</td>
</tr>
<tr>
<td>Numeric Value</td>
<td>Uses a static numeric value.</td>
</tr>
<tr>
<td>Mean</td>
<td>Uses the statistical mean plus or minus a number of standard deviations based on all charted data values on the specified axis.</td>
</tr>
<tr>
<td>Percentile (%)</td>
<td>Uses a specified percentile.</td>
</tr>
<tr>
<td>Statistical Maximum</td>
<td>Uses the following expression:</td>
</tr>
<tr>
<td></td>
<td>25th percentile value - 1.5 * (75th percentile value - 25th percentile value)</td>
</tr>
<tr>
<td></td>
<td>For example, if 2.5 is the 25th percentile and 7.5 is the 75th percentile, the statistical minimum is -5 [2.5 -1.5(5) = -5].</td>
</tr>
</tbody>
</table>
Option | Position
--- | ---
Statistical Minimum | Uses the following expression:
\[75th \text{ percentile value} + 1.5 \times (75th \text{ percentile value} - 25th \text{ percentile value})\]
For example, if 2.5 is the 25th percentile and 7.5 is the 75th percentile, the statistical maximum is 15 \([7.5 + 1.5(5) = 15]\).

Query Calculation | Uses a query calculation from the same query or from a different query. For more information, see “Using Relational Calculations” on page 313.

Layout Calculation | Uses a layout calculation. For more information, see “Using Relational Calculations” on page 313.

Category Index | Specifies a position based on the index value of the data item in the categories axis. The value must be between 0 and 100.
For example, a Category index value of 1 indicates that the position is located at the first data item. This is the default.

You can also combine colored regions with gridlines.

Procedure
1. Click the chart object.
2. In the Properties pane, under Color & Background, double-click the Colored Regions property.
3. Click the new button \([\text{new}]\).
4. Under Region label, type a name for the region.
5. Under Label location, specify whether the label should appear in the legend or in the chart.
6. If your chart includes multiple charts, such as in a combination chart, under Based on, select the chart to which the colored regions apply.
7. Under Region fill, click the color box to specify the color and fill effects.
8. Specify the start and end of the category and numeric positions.
9. If you want to add more colored regions, repeat steps 3 to 5.
10. If you add more than one colored region, specify their order using the up and down arrows.
 The regions are drawn in the same order that they appear in this list. The first region is drawn first, on the bottom, and the last region is drawn on top of the other regions.
 Tip: To delete a colored region, click the colored region icon and text and click the delete button \([\text{cancel}]\).
Results
The new region appears in the Colored regions box.

Related concepts:
“Current Default Charts and Legacy Charts” on page 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Specify Custom Label Text
By default, chart labels use the name of the underlying data item label. You can change the label text to make it more meaningful. For example, you can rename a chart item labeled ISO_3_Letter_Code to Country or Region.

If you specify custom labels for a microchart or win-loss charts, the custom labels appear in the tooltips, not on the chart itself.

Procedure
1. Click the chart node member or measure.
2. In the Properties pane, under the Chart Labels, set the Custom Label property to Show.
 A new chart text item appears above the default measure or below the chart node member.
3. Do one of the following:
 • To change the text of the label, double-click the chart text item and type the text.
 • To change the source of the label text, select the new chart text item. In the Text Source section of the Properties pane, set the Source Type property.
 If nothing is specified in the new chart text item, the label appears blank.

 Tip: To remove a custom label, set the Custom Label property to Hide.

Customizing the Axes of a Chart
Chart axes are lines that border the chart area and provide a reference for measurements. They act as a vehicle for tick marks and scales and form a frame around the chart. The Y-axis is usually the vertical axis and contains data. The X-axis is usually the horizontal axis and contains categories.

To make your chart data easier to understand, you can do the following to customize each axis:
• show or hide the axis labels (data values)
• show or hide the axis line
• change the color, style, and weight of the axis line
• show or hide major and minor tick marks and specify where to display them

In HTML/PDF, if you have a report with a line chart, you can use the Include Zero For Auto Scale property to adjust the scale of the Y-axis of the chart. If the difference between your measure’s maximum/minimum values is much less than the difference between your measure’s minimum value and zero, using this property will make the chart Y-axis begin at something closer to your measure’s minimum value, making the line utilize all of the chart’s vertical space. In some cases this is significant in improving the readability of the chart.
Customize the Axes of a Current Default Chart

You can customize the axes of a current default chart by modifying the axis labels, axis lines, and minor and major tick marks. You can also change the scale for the major and minor tick marks using the axis range property.

Procedure
1. Select the Y-axis or X-axis of the chart.
2. To show or hide the axis labels, in the Properties pane, set the Axis Label property.
3. If your chart includes nested categories, to change how the category axis labels are displayed, set the Nested Label Display property.
4. To show or hide axis lines, in the Properties pane, double-click the Axis Line property, and select or clear the Axis line check box.
5. To change the color, style, and weight of the axis line, in the Properties pane, set the Axis Line property.
6. To show or hide minor and major tick marks and specify their location, in the Properties pane, set the Axis Line property.

Customize the Axes of a Legacy Chart

You can customize the axes of a legacy chart by modifying the axis labels and axis line.

Procedure
1. Select the Y-axis or X-axis of the chart.
2. To show or hide the axis labels, in the Properties pane, set the Axis Label property.
3. Select the Axis line check box.
4. Click Line color and choose a color for this axis line.
5. To show or hide axis lines, in the Properties pane, double-click the Axis Line property, and select or clear the Axis line check box.
6. To change the color, style, and weight of the axis line, in the Properties pane, double-click the Axis Line property.

Change the Axis Scale of a Current Default Chart

By default, IBM Cognos Report Studio automatically determines the minimum and maximum scale values for the axes in a chart. For example, a Y-axis showing revenue values might have an axis range of zero dollars to one million dollars. You can customize the axis scale, or range, to make your chart easier to understand.
You can specify the following for each axis:

- the maximum and minimum values of the range
- whether to include zero in an automatic axis range
- whether to use a logarithmic scale, if the values in the chart cover a very large range
- how often major and minor gridlines appear

Logarithmic scales can be useful when some of the data you are displaying is much less or much more than the rest of the data or when the percentage or ratio differences between values are important.

A logarithmic scale in Report Studio shows the base value of 10 raised to the power of a value. For example, 10 has a logarithm of 1 because 10 raised to the power of 1 is 10, 100 has a logarithm of 2 because 10 raised to the power of 2 is 100, and so on.

For example, the chart below is using a normal scale:

![Normal Scale Chart](image)

In this chart, the Y-axis shows values up to 2,000,000,000 with evenly spaced intervals of 400,000,000. However, the Outdoor Protection column is so much less than the other columns that it is difficult to compare them.

The following is the same chart using a logarithmic scale:
In this chart, the Y-axis still shows the same revenue values, but the intervals reflect a logarithmic scale, which increases exponentially. You can now compare all the product lines because none of the product lines have much higher or much lower values than the others.

Logarithmic scales can also be useful when the percentage or ratio differences between values are important. For example, if the logarithmic scale chart above represents data from 2008, and you add data from 2009 as a second set of colored bars, you could see the differences between the 2008 revenue and 2009 revenue. In a logarithmic scale, differences between values on the Y-axis represent the same percentage for each bar. So if the 2008 and 2009 data differs by the same distance for each product line, you could deduce that your revenue went up by the same percentage for each product line. This would not be clear on a normal scale.

Procedure

1. Select the Y-axis or the X-axis of the chart.
2. In the Properties pane, under General, double-click the Axis Range property.
3. To set a maximum value for this axis, under Maximum, click Manual, and then type a maximum value in the Manual box.

 Note: You can use either a positive or negative value as the maximum value.

4. To set a minimum value for this axis, under Minimum, click Manual, and then type a minimum value in the Manual box.

 Note: You can use either a positive or negative value as the minimum value.

5. To include zero on this axis, select the Include zero check box.
6. To use a logarithmic scale for this axis, select the Logarithmic scale check box.
Note: If you choose to use a logarithmic scale, ensure that your chart consumers know that the scale is logarithmic by including that information in the axis title or in a note on the chart.

7. To set the position of major gridlines and tick marks, under Major interval, click Manual, and then type the distance between major gridlines and tick marks in the Manual box.
 The distance between major gridlines and tick marks is measured in the units of that axis. For example, if the axis is revenue in dollars, type the dollar value in the Manual box.

8. To add minor gridlines, type the number of minor gridlines that you want to see between each major gridline in the Number of minor intervals box.

Related concepts:
“Current Default Charts and Legacy Charts” on page 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Related tasks:
“Customize the Axes of a Current Default Chart” on page 118
You can customize the axis labels, axis lines, and minor and major tick marks.
“Show Gridlines in a Current Default Chart”
You can also show alternating bands of color in the chart background that correspond to your axis gridlines.

Showing Gridlines in a Chart
To make the data in a chart that includes axes easier to read, you can show horizontal and vertical gridlines. You can show gridlines for the major or minor intervals on the axes.

You cannot show gridlines for chart types that do not display axes, such as pie and donut charts.

Show Gridlines in a Current Default Chart
You can also show alternating bands of color in the chart background that correspond to your axis gridlines.

You can change the scale for the major and minor gridlines using the Axis Range property.

Procedure
1. Select the Y-axis or the X-axis of the chart.
2. To show alternating bands of color as your chart background, do the following:
 a. In the Properties pane, double-click the Gridlines property.
 b. Select the Show alternating color bands check box.
 c. Set the color and transparency of the first and second colors.
3. To show major gridlines as your chart background, do the following:
 a. In the Properties pane, double-click the Gridlines property.
 b. Select the Show major gridlines check box.
 c. Set the color, style, and weight of the major gridlines.
 d. If you are working with a gauge chart, specify the length of the gridline.
4. To show minor gridlines as your chart background, do the following:
 a. In the Properties pane, double-click the Minor gridlines property.
 b. Select the Show minor gridlines check box.
c. Set the color, style, and weight of the minor gridlines.
d. If you are working with a gauge chart, specify the length of the gridline.
e. To specify by how many minor intervals to divide the major intervals, in the Properties pane, type a number in the Number of Minor Intervals property.

Related concepts:
“Current Default Charts and Legacy Charts” on page 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Related tasks:
“Change the Axis Scale of a Current Default Chart” on page 118
By default, IBM Cognos Report Studio automatically determines the minimum and maximum scale values for the axes in a chart. For example, a Y-axis showing revenue values might have an axis range of zero dollars to one million dollars. You can customize the axis scale, or range, to make your chart easier to understand.

Show Gridlines in a Legacy Chart
Gridlines are the lines on a chart that show the intervals along the axes.

Procedure
1. Select the Y-axis or the X-axis of the chart.
2. In the Properties pane, under General, double-click the Gridlines property.
3. To specify the color, style, and weight of major gridlines do the following:
 a. Select the Show major gridlines check box.
 b. Click Line color and choose a color for the major gridlines.
 c. To specify the thickness of the gridlines, click Point size and select a line weight from the list.
 d. Click a line style in the Line style list.
4. To specify the color, style, and weight of minor gridlines:
 a. In the Properties pane, under General, double-click the Minor Gridlines property.
 b. Select the Show minor gridlines check box.
 c. Click Line color and choose a color for the minor gridlines.
 d. To specify the thickness of the gridlines, click Point size and select a line weight from the list.
 e. Click a line style in the Line style list.
 f. To change the transparency of the gridlines, type a percentage in the Transparency box.

Related concepts:
“Current Default Charts and Legacy Charts” on page 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Customize the Legend in a Current Default Chart
You can hide or show the legend and change its position relative to the chart area, chart body, or a data item. For example, in a bar chart showing revenue for each product line by country or region, you could use the expression [Country or Region] = ‘Canada’ to position the legend relative to the Canada bar.

Note: When you choose a preset legend position, that position appears inside any padding that you have added to the chart object. Customized legend positions do not include any chart padding.
Procedure
1. Select the chart object.
2. In the Properties pane, under Chart Annotations, double-click the Legend property.
3. To show the legend on the chart, select the Show Legend check box.
4. To choose a preset legend position, click Preset and click a position from the diagram.
5. To choose a customized legend position, do the following:
 a. Click Advanced and click the ellipsis (...) button.
 b. To display the legend at a set distance from the sides of the chart area, from the Anchor list, click Relative to Chart.
 c. To display the legend at a set distance from the sides of the chart body, from the Anchor list, click Relative to Chart Body.
 d. To display the legend at a set distance from a data item, such as a specific pie slice in a pie chart, from the Anchor list, click Report Expression, click the ellipsis (...) button beside Expression, and enter an expression in the Report Expression dialog box.
 e. Set the horizontal and vertical distances from the anchor.

Related concepts:
“Current Default Charts and Legacy Charts” on page 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Customize the Items in the Legend of a Current Default Chart
If your legend includes items that are too long, you can truncate long legend items at a specific number of characters.

For example, if you want an ellipsis (...) to appear at the end of each truncated legend item, type ... in the Truncation text box.

You can also show the values of the data items in your legend.

Procedure
1. Select the legend.
2. To truncate the legend
 a. In the Properties pane, under General, double-click the Text Truncation property.
 b. To specify the number of characters at which the legend items are truncated, click Manual and type the number of characters in the Maximum characters box.
 c. To shrink the font of the legend item text until all the text fits in the legend, select the Shrink font as needed check box.
 d. To specify some text to appear at the end of truncated legend items, in the Truncation text box, type the text that you want to appear at the end of truncated items.
3. To show the values of legend items within the legend
 a. In the Properties pane, under General, set the Show Values property.
 First Value and Last Value refer to the first and last item in the child set under the legend data item. Minimum Value and Maximum Value refer to the lowest and highest value in the child set under the legend data item.
 b. If you want to change the separator between the legend item and value, type a new separator in the Legend Separator property.
4. To customize the title of the legend
 a. Click the default legend title area in the work area.
 b. In the Properties pane, under General, set the Default Title property to No.
 c. Double-click the default legend title area in the work area and type the new title.

Related concepts:
“Current Default Charts and Legacy Charts” on page 73

IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Customize the Items in the Legend of a Legacy Chart

If your legend includes items that are too long, you can truncate long legend items at a specific number of characters. For example, if you want an ellipsis (...) to appear at the end of each truncated legend item, type ... in the Truncation text box.

You can also show the values of the data items in your legend and customize the legend title.

Procedure
1. Select the legend.
2. To truncate the legend text, do the following:
 a. In the Properties pane, under General, set the Auto Truncation property to Yes.
 b. In the Properties pane, under General, set the Auto Truncation property to Yes.
 c. In the Maximum Characters property, type the number of characters to appear before the text is truncated.
 d. In the Truncation Text property, type the characters to append when the text is truncated.
 e. To shrink the font of the legend item text until all the text fits in the legend, select the Shrink font as needed check box.
 f. To specify text to appear at the end of truncated legend items, type it in the Truncation text box.
3. To show the values of legend items within the legend, do the following:
 a. In the Properties pane, under General, set the Show Legend Values property.
 First Value and Last Value refer to the first and last item in the child set under the legend data item. Minimum Value and Maximum Value refer to the lowest and highest value in the child set under the legend data item.
 b. If you show multiple values and want to change the separator between the values, type a new separator in the Separator property.
4. To customize the title of the legend, do the following:
 a. Click the default legend title area in the work area.
 b. In the Properties pane, under General, set the Default Title property to No.
 c. Double-click the default legend title area in the work area and type the new title.
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Adding a Note to a Chart

Add a note to a chart to provide additional detail. Notes appear as text in a chart.

By default, notes are aligned with the upper left corner of the chart object. When you add a note to a chart, you can set the note’s position relative to the sides of the chart area or chart body. You can also use a report expression to position the note next to a data item within the chart. For example, in a bar chart showing revenue for each product line by country or region, you could type [Country or Region]=’Canada’ to position the note relative to the Canada bar.

Notes overwrite whatever is under them so you must position them properly.

If you apply more than one note, ensure that each note has a different position in the report so that they do not overwrite each other. You can also specify the order that they should be drawn in when the report runs. If you have two notes with the same coordinates, the first one in the list is drawn first and the next one is drawn on top of the first.

Tip: The Top 10 Retailers for 2005 sample report in the GO Data Warehouse (analysis) package includes a note.

Related concepts:

“Current Default Charts and Legacy Charts” on page 73

Sample reports are included with IBM Cognos Business Intelligence. When installed, you can find them in the Public Folders tab in IBM Cognos Connection.

Add a Note to a Current Default Chart

You can add and position multiple notes on your chart.

Procedure

1. Select the chart object.
2. In the Properties pane, under Chart Annotations, double-click the Notes property.
3. Click the new button.
4. Type the note text in the Text box and click OK.
5. In the Notes dialog box, click OK.
6. To position the note, do the following:
 a. Click the note icon in the list of notes.
 b. In the Properties pane, under Positioning, double-click the Position property.
 c. To align the note horizontally, click the left, center, or right alignment button.
 d. To align the note vertically, click the top, middle, or bottom alignment button.
To set the margins around the chart body, type margin values and choose margin units.

To display the note at a set distance from the sides of the chart area, from the Anchor list, click Relative to Chart.

To display the note at a set distance from the sides of the chart body, from the Anchor list, click Relative to Chart Body.

To display the note at a set distance from a data item, from the Anchor list, click Report Expression, click the ellipsis (...) button beside Expression, and enter an expression in the Report Expression dialog box.

7. To edit the text, double-click the text next to the note object in the chart.

Related concepts:
“Current Default Charts and Legacy Charts” on page 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Add a Note to a Legacy Chart
You can add and position multiple notes on your chart.

Procedure
1. Click the chart object.
2. In the Properties pane, under Chart Annotations, double-click the Notes property.
3. Click the new button.
4. Type the note text in the Text box and click OK.

Tip: To delete a note, click the note and click the delete button. To move a note up or down in the list, click the up or down arrows.

5. In the Notes dialog box, click OK.

6. Click the note icon and set the note position, size, and border in the Properties pane.

You set the location of the note by defining number of pixels from the bottom left corner of the chart area.

Related concepts:
“Current Default Charts and Legacy Charts” on page 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Adding a Baseline to a Chart
Baselines are horizontal or vertical lines that cut through the chart to indicate major divisions in the data. For example, you can add a baseline to show a sales quota or break-even point.

Each baseline represents a value on an axis.

Depending on the type of chart, you can use the following options to position the baseline.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric Value</td>
<td>Uses a static numeric value.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Query Calculation</td>
<td>Uses a query calculation from the chart query or from a different query. For more information, see “Using Relational Calculations” on page 313.</td>
</tr>
<tr>
<td>Layout Calculation</td>
<td>Uses a layout calculation. For more information, see “Using Relational Calculations” on page 313.</td>
</tr>
<tr>
<td>Category Index</td>
<td>Uses the index value of the data item in the categories axis. For example, a Category index value of 1 indicates that the baseline is located at the first data item. This is the default. Note: This option applies only to the current default charts, and does not apply to the legacy charts.</td>
</tr>
<tr>
<td>Member Value</td>
<td>When working with dimensional data sources, uses a position relative to a member. For example, a member calculation that uses an expression similar to [Query1].[Current year]=2006 places the baseline in the middle of the chart object that represents 2006. To place the baseline between 2006 and 2007 on the chart, a half member width to the right, set the Member Offset property to 50%. To place the baseline between 2005 and 2006, set the Member Offset property to -50%. You can also type in 100, -200, and so on to place the baseline on the chart.</td>
</tr>
</tbody>
</table>
| Statistical Limit | Statistical maximum uses the following expression:

\[
25th \text{ percentile value} - 1.5 \times (75th \text{ percentile value} - 25th \text{ percentile value})
\]

For example, if 2.5 is the 25th percentile and 7.5 is the 75th percentile, the statistical minimum is -5

\[
2.5 - 1.5(7.5 - 2.5) = -5
\]

Statistical minimum uses the following expression:

\[
75th \text{ percentile value} + 1.5 \times (75th \text{ percentile value} - 25th \text{ percentile value})
\]

For example, if 2.5 is the 25th percentile and 7.5 is the 75th percentile, the statistical maximum is 15

\[
7.5 + 1.5(7.5 - 2.5) = 15
\]

Statistical minimum and Statistical maximum use percentiles to determine values, so the baseline might not appear on the chart if its value is off the axis. |
If you apply more than one baseline, you can specify the order in which they should be drawn when the report runs. If you have two baselines with the same coordinates, the first one in the list is drawn first and the next one is drawn on top of the first one.

By default, the baseline and its label appear in the legend.

Baselines do not support color transparency.

Tip: The Positions to Fill sample report in the GO Data Warehouse (analysis) package includes a baseline.

Related concepts:

[Appendix C, “Sample Reports and Packages,” on page 567](#)

Sample reports are included with IBM Cognos Business Intelligence. When installed, you can find them in the Public Folders tab in IBM Cognos Connection.

Add a Baseline to a Current Default Chart

When working with current default charts, you can define baselines by values on the numeric axis or the category axis.

Procedure

1. Click the chart object.
2. Depending on your chart and the type of baseline you want to add, in the Properties pane, under Chart Annotations, double-click the Numeric Baselines or Category Baselines property.
3. Click the new button and choose the type of baseline from the list.
4. Specify the necessary criteria for the baseline position.
5. Under Baseline Properties, type a label for the baseline and specify the line style.
 Tip: To remove the baseline from the legend, delete the label.
6. If you add more than one baseline, specify their order using the up and down arrows.
 The new baselines appear in the Markers, notes, baselines, and trendlines box.
7. To change the label that appears next to the baseline, under the Markers, notes, baselines, and trendlines box, double-click the placeholder text next to the baseline icon and type your text.
8. To change the line style, select the chart and in the Properties pane, under Chart Annotations, double-click the Baselines, Numeric Baselines, or Category Baselines property.

9. To delete a baseline, select the baseline icon and click the delete button.

Related concepts:
“Current Default Charts and Legacy Charts” on page 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Add a Baseline to a Legacy Chart
When working with legacy charts, you can define baselines by the values on the numeric axis.

Procedure
1. Click the chart object.
2. In the Properties pane, under Chart Annotations, double-click the Baselines property.
3. Click the new button and choose the type of baseline from the list.
4. Specify the necessary criteria for the baseline position.
 If you use a calculation to determine the baseline, define an expression.
5. If you add more than one baseline, specify their order using the up and down arrows.
6. Click OK.
 A baseline icon appears in the Markers, notes, and baselines box.
7. To define the line style, click the baseline icon and set the Line Styles property.
8. To define the text style, click the baseline text and make changes in the Properties pane.
9. To delete a baseline, click its baseline icon and click the delete button.

Related concepts:
“Current Default Charts and Legacy Charts” on page 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Adding Markers to Charts
Markers are symbols that you add to a chart to designate points of significance that can help you analyze or understand the data.

For example, you might want to add a marker to designate the time when a significant event happened, such as the date when a new product was launched.

You can add a marker to combination, progressive column, Pareto, scatter, and bubble charts.

When you define the position of the marker, you define the X- and Y-axes coordinates for the placement of the symbol. You can position the marker in the chart using the following options.
<table>
<thead>
<tr>
<th>Option</th>
<th>Position</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric Value</td>
<td>Uses a static numeric value.</td>
<td></td>
</tr>
<tr>
<td>Query Calculation</td>
<td>Uses a query calculation from the same query or from a different query.</td>
<td>For more information, see “Using Relational Calculations” on page 313.</td>
</tr>
<tr>
<td>Layout Calculation</td>
<td>Uses a layout calculation.</td>
<td>For more information, see “Using Relational Calculations” on page 313.</td>
</tr>
<tr>
<td>Statistical Minimum</td>
<td>Uses the following expression:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25th percentile value - 1.5 * (75th percentile value - 25th percentile value)</td>
<td>For example, if 2.5 is the 25th percentile and 7.5 is the 75th percentile, the statistical minimum is -5 [2.5 -1.5(5) = -5].</td>
</tr>
<tr>
<td></td>
<td>Statistical minimum uses percentiles to determine values, and might not always appear in the chart if the values are off the axis.</td>
<td></td>
</tr>
<tr>
<td>Statistical Maximum</td>
<td>Uses the following expression:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75th percentile value + 1.5 * (75th percentile value - 25th percentile value)</td>
<td>For example, if 2.5 is the 25th percentile and 7.5 is the 75th percentile, the statistical maximum is 15 [7.5 +1.5(5) = 15]. Statistical maximum uses percentiles to determine values, so the marker might not always appear on the chart if its value is off the axis.</td>
</tr>
<tr>
<td>Mean</td>
<td>Uses the statistical mean plus or minus a number of standard deviations based on all charted data values on the specified axis.</td>
<td></td>
</tr>
<tr>
<td>Percentile</td>
<td>Uses a specified percentile.</td>
<td></td>
</tr>
<tr>
<td>Percent on Axis</td>
<td>Uses a percentage of the maximum axis value.</td>
<td></td>
</tr>
</tbody>
</table>

If you apply more than one marker, you can specify the order in which they should be drawn when the report runs. If you have two markers with the same coordinates, the first one in the list is drawn first and the next one is drawn on top of the first.

Add a Marker to a Current Default Chart

Markers are symbols that you add to a chart to designate points of significance that can help you analyze or understand the data.

Note: Current default scatter charts have a different set of steps.

Procedure

1. Select the chart object.
2. In the **Properties** pane, under **Chart Annotations**, double-click the **Markers** property.

3. Click the new button ![Marker Icon](image), and then set the marker properties.

4. In the **Based on** box, select the chart object that will determine the marker position.

5. In the **Numeric position** box, specify how you want to define the position on the numeric (Y) axis.

6. In the **Category position** box, specify how you want to define the position on the category (X) axis.

7. In the **Marker label** box, type the label that you want to give to the marker.

8. In the **Marker size** box, specify the size of the marker symbol.

9. To specify the color, fill, and shape of the marker symbol, click the **Color and style** box.

10. If you add more than one marker, specify their order by using the up and down arrows.

The new markers appear in the **Markers, notes, and baselines** box.

Tip: To delete a marker, click the marker icon and text and click the delete button ![Delete Button](image).

11. Run the report.

Related concepts:

"Current Default Charts and Legacy Charts" on page 73

IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Add a Marker to a Current Default Scatter Chart

Markers are symbols that you add to a chart to designate points of significance that can help you analyze or understand the data.

Procedure

1. Select the scatter **chart object**.

2. In the **Properties** pane, under **Chart Annotations**, double-click the **Markers** property.

3. Click the new button ![Marker Icon](image), and then set the marker properties.

4. In the **X-axis position** box, specify how you want to define the position on the X-axis.

5. In the **Y-axis position** box, specify how you want to define the position on the Y-axis.

6. In the **Marker label** box, type the label that you want to give to the marker.

7. In the **Marker size** box, specify the size of the marker symbol.

8. To specify the color, fill, and shape of the marker symbol, click the **Marker color and style** box.

9. If you add more than one marker, specify their order using the up and down arrows.

The new markers appear in the **Markers, notes, and baselines** box.

Tip: To delete a marker, click the marker icon and text and click the delete button ![Delete Button](image).
Add a Marker to a Legacy Chart

Markers are symbols that you add to a chart to designate points of significance that can help you analyze or understand the data.

Procedure
1. Select the chart object.
2. In the Properties pane, under Chart Annotations, double-click the Markers property.
3. Click the new button, and then set the Numeric position type, Marker label, Marker shape, Numeric value, and Color properties.
4. If you add more than one marker, specify their order by using the up and down arrows.
 The new markers appear in the Markers, notes, and baselines box.

Tip: To delete a marker, click the marker icon or marker label and click the delete button.

Display Trendlines in Current Default Charts

You can display or hide trendlines in the current default bar, line, area, bubble, or scatter charts.

Trendlines, also known as lines of best fit or regression lines, graphically illustrate trends in data series and are commonly used when charting predictions. A trendline is typically a line or curve that connects or passes through two or more points in the series, showing a trend.

You can specify the following types of trendlines:

• **Linear**
 Use a linear trendline when your data increases or decreases along a straight line at a constant rate. For example, if your chart displays a steady increase in revenue by product line over time, you could use a linear trendline.

• **Exponential**
 Use an exponential trendline when your data values increase or decrease exponentially, or at an increasingly higher or lower rate. For example, if your chart displays an exponential increase in revenue by product line over time, you could use an exponential trendline.

• **Polynomial**
 Use a polynomial trendline when your data values both increase and decrease. For example, if your chart displays both increases and decreases in revenue by product line over time, you could use a polynomial trendline.

• **Logarithm** or **Natural Logarithm**
Use a logarithmic trendline when your data values increase or decrease rapidly and then level out. For example, if your chart displays a rapid decrease in revenue by product line over time and then a plateau, you could use a logarithmic trendline.

- **Power**
 Use a power trendline when your data values increase or decrease in a curve at a steady rate. For example, if your chart displays a steady increase in revenue by product line over time and your data points will fit a curved line, you could use a power trendline.

- **Moving Average**
 Use a moving average trendline when your data values fluctuate and you want to smooth out the exceptions to see trends. For example, if your chart displays wild fluctuations in revenue by product line over time, but you know that some data points are exceptions, you could use a moving average trendline.

If you are not sure which trendline type to use, try each type to see which one best fits most of your data points. For example, a linear trendline will not fit most points on a scatter chart with widely spread data points.

Trendlines do not support color transparency.

Procedure

1. Select the chart object.
2. In the Properties pane, under Chart Annotations, double-click the Trendlines property.
3. Click the new button and click a trendline type.
4. Define the trendline by specifying the following options. The options that are available depend on the type of trendline you chose.
 - To set the order, or degree, of a polynomial trendline, in the Order box, type a value between 2 and 6.
 - To set the number of periods to go back in a moving average trendline, in the Periods box, type a value.
 - If you have more than one series on your chart, in the Based on list, click the data you want to use for the trendline.
 - Click either **One trendline for all series items** or **A trendline for each series item**.
 - To customize the style of the trendlines, click Line Styles and customize the line color, weight, and style.
 - To customize the trendline labels in the legend, click Label and choose None, Automatic, or Custom.
 - To display the trendline equation, click Show equation, and then click Show in legend or Show on chart, and then click Position to define the equation’s position on the chart.
 - To display the R-squared value of the trendline, click Show R-squared value, and then click Show in legend or click Show on chart and then click Position to define the position of the value on the chart.
Display Regression Lines in Legacy Scatter or Bubble Charts

When using legacy charts, you can display or hide regression lines on scatter charts and bubble charts. Regression lines, also known as lines of best fit or trend lines, graphically illustrate trends in data series. Regression lines are commonly used when charting predictions. A regression line is typically a line or curve that connects or passes through two or more points in the series, showing a trend. Regression lines always start at the zero intercept of the x-axis and y-axis.

You can specify the following types of regression lines to determine the position and slope of the line:

- **Linear**
 Use a linear regression line when your data increases or decreases at a consistent rate. For example, if your chart displays a steady increase in revenue by product line over time, you could use a linear regression line.

- **Common Log or Natural Log**
 Use a logarithmic regression line when your data increases or decreases rapidly and then levels out. For example, if your chart displays a rapid decrease in revenue by product line over time and then a plateau, you could use a logarithmic regression line.

- **Exponential**
 Use an exponential regression line when your data increases or decreases exponentially, or at steadily increasing or decreasing rate. For example, if your chart displays an exponential increase in revenue by product line over time, you could use an exponential regression line.

- **Polynomial Fit**
 Use a polynomial fit regression line when your data both increases and decreases. For example, if your chart displays both increases and decreases in revenue by product line over time, you could use a polynomial fit regression line.

If you are not sure which regression line type to use, try each type to see which one best fits most of your data points. For example, a linear regression line is not going to fit most points on a scatter chart with widely spread data points.

Procedure

1. Select the scatter or bubble chart.
2. In the Properties pane, under Chart Annotations, set the Regression Line property to Show.
3. Click the regression line icon in the report layout.
4. In the Properties pane, under General, set the Line Styles, Regression Type, and Number of Regression Lines properties.
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Showing data values in current default bar, column, line, and area charts

You can show the data labels or data values within the chart so that the data values are more clear.

For example, you can display the data values above each column in a column chart to show the exact height of each column.

Procedure

1. In the chart, under **Series**, select the chart type icon.
2. In the **Properties** pane, under **Chart Labels**, double-click the **Show Values** property.
3. To specify the data label format, in the **Values** list, select what values to display.
 - **None** does not display data values.
 - **Absolute** displays the absolute value of the data.
 - **Cumulative** displays the cumulative value of the data.
4. To show lines pointing from data labels to data marker they apply to, select the **Show leader lines** check box.
5. To specify how to display the labels if their positions on the chart overlap, in the **Collision Mode** list, click one of the following modes:
 - **None** specifies that labels appear in default positions and might overlap.
 - **Normal** (for pie and donut charts) specifies that labels are placed just above their corresponding data markers or chart objects. There is no collision detection, so labels can overlap.
 - **Coarse Stagger** specifies that labels are placed close to their data markers and staggered so that they do not overlap. This collision mode takes less time to render than **Fine Stagger** but might result in labels being farther away from their corresponding data markers.
 - **Fine Stagger** specifies that labels are staggered so that they do not overlap. The labels are as close to the data markers as possible without overlapping. This collision mode takes more time to render than **Coarse Stagger** but might result in labels being closer to their corresponding data markers.

Showing data values in current default pie and donut charts

You can show the data labels or data values within the chart so that the data values are more clear.

For example, in a pie chart, show the data values within each pie slice, so that you know the exact size of each pie slice.

Procedure

1. Select the **chart object**.
2. In the **Properties** pane, double-click the **Show values** property.
3. To display data labels for each slice of the pie, under **Show**, select the **Slice names** check box.
4. To show lines pointing from data labels to the slices they apply to, select the **Show leader lines** check box.

5. To specify the data label format, in the **Values** list, select what values to display:
 - **Hide** does not display data values.
 - **Absolute** displays the absolute value of the data.
 - **Percentage** displays the slice’s percentage of the whole pie.
 - **Absolute and Percentage** displays the slice’s percentage of the whole pie as an absolute value.

6. In the **Position** list, select the placement of data labels.

7. To specify how to display the labels if their positions on the chart overlap, in the **Collision Mode** list, click one of the following modes:
 - **None** specifies that labels appear in default positions and might overlap.
 - **Normal** (for pie and donut charts) specifies that labels are placed just above their corresponding data markers or chart objects. There is no collision detection, so labels can overlap.
 - **Coarse Stagger** specifies that labels are placed close to their data markers and staggered so that they do not overlap. This collision mode takes less time to render than **Fine Stagger** but might result in labels being farther away from their corresponding data markers.
 - **Fine Stagger** specifies that labels are staggered so that they do not overlap. The labels are as close to the data markers as possible without overlapping. This collision mode takes more time to render than **Coarse Stagger** but might result in labels being closer to their corresponding data markers.

Showing data values in other current default charts

You can show the data labels or data values within the chart so that the data values are more clear.

For example, you can display the data values above each bubble in a bubble chart to show the exact value of each bubble.

You can show data values for the following chart types: Pareto, progressive, scatter, and bubble.

Procedure

1. Select the **chart object**
2. In the **Properties** pane, under **Chart Labels**, double-click the **Show Values** property.
3. For each of the categories, series, and measures, select whether to show only values, values and labels, or neither.
4. To show lines pointing from data labels to the data marker they apply to, select the **Leader lines** check box.
5. To specify how to display the labels if their positions on the chart overlap, in the **Collision Mode** list, click one of the following modes:
 - **None** specifies that labels appear in default positions and might overlap.
 - **Normal** (for pie and donut charts) specifies that labels are placed just above their corresponding data markers or chart objects. There is no collision detection, so labels can overlap.
 - **Coarse Stagger** specifies that labels are placed close to their data markers and staggered so that they do not overlap. This collision mode takes less
time to render than Fine Stagger but might result in labels being farther away from their corresponding data markers.

- Fine Stagger specifies that labels are staggered so that they do not overlap. The labels are as close to the data markers as possible without overlapping. This collision mode takes more time to render than Coarse Stagger but might result in labels being closer to their corresponding data markers.

Related concepts:

“Current Default Charts and Legacy Charts” on page 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Define Query Context When Customizing Legend Entries, Legend Titles, or Axis Labels

You want to use a revenue expression as a chart legend title. If you get an error message saying that the query context of a layout object cannot be determined, you must define the property list for the item to which it refers. You must first add the desired data item to the query before you can define its property list.

Procedure
1. Open the chart to customize.
2. Pause the pointer over the query explorer button and click the query.
3. From the Source tab, drag the desired item to the Data Items window to add it to the query.
4. Pause the pointer over the page explorer button and click the chart page.
5. From the Source tab, drag the desired item to the layout object.
6. In the Properties pane, under Data, double-click the Properties property.
7. Select the check box for the data item to define.

Related tasks:

“Specify a List of Data Items for an Object” on page 347
Specify the list of data items for an object when you must reference a data item that is in a query but is not in the layout.

Summarize Small Slices, Bars, or Columns in Current Default Charts

You can summarize the smaller slices or bars in charts to avoid having many tiny slices or bars. For example, if your pie chart shows revenue by product and 10 of your products have less than 1% of the pie, you can summarize these 10 slices into one larger slice and name that slice Other.

Similarly, you can summarize small items in a column, bar, area, and line chart.

You cannot summarize small slices or items in charts that have matrix edges or in charts that have multiple numeric axes.

Procedure
1. Select the chart object
2. In the Properties pane, under General, double-click the Summarize Small Slices or Summarize Small Items property.
3. To summarize small slices or items up to a maximum number, select the Maximum number of slices or Maximum number of items check box and type the maximum number.

4. To summarize all the slices or bars that are smaller than a specific value, select the Summarize slices smaller than a value or Summarize items smaller than a value check box, type a value that represents the upper size limit, and choose whether the value is a percentage or absolute.

5. Under Small slice summarization type or Small item summarization type, choose whether to summarize the slices or items as a Total or Average.

 Note: Averages are calculated using only the summarized items in the report.

6. Under Slice label or Item label, type a label for the one large slice, bar, area, or line that summarizes the smaller ones.

Related concepts:
“Current Default Charts and Legacy Charts” on page 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Customizing Lines and Data Points in a Line Chart
You can customize the lines in a line chart to show only lines, only data points, or both. Data points represent series values for each category on the Y-axis. You can show special data markers that represent statistically significant values, such as open, high, low, and close values.

You can also add markers at other positions on the chart. For more information, see “Add a Marker to a Current Default Chart” on page 130.

You can also change the shape of the line that connects the data points to one of the following:
- **Point to Point** shows data points connected by straight lines.
- **Step at Point** shows data points connected by steps that start and end at the data points.
- **Step Between Points** shows data points connected by steps that start and end between the data points.
- **Smooth** shows data points connected by smooth curves.

Related tasks:
“Add a Marker to a Current Default Chart” on page 130
Markers are symbols that you add to a chart to designate points of significance that can help you analyze or understand the data.

Customize Lines and Data Points in a Current Default Line Chart
You can change the color and shape or the line or data markers in a line chart. You can also show or hide data labels, the line, and data markers.

You cannot show value markers when the Data points option is selected or when the configuration of the line chart is stacked or 100 percent stacked.

Procedure
1. Select the chart object.
2. In the chart area, under Series, click the line chart icon to view the line properties.
3. To select whether to show only the line, the line and data markers, or only the data markers, in the Properties pane, select an option from the Line and Markers list.

4. To show special data markers, double-click the Value Markers property. Select the check box for the special data markers that you want to add and for each marker, specify the color and shape.

The options you specify in Value Markers overwrite the options for Line and Markers.

5. To change the shape of the line that connects data markers, select an option from the Line Shape list.

6. To show data labels for the data points, double-click the Data Labels property.

7. To change the color of the lines, double-click the Palette property.

Related concepts:

“Current Default Charts and Legacy Charts” on page 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

“Customizing the Color Palette of a Chart” on page 106
You can use the chart palette to control the colors or patterns used in the columns, lines, data markers or areas in a chart. For example, if "Telephone" is the first in a data series of order methods, and you want it to appear in blue, use the palette to make the first item in the series blue.

Customize Lines and Data Points in a Legacy Line Chart
You can change the color and shape or the line or data markers in a line chart. You can also show or hide data labels, the line, and data markers.

You cannot show value markers under the following conditions:

- The Data points option is selected.
- The configuration of the line chart is stacked or 100 percent stacked.
- The Show line property is set to No, creating a point chart.

Procedure

1. Select the chart object.
2. In the chart area, under Series, click the line chart icon to view the line properties.
3. To select whether to show only the line, the line and data markers, or only the data markers, in the Properties pane, under General, select an option from the Line Type list.
4. To show or hide the line, select an option from the Show line list.
5. To show data points or value markers, double-click the Show Data Points property:

 - To show or format data points, click Data points and specify the point shape and point size. The point color is defined by the chart palette.
 - To show or format value markers, click Value markers and specify the markers to show. For each marker, specify the shape and marker size. Click Color to change the marker color.

Tip: To remove all data points and value markers, in the Show Data Points dialog box, select None.
Related concepts:

“Current Default Charts and Legacy Charts” on page 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

“Customizing the Color Palette of a Chart” on page 106
You can use the chart palette to control the colors or patterns used in the columns, lines, data markers or areas in a chart. For example, if “Telephone” is the first in a data series of order methods, and you want it to appear in blue, use the palette to make the first item in the series blue.

Customize a Current Default Combination Chart
Combination charts show data series using two or more types of charts - area, bar, and line. The different charts are overlaid on top of each other. You can customize the order in which the charts appear along with the type of charts and their configurations.

You can also customize which numeric axes to show and which chart to show on each axes.

Procedure
1. Select the combination chart object.
2. In the Properties pane, under General, double-click the Combinations property.
3. Under Numeric axes, select which axes to show.
4. Under Combinations, add or remove data series.
5. If you want to change the order in which the series appear, use the up and down arrows.
 The series appear in the order they are listed. Each chart appears in the foreground of any previous charts.
6. If you want to change the configuration type of the series, such as changing clustered bars to stacked bars, under Combinations, select the series, click the edit button and select the type.
7. If you use the same data series for multiple charts and want to synchronize the data marker colors, under Color & Background, set the Series Color property to Match.

Create a Matrix of Current Default Charts
You can view a complex chart that includes nested series or categories into a matrix, or crosstab, that shows multiple small charts arranged in rows and columns.

The charts in the rows represent the outer nested levels of the series and categories and, the charts in the columns represent the categories. Each data item in the outer nested levels of the series and categories becomes a separate chart. The numeric scale of all the charts is the same so that you can easily compare.

When working with pie, gauge, and bullet charts, if you include a data item in the categories, you automatically create a matrix of charts. One chart appears for each
data item in the category. When working with progressive and bullet charts, if you include a data item in the series, you also automatically create a matrix of charts.

For example, the following column chart shows the revenue for each year (in the categories or X-axis) for all the regions and product lines (in the series or Y-axis). This chart is very complex and difficult to understand.

The following chart contains the same series and categories. However, when converted to a matrix of charts, the information is much easier to analyze. The columns show charts for each year and the rows show charts for each the product lines. The bars represent the revenue for each region.
Procedure

1. Select the chart object.
2. In the Properties pane, under General, double-click the Matrix rows and columns property.
3. Select the Show outer nested series as matrix rows or Show outer nested categories as matrix columns check boxes (or both).
4. In the Matrix levels box, select the number of nested levels to include in the matrix columns or rows.

 The remaining nested levels are represented in the chart bodies in the matrix if the chart supports additional categories. The pie, gauge, and bullet charts do not support additional categories. The bullet and progressive column charts do not support additional series.

 For example, in the above chart, Regions are nested under Product Line. In the matrix chart, a Matrix level of 1 is specified. Therefore, Product Line appears as the matrix rows (series) and Regions appear within the chart bodies.
5. If you want labels for the matrix rows and columns to appear on each chart, select the Show row labels or Show column labels check box.
6. In the Labels location list, select where the nested labels should appear on each chart.

 The default position is on the left for rows and on the bottom for columns.
7. If the labels are too long, click Truncation and specify where to truncate text or select the Size fonts automatically check box to resize the text to fit.
8. To change the font, color, and data format of the labels, click Style.
9. To show the title in the row or column axis, select the Show row title or Show column title check box.
10. If you want to hide or show the axes, select the axis object, and in the Properties pane, under Miscellaneous, set the Show in Matrix property.
11. If your matrix chart includes only rows or columns, and you want them to wrap, select the **Wrap rows or columns if possible** check box.

12. If you want to show the axes and axis labels for each small chart in the matrix, select the **Repeat row and column axis labels** check box.
 When this option is cleared, axes and axis labels appears only along the outer edge of the matrix.

Related concepts:
- “Current Default Charts and Legacy Charts” on page 73

IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Customize a Current Default Gauge Chart

When you create a gauge chart, you can choose from a variety of chart templates, which offer different shape, axis, and border options.

You can customize the following aspects of your gauge chart. As you modify properties, the chart preview shows you what your chart will look like.

![Gauge Chart Diagram](image)

Unless indicated in the user interface, all sizes are a percentage of the maximum allowed.

If your gauge chart includes a border, long axis labels, such as 250,000,000, may overlap the gauge border and be difficult to read. To avoid this problem, customize the data format of your gauge chart measure and reduce the scale so that less zeros are displayed. Or change the gauge border color or size or remove the border.

Procedure

1. Click the gauge chart object.
2. If you want to change the shape of the gauge, modify the start and end angles of the gauge axes and border, as follows:
 a. In the Properties pane, under **General**, double-click the **Gauge Axes** property and specify the start and end angles and the direction of the axes.
 b. Double-click the **Gauge Border** property and specify the style and the start and end angles of the border.
 For example, a border start angle of 0 degrees and end angle of 180 degrees produces a semi-circular gauge.
3. If you want to add an additional axes to a gauge chart, do the following:
a. In the Properties pane, under General, double-click the Gauge Axes property.

b. Click the new button and specify the start and end angles and the direction of the new axis.

4. If you want to change the size, shape, and color of the center pivot point, double-click the Gauge Pivot property and specify the style.

5. If you want to change the indicators in the gauge axis, click the Gauge Axis object in the chart and do the following:
 a. To change the needle, under Axes, double-click the Gauge Needle property and specify the style.
 b. To change, add, or remove color bands that indicate the data range positions, under Color & Background, double-click the Gauge Axis Colors property and specify the color palette.
 c. If you want to change the size or thickness of the gauge axis and color bands, under Axes, specify a percentage size for the Gauge Axis Inner Radius and Gauge Axis Outer Radius properties.
 d. If you want to change the gridlines, under General, double-click the Gridlines or Minor Gridlines properties and specify the style.
 e. If you want to change the appearance of the gauge axis line, under General, double-click Axis Line.

Related concepts:
"Current Default Charts and Legacy Charts” on page 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.
"Gauge Charts” on page 89
Gauge charts, also known as dial charts or speedometer charts, use needles to show information as a reading on a dial.

Customize a Legacy Gauge Chart

You can customize the colors and threshold boundaries of the gauge axis areas and whether they use numbers instead of percentages. You can also change the colors of the gauge face and outline and hide gauge labels. By default, the legacy gauge chart uses a band divided into thirds that runs from green to red.

Procedure
1. Click the gauge chart object.
2. If you want to customize the color of the gauge face or outline, in the General section of the Properties pane, double-click the Face Color or Dial Outline Color property.
3. If you want to hide the gauge labels, in the Chart Labels section of the Properties pane, set the Gauge Labels property to Hide.
4. If you want to customize the colors and boundaries of the gauge areas, do the following:
 a. In the Color & Background section of the Properties pane, double-click the Gauge Palette property.
 b. To change the color of a boundary area, under Palette, select the color, click Color, specify the color properties, and click OK.
 c. To change the value of a boundary area, under Palette, select the boundary value, and type a new value.
 d. To add a new boundary area, click the new button.
e. To choose a pre-defined threshold style, click the **Palette** drop-down menu. You can choose whether to use discrete colors or continuous colors. To use a number instead of a percentage as a boundary, clear the **Percentage** check box, and then type a number in the **Numeric boundary** box.

Related concepts:

“Current Default Charts and Legacy Charts” on page 73

IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

“Gauge Charts” on page 89

Gauge charts, also known as dial charts or speedometer charts, use needles to show information as a reading on a dial.

Define Color by Value in Current Default Scatter and Bubble Charts

In a scatter or bubble chart you can specify that data points or bubbles appear in different colors based on an additional measure or fact. The color of the points or bubbles adds an additional aspect to the chart to assist you in finding relationships in large amounts of data.

For example, the following bubble chart shows the relationship between the unit cost and unit sale price. The size of the bubbles shows the gross profit and the color of the bubbles shows whether the quantity sold is above (yellow) or below (green) 1,000,000 units.

In a bubble chart, you can combine the color by value and bubble size to create a more meaningful chart.

Procedure

1. Drag a measure to the **Color** drop zone under **Measures** and then select the measure.
2. In the Properties pane, under Color & Background, double-click the Color by Value property.

3. To define the colors by percentages instead of actual values, select the Percentage check box.
 For example, if the Percentage check box is selected and your values range from 25 (red) to 50 (green), then the bottom 25 percent of values will be red, the top 50 percent of values will be green, and the values between 25 and 50 percent will be an interpolated color, such as yellow.

4. If you want to use a preset color palette, click Palette, and select the palette that you want to use.

5. If you want to customize a palette color or boundary value, select the palette entry in the Palette box and specify the color, transparency, and type a new boundary value.

6. To add a new palette entry, select the palette entry below which you want to add the new entry, click the new palette entry button, and click Color.

7. If your chart has lines or markers, under Style, set the marker shape, line style, and line weight.

8. To choose a color and transparency for missing or null values, under Missing Values, click Color and type a value in the Transparency box.

Related concepts:
 “Current Default Charts and Legacy Charts” on page 73
 IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.
 “Scatter Charts” on page 85
 Scatter charts use data points to plot two measures anywhere along a scale, not only at regular tick marks.
 “Bubble Charts” on page 86
 Bubble charts, like scatter charts, use data points and bubbles to plot measures anywhere along a scale. The size of the bubble represents a third measure.

Specify the Bubble Size in a Current Default Bubble Chart

In a bubble chart, you use a measure or fact to determine the size of the bubbles.

You can use the Bubble Measure in the Measures drop zone of the chart to specify bubble size. You can then specify the size range of the bubbles in the chart. You can also specify what value the smallest bubbles represent. For example, your bubble measure is revenue, and you set the minimum and maximum bubble size to 5 pt and 20 pt, respectively. You set the smallest bubble to represent the value zero. All the bubbles on your chart will be between 5 and 20 pts and any bubbles between 0 and 5 pts on this scale will appear at 5 pt.

You can combine bubble size with colors by value to create a chart that shows multiple dimensions.

Procedure

1. Select the chart object.

2. In Properties pane, under General, double-click the Bubble Size property.

3. Under Smallest bubble, select what value the smallest bubbles represent:
 - To show data items with a value of zero at the minimum bubble size, click Zero.

 Tip: This setting is consistent with Microsoft Excel 2003.
To show data items with a value of zero at the minimum bubble size and show negative bubbles as hollow, select the **Zero. Negatives shown as hollow** check box.

Tip: This setting is consistent with Microsoft Excel 2007.

To set the minimum bubble size to the minimum data value, click **Minimum data value**, and type a size for the minimum and maximum bubble size.

Note: The minimum data value can be positive or negative.

Related concepts:
- “Current Default Charts and Legacy Charts” on page 73
- IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.
- “Bubble Charts” on page 86

Bubble charts, like scatter charts, use data points and bubbles to plot measures anywhere along a scale. The size of the bubble represents a third measure.

Set the Position of the First Slice in a Current Default Pie Chart

You can specify the angle in a pie chart where the first pie slice starts. You can also change the direction of the slices so they appear clockwise or counter-clockwise.

The default starting position of the first slice is 90, which displays the first slice beginning at the 12 o’clock position. By default, the slices appear clockwise around the pie, so a starting position of 90 displays the first slice at the 12 o’clock position, a starting position of 180 displays the first slice at the 9 o’clock position, and so on.

Procedure

1. Select the pie chart object.
2. In the Properties pane, under General, beside the First Slice Angle property, enter the angle at which you want the first slice to appear.
3. To change the directions in which slices appear, change the Slice Direction property.

Related concepts:
- “Current Default Charts and Legacy Charts” on page 73
- IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.
- “Pie Charts” on page 80

Pie charts are useful for highlighting proportions.

Create a Donut Chart from a Current Default Pie Chart

You can add a hole to the middle of your pie chart to create a donut chart. You can then display something in the hole, such as a company logo, a calculation, or the legend.

Procedure

1. Select the pie chart object.
2. In the Properties pane, under General, set the Hole size (%) property to the percentage of the pie that you want the hole to take up.

Tip: You can select a value from the Hole size (%) list or type a value that is not listed.
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0. Pie charts are useful for highlighting proportions.

Pull Out Pie Slices in a Current Default Pie Chart

You can highlight pie slices by pulling them out from the rest of the pie. For example, the following chart shows revenue by product line with slices of less than 1,000,000,000 in revenue pulled out by 25%.

![Pie Chart Example](chart.png)

Procedure

1. Select the pie chart object.
2. In the Properties pane, under General, double-click the Exploded Slices property.
3. In the Exploded Slice dialog box, click the new button.
4. In the Exploded amount box, type the percentage by which the slice should appear away from the rest of the pie. 0% displays the pie slice in the pie; 100% displays the pie slice as far out from the rest of the pie as possible.
5. Define which slice to pull out:
 - To select a slice to pull out using its slice index, under Exploded slice, click Slice number and type the slice number. The slice number refers to the order of the slice in the legend. In the example above, Camping Equipment has a slice number of 1 and Personal Accessories has a slice number of 5.
 - To select a slice to pull out using a calculation, under Exploded slice, click Expression and click the ellipsis (...) beside the Expression box to define an expression.
In the example above, the expression that defines which slices to pull out is as follows: \([\text{Query1}.\text{[Revenue]} < 10000000]\).

The slice definitions appear in the Exploded Slices list.

6. To pull out other slices, repeat steps 3 to 5.

Related concepts:
- “Current Default Charts and Legacy Charts” on page 73
- IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.
- “Pie Charts” on page 80

Pie charts are useful for highlighting proportions.

Define the Cumulation Line in a Current Default Pareto Chart

The cumulation line on a Pareto chart displays the percentage of the accumulated total of all the columns or bars. For example, if your chart displays revenue by product line by year, the cumulation line at the second year’s column would be the total revenue of the first and second years.

You can customize the appearance of the cumulation line and its data points.

Procedure

1. Select the Pareto chart.
2. To hide or show the cumulation line, in the Properties pane, under Chart Annotations, set the Cumulation Line property.
3. To customize the cumulation line, click the cumulation line icon, and in the Properties pane, under General, set the following properties:
 - **Line Styles** defines the cumulation line color, style, and weight.
 - **Cumulation Label** defines the label in the legend for the cumulation line.
 You can use the default label from the data source or type a custom label. The color and marker shape of the cumulation line still appears in the legend when this property is set to None.
 - **Data Points** defines whether to show or hide data points along the cumulation line, whether to show or hide data point borders, the color of data point borders, and the data point size and shape.
 - **Data Labels** specifies whether to show or hide the labels for the data points along the cumulation line.

Related concepts:
- “Current Default Charts and Legacy Charts” on page 73
- IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.
- “Pareto Charts” on page 90

Pareto charts help you to improve processes by identifying the primary causes of an event. They rank categories from the most frequent to the least frequent. These charts are frequently used for quality control data, so that you can identify and reduce the primary cause of problems.

Define the Cumulation Line in a Legacy Pareto Chart

The cumulation line on a Pareto chart displays the percentage of the accumulated total of all the columns or bars. For example, if your chart displays revenue by product line by year, the cumulation line at the second year’s column would be the total revenue of the first and second years.

You can customize the appearance of the cumulation line and its data points.
Procedure

1. Select the Pareto chart.
2. To hide or show the cumulation line, in the Properties pane, under Chart Annotations, set the Cumulative Line property to Show.

3. To customize the cumulation line, click the cumulation line icon and in the Properties pane, under General, set the following properties:
 - Cumulation Axis displays or hides the cumulation line's axis on the right of the Pareto chart.
 - Cumulation Label displays or hides the cumulation line label in the legend. The color and marker shape of the cumulation line still appears in the legend when this property is set to No.
 - Line Styles defines the cumulation line color, style, and weight.
 - Marker Size (pt) defines the size of the markers along the cumulation line in points.
 - Marker Shape defines the shape of the markers along the cumulation line.
 - Values specifies whether to show or hide the values for the markers along the cumulation line.
 - Value Location defines the location of the marker values.

Related concepts:

- “Current Default Charts and Legacy Charts” on page 73
- IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.
- “Pareto Charts” on page 90

Pareto charts help you to improve processes by identifying the primary causes of an event. They rank categories from the most frequent to the least frequent. These charts are frequently used for quality control data, so that you can identify and reduce the primary cause of problems.

Insert a Microchart into a Crosstab

You can use microcharts to improve the visualization of data in crosstabs.

Procedure

1. Select a crosstab row or column.
2. From the right-click menu, click Insert Chart for Row Data or Insert Chart for Column Data.
3. From the Insert Chart dialog box, select a chart and click OK.
4. Specify the data to plot in the microchart.
 - The chart automatically plots the data in the specified rows or columns. You can change this if necessary.

Customize a Current Default Bullet Chart

After you create a bullet chart, you can customize the shape, color, and size of the bullet and target indicators.

By default, the bullet chart includes three gray colored regions in the background. You can edit the colored regions (Properties pane, Colored Regions).

Procedure

1. Select the bullet chart object.
2. To change the shape, color, and size of the bullet or target, do the following:
a. In the Properties pane, under General, double-click the Bullet Indicators property.

b. Under Bullet, specify how to show the bullet.

 The Bar width setting specifies the width of the bullet bar as a percentage of the space available. For example, if you specify 50 percent, the bar uses half of the space available. If you specify 100 percent, the bar uses all the available space.

c. Under Target, specify how to show the target.

3. To change the chart orientation, in the Properties pane, under General, set the Chart Orientation property.

Related concepts:
CURRENT DEFAULT CHARTS AND LEGACY CHARTS ON PAGE 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

BULLET CHARTS ON PAGE 88
Bullet charts are a variation of bar charts. They compare a featured measure (the bullet) to a targeted measure (the target). They also relate the compared measures against colored regions in the background that provide additional qualitative measurements, such as good, satisfactory, and poor.

Related tasks:
ADD COLORED REGIONS IN A CURRENT DEFAULT CHART ON PAGE 115
You can define colored regions in the body of a chart. For example, you can divide the background of a scatter chart into quadrants and color each quadrant.

Changing the number of hotspots in a chart

To improve performance, you can limit the number of hotspots that are generated for Report Studio charts.

About this task

A hotspot in a chart appears when you pause a pointer over it. For example, a hotspot on a drill-down symbol or a tooltip gives details about the column, line, or pie slice. The browser response time increases with the number of hotspots. When charts with many members are generated, the hotspots can become an additional burden for the system resources, which can freeze the browser.

When you limit the number of hotspots, priority is given to items such as axis labels and legend labels before individual graphical elements such as bars, pie slices, and so on. Depending on the number of items in a chart and the setting for maximum number of hotspots, some axis items may have hotspots while other axis items and all graphical elements do not, or all axis items and some graphical elements may have hotspots while other graphical elements do not.

The maximum hotspot setting in Report Studio overrides the default set by the administrator. For more information, see the IBM Cognos Business Intelligence Administration and Security Guide.

Procedure

1. Select the chart object.
2. In the Properties pane, under Miscellaneous, specify a number for the Maximum Hotspots property.
Create a Drill-up and Drill-down Chart

If you use a dimensionally-modeled data source, you can create a chart that allows you to drill down to lower-level data or drill up to higher-level data.

Drilling up and down allows you to view more general or more detailed information on your data within a predefined dimensional hierarchy.

This is an example of a dimensional hierarchy:

Years - Year - Quarter - Month

Before you begin

Before you begin, ensure that you are using a dimensionally-modeled data source.

Procedure

1. Open a chart that uses a dimensionally-modeled data source.
2. From the Data menu, click Drill Behavior.
3. On the Basic tab, under Report output drill capabilities, select the Allow drill-up and drill-down check box.
 - By default, the system determines which items can be drilled on based on the dimensional structure.
 - On the Basic tab, you can make drilling unavailable for any data item by selecting the item in either the Disable drill-up for box or the Disable drill-down for box.
 - On the Advanced tab, you can change the drill-up or drill-down behavior for any parameter by selecting the parameter and then choosing one of the desired behaviors.

Results

The chart generates links for any item that can be drilled down on.

You can drill down or drill up by right-clicking and choosing the action from the context menu. The menu items are unavailable if an item cannot be drilled up or down.

Related tasks:

"Create a Drill-up and Drill-down Report" on page 372

You can link groups of data items from different queries so that when you drill up or drill down in one query, the data item also drills up or drills down in the linked queries.

Example - Creating Drill-through Access in a Legacy Chart

You are a report author at The Sample Outdoors Company, which sells sporting equipment. You are requested to create a chart that shows the revenue for each product line and allows the reader to drill through from the revenue chart to view the product details for any item selected. You create a drill-through report to link two reports containing related information. You can then access related or more detailed information in one report by selecting a value in the chart. You create two reports: a target list report that contains the details for the item and a source report that contains the chart that shows the product line revenue.
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Set up drill-through access in a report to link two reports containing related information.

Create the target report

This example has three parts: creating the target report, creating the source report, and defining the drill behavior.

Procedure

1. Open IBM Cognos Report Studio with the GO Data Warehouse (query) package.
2. In the Welcome dialog box, click Create a new report or template.
3. In the New dialog box, click List and click OK.
4. From the Source tab, expand Sales and Marketing (query), Sales (query), and Product.
5. Double-click the following data items to add them to the list:
 - Product line
 - Product type
 - Product name
 - Introduction date
 - Product image
 Now you must create a filter to use as a drill-through parameter. A drill-through parameter begins and ends with a question mark (?) symbol.
6. Click the filters button.
7. Click the add button and type the following in the Expression Definition window:

 [Sales (query)].[Product].[Product line]=?p_PL?

8. Save the report as Product Line Details.

Create the Source Report

This example has three parts: creating the target report, creating the source report, and defining the drill behavior.

Procedure

1. Create a new report.
2. In the New dialog box, click Chart and click OK.
3. In the Chart group pane, click Column.
4. In the Chart type pane, click Column.
5. Click OK.
6. From the Source tab, expand Sales and Marketing (query) and then Sales (query).
7. Expand Sales fact and drag Revenue to the Measure (Y-axis) drop zone.
8. Expand Order method and drag Order method to the Series drop zone.

Define the Drill Behavior
This example has three parts: creating the target report, creating the source report, and defining the drill behavior.

Procedure
1. From the Data menu, click Drill Behavior.
2. On the Basic tab, under Report output drill capabilities, select the Allow this report to be a package-based drill-through source check box and click OK.
3. Right-click the chart object and click Drill-Through Definitions.
4. Click New Drill Through.
5. Under Report, click the ellipsis (...) button.
6. Select the Product Line Details report you created and click Open.
8. Under Format, click HTML.
9. Click the edit button.
 Any existing drill-through parameters appear. You see the parameter you created for Product Line Details.
10. For item p_PL, under Method, click Pass data item value, and under Value, click Product line.
11. Save the chart as Product Revenue.
12. Run the report.

Results
The chart shows the product lines as clickable links. When you click a product line, the second report runs for that product line.

Example - Creating and Customizing a Metrics Range Legacy Chart
You are a report author at The Sample Outdoors Company, which sells sporting equipment. You are asked to create a chart that shows revenue compared to planned revenue by quarter by product line. You also want to highlight revenues that were below target.

This example has three parts: creating a metrics chart, customizing it, and customizing the legend labels.

Related concepts:
“Current Default Charts and Legacy Charts” on page 73
IBM Cognos Report Studio has a new default chart technology as of version 10.1.0.

Create a Metrics Range Chart
This example has three parts: creating a metrics range chart, customizing it, and customizing the chart legend labels.

Procedure
1. Open IBM Cognos Report Studio with the GO Data Warehouse (query) package.
2. In the Welcome dialog box, click Create a new report or template.
3. In the New dialog box, click Chart and click OK.
4. In the Chart group pane, click Metrics Range.
5. In the Chart type pane, click Column Chart with Range Indicators and click OK.
6. From the Source tab, expand Sales and Marketing (query), Sales (query), and Sales fact.
7. Drag Revenue to the Actual (Y-axis) drop zone.
8. Drag Planned Revenue to the Target (marker) drop zone.
9. Expand Time dimension, and drag Quarter to the Categories (X-axis) drop zone.
10. From the Toolbox tab, drag a query calculation to the Tolerance (marker) drop zone.
11. In the Create Calculation dialog box, type Tolerance.
12. In the Expression Definition box, type [Planned revenue] * 0.1 and click OK.
13. Run the report and then pause the pointer over each bar to see the revenue for that quarter.

Customize the Chart
This example has three parts: creating the metrics range chart, customizing it, and customizing the legend labels.

Procedure
1. Select the chart body.
2. In the Properties pane, under Target Markers, ensure that the Performance Pattern property is set to On Target.
3. Double-click the Marker Color property, click Lime and click OK.
4. Set the Upper Range Skew (%) property to 0%.
 This option removes the upper tolerance line. In this example, you do not need to see the upper tolerance line because the revenue is always below the planned revenue target.
5. Ensure that the Target Range (%) property is set to 50%.
 This option sets the size of the range around the planned revenue target. The percentage you choose is the percentage of the tolerance measure. In this example, a 50% target range would display 50% of the tolerance calculation you created, which is 50% of 10% of planned revenue.
6. Double-click the Target Color property, click Red and click OK.
7. Double-click the Target Marker Border Color property, click Green and click OK.
8. Run the report.

Customize the Chart Legend Labels
This example has three parts: creating the metrics range chart, customizing it, and customizing the legend labels.

Procedure
1. Under the chart legend select Marker.
2. In the Properties pane, under Text Source, double-click the Text property.
3. Replace the text in the Text dialog box with Planned revenue and click OK.
4. Under the chart legend select Tolerance.
5. In the Properties pane, under Text Source, double-click the Text property.
6. Replace the text in the Text dialog box with Tolerance: 10% of planned revenue and click OK.
7. Under the chart legend, select Range.
8. In the Properties pane, under Text Source, double-click the Text property.
9. Replace the text in the Text dialog box with Planned revenue range = 50% and click OK.
10. Run the report.

Results

The report now shows customized legend labels for the markers, tolerances, and ranges as shown below.

Adding a Metric Studio Diagram to a Report

You can add IBM Cognos Metric Studio impact or custom diagrams in your reports. Impact diagrams show cause-and-effect relationships between metrics. Custom diagrams allow you to monitor your metrics using a predefined visual representation, such as a process diagram or strategy map.

The diagrams are added as images within your report.

You can add a diagram in the following ways:
 • as a static image with the Metric Studio Diagram object
 • as a dynamic image from a metrics package
You can also add range indicator charts.

You must first create custom diagrams in Metric Studio before you can add them in an IBM Cognos Report Studio report. Impact diagrams are automatically created in the metrics package. For information about creating Metric Studio diagrams, see the Metric Studio User Guide.

Add a Static Metric Studio Diagram to a Report

You insert the image using the diagram identifier from Metric Studio. The identifier is converted to an image URL and the image appears in your report output.

Because the diagram is a static image, any changes to the metrics will not appear in the diagram image within your report.

Procedure

1. From the Toolbox tab, drag a Metric Studio Diagram object to the report.
2. Select the Metric Studio diagram object.
3. In the Properties pane, paste the diagram identifier in the Diagram Identifier box.
 Tip: Copy the identifier from Metric Studio (Diagrams tab, View the Diagram Identifier button in the Actions column).
4. In the Description box, type a description for the diagram.
5. If you want to make the diagram image accessible, in the Alternate Text box, type a description for the image.

Related tasks:
 “Add Alternate Text to Images and Charts” on page 534

You can add alternate text for images, maps, and charts to make your reports accessible. When a screen reader encounters one of these objects, it reads the alternate text that you added to the object.

Add a Data-driven Metric Studio Diagram to a Report

If you use a metrics package (which is a relational data source), you can insert a Metric Studio diagram directly from the Toolbox tab. Because you add the diagram from the metrics store, any changes to the metrics will appear in the diagram image when you re-run your report.

If you add diagrams from the Metric History table of the metrics package, one diagram is added for each metric per time history. As a result, your report could contain a large number of diagrams. To improve the performance of your report, consider adding a filter to limit the time period.

Procedure

1. Open IBM Cognos Report Studio with a metrics package.
2. From the Toolbox tab, insert a diagram query item to the report.
3. If you want to make the diagram image accessible, select the image object for the diagram, and in the Alternate Text box, type a description for the image.
Related tasks:

“Add Alternate Text to Images and Charts” on page 534

You can add alternate text for images, maps, and charts to make your reports accessible. When a screen reader encounters one of these objects, it reads the alternate text that you added to the object.
Chapter 7. Maps

IBM Cognos Report Studio provides a set of maps that you can use to represent tabular data in a spatial context. For example, on a map of the world, countries and regions can be colored to represent the level of revenue.

Maps are not supported for reports run in Microsoft Excel format.

The Report Studio Map Object

Maps are most often used to show geographical areas, but they can be used to show other spatial information, such as a floor plan in a building, seats in an airplane, or parts of the human body.

Maps are similar to crosstabs in the way their data is organized. The display is different, but maps show the intersection of data the same ways as crosstabs; for example, you can see the revenue for golf equipment in Canada.

A map in IBM Cognos Business Intelligence consists of a collection of layers. Each layer contains different information and acts like a transparency that is placed on top of the map. Each layer adds more information to the map. For example a map of the world may contain information related to countries or regions on one layer and information related to cities on another level.

IBM Cognos Report Studio maps provide the following three types of layers:

- Region layer
 Specifies the regions on a map to be differentiated according to values in the data source. For example, to show the revenue level for each country and region on a map of the world, choose Country and Region as the region layer and then specify that the color of each country and region is based on the revenue value for that country and region. Areas can be set up for drilling through to other reports.

- Point layer
 Specifies the points to be placed on a map. The color and size of the points is based on the data that you select. For example, you choose to show cities as points on a map and set the color of each point by revenue and the size of each point by profit. Points can be set up for drilling through to other reports.
• Display layer
 You can show or hide items such as grid lines or capital cities. This layer is
determined in the map file and not in the data source.

Note: If you intend to create CSV or XML output from your map, use only a point
layer or a region layer. CSV and XML do not support the simultaneous use of both
layers in the same map. Only one layer will be rendered in the output.

Parts of Map Reports

The following shows the parts of a map as they appear in the IBM Cognos Report
Studio interface.

Example - Create a Map Report

You are a report author at The Sample Outdoors Company, which sells sporting
equipment. You are asked to show how revenue for the company is distributed
throughout the world. This information can be shown in tabular format using a list
report, but a map will create a more meaningful presentation. You decide to create
a report that contains a map of the world showing the distribution of revenue by
country and region.

Procedure

1. Open IBM Cognos Report Studio with the GO Data Warehouse (query)
 package.
2. In the Welcome dialog box, click Create a new report or template.
3. In the New dialog box, click Map and click OK.
4. In the Choose Map dialog box, in the Maps pane, expand the World folder and click World.
5. In the Region layers box, click Countries and Regions + Territories.
6. In the Point layers box, click None.
7. In the Display layers box, click Oceans.

 Tip: You can select or deselect multiple display layers by Ctrl+clicking.

 Tip: You can return to the Choose Map dialog box at any time by double-clicking the map background.

8. Drag the following data items to the map:
 - Revenue (in Sales fact) to the Color drop zone.
 - Retailer country and region (in Retailer site) to the Location drop zone.

9. Run the report.

Results

Set Map Properties

When you select an element in a map, you can view its properties in the Properties pane. Some properties are dependent on the existence of other properties.

If you are familiar with using conditional variables, you can customize the map to change appearance or provide information in response to expressions or conditions.

When you change a map property, you usually do not see the change until you run the report. Changes to the properties of labels and titles are reflected immediately.

These are some of the properties you can change in maps. These properties are available when you select the map object, unless specified otherwise in the Action to perform in the Properties pane column.
<table>
<thead>
<tr>
<th>Goal</th>
<th>Action to perform in the Properties pane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hide or show the title, subtitle, footer, or axis title</td>
<td>Under Chart Titles, set the Title, Subtitle, Footer, or Axis Title property.</td>
</tr>
<tr>
<td>Hide or show the legend</td>
<td>Under Chart Annotations, set the Legend property.</td>
</tr>
<tr>
<td>Hide or show map labels</td>
<td>Select the region or point layer. Under Chart Labels, set the Labels property.</td>
</tr>
<tr>
<td>Hide or show values on the map</td>
<td>Select the region or points layer. Under Chart Labels, set the Values property.</td>
</tr>
<tr>
<td>Hide or show the border around the legend</td>
<td>Select the legend icon. Under Box, set the Borders property.</td>
</tr>
<tr>
<td>Change the border around the map object</td>
<td>Under Box, set the Border property.</td>
</tr>
<tr>
<td>Hide or show the tooltips</td>
<td>Under Chart Labels, set the Tooltips property.</td>
</tr>
<tr>
<td>Change the amount of white space around the map</td>
<td>Under Box, set the Padding or Margin property.</td>
</tr>
<tr>
<td>Change the default colors for all map elements</td>
<td>Under Color & Background, set the Background Color, Foreground Color, or Fill Effects property.</td>
</tr>
<tr>
<td>Change the font and the alignment of text</td>
<td>Under Font & Text, set the Font or Relative Alignment property. Tip: The 2005 Quarterly Sales Forecast sample report in the GO Sales (analysis) package includes text alignment. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.</td>
</tr>
<tr>
<td>Resize the map</td>
<td>Under Positioning, set the Size & Overflow property.</td>
</tr>
<tr>
<td>Change the font for the legend</td>
<td>Select the legend icon. Under Font & Text, set the Font property.</td>
</tr>
<tr>
<td>Change the format of values in the legend</td>
<td>Select the value in the region or point layer. Under Data, set the Data Format property.</td>
</tr>
<tr>
<td>Ignore data with no features</td>
<td>Under Data, set the Ignore Data with No Features property.</td>
</tr>
<tr>
<td>Specify the size of points</td>
<td>In the point layer, click the measure in the Size drop zone and set the Minimum Size and Maximum Size properties.</td>
</tr>
</tbody>
</table>
Goal | Action to perform in the Properties pane
---|---
Add titles, subtitles, footers, or axis titles | Set the Title, Subtitle, Footer, or Axis Title property.

Procedure

1. Select the map object or map element to change:
 - To change general properties, such as size and color, click the map object.
 - To change specific map elements, such as a layer or title, click the element itself.

 Tip: To cancel a selection, press the Esc key.

2. In the **Properties** pane, set the property value.
 An ellipsis (...) button indicates that a dialog box provides further options.

 Note: You may have to scroll to see all the properties.

Example - Define Data Values for the Region Layer

The map that you created in the previous topic is not yet linked to a data source. You will now specify the data values from your data source that will determine the color of each region.

Procedure

1. From the **Source** tab, expand **Sales and Marketing (query)**, **Sales (query)**, and **Sales fact**.
2. Drag **Revenue** to the **Color** drop zone.
3. Expand **Employee by organization**.
4. Drag **Country or Region** to the **Location** drop zone.
5. Run the report.
Results

Match Data Values to Names in the Map File

If the Ignore Data with No Features property is set to No, then each object that is called from the data source must have a matching label in the specified layer of the map file. For example, if your data source has a country and region named United States and the layer in the map file labels the same country and region USA, then there is a mismatch that must be corrected. IBM Cognos Report Studio only makes you aware of a mismatch if each object in your data source does not have a corresponding label in the map file. If there are extra labels in the map file that do not have a match in the data source, the report will run without an error message.

A mismatch between your data and the map file must be corrected by the report author. It can not be corrected by a consumer of the map report at run time. There are two ways to correct a mismatch between your data and the labels in the map files. You can use IBM Cognos Map Manager to edit the labels in the layers of the map file, or you can use the dictionary property to create an alias for each mismatched object. When you use the dictionary property, it resolves the mismatch only for a single report, and is not shared with other reports. If you intend to continue using a map with the same data source, it is best to edit the map in Map Manager so that the labels match the objects in your data source.

For information about using Map Manager, see the Map Manager Installation and User Guide.

Procedure

1. Select the map object.
 - The title bar of the Properties pane now shows the word Map.
2. In the General section of the Properties pane, double-click the Dictionary property.
3. Click the new button.
4. In the Dictionary Entry dialog box, click Search.
5. In the Search string box, type a word or part of a word for which to search.
 For example, if you are searching for United States, type in part or all of the name.
6. In the Search map layer box, click the layer to search and click Search.
7. In the Matching features box, click the label to which to match your data source and click OK.
8. In the Alias box, type the name as it appears in the data source and click OK.
 For example, if the country and region in your data source is named USA, type USA as the alias.

Note: To find out the name for the objects in your data source, run a list report. For example, you can run a list report to show the names of all the countries and regions in your data source. For more information see Chapter 4, “Lists,” on page 59.

Define Data Values for the Point Layer

The Point layer in a map is used to visually represent data for point locations, such as cities or sales outlets. Both the color and size of points can be based on data from your data source.

Procedure
1. Open the Choose Map dialog box:
 • When you create a new map report, this dialog box appears automatically.
 • If you are already in a map report, double-click the map background.
2. In the Point Layers box, select the layer containing the points to show on the map.
 For example, on a map of the world, you may want the points to represent cities.
3. From the Source tab, drag a data item to the Color drop zone in the Point Layer.
 For example, to have the color of the point based on revenue, drag Revenue from the Source tab to the Color drop zone.
4. From the Source tab, drag a data item to the Size drop zone in the Point Layer.
5. From the Source tab, drag a data item to the Location drop zone in the Point Layer.
 The object must be supported in the map file as a point location. For example, in the World sample map, city is supported as a point location but country or region is not.
6. If you need to refine the location, drag an object to the Refine Location drop zone.
 Use this drop zone when there is more than one location with the same name. For example, if you try to run a report with cities in the point layer, and there is more than one city in your data source with the same name, the report does
Add Colors to the Region or Point Layer

You can add colors for regions or points and specify values to determine when those colors are shown.

Procedure
1. In the report, click the Region Layer or Point Layer.
2. In the Color & Background section of the Properties pane, double-click the Palette property.
3. Click the new button \[
\text{Palette}
\]\ and click Color.
 A new color is added to the list of colors.
4. To view the palette colors as a continuous spectrum in which colors blend into one another, click Continuous Colors.
5. With the new color selected, click Color in the right pane of the dialog box and select a color.
6. Change the percentage boundaries for the colors.

Tip: To specify absolute values rather than percentages, clear the Percentage check box.

Add a Legend Title to a Map

There are legend titles for the entire legend, for the color of the regions, for the color of the points, and for the size of the points.

Procedure
1. If the legend title is not showing, click the legend icon \[
\text{Legend}
\].
2. In the General section of the Properties pane, set the Legend Title to Show.
3. In the report, double-click the legend title and type the title.
4. By default, the legend titles are taken from the object you have selected from the data source. To change the legend title for the region color, point color, or point size, do one of the following:
 • From the Toolbox tab, drag a text or calculation object to the Color Legend Title drop zone in the Region Layer or Point Layer, or the Size Legend Title drop zone in the Point Layer.
 • Double-click the Color Legend Title or Size Legend Title drop zone, to change from the default legend title, then double-click the drop zone again. In the Text dialog box, type text for the legend title.

Add a Note to a Map

You can add one or more notes, determine their position in the map report, and specify borders around notes.

Procedure
1. Select the map object.
2. In the **Chart Annotations** section of the **Properties** pane, double-click the **Notes** property.

3. Click the new button 🗒️, and click OK twice.
 A note icon with the words **New Note** appears in the report.

4. Click **New Note** next to the note icon 🗒️.

5. In the **Text Source** section of the **Properties** pane, double-click the **Text** property.

6. Type the text to appear in the note and click OK.

7. In the report, click the note icon 🗒️.

8. In the **Positioning** section of the **Properties** pane, type values to specify the bottom position, left position, height, and width for the note.
 The location of the note is defined by the number of pixels.

9. Set the **Note Border** property to specify a border around the note.

10. Run the report to view the note.

Drill Through to Another Report From a Map

You can link regions or points on a map to another report. For example, on a map of the world, you can specify that when you click on China, a map of China opens.

Procedure

1. Open the target report.

2. From the **Data** menu, click **Filters**.

3. On the **Detail Filters** tab, click the add button 🗒️.

4. In the **Available Components** box, click the **Source** or **Data Items** tab to select the data item to use.
 For example, to open the target report when Canada is clicked in the source report, expand **Countries and Regions** and double-click **Country and Region**.

5. In the **Expression Definition** box, type an operator after the data item or select an operator from the **Functions** tab and then enter a value.
 For example, to open the report when Canada is clicked in the source report, the expression would be as follows:

 [Country and Region] = 'Canada', where [Country and Region] is the name of the data item in the package.

6. Save the target report.

7. Open the source report.

8. Select the region layer or the point layer.

9. In the **Data** section of the **Properties** pane, double-click the **Map Drills** property.

10. In the **Map Drills** dialog box, click the new button 🗒️.

11. In the **Search string** box, type the name of the feature to use for the drill-through link.
 For example, to open a report when you click on Canada in the map, search on all or part of the word **Canada**.
12. Click **Starts with** to search for features that start with the search string or click **Contains** to search for feature names that include the search string.

13. To include a parent layer’s name in the results of your search, select a layer in the **Include parent layer** list.

For example, if you searched for **Oslo** and you included the parent layer of **Countries and Regions + Territories**, the search result would be **Oslo (Norway)**.

14. Click **Search**.

15. Select a feature from **Matching features** box and click **OK**

16. In the **Drill-Through Definitions** dialog box, click the new button.

17. Click the ellipsis (...) button beside the **Report** box, and select the target report.

18. Run the report.

Results

When you click the selected feature in the source report, the target report will open.

Edit a Map

With IBM Cognos Map Manager you can edit the labels in maps to be consistent with the object names in your database.

Administrators and modelers use a Microsoft Windows operating system utility named Map Manager to import maps and update labels for maps in IBM Cognos Report Studio. For map features such as country or region and city names, administrators and modelers can define alternative names to provide multilingual versions of text that appears on the map.

For instructions, see the Map Manager *Installation and User Guide*.

Additional Maps

IBM Cognos supplies a set of standard maps that can be used directly with IBM Cognos Report Studio as well as IBM Cognos Map Manager.

If you already have proprietary geographic data, you can also create your own custom .GST files and then import these into Map Manager. To create custom .GST files, you must use an application that produces MapInfo files, such as MapInfo Professional.

Location Intelligence

Sophisticated mapping functionality, known as location intelligence, can be used for a broad range of business applications that extend the mapping capability of IBM Cognos Business Intelligence. MapInfo provides solutions that can be directly integrated with IBM Cognos BI. These include the ability to dynamically create geographic filters and custom areas for aggregating data for ad-hoc analysis.

Examples of business applications of location intelligence are listed in the following table.
<table>
<thead>
<tr>
<th>Business application</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target marketing</td>
<td>Learn who your best clients are and find more like them.</td>
</tr>
<tr>
<td>Network optimization and site location analysis</td>
<td>Put stores near your customers and look for gaps in geographical coverage.</td>
</tr>
<tr>
<td>Routing and work force optimization</td>
<td>Reduce the number of trucks you need and make your drivers more efficient.</td>
</tr>
<tr>
<td>e-government</td>
<td>Provide citizens with self-service opportunities.</td>
</tr>
<tr>
<td>Sales territory creation</td>
<td>Create balanced sales territories.</td>
</tr>
<tr>
<td>Economic development</td>
<td>Plan the development of your community.</td>
</tr>
<tr>
<td>Communications network planning</td>
<td>Avoid costly mistakes by putting cell towers in the right locations. Identify the locations of clients in your service area.</td>
</tr>
</tbody>
</table>

You can contact MapInfo for both data and location intelligence solutions through their Web site: http://www.mapinfo.com
Chapter 8. Active Reports

You can use IBM Cognos Report Studio to create active reports. IBM Cognos Active Report is a report output type that provides a highly interactive and easy-to-use managed report. Active reports are built for business users, allowing them to explore their data and derive additional insight.

Active reports make business intelligence easier for the casual user. Report authors build reports targeted at their users' needs, keeping the user experience simple and engaging. Active reports can be consumed by users who are offline, making them an ideal solution for remote users such as the sales force.

Active reports are an extension of the traditional IBM Cognos report. You can leverage existing reports and convert them to active reports by adding interactive behavior, providing end users with an easy-to-consume interface.

Like existing IBM Cognos reports, you can execute active reports from IBM Cognos Connection as well as schedule and burst them to users.

You build active reports with the same objects that you use to build other report types. However, there are objects that are specific to active reports. These objects fall into two categories:

- active report controls
- active report variables

For tips about building active reports, see the Proven Practices section of the Cognos Customer Center (http://www-01.ibm.com/software/data/cognos/customercenter).

Active Report Controls

You use active report controls to create the layout of an active report as well as filter, sort, and navigate through data in the report.

Layout

The following controls are used to build the layout of an active report:

- Tab controls, which are used for grouping similar report items.
- Decks of cards, which are used for layering report items.
- Hiding or showing list columns, which allows users to control the data they see by using check boxes.
- Row numbers, which show the number of rows of data in a control.

Filtering and Sorting

To help report authors deliver the content in the most consumable way possible, IBM Cognos Report Studio provides several new filtering controls:

- List and drop-down list controls
- Interactions with charts

 For example, clicking a category in a chart filters the data in a list.
• Radial buttons
• Check boxes
• Toggle buttons
• Push button controls

Navigation

To help users navigate through data in a report, report authors can add the following controls:
• Iterators
• Sliders

Data Containers

Data containers, such as lists, crosstabs, charts, and repeater tables, are also considered controls in an active report, as you can add interactive behavior to them.

Related concepts:

“Adding Controls to a Report” on page 175

IBM Cognos Active Report offers several active report controls. For many controls, two different versions are available, a static version and a data-driven version.

Active Report Variables

Active report variables work in conjunction with active report controls to add interactivity to a report.

Actions performed on a control, such as selecting an item in a control or selecting a control itself, can set the value of a variable. In turn, controls can respond to changes in the value of a variable, such as filtering data in a control.

Related tasks:

“Create and Manage Active Report Variables” on page 173

Create active report variables to allow controls in a report to interact with each other. Active report variables pass information from one control to another control.

Convert an Existing Report to an Active Report

You can leverage existing reports by converting them to active reports.

Procedure

1. Open the report that you want to convert.
2. From the File menu, click Convert to Active Report.

Results

IBM Cognos Active Report menu items, objects, and properties become available in IBM Cognos Report Studio. Objects in the report that are not supported in active reports, such as prompt controls in report pages, are removed.
Specify Active Report Properties

You can specify properties for active reports, such as the text that appears in the browser window title bar, the maximum number of rows that a report can contain, and an access code that users must enter to view a report.

Procedure
1. From the File menu, click Active Report Properties.
2. To specify the title that will appear in the browser window title bar when the report is viewed, under Window Title, type the title that you want.
3. If you want to specify the window title in other languages, do the following:
 - Under Window Title, click the ellipsis button.
 - Click the add icon.
 - Select the languages that you want.
 - In the Language column, click one of the languages that you selected.
 - Click the edit button and type the window title for that language.
4. In the Window Startup Size box, choose among the available options to specify the size of the browser window when an active report is viewed.
5. In the Maximum query rows box, specify the maximum number of rows of data that the report can contain.
 - If the number of rows of data returned when the report is run exceeds this value, an error message appears, and users will not be able to view the report.
6. To specify an access code that users will have to enter to view the report, enter the code in the Access code box.
 - You can use any Unicode character in the access code, and there is no limit to the number of characters an access code can contain.
 - The value entered is shown in the Access code box, and users will have three opportunities to enter the correct code before the active report shuts down. To try again, users have to reopen report.
 - Note: The access code is a tool to help prevent the unauthorized consumption of an active report within an organization. It is not an enterprise grade security solution.
7. To reuse the Window Startup Size and Maximum query rows properties when you create other active reports, select the Use as default for new active reports check box.

Adding Interactivity to a Report

You create an active report by adding interactive behavior to controls in the report. Adding interactive behavior links controls to each other, allowing an action performed on a control to change the state of another control.

Create and Manage Active Report Variables

Create active report variables to allow controls in a report to interact with each other. Active report variables pass information from one control to another control.
About this task

You can also create active report variables when you define connections between controls. However, you may want to modify these variables, such as changing the name or defining default values.

In addition, active report variables allow active reports inserted in a workspace in IBM Cognos Workspace to interact with each other. For example, selecting a product line in one active report causes another active report to show the data for the selected product line. In addition, variables allow check boxes and sliders in a workspace in Cognos Workspace to drive active reports in the workspace.

Active report variables must meet the following criteria to work in Cognos Workspace:

- The variables must be public.
 - When you make a public variable, the variable can be consumed in other IBM Cognos products.
- For active reports to listen to each other in a workspace, each report must have a public variable with the same name.
- For a Cognos Workspace slider to drive an active report, a range variable must be defined in the active report.
 - The data item of the slider and the range variable in the active report must have the same name.
 - Two variables are used to define the minimum and maximum values of the range variable. The two variables are used to define the minimum and maximum values of the slider.

Procedure

1. Click the Active Report Variables tab.
2. Create a variable by following these steps:
 a. Click Create a New Variable.
 b. In the Name box, type the name of the variable.
 c. Click the Data Type drop-down menu and click the type of variable that you want to create.
 d. To make the variable public, select the Public (External) check box.
 e. If you want to specify a default value for the variable, click Set Default Value(s) and define the values that you want.

 Tip: Define multiple default values when you want more than one item selected in a control that allows multiple selections, such as a check box group.

3. To modify an existing variable, right-click the variable or click Edit Variable.
4. To add a default value, click Set Default Value(s).
 - To change a default value, click the name of the current default value specified for the variable.
5. Create a range variable by following these steps:
 a. Create the variables that will define the minimum and maximum values of the Cognos Workspace slider.
 - The variables must have the number data type.
Tip: Range variables are automatically set as public variables. Do not make the variables that are used to define the minimum and maximum values of the slider public.

b. Click Manage Ranges.

c. Click the new icon.

d. In the Name box, type the name of the range variable.

e. Click the Minimum Variable list and select the variable that will be used to set the minimum value of the slider.

f. Click the Maximum Variable list and select the variable that will be used to set the maximum value of the slider, and then click OK twice.

Note: If you later delete the minimum or maximum variable, the range variable is also deleted.

Related tasks:
“Define a Connection Between Controls” on page 182

Define a connection between controls to link them together. When you link controls, an action performed on one control affects the behavior of the other control.

Adding Controls to a Report

IBM Cognos Active Report offers several active report controls. For many controls, two different versions are available, a static version and a data-driven version.

Use the static version of a control when you want to manually define the values that the control can contain. Use the data-driven version of a control when you want the values that the control can contain to come from a data item. Controls are available on the Toolbox tab.

Tip: To view only toolbox items that are specific to active reports, right-click anywhere in the Toolbox tab and click Active Report Toolbox Items.

When you add a control to an active report, you can convert the control to another type of control that is compatible by right-clicking the control and selecting Convert Control. For example, you can convert a data drop-down list control to a data iterator control.

Variable Text Items

Use variable text items to insert active report variables in a report. Variable text items are useful to show the value of a variable when an item in another control is selected. For example, you can use a variable text item as a title for a list that is linked to a drop-down list control. When an item is selected from the drop-down list, the item appears as the title of the list.

Row numbers

The active report row number tool adds row numbers that reflect the visible row number in the report. This is different from the report row number tool, which reflects the server calculated row number.
Repeater tables

Use static repeater tables and data repeater tables to build a repeating structure of content. Repeater table controls allow you to create button bars or grids of custom content to control the content that appears in other controls. In data repeater table controls, the content that appears in the repeater table is driven by a data item that you insert in the control.

The following image shows a static repeater table when it is inserted in an active report.

![Static repeater table control](image1.png)

Figure 1. Static repeater table control

The data repeater table is the repeater table data container that is available for all report types. The static repeater table is available in the Toolbox tab only when you are authoring an active report.

Decks and Data Decks

Use decks and data decks to show different objects and different data respectively based on a selection in another control. For example, in a deck, clicking a radio button in a radio button group control shows a list object while clicking a different radio button shows a chart object.

The following image shows a deck control when it is inserted in an active report.

![Deck control](image2.png)

Figure 2. Deck control

Decks are composed of cards. In static decks, you define the number of cards in the deck and you insert the objects that you want in each card. This allows you to create cards that can contain different objects, such as pie chart in one card and a crosstab in another card. In data decks, the cards are defined by a data container or data items inserted in the deck, and a data item determines which card appears.

Tab Controls and Data Tab Controls

Use tab controls and data tab controls to define multiple pages for the same area of a report. In data tab controls, the tabs are driven by a data item that you insert in the control.

The following image shows a tab control when it is inserted in an active report.
Button Bars and Data Button Bars

Use button bars and data button bars to add a group of push buttons. In data button bars, the buttons are driven by a data item that you insert in the control.

The following image shows a button bar control when it is inserted in an active report.

![Button Bar Control](image1)

In reports, users can click only one button at a time.

Toggle Button Bars and Data Toggle Button Bars

Use toggle button bars and data toggle button bars to add a group of buttons that change appearance when pressed. In data toggle button bars, the buttons are driven by a data item that you insert in the control.

The following image shows a toggle button bar control when it is inserted in an active report.

![Toggle Button Bar Control](image2)

In reports, users can click one or more buttons simultaneously.

Radio Button Groups and Data Radio Button Groups

Use radio button groups and data radio button groups to group a set of buttons that have a common purpose. In data radio button groups, the radio buttons are driven by a data item that you insert in the control.

The following image shows a radio button group control when it is inserted in an active report.

![Radio Button Group Control](image3)

In reports, users can click only one radio button at a time.
Check Box Groups and Data Check Box Groups

Use check box groups and data check box groups to group a set of check boxes. In data check box groups, the check boxes are driven by a data item that you insert in the control.

The following image shows a check box group control when it is inserted in an active report.

![Check Box Group Control](image1)

Figure 7. Check box group control

In reports, users can select one or more check boxes simultaneously.

Drop-Down Lists and Data Drop-Down Lists

Use drop-down lists and data drop-down lists to provide a list of items that users can choose from. In data drop-down lists, the lists are driven by a data item that you insert in the control.

The following image shows a drop-down list control when it is inserted in an active report.

![Drop-Down List Control](image2)

Figure 8. Drop-down list control

In reports, users can select only one item at a time.

List Boxes and Data List Boxes

Use list boxes and data list boxes to provide a list of items that users can choose from. In data list boxes, the lists are driven by a data item that you insert in the control.

The following image shows a list box control when it is inserted in an active report.

![List Box Control](image3)

Figure 9. List box control

In reports, users can select one or more items in a list box.
Iterators and data iterators

Use these controls to allow users to navigate or filter values in a control by clicking buttons such as previous and next. In data iterators, the iterations are driven by a data item that you insert in the control.

The following image shows an iterator control when it is inserted in an active report.

![Iterator control](image1.png)

Figure 10. Iterator control

Discrete values sliders, continuous values sliders, and data discrete values sliders

These controls allow users to navigate or filter data using a slider bar. Discrete and data discrete values sliders allow users to slide between individual values, such as months. In data discrete values sliders, the values are driven by a data item that you insert in the control. With continuous values sliders, users slide through numeric values between minimum and maximum values that you define, such as 0 and 100.

The following image shows a discrete value slider control when it is inserted in an active report.

![Discrete value slider control](image2.png)

Figure 11. Discrete values slider control

Buttons

Use buttons to add individual push buttons to a report.

The following image shows a button control when it is inserted in an active report.

![Button control](image3.png)

Figure 12. Button control

Data Containers

Lists, crosstabs, charts, maps, and repeater tables are also controls in an active report, as you can add interactive behavior to them.

Add Data to a Control

For every control that you insert in a report, you must add the data that you want to appear in the control.

Add data to a data-driven control

For data-driven controls, you insert data items from the package.
Procedure

1. On the Source tab, drag query subjects or query items to the control.
2. To add an image to the data in the control, drag the appropriate data item to the Icon box.
3. If the data that will appear in the control depends on other data that you do not want to show, drag the appropriate data item to the Values box.
 For example, you add Product type to a data list box control and you want to filter the product types that appear in the control based on a product line selected in another control. To filter the data, you must drag Product line to the Values box.

 Tip: IBM Cognos Report Studio can automatically copy data items from other controls when you create connections between controls.
4. If the control is a data deck and you want to create a default card that will appear when no other card matches the variable value passed to the deck, in the Properties pane, click Yes for the Default Card property. Then click the No Data Contents tab for the deck and insert the objects that you want to appear on the default card.

Related tasks:

"Define a Connection Between Controls" on page 182
Define a connection between controls to link them together. When you link controls, an action performed on one control affects the behavior of the other control.

Add data to a static control
For static value driven controls, you manually define the data in a data table.

Procedure

1. In the report, click the definition icon of the control.

 Tip: The definition icon is visible only when the visual aid Show Interactive Object Controls is enabled.
2. To add a new object, such as a card in a deck or a button in a button bar, under Data Table, click the new button.
3. In Data Table, define the values that you want to appear in the control.
 Values are organized by data item. In addition to the default data item (Label) and values provided, you can create your own data items and values. For example, to add an icon to each value, you must create a data item for the icons.

 • To define a new data item, click the new button and type the name of the data item that you want to create.
 • Click inside each table row and type the name of the value.
 • To add translations for the values, to support users in multiple languages, click the ellipsis button, choose the languages that you want to support by clicking the add button, and type the translated text for each language added.
 • If you created new data items, in the Definition box, click the Label drop-down list and select the data item that you want to use in the control.
• To add an icon to each value, select the **Icon** check box, click the drop-down list, and select the data item that contains the icons that you want to use.

You cannot add an icon to values in static decks and discrete values sliders. To add an icon to values in a static repeater table, insert the **Image** object from the **Toolbox**. Then specify the data item for the icons by referencing the data item in the **Properties** pane.

4. **Optional:** If you want to copy all data values to another static control, click the copy control definition icon. After you have copied the data values of the control, click the definition icon of another static control, and then click the paste control definition icon to copy the data values.

Tip: You can also drag data items from one control and drop them in another control. This action moves the data item from one control to another control instead of copying the item. You can drag and drop data items only to static controls that can contain objects, such as a deck, tab control, and repeater table. In addition, the data table of the target control must contain a data item with the same name as the data item you are moving, such as *Label*.

5. If the control is a deck, click the left and right arrows to navigate to each card of the deck and insert the objects that you want to appear on each card.

To create a default card that will appear when no other card matches the variable value passed to the deck, in the **Properties** pane, click **Yes** for the **Default Card** property. Then click the **No Data Contents** tab for the deck and insert the objects that you want to appear on the default card.

Related tasks:

"Referencing data items defined in a static control"

If you insert an object in a static control, such as an image in a static repeater table, you can use a data item in the control to populate the object.

Referencing data items defined in a static control

If you insert an object in a static control, such as an image in a static repeater table, you can use a data item in the control to populate the object.

Before you begin

You must create the data item in the data table of the control before you can reference the item.

About this task

You can reference data items only for text items, images, hyperlinks, and HTML items inserted in decks, tab controls, and repeater tables.

Procedure

1. In the static control, click the object for which you want to reference a data item.

2. In the **Properties** pane, click the **Source Type** property and choose **Control Data Item Value**. **Control Data Item Value** property appears below the **Source Type** property.
3. Click the **Control Data Item Value** property and select the data item that you want to reference.

 Tip: If the object is a hyperlink, you can specify the data item to be used to populate the hyperlink text as well as the data item to be used to populate the URL of each link.

Related tasks:

“Add data to a static control” on page 180

For static value driven controls, you manually define the data in a data table.

Define a Connection Between Controls

Define a connection between controls to link them together. When you link controls, an action performed on one control affects the behavior of the other control.

Procedure

1. Click the create a new connection icon of a control that you added to the report.

 Tip: The create a new connection icon is visible only when the visual aid **Show Interactive Object Controls** is enabled.

2. In the **Source Control** drop-down list, select the source control for which you want to define a connection.

3. Click the **Data Item** drop-down list under the source control and select the data item that will drive the behavior of the target control.

4. In the **Target Control** drop-down list, select the target control for which you want to define a connection.

5. Click the **Data Item** drop-down list under the target control and select the data item that will determine what appears in the target control.

 If the data item that you want to use is not in the query of the target control, and the source control is a data-driven control, select **Copy Data Item from Source** to copy the source data item specified in the previous step to the target control query. If the source control is a static control, select **Use Source Definition**.

 If the target control is a data container, the copied data item appears shaded in the container to indicate that the column visibility property for the item is set to **Hidden**.

6. Click the **Behavior** drop-down list between the source and target controls and specify the type of relationship that you want to define between the two controls:

 - To select data in the target control based on what will be selected in the source control, click **Select**.
 - To filter data in the target control based on what will be selected in the source control, select **Filter**.

7. Below the **Behavior** area, click the active variable drop-down list and choose to create a new variable for the connection or use an existing variable.

 - If you create a new variable, type a name for the variable and specify its data type. You can also specify its default values.
 - If you choose to use an existing variable, choose the variable that you want. You can also specify its default values.

8. Click **Connect**.
Results

When a connection is defined, IBM Cognos Report Studio creates the appropriate conditions for the selection behavior and reaction behavior of the source and target controls.

Tip: The interactive behavior icon $\mathbf{\square}$ of a control changes to indicate that a connection was defined. The Active Report Controls tab $\mathbf{\square}$ shows the controls and variables inserted in a report and their relationships to one another. You can click a control in this tab to quickly locate the control in the report as well as set default values for variables.

Related tasks:

- “Show or Hide a Column or Row” on page 186
 You can show or hide a column in a list or a column or row in a crosstab when the report is viewed.
- “Add data to a data-driven control” on page 179
 For data-driven controls, you insert data items from the package.
- “Add data to a static control” on page 180
 For static value driven controls, you manually define the data in a data table.

Specify the Selection Behavior of a Control

Specify the selection behavior of a control to determine what interactive behavior should occur when the control is clicked or when an object in the control, such as a button, check box, or data item, is selected.

Specifying the selection behavior of a control sets the value of active report variables defined in the report. The active report variable values are then used to specify the reaction behavior of controls. For example, you add two drop-down list controls to a report and you create a connection between them. The first drop-down list shows product lines and the second drop-down list shows product types. When a product line is selected in the first drop-down list box, you want to pass that information to the second drop-down list box so that it shows only the product types of the selected product line.

You can specify a selection behavior for any control, except for decks and data decks.

IBM Cognos Report Studio automatically sets active report variable values when you define a connection between controls. However, you may need to set the value of other variables to specify additional interactive behavior.

Procedure

1. Click the interactive behavior icon $\mathbf{\square}$ of the source control.

 Tip: The interactive behavior icon is visible only when the visual aid Show Interactive Object Controls is enabled.

 The Report Behavior box shows the relationship between the source and target controls when you defined a connection between the controls. You can specify default values for the variable associated with the control by clicking Set Default Value(s).
2. In the **Behavior on Select** box, pause the pointer to the right of **Set Variable Values** and click the edit button ![edit button] that appears.

3. For each active report variable that you want to set as part of the selection behavior of the control, click the **Value** drop-down list and select one of the following choices:
 - If you want to clear the current value of the variable, click **Set to Empty**.

 Tip: Clearing the current value of a variable is useful when you have cascading controls. For example, if the parent control is reset to a default value, you want to reset the child control to a default value as well.
 - If you want to specify your own value, click **Type in a value** and type the value that you want to use.
 - If you want the variable values to be driven by a data item in the report, click the data item that you want to use.
 - If you do not want the variable to be used for the control, click **Do not set**.

4. To create a new active report variable, click **Create a New Variable**.

Related tasks:

- "Specify the Reaction Behavior of a Control"
- Specify the reaction behavior of a control to determine how a control will react when another control, or an object in the control, is selected.

Specify the Reaction Behavior of a Control

Specify the reaction behavior of a control to determine how a control will react when another control, or an object in the control, is selected.

You can specify the following reaction behaviors:

- **Select an item in a control.**

 For example, you specify a default value for a variable, and the variable drives a drop-down list control. When the report is run, you want the default value to appear in the control.

 You can specify this reaction behavior for any control, except for single button controls.

- **Filter data in a control.**

 For example, you want to filter the product types in a drop-down list control based on the product line selected in another drop-down list control.

 You can specify this reaction behavior for drop-down lists, data drop-down lists, list boxes, data list boxes, radio button groups, data radio button groups, check box groups, data check box groups, lists, and crosstabs.

- **Enable a control.**

 For example, you want to make a control interactive only when a selection is first made in another control.

 You can specify this reaction behavior for any control, except for decks, data decks, tabs, data tabs, lists, crosstabs, charts, and maps.

In addition to the above behaviors, you can specify the item to appear when nothing is selected in a list control, hide or show a column, and whether to allow data to be sorted in a list.
IBM Cognos Report Studio automatically sets the reaction behavior when you define a connection between controls. However, you may want to change the reaction behavior or specify additional interactive behavior.

Procedure

1. Click the interactive behavior icon of the control.
2. In the Reaction Behavior box, pause the pointer to the right of the reaction behavior that you want to modify or create and click the edit button that appears.
 If a condition has not yet been defined, two dialog boxes appear. The second dialog box prompts you to define the condition expression that you want to use to specify the reaction behavior.
3. In the Item box on the left, define the left side of the condition expression.
 - To use a data item, click the Data Item radio button and then click the item that you want to use.
 The data items that are available in the drop-down list depend on the data items that you inserted into the control.
 - To use a static item, click the Value radio button, type the value that you want to use, and then specify the value's data type.
 The value must be defined as a value of the selected active report variable in the next step.
 - If you want to set the value of an active report variable to null, click the Empty Variable radio button.
4. Click the Operator drop-down list and select the operator that you want to use.
5. In the Item box on the right, define the right side of the condition expression.
 - To use a value in an active report variable, click the Active Report Variable radio button and then click the variable that you want to use.
 The variables that are available in the drop-down list depend on the variables that you defined in the report.
 - To use a static item, click the Value radio button, type the value that you want to use, and then specify the value's data type.
 - To use null as the value, click the Empty Data Item radio button.
 Use null as the value to specify the reaction behavior when no data exists for the value selected in the source control.
6. If you want to apply the condition when no item is selected in the source control, clear the Drop this condition if the variable is empty check box.
 Clearing the check box can improve performance and prompt users to perform an action. For example, a report contains a list with many rows of data, and the list is filtered by another control. When the check box is cleared, no data will appear in the list until an item is selected in the other control.
When authoring deck controls in active reports, use master detail relationships to improve performance.

Related tasks:

- "Specify the Selection Behavior of a Control” on page 183
- "Set the No Value List Item”
- "Show or Hide a Column or Row”
- "Sort Data in a List” on page 187

Set the No Value List Item

Set the no value list item to show a specific item in a control when no value is selected.

For example, a report contains a drop-down list control that contains product lines. You create a no value list item named (All) to show all product lines when the report is initially viewed.

Procedure

1. Select the control.
2. In the Properties pane, for the No Value List Item property, click Show.
 A text item representing the no value list item appears in the control.
3. In the Properties pane, double-click the Label property.
4. In the Default text box, type the name of the no value list item.
5. To specify the text for other languages, do the following:

 • Click the add button.
 • Select the languages that you want.
 • In the Language column, click one of the languages that you selected.
 • Click the edit button and type the name of the no value list item for that language.
 • Repeat for all remaining languages.
6. In the Properties pane, click the Position in List property and specify where you want the no value list item to appear in the control.

Show or Hide a Column or Row

You can show or hide a column in a list or a column or row in a crosstab when the report is viewed.

Procedure

1. Click the title of the column or row that you want to show or hide.
2. If the data container is a crosstab, in the **Properties** pane, click the **Visible** property and click **Yes** or **No**.

3. If the data container is a list, in the **Properties** pane, double-click the **Column Visibility** property.

4. To make the list column visible when the report is viewed, click the **Visible** radio button.

5. To hide the list column when the report is viewed, click the **Hidden** radio button.

6. To make the list column visible based on a condition, click the **Visible based on condition** radio button, click the edit condition button, and specify the condition.

 - If you want to specify a value to use for the condition, click the **Value** radio button, type the value, and in the **Data Type** drop-down list, select the value’s data type.
 - If you want to use null as the value for the condition, click the **Empty Variable** radio button instead.
 - Click the **Operator** drop-down list and select the operator that you want to use for the condition.
 - In the **Active Report Variable** drop-down list, select the active report variable that you want to use for the condition.
 - If you want to apply the condition when no item is selected in a control that is connected to the list, clear the **Drop this condition if the variable is empty** check box.

Sort Data in a List

You can specify whether users can sort data in a list in the report output.

Procedure

1. Select the column that you want users to be able to sort.

2. In the **Properties** pane, for the **Allow Sorting** property, click **Yes**.

Recommendation - use master detail relationships when authoring decks

When authoring deck controls in active reports, use master detail relationships to improve performance.

Decks offer greater flexibility in active reports by allowing you to show different objects in each card of a deck. In data decks, the number of cards that are created depends on data items inserted in the deck. As a result, a data deck can contain many cards, which may reduce performance when the report is run and viewed. For example, if a data deck contains Product line and Years, there can be up to 20 cards in the deck (five different product lines multiplied by four different years). In addition, filtering data in a data deck can affect performance when there are many rows of data in the deck.

To improve performance, use a master detail relationship to filter data in a data container inserted in a data deck control. A master detail relationship defined between a data deck and a data container inserted in the deck results in a specific number of cards generated for the deck, which serves as a way to filter the data in the data container. For example, a data deck contains a list object that has many rows of data, and you want to filter the list by product line. Creating a master
detail relationship between the deck and the list using Product line produces five cards in the deck, one for each product line. When you filter by product line, the appropriate card appears in the data deck.

In addition, specify Select as the behavior instead of Filter when defining the connection between the data deck control and the control you want to use to filter the data in the deck.

Tip: If the data container in the data deck is a chart, you must use a master detail relationship if you want to filter data in the chart.

Summarize Data in the Active Report Output

You can add an output summary to a list or crosstab control that reflects the data that appears in the control when an active report is viewed.

For example, the data in a list is driven by selecting an item in a data drop-down list control. An output summary specified for the list is recalculated when a different item is selected in the drop-down list.

Procedure

1. In the list or crosstab, click the column or row for which you want to add an output summary.

2. In the toolbar, click the summarize button and then, under **Summarize in Output**, choose the summary that you want to add the active report output.

Run or Save an Active Report

You can run an active report in HTML format or save it as a MIME HTML (MHT) file so that you can send the report to your consumers. The MHT file is viewable in the Microsoft Internet Explorer or Mozilla Firefox browsers.

To assist you in resolving problems when you are authoring an active report, a run option that shows the state of active report variables in the report as you click various controls is available. By default, this option is enabled.

If you are using Microsoft Internet Explorer 6.0, you cannot open an active report in MHT format as a file. You can view the report only by using a URL.

Before you begin

To view an active report in MHT format in Mozilla Firefox, you must first download an UnMHT add-on.

Procedure

1. To disable the run option that can show the state of active report variables when the report is viewed, from the Run menu, click **Run Options**, and clear the **Enable right-click debug menu** check box.

2. To run a report, from the Run menu, click **Run Active Report**.

3. To save a report, from the Run menu, click **Download Active Report**, and when prompted, choose to save the report as an MHT file.
Results

When running a report with the **Enable right-click debug menu** check box selected, right-clicking in the report output window allows you to choose to view the active report variables in the report, reset variables, or print the report.

Tip: The right-click debug menu is not available if you run the report from IBM Cognos Connection.

Related tasks:

“Drill-through links in active reports do not work” on page 566

When viewing an active report that contains drill-through links in Microsoft Internet Explorer 8 and later, the links do not work.

Example - Create an Active Report Showing Revenue Data for Core Products

You are a report author at The Sample Outdoors Company, which sells sporting equipment. You are requested to create an active report showing revenue data for the core products Camping Equipment and Golf Equipment.

The revenue data is specific to countries and regions in the Americas. The report will allow users to filter data by product or by country or region.

To create this report, you will need to add two data drop-down list controls and a list container. The first data drop-down list control will contain the core products that users can select. The second data drop-down list control will contain countries and regions that users can select. The list will show revenue data for each core product and country or region. When users click different products or different countries and regions, the data in the list will be filtered based on the selections made.

Create the active report

Create a new active report and add the objects that you need to build the core products revenue report.

Procedure

1. Open IBM Cognos Report Studio with the **GO Data Warehouse (analysis)** package.
2. In the **Welcome** page, click **Create new**.
3. In the **New** dialog box, click **Active Report**.
4. Double-click the report title and type **Core Products Revenue**
5. Click the **Toolbox** tab and drag the **Table** object to the report.
6. Clear the **Maximize width** check box and then click **OK** to create a table with two columns and one row.
7. Drag the **Data Drop-Down List** object to each cell in the table.
8. Drag the **List** object to the report so that it appears under the table.

Add data to the data drop-down list controls

This task adds the required data items to the two drop-down list controls in the report.
Procedure
1. Right-click the first data drop-down list control and click Go to Query. Query1 opens in the Query Explorer.

2. Click the Source tab and do the following:
 - Expand the Sales and Marketing (analysis) folder and the Sales namespace.
 - Expand the Products dimension and then the Products hierarchy.
 - Drag Product line to the Data Items area.
3. Click Product line and in the Properties pane, do the following:
 - Click the Name property, delete the existing name, and type Core products
 - Double-click the Set Definition property.
 - Click the new button and then click Exclude.
 - In the Available members box, expand Sales and Marketing (analysis), Sales, and Products.
 - Drag the Mountaineering Equipment, Personal Accessories, and Outdoor Protection members to the Members box.
 The Core products member set now contains only Camping Equipment and Golf Equipment.
4. Click OK twice.

5. Pause the pointer over the page explorer button and click Page1.

6. Click the Data Items tab and drag Core products from Query1 to the drop-down list box in the control.

7. Click the control and in the Properties pane, for the No Value List Item property, click Show.
 The Properties pane for the no value list item property appears.

8. Double-click the Label property, type Core products in the Default text box, and click OK.

9. Right-click the second data drop-down list control and click Go to Query. Query2 opens in the Query Explorer.

10. Click the Toolbox tab and drag Data Item to the Data Items area.
11. In the Expression Definition box, type children ([Sales].[Retailers].[Retailers].[Region]->[Retailers].[710])

 Tip: This expression returns the children of the Americas member. The MUN for Americas is used instead of the member name.

12. In the Properties pane, click the Name property, delete the name and type Countries and regions

13. Pause the pointer over the page explorer button and click Page1.

14. Click the Data Items tab and drag Countries and regions from Query2 to the drop-down list box in the control.

15. Click the control and in the Properties pane, for the No Value List Item property, click Show.
The Properties pane for the no value list item appears.

16. Double-click the Label property, type Countries and regions in the Default text box, and click OK.

Add data to the list
This task adds the required data items to the list.

Procedure

1. Pause the pointer over the query explorer button and click Query1.
2. Copy the Core products data item.
3. Pause the pointer over the query explorer button and click Query3.
4. Paste the Core products data item into Query3.
5. Repeat steps 1 to 4 to copy the Countries and regions data item from Query2 to Query3.
6. Pause the pointer over the page explorer button and click Page1.
7. Click the Data Items tab and drag Core products and Countries and regions from Query3 to the list.
8. Click the Source tab and do the following:
 - Expand the Products dimension and then the Products hierarchy.
 - Drag Product type to the list, inserting it between Core products and Countries and regions.
 - Expand Sales fact.
 - Drag Revenue and Planned revenue to the list, to the right of Countries and regions.

Add interactivity to the report
This task defines connections between the various controls and sets an active report variable so that the controls can interact with each other when users view the report.

Procedure

1. Click the interactive behavior icon of the first data drop-down list control.
2. Click Create a New Connection.
3. Click the Target Control drop-down list and click List1.
4. Ensure that the following information appears in the dialog box and click Connect.
 - In the Behavior drop-down list, Filter is selected.
 - In the Data Item drop-down list for both controls, Core products is selected.
 - In the Active Report Variable box, type Core products Variable 1.
5. In the Control drop-down list, click Data Drop-Down List2.
6. Click Create a New Connection.
7. Click the Target Control drop-down list and click List1.
8. Ensure that the following information appears in the dialog box and click Connect.
 - In the **Behavior** drop-down list, **Filter** is selected.
 - In the **Data Item** drop-down list for both controls, **Countries and regions** is selected.
 - In the **Active Report Variable** box, type **Countries and regions Variable** 1.

9. In the **Control** drop-down list, click **Data Drop-Down List1**.

10. In the **Behavior on Select** section, click the edit button.

11. Set **Countries and regions Variable 1** to **Set to Empty** and click **OK** twice.
 When users select a different product in the first data drop-down list control, the second data drop-down list value will reset to the no value list item.

Specifying default values for the data drop-down list controls

This task specifies default values for the two drop-down list controls in the report.

Procedure

1. Click the **Active Report Variables** tab.
2. Expand **Core products Variable 1** and click **Set Default Values**.
3. In the **Values** box, double-click **Camping Equipment** and click **OK**.
4. Expand **Countries and regions Variable 1** and click **Set Default Values**.
5. In the **Values** box, double-click **United States** and click **OK**.

Revenue data for core products report output

When initially viewed, the revenue data for core products active report shows a list containing data for all core products in all countries and regions.

Selecting a product from the core product drop-down list or selecting a country or region from the country and region drop-down list filters the list to the selections made.

The following image shows the data that appears in the list when Camping Equipment and United States are selected in the two drop-down lists.

![Figure 13. Revenue data for core products report](image)
You are a report author at The Sample Outdoors Company, which sells sporting equipment. You are requested to create an active report analyzing sales by region and by product line.

You will use a list to show sales by region, with a slider control to allow users to move between different regions. Users will have the option to show or hide the slider control by respectively selecting or clearing a check box.

You will use a pie chart to show sales by product line. Users will be able to click product lines in the chart legend to highlight sales in the chart.

Creating a new active report

Create a new active report and add the objects that you need to build the sales analysis report.

Procedure

1. Open IBM Cognos Report Studio with the GO Sales (query) package.
2. In the Welcome page, click Create new.
3. In the New window, double-click Active Report.
4. Double-click the report title and type Sales Analysis
5. Click the Toolbox tab, drag Table to the report, specify two columns and one row, and click OK.
6. Drag Check Box Group to the first table cell.
7. Select the second and third check boxes and delete them.
 Only one check box is required for this report.
8. Drag Deck to the second table cell.
9. Drag Data Discrete Values Slider to the deck, in the space under Card 1.
 The slider control becomes the first card in the deck.
10. Select the slider control and in the Properties pane, click the Track Length property, change the length of the slider track to 500 px, and click OK.
11. Optional: To animate the movement of the slider when users view the report, set the Animate property to Yes.
12. Optional: To update active report variables associated with the slider when users move the slider thumb, set the Update Variables Live property to Yes.
 The report will be updated live when the thumb is moved. If set to No, the report is updated only when the thumb is stopped and released.
13. Drag Block below the table.
14. Drag List below the block.
15. Insert another block below the list.
16. Click the second block and in the Properties pane, double-click the Padding property.
17. Specify 20 px for the top of the block and click OK.
18. Drag Data Deck below the block.
19. Drag Chart to the data deck.
 a. In the left column, click Pie, Donut.
b. In the right column, click Exploded Pie with 3-D Effects and Flat Bevel.

Tip: This pie chart type is available only when the Use legacy chart authoring check box (Tools > Options > Advanced tab) is cleared. To find this specific pie chart type, hover over each choice to view its tooltip.

c. Click OK.

Results

The active report now contains all of the objects that you need to build the sales analysis report. In the following tasks, you will add data to each control and define connections between controls so that they can interact with each other.

Adding data to the check box group control

This task defines the data that will appear in the check box group control. The data will appear as the check box label.

Procedure

1. Click the Check Box Definitions icon.
2. Under Data Table, click Check Box Label 1 and then click the ellipsis button.
3. In the Default text box, type Show Region and click OK twice.

Adding a default card to the deck and data to the data discrete values slider

This task adds a default card to the deck and defines the data that will appear in the data discrete values slider control.

No content will be added to default card so that the slider will be hidden when the check box in the check box group control is cleared. The slider control is in the first card of the deck.

Procedure

1. Click the container selector (three orange dots) of the deck so that the entire deck is selected.

 Tip: The container selector is visible only when the visual aid Show Container Selectors is enabled.
2. In the Properties pane, set the Default Card property to Yes.
 A No Data Contents tab is created for the deck.
3. Click the Deck tab.
4. Click the Source tab and do the following:
 a. Expand Sales (query) and then Retailers.
 b. Drag Region to the Label box of the slider.

Defining a connection between the check box group and the deck

This task defines a connection between the check box group control and the first deck control that you inserted in the report. The connection will allow users to show or hide the slider control when the check box is selected or cleared.
Procedure

1. In the check box group control, click the Create a New Connection icon.

2. Ensure that the following information is specified:
 - Deck1 appears in the Target Control list.
 - Select appears in the Behavior list.
 - Label appears in the Data Item list for the source control.

3. Under Target Control, click the Data Item list and select Use Source Definition.
 The data value defined for the check box group, Show Region, is copied to the deck control.

4. Optional: In the Active Report Variable box, change the default name to a more meaningful name.

5. Click Connect.

Adding data to the list object

This task adds data items and an active report summary to the list object.

Procedure

1. Click the Source tab and drag the following data items to the list:
 - Sales (query) > Retailers > Region.
 - Sales (query) > Products > Product line.
 - Sales (query) > Sales > Quantity.
 - Sales (query) > Sales > Revenue.
 - Sales (query) > Sales > Planned revenue.

2. Pause the pointer over the Query Explorer icon and click Query2.

3. Click the Toolbox tab and drag Data Item to the Data Items pane.
 The Data Item Expression window appears.

4. Copy and paste the following expression into the Expression Definition box and click OK:

 $$ \frac{([\text{Revenue}] - [\text{Planned revenue}])}{\text{abs}([\text{Planned revenue}])} $$

 This data item calculates the percentage difference between revenue and planned revenue.

5. In the Properties pane of the data item, modify the following properties:
 a. In the Name property, delete the default name and type % Difference.
 b. Change Aggregate Function to Calculated.

6. Pause the pointer over the Page Explorer icon and click Page1.

7. Click the Data Items tab and drag % Difference from Query2 to the end of the list.

8. Click the % Difference column body in the list.

9. In the Properties pane, double-click the Data Format property and do the following:
 a. Click the Format type list and select Percent.
b. In the list of properties, click the **No. of Decimal Places**, select 2, and click **OK**.

10. With the % **Difference** column still selected, in the toolbar, click the **Summarize** icon and under **Summarize in Output**, click **Total**.

Defining a connection between the slider and the list object

This task defines a connection between the slider control and the list object. The connection will allow users to filter data in the list as the slider thumb is moved.

Procedure

1. In the slider control, click the **Create a New Connection** icon.
2. Specify the following information:
 a. In the **Target Control** list, click **List1**.
 b. In the **Behavior** list, click **Filter**.
 c. Ensure that **Region** appears in the **Data Item** list for both the source and target controls.
3. Optional: In the **Active Report Variable** box, change the default name of the variable that will be created when the connection is defined to a more meaningful name.
4. Click **Connect**.

Adding a title to the list

This task adds a title above the list. The title will change according to the region selected in the slider.

Procedure

1. Click the **Toolbox** tab and drag **Text Item** to the block that you inserted above the list.
2. Type **Sales by Region:**; add a blank space, and then click **OK**.
3. Select the text item in the report and in the **Properties** pane, modify the following properties:
 a. For the **Foreground Color** property, specify blue and click **OK**.
 b. For the **Font** property, specify 12 pt as the size and bold as the weight and click **OK**.
4. From the **Toolbox** tab, drag **Variable Text Item** to the right of the text item.
5. Select the name of the variable that you created when you defined the connection between the slider and the list.
6. Repeat step 3 for the variable text item.

Adding data to the data deck and chart

This task adds data items to the data deck and to the pie chart.

Procedure

1. Click the **Source** tab and drag the following data item to the **Values** box of the data deck:

 Sales (query) > Products > Product line
2. Drag the following data items to the chart:
 • **Sales (query)** > **Sales** > **Quantity** to the Default measure box.
 • **Sales (query)** > **Products** > **Product line** to the Series (pie slices) box.
 • **Sales (query)** > **Retailers** > **Region** to the Categories (pies) box.

3. With the pie chart selected, in the Properties pane, click the Exploded Slices property and do the following:
 a. Select the default value and click the Delete icon.
 b. Click the New icon.
 c. Change Exploded amount to 25.
 d. In the Exploded slice section, click Expression and then click the ellipsis.
 e. In the Expression Definition box, type the following, and click OK three times.

 \[[Query3].[Product line]=[Query4].[Product line]\]

4. In the Properties pane, click the Clickable Regions property, select the Legend Labels check box, and click OK.

 By default, the Intersections check box is selected. By making the legend labels clickable, users will be able to click different pie slices in the chart or different product lines in the legend.

5. Optional: If you do not want to use the pie chart default colors, specify the colors that you want by clicking the available properties in the Color & Background property group.

 For example, you can change the color palette for the chart by clicking the Palette property.

Defining a connection between the chart and the data deck

This task defines a connection between the pie chart and the data deck. The connection will create an active report variable that will be used to update text that will be inserted above the chart, which is described in the next topic.

Procedure

1. In the pie chart, click the Create a New Connection icon.
2. Specify the following information:
 a. In the Target Control list, click Data Deck1.
 b. Ensure that Select appears in the Behavior list.
 c. Ensure that Product line appears in the Data Item list for both the source and target controls.
3. Optional: In the Active Report Variable box, change the default name of the variable that will be created when the connection is defined to a more meaningful name.
4. Set Camping Equipment as the default value for the variable by doing the following:
 a. In the Active Report Variable box, click Set Default Value(s).
 b. In the Values box, double-click Camping Equipment and then click OK.
5. Click Connect.
Adding a title to the chart

This task adds a title above the pie chart. The title will change according to the product line selected in the chart legend.

Procedure

1. Click the Toolbox tab and drag Text Item to the block that you inserted above the chart.
2. Type Sales by Product Line:, add a blank space, and then click OK.
3. Select the text item in the report and in the Properties pane, modify the following properties:
 a. For the Foreground Color property, specify blue and click OK.
 b. For the Font property, specify 12 pt as the size and bold as the weight and click OK.
4. From the Toolbox tab, drag Variable Text Item to the right of the text item.
5. Select the name of the variable that you created when you defined the connection between the chart and the data deck.
6. Repeat step 3 for the variable text item.

Sales analysis report output

When initially viewed, the Sales Analysis active report shows a Show Region check box that is cleared, a list, and a pie chart with Camping Equipment selected in the chart legend.

Selecting the Show Region check box shows the region slider. Moving the slider thumb filters the list to the specified region. Clicking a product line in the pie chart legend highlights the product line in the chart.

The following image shows the Sales Analysis report with the Show Region check box selected, the slider thumb moved to Northern Europe, and with Camping Equipment selected in the chart legend.
Figure 14. Sales Analysis active report
Chapter 9. Statistical Analysis

If your installation of IBM Cognos Business Intelligence contains IBM Cognos Statistics, and if your administrator has granted you the required capabilities, you can use statistical objects in your reports.

For more information, see the IBM Cognos Statistics Installation and Configuration Guide.

IBM Cognos Statistics

IBM Cognos Business Intelligence integrates statistical objects in IBM Cognos Report Studio. This enables financial and business analysts to gain and share richer insights through statistical reporting and analysis that can be distributed to all users.

You can create multiple statistical objects. After you select a statistical object, you follow the steps in a wizard format and drag items to the appropriate drop zones, adding cases and variables as needed. Not all types of data are suitable for all drop zones: for best results, you should be familiar with your data.

IBM Cognos Statistics covers three main areas: distribution of data, data analysis and testing, and statistical process control (SPC).

Distribution of Data

You can use the following to explore the distribution, variability, and percentile information of your data.

- Descriptive statistics
- Histograms
- Boxplots
- Q-Q Plots

Data Analysis and Testing

You can use the following to show how variables are related, or to compare the means between groups of numeric or categorical data to test a hypothesis.

- Means comparison
- Nonparametric tests
- Correlation and regression

Statistical Process Control (SPC)

You can use the following to monitor, control, and improve a process through statistical analysis.

- Control charts
- Control rules
- Process capability
- Process performance
Cases and IBM Cognos Statistics

To create a unique identifier for the cases variable, you can use an item from the data tree or you can define a query.

Common Concepts in Statistical Analysis

Here are some common concepts used in statistical analysis.

Samples and Populations

In statistics, a population refers to the entire data set of objects, individuals, observations, and so on, that you have sampled from. A sample is a subset of the population that you work with in your analysis. One goal of statistics is to test if the results of the sample can be generalized to the population.

The Normal Distribution

The normal distribution describes a symmetric bell-shaped distribution of values. For example, the distribution of people's IQ scores is bell-shaped and symmetrical around a mean.

Many statistical tests, such as the t-test and one-way ANOVA, assume that the data is normally distributed. If the data is not normally distributed, then use a nonparametric method, such as a chi-square test.

You can check for normal distribution using statistical objects such as Q-Q plots.

Standard Deviation

Standard deviation, often denoted as a sigma or small Greek s, is a measure of variability that describes how data points vary from the mean. The portion of a distribution lying between plus and minus one standard deviation from the mean contains approximately 68% of cases, and the portion lying between plus and minus 1.96 standard deviations contains approximately 95% of cases. That is, if a variable is normally distributed, you can expect 95% of the cases to be within 2 standard deviations from the mean.
Standard Error

The standard error is the estimated standard deviation of a sample statistic. For example, the standard error of a sample mean is an estimate of the likely standard deviation that the means from an infinite number of samples would have.

The standard error gives an indication of the accuracy of the sample mean as an estimate of the population mean. The smaller the standard error, the less the spread and the more likely it is that any sample mean is close to the population mean, in other words, that there is a 68% chance that the true population mean is within + or - 1 standard error of the sample mean.

Confidence Intervals

Because of random errors in samples, information from a sample contains a level of uncertainty. A confidence interval gives an estimated range of values as a measure of this uncertainty. The upper and lower bounds refer to the end points of the confidence interval.

For example, a confidence interval of 95% means that if you repeat a test multiple times, 95% of the time the mean - if that is what you are comparing - will be within the upper and lower bound of the confidence interval.

Quantitative and Categorical Data

The type of data determines what you can do with it. The two basic divisions of data are qualitative (categorical) data and quantitative (numeric) data.

Examples of categorical data include ID numbers, gender, and survey responses such as Yes or No.

Examples of quantitative data include weight in kilograms, time in seconds, and the number of respondents to a survey.
Quantitative data can be either continuous or discrete. Discrete data contains finite values that you can count, such as the number of employees in a division. Continuous data forms a continuum of infinite steps, such as the height, weight, or time.

Not all numbers are quantitative. For example, telephone numbers, ID numbers, and account numbers are numeric, but the average phone number or median ID number is not meaningful.

Levels of Measurement

Data can be nominal, ordinal, interval, or ratio.

Nominal data refers to categorically discrete data, such as customer names or product types.

Ordinal data refers to quantities that have a natural ordering, such as a rating scale from 1 to 5.

Interval data refers to data that you can measure along a scale with equal intervals, such as temperature and dates. The zero is arbitrary because 20F is not twice as hot as 10F.

Ratio data is similar to interval data that you can measure along a scale with equal intervals, but ratio data has a natural zero. For example, height, weight, and so on, have a natural zero at no height or no weight.

Null Hypothesis and Alternative Hypothesis

In hypothesis tests, such as t-tests and chi-square tests, you begin with the null hypothesis, often written as H0. This states that there is no difference between the populations from which the samples were taken, or that no correlation exists between the variables in the population.

The alternative hypothesis, often written as Ha, states that a difference or relationship does exist.

Types of Error and Statistical Power

There are two types of errors possible when conducting a statistical analysis.

- Type I error, also known as a false positive, is the error of rejecting a null hypothesis when it is true. In other words, you conclude that there is a difference where none exists.
- Type II error, also known as a false negative, is the error of failing to reject a null hypothesis when it is not true. In other words, you fail to conclude that there is a difference when in fact there is one.

The power of a test is the probability of correctly rejecting a null hypothesis when the null hypothesis is false. This probability is inversely related to the probability of making a type II error, not rejecting the null hypothesis when it is false.

For example, ANOVA has higher statistical power. There is less chance of a type II error, thinking there is no relationship when there is.
Significance in Statistics

IBM Cognos Statistics uses significance levels (or p-values) with many contexts.

The statistical significance of a result is the probability that the observed relationship (between variables) or difference (between means) in a sample would occur by pure chance if no such relationship or differences existed in the population from which the sample was drawn.

Significance is expressed as a decimal. A significant result is usually considered to exist where the p-value (or probability) is <0.05, meaning that the results obtained would occur by chance alone less than 5% or the time.

Degrees of Freedom

Degrees of freedom refers to the number of independent observations in a set of data that are free to vary if a parameter, such as the mean, is to remain constant.

When estimating a mean score from a sample, the number of independent observations is equal to the sample size minus one. You describe a sample size of 50 as having 49 (that is, 50 - 1) degrees of freedom.

Treatment of Missing Values

As a method for handling missing values, listwise deletion excludes an entire record from analysis if any single value is missing.

For example, consider the following records for 10 customers:

<table>
<thead>
<tr>
<th>Customer ID</th>
<th>Age in years</th>
<th>Previously defaulted</th>
<th>Household income in thousands</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>yes</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>no</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>no</td>
<td>42</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>no</td>
<td>missing</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>missing</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>yes</td>
<td>56</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>yes</td>
<td>36</td>
</tr>
<tr>
<td>8</td>
<td>missing</td>
<td>yes</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>no</td>
<td>120</td>
</tr>
<tr>
<td>10</td>
<td>44</td>
<td>no</td>
<td>50</td>
</tr>
</tbody>
</table>

Listwise deletion removes customers 4, 5, and 8 before performing any further analysis.

Pairwise deletion ignores records only as needed. For example, in calculating the means variables in the table above, pairwise deletion removes customer 8 from the calculation for the mean of Age in years, but not from any other calculation. Likewise, customer 5 is removed from the count of Previously defaulted customers, but not from any other calculation.
There is another alternative when using linear regression. The **Substitute with mean** option uses all cases, but substitutes missing observations with the mean of the variable.

One-tailed or Two-Tailed Test of Significance

You can test the significance of a correlation using one tail of a distribution or two tails.

The most common test of significance is the two-tailed test, where you test if a difference between groups or relationships goes either way. For example, using a two-tailed test, your hypothesis might look like this:

The null hypothesis (H0): the correlation is 0

The alternative hypothesis (Ha): the correlation is not 0. The correlation can be either positive or negative, as long as it is not 0.

Using a one-tailed test, your hypothesis might look like this:

The null hypothesis (H0): the correlation is 0 or negative.

The alternative hypothesis (Ha): the correlation is positive.

The two-tailed significance test is more conservative. Use a one-tailed test only when you are interested in detecting results in a particular direction, and the results in the other direction are of no interest.

Building Cases in IBM Cognos Statistics

As part of the IBM Cognos Statistics guided wizard, you supply a case variable for the analysis. A case uniquely identifies each data point being analyzed, such as a unique ID, order number, or part name.

Using Time, for example, cases could either be defined as years or months. Depending on the analysis you are conducting, you might wish to use as cases for your analysis the aggregated form, for example Years, or the details, for example Months.

Cases can also be built by nesting query items or member sets. For example, you might nest a level-based set named Retailer Country or Region beneath the level-based set Months to create a crossjoin where a case is created for the intersection tuple of each country or region within each month.

You can test out the nesting that you intend to use for statistical analysis by constructing a crosstab and performing nesting on the rows: the rows will be the cases.

There are many types of nesting behavior, such as single dimension nesting or multi dimension crossjoins. Behavior differs between dimensional model and relational models.

Using Dimensional Data

Because dimensional data is structured differently, you might have to use a slightly different technique to add cases to your statistical object. The items of interest that
you need to create cases are often the children of a dimension member, rather than the member itself, which is a aggregate sum of its children.

Related concepts:

“Add Dimensional Data to a Report” on page 319

For dimensional and mixed model data sources, you can view the full data tree by clicking the view package tree button in the Source tab. You can switch to the dimensional-only data tree by clicking the view members tree button.

Related tasks:

“Example: Create A Profit Analysis Using Boxplots” on page 217

You are a report author. You are asked to create a report showing the profitability of retailers in all sales territories.

Descriptive Statistics

Descriptive statistics quantitatively summarize a data set. For an overall sense of the data being analyzed, you can show descriptive statistics along with more formal analyses.

You can use descriptive statistics

- to look at averages, such as the mean or median.
- to obtain information, such as the mean for groups of interest, that you might need to interpret other statistical tests.
- to provide graphical representations of data, such as histograms and boxplots.

Grouped and Ungrouped Statistics

You can create a table of summarized statistics, such as mean, median, and so on, for one or more numeric variables, based on all the cases. The table below shows the descriptive statistics for household income.

<table>
<thead>
<tr>
<th>Descriptive Statistics</th>
<th>Household income in thousands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>59.59</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>67.130</td>
</tr>
<tr>
<td>N</td>
<td>1500</td>
</tr>
<tr>
<td>Median</td>
<td>40.00</td>
</tr>
<tr>
<td>Minimum</td>
<td>12</td>
</tr>
<tr>
<td>Maximum</td>
<td>1,079</td>
</tr>
</tbody>
</table>

You can also place the measures adjacent to each other to create multiple measure statistics. The table below shows the descriptive statistics for three measures.
Descriptive Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Household income in thousands</th>
<th>Credit card debt in thousands</th>
<th>Other debt in thousands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>69.59</td>
<td>1.93</td>
<td>3.84</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>67.130</td>
<td>2.974</td>
<td>5.333</td>
</tr>
<tr>
<td>N</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Median</td>
<td>40.00</td>
<td>.99</td>
<td>2.21</td>
</tr>
<tr>
<td>Minimum</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maximum</td>
<td>1,079</td>
<td>36</td>
<td>63</td>
</tr>
</tbody>
</table>

Note: Outlying values can affect the mean.

You can also create a table that displays summarized statistics for cases grouped by categorical data based on a single measure, such as household income in thousands. The table below shows the mean household income for customers grouped by education level.

Descriptive Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>High school degree</th>
<th>Post-undergraduate degree</th>
<th>Did not complete high school</th>
<th>Some college</th>
<th>College degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>52.00</td>
<td>99.71</td>
<td>51.48</td>
<td>56.90</td>
<td>70.94</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>56.370</td>
<td>147.769</td>
<td>51.855</td>
<td>53.836</td>
<td>67.940</td>
</tr>
<tr>
<td>N</td>
<td>527</td>
<td>84</td>
<td>246</td>
<td>333</td>
<td>310</td>
</tr>
<tr>
<td>Median</td>
<td>35.00</td>
<td>59.50</td>
<td>36.00</td>
<td>39.00</td>
<td>49.00</td>
</tr>
<tr>
<td>Minimum</td>
<td>12</td>
<td>16</td>
<td>16</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Maximum</td>
<td>533</td>
<td>1,079</td>
<td>497</td>
<td>403</td>
<td>512</td>
</tr>
</tbody>
</table>

Basic Descriptive Statistics

Descriptives tables describe the basic features of data in quantitative terms. You can choose one or more of the following statistics.

Measures of Central Tendency

Measures of central tendency provide a single number that summarizes the average distribution of a variable.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>The arithmetic mean is the sum of samples divided by the number of cases.</td>
</tr>
<tr>
<td></td>
<td>Note: Outlying values can affect the mean.</td>
</tr>
<tr>
<td>Harmonic mean</td>
<td>The total number of measurements divided by the sum of the reciprocals of the measurements. It is useful when averaging measurements that are rates or ratios, such as price/earnings ratios.</td>
</tr>
<tr>
<td>Statistic</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Geometric mean</td>
<td>The nth root of the product of the sample values, where n represents the number of cases. A common use for the geometric mean is in averaging rates of return on investments. For example, averaging the rate of return on an investment that earns 10% the first year, 50% the second year, and 30% the third year.</td>
</tr>
<tr>
<td>Median</td>
<td>Half of the cases fall above the median and half of the cases fall below the median. If there is an even number of cases, the median is the average of the two middle cases when they are sorted in ascending or descending order. The median is less sensitive to outlying values than the mean.</td>
</tr>
<tr>
<td>Count (N)</td>
<td>The number of cases, observations, or records.</td>
</tr>
<tr>
<td>Sum</td>
<td>The total of the sample values, across all cases with non-missing values.</td>
</tr>
</tbody>
</table>

Measures of Dispersion

Measures of dispersion describe the degree of spread around the central tendency measure, that is, the extent to which observations cluster within the distribution. Measures of dispersion feature prominently in calculating control charts.

Measures of dispersion include simple measures such as maximum, minimum, and range; common statistical measures such as standard deviation and variance; and measures such as the interquartile range (IQR).

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation</td>
<td>A measure of dispersion around the mean. In a normal distribution, 68% of cases fall within one standard deviation of the mean and 95% of cases fall within two standard deviations.</td>
</tr>
<tr>
<td>Standard error</td>
<td>A measure of how much the value of the mean may vary from sample to sample taken from the same distribution.</td>
</tr>
<tr>
<td>Minimum</td>
<td>The smallest value of a numeric variable.</td>
</tr>
<tr>
<td>Maximum</td>
<td>The largest value of a numeric variable.</td>
</tr>
<tr>
<td>Statistic</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Range</td>
<td>The difference between the largest and smallest values of a numeric variable (the maximum minus the minimum).</td>
</tr>
</tbody>
</table>

Measures of Distribution

Measures of distribution, such as kurtosis and skewness, characterize the shape and symmetry of the distribution.

Kurtosis is a measure of the extent to which observations cluster around a central point. For the normal distribution, the value of the kurtosis statistic is zero.

Positive kurtosis indicates that the observations show greater peakedness and longer tails than those in the normal distribution, and negative kurtosis indicates that the observations show less peakedness and have shorter tails.

Skewness is a measure of the asymmetry of a distribution. The normal distribution is symmetric and has a skewness value of 0.
A distribution with a significant positive skewness has a long right tail. A distribution with a significant negative skewness has a long left tail.

Related concepts:
“Boxplots” on page 215
A boxplot (also known as a box-and-whisker chart) is a convenient way to show groups of numerical data, such as

Create a Descriptives Table
You can use descriptive statistics to describe the main features of a set of data in quantitative terms.

Before you begin
You must have IBM Cognos Statistics installed and configured to create statistical objects.

Procedure
1. From the File menu, click New.
 If you want to change the package, click the ellipsis (...) and click a different package.
2. In the New dialog box, click Statistics. Click OK.
3. In the Select Statistic dialog box, expand Descriptive Statistics, and click Basic Descriptives Statistics. Click OK.
4. Select whether to create a table of standard descriptive statistics or descriptive statistics grouped by categorical variables. Click OK.
5. In the statistical object wizard, expand the package in the metadata tree if necessary and drag items to the following drop zones:
 • Drag one or more measure items to the Analysis variables drop zone. Click Next.
 • If you chose to summarize statistics grouped by categorical data, drag a non-measure item to the Grouping variables drop zone. Click Next.
6. Drag an item to the Cases variable drop zone to define a set of cases. Click Next.
7. Select the descriptive statistics that you need. Click Finish.
8. Run the report.
 A table appears showing the selected descriptive statistics.
 See the following example for a simple demonstration.

Related concepts:
“Descriptive Statistics” on page 207
Descriptive statistics quantitatively summarize a data set. For an overall sense of the data being analyzed, you can show descriptive statistics along with more formal analyses.

Example: Create a Report Showing Descriptive Statistics
You are a report author at a bank. A bank officer requests a report that provides customer statistics such as age, income, and credit card debt.

Note: You must have IBM Cognos Statistics installed and configured to create this example.
Procedure

1. Open the BANKLOAN_CS package in IBM Cognos Report Studio.
2. In the **Welcome** dialog box, click **Create a new report or template**.
3. In the **New** dialog box, click **Statistics** and then click **OK**.
4. In the **Select Statistic** dialog box, expand **Descriptive Statistics**, click **Basic Descriptives Statistics**, and then click **OK**.
5. Select **Summary descriptive statistics**. Click **OK**.
6. In the statistical object wizard, expand BANKLOAN_CS in the metadata tree.
 - Drag the items for age, household income, and credit card debt to the **Analysis variables** drop zone. Click **Next**.
 - Drag ID to the **Cases variable** drop zone to define a set of cases. Click **Next**.
7. Select the descriptive statistics that you need. Click **Finish**.
8. Run the report.

Results

A table appears showing descriptive statistics for the bank customers.
Histograms display the range of variable values in intervals of equal length. You can use a histogram to graphically summarize the frequency of observations using bins.

For example, a bank examines the credit card debt of its clients. Each bin represents the number of clients that have credit card debt of zero to one thousand dollars, one thousand to two thousand dollars, and so on. Frequency refers to the number of clients in each specific bin. For example, a little over 800 clients have a credit card debt of one thousand dollars or less.

You can see by the count (N) that the results represent 1,500 clients. The mean credit card debt is 1,930 dollars.

This histogram shows the number of cases per unit interval: the height of each bar is equal to the number of people who fall into that category.
Create a Histogram

You can create a histogram to graphically summarize and display the distribution of a set of data. Histograms use bins to group individual data values into one instance of a graphic element, such as a bar. The bar height indicates the number of cases in the bin.

By default, the histogram divides the values of the variable into several evenly spaced intervals to size the bins. You can change the binning method to use

- a specified number of bins
- a specified number of units per bin

You can also modify the bar color, style, and chart size from the Properties pane.

Procedure

1. From the File menu, click New.
 If you want to change the package, click the ellipsis (...) and click a different package.
2. In the New dialog box, click Statistics. Click OK.
3. In the Select Statistic dialog box, expand Descriptive Statistics, click Histogram. Click OK.
4. In the statistical object wizard, expand the package in the metadata tree if necessary and drag items to the following drop zones:
 - Drag a measure item to the Analysis Variable drop zone. Click Next.
Drag an item to the Cases variable drop zone to define a set of cases. Click Next.

5. Specify any output options, such as titles or footnotes. Click Finish.

You also have the option to change the histogram properties.

6. In the work area, click the histogram to display its properties.

7. On the Properties pane, under General Settings, you can specify
 • whether to display a curve
 • binning method
 • bar style
 • bar color
 • chart size

8. Run the report.

Related concepts:
"Building Cases in IBM Cognos Statistics" on page 206

As part of the IBM Cognos Statistics guided wizard, you supply a case variable for the analysis. A case uniquely identifies each data point being analyzed, such as a unique ID, order number, or part name.

Boxplots

A boxplot (also known as a box-and-whisker chart) is a convenient way to show groups of numerical data, such as

- minimum and maximum values
- upper and lower quartiles
- median values
- outlying and extreme values

The spacings between the different parts of the boxplot indicate the degree of dispersion (spread) and skewness in the data and identify outliers.

Here are the different parts of the boxplot:
- The line in the middle of the boxes is the median. Half of the cases have a value greater than the median, and half have a value lower. Like the mean, the median is a measure of central tendency. Unlike the mean, it is less influenced by cases with extreme values.
- The bottom of the box indicates the 25th percentile. Twenty-five percent of cases have values below the 25th percentile. The top of the box represents the 75th percentile. Twenty-five percent of cases have values above the 75th percentile. This means that 50% of the cases lie within the box.
The interquartile range (IQR) is the difference between the 75th and 25th percentiles and corresponds to the length of the box.
- The T-bars that extend from the boxes are named inner fences or whiskers. These extend to the minimum and maximum value that is equal to or less than 1.5 times the IQR from the end of a box.
If the data is distributed normally, approximately 95% of the data is expected to lie between the inner fences.
- A boxplot may contain outlying values marked as circles, and extreme values marked as asterisks.
Outlying values are values between 1.5 IQRs and 3 IQRs from the end of a box. Extreme values are more than 3 IQRs from the end of a box.
Note: Outlying values can cause the mean to be different than the median.
Create a Boxplot

You can create a boxplot to show the median, quartiles, and outlier and extreme values for a variable. The interquartile range (IQR) is the difference between the 75th and 25th percentiles and corresponds to the length of the box.

You can display a boxplot for each category of a categorical variable, or you can leave the **Grouping variable** drop zone empty to display a single boxplot that summarizes all cases in the data.

Tip: The Income Growth sample report contains a boxplot.

Procedure

1. From the **File** menu, click **New**.

 If you want to change the package, click the ellipsis (...) and click a different package.
2. In the **New** dialog box, click **Statistics**. Click **OK**.
3. In the **Select Statistic** dialog box, expand **Descriptive Statistics** and click **Boxplot**. Click **OK**.
4. In the statistical object wizard, expand the package in the metadata tree if necessary and drag items to the following drop zones:

 • Drag a measure item to the **Analysis variable** drop zone. Click **Next**.

 • Drag an item to the **Cases variable** drop zone to define a set of cases. Click **Next**.

 • If you want to create boxplots for a grouped categorical variable, drag a non-measure item to the **Grouping variable** drop zone. Click **Next**.
5. Specify how to handle missing values and whether to exclude or include data when the group identifier is missing. Click **Next**.
6. Specify any output options, such as titles or footnotes. Click **Finish**.
7. In the work area, click the boxplot to display its properties.
8. On the **Properties** pane, under **General Settings**, you can specify

 • bar color

 • chart size
9. Run the report.

 See the following example for a demonstration.

Related concepts:

<table>
<thead>
<tr>
<th>Appendix C, “Sample Reports and Packages,” on page 567</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample reports are included with IBM Cognos Business Intelligence. When installed, you can find them in the Public Folders tab in IBM Cognos Connection.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>“Building Cases in IBM Cognos Statistics” on page 206</th>
</tr>
</thead>
<tbody>
<tr>
<td>As part of the IBM Cognos Statistics guided wizard, you supply a case variable for the analysis. A case uniquely identifies each data point being analyzed, such as a unique ID, order number, or part name.</td>
</tr>
</tbody>
</table>

Example: Create A Profit Analysis Using Boxplots

You are a report author. You are asked to create a report showing the profitability of retailers in all sales territories.

You use boxplots to compare the results of each sales territory using a five-number summary: the median, the 25th and 75th percentiles, and the minimum and maximum observed values.
Note: You must have IBM Cognos Statistics installed and configured to create this example.

Procedure
1. Open the Sales and Marketing cube in IBM Cognos Report Studio.
2. In the **Welcome** dialog box, click **Create a new report or template**.
3. In the **New** dialog box, click **Statistics**. Click **OK**.
4. In the **Select Statistic** dialog box, expand **Descriptive Statistics**, and click **Boxplot**. Click **OK**.
5. In the statistical object wizard, expand Sales and Marketing in the metadata tree and drag items to the following drop zones:
 - Expand the Measures folder and drag the gross profit item to the **Analysis variable** drop zone. Click **Next**.

 Because you are using a dimensional data source, you must insert the children of the members for the next two items by using the Insert children button. These buttons are available when you use a dimensional data source.

 - Click the Insert children button. Expand the Time dimension. Under the Members folder, click the Time level. Insert the children of the Time member in the **Cases variable** drop zone to define a set of cases. Click **Next**.

 - Click the Insert children button. Expand the Retailer dimension. Under the Members folder, click the Retailer member. Insert the children of the Retailers level in the **Grouping variable** drop zone. Click **Finish**.
6. Run the report.

Results

This boxplot shows the gross profit statistics for various markets.
Create a Q-Q Plot

You can create a Q-Q (quantile-quantile) plot to chart the quantiles of a variable's distribution against a distribution of your choice, including the normal distribution.

Quantiles are values that divide the cases into a number of equal-sized groups.

If the selected variable matches the test distribution, the points cluster around a straight line. Outliers appear as points that are farther from the overall pattern of points.

Procedure

1. From the File menu, click New.
 - If you want to change the package, click the ellipsis (...) and click a different package.
2. In the New dialog box, click Statistics and then click OK.
3. In the Select Statistic dialog box, expand Descriptive Statistics, click Q-Q Plot, and then click OK.
4. In the statistical object wizard, expand the package in the metadata tree if necessary and drag items to the following drop zones:
 - Drag a measure item to the Analysis variable drop zone. Click Next.
 - Drag an item to the Cases drop zone to define a set of cases. Click Next.
5. Specify any output options. Click Next.
6. Specify any transformation options, proportional estimate options, and rank options. Click **Finish**.

7. Run the report.

Results

By default, the results include

- a Q-Q plot
- a detrended Q-Q plot
- a table of estimated distribution parameters

Q-Q plots produce a scatterplot with the quantiles of the variable on the horizontal axis and the expected normal distribution on the vertical axis. A plot of variables against the expected normal variables reveals a straight line. Curvature of the points indicates departures from normality. Outliers appear as points that appear far from the overall pattern of points.

The detrended Q-Q plot below is another way of looking at the data.

This plot, based on the same data as the Q-Q plot above, displays the deviation of each point in the normal probability plot from the straight line corresponding to the normal.

The vertical axis represents the difference between each point in the normal probability plot and the straight line representing the perfect normal. The horizontal axis represents the observed value. This visually clarifies the areas where there is greatest deviation from the normal. If the data in the sample were normal, all the data points in the detrended normal plot would appear near the horizontal line centered at 0.
Q-Q Plot Options

There are several options available to create a Q-Q plot.

Test Distributions

Aside from the normal distribution, other available test distributions include beta, chi-square, exponential, gamma, half-normal, Laplace, logistic, lognormal, normal, Pareto, Student's t, Weibull, and uniform.

Depending on the distribution selected, you can specify the degrees of freedom and other parameters.

Customize Output

You can specify to show the following:
- a case processing summary table
- an estimated distribution parameters table
- a Q-Q plot
- a detrended Q-Q plot

Other Q-Q Plot Options

You can also
- change the proportion estimate formula
- specify how to assign ranks to ties
- specify different transformation options
Means Comparison

You can compare the means of two or more groups to determine if the difference between the groups is statistically significant, that is, if the difference is due to something other than random chance.

You use the t-test to test the differences between a group and a hypothetical test value. If the test involves more than one group, you can use analysis of variance (ANOVA).

These tests use parametric data, that is, numeric data from a normal distribution. For nonparametric data, such as nominal classifications or data that is not normally distributed, you use nonparametric tests.

t-Tests

The one-sample t-test tests the probability that the difference between the sample mean and a test value is due to chance. Probabilities of .05 or less are typically considered significant.

Grouped or Ungrouped

You can create a t-test to compare means based on all the cases. Shown below is a typical t-test report, showing tables for descriptive statistics and t-test statistics.

<table>
<thead>
<tr>
<th>One-Sample Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>1500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>One-Sample Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Value = 0.74</td>
</tr>
<tr>
<td>t</td>
</tr>
<tr>
<td>Household income in thousands</td>
</tr>
</tbody>
</table>

You can create t-tests that give results for cases grouped by categorical data for a single measure, such as household income in thousands. The example below shows the t-test results of mean household income for customers grouped by education level.
Create a One-Sample t-Test

You can use a one-sample t-test to test whether the mean of a variable differs from a specified test value. For example, you might want to test whether the mean household income for the customers of a bank differs from the national average.

Before you begin

You must have IBM Cognos Statistics installed and configured to create statistical objects.

Procedure

1. From the File menu, click New.

 If you want to change the package, click the ellipsis (...) and click a different package.

2. In the New dialog box, click Statistics. Click OK.

3. In the Select Statistics dialog box, expand Means Comparison and click One-Sample t-Test. Click OK.

4. Select whether to create a summary t-test or a t-test grouped by categorical variables. Click OK.

5. In the statistical object wizard, expand the package in the metadata tree if necessary and drag items to the following drop zones:

 • Drag a measure item to the Analysis variables drop zone. Click Next.
If you chose to summarize statistics for cases grouped by categorical data, drag a single measure to the drop zone.

- Drag an item to the **Cases variable** drop zone. Click **Next**.
- If you chose to summarize statistics for cases grouped by categorical data, you must drag one or more categorical items to the **Grouping variables** drop zone. Click **Next**.

6. Specify a numeric test value against which to compare.
 You must enter the test value in the same format that the variable uses.

7. Specify any other output options. You can:
 - change the confidence interval
 - specify how to treat missing value
 - choose whether to show the one-sample statistics table

8. Click **Finish**.

9. Run the report.

 You see two tables:
 - A table showing the sample count, mean, standard deviation, and standard error of the mean.
 - A table showing the t-value, degrees of freedom, significance, mean difference between the data value and the test value, and a confidence interval for this difference.

 The p-value tells you if there is a significant difference between the test value and the sample mean.

 The t-statistic represents the number of standard errors that separate the sample mean from your hypothesized test value.

 See the following example for a demonstration.

Example: Using a One-Sample t-Test to Compare Household Income Against a Hypothetical Value

You are a report author for a bank. Your research tells you that the mean national household income is $50,740. The mean household income of the bank’s customers is above the national average. You want to know if the difference in mean household incomes is genuinely higher than average, or if this the result of chance.

The null hypothesis is that there is no difference between the mean household income of the bank’s customers and the hypothesized national mean household income. The alternative hypothesis is that there is a significant difference between the two.

Note: You must have IBM Cognos Statistics installed and configured to create this example.

Procedure

1. Open the BANKLOAN_CS package in IBM Cognos Report Studio.
2. In the **Welcome** dialog box, click **Create a new report or template**.
3. In the **New** dialog box, click **Statistics** and then click **OK**.
4. In the **Select Statistic** dialog box, expand **Means Comparison**, click **One-Sample t-Test**, and then click **OK**.
5. Select **Summary One-Sample t-Test**. Click **OK**.
6. In the statistical object wizard, expand the BANKLOAN_CS package if necessary and drag items to the following drop zones:
Drag the Household income in thousands item to the Analysis variables drop zone. Click Next.

Drag the Customer ID item to the Cases variable drop zone to define a set of cases and click Next.

7. Enter 50.74 in Test value. Leave the Confidence interval, Missing values, and Customize output at the default settings.

8. Click Finish.

9. Run the report.

Results

You see a statistics table and a t-test table, as shown below.

<table>
<thead>
<tr>
<th>One-Sample Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Household income in thousands</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>One-Sample Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Test Value = 50.74</td>
</tr>
<tr>
<td>t</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Household income in thousands</td>
</tr>
</tbody>
</table>

The statistic of interest is the p-value for significance. This value is .000, rounded to three decimal places. Because this value is <0.05, you reject the null hypothesis. You can state that the mean household income of bank customers is significantly different from the national average of $50,740.

The t-statistic, 5.105, is the number of standard errors (1.733) that separate the sample mean ($59,590) from the hypothesized value ($50,740).

The Mean Difference is obtained by subtracting the test value (50.74 in this example) from the sample mean.

The 95% confidence interval of the difference tells you that, repeated multiple times, there is a 95% chance that the mean difference between household income of your customers and that of the national average will lie between $5,450 and $12,250.

Using One-Way ANOVA to Compare Means

You can use one-way ANOVA to assess whether groups of means differ significantly.

ANOVA assumes that there is homogeneity of variance, that is, that the variance within each of the groups is equal. You can check for homogeneity of variance by using the Levene’s test.
ANOVA does not tell you which groups are different from the others, only whether a significant difference exists. After finding a significant difference, you can do post hoc tests on the independent variable to examine the differences between groups.

Tip: The DVD Score sample report uses one-way ANOVA.

Procedure
1. From the File menu, click New.
 If you want to change the package, click the ellipsis (...) and click a different package.
2. In the New dialog box, click Statistics. Click OK.
3. In the Select Statistics dialog box, expand Means Comparison and click One-Way ANOVA. Click OK.
4. In the statistical object wizard, expand the package in the metadata tree if necessary and drag items to the following drop zones:
 • Drag one or more items to the Dependent variables drop zone. Click Next.
 • Drag a non-measure item to the Independent variable drop zone. Click Next.
 • Drag an item to the Cases variable drop zone to define a set of cases. Click Next.
5. Optionally, you can specify contrasts, how to treat missing values, and which output options to display. Click Next.
6. Specify a significance level and any post hoc tests. Click Finish.
7. Run the report.
 By default, you see:
 • A table of ANOVA statistics
 The statistic of interest is the significance.
 • A chart of the observed means
 You also see any other selected output options.
 See the following example for a demonstration.

Related concepts:
Appendix C, “Sample Reports and Packages,” on page 567
Sample reports are included with IBM Cognos Business Intelligence. When installed, you can find them in the Public Folders tab in IBM Cognos Connection.

Example: Using a One-Way ANOVA to Compare Mean Household Income Between Groups by Educational Level
You are a report author for a bank. You want to know how the mean household income of your customers varies by education level. What is the probability that the differences occur by random chance?

Note: You must have IBM Cognos Statistics installed and configured to create this example.

Procedure
1. Open the BANKLOAN_CS package in IBM Cognos Report Studio.
2. In the Welcome dialog box, click Create a new report or template.
3. In the New dialog box, click Statistics. Click OK.
4. In the Select Statistic dialog box, expand Means Comparison and click One-Way ANOVA. Click OK.

5. In the statistical object wizard, expand the BANKLOAN_CS package and drag items to the following drop zones:
 - Drag the Household income in thousands item to the Dependent variables drop zone. Click Next.
 - Drag the Level of education item to the Independent variable drop zone. Click Next.
 - Drag the Customer ID item to the Cases variable drop zone to define a set of cases and click Next.

6. Leave the default output options. Click Next.

7. Select the post hoc test Tukey.

8. Click Finish.

9. Run the report.

 You see an ANOVA table as shown below, the results of the Tukey post hoc test, and a chart of means. Look at the ANOVA table below.

 ![ANOVA Table]

 Household income in thousands

 ANOVA

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>224084.078</td>
<td>4</td>
<td>56021.020</td>
<td>12.823</td>
<td>.000</td>
</tr>
<tr>
<td>Within Groups</td>
<td>6531097.129</td>
<td>1495</td>
<td>4368.627</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6755181.207</td>
<td>1499</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Results

 The statistic of interest is the significance. The p-value is .000, rounded to three decimal places. Because the significance <.05, you reject the null hypothesis. You conclude that there is a significant difference between the household income of customers with different levels of education.

 This does not tell you which level of education might account for the difference. Look at the post hoc test results shown below. The asterisk (*) marks which differences are significant. You can see that the college degree and post-undergraduate degree groups are associated with higher household income more significantly than the other levels of education.
You also see a table for homogeneous subsets as shown below. In each subset column, only the means of the variables in that subset are shown. The subsets can overlap, that is, a group can belong to more than one subset.
ANOVA Options

Aside from specifying how to treat missing values and whether to show a table of descriptive statistics for the independent variable, you can specify the following options in your report.

Contrasts

If the groups you compare are defined along a continuum, you can use polynomial contrasts to test for a trend in the means. The first degree of freedom contains the linear effect across the levels of the factor, the second degree of freedom contains the quadratic effect, and so on.

For example, as a factor you have three age groups. You can test for a linear and a quadratic trend across the age groups. The linear contrast compares the lowest age with the highest age group, and the quadratic contrast compares the middle group with the lowest and highest age groups together.

Fixed and Random Effects

Use a fixed effects model when the groups in your analysis are selected and ordered in some meaningful way. Random effects in ANOVA assume that the groups are a random sampling of many potential groups. For example, with groups defined by Age or by Gender use the fixed effects model, whereas with groups defined by City you should use the random effects model.

Table: Homogeneous Subsets

<table>
<thead>
<tr>
<th>Level of education</th>
<th>N</th>
<th>Subset for alpha = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Did not complete high school</td>
<td>246</td>
<td>51.48</td>
</tr>
<tr>
<td>High school degree</td>
<td>527</td>
<td>52.00</td>
</tr>
<tr>
<td>Some college</td>
<td>333</td>
<td>56.90</td>
</tr>
<tr>
<td>College degree</td>
<td>310</td>
<td>70.94</td>
</tr>
<tr>
<td>Post-undergraduate degree</td>
<td>84</td>
<td>99.71</td>
</tr>
<tr>
<td>Sig.</td>
<td>.919</td>
<td>.195</td>
</tr>
</tbody>
</table>
Homogeneity of Variance Tests

You can use Levene’s test for homogeneity of variance to test the ANOVA assumption that each group of the independent variable has the same variance.

If the Levene statistic is significant at the .05 level, you reject the null hypothesis that the groups have equal variances.

![Test of Homogeneity of Variances](image)

Equality of Means Tests

You can use either the Brown-Forsythe test or the Welch test to assess the equality of means when groups are unequal in size. These tests do not assume homogeneity of variance.

If the statistic is significant at the .05 level, you reject the null hypothesis that the groups have equal means.

![Robust Tests of Equality of Means](image)

Post Hoc Tests

ANOVA does not tell you which groups are different from the others, only that a difference exists. After finding a significant difference, you can do post hoc tests on the factor to examine the differences between levels.

This table presents the tests available, ordered from the most liberal (greater statistical power and greater false-positive rate) to the most conservative (smaller false-positive rate and less statistical power).

These post hoc tests assume equal variances.
<table>
<thead>
<tr>
<th>Post hoc test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSD</td>
<td>The LSD (least significant difference) method applies standard t-tests to all possible pairs of group means.</td>
</tr>
<tr>
<td>SNK, REGWF, REGWQ, and Duncan</td>
<td>The SNK (Student-Newman-Keuls), REGWF (Ryan-Einot-Gabriel-Welsh F), REGWQ (Ryan-Einot-Gabriel-Welsh Q), and Duncan methods involve sequential testing. After ordering the group means from lowest to highest, the two most extreme means are tested for a significant difference using a critical value that is adjusted for the fact that these are the extremes from a larger set of means. If these means are found to not be significantly different, the testing stops. If they are different, then the testing continues with the next most extreme set, and so on.</td>
</tr>
<tr>
<td>Bonferroni, Sidak</td>
<td>The Bonferroni test (also called the Dunn procedure) and Sidak test (also called Dunn-Sidak) are performed at a stringent significance level to ensure that the family-wise (that is, applying to the set of tests) false-positive rate does not exceed the specified value.</td>
</tr>
<tr>
<td>Tukey (b)</td>
<td>The Tukey (b) test is a compromise test that combines the Tukey test (see next test) and the SNK criterion to produce a test result that falls between the two.</td>
</tr>
<tr>
<td>Tukey</td>
<td>Tukey’s HSD (Honestly Significant Difference), also called Tukey HSD, WSD, or the Tukey(a) test, controls the false-positive rate family-wise. This means, if you are testing at the .05 level, that when performing all pairwise comparisons the probability of obtaining one or more false positives is .05.</td>
</tr>
<tr>
<td>Scheffe</td>
<td>Scheffe’s method also controls the family-wise error rate. It adjusts not only for the pairwise comparisons, but also for any possible comparison that you specify.</td>
</tr>
</tbody>
</table>
Post hoc test Description

Hochberg's GT2, Gabriel
Most post hoc procedures mentioned above (excepting LSD, Bonferroni, and Sidak tests) are derived by assuming equal group sample sizes in addition to homogeneity of variance and normality of error. When the subgroup sizes are unequal, IBM Cognos Report Studio substitutes a single value (the harmonic mean) for the sample size. Hochberg's GT2 and Gabriel's post hoc test explicitly allow for unequal sample sizes.

Waller-Duncan
The Waller-Duncan test takes a Bayesian approach that adjusts the criterion value based on the size of the overall F statistic in order to be sensitive to the types of group differences associated with the F statistic (for example, large or small).

Dunnett
A pairwise multiple comparison t-test that compares a set of treatments against a single control mean. You can choose the first category or the last category as the default control category.

- **2-sided** tests that the mean at any level (except the control category) of the factor is not equal to that of the control category.
- **< Control** tests if the mean at any level of the factor is smaller than that of the control category.
- **> Control** tests if the mean at any level of the factor is greater than that of the control category.

These post hoc tests adjust for unequal variances and sample sizes in the groups.

Post hoc test	**Description**
Games-Howell | The Games-Howell test is designed for unequal variances and unequal sample sizes, and is based on the q-statistic distribution.
Tamhane's T2 | Tamhane's T2 is a conservative test. It is considered more appropriate than Tukey's HSD when cell sizes are unequal, or when homogeneity of variances is violated.
Dunnett's T3, Dunnett's C | Use these tests instead of Games-Howell when it is essential to maintain control over the significance level across multiple tests.
Nonparametric Tests

You use nonparametric tests to compare frequencies in categorical data, such as payment methods or gender. You test for significant differences between observed frequencies and expected frequencies in data that does not have a normal distribution. If the observed frequencies and expected frequencies are significantly different, you reject the null hypothesis.

To analyze data from a single categorical variable, you can use a one-way chi-square test. When analysis of categorical data involves two variables, you can use a two-way chi-square test.

Create A One-Way Chi-Square Test

One-way chi-square tests (also known as chi-square goodness-of-fit tests) compare observed frequencies against expected frequencies using data from a single categorical variable. By default, this test compares the observed and expected frequencies in the category to test that all categories contain the same proportion of values. You can also specify different proportions for the expected values.

Use the **One-Way Chi-Square** option if the data is a simple list of categorical values, such as payment method, where the frequencies come from the count for each unique value.

<table>
<thead>
<tr>
<th>ID</th>
<th>Method of Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>credit card</td>
</tr>
<tr>
<td>2</td>
<td>cash</td>
</tr>
<tr>
<td>3</td>
<td>credit card</td>
</tr>
</tbody>
</table>

Use the **One-Way Chi-Square with counts measure** option if the data is organized in unique category & count pairs.

<table>
<thead>
<tr>
<th>ID</th>
<th>Method of Payment</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Credit card</td>
<td>132</td>
</tr>
<tr>
<td>2</td>
<td>Cash</td>
<td>267</td>
</tr>
<tr>
<td>3</td>
<td>Debit</td>
<td>133</td>
</tr>
</tbody>
</table>

When your analysis involves two categorical variables, you can use a two-way chi-square test.

Procedure

1. From the File menu, click **New**.
 - If you want to change the package, click the ellipsis (...) and click a different package.
2. In the **New** dialog box, click **Statistics**. Click **OK**.
3. In the **Select Statistics** dialog box, expand **Nonparametric Tests** and click **One-Way Chi-Square Test**. Click **OK**.

4. Select the type of test, **One-Way Chi-Square or One-Way Chi-Square with counts measure**. Click **OK**.

5. In the statistical object wizard, expand the package in the metadata tree if necessary and drag items to the following drop zones:
 - Drag a nonmeasure item to the **Analysis variable** drop zone. Click **Next**.
 - If you chose **One-Way Chi-Square with counts measure**, drag the item that contains the counts measure to the **Counts variable** drop zone. Click **Next**.
 - Drag an item to the **Cases variable** drop zone to define a set of cases. Click **Next**.

6. Define the output. By default, a frequency table and a statistics table display. You can also display a table of quartiles. Click **Finish**.

7. Run the report.
 - You see two tables:
 - A table showing the frequency distribution, expected frequencies, and residuals. A residual is the difference between the observed value and the expected value.
 - A table showing the statistics for chi-square, degrees of freedom, and significance.
 - See the following example for a simple demonstration.

Example: Using a One-Way Chi-Square Test to Compare Daily Hospital Discharge Rates

You are a report author in a hospital. To deal with staff shortages, the administration must determine if the number of patients that the hospital discharges varies significantly by the day of the week.

You begin with the null hypothesis that there is no difference between the expected frequencies of discharged patients for the different days of the week and the observed frequencies. The alternative hypothesis is that there is a significant difference between the frequency of discharged patients and the day of the week.

Procedure

1. Open the DISCHARGEDATA package in IBM Cognos Report Studio.
2. From the **File** menu, click **New**.
3. In the **New** dialog box, click **Statistics**. Click **OK**.
4. In the **Select Statistics** dialog box, expand **Nonparametric Tests**, click **One-Way Chi-Square Test**. Click **OK**.
5. Select **One-way Chi-Square with counts measure**. Click **OK**.
6. From the metadata tree, expand the package if necessary and drag items to the following drop zones:
 - Drag the Day of the week item to the **Analysis variable** drop zone. Click **Next**.
 - Drag the Average daily discharge item to the **Counts variable** drop zone. Click **Next**.
 - Drag the ID item to the **Cases variable** drop zone. Click **Next**.
7. Leave the output set to the default. Click **Finish**.
8. Run the report.
 - You see two tables:
• A table showing the observed frequencies, expected frequencies, and residuals.
• A table showing the statistics for chi-square, degrees of freedom, and significance.

Results

The statistic of interest is the significance. The p-value is .000, rounded to three decimal places. Because the significance is <.05, you reject the null hypothesis. You conclude that there is a significant difference between the expected and observed frequencies, that is, discharge rates differ significantly according to the day of the week.

Asymptotic significance means significance that is most accurate with large samples and less accurate with small samples.
Example: Specify the Proportion for Expected Values in a Chi-Square Test

By default, the one-way chi-square test uses equal proportions to evenly calculate the expected values. You can also specify different proportions. For example, you hypothesize that 20% of patients are discharged on Friday, 20% on Saturday, and 20% on Sunday. The remainder are discharged throughout the rest of the week, 10% per day. You want to test whether the observed proportions from your sample differ significantly from these hypothesized proportions.
It is important that you add the numbers in the order that the variables appear in the data. In the example, the days of the week appear like this.

<table>
<thead>
<tr>
<th>ID</th>
<th>Day of the week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sunday</td>
</tr>
<tr>
<td>2</td>
<td>Monday</td>
</tr>
<tr>
<td>3</td>
<td>Tuesday</td>
</tr>
<tr>
<td>4</td>
<td>Wednesday</td>
</tr>
<tr>
<td>5</td>
<td>Thursday</td>
</tr>
<tr>
<td>6</td>
<td>Friday</td>
</tr>
<tr>
<td>7</td>
<td>Saturday</td>
</tr>
</tbody>
</table>

If you want to specify 20% for Friday, Saturday, and Sunday, you must add the values in the **Add values** dialog box in this order: 20, 10,10,10,20,20.

Procedure

1. Open the DISCHARGEDATA package in IBM Cognos Report Studio.
2. From the **File** menu, click **New**.
3. In the **New** dialog box, click **Statistics**. Click **OK**.
4. In the **Select Statistics** dialog box, expand **Nonparametric Tests**, click **One-Way Chi-Square Test**. Click **OK**.
5. Select **One-way Chi-Square with counts measure**. Click **OK**.
6. In the statistical object wizard, expand the package in the metadata tree if necessary and drag items to the following drop zones:
 - Drag the Day of the week item to the **Analysis variable** drop zone. Click **Next**.
 - Drag the Average daily discharge item to the **Counts variable** drop zone. Click **Next**.
 - Drag the ID item to the **Cases variable** drop zone. Click **Next**.
7. Leave the output set to the default. Click **Finish**.
8. In the work area, click the chi-square statistical object to display its properties.
9. On the **Properties** pane, under **General Settings**, change **Expected Values** from **All categories are equal** to **values**.
10. In the **Expected Values** dialog box, click the add icon.
11. Under **Numbers only**, type 20. Click **OK**.
12. Repeat steps 10 and 11 for each of these proportion figures: 10,10,10,20, and 20.
13. Run the report.

You see two tables, as in the preceding example. The number of expected observations is now calculated using your specified proportions. For example, the number of expected discharged patients for Sunday is now 117.8, that is, 20% of the total count of 589.
Create a Two-Way Chi-Square Test

Two-way chi-square tests (also known as chi-square tests of independence) compare observed frequencies against expected frequencies using data from two categorical variables.

For example, you can compare the observed number of transactions that use different methods of payment (cash, check, credit card, and so on) identified by gender against an expected number to answer the question: do methods of payment by different genders vary significantly?

Use the Two-Way Chi-Square option if your data contains pairs of categorical values where the frequencies come from the count for each unique pairing.

<table>
<thead>
<tr>
<th>ID</th>
<th>Gender</th>
<th>Method of Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>male</td>
<td>cash</td>
</tr>
<tr>
<td>2</td>
<td>male</td>
<td>cash</td>
</tr>
<tr>
<td>3</td>
<td>female</td>
<td>credit card</td>
</tr>
</tbody>
</table>

Use the Two-Way Chi-Square with counts measure option if your data contains unique pairs, plus a count.

<table>
<thead>
<tr>
<th>ID</th>
<th>Gender</th>
<th>Method of Payment</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Female</td>
<td>cash</td>
<td>321</td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>cash</td>
<td>237</td>
</tr>
</tbody>
</table>

Procedure

1. From the File menu, click New.
 If you want to change the package, click the ellipsis (...) and click a different package.
2. In the New dialog box, click Statistics. Click OK.
3. In the Select Statistics dialog box, expand Nonparametric Tests and click Two-Way Chi-Square Test. Click OK.
4. Select the type of test, Two-Way Chi-Square or Two-Way Chi-Square with counts measure. Click OK.
5. In the statistical object wizard, expand the package in the metadata tree if necessary and drag items to the following drop zones:
 • Drag an nonmeasure item to the Analysis variable 1 drop zones. Click Next.
 • Drag another nonmeasure item to the Analysis variable 2 drop zones. Click Next.
 • Drag an item to the Cases variable drop zone to define a set of cases. Click Next.
6. Specify the crosstab statistics that you want to show. Click Finish.
The default is to show the observed count and the case processing summary. You can also show the expected count and the percentage of row, column, and total for each category, as well as the residual, the standardized residual, and the adjusted residual.

7. Run the report.
 You see three tables:
 - A case processing summary.
 - A contingency table showing the frequency distribution.
 - A table showing the statistics for chi-square, likelihood ratio, association, and the number of valid cases.
 The chi-square statistic is determined by both the results of the cells in the contingency table and the degrees of freedom.
 The likelihood ratio is based on maximum likelihood estimation, and is usually similar to the chi-square results.
 Valid cases are all cases that are not missing data, as described in the case processing summary.
 See the following example for a simple demonstration.

Example: Using a Two-way Chi-Square Test to Compare Default Rates and Level of Education

You are a report author at a bank. You use a two-way chi-square test to determine whether level of education is related to the rate of default.

The null hypothesis is that the two variables are independent - in this case, that there is no significant difference in the rate of default for customers with different levels of education. The alternative hypothesis is that the rate of default differs significantly according to the level of education.

Note: You must have IBM Cognos Statistics installed and configured to create this example.

Procedure

1. Open the BANKLOAN_CS package in IBM Cognos Report Studio.
2. From the File menu, click New.
3. In the New dialog box, click Statistics. Click OK.
4. In the Select Statistics dialog box, expand Nonparametric Tests, and click Two-way Chi-Square. Click OK.
5. Select Two-Way Chi-Square. Click OK.
6. In the statistical object wizard, expand the package in the metadata tree if necessary and drag items to the following drop zones:
 - Drag the Level of education item to the Category 1 drop zone. Click Next.
 - Drag the Previously defaulted item to the Category 2 drop zone. Click Next.
 - Drag the Customer ID item to the Cases variable drop zone. Click Finish.
7. Run the report.

Results

The statistic of interest is the Pearson Chi-Square significance. The p-value is .000, rounded to three decimal places. Because the significance <.05, you reject the null hypothesis. You conclude that there is a significant difference between the default
Asymptotic significance means significance that is most accurate with large samples and less accurate with small samples.
Basic Correlation and Linear Regression

Correlation and regression analysis let you examine relationships between variables.

Basic correlation is a measure of association between two variables. The existence of a correlation does not imply causality, but simply helps you to understand the relationship.

Linear regression, on the other hand, examines the relationship between one dependent variable and one or more independent variables. You can use linear regression to predict the dependent variable when the independent variables are known.

Showing Correlation Between Variables

You can use correlation to measure the strength of a relationship between two variables using the correlation coefficient.

The correlation coefficient can range from -1 to 1, where -1 or 1 indicates a perfect relationship. The farther the coefficient is from 0, either positive or negative, the stronger the relationship. For example, a coefficient of .494 is exactly as strong as a coefficient of -.494.

Positive coefficients indicate a direct relationship, that is, when one variable increases, the other increases. Negative coefficients indicate an inverse relationship, that is, when one variable increases, the other one decreases.

If you square the coefficient, you get the R square statistic. Multiplied by 100, this statistic tells you the percentage of the variation in the dependent variable that is explained by the independent variable.

Tip: The Catalog Sales samples report is based on correlation.

Procedure

1. From the File menu, click New.
 If you want to change the package, click the ellipsis (...) and click a different package.
2. In the New dialog box, click Statistics. Click OK.
3. In the Statistics dialog box, expand Correlation and Regression and click Basic Correlation. Click OK.
4. In the statistical object wizard, expand the package in the metadata tree if necessary and drag items to the following drop zones:
 • Drag a measure item to the Analysis variable 1 drop zone. Click Next.
 • Drag another measure item to the Analysis variable 2 drop zone. Click Next.
 • Drag an item to the Cases variable drop zone to define a set of cases. Click Next.
5. Specify the correlation options, such as
 • which correlation coefficient to use
 • which statistics to display
 • how to treat missing values
 • the significance option
 • whether to show a scatterplot
6. Click Next.
7. You can specify output options, such as titles or footnotes. Otherwise, click Finish.
8. Run the report.
 By default, you see a scatterplot, a statistics table, and a correlations table.
 See the following example for a simple demonstration.

Related concepts:
Appendix C, “Sample Reports and Packages,” on page 567
Sample reports are included with IBM Cognos Business Intelligence. When installed, you can find them in the Public Folders tab in IBM Cognos Connection.

Example: Show the Correlation Between Age and Household Income
You are a report author at a bank. You are asked to show if household income is related to age and, if so, how strongly.

The null hypothesis is that there is no relationship between the two variables.

Procedure
1. Open the BANKLOAN_CS package in IBM Cognos Report Studio.
2. In the Welcome dialog box, click Create a new report or template.
3. In the New dialog box, click Statistics and then click OK.
4. In the Select Statistic dialog box, expand Correlation and Regression, click Basic Correlation, and then click OK.
 The statistical object wizard opens.
5. In the statistical object wizard, expand the BANKLOAN_CS package in the metadata tree if necessary and drag items to the following drop zones:
 • Drag the Age in years item to the Analysis variable 1 drop zone. Click Next.
 • Drag the Household income in thousands item to the Analysis variable 2 drop zone. Click Next.
 • Drag the customer ID item to the Cases variable drop zone to define a set of cases. Click Next.
7. Run the report.

Results
You see a scatter chart, a descriptive statistics table, and a correlations table.

First, look at the correlations table to find the statistic of interest in this case, the correlation coefficient.
The statistic of interest is the Pearson correlation coefficient. This statistic, .494, shows a positive relationship between age in years and household income.

The p-value for 2-tailed significance is .000, rounded to three decimal places.

Because the significance < .05, you reject the null hypothesis. You conclude that there is a significant relationship between age in years and household income, and that the relationship is positive.

To view the relationship graphically, look at the scatterplot.
Note the R square statistic (0.244) listed to the right of the graph. In this case, the Pearson coefficient is .494. If you square the Pearson coefficient (.494 * .494), you get .244 – the same as the R square statistic. Multiplied by 100, this statistic tells you the percentage of the variation in the household income variable that is explained by the Age in years variable.

You can then conclude that age explains 24.40% of the variation in household income in our sample.

Correlation Options

Aside from specifying how to treat missing values, you can specify the following options in your report.

Correlation Coefficients

Correlations coefficients measure how variables are related. The coefficient that you use depends on the type of data with which you are working.
<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson's</td>
<td>Measures the strength of the linear relationship between two scale (ratio or interval) variables. This common coefficient is the default.</td>
</tr>
<tr>
<td>Kendall's Tau b</td>
<td>Measures the strength of the relationship between ordinal data. This coefficient is most appropriate for square tables, that is, tables that contain the same number of rows and columns. Use this coefficient for nonparametric data.</td>
</tr>
<tr>
<td>Spearman</td>
<td>Uses the same calculations as Pearson's, but uses ranks of scores instead of actual values. Use when one or both variables are ordinal and not scalar, or if there are outlying values. Use this coefficient for nonparametric data.</td>
</tr>
</tbody>
</table>

Use Pearson's if there is a linear relationship. Use Kendall's Tau b or Spearman for ranked data.

You can also choose whether to show a one-tailed or two-tailed test of significance.

Use Linear Regression

Linear regression displays the regression coefficients of the linear equation involving one or more independent variables that best predict the value of the dependent variable. When there is more than one independent variable, this is known as multiple regression.

For example, you can explain how much of a salesperson's total yearly sales (the dependent variable) are due to independent variables such as education and years of experience (the independent variables).

You can use different regression models. A regression model relates y (the dependent variable) to a function of x (the independent variables) and a set of unknown parameters.

Tip: The Advertising Costs on Sales Revenue sample report is based on multiple regression.

Procedure

1. From the **File** menu, click **New**.
 - If you want to change the package, click the ellipsis (...) and click a different package.
2. In the **Welcome** dialog box, click **Create a new report or template**.
3. In the **New** dialog box, click **Statistics**. Click **OK**.
4. In the **Select Statistic** dialog box, expand **Correlation and Regression** and click **Linear Regression**. Click **OK**.
5. In the statistical object wizard, expand the package in the metadata tree if necessary and drag items to the following drop zones:
 - Drag an item to the **Dependent variable** drop zone. Click **Next**.
Drag one or more items to the Independent variables drop zone. Click Next. If you specify more than one variable, you are performing multiple regression.

Drag an item to the Cases variable drop zone to define a set of cases. Click Next.

6. Select an regression method and how to treat missing values. Click Next.

7. Select your desired output options.

8. Click Finish.

9. The default output includes a variable entry table, a model summary, an ANOVA table, and a coefficients table.

 The model summary table appears even if you select no other output options. The statistic of interest in the model summary table is the R square value. R square is the percent of the dependent variable that the independent variables can explain.

 The coefficients table gives you predictive information. It shows you how to predict the dependent variable from the value of the independent variables. See the following example for a simple demonstration.

Related concepts:

Appendix C, “Sample Reports and Packages,” on page 567

Sample reports are included with IBM Cognos Business Intelligence. When installed, you can find them in the Public Folders tab in IBM Cognos Connection.

Example: Use Linear Regression to Analyze the Relation Between Age and Household Income

You are a report author at a bank. You are asked to analyze the relationship between age and household income.

The null hypothesis is that there is no relationship between the two variables.

Procedure

1. Open the BANKLOAN_CS package in IBM Cognos Report Studio.
2. In the Welcome dialog box, click Create a new report or template.
3. In the New dialog box, click Statistics and then click OK.
4. In the Select Statistic dialog box, expand Correlation and Regression, click Linear Regression, and then click OK.
 The statistical object wizard opens.
5. From the metadata tree, expand BANKLOAN_CS and drag items to the following drop zones:
 • Drag the Household income in thousands item to the Dependent variable drop zone.
 • Drag the Age in years item to the Independent variables drop zone.
 • Drag the Customer ID item to the Cases variable drop zone to define a set of cases and click Next.
6. Leave the default entry method and missing values options, and click Next.
7. Leave the default output options, and click Finish.
8. Run the report.
Results

By default, you see a variable entry table, a model summary, an ANOVA table, and a regression coefficients table.

In the model summary table, the statistic of interest is the R square statistic, in this case .244.

- The coefficient of determination (R square) is the square of the correlation coefficient (R). It represents the proportion of variance in the dependent variable that can be accounted for by the regression equation. For example, an R square value of .24 means that the regression equation can explain 24% of the variance in the dependent variable. The other 76% is unexplained.

- Adjusted R square is a standard downward adjustment to correct for the possibility that, if there are many independent variables, some of the variance might be due to chance. The more independents, the greater the adjustment.

- The standard error of the estimate is the standard deviation of the data points as they are distributed around the regression line.

- The R square change refers to the amount R square increases or decreases when a variable is added to or deleted from the equation, as is done in stepwise regression.

- The F change statistic shows the significance level associated with adding or removing the variable for each step. You can change this in the regression method area of the wizard. Steps that are not significant are not modeled.
The variables table shows the variables that have been included in the analysis and the regression method that is used to enter the variables.

The ANOVA table tests the acceptability of the model. The Regression row displays information about the variation accounted for by your model. The Residual row displays information about the variation that is not accounted for by your model. If the significance value of the F statistic is less than 0.05, then the variation that the model explains is not due to chance.

Next, look at the coefficients table. The main statistic of interest in the coefficients table is the unstandardized regression coefficient, Age in years 2.523.
The regression equation is
\[
\text{dependent variable} = \text{slope} \times \text{independent variable} + \text{constant}
\]
The slope is how steep the regression line is, based on a scatterplot. The constant is where the regression line strikes the y-axis when the independent variable has a value of 0.

In this example, the slope is 2.523, and the constant is -26.636. So the regression equation is
\[
\text{predicted value of household income} = 2.523 \times \text{age in years} - 26.636.
\]
That is, for the average person, we would estimate that their household income at age 30 would be
\[
2.523 \times 30 - 26.63 = 49.06 \text{ (in thousands)}
\]

Note: For multiple regression, the regression equation is similar. If you have 3 independent variables (IV1, IV2, and IV3, the regression equation is
\[
\text{dependent variable} = B(\text{IV1}) \times \text{IV1} + B(\text{IV2}) \times \text{IV2} + B(\text{IV3}) \times \text{IV3} + \text{constant}
\]
The coefficients table also includes the confidence interval for B and the standardized coefficients.

Linear Regression Options
Aside from how to treat missing values and whether to show a table of descriptive statistics for the variables, you can specify the following options in your report.

Regression Methods
You can specify how independent variables are entered into the analysis. Using different methods, you can construct a variety of regression models from the same set of variables.

In multiple regression, the variable elimination criteria options apply when you specify the forward, backward, or stepwise variable selection method. You can include or remove variables from the model depending on the significance (probability) of the F value that is shown in the ANOVA table.
Therefore, a variable is entered into the model if the significance level of its F value is less than the **Entry** value and is removed if the significance level is greater than the **Removal** value. **Entry** must be less than **Removal**, and both values must be positive.

To enter more variables into the model, increase the **Entry** value. To remove more variables from the model, lower the **Removal** value.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter</td>
<td>Enters all variables in a single step.</td>
</tr>
<tr>
<td>Stepwise</td>
<td>At each step, enters the independent variable that is not in the equation and has the smallest probability of F, if that probability is sufficiently small. Variables already in the regression equation are removed if their probability of F becomes sufficiently large. The method terminates when no more variables are eligible for inclusion or removal.</td>
</tr>
<tr>
<td>Forward</td>
<td>A stepwise variable selection procedure in which variables are sequentially entered into the model. The procedure stops when there are no variables that meet the entry criterion.</td>
</tr>
<tr>
<td>Backward</td>
<td>All variables are entered into the equation and then sequentially removed. The procedure stops when there are no variables that meet the removal criterion.</td>
</tr>
</tbody>
</table>

Customized Output

You can specify what to show in your output.

Show R square change

Use this to show the change in the R square statistic that is produced by adding or deleting an independent variable. If the R square value change associated with a variable is large, the variable is a good predictor of the dependent variable.

Show ANOVA table

Use this to show an ANOVA table that provides information about levels of variability within a regression model and forms a basis for tests of significance.
Show coefficients
Use this to show the regression coefficient B, as well as its standard error and specified level of confidence. Also shows the t value for B, the significance level of t, and standardized coefficients (beta).

In a multiple regression analysis, standardized coefficients help to determine which of the independent variables have a greater effect on the dependent variable when the variables have different units of measurement, such as income measured in dollars and age measured in years.

Show variable processing summary
Use this to show the variables that are included in the analysis and the entry method used to enter the variables.

Show descriptives
Use this to show the number of valid cases, the mean, and the standard deviation for each variable in the analysis.

Show correlations
Use this to show the Pearson correlation, the 1-tailed significance, and the sample size (N) for each variable.

Show part and partial correlation
In multiple regression, part correlation displays the correlation between the dependent variable and an independent variable when the linear effects of the other independent variables in the model have been removed from the independent variable.

It is related to the change in R square when a variable is added to an equation. Sometimes called the semipartial correlation.

Partial correlation shows the correlation that remains between two variables after removing the correlation that is due to their mutual association with the other variables.

Show covariance matrix
Use this to show a variance-covariance matrix of regression coefficients with covariances off the diagonal and variances on the diagonal. Also shows a correlation matrix.

Show confidence interval
Use this to show the confidence interval that you specify.

Show model selection statistics
Use this to show model selection statistics based on the Akaike information criterion, the Amemiya prediction criterion, Mallows’ prediction criterion, and the Schwarz Bayesian criterion.

Show excluded variable statistics
In multiple regression, shows the betas and other coefficients related to variables that are not included in the model for the step listed.

Beta in is the beta weight that would result if the variable were put back into the model for the listed step. Likewise, t, significance, tolerance, and VIF (variance inflation factor), are the coefficients that would result from adding that variable back in. A variance inflation factor greater than 2 is usually considered problematic.

The excluded variable with the largest partial correlation is usually the best candidate to add back in.
Show collinearity diagnostics
In multiple regression, displays a table that assesses if there is too much
collinearity in the model. Collinearity (or multicollinearity) is the
undesirable situation when one independent variable is a linear function of
one of the other independent variables.

Crossproducts of the independent variables are factored in a matrix. High
eigenvalues indicate dimensions that account for a large amount of the
variance in the matrix. Eigenvalues close to 0 indicate that the predictors
are highly intercorrelated and that small changes in the data values might
lead to large changes in the estimates of the coefficients.

The condition indices are computed as the square roots of the ratios of the
largest eigenvalue to each successive eigenvalue.

A condition index over 15 indicates a possible collinearity problem. A
condition index over 30 suggests a serious collinearity problem. If a factor
of the crossproduct matrix has a high condition index, look in the variance
proportions column to see if it accounts for a large proportion of variance
in two or more variables. If so, collinearity is a problem.

Show residuals statistics
Use this to show summary data regarding the residuals, that is, the
difference between each individual value in the sample and the sample
mean, and the standardized residuals.

A standardized residual is the raw residual value divided by the square
root of the residual mean square.

Show standardized residuals histogram
Use this to show a histogram of the residual to check whether the variance
is normally distributed.

A symmetric histogram that is evenly distributed around zero indicates
that the underlying assumption of normality for a model is likely to be
true.

Show standardized residuals PP plots
The PP plot is another test of normally distributed residual error.

Under perfect normality, the plot would be a 45-degree line.

Show scatterplot of residuals versus dependent variables
Use this to show the difference between the calculated and measured
values of the dependent variable as a function of the measured values.

If the regression model represents the data correctly, the residuals are
randomly distributed around the horizontal line.

Show partial regression plot
Use this to show the effect of adding an additional variable to a model that
already contains one or more independent variables.

Create a Curve Estimate
You can use curve estimation to plot a curve through a set of points to examine the
relationship between one independent variable and one or more dependent
variables.

The aim of curve estimation is to find the best fit for your data, expressed as the
correlation coefficient R square. In general, the closer the R square value is to 1.00,
the better the fit.
Before you begin

You must have IBM Cognos Statistics installed and configured to create statistical objects.

Procedure
1. From the File menu, click New.
 - If you want to change the package, click the ellipsis (...) and click a different package.
2. In the Welcome dialog box, click Create a new report or template.
3. In the New dialog box, click Statistics and then click OK.
4. In the Select Statistic dialog box, expand Correlation and Regression, click Curve Estimation, and then click OK.
5. In the statistical object wizard, expand the package in the metadata tree if necessary and drag items to the following drop zones:
 - Drag an item to the Dependent Variables drop zone.
 - Drag an item to the Independent Variable drop zone.
 - Drag an item to the Cases variable drop zone to define a set of cases. Click Next.
6. Select the curve models to use. The default model is linear. Click Next.
7. Select your desired output options. Click Next.
8. Run the report.
 - The default output includes a scatterplot and model summary tables, ANOVA tables, and regression coefficients for each of the curve models selected.
 - See the following example for a simple demonstration.

Example: Create a Curve Estimation
You are a report author at a bank. In this scenario, you analyze whether household income increases with a customer's age and observe if there is a linear relationship between these two variables.

Procedure
1. Open the BANKLOAN_CS package in IBM Cognos Report Studio.
2. In the Welcome dialog box, click Create a new report or template.
3. In the New dialog box, click Statistics and then click OK.
4. In the Select Statistic dialog box, expand Regression, click Curve Estimation, and then click OK.
5. In the statistical object wizard, expand the BANKLOAN_CS package in the metadata tree if necessary and drag items to the following drop zones:
 - Drag the Household income in thousands item to the Dependent Variables drop zone. Click Next.
 - Drag the Age in years item to the Independent Variable drop zone. Click Next.
 - Drag the Customer ID item to the Cases drop zone to define a set of cases. Click Next.
6. Leave linear as the default model. Click Next.
7. Leave the default output options. Click Finish.
8. Run the report.
The default output includes a scatterplot, model summary table, ANOVA table, and coefficients table.

![Household income in thousands](image)

Results

The scatterplot suggests that the linear model is a good fit for your data. Look at the model summary table. How close is the R square value to 1.00?

You can try using different models with your data to help you find the model with the optimum fit.

Curve Estimation Options

You can specify the following options in your report.

Include Constant in Equation

By default, the regression model includes a constant term. Deselecting this option forces regression through the origin. Results of regression through the origin are not comparable to results of regression that do include a constant. For example, the R square statistic cannot be interpreted in the usual way.

Curve Models

You can choose one or more curve estimation regression models. First, view a scatterplot of your data. If your variables appear to be related linearly, use a simple linear regression model. If the plot resembles a mathematical function you recognize, fit your data to that type of model. For example, if your data resembles an exponential function, use an exponential model.
Linear

A model whose equation is $Y = b_0 + (b_1 * X)$, where b_0 is the constant, b_1 the regression coefficient for x, the independent variable.

The series values are modeled as a linear function of X.

Logarithmic

A model whose equation is $Y = b_0 + (b_1 * \ln(X))$, where $\ln()$ is the natural log function.
Inverse

A model whose equation is $Y = b0 + (b1 / X)$.

Quadratic

A model whose equation is $Y = b0 + (b1 \times X) + (b2 \times X^{**2})$, where ** is the exponentiation operator. If $b2$ is positive, the slope is upward; if negative, downward.
You can use the quadratic model to model a series that "takes off" or a series that dampens.

Cubic

A model that is defined by the equation $Y = b_0 + (b_1 \times x) + (b_2 \times x^2) + (b_3 \times x^3)$. If b_3 is positive, the slope is upward; if negative, downward.
Power

A model whose equation is $Y = b_0 \cdot (X^{b_1})$ or $\ln(Y) = \ln(b_0) + (b_1 \cdot \ln(X))$. If b_0 is positive, the slope is upward; if negative, downward.

Compound

A model whose equation is $Y = b_0 \cdot (b_1^X)$ or $\ln(Y) = \ln(b_0) + (\ln(b_1) \cdot X)$. If b_0 is positive, the slope is upward; if negative, downward.
A model whose equation is $Y = e^{b_0 + (b_1/X)}$ or $\ln(Y) = b_0 + (b_1/X)$, where e is the base of the natural logarithm. If b_1 is positive, the slope is upward; if negative, downward.

Logistic

A model whose equation is $Y = 1 / (1/u + (b_0 * (b_1**X)))$ or $\ln(1/y-1/u) = \ln(b_0) + (\ln(b_1) * X)$ where u is the upper boundary value. If b_1 is negative, the slope is upward; if positive, downward.

After selecting Logistic, specify the upper boundary value to use in the regression equation. The value must be a positive number that is greater than the largest dependent variable value.
Growth

A model whose equation is $Y = e^{b_0 + (b_1 \times X)}$ or $\ln(Y) = b_0 + (b_1 \times X)$. If b_1 is negative, the slope is downward; if positive, upward.

Exponential

A model whose equation is $Y = b_0 \times (e^{b_1 \times X})$ or $\ln(Y) = \ln(b_0) + (b_1 \times X)$. If b_0 is negative, the slope is downward; if positive, upward.
Customized Output

You can specify what to include in your output.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show case processing summary</td>
<td>Shows the number of total cases, as well as any excluded cases, forecasted cases, and newly created cases. Cases are excluded from the analysis when there is a missing value in any variable.</td>
</tr>
<tr>
<td>Show variable processing summary</td>
<td>Shows the number of positive, negative, and missing values. Also shows the number of zeros.</td>
</tr>
<tr>
<td>Show chart</td>
<td>Shows a scatterplot.</td>
</tr>
<tr>
<td>Show model summary</td>
<td>Shows R, the R square value and adjusted R square value, and the standard error of the estimate.</td>
</tr>
<tr>
<td>Show ANOVA table</td>
<td>Shows an ANOVA table that provides information about levels of variability within a regression model and forms a basis for tests of significance.</td>
</tr>
<tr>
<td>Show coefficients</td>
<td>Shows the regression coefficient B, standard error of B, confidence intervals with the specified level of confidence for B, t value for B, the two-tailed significance level of t, and standardized coefficient beta.</td>
</tr>
</tbody>
</table>

Statistical Process Control

All processes show variation, but excessive variation can produce undesirable or unpredictable results.
You use statistical process control (SPC) to monitor critical manufacturing and other business processes that must be within specified limits. For example, a control chart can inform you if samples from a shampoo manufacturing process exceed a specified pH level.

The basic steps of statistical process control include

- measuring the process
- monitoring the process
- finding and eliminating undesirable variations
- continuously improving the process

You can use control charts to monitor the variations in a process.

You can use specification limits to determine if your product conforms to specifications.

You can specify control rules to highlight when a process is going out of control.

Control Charts

Control charts plot samples of your process output collected over time to show you whether a process is in control or out of control. The type of control chart that you choose depends on the type of output that your process produces and the sampling plan that you use to collect the data.

Control Charts for Variables

Use one of the following charts for variable data, that is, data that you can measure, such as temperature, diameter, and so on. You use these charts to compare actual observations to a target value to see if your product meets specifications.

In situations where you take several measurements, then you should use an X-bar chart with either the R chart or S chart.

<table>
<thead>
<tr>
<th>Chart</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-bar charts</td>
<td>Plot the average of each subgroup. An X-bar chart is often accompanied by either the R chart or S chart.</td>
</tr>
<tr>
<td>R charts</td>
<td>Plot the data range for each subgroup.</td>
</tr>
<tr>
<td>S charts</td>
<td>Plot the data standard deviation for each subgroup.</td>
</tr>
</tbody>
</table>

In situations where you take a single measurement at each collection period, you should use an individuals or moving range chart.

<table>
<thead>
<tr>
<th>Chart</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals charts</td>
<td>Plot individual observations that cannot be put into subgroups, such as single-measurement samples.</td>
</tr>
<tr>
<td>Moving range charts</td>
<td>Plot the spread of measures in terms of the differences between consecutive samples.</td>
</tr>
</tbody>
</table>
For variable data, your data should be set up as in the table below.

<table>
<thead>
<tr>
<th>ID</th>
<th>Time of measurement</th>
<th>Batch</th>
<th>Shift</th>
<th>pH level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>day</td>
<td>4.98</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>day</td>
<td>4.65</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>day</td>
<td>4.91</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>day</td>
<td>4.62</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>day</td>
<td>4.84</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>day</td>
<td>4.69</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>day</td>
<td>4.52</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
<td>day</td>
<td>4.73</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>3</td>
<td>day</td>
<td>5.05</td>
</tr>
</tbody>
</table>

To see how a control chart plots this data, look at the X-bar chart example. You can see that the first data marker in the chart represents the mean pH level (4.78) for the 6 batches that make up a sample for the subgroup variable Time of measurement (1).

Likewise, if you look at the R bar chart in the example, you can see that the first data marker represents the range (subtract the smallest value 4.62 from the largest value 4.98) for the 6 batches that make up a sample for the subgroup variable Time of measurement (1).

Control Charts for Attributes

Use one of the following charts for attribute data, such as the number of defective parts or late shipments. You can track defects using different methods.

In situations where you are tracking whole units that are defective, you should use a p chart or np chart.

<table>
<thead>
<tr>
<th>Chart</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p chart</td>
<td>Plots the percentage of defective units, such as the percent of automobiles with defects per shift. Sample sizes do not need to be equal. They can vary between collection periods.</td>
</tr>
<tr>
<td>np chart</td>
<td>Plots the number of defective units, such as the number of automobiles with defects per shift. Sample sizes must be equal.</td>
</tr>
</tbody>
</table>

In situations where you are tracking the number of defects per unit, you should use a c chart or u chart.
For attribute data, your data should be set up similar to the table below. Because the sample sizes are not equal in this case, you would have to use a p chart or a u chart.

<table>
<thead>
<tr>
<th>ID</th>
<th>Lot</th>
<th>Sampled</th>
<th>Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>193.00</td>
<td>6.00</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>198.00</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>211.00</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>4.00</td>
<td>210.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>5.00</td>
<td>204.00</td>
<td>2.00</td>
</tr>
<tr>
<td>6</td>
<td>6.00</td>
<td>214.00</td>
<td>1.00</td>
</tr>
<tr>
<td>7</td>
<td>7.00</td>
<td>208.00</td>
<td>1.00</td>
</tr>
<tr>
<td>8</td>
<td>8.00</td>
<td>210.00</td>
<td>3.00</td>
</tr>
<tr>
<td>9</td>
<td>9.00</td>
<td>198.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Related tasks:

“Example: Create a Report Showing Shampoo Manufacturing Quality Control” on page 266

You are a report author at a shampoo manufacturer. You create an R chart and an X-bar chart to see if the manufacturing process runs according to the specification limits.

Create Process Capability Charts

You can create process capability charts to plot the distribution of measurement subgroup means taken over time.

The default process capability chart consists of

- a histogram of the process values
- a superimposed normal curve based on the capability sigma and the process mean
- vertical reference lines at the fixed upper and lower control limits and target value, if specified

An example use of a process capability chart is to measure a property of a process to its specification. The calculations predict how many parts will be produced out of specification in the process.
Procedure

1. From the File menu, click New.
 If you want to change the package, click the ellipsis (...) and click a different package.
2. In the New dialog box, click Statistics and then click OK.
3. In the Select Statistic dialog box, expand Control Charts, click Process Capability, and then click OK.
4. From the metadata tree, expand the package if necessary and drag items to the drop zones:
 - Drag an item to the Process measurement variables drop zone to represent your measure of interest. Click Next.
 - Drag an item to the Cases variable drop zone to define a set of cases. Click Next.
5. Specify the upper and lower specification limits.
 The target value is optional but required for certain statistical evaluations.
 CP and CpK are selected by default. The CpM option is enabled when you enter a value in the target field.
7. Select the Process performance indices. Click Next.
8. Select the information to display in your output:
 - Select Show capability to superimpose a normal curve with mean equal to the process mean and standard deviation equal to the capability sigma.
 - Select Show performance to superimpose a normal curve with mean equal to the process mean and standard deviation equal to the process standard deviation.
 - Select a Reference lines option for the process measurement variable.
 - Select one or more descriptive statistics to include as tables in the output: Mean, Count (N), Standard deviation, Capability sigma.
 - Select the specification limits and target to include in the output. Click Next.
9. Specify the title, subtitle, and footnotes for the chart. Click Finish.
10. Run the report.

Create X-Bar, R, and S Charts

You can create X-bar, R, and S charts to chart variable data where the sample size is a made up of several measurements.

For example, you might use X-bar charts to monitor the variation in the lengths of cut material. If you detect a shift towards a control limit, this might indicate that the cutting tool is wearing and must be replaced.

X-bar charts are often used in conjunction with S charts and R charts.

R charts plot range values by subtracting the smallest value in a subgroup from the largest value in the same subgroup. The center line on the chart represents the mean of the ranges of all the subgroups.

S charts plot the standard deviations for each subgroup. The center line on the chart represents the mean of the standard deviations of all the subgroups.
Procedure

1. From the File menu, click New.

 If you want to change the package, click the ellipsis (...) and click a different package.

2. In the New dialog box, click Statistics and then click OK.

3. In the Select Statistic dialog box, expand Control Charts, click X-bar, R, or S and then click OK.

4. From the metadata tree, expand the package if necessary and drag items to the following drop zones:

 - Drag an item to the Process measurement variables drop zone to represent your measure of interest. Click Next.
 - Drag an item to the Subgroups variable drop zone to represent the time or sample lot. Click Next.
 - Drag an item to the Cases variable drop zone to define a set of cases. Click Next.

5. Specify the number of standard deviations and the minimum subgroup size.
 The number of standard deviations determines the control limit bands.
 The default settings are ±3 standard deviations and a minimum subgroup size of 2.
 Select Display subgroups defined by missing values to display each missing value for the subgroup variable as a separate group in the chart.

6. For X-bar charts, you can specify the following:

 - Specify control rules to identify out-of-control points. Click Next.
 - Specify the specification limits to define the upper and lower specification limits for the process measurement variable.
 - Specify any desired process capability indices.
 - Specify any desired process performance indices. Click Next.

7. For X-bar charts, R charts, and S charts, specify any output options such as titles or footnotes. Click Finish.

8. Run the report.

Example: Create a Report Showing Shampoo Manufacturing Quality Control

You are a report author at a shampoo manufacturer. You create an R chart and an X-bar chart to see if the manufacturing process runs according to the specification limits.

During each shift, you record pH levels for separate output batches at regular time intervals. You set the specification limits to allow a fluctuation of 4.8-5.2 in the pH level, with a target value of 5.

Procedure

1. Open the SHAMPOO_PH package in IBM Cognos Report Studio.

2. In the Welcome dialog box, click Create a new report or template.

3. In the New dialog box, click Statistics and then click OK.

4. In the Select Statistic dialog box, expand Control Charts, click R, and then click OK.

5. From the metadata tree, expand the SHAMPOO_PH package if necessary and drag items to the following drop zones:
Drag the pH level item to the Process measurement variables drop zone. Click Next.

Drag the Time of measurement item to the Subgroups variable drop zone to represent the sequential parameter. Click Next.

Drag the ID item to the Cases variable drop zone to define a set of cases.

6. Leave the number of standard deviations at 3 and the minimum subgroup size as 2.

7. Click Finish.

Now you want to add an X-bar chart to the report.

8. In the Toolbox tab, scroll down to Statistics.

9. Drag a statistical object onto the work area.

10. Repeat steps 4 through 6 to create an X-bar chart, with the following specifications:
 - Leave the default control rules and click Next.
 - Specify the process upper specification limit as 5.2, the lower specification limit as 4.8, and the specification target as 5.0.
 - Select CP and CpU as process capability indices.
 - Select PP and PpU as process performance indices. Click Next.
 - Type Shampoo Quality Measurements as a report title. Click Finish.

11. Run the report.

The output includes the R chart and X-bar chart, as well as tables containing rule violations and process statistics.

Examine the R chart first. The R chart uses sample ranges to monitor changes in the spread of a process. The sample ranges are plotted as points on the chart and connected with lines. The solid centerline is the average of the sample ranges. The two dashed lines are the upper control limit (UCL) and the lower control limit (LCL). Note that the value of the LCL, 0.0, is not visible because it is flush with the horizontal axis.
The control limits are calculated so that if the process is in control, nearly all of the sample points will fall between the limits. Control limits reflect the expected amount of variation in the sample ranges when only common causes of variation are present.

All the points in the R chart are within the control limits. The process variability is in control. For a different view - that of the process itself, rather than the variability - you look at the X-bar chart.

If an R chart indicates that the process variability is out of control, then you should disregard the X-bar chart. The average of the sample ranges is used in the calculation of the control limits for the X-bar chart. So if the R chart does not display control, the control limits on the X-bar chart are questionable.

Because the process variability appears to be in control, you now examine the X-bar chart.

The X-bar chart below shows the results for a specified time period.
The X-bar chart uses sample means to monitor changes in a process. The sample means (or averages) are plotted as points and connected with lines. The solid centerline is the average of the sample means. The two inner dashed lines are the upper control limit (UCL) and the lower control limit (LCL). The control limits reflect the expected amount of variation in the sample means when only common causes of variation are present.

The average is 4.99, which is on target, but this plot shows that certain points in the process are out of control.

Note: The Rule Violations table shown below displays points that violate any rule. The table uses the subgroups variable to identify the points. In this case, the subgroups variable is Time of measurement.
In the Process Statistics table, the CP and PP value is less than 1. This indicates that the process shows excess variability. The process variability indices CpU and PpU show that the process behaves in a relatively symmetric way.

Using the X-bar, you determine that certain points in the process are out of control. You might want to investigate the differences in the pH of shampoo that different shifts produce.
Related concepts:

“Control Charts” on page 262
Control charts plot samples of your process output collected over time to show you whether a process is in control or out of control. The type of control chart that you choose depends on the type of output that your process produces and the sampling plan that you use to collect the data.

“Process Capability Indices” on page 276
The process capability indices measure the capability of the process.

“Process Performance Indices” on page 277
The process performance indices measure the performance of the process. Most of these indices are based on the standard deviation of the process, or the specification limits chosen in the statistical object wizard, or both.

“Specification Limits” on page 275
In X-bar charts and individuals charts, you can specify the limits that determine if your measure of interest meets the intended specifications. These specification limits are shown on the chart along with the calculated limits that the control rules determine.

Create Moving Range Charts

You can create moving range charts to chart variable data where the sample size is a single measurement.

Moving range charts plot the absolute value of the difference between the minimum and maximum values of the measurements for \(n \) consecutive cases where \(n \) is defined by the span. The center line on the chart represents the average change from one sample to another.

You can define span in the properties section of the chart. The number of individual cases used to calculate the points in the moving range charts is known as the span.

If you want to chart variable data for data where the sample size is a made up of several measurements, you can use an x-bar, R, or S chart.

Procedure

1. From the File menu, click New.
 If you want to change the package, click the ellipsis (...) and click a different package.
2. In the New dialog box, click Statistics. Click OK.
3. In the Select Statistic dialog box, expand Control Charts and click Moving Range. Click OK.
4. From the metadata tree, expand the package if necessary and drag items to the following drop zones:
 • Drag an item to the Process measurement variable drop zone to represent your measure of interest. Click Next.
 • Drag an item to the Subgroups variable drop zone to represent the sequential parameter. Click Next.
 • Drag an item to the Cases variable drop zone to define a set of cases. Click Next.
5. Specify the number of standard deviations and the minimum subgroup size.
 Select Display subgroups defined by missing values to display each missing value for the subgroup variable as a separate group in the chart.
The subgroup size specifies the span that calculates the moving range.

6. Specify any output options such as titles or footnotes. Click Finish.
7. Run the report.

Create Individuals Charts

You can create individuals charts to chart variable data where the sample size is a single measurement.

Individuals charts plot the measured value of each individual sample. The center line on the chart represents the average of all individual samples in the chart.

If you want to chart variable data for data where the sample size is made up of several measurements, you can use an x-bar, R, or S chart.

Procedure
1. From the File menu, click New.
 If you want to change the package, click the ellipsis (...) and click a different package.
2. In the New dialog box, click Statistics. Click OK.
3. In the Select Statistic dialog box, expand Control Charts and click Moving Range or Individuals. Click OK.
4. From the metadata tree, expand the package if necessary and drag items to the following drop zones:
 • Drag an item to the Process measurement variable drop zone to represent your measure of interest. Click Next.
 • Drag an item to the Subgroups variable drop zone to represent the sequential parameter. Click Next.
 • Drag an item to the Cases variable drop zone to define a set of cases. Click Next.
5. Specify the number of standard deviations and the minimum subgroup size.
 Select Display subgroups defined by missing values to display each missing value for the subgroup variable as a separate group in the chart.
 You can also specify the number of standard deviations, the minimum subgroup size, the control rules and the specification limits.
6. Specify any output options such as titles or footnotes. Click Finish.
7. Run the report.

Create p,np Charts

You can use a p chart or an np chart to plot attribute data where you are tracking whole units that are defective.

Use np charts plot the quantity of units that have defects based on samples of equal size.

Use p charts plot the percent of units that have defects based on samples of equal or unequal size.

Tip: The Clothing Manufacturer Quality sample report is based on a p chart.

Procedure
1. From the File menu, click New.
If you want to change the package, click the ellipsis (…) and click a different package.

2. In the New dialog box, click Statistics and then click OK.

3. In the Select Statistic dialog box, expand Control Charts, click p, np (Cases are Units) or p, np (Cases are Subgroups) and then click OK.

4. From the metadata tree, expand the package if necessary and drag items to the following drop zones:
 - If using Cases are Units, drag an item to the Characteristic variable drop zone. Click Next. Drag an item to the Subgroups variable drop zone. Click Next.
 - If using Cases are Subgroups, drag an item to the Sample size variable drop zone. Click Next. Drag an item to the Number of nonconforming variable drop zone. Click Next.

5. Drag an item to the Cases variable drop zone to define a set of cases. Click Next.

6. Under Chart, choose either p (Proportion nonconforming) to produce a p chart, or np (Number of nonconforming) to produce an np chart.
 - If using Cases are Units, under Value to count, choose either Conforming or Nonconforming and enter a value.

7. Click Next.

8. Specify the number of standard deviations to show and the control rules.
 - Select Display subgroups defined by missing values to display each missing value for the subgroup variable as a separate group in the chart.

9. Click Next.

10. Specify any output options such as titles or footnotes. Click Finish.

11. Run the report.

Related concepts:

 Appendix C, “Sample Reports and Packages,” on page 567

Sample reports are included with IBM Cognos Business Intelligence. When installed, you can find them in the Public Folders tab in IBM Cognos Connection.

Create c,u Charts

You can create c,u charts to plot attribute data where you are tracking the number of defects per unit.

Use c charts to plot the total quantity of defects based on samples of equal size.

Use u charts to plot the defects per unit based on samples of equal or unequal size.

When there are unequal sample sizes, a u chart is recommended.

Procedure

1. From the File menu, click New.
 - If you want to change the package, click the ellipsis (…) and click a different package.

2. In the New dialog box, click Statistics and then click OK.

3. In the Select Statistic dialog box, expand Control Charts, click c, u (Cases are Units) or c, u (Cases are Subgroups) and then click OK.

4. From the metadata tree, expand the package if necessary and drag items to the following drop zones:
If using Cases are Units, drag an item to the **Characteristic variable** drop zone. Click **Next**. Drag an item to **Subgroups variable**. Click **Next**.

If using Cases are Subgroups, drag an item to the **Sample size variable** drop zone. Click **Next**. Drag an item to the **Number of nonconforming variable** drop zone. Click **Next**.

5. Drag an item to the **Cases variable** drop zone to define a set of cases. Click **Next**.

6. Under **Chart**, choose either **u (Nonconformities per unit)** to produce a u chart, or **c (Number of nonconformities)** to produce a c chart. Click **Next**.

7. Specify the number of standard deviations to show and the control rules. Click **Next**.

8. Select **Display subgroups defined by missing values** to display each missing value for the subgroup variable as a separate group in the chart.

9. Specify any output options, such as titles or footnotes, and click **Finish**.

10. Run the report.

Cases are Units or Cases are Subgroups

In p, np charts and c, u charts, you can choose between cases are units and cases are subgroups. What is the difference?

Cases are Units

If each case is a unit with a subgroup identifier, such as time of measurement or batch number, cases are assigned to a category according to the value of the identifier. In the following table, each case is a unit.

<table>
<thead>
<tr>
<th>Time of measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:50</td>
<td>6.35</td>
</tr>
<tr>
<td>8:50</td>
<td>6.40</td>
</tr>
<tr>
<td>8:50</td>
<td>6.32</td>
</tr>
<tr>
<td>8:50</td>
<td>6.39</td>
</tr>
<tr>
<td>11:30</td>
<td>6.39</td>
</tr>
<tr>
<td>11:30</td>
<td>6.46</td>
</tr>
<tr>
<td>11:30</td>
<td>6.37</td>
</tr>
<tr>
<td>11:30</td>
<td>6.36</td>
</tr>
</tbody>
</table>

Cases are Subgroups

If each case is a subgroup, there are as many variables as individuals within the sample. In the following table, each case is a subgroup.

<table>
<thead>
<tr>
<th>Time of measurement</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
<th>N4</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:50</td>
<td>6.35</td>
<td>6.40</td>
<td>6.32</td>
<td>6.39</td>
</tr>
<tr>
<td>11:30</td>
<td>6.39</td>
<td>6.46</td>
<td>6.37</td>
<td>6.36</td>
</tr>
</tbody>
</table>
Specification Limits

In X-bar charts and individuals charts, you can specify the limits that determine if your measure of interest meets the intended specifications. These specification limits are shown on the chart along with the calculated limits that the control rules determine.

- To show a fixed upper limit, enter the value in **Upper specification limit**.
- To show a fixed lower limit, enter the value in **Lower specification limit**.
- To show a target value for the process, enter the target value in **Specification target**.

You can also specify how to estimate the capability sigma, which is a measure of variation used in the computation of capability indices. You can estimate the capability sigma based on the R-bar values (the mean range), on the S-bar values (the mean standard deviation), or on the variation within a subgroup.

You can also specify whether to show the percentage of individual observations in the process that lie outside the specification limits by clicking **Actual % outside specification limits**.

Related tasks:

“Example: Create a Report Showing Shampoo Manufacturing Quality Control” on page 266

You are a report author at a shampoo manufacturer. You create an R chart and an X-bar chart to see if the manufacturing process runs according to the specification limits.

Control Rules

Control rules are decision rules for detecting out-of-control conditions in control charts. The location of data points relative to the control limits and the central line indicate whether the process performs as expected. The number of specified standard deviations determine the control limits. The default is ±3 standard deviations.

Note: Keep in mind the difference between control limits and specification limits. Control limits are calculated automatically by the number of standard deviations, and determine if the process is in control. Specification limits are specified manually, and determine if your measure of interest meets the intended specifications.

In X-bar charts, individuals charts, p,np charts, and c,u charts, you can use control rules to supplement the default rule of displaying points only when they exceed the specified control limits. Random variation within those limits indicates the process is in control. Nonrandom variation might indicate that something is wrong.

For example, you can choose to display when two of three consecutive points fall outside the 2-sigma warning limits, but are still within the 3-sigma control limits. This might signify issues in the future that have not yet actually gone out of control.

If a point violates any rule, it appears in the chart with a different shape and color compared to in-control points.
The output includes a table of rule violations. If a point violates more than one rule, it is listed multiple times for each rule violation. By default, the subgroup variable is used to identify points in the table.

Process Capability Indices

The process capability indices measure the capability of the process.

Process capability compares the actual output of a process to the specified specification limits by calculating the ratio of the spread between the process specifications (the specification width) to the spread of the process values (the process width).

The curve in the graphic below represents the process width. The upper specification limit and the lower specification limit represent the specification width.

Each statistic measures a different aspect of the process. Most of these indices are based on the capability sigma (which is computed using the sample mean moving range), the specification limits, or both.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>Measures the overall capability of the process, using the ratio of the difference between the specification limits to the observed process variation. CP values greater than or equal to 1 indicate a capable process. Values less than 1 indicate that the process is too variable.</td>
</tr>
<tr>
<td>Statistic</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>CpU</td>
<td>Determines whether or not the process variability is symmetric, using the distance between the process mean and the upper specification limit (CpU) or the lower specification limit (CpL) scaled by capability sigma. If this value is close to CP, then the process variability is relatively symmetric.</td>
</tr>
<tr>
<td>CpL</td>
<td>Measures the deviation of the process mean from the midpoint of the specification limits. This measurement is computed independently of the estimated capability sigma.</td>
</tr>
<tr>
<td>K</td>
<td>Capability of the process related to both dispersion and centeredness. It is the minimum of CpU and CpL. If only one specification limit is provided, we compute and report a unilateral CpK instead of taking the minimum.</td>
</tr>
<tr>
<td>CpK</td>
<td>The reciprocal of CP.</td>
</tr>
<tr>
<td>CpM</td>
<td>An index relating capability sigma and the difference between the process mean and the target value.</td>
</tr>
<tr>
<td>Z-upper</td>
<td>The number of capability sigma between the process mean and the upper specification limit (Z-upper) or lower specification limit (Z-lower).</td>
</tr>
<tr>
<td>Z-lower</td>
<td>The minimum number (Z-min) or maximum number (Z-max) of capability sigma between the process mean and the specification limits.</td>
</tr>
<tr>
<td>Z-out</td>
<td>The estimated percentage outside the specification limits. The standard normal approximation is based on the Z-upper and Z-lower indices.</td>
</tr>
</tbody>
</table>

Related tasks:

“Example: Create a Report Showing Shampoo Manufacturing Quality Control” on page 266

You are a report author at a shampoo manufacturer. You create an R chart and an X-bar chart to see if the manufacturing process runs according to the specification limits.

Process Performance Indices

The process performance indices measure the performance of the process. Most of these indices are based on the standard deviation of the process, or the specification limits chosen in the statistical object wizard, or both.

These measures are similar to process capability indices, but are based on the overall process variability rather than the sample variability.
<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>Measures the overall performance of the process.</td>
</tr>
<tr>
<td>PpU</td>
<td>The distance between the process mean and the upper specification limit scaled by process standard deviation.</td>
</tr>
<tr>
<td>PpL</td>
<td>The distance between the process mean and the lower specification limit scaled by process standard deviation.</td>
</tr>
<tr>
<td>PpK</td>
<td>Measures the performance of the process related to both dispersion and centeredness. It is the minimum of PpU and PpL. If only one specification limit is provided, we compute and report a unilateral PpK instead of taking the minimum.</td>
</tr>
<tr>
<td>PR</td>
<td>The reciprocal of PP.</td>
</tr>
<tr>
<td>PpM</td>
<td>An index relating process variance and the difference between the process mean and the target value.</td>
</tr>
<tr>
<td>Z-upper</td>
<td>The number of standard deviations between the process mean and the upper specification limit (Z-upper) or the lower specification limit (Z-lower).</td>
</tr>
<tr>
<td>Z-lower</td>
<td></td>
</tr>
<tr>
<td>Z-max</td>
<td>The minimum number (Z-min) or maximum number (Z-max) of standard deviations between the process mean and the specification limits</td>
</tr>
<tr>
<td>Z-min</td>
<td></td>
</tr>
<tr>
<td>Z-out</td>
<td>The estimated percentage outside the specification limits. The standard normal approximation is based on the Z-upper and Z-lower.</td>
</tr>
</tbody>
</table>

Related tasks:

"Example: Create a Report Showing Shampoo Manufacturing Quality Control" on page 266

You are a report author at a shampoo manufacturer. You create an R chart and an X-bar chart to see if the manufacturing process runs according to the specification limits.
Chapter 10. Relational Reporting Style

The relational reporting style is recommended for relational data sources. Relational data is best represented by lists. This data is organized in IBM Cognos Report Studio by query items.

In relational reporting, you summarize data by using headers and footers in lists, summary functions, and within detail aggregation. You focus data in relational reporting with summary or detail filters.

IBM Cognos Query Studio is also available to work with relational data.

Add Relational Data to a Report

Select the data items to appear in the report.

Note: We recommend using relational data in the relational reporting style. However, if you are using dimensional data, see “Add Dimensional Data to a Report” on page 319.

If you frequently use items from different query subjects or dimensions in the same reports, ask your modeler to organize these items into a folder or model query subject and then to republish the relevant package. For example, if you use the product code item in sales reports, the modeler can create a folder that contains the product code item and the sales items you need.

Procedure

1. From the Source tab, drag each query item to the report.

 Note: A flashing black bar indicates where you can drop an item. Items inserted in the report appear on the Data Items tab.

 Other ways to select data items are to double-click each item or to right-click each item and click Insert.

2. If you want to remove a data item from the report, select it and click the delete button. To remove the data item from the report but keep it on the Data Items tab, click the cut button instead.

3. For more information about a query item, right-click the item in the Source tab and click Properties. For example, when working with relational data sources, the Usage property identifies the intended use for the data represented by the data item. You can also obtain more information by clicking Lineage.

Group Relational Data

Group data items in a list report to remove duplicate values. For example, you have a report that shows all the products purchased and their product type. You group the Product type column so that each product type cell spans the products purchased cells.
You can specify whether grouping a column automatically makes it the first column in the list by selecting **Group and automatic summary behavior for lists** in the IBM Cognos Report Studio **options**. With this option selected, if the list contains any fact or measure columns, footers that show the summary values for the columns are automatically created for each group. Grouping a second column makes it the second column. When you ungroup a column, that column becomes the first column after the grouped column.

After a column is grouped, you can move it elsewhere in the report.

You can also group data items in repeaters and in page sets.

In addition to grouping, you can specify the sort order of data items. In lists, you can sort data items within groups as well as ungrouped items. In crosstabs, you can sort row and column items. For more information, see “Perform Advanced Layout Sorting” on page 300.

Tip: The Succession Report sample report in the GO Data Warehouse (analysis) package includes grouping. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Procedure

1. Click the column on which to group.
 You can click either the column title or one of the column cells.

 Tip: To perform multiple groupings at once, use Ctrl+click or Shift+click.

2. From the **Structure** menu, click **Group/Ungroup**.

Results

A symbol appears indicating that the column is grouped. You can control when its values appear by **setting the group span** and the column appears in the list of headers and footers that you can add to the report.

Note: Grouping all columns in a list is equivalent to creating a single-edge crosstab.

Perform Advanced Grouping

You can perform more advanced groupings in a list to get the results you want.

For example, you can
- view the entire grouping structure and make changes to the grouping order
- group a data item that appears in a query but not in the layout
- specify a list of properties for a group

You can also perform advanced sorting.

Procedure

1. Click a column in the list.

2. Click the select ancestor button in the title bar of the **Properties** pane and click **List**.
Tip: You can also click the container selector (three orange dots) of the list to select it.

3. In the Properties pane, double-click the Grouping & Sorting property.

4. To change the grouping order, in the Groups pane, click the grouped item in the Groups folder and drag it to the grouping hierarchy.

5. To create a new grouping, in the Data Items pane, click the data item and drag it to the Groups folder in the Groups pane.

6. To specify a list of data items for a group, do the following:
 - Click the group.

 Tip: Click Overall to specify a list of data items for the overall group. The overall group is the grouping of all data into one group. You can specify a list of data items for the overall group to add overall totals to the list.

 - Click the properties button.
 - Select the appropriate check boxes.

Creating relational custom groups

Create custom groups to classify existing data items into groups that are meaningful to you.

You can use custom groups to convert numeric values into broader categories. For example, you can break down sales results into low, medium, and high categories. Or you can reduce the number of values into a smaller, more meaningful groups. For example, you can change a list of employees into separate teams or departments.

When you create custom groups in a list, a new column is added to the report, with the name data item (Custom). You can use this new column to group or sort the report. If you want to show only the new groups, you can delete the original column.

Procedure

1. Click the column that you want to group on and, from the Edit Data menu, click Calculate > Define Custom Groups.

 Tip: You can click either the column heading or one of the column cells.

2. Click the New Custom Group icon.

3. To group by values that you select, click New Select Values Groups, type a New Group Name, select the required values from the Values box, and move the values to the Selected Values box.

4. To group by a range of values, click New Range Group, type a New Group Name, and enter the From and To values.

5. If you do not want a group name to appear for remaining values, select Do not show remaining values. Clicking this option will produce empty cells for remaining values.

6. If you want the group name for remaining values to match each value, select Use each remaining value as a group name.

7. If you want to specify your own group name for all remaining values, select Group remaining values into a single group and type the name that you want.
8. If you are adding custom groups in a list, under New data item name, select either the default data item name or type a new data item name.

Set the Group Span for a Column

When columns are grouped, you can choose how often to show column names by changing the group spanning.

For example, when country or region and city are both grouped, you can choose to show the country or region name each time:

- the country or region changes, by spanning Country or Region by Country or Region
- the city changes, by spanning Country or Region by City
- there is a new record, by specifying no spanning

Spanning one grouped column by another column is helpful if the second column contains many items.

Procedure

1. Click the column that will span the other column(s).
2. In the Properties pane, set the Group Span property to the column to span.

Example - Remove Identical Values in a List

You are a report author at The Sample Outdoors Company, which sells sporting equipment. You are requested to create a report that lists all product orders organized by order number. To make the report easy to read, you group the Order number column so that only one instance of each order number appears. However, because each order contains different products, the same order date appears for each product. You decide to show the order date only when the order number changes.

Procedure

1. Open IBM Cognos Report Studio with the GO Data Warehouse (query) package.
2. In the Welcome dialog box, click Create a new report or template.
3. In the New dialog box, click List and click OK.
4. In the Source tab, expand Sales and Marketing (query) and Sales (query).
5. Expand Sales order and add Order number by double-clicking it.
6. Expand Time dimension and add Date by double-clicking it.
7. Expand Product and add Product name by double-clicking it.
8. Expand Sales fact and add Quantity and Revenue by double-clicking them.
9. [Group] the Order number column.
10. Click the Date column.
11. In the Properties pane, set the Group Span property to Order number.

Results

When you run the report, the first row of the Order date column appears for each Order number row.
Example - Repeat a Column Value in a List

You are a report author at The Sample Outdoors Company, which sells sporting equipment. You are requested to create a report that lists all products sold by the company, organized by the product line and product type. To make the report easier to read, you group the Product line and Product type columns so that only one instance of each column appears. However, because some product lines contain many different product types and products, you decide to show the product line for each product type.

Procedure

1. Open IBM Cognos Report Studio with the GO Data Warehouse (query) package.
2. In the Welcome dialog box, click Create a new report or template.
3. In the New dialog box, click List and click OK.
4. In the Source tab, expand Sales and Marketing (query).
5. Expand Sales (query) and Product and add the following data items by double-clicking them:
 - Product line
 - Product type
 - Product name
6. Expand Sales fact and add Product cost by double-clicking it.
7. Group the Product line and Product type columns.
8. Click the **Product line** column.

9. In the **Properties** pane, set the **Group Span** property to **Product type**.

10. Click any part of the list and then click the select ancestor button in the title bar of the **Properties** pane.

11. Click **List**.

 Tip: You can also click the container selector (three orange dots) of the list to select it.

12. In the **Properties** pane, double-click the **Font** property.

13. In the **Size** box, click **8pt**.

Results

When you run the report, the product line appears whenever the product type changes.

<table>
<thead>
<tr>
<th>Product line</th>
<th>Product type</th>
<th>Product name</th>
<th>Product cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camping Equipment</td>
<td>Cooking Gear</td>
<td>TrailChef Canteen</td>
<td>5,607,904.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TrailChef Cook Set</td>
<td>28,305,454.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TrailChef Cup</td>
<td>1,545,085.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TrailChef Deluxe Cook Set</td>
<td>35,527,805.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TrailChef Double Flame</td>
<td>18,416,925.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TrailChef Kettle</td>
<td>11,373,514.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TrailChef Kitchen Kit</td>
<td>13,608,439.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TrailChef Single Flame</td>
<td>31,839,545.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TrailChef Utensils</td>
<td>8,611,463.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TrailChef Water Bag</td>
<td>11,292,005.38</td>
</tr>
<tr>
<td>Camping Equipment</td>
<td>Lanterns</td>
<td>EverGlow Butane</td>
<td>4,792,227.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EverGlow Double</td>
<td>1,421,083.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EverGlow Kerosene</td>
<td>6,304,040.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EverGlow Lamp</td>
<td>13,459,861.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EverGlow Single</td>
<td>10,363,144.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Firefly 2</td>
<td>9,088,038.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Firefly 4</td>
<td>4,968,302.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Firefly Extreme</td>
<td>4,838,898.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Firefly Lite</td>
<td>3,717,927.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Firefly Mapreader</td>
<td>5,734,265.00</td>
</tr>
</tbody>
</table>

Divide Data into Sections

Create sections in a report to show a data item as the heading of a section. When you run the report, separate sections appear for each value.

Creating sections is similar to creating headers by grouping on a data item. The difference is that section headers appear outside the list, crosstab, chart, or repeater. In addition, you can group data items only in lists.

When working with dimensional data, you can also create page layers to show values on a separate page for each member.
Procedure

1. Click the column to make a section heading.
2. Do one of the following:

 - From the **Structure** menu, click **Section**.
 - If the column is in a list or repeater, this menu option will create sections without creating a master detail relationship. This can improve performance when running the report.
 - If the column is in a crosstab or chart, this menu option will create sections using a master detail relationship.
 - From the **Structure** menu, click **Section Using Master/Detail**.
 - This menu option creates sections using a master detail relationship.

3. To add or remove section headers and footers, from the **Structure** menu, click **Headers & Footers**, click **List Headers & Footers**, and select or clear the appropriate check boxes.
 - The section header and footer check boxes appear under **Overall header**.

Remove Sections

You can remove sections and reinsert the data item that was used to create the sections in the data container.

Procedure

1. From the **View** menu, click **Page Structure**.
2. Expand the page containing the data container with the section.
3. Expand **Page Body** until you see the data container in which you added the section.
 - The data container is nested in the **List Column Body** object of the **List** object that is created when you add a section.
4. Drag the data container to **Page Body**.
 - The data container appears as a node of **Page Body**.
5. Delete the **List** object.
6. From the **View** menu, click **Page Design**.
7. From the **Data Items** tab, drag the data item that was used as a section header back into the data container.
8. If you created sections in a list without creating a master detail relationship, click the data item, and then click the group/ungroup button to ungroup the item.

Summarizing Data Relationally

Summarize data in your reports to obtain totals, averages, and so on.

In a report, you can add both detail and summary aggregation. Detail aggregation, which is supported only for relational data sources, specifies how a data item is totaled at the lowest level in a report. In lists, detail aggregation specifies how the values that appear in the rows are totaled. In crosstabs, detail aggregation specifies how the values in the cells are totaled. For example, detail aggregation for a
measure like Revenue might be Total in both lists and crosstabs. In the following
list report, this means that the values you see for the Revenue column represent
the total revenue for each product type.

<table>
<thead>
<tr>
<th>Product line</th>
<th>Product type</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camping Equipment</td>
<td>Cooking Gear</td>
<td>$5,491,132.08</td>
</tr>
<tr>
<td></td>
<td>Tents</td>
<td>$17,456,718.10</td>
</tr>
<tr>
<td></td>
<td>Sleeping Bags</td>
<td>$11,699,944.32</td>
</tr>
<tr>
<td></td>
<td>Packs</td>
<td>$14,627,996.26</td>
</tr>
<tr>
<td></td>
<td>Lanterns</td>
<td>$10,539,200.16</td>
</tr>
<tr>
<td>Golf Equipment</td>
<td>Putters</td>
<td>$2,310,367.24</td>
</tr>
<tr>
<td></td>
<td>Golf Accessories</td>
<td>$8,115,166.72</td>
</tr>
<tr>
<td></td>
<td>Irons</td>
<td>$8,801,464.98</td>
</tr>
<tr>
<td></td>
<td>Woods</td>
<td>$13,992,116.64</td>
</tr>
</tbody>
</table>

Summaries, which are supported for all data sources, specify how data items are
totaled in the headers and footers of a list and in the total rows and columns of a
crosstab. For list reports, these summaries only summarize the data that is visible
on that page of the report.

You can specify detail and summary aggregation in different ways by using any of
the following:

- aggregation properties that are specified in the model
- the Auto Group & Summarize property
- the summarize button in the toolbar
- aggregation properties for a data item
- summary functions in data item expressions
- the solve order of calculations

Limitation

If a summary is applied to a report that contains binary large object (BLOB) data,
such as images or multimedia objects, you cannot also perform grouping or
sorting.

The Type of Data

How data is aggregated also depends on the type of data that you are aggregating.
Aggregation rules are applied differently to facts, identifiers, and attributes. For
example, if you aggregate a data item that represents part numbers, the only
aggregate rules that apply are count, count distinct, count non-zero, maximum,
and minimum. For information about how to determine the type of data that a
data item represents, see “Add Relational Data to a Report” on page 279 and “Add
Dimensional Data to a Report” on page 319.

Add a Simple Summary

You can add simple summaries to the groups in a report by using the summarize
button in the toolbar. This button provides a subset of the summary functions
available in IBM Cognos Report Studio. For list reports, a Custom option is also
available so that you can add your own summary function in the expression of the
data item.
The summarize button sets the rollup aggregate property for the data item to the
selected summary, and places the data item into an appropriate footer. A footer is
created for each group as well as an overall footer, unless they already exist.

In lists, the summary appears as a footer. If the column to which you added a
summary is grouped, group and overall summaries appear. In crosstabs and charts,
the summary appears as a node.

To change a summary, select it and, in the Properties pane, under Data Item, click
Rollup Aggregate Function and choose a different function.

In crosstabs, you can add multiple summaries at the same level. For example, you
have a crosstab with Product line as rows, Order year as columns, and Revenue as
the measure. For Product line, you can add the Total summary as a header, which
will total all revenue for each order year. You can then add the Average summary
as a footer, which will give the average revenue of all product lines for each order
year.

For information about adding a rolling or moving average, see “Rolling and
Moving Averages” on page 335.

Procedure

1. Click the column to which to add a summary.
2. Click the summarize button and click a summary type.
3. To change the summary label, do the following:
 - Click the label.
 - In the Properties pane, under Text Source, set the Source Type property to
 the source type to define the label.
 For example, set it as Data Item Value to produce a dynamic label for the
 summary based on data item values.
 - Set the property below Source Type to specify the label.
 This property depends on the source type you chose. For example, if you
 chose Data Item Value as the source type, set the Data Item Value property
to the data item to use to define the label.

Set the Auto Group & Summarize Property

Set the Auto Group & Summarize query property to specify whether IBM Cognos
Report Studio should group non-fact data items (identifiers and attributes) and
apply aggregate functions to aggregate fact data items in lists.

If you are using an OLAP data source, data is always summarized regardless of
how this property is set.

Procedure

1. Pause the pointer over the query explorer button and click a query.
2. In the Properties pane, set the Auto Group & Summarize property:
 - To group non-aggregate fact data items and apply aggregate functions to
 aggregate fact data items in lists, set this property to Yes.
 - To render detail rows, set this property to No.
Specify Detail or Summary Aggregation in the Model

When working with relational or dimensionally-modeled relational (DMR) data sources, you can use the aggregation properties specified for the query item in the IBM Cognos Framework Manager model instead of specifying detail or summary aggregation in the report. The model specifies the default summary function for each query item.

Aggregation functions are mapped between data sources, Framework Manager, and IBM Cognos Report Studio.

Specify Aggregation Properties for a Data Item

When working with relational data sources and list reports, for each data item in a report, you can specify detail and summary aggregation properties to manage summaries without having to create complex data item expressions.

Procedure

1. Click the data item for which to set detail or summary aggregation.
2. In the Properties pane, set the Aggregate Function or the Rollup Aggregate Function property to a function.

Use Summary Functions in Data Item Expressions

You can use summary functions in data item expressions. The summary functions in the expression editor that have the same name as the summary functions available through the Aggregate Function and Rollup Aggregate Function properties operate the same way. For example, in a relational report, setting the Aggregate Function property to Total is the same as changing the expression of the data item to total ([Revenue]).

In general, report maintenance is easier if the Aggregate Function and Rollup Aggregate Function properties are used rather than adding summary functions to data item expressions. Use summary functions in expressions if the required summary is not supported as an aggregate or rollup aggregate property or if the complexity of the expression cannot be managed using the data item properties. Add a summary function to a data item expression if one of the following conditions applies:

- The underlying data source is relational, and you want to use database vendor-specific summary functions.
- You want to use summary functions that require more than one parameter, such as percentile.
- You require summary expressions that are not available in the aggregation properties, such as a for clause. You should use for clauses only in relational style reports (list reports).

For example, your report uses Product line, Product type, and Quantity. You want to calculate the percentage of the parent quantity that is represented by each product type. This requires you to compare the total quantity for each product type to the total quantity for the parent product line. In other words, your expression requires summaries at different group levels. You use summary functions, such as aggregate, in the data item expression with a for clause to specify the group level as follows:

[Quantity] / aggregate ([Quantity] for [Product line])
In some cases, you may need a summary that is different from the default. For example, if the default summary for Quantity is total, you can calculate the average as follows:

\[
\text{[Quantity]} / \text{average(aggregate([Quantity]) for [Product line])}
\]

The inner summary gives you the expected Quantity values at the Product Type level, which are then averaged to the Product Line level. This two-stage aggregation is required for OLAP data sources and recommended for relational data sources also.

Why is this necessary? Here’s what would happen if you simply averaged Quantity, as follows:

\[
\text{[Quantity]} / \text{average([Quantity] for [Product line])}
\]
The denominator is now computed as the average of the detail Quantity rows in the underlying fact table. Since these values are much smaller than the pre-summarized Quantity values you see in the report, the resulting percentage is far too big, and not what we wanted.

Tip: The Total Revenue by Country or Region sample report in the GO Data Warehouse (query) package includes a total summary function. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Procedure

1. Click a data item.
2. In the Properties pane, double-click the Expression property and add summary functions to the expression for the data item.

Related concepts:

"Limitations When Using Clauses in Summary Functions" on page 596

A summary function that uses a for clause may yield unexpected results. These may include error messages, warnings, incorrect numbers, and more or fewer than expected rows, columns, or chart points and lines.

Summary Functions

This section describes the summary functions that are available in IBM Cognos Report Studio. Some functions, such as Custom, are available only when you click the summarize button on the toolbar. Additional summary functions are available in the expression editor.

Automatic Summary

Depending on the type of data item, applies the function None, Summarize, or Calculated based on the context in which the data item appears.

Calculated is applied if the data item expression contains a summary function
• is an if then else or case expression that contains a reference to at least a modeled measure in its condition
• contains a reference to a model calculation or to a measure that has the Regular Aggregate property set to a value other than Unsupported
• contains a reference to at least one data item that has the Rollup Aggregate Function property set to a value other than None

If the underlying data source is relational and if the data item expression contains no summary functions and a reference to at least one fact that has the Regular Aggregate property set to a value other than Unsupported, Summarize is applied.

In all other contexts, None is applied.

For relational and dimensionally modeled relational (DMR) data sources, if this function is applied to a data item expression that has the average function, weighted averages are computed based on the lowest level detail values in the data source.

Note: This is the default function.

Average

Adds all existing values and then divides by the count of existing values.

Calculated

Specifies that all the terms within the expression for a data item are aggregated according to their own rollup rules, and then the results of those aggregations are computed within the overall expression.

For example, a list contains the data item Quantity with the Aggregation property set to Total. You add a query calculation named Quantity Calculated. You define its expression as Quantity + 100 and you set its Aggregation property to Calculated. When you run the report, the values for Quantity Calculated are computed by first adding all values for Quantity and then adding 100 to each value.

Note: In crosstabs, this function overrides any solve orders that are specified.

Count

Counts all existing values.

If the underlying data source is dimensionally modeled relational (DMR), Count behaves as follows if it is specified in the Aggregate Function or Rollup Aggregate Function property for a data item.

<table>
<thead>
<tr>
<th>Object</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>Count distinct is used. A warning appears when you validate the report.</td>
</tr>
<tr>
<td>Member set</td>
<td>Count distinct is used. A warning appears when you validate the report.</td>
</tr>
<tr>
<td>Object</td>
<td>Behavior</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Attribute</td>
<td>Supported.</td>
</tr>
<tr>
<td>Measure</td>
<td>Supported.</td>
</tr>
</tbody>
</table>

If you add the count summary to a non-fact column in a list and then group the column, the column will not be grouped when you run the report. To resolve this issue, group the column first before adding the count summary.

Count Distinct

Returns the total number of unique non-null records.

If the underlying data source is dimensionally modeled relational (DMR), count distinct is supported for levels, member sets, attributes, and measures when it is specified in the **Aggregate Function** or **Rollup Aggregate Function** property for a data item.

Custom

Summarizes data based on an expression that you define.

Maximum

Selects the largest existing value.

Median

Returns the median value of the selected data item.

Minimum

Selects the smallest existing value.

None

Does not aggregate values.

If the underlying data source is relational, the data item is grouped when the query property **Auto Group & Summarize** is set to **Yes**.

Not Applicable

This function is available only for the **Aggregate Function** property. It specifies that the aggregate attribute is ignored. For example, the calculation will be applied after the data is aggregated.

This function differs from the **Calculated** function, which applies aggregation to the rows and then performs the calculation.
For example, for the average ([Quantity] + 5 expression, when the Aggregate Function property is set to Not Applicable, five is added to the average of the single Quantity value. When the function is set to Calculated, five is added to the average of a set of numbers.

This setting should not be applied to a simple model reference.

This setting is relevant only for reports that are upgraded from IBM Cognos ReportNet® 1.x.

Standard Deviation

Returns the standard deviation of the selected data item.

Note: From a mathematical perspective, this function is not useful for small numbers of items and is not supported if the query property Auto Group & Summarize is set to Yes.

Summarize

Aggregates data based on model or data type information. This function can be thought of as a calculate and then aggregate rule. Data is aggregated using the following rules:

If the underlying data source type is relational and the data item or calculation is a reference to a single fact query item in the model that has the Regular Aggregate property set to Sum, Maximum, Minimum, Average, or Count, aggregate data using this function. Otherwise, data is aggregated according to the data type of the data item as follows:

- **Total** is applied for numeric and interval values.
- **Maximum** is applied for date, time, and date-time values.
- **Count** is applied for everything else.

The underlying data source type can be dimensional and the data item or calculation a reference to a single item in the model. In this case, if the Regular Aggregate property of the model item is not unknown, the summary function that corresponds to the Regular Aggregate property is applied. If the Regular Aggregate property is unknown, set the function to Calculated.

For example, a list contains the data item Quantity with the Aggregation property set to Average. You add a query calculation named Quantity Summarize. You define its expression as Quantity + 100 and you set its Aggregation property to Summarize. When you run the report, the values for Quantity Summarize are computed by first adding 100 to each value for Quantity and then calculating the total. The total is calculated because Quantity contains numeric values and the expression for Quantity Summarize is not a simple data item reference. If Quantity Summarize is defined as Quantity, the function Average is applied to each value.

Total

Adds all existing values.

Variance

Returns the variance of the selected data item.
Note: From a mathematical perspective, this function is not useful for small numbers of items and is not supported if the query property **Auto Group & Summarize** is set to **Yes**.

Mapping Aggregation Functions From Data Sources to Framework Manager and Report Studio

The summary functions available in IBM Cognos Framework Manager and IBM Cognos Report Studio reflect summary functions supported by relational and dimensional data sources. The following table shows how summary functions in data sources are mapped to Framework Manager and Report Studio.

<table>
<thead>
<tr>
<th>Data source</th>
<th>Framework Manager</th>
<th>Report Studio</th>
</tr>
</thead>
<tbody>
<tr>
<td>None specified, or none</td>
<td>Unsupported</td>
<td>None</td>
</tr>
<tr>
<td>average (avg)</td>
<td>Average</td>
<td>Average</td>
</tr>
<tr>
<td>count</td>
<td>Count</td>
<td>Count</td>
</tr>
<tr>
<td>count distinct</td>
<td>Count Distinct</td>
<td>Count distinct</td>
</tr>
<tr>
<td>maximum (max)</td>
<td>Maximum</td>
<td>Maximum</td>
</tr>
<tr>
<td>minimum (min)</td>
<td>Minimum</td>
<td>Minimum</td>
</tr>
<tr>
<td>median</td>
<td>Median</td>
<td>Median</td>
</tr>
<tr>
<td>standard deviation (stddev)</td>
<td>Standard Deviation</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>sum</td>
<td>Sum</td>
<td>Total</td>
</tr>
<tr>
<td>variance (var)</td>
<td>Variance</td>
<td>Variance</td>
</tr>
<tr>
<td>count non zero</td>
<td>Count Non-Zero</td>
<td>Automatic</td>
</tr>
<tr>
<td>average non zero</td>
<td>unknown</td>
<td>Automatic</td>
</tr>
<tr>
<td>external</td>
<td>unknown</td>
<td>Automatic</td>
</tr>
<tr>
<td>any</td>
<td>unknown</td>
<td>Automatic</td>
</tr>
<tr>
<td>calculated</td>
<td>unknown</td>
<td>Automatic</td>
</tr>
<tr>
<td>unknown</td>
<td>unknown</td>
<td>Automatic</td>
</tr>
<tr>
<td>first_period</td>
<td>unknown</td>
<td>Automatic</td>
</tr>
<tr>
<td>last_period</td>
<td>unknown</td>
<td>Automatic</td>
</tr>
</tbody>
</table>

The following summary functions exist only in either Framework Manager or Report Studio. There is no corresponding summary function in data sources.
Create a Detail or Summary Filter

Add a filter expression to focus a report and minimize processing time by excluding unwanted data. For example, you can filter data to show only customers who placed purchase orders that were valued at over one thousand dollars during the past year. When you run the report, you see only the filtered data.

Detail filters are applied only to detail data items from the data source, and not to summary data items. Examples of detail data items include customer names, product numbers, and order numbers. Detail filters are Boolean expressions that apply one or more conditions and evaluate to either true or false. If the conditions are true for a row of data, the row is retrieved from the data source and appears in your report. If the conditions are false, the row is not retrieved and does not appear in your report. You can specify whether detail filters are applied before or after summaries using the Application property.

Tip: The 2005 Sales Summary sample report in the GO Sales (analysis) package includes a detail filter. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Summary filters are applied to summary data items in a report. They are also Boolean expressions, however they are used to exclude specific groups of data items based on the group summaries. They are based on summary calculations.

You can combine multiple conditions using AND, OR, and NOT operators. By default, multiple conditions are combined with an AND operator, which means that all conditions must be met for the filter to take effect.

For relational data sources, if a filter expression is used in multiple reports or by different report authors, ask your modeler to create the filter as a standalone object in the model and include it in the relevant package. For information about creating filters in the package, see the IBM Cognos Framework Manager User Guide.

If you are filtering a multiple-fact query, you should understand the differences between using a detail filter and summary filter.

If you filter values that are floating-point numbers, you may encounter imprecise filtering results due to rounding or data truncation. Floating-point numbers may appear differently in the report than how they are stored in the data source. To ensure accurate results, your filter criteria should account for any rounding issues.
If you are working with a Microsoft SQL Server 2005 Analysis Services (SSAS) data source, we recommend that you not use OR filters in summaries. Doing so causes error characters (--) to appear in summaries instead of values.

Procedure

1. To add a filter that was already created in the package, from the Source tab, drag the filter to the report.

 You must drag the filter to a data container object that is linked to a query, such as a list, crosstab, or chart.

2. To create your own filter, from the Data menu, click Filters, and click Edit Filters.

 If more than one query is defined in the report, you must first select a data container object that is linked to a query.

 Tip: You can also define filters in Query Explorer. Pause the pointer over the query explorer button and click a query.

3. In the Filters dialog box, decide what type of filter to create:

 - To add a filter that will apply to detail values, click the Detail Filters tab.

 - To add a filter that will apply to summary values, click the Summary Filters tab.

4. Click the add button.

5. In the Create Filter dialog box, decide what conditions to include in the filter:

 - To create a simple filter condition based on only one data item, click Custom based on data item, select a data item from the query, and click OK.

 - To combine multiple filter conditions, click Combined, and click OK.

 - To create a filter condition that uses advanced calculations, click Advanced, and click OK.

6. If you create a simple filter condition based on one data item, do the following:

 a. In the Filter Conditions dialog box, specify the details for the condition.

 b. If you want to parameterize the filter so that users are prompted when they run the report, select the Prompt for values when report is run in viewer check box.

 c. If you want the filter to include null values, select the Include missing values (NULL) check box.

 d. Click OK.

7. If you create a Combined filter, do the following:

 a. In the Create Filter dialog box, select the data item for the first filter condition and click OK.

 b. In the Filter Conditions dialog box, specify the details for the first condition and click OK.

 c. Click the new condition button and, in the Create Filter dialog box, select the data item for the second filter condition and click OK.
d. In the **Filter Conditions** dialog box, specify the details for the second condition and click **OK**.

e. In the **Combined Filter** dialog box, use the AND, OR, and NOT operators to combine the filter conditions. Select the conditions that you want to combine, and click an operator. To change an operator, double-click the operator to toggle among available ones or select the operator and then select a different one from the list.

f. Click **OK**.

8. If you create an **Advanced** filter condition, in the **Filter Expression** dialog box, define the filter expression:

a. To add data items that are not shown in the report, on the **Source** tab, double-click data items.

b. To add data items that are in the report but not necessarily in the model (such as calculations), on the **Data Items** tab, double-click data items.

c. To add data items from a specific query in the report, on the **Queries** tab, double-click data items.

d. To add functions, summaries, and operators, on the **Functions** tab, double-click elements. You can insert only functions that return a Boolean value (true or false). For example, you cannot insert the function `topCount` because it returns a set of data. Filter expressions must resolve to a Boolean in order to be valid.

e. To add a value that is derived from a parameter, on the **Parameters** tab, double-click the parameter. Parameters define prompts, drill-through reports, and master detail relationships.

f. To add a macro, on the macros tab, double-click the parameter maps, session parameters, or macro functions you want to add to the macro expression.

 Tip: Use **Insert macro block** to get you started with creating the macro expression. **Insert macro block** inserts number signs in the expression. Make sure that the macro expression you create is between the number signs.

g. Click the validate button and click **OK**.

h. Click **OK**.

 Tip: You can also type the filter expression directly in the **Expression Definition** box. When typing date values, use the YYYY-MM-DD format.

For more information about creating expressions, see “Using Relational Calculations” on page 313.

9. In the **Usage** box, specify whether the filter is required, optional, or not to be used.

10. If you create a detail filter, under **Application**, click one of the following options:

 - To apply the filter to individual records in the data source, click **Before auto aggregation**.
For example, for a specific product type within a product line, you want to filter out individual orders that generated less than one thousand dollars in revenue.

- To apply the filter to data after the query has grouped and summarized at the lowest level of detail, click **After auto aggregation**.

 For example, you want to filter out the product types that generated less than ten thousand dollars in revenue within a product line.

For example, you have a list that contains the data items Product line, Product type, and Revenue. The revenue values you see are aggregated to the product type level. If you create a detail filter on Revenue and you choose to filter values before auto aggregation, you are filtering non-aggregated revenue values. If you choose to filter values after auto aggregation, you are filtering revenue values aggregated to the product type level.

11. If you create a summary filter, under **Scope**, click the ellipsis (...) button and select the grouping level at which to apply the filter.

For example, a revenue report is grouped on product line and product type. You can choose to filter total revenue for either the product line or product type level.

If the query in which you are creating the summary filter is linked to more than one data container, the data item that you select as the grouping level must be grouped in all data containers linked to the query. Otherwise, the report will not run successfully.

Tip: To filter at the overall level, do not click a level. For example, if a report has an overall footer that shows the total revenue for all products, by not choosing a level you will apply the filter to the footer. In addition, if you are using a dimensional data source, excluding a parent level excludes its children, and excluding all children excludes the parent.

Ignoring the Time Component in Date Columns

Database systems use Date, Time, and Timestamp to represent date and time values. While a timestamp type holds a date and time component, an application may allow the RDBMS to default the time component. When rows are inserted, updated, or queried, the application may specify only a date value and leave the RDBMS to extend the value to include a default time (usually 00:00:00.000).

The challenge with a timestamp is when the application has no immediate interest in the time component. For example, the business question How many orders were taken today? implies all orders taken irrespective of what time the order was booked. If the application defaulted the time component as it stored rows, the query that was used to answer the question returns the count of orders taken today. If the application stored the actual time component, the query likely returns no data, because the number of orders entered at midnight is probably zero.

Relying on the time defaults can be dangerous if the application changes and starts to capture actual times. To avoid this problem, you can

- **Truncate the time** by creating a derived column
- **Convert the timestamp to a date**
- **Create a hi-low filter**

Truncating the Time by Creating a Derived Column

In the IBM Cognos Framework Manager model, create a derived column using a calculated expression that truncates the time from a timestamp, and returns a
timestamp containing the original date and a default time. For example, if you use an Oracle data source, the following expression creates the derived column DATEONLY from COL1, where COL1 contains the values as stored by the application while DATEONLY contains the dates with the default time of 12:00:00 AM:

```
Select COL1, trunc(COL1) as DATEONLY from [SCOTT_TIGER].DATES
```

Tip: You can change the data format of the column to show only the date value by setting the **Date Style** property to **Short**.

You can then apply filters to the DATEONLY column that would return the correct results. If you create a parameter in IBM Cognos Report Studio that filters on this column, the default prompt will present a date and time control because the data type is still a timestamp.

Converting the Timestamp to a Date

In the IBM Cognos Framework Manager model, define a calculation that uses the `cast` function to convert the timestamp to a date. For example, the following expression converts the data type of the column COL1 to date:

```
cast ([SCOTT_TIGER].[DATES].[COL1], DATE)
```

If you create a parameter in IBM Cognos Report Studio that filters on this calculation, the default prompt presents a date control.

Ignoring the Time by Creating a Hi-Low Filter

You can create a hi-low filter to ignore the time. In the IBM Cognos Framework Manager model, create a filter in the form `date-column between date-lowtime and date-hightime`. For example, the following expression returns all values between 00:00:00:000 and 23:59:59:000 for a given day:

```
[SCOTT_TIGER].[DATES].[COL1] between?p1? and
cast(substring(?p1?,1,10),'23:59.59.000',timestamp)
```

Focusing Relational Data

You can limit the data in your report with filters or query parameters. The method you choose should depend on the capabilities of the data source, the performance requirements, the persistence of the dataset, and how complex you want the report to be.

In IBM Cognos Report Studio, summary and detail filters are best for list reports in the relational reporting style. Summary filters are applied to summaries and detail filters are applied to details. These filters remove rows and columns from your reports.

You can also use prompts, or prompt controls, to allow report users to provide input for the filter.

Edit or remove a filter

After you created filters, you can edit or remove them.

Procedure

1. Click a data container object that contains a filter.
2. To remove all filters from the object, from the Data menu, click Filters, and click Remove all Filters.

3. To edit a filter or remove a single filter, from the Data menu, click Filters, and click Edit Filters.

Tip: You can also edit filters from Query Explorer. Pause the pointer over the query explorer button and click the query that contains your filter.

Sorting Relational Data

You can sort items to view them in your preferred order. By default, IBM Cognos Report Studio retrieves items in the order defined in the data source. OLAP data sources always have a defined order. Relational and dimensionally-modeled relational data sources may not always have a defined order. The data modeler defines the sorting options in the model.

For more information about data modeling, see the IBM Cognos Framework Manager User Guide. Sorting applied in Report Studio applies only to the layout within the report.

You can sort items in a list in ascending or descending order based on a value or a label, such as revenue or employee name. You can also perform advanced sorting to sort columns within groups or to sort a row or column using another data item.

Tip: The Sales Growth Year Over Year sample report in the GO Data Warehouse (analysis) package includes sorting. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Procedure

1. Click the column or row on which to sort.

2. Click the sort button and click Ascending or Descending.

 An arrow appears beside the data item to indicate that a sort order was set. When you specify a sort order for more than one column, the columns are sorted in the order in which they were inserted in the report. For example, you add columns A, B, and C to a report and specify a sort order for each. When you run the report, column A is sorted first, then column B, and then column C. You can change the order in which the columns are sorted in the Edit Layout Sorting options.

 Tip: To remove a sort order, click Don't Sort.

Perform Advanced Layout Sorting

If you use relational data, in a list, you can sort columns within groups and change the sort order of columns. In a crosstab, you can sort a row or column by another item, such as Order year by Revenue.

Procedure

1. Click a column.
In a crosstab, click the sorted row or column on which to perform advanced sorting.

2. Click the sort button and click Edit Layout Sorting.

3. To sort a list column within a group, do the following:
 - In the Groups pane, under the Groups folder, expand the folder of the grouped column.
 - In the Data Items pane, drag the data items to sort to the Sort List folder.

 Tip: You can also drag data items from the Detail Sort List folder.

 - Click the sort order button to specify ascending or descending order.

4. To change the sort order of columns, in the Groups pane, change the order of columns in the Sort List folder of a group or in the Detail Sort List folder.

 Tip: Add items to the Detail Sort List folder to sort items that are not groups.

5. If you are sorting a crosstab, do the following:
 - From the Data Items pane, drag the item on which to sort to the Sort List pane.
 For example, you have a crosstab with Product line as rows, Order year as columns, and Revenue as the measure. To sort Order year by Revenue, drag Revenue to the Sort List pane.
 - Click the sort order button to specify ascending or descending order.

Working with Relational Queries

Queries specify what data appears in the report. In IBM Cognos Report Studio, you create and modify queries using Query Explorer.

Query Explorer provides an alternative way to modify existing reports or to author new reports. You can use Query Explorer to perform complex tasks and other tasks that are more difficult to do in the report layout. For example, use Query Explorer to

- improve performance by changing the order in which items are queried from the database, or by changing query properties to allow the report server to execute queries concurrently where possible

Note: By default, queries run sequentially. Your administrator must enable the concurrent query execution feature. For more information, see the IBM Cognos Business Intelligence Administration and Security Guide.

- view or add filters and parameters and modify their properties
- view or add dimensions, levels, and facts
- incorporate SQL statements that come from other reports or reports that you write
- create complex queries using set operations and joins

Chapter 10. Relational Reporting Style 301
Queries determine what data items appear in the report. Sometimes you want detailed rows of data, which you obtain by using a simple SELECT statement. Other times you must calculate totals or averages using summary functions and grouped columns or must apply filters to show only the data you want.

Specify a List of Data Items for an Object

Specify the list of data items for an object when you must reference a data item that is in a query but is not in the layout.

For example, you want to add a layout calculation to a list that uses a data item that is in the query definition. If the data item does not appear in the list, you must reference it in order to make the layout calculation work. You must also specify the list of data items if you apply conditional formatting that uses a data item that is not in the query.

Procedure

1. Click a layout object.

 Tip: For a list of layout objects for which you can specify a list of properties, see the *Properties* property in Appendix G, “Report Studio Object and Property Reference,” on page 821.

2. In the *Properties* pane, double-click the *Properties* property and select data items.

Relate a Query to a Layout

Queries and layouts work together. After you decide the type of data that you need, you must create a layout in which to show the results. Each column of data must be both selected for the query and shown in a layout unless there are some columns that you do not want to show. The query and layout portions of a report must be linked to produce a valid report.

IBM Cognos Report Studio automatically links query and layout. For example, when you use Report Studio and the list report layout, query and layout are automatically linked.

Procedure

1. Select a data container.

2. In the *Properties* pane, set the *Query* property to a query.

3. From the *Data Items* tab, drag data items from the query to the data container.

Connecting Queries Between Different Data Sources

This section lists the data sources between which you can and cannot connect queries.

IBM Cognos Business Intelligence supports the following:

- RDBMS to RDBMS joins
- set operations of any two queries
- master detail relationships between any two queries
You cannot create the following types of joins:
- cube-to-cube (homogeneous)
- cube-to-cube (heterogeneous)
- cube-to-RDBMS
- cube-to-SAP BW
- SAP-BW-to-RDBMS

Add a Query to a Relational Report
You can create multiple queries in Query Explorer to suit your particular needs. For example, you can create a separate query for each data container in a report to show different data.

Tip: The Briefing Book sample report in the GO Sales (analysis) package and the Top 10 Retailers for 2005 sample report in the GO Data Warehouse (analysis) package include multiple queries. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Procedure
1. Pause the pointer over the query explorer button and click Queries.
2. From the Toolbox tab, drag one of the following objects to the work area.

<table>
<thead>
<tr>
<th>Object</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query</td>
<td>Adds a query.</td>
</tr>
<tr>
<td>Join</td>
<td>Adds a join relationship</td>
</tr>
<tr>
<td>Union</td>
<td>Adds a union operator</td>
</tr>
<tr>
<td>Intersect</td>
<td>Adds an intersect operator</td>
</tr>
<tr>
<td>Except</td>
<td>Adds an except (minus) operator</td>
</tr>
<tr>
<td>SQL</td>
<td>Adds SQL commands.</td>
</tr>
</tbody>
</table>

Note: When adding queries to the report
- right-click the work area and click Show Package Sources to see the queries that use data items from a package
- right-click the work area and click Expand References to see the relationships that exist between queries in the report, which is useful when you are creating complex queries
3. In the Properties pane, set the object properties.
 For example, if you added a join set the Join Relationships property to define the join.
4. Double-click a query.
5. From the **Source** tab, drag data items to the **Data Items** pane.

 Tip: You can add data items to the query that you do not want to appear in the layout. For example, to filter on Product line code and show Product line in the layout, you must add both data items to the query.

6. To create a new data item, from the **Toolbox** tab, drag **Data Item** to the **Data Item** pane.

7. To add a filter, from the **Toolbox** tab, drag **Filter** to the **Detail Filters** or **Summary Filters** pane and define the filter expression.

 Tip: You can also create a filter by dragging a data item from the **Source** tab to one of the filters panes and completing the filter expression. If you are working with a dimensional data source, you can quickly filter data by dragging a member to a filter pane instead of dragging the level to which the member belongs. For example, dragging the member 2006 from the Years level will filter data for the year 2006. This method is quicker than dragging the Years level and specifying data only for the year 2006 in the filter expression.

Results

Create a Union Query

Create a union query to combine two or more queries into one result set.

You can combine queries that use different data sources. For example, you can combine a query that returns data from a dimensional data source with a query that returns data from a relational data source.

Before you begin

To combine two queries, the following conditions must be met:

- The two queries must have the same number of data items.
- The data items must have compatible types and appear in the same order.
 - For numeric data types, integer, float, double, and decimal are compatible.
 - For string data types, char, varchar, and longvarchar are compatible.
 - For binary data types, binary and varbinary are compatible.
 - Date data types must match exactly.

Procedure

1. Pause the pointer over the query explorer button and click **Queries**.

2. From the **Toolbox** tab, do the following:
 - Drag **Query** to the work area.
 - Drag **Union**, **Intersect**, or **Except** to the right of the query.
 - Two drop zones appear to the right of the operator.
 - Drag a **Query** object to each drop zone.
 - Two queries are created in the work area, and a shortcut to each query appears in the drop zones.

3. Double-click each query that makes up the union query and add data items to the query.
4. Return to the Queries work area.
5. Click the set operator that you added in step 2.
6. In the Properties pane, set the Duplicates property to remove or preserve duplicate rows.
7. Double-click the Projection List property.
 The projection list shows the list of projected data items for the set operation.
8. To automatically produce the list of projected data items, click Automatically generated.
 IBM Cognos Report Studio generates the projection list using only one of the two queries in the union.
9. To add, delete, move, or rename data items in the projection list, click Manual and make the changes.
10. Double-click the union query.
11. From the Source tab, drag data items to the Data Items pane.

Results

The union query is complete. You can now link the union query to a data container in the layout.

Example - Create a Two-column List Report for Three Data Items

You are a report author at The Sample Outdoors Company, which sells sporting equipment. You are requested to create a list report that shows revenue for all product lines and order methods. However, you want the product lines and order methods to appear in a single column. To create this report, you use a union query to join the Product line and Order method data items.

Procedure

1. Open IBM Cognos Report Studio with the GO Data Warehouse (query) package.
2. In the Welcome dialog box, click Create a new report or template.
3. In the New dialog box, click Blank.
4. Pause the pointer over the query explorer button and click Queries.
5. From the Toolbox tab, do the following:
 • Drag Query to the work area.
 • Drag Union to the right of the query.
 Two drop zones appear to the right of the operator.
 • Drag a Query object to each drop zone.
 Query2 and Query3 are created in the work area, and a shortcut to each query appears in the drop zones.
7. Source tab, drag the following data items to the Data Items pane:
 • from the Product folder, drag Product line
 • from the Sales fact folder, drag Revenue
8. From the Toolbox tab, drag Data Item to the Data Items pane.
The data item will be used to sort product lines and order methods in the report.

9. In the Expression Definition box, type 'A' and click OK.

10. In the Properties pane, set the Name property to Sort key.

11. On the toolbar, press the back button to return to the Queries work area.

13. Source tab, drag the following data items to the Data Items pane:
 - from the Order method folder, drag Order method
 - from the Sales fact folder, drag Revenue

14. Repeat steps 3 to 5 to create a Sort key data item in Query3 with 'B' as its definition.

15. On the toolbar, press the back button to return to the Queries work area.

16. Click the Union operator.

17. Double-click the Projection List property.

 The Product line item in the projection list contains both product lines and order methods.

19. Click Product line, and then click the edit button.

20. In the Edit box, type the following after Product line:
 & Order method

21. Click OK twice.

22. Double-click Query1.

23. From the Source tab, drag the following data items to the Data Items pane:
 - Product line & Order method
 - Revenue
 - Sort key

24. Select the Sort key data item and, in the Properties pane, set the Pre-Sort property to Sort ascending.

 When you run the report, all product lines will appear first followed by all order methods.

25. Pause the pointer over the page explorer button and click Page1.

26. From the Toolbox tab, drag List to the work area.

27. Click the list.

28. Click the select ancestor button in the title bar of the Properties pane and click List.

 Tip: You can also click the container selector (three orange dots) of the list to select it.

29. In the Properties pane, set the Query property to Query1.

 The list is linked to the union query.
30. Double-click the **Properties** property.
31. Select the **Sort key** check box and click **OK**.
 Since the Sort key data item does not appear in the list, you must make it a property of the list before it can sort product lines and order methods.

32. From the **Data Items** tab, drag the following items from Query1 to the list:
 - **Product line & Order method**
 - **Revenue**

33. Run the report.

Results

A list report with two columns is produced. All product lines and order methods appear in the first column.

<table>
<thead>
<tr>
<th>Product line & Order Method</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camping Equipment</td>
<td>1,589,036,664.03</td>
</tr>
<tr>
<td>Golf Equipment</td>
<td>725,411,367.89</td>
</tr>
<tr>
<td>Mountaineering Equipment</td>
<td>409,660,132.9</td>
</tr>
<tr>
<td>Outdoor Protection</td>
<td>75,994,296.25</td>
</tr>
<tr>
<td>Personal Accessories</td>
<td>1,385,673,307.73</td>
</tr>
<tr>
<td>E-mail</td>
<td>179,043,041.15</td>
</tr>
<tr>
<td>Fax</td>
<td>70,073,542.01</td>
</tr>
<tr>
<td>Mail</td>
<td>46,091,338.97</td>
</tr>
<tr>
<td>Sales visit</td>
<td>310,194,634.88</td>
</tr>
<tr>
<td>Special</td>
<td>27,351,320.25</td>
</tr>
<tr>
<td>Telephone</td>
<td>340,985,781.06</td>
</tr>
<tr>
<td>Web</td>
<td>3,712,235,908.4</td>
</tr>
</tbody>
</table>

Create a Join Relationship

You can create a join relationship to join two queries.

In general, join relationships should be created in the IBM Cognos Framework Manager model. Create a join relationship in IBM Cognos Report Studio if what you are trying to do cannot be modeled in Framework Manager.

Procedure

1. Pause the pointer over the query explorer button and click **Queries**.

2. From the **Toolbox** tab, do the following:
 - Drag **Query** to the work area.
 - Drag **Join** to the right of the query.
 Two drop zones appear to the right of the operator.
 - Drag a **Query** object to each drop zone.
 Two queries are created in the work area, and a shortcut to each query appears in the drop zones.
3. Double-click each query that makes up the join query and add data items to the query.

4. On the toolbar, press the back button to return to the Queries work area.
5. Click Join.
6. In the Properties pane, double-click the Join Relationships property.
7. Click New Link.
8. To create the link, click a data item in the left query, and then click a data item in the right query.
9. For each query, click Cardinality and click a cardinality option.
10. Click Operator and click an operator.
11. To convert the join relationship to an expression, click Convert to expression. Convert the join relationship to an expression to make changes to the join definition.

 Note: After you convert the relationship to an expression, you cannot change it back to a relationship.
12. Double-click the join query.
13. From the Source tab, drag data items to the Data Items pane.

Results

The join query is complete. You can now link the join query to a data container in the layout.

Reference a Package Item in a Child Query

When you create a child query in IBM Cognos Report Studio, you can only reference items from its parent or from other queries. For example, if you add a filter to a child query, the only items that you can insert into the expression are items that exist in other queries defined in the report. To add an item from the package, you must unlink the child query from its parent.

Procedure

1. Pause the pointer over the query explorer button and click Queries.
2. Unlink the child query from its parent by selecting the parent query shortcut to the right of the child query and clicking the delete button.
3. Double-click the child query.

 Package items are now available on the Source tab.

4. Add package items.

 For example, to create a detail filter that references a package item, drag the filter object from the Toolbox tab to the Detail Filters pane, and then add the items in the Expression Definition box.
5. Click the up arrow button in the toolbar to return to the queries work area.
6. Recreate the link between the child query and the parent query by dragging the parent query to the right of the child query.
7. If necessary, double-click the child query to complete it.
For example, if you created a filter, you may need to complete the filter expression.

Create a Master Detail Relationship

Create a master detail relationship to deliver information that would otherwise require two or more reports. For example, you can combine a list with a chart. The list can contain product lines and the chart can show details for each product line.

Master detail relationships must appear in nested frames to produce the correct results. You can create a master detail relationship in two ways:
- Use a parent frame for the master query and a nested frame for the detail query.
- Associate a report page with the master query and use a data container, such as a list or crosstab, for the detail query.

You cannot display parent data in the child frame or child data in the parent frame. Also, you cannot perform calculations across master detail queries.

You can use a master detail relationship to show data from separate data sources in a single report. However, the data sources must be contained in the same package.

If you are working with an SAP BW data source, you cannot use a data item from the master query that contains non-ASCII values.

Before you begin

To create a master detail relationship using queries that reference two different dimensional data sources, you must first link the members by aliasing the levels that contain the members.

Procedure

1. To use a parent frame for the master query and a nested frame for the detail query:
 - From the Toolbox tab, drag a List, Repeater Table, or Repeater to the report.
 - Add a second data container to the object you inserted.
 - You can insert a list, crosstab, chart, repeater table, or repeater into a list.
 - You can add a list to a repeater table or repeater.
 - Add data items to both data containers.

2. To associate a report page with the master query and use a data container for the detail query:
 - Click anywhere in the report page.
 - In the Properties pane, click the select ancestor button and click Page.
 - Set the Query property.
 - From the Toolbox tab, drag a data container to the report.

3. To link a data item in the master query to a parameter in the detail query instead of to another data item, create the parameter in the detail query. Use parameters to filter values at a lower level in the detail query.
 - Pause the pointer over the query explorer button and click the detail query.
• From the Toolbox tab, drag the Filter object to the Detail Filters box.
• In the Expression Definition box, create the parameter.

4. Pause the pointer over the page explorer button and click the report page.
5. Click anywhere in the report page.
6. In the Properties pane, click the select ancestor button and click Page.
7. Click the data container containing the details.
8. From the Data menu, click Master Detail Relationships.
9. Click New Link.
10. In the Master box, click the data item that will provide the primary information.
11. To link the master query to a data item, in the Detail box, click the data item that will provide the detailed information.
12. To link the master query to a parameter, in the Parameters box, click the parameter that will provide the detailed information.

Tip: To delete a link, select the link and press the Delete key.
13. If your detail query object is a chart, you can disconnect a chart title from the master query:
 • Click the chart title, and then, from the Data menu, click Master Detail Relationships.
 • Clear the Use the master detail relationships from the chart check box.
14. If your master detail relationship includes a chart as the detail and you are using automatic axis ranges, you can set the same axis range for all the detail charts:
 • Select the axis.
 • In the Properties pane, under General, double-click the Axis Range property.
 • Under Maximum and Minimum, click Automatic.
 The master detail report option is only available with automatic axis ranges.
 • Under Master detail reports, select the Same range for all instances of chart check box.

For more information about axis ranges, see “Change the Axis Scale of a Current Default Chart” on page 118.

Tip: To avoid seeing the same data item twice in the report, click the data item in the data container driven by the detail query and click the cut button. This removes the item from the report display but keeps it in the query.

Master Detail or Burst Reports with Charts or Crosstabs May Result in Denial of Service
When running a master detail or burst report that includes a chart or crosstab, disk space exhaustion may cause the report or other requests to fail. A large set of burst keys or master rows may produce one or more charts per detail, resulting in many master detail executions. This may cause the temp folder to accumulate many gigabytes of temporary files containing data required for successful chart rendering.
To avoid this issue, we recommend that you test large master detail or burst reports that include charts or crosstabs to determine the potential peak disk requirements for the report.

Working with Queries in SQL

For each query in a report, you can work with the SQL that is executed when you run a report.

You can
- view the SQL for an entire report or a query
- build a report using your own SQL
- convert a report to use SQL directly
- edit the SQL

When working with a relational data source, the SQL that is produced by IBM Cognos Report Studio depends on the report output selected.

Note: MDX is not available with relational or DMR data sources.

View the SQL for an Entire Report or a Query

View the SQL to see what is passed to the database when you run a report.

Procedure

1. To view the SQL for the entire report, from the Tools menu, click **Show Generated SQL/MDX**.

 This option shows the SQL that will be executed in the data source. The SQL is organized by query and by query result. If a query is used in more than one data container, a query result is generated for each data container.

2. To view the SQL for a specific query, do the following:

 - Pause the pointer over the query explorer button and click the query.
 - In the Properties pane, double-click the **Generated SQL/MDX** property.

 The **Generated SQL/MDX** property shows the SQL that is executed when you view tabular data (from the Run menu, click **View Tabular Data**). Tabular data shows the data that is produced by the query in the form of a list. You can use this property to help you build advanced queries.

Results

The SQL for the query appears in the **Generated SQL/MDX** dialog box. You can choose to view native SQL, which is the SQL that is passed to the database when you execute the query, or Cognos SQL, which is a generic form of SQL that IBM Cognos Report Studio uses. Cognos SQL is converted to native SQL before the query is executed.

Related tasks:

“Showing prompt values in generated SQL or MDX” on page 393

You can show prompt values when viewing the generated SQL or MDX of a query or report.

Build a Report Using Your Own SQL

You can build a report by adding SQL from an external source, such as another report.
If you edit the SQL of a query, you must change the **Processing** property for that query to **Limited Local**.

Procedure

1. From the **File** menu, click **New**.
2. Click **Blank**.
3. Pause the pointer over the query explorer button and click **Queries**.
4. From the **Toolbox** tab, drag **Query** to the work area.
5. From the **Toolbox** tab, to build an SQL query, drag **SQL** to the right of the query.

 Tip: You can drag **SQL** anywhere in the work area, and IBM Cognos Report Studio will automatically create a query.
6. In the **Properties** pane, double-click the **Data Source** property and click a data source.
7. If required, set the **Catalog** property to the name of the catalog.
8. Double-click the **SQL** property and type the SQL.
9. Click **Validate** to check for errors.
10. In the **Properties** pane, set the **Processing** property to **Limited Local**.
11. Double-click the query.

 If the SQL is valid, the data items defined in the SQL appear in the **Data Items** pane.
12. Pause the pointer over the page explorer button and click a report page.
13. From the **Toolbox** tab, drag an object to the work area.

 For example, drag a list, crosstab, chart, or repeater.
14. Click the data container.
15. In the **Properties** pane, click the select ancestor button and click the container you just created.

 For example, if you created a list, click **List**.

 Tip: You can also click the container selector (three orange dots) of the container to select it.
16. Set the **Query** property to the query for the report type.
17. From the **Data Items** tab, drag the items from the query you chose in the previous step to the data container.

Convert a Query to SQL

You can convert a query to SQL to edit it. You may want to do this to improve performance or to use SQL features that are not supported directly by IBM Cognos Report Studio.

Converting a query to SQL is an irreversible process.

Procedure

1. Pause the pointer over the query explorer button and click the query.
2. In the **Properties** pane, double-click the **Generated SQL** property.
3. Click **Convert**.
4. Click **Validate** to check for errors.
5. In the **Properties** pane, set the **Processing** property to **Limited Local**.

Edit the SQL
You can edit the SQL for a query that has been created as an SQL query or that has been converted to SQL.

Procedure

1. Pause the pointer over the query explorer button and click the SQL item under the query.
2. Double-click the SQL item.
3. Make changes in the text box.
4. Click **Validate** to check for errors.

First-Rows Optimization
The SQL produced by IBM Cognos Report Studio depends on the report format you choose. For example, if you specify HTML format, first-rows optimization is requested. All-rows is requested if you specify PDF.

It is important for database administrators and programmers to remember that Report Studio does not always use first-rows optimization. If you assume first-rows optimization is always requested, this can cause the RDBMS optimizer to process the query differently than you expect.

Using Relational Calculations
Insert a calculation to make your report more meaningful by deriving additional information from the data source. For example, you create an invoice report, and you want to see the total sale amount for each product ordered. Create a calculated column that multiplies the product price by the quantity ordered.

You build calculations in the expression editor using functions.

If a calculation is used in multiple reports, or by different report authors, ask your modeler to create the calculation as a standalone object in the model and include it in the relevant package.

You can add calculations to lists, crosstabs, and all other data containers. You can also add calculations directly to a page header, body, or footer. However, you must first associate a query to the page. For more information, see "Add a Page to a Report" on page 501.

Units of Measure
When creating calculations in IBM Cognos Report Studio and IBM Cognos Query Studio, you may encounter problems with the units of measure. For example, the calculation Cost*Cost returns the unit of measure * instead of a currency unit of measure. To avoid this problem, change the format of the corresponding column to obtain the desired unit of measure.
Calculation Solve Order

When calculations in the rows and columns of a report intersect, calculations are performed in the following order: addition or subtraction, multiplication or division, aggregation (rollup), and then the remaining arithmetic functions.

The remaining functions are as follows:
- absolute, round, round down, average, minimum, maximum, medium, count
- percentage, % difference (growth) or % of total
- rank, quartile, quantile, or percentile

If both calculations have the same precedence, for example, if they are both business functions, then the row calculation takes precedence.

Limitations of Calculations

You should use only the expressions and functions available in Report Studio, and follow their syntax.

Minimal checking exists for calculations. If your calculation uses an invalid expression, your report results may contain unexpected values.

In addition, you should define member summaries as follows:

\[\text{summary} _\text{function} \left(\text{currentMeasure within set set_reference} \right) \]

where \(\text{set_reference}\) is a level or set inserted from the Source tab.

Unless otherwise required, \(\text{summary} _\text{function}\) should be the aggregate function. If you use an explicit summary function, you may encounter problems with measures and scenario or account dimension members (such as profit margin, distinct count, and so on) that have complex rollup rules, or members that do not roll up.

Know your data, and confirm with the owner of the cube where overriding the automatic aggregation is safe.

Because of the above limitations, summaries of calculations may not provide reliable values. For convenience, you may have to build reports where row summaries and calculated member columns intersect. In such reports, these intersections may contain unexpected values. In contrast, row calculations intersecting with column aggregates using the aggregate function are safe because the calculation is performed on the reliably summarized values.

Create a Simple Calculation

You can select items in your report and create simple calculations.

In addition to simple arithmetic calculations, you can perform the following calculations:

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rollup</td>
<td>Summarizes, or rolls up, all the values in a hierarchy.</td>
</tr>
<tr>
<td>Calculation</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>%</td>
<td>Calculates the value of a selected item as a percentage of another item.</td>
</tr>
<tr>
<td>% Growth</td>
<td>Calculates the difference between two items as a percentage.</td>
</tr>
<tr>
<td>% Of Base</td>
<td>This calculation is only available if you select two members from different</td>
</tr>
<tr>
<td></td>
<td>hierarchies, each from a different edge.</td>
</tr>
<tr>
<td></td>
<td>This calculation takes the first selected member from edge A and the second</td>
</tr>
<tr>
<td></td>
<td>selected member from edge B. The calculation result of a percent of base</td>
</tr>
<tr>
<td></td>
<td>should be such that all the values for member A will compare itself to the</td>
</tr>
<tr>
<td></td>
<td>intersect value of member A and B.</td>
</tr>
<tr>
<td>Custom</td>
<td>Allows you to specify your own value when performing a simple arithmetic</td>
</tr>
<tr>
<td></td>
<td>calculation. Also allows you to change the order of operands or type a</td>
</tr>
<tr>
<td></td>
<td>custom name for the new calculated row or column.</td>
</tr>
</tbody>
</table>

Procedure

1. Select the items in your report to calculate.

2. Click the insert calculation button and select the calculation to perform.

 Tip: Calculations that are not applicable to the items you selected are greyed out.

3. To change the order of the operands or the name of the calculated item added to the report, click Custom.

Results

The calculation appears as a new row or column in your report.

Insert a Query Calculation

Insert a query calculation into your report to add a new row or column with values that are based on a calculation.

For example, you create a query calculation named Euros that converts dollars to euros by multiplying an existing dollar measure by a conversion rate. Euros can then be displayed to end users in a separate row or column.

Note: When creating an expression that will be used in a double-byte environment, such as Japanese, the only special characters that will work are ASCII-7 and ~ -- |] - $ € £ ¬.

Not all data sources support functions the same way. The data modeler can set a quality of service indicator on functions to give a visual clue about the behavior of the functions. Report authors can use the quality of service indicators to determine which functions to use in a report. The quality of service indicators are:

- not available (X)
The function is not available for any data source in the package.

- limited availability (!!)

The function is not available for some data sources in the package.

- limited support (!)

The function is available for all data sources in the package but is not naturally supported for that data source. IBM Cognos Business Intelligence uses a local approximation for that function. Because an approximation is used, performance can be poor and the results may not be what you expect.

- unconstrained (check mark)

The function is available for all data sources.

When inserting literal strings in an expression, you must enclose the string in single quotation marks. If the string contains a quotation mark, it must be escaped. For example, if you want to insert the string ab’c, you must type ‘ab”c’.

Procedure

1. From the Toolbox tab, drag Query Calculation to the report.
2. Type a meaningful name for your expression in the Name box.
 For example, if you are calculating the difference between 2007 revenue and 2006 revenue, you could name your expression 2007 - 2006 Revenue.
3. In the Available Components pane, define the calculation:

 - To add data items that are not shown in the report, on the source tab, double-click the data items.
 - To add data items that are in the report but not necessarily in the model, such as calculations, on the data items tab, double-click the data items.
 - To add data items from a specific query, on the queries tab, double-click data items.
 - To add functions, summaries, and operators, on the functions tab, double-click elements.
 - To add a value that is derived from a parameter, on the parameters tab, double-click a parameter.
 Parameters define prompts, drill-through reports, and master detail relationships.
 - To add a macro, on the macros tab, double-click the parameter maps, session parameters, or macro functions you want to add to the macro expression.

 Tip: Use Insert macro block to get you started with creating the macro expression. Insert macro block inserts number signs in the expression. Make sure that the macro expression you create is between the number signs.

 Tips:
 - You can also type the calculation directly in the Expression Definition box.
 - When typing date values, ensure that the date format is correct for your database type.
• To copy and paste expression components in the Expression Definition pane, you can use the copy button and the paste button. For information about specific functions, see “Calculation components” on page 619.

4. Click the validate button .

Related concepts:
Chapter 18, “Using Query Macros,” on page 467

A macro is a fragment of code that you can insert in the Select statement of a query or in an expression. For example, add a macro to insert a new data item containing the user's name.

Create a Layout Calculation

Create a layout calculation to add run-time information to your report, such as current date, current time, and user name.

When creating layout calculations, only report functions are available to you in the expression editor. These functions are executed in the report layout, as opposed to the other functions which are executed in the query.

Procedure

1. From the Toolbox tab , drag Layout Calculation to the report.
2. In the Available Components box, define the calculation:
 • To add data items that are not shown in the report, on the source tab , double-click data items.
 • To add data items from a specific query, on the queries tab , double-click data items.
 • To add functions, summaries, and operators, on the functions tab , double-click elements.
 • To add a value that is derived from a parameter, on the parameters tab , double-click a parameter.

Parameters define prompts, drill-through reports, and master detail relationships.

Tip: You can also type the expression directly in the Expression Definition box.

For more information about creating expressions, see “Calculation components” on page 619.

3. Click the validate button .
Chapter 11. Dimensional Reporting Style

The dimensional reporting style is recommended for dimensionally-modeled relational (DMR) and Online Analytical Processing (OLAP) data sources. Dimensional data is best represented by crosstabs, maps, and charts. This data is shown in IBM Cognos Report Studio in dimensions, hierarchies, levels, and members.

In dimensional reporting, you summarize data by using member summaries and within set aggregation. You focus data in dimensional reporting by adding only the relevant members to the edge of a crosstab or to the context filter. You can also enable drilling up and drilling down in dimensional reports.

IBM Cognos Analysis Studio and IBM Cognos Workspace Advanced are also available to work with dimensional data.

Add Dimensional Data to a Report

For dimensional and mixed model data sources, you can view the full data tree by clicking the view package tree button in the Source tab. You can switch to the dimensional-only data tree by clicking the view members tree button.

Note: We recommend using dimensional data in the dimensional reporting style. However, if you are using relational data, see “Add Relational Data to a Report” on page 279.

If you are working with a dimensional data source, data items are organized hierarchically. Dimensional data sources include OLAP and dimensionally-modeled relational (DMR) data sources. The Source tab shows a metadata-based view of the data.
Note: The names of levels and members in a dimension come from the model. It is the responsibility of the modeler to provide meaningful names.

1. Package
 Packages are subsets of a model containing items that you can insert in a report.

2. Dimension
 Dimensions are broad groupings of descriptive data about a major aspect of a business, such as products, dates, or markets.

3. Level hierarchy
 Level hierarchies are more specific groupings within a dimension. For example, for the Years dimension, data can be organized into smaller groups, such as Years, Current Month, and Last Month.

4. Members folder
 Members folders contain the available members for a hierarchy or level. For example, the Members folder for the Years level hierarchy contains everything found in the Year, Quarter, and Month levels.

5. Level
 Levels are positions within the dimensional hierarchy that contain information at the same order of detail and have attributes in common. Multiple levels can exist within a level hierarchy, beginning with a root level. For example, the Years level hierarchy has the following related levels.

<table>
<thead>
<tr>
<th>Level</th>
<th>Level name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root</td>
<td>Years</td>
<td>The root level.</td>
</tr>
<tr>
<td>First</td>
<td>Year</td>
<td>Years in the Years root level. For example, 2004, 2003, and 2002.</td>
</tr>
<tr>
<td>Second</td>
<td>Quarter</td>
<td>Quarters for each year in the Year level. For example, 2004 Q1, 2004 Q2, and 2004 Q3.</td>
</tr>
<tr>
<td>Third</td>
<td>Month</td>
<td>Months for each quarter in the Quarter level. For example, Jan., Feb., and Mar.</td>
</tr>
</tbody>
</table>

Tip: The Measures dimension contains the measures available in the data source.

6. Member property
 Member properties are attributes that each member possesses. For example, gender could be a property for all employee members. For more information about member properties, see “Insert a Member Property” on page 324.
When working with an OLAP data source, we recommend that you not use relational functions, such as substring and concatenation functions, in a report that also contains a measure with the Aggregate Function property set to Calculated or Automatic in the model. If you do so, you may encounter unexpected results. For example, some summaries are calculated using the Minimum function instead of the aggregate function derived from the individual query items.

Customize the Source Tree

When using dimensional data, you can customize how you see data in the source tree. You can select a full package tree view that shows dimensions, hierarchies, levels, an optional members folder, and member properties.

Or you can select a members-only tree view, such as the one in IBM Cognos Analysis Studio. This view allows you to add only members in your report.

Procedure

1. Click the Source tab.
2. To view the members-only tree view, click the view members tree button.
3. To view the full package tree, click the view package tree button.
4. To change what is included in the tree, right-click and click Package Tree Settings.
 Use the Preview pane to choose the appropriate settings.

Insert a Member

By default, when you insert members from the source tree into your report with IBM Cognos Report Studio, single members are inserted without any details or children. You can change how members are inserted. For example, you may want to insert a member along with all its children or insert only the member’s children. Or you may want to insert members as a set.

When you double-click a member that you have already inserted in your report, by default, its children are inserted after the parent member. You can control whether the children are inserted before or after, nested, or not inserted at all: from the Tools menu, click Options, and then choose a setting on the Edit tab.

When inserting members into a crosstab, ensure that you insert members from the same hierarchy on only one of the crosstab edges. If you insert members from the same hierarchy on both edges of the crosstab, you may encounter unexpected results. For example, a report that uses members from years in the rows and Quarters in the columns is very difficult to read because the useful numbers are distributed over a large area of mostly blank cells.

Calculated members from the data source also appear in the source tree. However, calculated members in Microsoft SQL Server Analysis Services (SSAS) cubes do not appear in the list of descendants in the query. If you want these calculated members to appear in a report or a prompt, you must insert them explicitly.
Procedure

1. From the **Source** tab, click the insert single member button and select how to insert members.
2. If you want to insert members within a set instead of inserting individual members, click the create sets for members button.
3. Do one of the following:
 - To insert a member above or below another member, drag the new member above or below a cell.
 A flashing black bar appears where you can drop the new member.
 - To replace a member, drag the new member to the cell with the member to replace.
 A flashing black box appears where you can drop the new member.

Search for a Member

You can perform a member search to quickly find data.

You can control the number of members that are returned in a search by specifying a value for the **Member display count limit (in source tree)** option (Tools, Options, Advanced tab).

Procedure

1. From the **Source** tab, select and then right-click a hierarchy or level and click **Search**.
2. In the **Words** box, type the words or characters for which to search.
3. Click the search parameter to use.
4. To search all descendants instead of just the immediate children, select the **Search all descendants** check box.
 For example, when performing a search in a hierarchy, selecting this check box returns members found in all the levels of the hierarchy.
5. Click **Search**.

Results

The search results appear in a hierarchical structure on the **Search** tab. You can browse the hierarchy to explore members at lower levels.

Tip: You can insert members directly from the **Search** tab into a report. This can save you time, because you do not have to define a filter. For example, instead of inserting **Product line** from the **Source** tab and adding a filter for **Camping Equipment**, you can insert **Camping Equipment** from the **Search** tab.

Nest Members

When you insert members in your report, you may want to nest them in another row or column to make your report easier to use. You can nest members from different dimensions. You can also nest sets.

For example, in the following report, the quarters (Q1 to Q4) were selected from the Time dimension and nested only for the GO Americas member, which is from
When you filter out children from nested sets, the parent set still appears in your report. To avoid this, filter only the top level set and nest only the complete set of descendants at the desired levels.

Procedure

From the **Source** tab, drag the members to the work area. A flashing black bar indicates where you can drop an item.

Insert a Hierarchy

You can quickly insert entire hierarchies in a report.

When using an IBM Cognos PowerCube, a SSAS cube, or a dimensionally-modeled relational data source, you can insert multiple hierarchies from the same dimension in a crosstab. For example, you can place one hierarchy from a dimension on an edge of the crosstab and nest another hierarchy from the same dimension on the same edge, on another edge, or in the **Context filter** area.

You can also perform arithmetic, percentage, and ranking calculations using multiple hierarchies.

Summary or analytic calculations that refer to different hierarchies from the same dimension, such as total, count, average, minimum, and maximum, are not supported. These calculations cause an OP-ERR-0250 error.

Procedure

1. From the **Source** tab, drag the hierarchy to the report.
2. In the **Insert Hierarchy** dialog box, choose which members to insert:
 - To insert only the root members of the hierarchy, click **Root members**.
 - To insert all members of the hierarchy, click **All members**.

 Tip: The default **Level Indentation** property for all members is to show the hierarchical structure when the report is run.
Insert a Member Property

You can insert member properties, which are attributes of a member, in your report. Member properties provide additional information about the member. For example, an employee level may have a property named gender.

In the data tree of the Source tab, member properties are identified by the icon.

You can only insert properties. You cannot group them.

Procedure

From the Source tab, drag the member property to the report.

Create a Set of Members

Use sets to group members that are logically related for various actions, such as formatting, nesting, and sorting. Creating sets is also useful when members may be dynamic over time. For example, the child accounts of a total assets account may change from year to year. By creating a set, you do not have to modify the report each time accounts are added or removed.

After you create a set of members, you can add or remove members within the set.

You can perform operations on the set such as excluding specific members, moving members within the set, showing only the top or bottom members, filtering the set, and expanding or collapsing the members within a set. You can view the set definition to see and edit operations that are performed on the set.

Procedure

1. From the Source tab, click the create sets for members button to toggle between adding individual members and creating sets for members.
2. From the Source tab, select the items to include in the set and drag them to the work area.
3. To add or remove members from the set, right-click the set and click Edit Members.

 Tip: you can also select the set and, in the Properties pane, double-click the Members property.

Edit a Set

After you create a set, you can view its definition to see, change, add, or delete operations, such as the following, that are performed on the set:

- excluding a member
- moving members to the top or bottom of a set
- applying a top or bottom filter
- filtering the set
- expanding or collapsing members in a set

The definition of a set shows you, in the graphical tree, the history of all the operations that are performed on the set.
You can see and change the order in which the operations are performed. For example, you apply a top three filter and then exclude one member. Your set now contains only two members. You can choose to exclude the member before the top three filter so that your set still contains three members.

Procedure
1. Right-click a set and click **Edit Set**.
 A graphical tree shows all the operations that are performed on the set of members.
2. To see the details of an operation, hover your mouse over an operation node.
3. To change the order of an operation, click the operation node, and click the right or left arrow.
4. To edit an operation, click the operation node and click the edit button.
5. To add a new operation, click the new button.

Exclude Members from a Set
You can choose to remove individual items that are not needed in your analysis.

Procedure
1. Right-click the set and click **Edit Set**.
2. Click the new button and click **Exclude**.
3. In the **Exclude** box, choose the members to exclude and use the right arrow to move them to the **Members** pane.

Move Members Within a Set
You can move one or more members to the top or bottom of a set.

Procedure
1. Right-click the set and click **Edit Set**.
2. Click the new button and click **Move to Top** or **Move to Bottom**.
3. In the **Available members** list, select the member to move to the top or bottom and click the right arrow.
 The members appear in the order shown in the **Members** list.

Limit Data to Top or Bottom Values
You want to focus your report on the items of greatest significance to your business question. For example, you want to identify your top 100 customers and what that group of customers is worth.

You can limit the data to the top or bottom values of a set. This keeps the amount of data shown in the work area small, even when using large data sources.

You can define a top or bottom rule by specifying
- a number, such as the 50 top or bottom performing sales people
- a percentage, such as customers who contribute to the top 10% of overall revenue
- a cumulative sum, such as customers who contribute to the first ten million dollars of overall revenue
If the selected set contains a user-defined filter, the top or bottom rule applies only to the included values. For example, if you apply a filter to show only retailers with revenue greater than one million dollars, the bottom rule applies to the lowest values within those results.

You can filter a set of members to show only those at the top or bottom and base the filter on the measure you are using and the set of members on the opposite edge. You can also specify a custom filter.

Procedure

1. Right-click the set and click **Edit Set**.
2. Click the new button and click **Top** or **Bottom**.
3. Under **Type**, select whether to filter the **Top** or **Bottom** values.
4. To choose how and how much you want to filter, under **Number of items**, click **Count**, **Percent**, or **Sum** and type the number of data items to show, the percent of data items to show, or the value to sum.
5. Choose the intersection on which to base your filter by clicking the ellipsis (...) button and selecting the members and measure for the intersection from either the **Source** tab or the **Calculated Members and Measures** tab.

For more information, see “Create an Intersection (Tuple)” on page 369.

Filter the Members Within a Set

You can remove members from within a set by specifying filter conditions so that only the members that you require remain. You can filter a set based on

- **member captions**

 For example, your set includes employee names and you want to keep only the employees with names that begin with a specific letter.

- **properties that are numeric or strings**

 For example, your set includes employee names and you want to filter employees using the gender property.

- **intersection of values (tuple)**

 For example, you want to keep only the employees who used less than ten sick days for the year 2008.

If you want to create a more complex filter, you can combine multiple conditions using AND, OR, and NOT operators. By default, multiple conditions are combined with an AND operator, which means that all conditions must be met for the filter to take effect.

Filtering the members in a set is not the same as relation detail or summary filters.

Procedure

1. Right-click the set and click **Edit Set**.
2. Click the new button and click **Set Filter**.
3. Select how you want to filter.
 - If you want to filter the set using a caption, click **Caption**.
 - If you want to filter the set using a member property, click **Property** and select from the drop-down list.
 - If you want to filter the set using an intersection of members, or tuple, click **Intersection (tuple)** and click the ellipsis (...) button. Then, from **Available**
members and measures, select the desired items and click the right arrow to
move them to the Intersection members and measures list.

4. Specify the Operator and Value to complete your condition and click OK.

5. To add additional conditions, click the new button.

6. If you include multiple conditions in your filter, use the AND, OR, and NOT
operators to combine them.
 - To add an operator, select the conditions that you want to combine, and click
 an operator.
 - To change an operator, double-click the operator to toggle among available
 ones or select the operator and then select a different one from the list.
 - To remove an operator, select it in the condition string, and then click the
delete button.

7. To change a condition, click the edit button.

Expand and Collapse a Member Within a Set

You can expand a member to add its child members below it as new rows, and
you can collapse expanded members to remove the expanded member's child
members.

Procedure

1. Right-click the set and click Edit Set.

2. Click the new button and click Expand or Collapse.

3. In the Available members list, select the member to expand or collapse and
click the right arrow to move it to the Members list.

Extended Data Items

Extended data items differ from the traditional, expression-based text strings by
enabling you to add children, view details, select sets, sort sets, and apply
contextual calculations.

Note: Extended data items do not apply to relational packages or
non-dimensionally modeled packages.

You can do the following with extended data items that are not available with
traditional data items:

- Add an extended data item’s child members
 You can double-click an extended data item to insert its child members beside it
 in the report object.

- View an extended data item’s details
 You can select an extended data item and see where the data item appears in the
 package in the Properties pane under Data Item.

- Select member sets
 You can select a member in a set to highlight it as the primary selection and the
 other members as secondary selections.

- Sort sets
You can select an extended data item, click the sort button [✓], and click Advanced Set Sorting to sort a set in ascending or descending order, to sort hierarchically, and to sort by caption, by a property, or by an intersection (tuple).

- Apply contextual calculations

You can select an extended data item and then, from the Data menu, click Calculate to see a contextual list of calculations that are available for this extended data item.

Extended data items are optional. If you use extended data items in a report, we recommend that you use them for the entire report instead of mixing them with expression-based data items. For information about turning on extended data items, see “Specify Report Properties” on page 416.

Note: In IBM Cognos Workspace Advanced, extended data items are always used. Therefore, if you are authoring a report in IBM Cognos Report Studio for report consumers who are working in Cognos Workspace Advanced, you should use extended data items.

Tips for Working with Ragged or Unbalanced Hierarchies

In ragged or unbalanced hierarchies, some members that are not at the lowest level of the hierarchy may have no descendants at one or more lower levels. Support for these hierarchy gaps in relational data sources is limited. More complete support is provided for OLAP data sources, but some reports may still result in unexpected behavior.

For example, the following may occur:

- Groups corresponding to missing members may appear or disappear when grouped list reports are pivoted to a crosstab. This happens with set expressions using the filter function, and detail filters on members.
- Ragged and unbalanced sections of the hierarchy are suppressed when set expressions in that hierarchy are used on an edge.
- When a crosstab is sectioned or is split into a master detail report, sections corresponding to missing members become empty.
- Cells that were suppressed may still appear in the report output for reports with ragged or unbalanced hierarchies.

Some of these behaviors may be corrected in a future release, while others may be codified as supported behavior. To avoid these behaviors, do not use levels from ragged or unbalanced hierarchies. Instead of using levels, use the descendants, children, or ancestors.

We consider the following scenarios to be safe:

- One or more nested level references on an edge with no modifying expression.
- A hierarchy reference on only one level of one edge.
- One or more explicit members or sets of explicit members as siblings on only one level of one edge.
- Summaries of the previous three scenarios.

In all cases, you should test reports based on ragged and unbalanced hierarchies to confirm that hierarchy gaps are handled correctly.
Creating dimensional custom groups

Create custom groups to classify existing data items into groups that are meaningful to you.

You can reduce the number of values into smaller, more meaningful groups. For example, you can change a list of employees into my team and others.

When working with dimensional data and crosstabs or charts, you can create custom groups only on sets of members. After you create a custom group in a set, the members in the set are replaced by the custom groups.

When you create custom groups in a list, a new column is added to the report, with the name data item (Custom). You can use this new column to group or sort the report. If you want to show only the new groups, you can delete the original column.

When creating custom groups on sets of members, consider the following:

- Members included in a custom group must be from the same level in a hierarchy.
- If you insert a hierarchy used in a custom group elsewhere in the data container, it must be inserted as a sibling of the custom group.
- Automatic aggregation on a custom group might not work as expected. For example, you might encounter error cells (- -).

Procedure

1. To add custom groups in a crosstab or chart that includes sets of members, do the following steps:
 a. Right-click a set and click Edit Set.
 b. Click the New icon and select Custom Grouping.
 c. In the Custom Grouping window, select the New Custom Group icon.
 d. Type a New group name.
 e. Select members from the Available members list and move them to the Members list.

2. To add custom groups to a list, do the following steps:
 a. Click the column that you want to group on and from the Data menu, select Calculate > Define Custom Groups.
 Tip: You can click either the column heading or one of the column cells.
 b. Click the New Group Entry icon.
 c. To group by values that you select, click New Select Values Group, type a New Group Name, select the required values from the Values box, and move the values to the Selected Values box.
d. To group by a range of values, click New Range Group, type a New Group Name, and enter the From and To values.

3. If you do not want a group name to appear for remaining values, select Do not show remaining values. Clicking this option will produce empty cells for remaining values.

4. If you want the group name for remaining values to match each value, select Use each remaining value as a group name.

5. If you want to specify your own group name for all remaining values, select Group remaining values into a single group and type the name that you want.

6. If you are adding custom groups in a list, under New data item name, select either the default data item name or type a new data item name.

Summarizing Data Dimensionally

Summarize data in your reports to obtain totals, averages, and so on.

The summary options that you can use depend on the type of data source that you are using. If you are querying an OLAP data source, all measure values that appear in reports are pre-summarized because the data source contains rolled up values. The type of summary that is used is specified in the data source itself. As a result, we recommend that you use the Automatic summary when creating dimensional style reports. This ensures that the report always uses the type of summary that the data modeler specified in the data source.

For example, the modeler may have specified that the rollup for revenue is total and the rollup for stock prices is average.

If you use other types of summaries with dimensional style reports, you may encounter unexpected results.

You can also add summaries, which are supported for any data source. Summaries specify how data items are totaled in the headers and footers of a list and in the total rows and columns of a crosstab. For list reports, these summaries only summarize the data that is visible on that page of the report.

<table>
<thead>
<tr>
<th>Revenue</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>Total(Order year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camping Equipment</td>
<td>$20,471,328.88</td>
<td>$31,373,606.46</td>
<td>$37,869,655.58</td>
<td>$89,713,990.92</td>
</tr>
<tr>
<td>GoF Equipment</td>
<td>$5,597,980.86</td>
<td>$9,598,268.88</td>
<td>$10,709,215.84</td>
<td>$25,905,465.58</td>
</tr>
<tr>
<td>Mountaineering Equipment</td>
<td>$9,942,674.54</td>
<td>$11,248,676.06</td>
<td></td>
<td>$20,691,350.60</td>
</tr>
<tr>
<td>Outdoor Protection</td>
<td>$1,536,456.24</td>
<td>$288,230.64</td>
<td>$646,428.04</td>
<td>$3,171,114.92</td>
</tr>
<tr>
<td>Personal Accessories</td>
<td>$7,144,797.52</td>
<td>$10,955,708.04</td>
<td>$13,793,960.30</td>
<td>$31,894,465.86</td>
</tr>
<tr>
<td>Total(Product line)</td>
<td>$34,750,563.50</td>
<td>$52,556,486.56</td>
<td>$74,267,335.82</td>
<td>$171,576,367.88</td>
</tr>
</tbody>
</table>

You can specify summary aggregation in different ways by using any of the following:

- aggregation properties that are specified in the model
- the Auto Group & Summarize property
- the summarize button in the toolbar
- aggregation properties for a data item
- the solve order of calculations
Limitation

If a summary is applied to a report that contains binary large object (BLOB) data, such as images or multimedia objects, you cannot also perform grouping or sorting.

The Type of Data

How data is summarized also depends on the type of data that you are summarizing. Summary rules are applied differently to facts, identifiers, and attributes. For example, if you summarize a data item that represents part numbers, the only summary rules that apply are count, count distinct, count non-zero, maximum, and minimum. For information about how to determine the type of data that a data item represents, see "Add Relational Data to a Report" on page 279 and "Add Dimensional Data to a Report" on page 319.

For information about how null or missing values are handled in summaries, see "Null (Missing) Values in Calculations and Summaries" on page 606.

Limitations on Measure Rollups

For all OLAP data sources except IBM Cognos PowerCube and Microsoft SQL Server 2005 Analysis Services (SSAS), aggregation and re-aggregation are supported only for calculations and measures that use the following rollups: Sum (Total), Maximum, Minimum, First, Last, and Count.

All other types of rollup either fail or return error cells, which typically appear as two dash characters (--).

This problem occurs in, but is not limited to, the following:
- footers
- aggregate function
- context filters that select more than one member of a hierarchy that is used elsewhere on the report

Summarizing Sets

When working with Microsoft SQL Server Analysis Services (SSAS) data sources, we recommend that you not summarize values for sets which contain members that are descendants of other members in the same set. If you do so, SSAS double-counts values for automatic summaries and all data sources double-counts values for explicit summaries.

Related concepts:
- “Limitations When Summarizing Measures in DMR Data Sources” on page 598

There are limitations when summarizing dimensionally-modeled relational (DMR) measures and semi-additive measures in crosstabs using the aggregation function count distinct, median, standard-deviation, or variance. The following limitations can produce empty or error cells when the report is run:

Add a Simple Summary

You can add simple summaries in a report by using the summarize button. This button provides a subset of the summary functions available in IBM Cognos Report Studio.
The summarize button sets the rollup aggregate property for the data item to the selected summary, and places the data item into an appropriate footer. A footer is created for each set, hierarchy, or level.

In crosstabs and charts, the summary appears as a node.

In crosstabs, you can add multiple summaries at the same level. For example, you have a crosstab with Product line as rows, Order year as columns, and Revenue as the measure. For Product line, you can add the Total summary as a header, which will total all revenue for each order year. You can then add the Average summary as a footer, which will give the average revenue of all product lines for each order year.

For information about adding a rolling or moving average, see “Rolling and Moving Averages” on page 335.

Procedure

1. Click the item to which to add a summary.
2. Click the summarize button and click a summary type.
3. To change the summary label, do the following:
 - Click the label.
 - In the Properties pane, under Text Source, set the Source Type property to the source type to define the label.
 For example, set it as Data Item Value to produce a dynamic label for the summary based on data item values.
 - Set the property below Source Type to specify the label.
 This property depends on the source type you chose. For example, if you chose Data Item Value as the source type, set the Data Item Value property to the data item to use to define the label.
4. To change a summary, select it and, in the Properties pane, under Data Item, click Aggregation Method and choose a different function.

Summarizing Values in Crosstabs

In crosstabs, summaries are calculated using two summary expressions.

The expressions used to summarize data are:

- `aggregate ([measure] within set [data item])` summarizes the member values from the data source within the current content.
- `aggregate ([measure] within detail [data item])` summarizes the lowest level of details in the report.

The expression that is used to calculate a summary is controlled by the summary’s Use Set Aggregation property. For example, in the following crosstab, if you specified Total as the summary, the following aggregate expressions are produced when the Use Set Aggregation is set to Yes and No respectively:
• Total ([Revenue] within set [Quarter])
 This expression totals the quarter values from the data source at the intersecting product line. At the bottom right corner, it totals the aggregate over all product lines for each quarter.

• Total ([Revenue] within detail [Quarter])
 This expression totals the month values visible in the report at the intersecting product line. At the bottom right corner, it totals all of the intersecting month-product line values visible in the report.

In simple cases, the members and values visible in the report and the aggregate rules in the report are the same as those in the data source and all of these expressions produce the same results.

For example, for the quarter and month values, if you are totaling the values for all months in all quarters, it makes no difference whether the visible values, the values in the cube, or the month and quarter values are used. The result is the same.

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Month</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 Q 3</td>
<td>Sep</td>
<td>$5,300,569.08</td>
</tr>
<tr>
<td>2005 Q 4</td>
<td>Oct</td>
<td>$11,778,348.32</td>
</tr>
<tr>
<td></td>
<td>Nov</td>
<td>$3,353,399.46</td>
</tr>
<tr>
<td></td>
<td>Dec</td>
<td>$4,645,069.28</td>
</tr>
<tr>
<td>2006 Q 1</td>
<td>Jan</td>
<td>$3,119,227.22</td>
</tr>
<tr>
<td></td>
<td>Feb</td>
<td>$3,045,478.88</td>
</tr>
<tr>
<td></td>
<td>Mar</td>
<td>$6,067,919.18</td>
</tr>
<tr>
<td>2006 Q 2</td>
<td>Apr</td>
<td>$8,306,586.26</td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>$5,129,112.24</td>
</tr>
<tr>
<td></td>
<td>Jun</td>
<td>$6,927,447.24</td>
</tr>
<tr>
<td>2006 Q 3</td>
<td>Jul</td>
<td>$5,078,789.96</td>
</tr>
<tr>
<td></td>
<td>Aug</td>
<td>$5,180,166.38</td>
</tr>
<tr>
<td></td>
<td>Sep</td>
<td>$4,892,742.38</td>
</tr>
<tr>
<td>2006 Q 4</td>
<td>Oct</td>
<td>$15,087,237.28</td>
</tr>
<tr>
<td></td>
<td>Nov</td>
<td>$3,609,599.42</td>
</tr>
<tr>
<td></td>
<td>Dec</td>
<td>$6,240,652.88</td>
</tr>
<tr>
<td>Total(Quarter)</td>
<td></td>
<td>$171,575,387.88</td>
</tr>
</tbody>
</table>

Tip: The Total Revenue by Country or Region sample report in the GO Data Warehouse (query) package includes a total summary function. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.
Different results appear when you start filtering, changing aggregation types, or using set expressions or unions.

For example, the following crosstab shows the quantity of products sold across all product types for each product line. The bottom of the crosstbl has two summary values that show the average quantity of products sold by product line.

<table>
<thead>
<tr>
<th></th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camping Equipment</td>
<td></td>
</tr>
<tr>
<td>Cooking Gear</td>
<td>13,400,351.00</td>
</tr>
<tr>
<td>Tents</td>
<td>3,164,285.00</td>
</tr>
<tr>
<td>Sleeping Bags</td>
<td>3,153,218.00</td>
</tr>
<tr>
<td>Packs</td>
<td>2,756,540.00</td>
</tr>
<tr>
<td>Lanterns</td>
<td>4,626,755.00</td>
</tr>
<tr>
<td>Mountaineering Equipment</td>
<td></td>
</tr>
<tr>
<td>Rope</td>
<td>418,560.00</td>
</tr>
<tr>
<td>Safety</td>
<td>1,135,194.00</td>
</tr>
<tr>
<td>Climbing Accessories</td>
<td>5,650,251.00</td>
</tr>
<tr>
<td>Tools</td>
<td>2,496,090.00</td>
</tr>
<tr>
<td>Personal Accessories</td>
<td></td>
</tr>
<tr>
<td>Watches</td>
<td>4,295,195.00</td>
</tr>
<tr>
<td>Eyewear</td>
<td>20,311,396.00</td>
</tr>
<tr>
<td>Knives</td>
<td>7,229,314.00</td>
</tr>
<tr>
<td>Binoculars</td>
<td>1,075,087.00</td>
</tr>
<tr>
<td>Navigation</td>
<td>1,002,713.00</td>
</tr>
<tr>
<td>Outdoor Protection</td>
<td></td>
</tr>
<tr>
<td>Insect Repellents</td>
<td>5,800,964.00</td>
</tr>
<tr>
<td>Sunscreen</td>
<td>5,384,127.00</td>
</tr>
<tr>
<td>First Aid</td>
<td>829,354.00</td>
</tr>
<tr>
<td>Golf Equipment</td>
<td></td>
</tr>
<tr>
<td>Irons</td>
<td>391,445.00</td>
</tr>
<tr>
<td>Woods</td>
<td>317,939.00</td>
</tr>
<tr>
<td>Putters</td>
<td>1,284,570.00</td>
</tr>
<tr>
<td>Golf Accessories</td>
<td>3,119,747.00</td>
</tr>
<tr>
<td>Average - within detail</td>
<td>4,249,385.29</td>
</tr>
<tr>
<td>Average - within set</td>
<td>17,847,418.20</td>
</tr>
</tbody>
</table>

Each summary value uses a different expression that is set by the value specified for the **Use Set Aggregation** property.

- **Average (Product line) - within detail**

 This summary is the average of the detail values in the crosstbl.

- **Average (Product line) - within set**

 This summary is the average of the product type values rolled up into sets at the Product line level. The values are obtained from the data source. If filters or slicers exist, the values are recomputed using the aggregation rules defined in the data source.
In most cases, you should use the within detail expression because the results are easiest to understand and the same as the results for footers in a grouped list report. The within set expression should be reserved for reports with a purely dimensional focus, such as when there are no detail or summary filters defined in the report.

Summarizing Member Sets

When you work with dimensional data sources and you summarize member sets, if an explicit summary function such as **Total** is used and the set contains duplicates, the result is double-counted. If you are using an OLAP data source, the result produced for the automatic summary function depends on the data source.

For example, the product line rows below were defined using the expression

```
union ([Product line], [Camping Equipment], ALL)
```

where [Product line] is the level that contains Camping Equipment.

<table>
<thead>
<tr>
<th>Product Line</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camping Equipment</td>
<td>1,599,036,654.03</td>
</tr>
<tr>
<td>Mountaineering Equipment</td>
<td>409,560,132.9</td>
</tr>
<tr>
<td>Personal Accessories</td>
<td>1,885,673,307.78</td>
</tr>
<tr>
<td>Outdoor Protection</td>
<td>75,994,266.25</td>
</tr>
<tr>
<td>Golf Equipment</td>
<td>726,411,397.89</td>
</tr>
<tr>
<td>Camping Equipment</td>
<td>1,599,036,654.03</td>
</tr>
<tr>
<td>Aggregate(Product line)</td>
<td>4,686,775,768.85</td>
</tr>
<tr>
<td>Total(Product line)</td>
<td>6,275,812,432.88</td>
</tr>
</tbody>
</table>

For PowerCubes, Aggregate (Product line) is the sum of the product lines excluding duplicates. For more information about how the aggregate function is processed, see "Summary Functions" on page 336.

Rolling and Moving Averages

Use rolling and moving averages to analyze data for specific time series and to spot trends in that data. When viewing these averages on a line chart, use a longer period of time to reveal long-term trends.

In IBM Cognos Report Studio, to add a rolling or moving average, you must create summary and custom calculations using layout expressions "Insert a Query Calculation" on page 366.

The Rolling and Moving Averages interactive sample report includes rolling and moving calculations. For more information about The Sample Outdoors Company, see Appendix C, “Sample Reports and Packages,” on page 567.

Rolling Average

A rolling average continuously updates the average of a data set to include all the data in the set until that point. For example, the rolling average of return quantities at March 2004 would be calculated by adding the return quantities in January, February, and March, and then dividing that sum by three.
Tip: The Historical Revenue sample report in the Sales and Marketing (Cube) package also includes a rolling average. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Moving Average

A moving average calculates the average of a data set for a specified period. For example, the moving average of return quantities at March 2004 with a specified period of two would be calculated by adding the return quantities in February and March and then dividing that sum by two. In IBM Cognos Report Studio, you can use a prompt to specify the period.

Show Data for Specific Time Periods

Show data for a specific time period to associate a report with a business time period rather than the execution time. For example, you have a monthly report that you run at the beginning of each month, and you want the last business day of the previous month to appear rather than the day on which you run the report.

If the report functions As0fDate and As0fTime are added to the report, they will return a value based on the results of the As of Time Expression object. If the As of Time Expression object is not added to the report, these two functions return the date and time at which the report is run.

If the As of Time Expression object is added more than once in the report, the first occurrence of the object in the layout that returns a valid value is used.

Procedure

1. From the Toolbox tab, drag As of Time Expression to the report.
2. Double-click As of Time Expression.
3. In the Expression Definition box, type the expression.
 The expression must return a date-time value.

 Tip: You can drag a function that returns a constant from the Constants folder in the Functions tab. You can then change the constant to the value to use.
 If you do not specify a time, the default time 12:00:00.000 AM is used.

Summary Functions

This section describes the summary functions that are available in IBM Cognos Report Studio. Some functions, such as Custom, are available only when you click the summarize button on the toolbar. Additional summary functions are available in the expression editor.

Automatic Summary

Depending on the type of data item, applies the function None, Summarize, or Calculated based on the context in which the data item appears.

Calculated is applied if the underlying data source is OLAP. It is also applied if the data item expression
• contains a summary function
• is an if then else or case expression that contains a reference to at least a modeled measure in its condition
• contains a reference to a model calculation or to a measure that has the Regular Aggregate property set to a value other than Unsupported
• contains a reference to at least one data item that has the Rollup Aggregate Function property set to a value other than None

If the underlying data source is relational and if the data item expression contains no summary functions and a reference to at least one fact that has the Regular Aggregate property set to a value other than Unsupported, Summarize is applied.

If the underlying data source is OLAP and if the data item expression contains no summary functions and a reference to at least one fact that has the Regular Aggregate property set to a value other than Unsupported, Calculated is applied.

If the underlying data source is SAP BW, reports containing aggregations and summaries run more efficiently if the aggregation applied to a query item matches the aggregation rule for the underlying key figure on the SAP BW server. In Report Studio, the easiest way to accomplish this is to change the value of the Aggregate Function property to Automatic.

In all other contexts, None is applied.

For relational and dimensionally modeled relational (DMR) data sources, if this function is applied to a data item expression that has the average function, weighted averages are computed based on the lowest level detail values in the data source.

Note: This is the default function.

Average

Adds all existing values and then divides by the count of existing values.

Calculated

Specifies that all the terms within the expression for a data item are aggregated according to their own rollup rules, and then the results of those aggregations are computed within the overall expression.

For example, a list contains the data item Quantity with the Aggregation property set to Total. You add a query calculation named Quantity Calculated. You define its expression as Quantity + 100 and you set its Aggregation property to Calculated. When you run the report, the values for Quantity Calculated are computed by first adding all values for Quantity and then adding 100 to each value.

Note: In crosstabs, this function overrides any solve orders that are specified.

Count

Counts all existing values.

If the underlying data source is OLAP, Count behaves as follows if it is specified in the Rollup Aggregate Function property for a data item.
<table>
<thead>
<tr>
<th>Object</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>Count distinct is used. A warning appears when you validate the report.</td>
</tr>
<tr>
<td>Member set</td>
<td>Count distinct is used. A warning appears when you validate the report.</td>
</tr>
<tr>
<td>Attribute</td>
<td>Not supported. An error is returned when you run the report.</td>
</tr>
<tr>
<td>Measure</td>
<td>Supported.</td>
</tr>
</tbody>
</table>

If the underlying data source is dimensionally modeled relational (DMR), Count behaves as follows if it is specified in the **Aggregate Function** or **Rollup Aggregate Function** property for a data item.

<table>
<thead>
<tr>
<th>Object</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>Count distinct is used. A warning appears when you validate the report.</td>
</tr>
<tr>
<td>Member set</td>
<td>Count distinct is used. A warning appears when you validate the report.</td>
</tr>
<tr>
<td>Attribute</td>
<td>Supported.</td>
</tr>
<tr>
<td>Measure</td>
<td>Supported.</td>
</tr>
</tbody>
</table>

If you add the count summary to a non-fact column in a list and then group the column, the column will not be grouped when you run the report. To resolve this issue, group the column first before adding the count summary.

Count Distinct

Returns the total number of unique non-null records.

If the underlying data source is OLAP, `count distinct` behaves as follows if it is specified in the **Rollup Aggregate Function** property for a data item.

<table>
<thead>
<tr>
<th>Object</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>Supported.</td>
</tr>
<tr>
<td>Member set</td>
<td>Supported.</td>
</tr>
<tr>
<td>Attribute</td>
<td>Not supported. An error is returned when you run the report.</td>
</tr>
<tr>
<td>Measure</td>
<td>Not supported. An error is returned when you run the report.</td>
</tr>
</tbody>
</table>
If the underlying data source is dimensionally modeled relational (DMR), count distinct is supported for levels, member sets, attributes, and measures when it is specified in the Aggregate Function or Rollup Aggregate Function property for a data item.

Custom

Summarizes data based on an expression that you define.

Maximum

Selects the largest existing value.

Median

Returns the median value of the selected data item.

Minimum

Selects the smallest existing value.

None

Does not aggregate values.

If the underlying data source is relational, the data item is grouped when the query property Auto Group & Summarize is set to Yes.

Not Applicable

This function is available only for the Aggregate Function property. It specifies that the aggregate attribute is ignored. For example, the calculation will be applied after the data is aggregated.

This function differs from the Calculated function, which applies aggregation to the rows and then performs the calculation.

For example, for the average ([Quantity]) + 5 expression, when the Aggregate Function property is set to Not Applicable, five is added to the average of the single Quantity value. When the function is set to Calculated, five is added to the average of a set of numbers.

This setting should not be applied to a simple model reference.

This setting is relevant only for reports that are upgraded from IBM Cognos ReportNet 1.x.

Standard Deviation

Returns the standard deviation of the selected data item.

Note: From a mathematical perspective, this function is not useful for small numbers of items and is not supported if the query property Auto Group & Summarize is set to Yes.
Summarize

Aggregates data based on model or data type information. This function can be thought of as a calculate and then aggregate rule. Data is aggregated using the following rules:

If the underlying data source type is relational and the data item or calculation is a reference to a single fact query item in the model that has the Regular Aggregate property set to Sum, Maximum, Minimum, Average, or Count, aggregate data using this function. Otherwise, data is aggregated according to the data type of the data item as follows:
- **Total** is applied for numeric and interval values.
- **Maximum** is applied for date, time, and date-time values.
- **Count** is applied for everything else.

The underlying data source type can be dimensional and the data item or calculation a reference to a single item in the model. In this case, if the Regular Aggregate property of the model item is not unknown, the summary function that corresponds to the Regular Aggregate property is applied. If the Regular Aggregate property is unknown, set the function to Calculated.

For example, a list contains the data item Quantity with the Aggregation property set to Average. You add a query calculation named Quantity Summarize. You define its expression as Quantity + 100 and you set its Aggregation property to Summarize. When you run the report, the values for Quantity Summarize are computed by first adding 100 to each value for Quantity and then calculating the total. The total is calculated because Quantity contains numeric values and the expression for Quantity Summarize is not a simple data item reference. If Quantity Summarize is defined as Quantity, the function Average is applied to each value.

Total

Adds all existing values.

Variance

Returns the variance of the selected data item.

Note: From a mathematical perspective, this function is not useful for small numbers of items and is not supported if the query property Auto Group & Summarize is set to Yes.

Mapping Summary Functions From Data Sources to Framework Manager and Report Studio

The summary functions available in IBM Cognos Framework Manager and IBM Cognos Report Studio reflect summary functions supported by relational and dimensional data sources. The following table shows how summary functions in data sources are mapped to Framework Manager and Report Studio.

<table>
<thead>
<tr>
<th>Data source</th>
<th>Framework Manager</th>
<th>Report Studio</th>
</tr>
</thead>
<tbody>
<tr>
<td>None specified, or none</td>
<td>Unsupported</td>
<td>None</td>
</tr>
<tr>
<td>average (avg)</td>
<td>Average</td>
<td>Average</td>
</tr>
<tr>
<td>Data source</td>
<td>Framework Manager</td>
<td>Report Studio</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>count</td>
<td>Count</td>
<td>Count</td>
</tr>
<tr>
<td>count distinct</td>
<td>Count Distinct</td>
<td>Count distinct</td>
</tr>
<tr>
<td>maximum (max)</td>
<td>Maximum</td>
<td>Maximum</td>
</tr>
<tr>
<td>minimum (min)</td>
<td>Minimum</td>
<td>Minimum</td>
</tr>
<tr>
<td>median</td>
<td>Median</td>
<td>Median</td>
</tr>
<tr>
<td>standard deviation (stddev)</td>
<td>Standard Deviation</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>sum</td>
<td>Sum</td>
<td>Total</td>
</tr>
<tr>
<td>variance (var)</td>
<td>Variance</td>
<td>Variance</td>
</tr>
<tr>
<td>count non zero</td>
<td>Count Non-Zero</td>
<td>Automatic</td>
</tr>
<tr>
<td>average non zero</td>
<td>unknown</td>
<td>Automatic</td>
</tr>
<tr>
<td>external</td>
<td>unknown</td>
<td>Automatic</td>
</tr>
<tr>
<td>any</td>
<td>unknown</td>
<td>Automatic</td>
</tr>
<tr>
<td>calculated</td>
<td>unknown</td>
<td>Automatic</td>
</tr>
<tr>
<td>unknown</td>
<td>unknown</td>
<td>Automatic</td>
</tr>
<tr>
<td>first_period</td>
<td>unknown</td>
<td>Automatic</td>
</tr>
<tr>
<td>last_period</td>
<td>unknown</td>
<td>Automatic</td>
</tr>
</tbody>
</table>

The following summary functions exist only in either Framework Manager or Report Studio. There is no corresponding summary function in data sources.

<table>
<thead>
<tr>
<th>Framework Manager</th>
<th>Report Studio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic</td>
<td>Automatic</td>
</tr>
<tr>
<td>Calculated</td>
<td>Calculated</td>
</tr>
<tr>
<td>No corresponding summary function</td>
<td>Summarize</td>
</tr>
<tr>
<td>No corresponding summary function</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>
Focusing Dimensional Data

In IBM Cognos Report Studio, there are three approaches to focusing dimensional data in a crosstab:

- drag data items to the edges of your crosstab
- drag data items to the context filter area
- create set expressions on the edges of your crosstab that return members or sets of members, such as the filter function

Note: Summary and detail filters are recommended only for focusing data in relational reporting.

The approach you choose should depend on the capabilities of the data source, the performance requirements, the persistence of the dataset, and how complex you want the report to be.

If you filter values that are floating-point numbers, you may encounter imprecise filtering results due to rounding or data truncation. Floating-point numbers may appear differently in the report than how they are stored in the data source. To ensure accurate results, your filter criteria should account for any rounding issues.

Consider the limitations when filtering dimensional data and when filtering data from SAP BW data sources.

You can also use prompts, or prompt controls, to allow users to provide input for the filter.

Related concepts:

- "Limitations When Filtering Dimensional Data Sources" on page 598

Avoid combining context filters (slicers) with dimensional constructs that involve members from hierarchies that are used elsewhere in the report. This combination gives results that are often not what you might expect and that may change in a future release.

Create a Context Filter

When working with dimensional data, you can use context filters, or slicer filters, to quickly focus your report on a particular view of the data.

For example, the following crosstab contains product lines in the rows, years in the columns, and revenue as the measure. We want to filter the values to show us the revenue for only Web orders from Asia Pacific. To change the context, you drag Asia Pacific and Web from the source tree to the **Context filter** section of the overview area. The crosstab then shows the revenue for only Asia Pacific and Web. Changing context changes only the values that appear. It does not limit or change the items in the rows or columns.
The members that are used as the context filter appear in the report header when you run the report.

Any summary values in the report are recomputed to reflect the results returned by the context filter.

You can create multiple context filters to filter across two or more different hierarchies.

Tip: The Budget vs. Actual sample report in the Sales and Marketing (cube) package includes a context filter. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Note: There are limitations when using context filters:
- Calculated measures do not get suppressed by the filter. To avoid this, drag the desired members from the **Source** tab directly onto the row or column edge instead of using the members in the context filter.
- Suppression can be slow on large cubes, because all of the data is retrieved and then filtered.
 - If the desired data in the context filter is from a hierarchy that appears on the crosstab edge, drag the desired members from the **Source** tab directly onto the crosstab edge.
 - If the desired data is from a hierarchy that does not appear on the crosstab edge, use a context filter in conjunction with other means to limit the data, such as a top or bottom filter.

To use a calculation or expression to define a context filter, create a slicer member set using the query explorer. A slicer member set is an expression that returns a set of members from the same dimension. For example, you can define a slicer member set that filters for the top five products with the greatest revenue.

Context filters are different from other filters. When you filter data, members that do not meet the filter criteria are removed from the report. A context filter does not remove members from a report. Instead, their values are filtered or and you see blank cells.

You can also use context filters as prompts when the report is run.

When creating context filters,
• use only members from hierarchies that are not already projected on an edge of the crosstab
• use only one member per hierarchy

Create a simple context filter
When working with dimensional data, you can use context filters, or slicer filters, to quickly focus your report on a particular view of the data.

Procedure
1. If you do not see the Context filter area, show it using the View menu (Panes, Context Area).
2. From the Source tab, select or search for one or more items on which to filter.
3. Drag the item on which to filter into the Context filter section of the overview area.
4. To change context, select a new item from the Context filter box.

Create an advanced slicer filter
To use a calculation or expression to define a context filter, create a slicer member set using the query explorer. A slicer member set is an expression that returns a set of members from the same dimension. For example, you can define a slicer member set that filters for the top five products with the greatest revenue.

Procedure
1. Pause the pointer over the query explorer button and click the query to which to add a slicer.
2. On the Toolbox tab, drag Slicer Member Set to the Slicer pane.
3. Drag the members to the Expression Definition box.
 You must join the members in the expression by using the set function. For example, the following expression contains the Fax and Telephone members from the Order Method dimension:
 \text{set ([Fax],[Telephone])}
4. To add members from another dimension, repeat step 2 to create a separate slicer member set.

Define a Prompt Using a Context Filter
If context filters (or slicers) are defined, you can use these filters to create prompts in the report.

Prompts provide questions that help users to customize the information in a report to suit their own needs. For example, you create a prompt so that users can select a region. Only data for the specified region is retrieved and shown in the report.

Before you begin
Before you define a prompt, you must create context filters.

Procedure
1. In the Context filter section of the overview area, click the down arrow next to the filter to use as a prompt.
2. Click **Prompt** and do one of the following:
 - To remove the prompt, click **No Prompt**.
 - To allow users who run the report to select any member from the hierarchy, click **Prompt on Hierarchy**.
 - To allow users who run the report to select from a list of members in the current level, click **Prompt on Level**.

Sorting Dimensional Data

You can sort items to view them in your preferred order. By default, IBM Cognos Report Studio retrieves items in the order defined in the data source. OLAP data sources always have a defined order. The data modeler defines the sorting options in the model.

For more information about data modeling, see the IBM Cognos Framework Manager **User Guide**.

Tip: The Sales Growth Year Over Year sample report in the GO Data Warehouse (analysis) package includes sorting. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Limitations When Sorting SAP BW Data

If you use a SAP BW data source, each level in a hierarchy has an item with the same name as the level and a role of _businessKey. Such items are known as level identifiers. You should use only the level identifier of all the time-related characteristics, such as 0CALDAY and 0CALMONTH, for sorting. All other (attribute) items in these hierarchies are formatted string representations of the characteristic values with which they are associated. These formatted values sort alphanumerically and not chronologically.

Tip: By level identifier, we are referring to a query item with the same name as the level that has the role of _businessKey. Each level in a SAP BW hierarchy has a level identifier.

Sort Sets by Label

You can sort sets of members based on their label (or caption). By default, when you select **Sort by Label, Ascending** or **Descending**, the members within the set are sorted only by their labels. You can also perform advanced sorting to sort sets using an intersection (tuple) or a member property.

For example, a set contains regions and you sort the regions within the set in descending alphabetical order. Only extended data items that represent sets support set sorting.

Before you can perform set sorting, you must create sets for the members in your report.

You cannot sort data items from different dimensions that are intermixed. For example, if you have years and products on the same edge and at the same level in your crosstab, you can sort the years, and you can sort the product lines, but you cannot sort them as combined set because years and products come from different dimensions.
Procedure

1. In a crosstab, select a set to sort.

2. Click the sort button and under Sort by Label, click Ascending or Descending.

 Tip: To remove a sort order, click Don't Sort.

Sort Sets in the Opposite Axis by Value

You can sort members in the sets on the opposite axis based on the value of a member or measure that you select.

For example, a crosstab contains years inserted as individual members in the columns, product lines inserted as a member set in the rows, and revenue as the measure. You select the 2004 column and then select Sort by Value, Descending. The values in the 2004 column are sorted.

<table>
<thead>
<tr>
<th>Revenue</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal Accessories</td>
<td>391,647,093.61</td>
<td>456,323,255.9</td>
</tr>
<tr>
<td>Camping Equipment</td>
<td>332,986,336.06</td>
<td>402,757,573.17</td>
</tr>
<tr>
<td>Golf Equipment</td>
<td>153,553,850.98</td>
<td>168,006,427.07</td>
</tr>
<tr>
<td>Outdoor Protection</td>
<td>35,165,521.07</td>
<td>25,008,574.08</td>
</tr>
<tr>
<td>Mountaineering Equipment</td>
<td>107,099,659.94</td>
<td></td>
</tr>
</tbody>
</table>

Before you can perform this sorting, you must create sets for the members in your report.

In nested crosstabs, items are sorted based on the values of the innermost nested row or column of the opposite axis. For example, a crosstab contains years in the columns and retailers nested within product line in the rows. Select 2004, sort in descending order, and you see retailers listed from the largest value to the smallest value for each product line.

Procedure

1. In a crosstab, select a member or measure to sort.

 For example, to sort a set in the row axis, select a member or measure in the column axis.

2. Click the sort button and under Sort by Value, click Ascending or Descending.

 Tip: To remove a sort order, click Don't Sort.

Perform Advanced Set Sorting

If you use dimensional data, you can sort using the property of a member.

For example, your report includes employee names and you want to sort the employees using the gender property. You can also sort using an intersection of members, also known as a tuple. For example, you want to sort the employees using the value of sick days taken for the year 2006.
Procedure

1. Select a set.

2. Click the sort button and under Other Sort Options, click Edit Set Sorting.

3. Specify the sorting options.

4. If you are sorting members from different levels and want to preserve the hierarchy, select the Hierarchized sorting check box.

5. To sort items using a member property, under Sort by, double-click Property, navigate the tree, and select the member property to use.

6. To sort items using an intersection of members, or a tuple, under Sort by, click Intersection (tuple) and click the ellipsis (...) button. Then, from the Available members and measures box, select the items to use and click the right arrow to move them to the Intersection members and measures box. You can also select items from the Calculated Members and Measures tab.

Working with Dimensional Queries

Queries specify what data appears in the report. In IBM Cognos Report Studio, you create and modify queries using Query Explorer.

Query Explorer provides an alternative way to modify existing reports or to author new reports. You can use Query Explorer to perform complex tasks and other tasks that are more difficult to do in the report layout. For example, use Query Explorer to

• improve performance by changing the order in which items are queried from the database, or by changing query properties to allow the report server to execute queries concurrently where possible

Note: By default, queries run sequentially. Your administrator must enable the concurrent query execution feature. For more information, see the IBM Cognos Business Intelligence Administration and Security Guide.

• view or add filters and parameters and modify their properties
• view or add dimensions, levels, and facts
• incorporate SQL statements that come from other reports or reports that you write
• create complex queries using set operations and joins

Related concepts:

"Queries" on page 29

Queries determine what data items appear in the report. Sometimes you want detailed rows of data, which you obtain by using a simple SELECT statement. Other times you must calculate totals or averages using summary functions and grouped columns or must apply filters to show only the data you want.

Specify a List of Data Items for an Object

Specify the list of data items for an object when you must reference a data item that is in a query but is not in the layout.

For example, you want to add a layout calculation to a list that uses a data item that is in the query definition. If the data item does not appear in the list, you
must reference it in order to make the layout calculation work. You must also specify the list of data items if you apply conditional formatting that uses a data item that is not in the query.

Procedure
1. Click a layout object.

 Tip: For a list of layout objects for which you can specify a list of properties, see the **Properties** property in Appendix G, “Report Studio Object and Property Reference,” on page 821.

2. In the **Properties** pane, double-click the **Properties** property and select data items.

Relate a Query to a Layout
Queries and layouts work together. After you decide the type of data that you need, you must create a layout in which to show the results. Each column of data must be both selected for the query and shown in a layout unless there are some columns that you do not want to show. The query and layout portions of a report must be linked to produce a valid report.

IBM Cognos Report Studio automatically links query and layout. For example, when you use Report Studio and the list report layout, query and layout are automatically linked.

Procedure
1. Select a data container.

2. In the **Properties** pane, set the **Query** property to a query.

3. From the **Data Items** tab, drag data items from the query to the data container.

Using Dimensional Data Sources with Queries
When you are working with SAP BW data sources, you can use only a single hierarchy in a query.

Creating queries using a mix of OLAP and relational data is not supported. If you create queries using a database for which you do not know the type, consult your database administrator or modeler.

When performing multi-cube queries using dimensional data sources, the following restrictions apply:
- Only basic operators (+, *, /, -) are available for cross-cube calculations.
- Inner joins are not supported.
- All joins for multi-cube queries are outer joins.
- Viewing MDX using the **Generated SQL/MDX** query property may not show you the actual MDX that is executed. This is because when a multi-cube query is executed, a number of smaller queries are actually executed.
Connecting Queries Between Different Data Sources

This section lists the data sources between which you can and cannot connect queries.

IBM Cognos Business Intelligence supports the following:
- RDBMS to RDBMS joins
- set operations of any two queries
- master detail relationships between any two queries
- drill from any query to any other query

You cannot create the following types of joins:
- cube-to-cube (homogeneous)
- cube-to-cube (heterogeneous)
- cube-to-RDBMS
- cube-to-SAP BW
- SAP-BW-to-RDBMS

Multiple-fact Queries

You must understand the result of a query on more than one fact table to achieve the results that you want. The result of a multiple-fact query varies depending on whether you are working with conformed or non-conformed dimensions, on the level of granularity, and on the additive nature of the data.

The following data source has characteristics that affect the results if you use a multiple-fact query with Inventory levels and Sales. Granularity for time differs in that inventory levels are recorded monthly and sales are recorded daily. Also, Sales includes a non-conformed dimension, Order method.

The following examples will help you interpret the results of a multiple-fact query and understand the options for changing a query to obtain the results that you want.
Conformed Dimensions

Individual queries on Inventory levels and Sales by Quarter and Product yield the following results.

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Product</th>
<th>Opening inventory</th>
<th>Closing inventory</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005Q1</td>
<td>Husky Rope 50</td>
<td>720</td>
<td>727</td>
<td>608</td>
</tr>
<tr>
<td></td>
<td>Aloe Relief</td>
<td>1,128</td>
<td>1,236</td>
<td>1,256</td>
</tr>
<tr>
<td></td>
<td>Course Pro Umbrella</td>
<td>1,077</td>
<td>1,217</td>
<td>902</td>
</tr>
<tr>
<td>2006Q1</td>
<td>975</td>
<td>1,060</td>
<td>2,765</td>
<td></td>
</tr>
<tr>
<td>2005Q2</td>
<td>Husky Rope 50</td>
<td>667</td>
<td>632</td>
<td>1,245</td>
</tr>
<tr>
<td></td>
<td>Aloe Relief</td>
<td>988</td>
<td>874</td>
<td>1,710</td>
</tr>
<tr>
<td></td>
<td>Course Pro Umbrella</td>
<td>969</td>
<td>1,025</td>
<td>2,158</td>
</tr>
<tr>
<td>2006Q2</td>
<td>874</td>
<td>843</td>
<td>5,114</td>
<td></td>
</tr>
</tbody>
</table>

A query on multiple facts and conformed dimensions respects the cardinality between each fact table and its dimensions and returns all the rows from each fact table. The fact tables are matched on their common keys, Product and Time.

Product and Time apply to both Inventory levels and Sales. However, inventory levels are recorded monthly and sales are recorded daily. In this example, results are automatically aggregated to the lowest common level of granularity. Quantity, which comes from Sales, is rolled up to months.

Nulls are often returned for this type of query because a combination of dimensional elements in one fact table may not exist in the other. For example, if Husky Rope 50 was available in inventory in 2005Q1, but there were no sales of this product in the same time period, Quantity would show a null in the Husky Rope 50 row.

IBM Cognos Business Intelligence does not support conformed dimensions generated by IBM Cognos Framework Manager for SAP BW data sources.

Non-conformed Dimensions

If a non-conformed dimension is added to the query, the nature of the results returned by the query is changed.
Order Method exists only in Sales. Therefore, it is no longer possible to aggregate records to a lowest common level of granularity because one side of the query has dimensionality that is not common to the other side of the query. Opening inventory and Closing inventory results are repeated because it is no longer possible to relate a single value from these columns to one value from Quantity.

Grouping on the Quarter key demonstrates that the result in this example is based on the same data set as the query on conformed dimensions. Summary values are the same. For example, the total quantity for 200501 is 2,766 in both examples.

Filters on Non-conformed Dimensions

By default, to improve performance, filters are applied at the database level. The default behavior can result in unexpected nulls when you add a filter to a multiple-fact query. If you create a filter on the Order method dimension to show only the fax order method and apply the filter at the data source, the report includes nulls.
The filter is applied only to one subject area, Sales. Because Order method does not exist in Inventory levels, all products still appear in the report. For example, Course Pro Umbrella was in inventory in 200602. Because there were no sales using the fax order method for this product in 200602, Order method and Quantity are null.

To remove the nulls, change the filter so that it is applied to the result set instead of the data source. By applying the filter to the result set, you get the same results that you would get if you were working with conformed dimensions. Only the products that were ordered using the fax order method appear in the report.

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Product</th>
<th>Order method</th>
<th>Opening inventory</th>
<th>Closing inventory</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>200501</td>
<td>Husky Rope 50</td>
<td>Fax</td>
<td>720</td>
<td>727</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aloe Relief</td>
<td></td>
<td>1,128</td>
<td>1,236</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course Pro Umbrella</td>
<td>Fax</td>
<td>1,077</td>
<td>1,217</td>
<td>72</td>
</tr>
<tr>
<td>200501</td>
<td></td>
<td></td>
<td>975</td>
<td>1,060</td>
<td>72</td>
</tr>
<tr>
<td>200502</td>
<td>Husky Rope 50</td>
<td>Fax</td>
<td>667</td>
<td>632</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Aloe Relief</td>
<td></td>
<td>888</td>
<td>874</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Course Pro Umbrella</td>
<td>Fax</td>
<td>969</td>
<td>1,025</td>
<td>314</td>
</tr>
<tr>
<td>200502</td>
<td></td>
<td></td>
<td>874</td>
<td>843</td>
<td>490</td>
</tr>
<tr>
<td>200601</td>
<td>Husky Rope 50</td>
<td>Fax</td>
<td>722</td>
<td>741</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>Aloe Relief</td>
<td></td>
<td>1,175</td>
<td>1,233</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Course Pro Umbrella</td>
<td>Fax</td>
<td>1,463</td>
<td>1,764</td>
<td>130</td>
</tr>
<tr>
<td>200601</td>
<td></td>
<td></td>
<td>1,120</td>
<td>1,246</td>
<td>302</td>
</tr>
<tr>
<td>200602</td>
<td>Husky Rope 50</td>
<td>Fax</td>
<td>725</td>
<td>714</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Aloe Relief</td>
<td></td>
<td>1,114</td>
<td>1,024</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Course Pro Umbrella</td>
<td>Fax</td>
<td>1,520</td>
<td>1,388</td>
<td></td>
</tr>
<tr>
<td>200602</td>
<td></td>
<td></td>
<td>1,120</td>
<td>1,042</td>
<td>122</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td></td>
<td>1,022</td>
<td>1,048</td>
<td>985</td>
</tr>
</tbody>
</table>
The summary for quantity is 986 using either filter method, which shows that the results are based on the same data set.

In IBM Cognos Report Studio, there are two types of filters. A detail filter is applied to the data source. A summary filter is applied to the result set. For more information about how to apply detail and summary filters, see “Create a Detail or Summary Filter” on page 295.

Add a Query to a Dimensional Report

You can create multiple queries in Query Explorer to suit your particular needs. For example, you can create a separate query for each data container in a report to show different data.

Tip: The Briefing Book sample report in the GO Sales (analysis) package and the Top 10 Retailers for 2005 sample report in the GO Data Warehouse (analysis) package include multiple queries. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Procedure

1. Pause the pointer over the query explorer button and click Queries.

2. From the Toolbox tab, drag one of the following objects to the work area.

<table>
<thead>
<tr>
<th>Object</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query</td>
<td>Adds a query.</td>
</tr>
<tr>
<td>SQL</td>
<td>Adds SQL commands.</td>
</tr>
<tr>
<td>MDX</td>
<td>Adds MDX commands.</td>
</tr>
</tbody>
</table>

Note: When adding queries to the report

- right-click the work area and click Show Package Sources to see the queries that use data items from a package
- right-click the work area and click Expand References to see the relationships that exist between queries in the report, which is useful when you are creating complex queries

3. In the Properties pane, set the object properties.

4. Double-click a query.

5. From the Source tab, drag data items to the Data Items pane.

Tip: You can add data items to the query that you do not want to appear in the layout. For example, to filter on Product line code and show Product line in the layout, you must add both data items to the query.

6. To create a new data item, from the Toolbox tab, drag Data Item to the Data Item pane.

7. To add a filter, from the Toolbox tab, drag Filter to the Detail Filters or Summary Filters pane and define the filter expression.
Tip: You can also create a filter by dragging a data item from the Source tab to one of the filters panes and completing the filter expression. If you are working with a dimensional data source, you can quickly filter data by dragging a member to a filter pane instead of dragging the level to which the member belongs. For example, dragging the member 2006 from the Years level will filter data for the year 2006. This method is quicker than dragging the Years level and specifying data only for the year 2006 in the filter expression.

Add Dimension Information to a Query

Add dimension information to a query when the data source has no dimension information available or when you want to override, extend, or restrict the information.

Add dimension information if any of the following apply:

- There is no dimension information available in the data source.

 For example, the data source contains flat data that you want to model dimensionally.
- You want to override the dimension information in the data source.
- You want to extend or restrict dimension information in the data source.

If you do not add dimension information and the data source contains dimensions, then the dimension structure of the data source is used. If the data source contains no dimensions, IBM Cognos Business Intelligence creates a default dimension structure.

Dimension information is not intended to define the presentation of information, but to help query planning. Dimension information can be considered as a form of query hint. In addition, users will not be able to drill down on dimensions that you add to a report.

Procedure

1. Pause the pointer over the query explorer button and click a query.
2. In the Properties pane, set the Override Dimension Info property to Yes.

 The Dimension Info tab appears in the work area.
3. Click the Dimension Info tab.
4. To create a dimension from an existing data item, from the Source tab, drag the data item to the Dimensions pane.

 IBM Cognos Report Studio automatically generates the entire dimension.
5. To create a new dimension, from the Toolbox tab, drag Dimension to the Dimensions pane, and then build the new dimension by adding objects to the dimension:

 - To create a level, drag Level.
 - To create a level hierarchy, drag Level Hierarchy.
 - To create a member hierarchy, drag Member Hierarchy.

 For information about these objects, see “Add Dimensional Data to a Report” on page 319.
6. From the Source tab, drag data items to the objects you added in the previous step.
For example, if you created a level, define a key by dragging a data item to the **Keys** folder.

7. To create a fact, from the **Source** tab, drag a data item to the **Facts** pane.

Example - Create a Crosstab Report that Shows Empty Rows

You are a report author at The Sample Outdoors Company, which sells sporting equipment. You are requested to create a crosstab report that shows the total revenue per year for each product line broken down by order method. By default, if no revenue was produced for a particular product line in a specific year, no row appears in the crosstab for that product line and year. You override the dimension information of the crosstab so that empty rows appear in the report.

Procedure

1. Open IBM Cognos Report Studio with the **GO Data Warehouse** (query) package.
2. In the **Welcome** dialog box, click **Create a new report or template**.
3. In the **New** dialog box, click **Crosstab** and click **OK**.
4. From the **Source** tab, drag the following data items from **Sales and Marketing** (query), **Sales** (query) to the crosstab:
 - from the **Product** folder, drag **Product line** as rows
 - from the **Time dimension** folder, drag **Year** as nested rows
 - from the **Order method** folder, drag **Order method** as columns
 - from the **Sales fact** folder, drag **Revenue** as the measure
5. Right-click the crosstab and click **Go to Query**.
6. In the **Properties** pane, set the **Override Dimension Info** property to **Yes**.
 The **Dimension Info** tab appears at the bottom of the work area.
7. Click the **Dimension Info** tab.
8. From the **Source** tab, drag the following items to the **Dimensions** pane:
 - **Product line**
 - **Year**
 * **Product line** and **Year** become separate dimensions in the query.
9. Pause the pointer over the page explorer button and click **Page1**.
10. Click **Year**.
11. In the **Properties** pane, double-click the **Sorting** property.
12. In the **Data Items** box, drag **Year** to the **Sort List** box.
13. Run the report.

Results

All order years appear for all product lines, even if no revenue was produced.
Create a Master Detail Relationship

Create a master detail relationship to deliver information that would otherwise require two or more reports. For example, you can combine a list with a chart. The list can contain product lines and the chart can show details for each product line.

Master detail relationships must appear in nested frames to produce the correct results. You can create a master detail relationship in two ways:

- Use a parent frame for the master query and a nested frame for the detail query.
- Associate a report page with the master query and use a data container, such as a list or crosstab, for the detail query.

You cannot display parent data in the child frame or child data in the parent frame. Also, you cannot perform calculations across master detail queries.

You can use a master detail relationship to show data from separate data sources in a single report. However, the data sources must be contained in the same package.

If you are working with an SAP BW data source, you cannot use a data item from the master query that contains non-ASCII values.

Before you begin

To create a master detail relationship using queries that reference two different dimensional data sources, you must first link the members by aliasing the levels that contain the members.
Procedure

1. To use a parent frame for the master query and a nested frame for the detail query:
 - From the Toolbox tab, drag a List, Repeater Table, or Repeater to the report.
 - Add a second data container to the object you inserted.
 You can insert a list, crosstab, chart, repeater table, or repeater into a list.
 You can add a list to a repeater table or repeater.
 - Add data items to both data containers.

2. To associate a report page with the master query and use a data container for the detail query:
 - Click anywhere in the report page.
 - In the Properties pane, click the select ancestor button and click Page.
 - Set the Query property.
 - From the Toolbox tab, drag a data container to the report.

3. To link a data item in the master query to a parameter in the detail query instead of to another data item, create the parameter in the detail query.
 Use parameters to filter values at a lower level in the detail query.
 - Pause the pointer over the query explorer button and click the detail query.
 - From the Toolbox tab, drag the Filter object to the Detail Filters box.
 - In the Expression Definition box, create the parameter.

4. Pause the pointer over the page explorer button and click the report page.
5. Click anywhere in the report page.
6. In the Properties pane, click the select ancestor button and click Page.
7. Click the data container containing the details.
8. From the Data menu, click Master Detail Relationships.
9. Click New Link.
10. In the Master box, click the data item that will provide the primary information.
11. To link the master query to a data item, in the Detail box, click the data item that will provide the detailed information.
12. To link the master query to a parameter, in the Parameters box, click the parameter that will provide the detailed information.

 Tip: To delete a link, select the link and press the Delete key.
13. If your detail query object is a chart, you can disconnect a chart title from the master query.
 - Click the chart title, and then, from the Data menu, click Master Detail Relationships.
 - Clear the Use the master detail relationships from the chart check box.
14. If your master detail relationship includes a chart as the detail and you are using automatic axis ranges, you can set the same axis range for all the detail charts:
• Select the axis.
• In the Properties pane, under General, double-click the Axis Range property.
• Under Maximum and Minimum, click Automatic.
 The master detail report option is only available with automatic axis ranges.
• Under Master detail reports, select the Same range for all instances of chart check box.

For more information about axis ranges, see "Change the Axis Scale of a Current Default Chart" on page 118.

Tip: To avoid seeing the same data item twice in the report, click the data item in the data container driven by the detail query and click the cut button. This removes the item from the report display but keeps it in the query.

Related concepts:
“Master Detail or Burst Reports with Charts or Crosstabs May Result in Denial of Service” on page 563
When running a master detail or burst report that includes a chart or crosstab, disk space exhaustion may cause the report or other requests to fail. A large set of burst keys or master rows may produce one or more charts per detail, resulting in many master detail executions. This may cause the temp folder to accumulate many gigabytes of temporary files containing data required for successful chart rendering.

Link Members from Two Data Sources
If you create a master detail relationship using queries that reference two different dimensional data sources, you may need to create a relationship between levels with the same member captions but different Member Unique Names (MUNs).

For more information about MUNs, see “Recommendation - Use Member Unique Name (MUN) Aliases” on page 611.

For example, you may want to link the Americas member in the Sales territory level in the Sample Outdoors cube with Americas in the GO Subsidiary level in the Sample Outdoors Finance cube. To create the relationship, you must alias the levels that contain the members to link.

Procedure
1. In the parent frame or the report page, double-click the level that contains the member that will provide the primary information.
 The Data Item Expression dialog box appears.
2. In the Expression Definition box, use the expression in the following function:
 caption (expression)
 For example, caption ([great_outdoors_company].[Sales Territory].[Sales Territory].[Sales territory])
3. Repeat steps 1 to 2 for the level in the data container that contains the details.
 A caption alias is created for each level. You can now use the caption alias for each level to create a master detail relationship using member captions, which are the same, instead of MUNs, which are different.

Results
You can now create the master detail relationship between the two levels.
Working with Queries in SQL or MDX

For each query in a report, you can work with the SQL or MDX that is executed when you run a report.

Note: MDX is not available with DMR data sources.

View the SQL or MDX for an Entire Report or a Query

View the SQL or MDX to see what is passed to the database when you run a report.

Only SQL is available when using DMR data sources because these data sources were relational.

Procedure

1. To view the SQL or MDX for the entire report, from the Tools menu, click Show Generated SQL/MDX. This option shows the SQL or MDX that will be executed in the data source. The SQL or MDX is organized by query and by query result. If a query is used in more than one data container, a query result is generated for each data container.

2. To view the SQL or MDX for a specific query, do the following:
 - Pause the pointer over the query explorer button and click the query.
 - In the Properties pane, double-click the Generated SQL/MDX property. The Generated SQL/MDX property shows the SQL or MDX that is executed when you view tabular data (from the Run menu, click View Tabular Data). Tabular data shows the data that is produced by the query in the form of a list. You can use this property to help you build advanced queries.

Results

The SQL or MDX for the query appears in the Generated SQL/MDX dialog box. For SQL, you can choose to view native SQL, which is the SQL that is passed to the database when you execute the query, or Cognos SQL, which is a generic form of SQL that IBM Cognos Report Studio uses. Cognos SQL is converted to native SQL before the query is executed.

Related tasks:

“Showing prompt values in generated SQL or MDX” on page 393

You can show prompt values when viewing the generated SQL or MDX of a query or report.

Build a Report Using Your Own SQL or MDX

You can build a report by adding SQL or MDX from an external source, such as another report.

If you are working with MDX, you must be aware of the MDX syntax that IBM Cognos Report Studio supports.

If you edit the SQL of a query, you must change the Processing property for that query to Limited Local.

You cannot build a report by adding your own MDX if the data source is IBM Cognos TM1®. IBM Cognos TM1 does not support custom MDX.
Procedure
1. From the File menu, click New.
2. Click Blank.
3. Pause the pointer over the query explorer button and click Queries.
4. From the Toolbox tab, drag Query to the work area.
5. From the Toolbox tab, do one of the following:
 - To build an SQL query, drag SQL to the right of the query.
 - To build an MDX query, drag MDX to the right of the query.
 Tip: You can drag SQL or MDX anywhere in the work area, and Report Studio will automatically create a query.
6. In the Properties pane, double-click the Data Source property and click a data source.
7. If required, set the Catalog property to the name of the catalog.
8. Double-click the SQL or MDX property and type the SQL or MDX.
9. Click Validate to check for errors.
10. If you are working with SQL, in the Properties pane, set the Processing property to Limited Local.
11. Double-click the query.
 If the SQL or MDX is valid, the data items defined in the SQL or MDX appear in the Data Items pane.
12. Pause the pointer over the page explorer button and click a report page.
13. From the Toolbox tab, drag an object to the work area.
 For example, drag a list, crosstab, chart, or repeater.
14. Click the data container.
15. In the Properties pane, click the select ancestor button and click the container you just created.
 For example, if you created a list, click List.
 Tip: You can also click the container selector (three orange dots) of the container to select it.
16. Set the Query property to the query for the report type.
17. From the Data Items tab, drag the items from the query you chose in the previous step to the data container.

Convert a Query to SQL
You can convert a query to SQL to edit it. You may want to do this to improve performance or to use SQL features that are not supported directly by IBM Cognos Report Studio.

Converting a query to SQL is an irreversible process.

Procedure
1. Pause the pointer over the query explorer button and click the query.
2. In the Properties pane, double-click the Generated SQL property.
3. Click Convert.
4. Click Validate to check for errors.
5. In the Properties pane, set the Processing property to Limited Local.

Edit the SQL or MDX
You can edit the SQL or MDX for a query that has been created as an SQL or MDX query or that has been converted to SQL.

Procedure

1. Pause the pointer over the query explorer button and click the SQL or MDX item under the query.
2. Double-click the SQL or MDX item.
3. Make changes in the text box.
 - If you are working with MDX, you must be aware of the MDX syntax that IBM Cognos Report Studio supports.
4. Click Validate to check for errors.

First-Rows Optimization
The SQL produced by IBM Cognos Report Studio depends on the report format you choose. For example, if you specify HTML format, first-rows optimization is requested. All-rows is requested if you specify PDF.

It is important for database administrators and programmers to remember that Report Studio does not always use first-rows optimization. If you assume first-rows optimization is always requested, this can cause the RDBMS optimizer to process the query differently than you expect.

Supported MDX Syntax
If you are working with MDX, you must be aware of the syntax that Report Studio supports. IBM Cognos Report Studio supports the MDX grammar as specified in Microsoft Data Access Software Developer Kit version 2.8.

Report Studio supports the following MDX functions. This is a partial list and applies only when you are working with the following data sources:

- cubes
- SAP BW
- IBM Cognos TM1
- DB2® OLAP
- IBM Cognos Consolidation
- IBM Cognos Contributor

For these data sources, IBM Cognos Business Intelligence uses a variation of the Microsoft SQL Server Analysis Services syntax.

- Acos
- Aggregate
- Ancestor
- Ancestors
- Asin
- Atan
- Avg
- BottomCount
- BottomPercent
- BottomSum
- Children
- ClosingPeriod
- CoalesceEmpty
- Convert
- Cos
- Cosh
- Count
- Cousin
- Crossjoin
- CurrentMember
- DefaultMember
- Descendants
- Dimension
- Distinct
- Except
- Exp
- Filter
- FirstChild
- FirstSibling
- Generate
- Head
- Hierarchize
- Hierarchy
- IIf
- Intersect
- Is
- IsAncestor
- IsEmpty
- Item
- Lag
- LastChild
- LastPeriods
- LastSibling
- Lead
- Level
- Levels
- LinkMember
- Ln
- Log10
- Max
- Median
- Members
Example - Create a Dynamic Report That Shows Period-to-date Data

When you are working with a dimensional data source, you can use dimensional functions to retrieve data for a specific period-to-date.

In this topic, you learn how to create a dynamic report that retrieves year-to-date revenue for each product line. The report also shows the percentage of the revenue generated in the month users select when they run the report.

It should take 15-20 minutes to complete this topic, and your report will look like this.
Procedure

1. Create a crosstab report that uses the Go Data Warehouse (analysis) package.
2. Add the following data items to the report:
 - From Product, drag Product line to the Rows drop zone.
 - From Sales fact, drag Revenue to the Measures drop zone.

 Tip: Use the Source tab.

3. Create the following query calculation named Selected Month in the Columns drop zone:
 \[[\text{Sales}].[\text{Time dimension}].[\text{Time dimension}].[\text{Month}]\rightarrow?\text{Month}\?\]

4. Create this query calculation named Year to Date Set next to the Selected Month column:
 \(\text{periodsToDate([Sales].[Time dimension].[Time dimension].[Year],[Selected Month])}\)

 Tip: Information about the periodsToDate function appears in the Information pane when you click the function in the Functions tab. The periodsToDate function is located in the M-Q folder in the Common Functions folder.

5. Click the Year to Date Set column and click the cut button.

6. Create the following query calculation named YTD Revenue next to the Selected Month column:
 \(\text{total (currentMeasure within set [Year to Date Set])}\)

7. Create the following query calculation named Percent of YTD Revenue next to the YTD Revenue column:
 \([\text{Selected Month}]/[\text{YTD Revenue}]\)

8. Click the unlock button to unlock the report.

9. Add this text item to the left of the text in the YTD Revenue column, and add a blank space after the text:
 YTD Revenue for

10. Set the font style of the text to italic.

11. In the YTD Revenue column, click \(<\#\text{YTD Revenue}\#>\) and change the Source Type property to Report Expression.

12. Double-click the Report Expression property and drag the Month parameter to the Expression Definition box.

 Tip: You can find the Month parameter in the Parameters tab.

13. Click the lock/unlock button to lock the report.
14. Right-click the Percent of YTD Revenue column title and click Fact Cells for "Percent of YTD Revenue".
15. In the Properties pane, double-click the Data Format property.
16. Under Format type, click Percent.
17. Set the No of Decimals property to 2.
18. Run the report to view what it will look like for your users.

Results

Users are prompted to select a month. When they click OK, the report shows year-to-date revenue for each product line and the percentage of revenue generated for the selected month.

For more information, see the following references:
- Creating Report Templates
- Add Relational Data to a Report or Add Dimensional Data to a Report
- Using Dimensional Calculations
- Format Crosstabs
- Specify the Font
- Format Data

Using Dimensional Calculations

Insert a calculation to make your report more meaningful by deriving additional information from the data source. For example, you create an invoice report, and you want to see the total sale amount for each product ordered. Create a calculated column that multiplies the product price by the quantity ordered.

You build calculations in the expression editor using functions.

If a calculation is used in multiple reports, or by different report authors, ask your modeler to create the calculation as a standalone object in the model and include it in the relevant package.

Related concepts:
- Considerations when Creating Calculations on page 601

Create a Simple Member Calculation

When working with dimensional data sources, you can select members in your report and create simple calculations.

In addition to simple arithmetic calculations, you can perform the following calculations:

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rollup</td>
<td>Summarizes, or rolls up, all the values of the selected items in a hierarchy.</td>
</tr>
<tr>
<td>Calculation</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>%</td>
<td>Calculates the value of a selected item as a percentage of another item.</td>
</tr>
<tr>
<td>% Difference</td>
<td>Calculates the difference between two items as a percentage.</td>
</tr>
<tr>
<td>% Of Base</td>
<td>This calculation is only available if you select two members from different hierarchies, each from a different edge. This calculation takes the first selected member from edge A and the second selected member from edge B. The calculation result of a percent of base should be such that all the values for member A will compare itself to the intersect value of member A and B. For example, you have a crosstab showing quantity sold by year by product line. You select 2004 and Camping Equipment, right-click the selection, click Calculate, and then click % of Base (2004, Camping Equipment). The calculated row shows the percentage value of each product line for 2004 as compared to Camping Equipment for 2004.</td>
</tr>
<tr>
<td>Custom</td>
<td>Allows you to specify your own value when performing a simple arithmetic calculation. Also allows you to change the order of operands or type a custom name for the new calculated row or column.</td>
</tr>
</tbody>
</table>

Procedure

1. Select the items in your report to calculate.

2. Click the insert calculation button and select the calculation to perform.

 Tip: Calculations that are not applicable to the items you selected are greyed out.

3. To change the order of the operands or the name of the calculated item added to the report, click Custom.

Results

The calculation appears as a new row or column in your report.

Insert a Query Calculation

When working with dimensional data, insert a query calculation into your report to add a new row or column with values that are based on a calculation. For example, you create a query calculation named Euros that converts dollars to euros...
by multiplying an existing dollar measure by a conversion rate. Euros can then be displayed to end users in a separate row or column.

In IBM Cognos Report Studio, you can create the following types of calculations:

- Create calculated members or calculated measures where the expression is a member or a tuple-based (as opposed to property-based) value expression. For example, [2005] - [2004] is a calculated member and [Revenue] - [Planned Revenue] is a calculated measure.

- Use set expressions to create calculated sets of members. For example, children ([2004]) is a set expression that displays the child members of 2004. You must base each set expression on a hierarchy and the set expression must contain only members from this hierarchy.

- Create value expressions when you want to insert a string, number, date, or interval value.

You can also create a calculation that uses an intersection (tuple) that you already defined.

If you are using a DB2 data source, the subtract operator is invalid if you combine the datatypes timestamp2 and packed decimal.

When creating an expression that will be used in a double-byte environment, such as Japanese, the only special characters that will work are ASCII-7 and – – | | - $ € £ ¬.

Procedure

1. From the Toolbox tab, drag Query Calculation to the report.
2. In the Name box, type a meaningful name for your calculation. For example, if you are calculating the difference between 2007 revenue and 2006 revenue, you could name your expression 2007 - 2006 Revenue.
3. Click the type of calculation you want to create and select the hierarchy that contains the data that is the focus of your calculation.
4. In the Available Components pane, define the calculation:
 - Specify how you want to view the available data items in your data package by clicking the view member tree button or the view package tree button.
 - To add data items that are not shown in the report, on the source tab, double-click the data items.
 - To add data items that are in the report but not necessarily in the model, such as calculations, on the data items tab, double-click the data items.
 - To add data items from a specific query, on the queries tab, double-click data items.
 - To add functions, summaries, and operators, on the functions tab, double-click elements.
Tip: To filter the visible functions, summaries, and operators in the
Available Components pane, click the filter button and filter by the
function type, what the function returns, or what the function acts on.

- To add a value that is derived from a parameter, on the parameters tab,
double-click a parameter.
Parameters define prompts, drill-through reports, and master detail
relationships.

- To add a macro, on the macros tab, drag the parameter maps, session
parameters, or functions you want to add to the macro.

Tip: Use Insert macro block to get you started with creating the macro
expression. Insert macro block inserts number signs in the expression. Make
sure that the macro expression you create is between the number signs.

Tips:
- You can also type the calculation directly in the Expression Definition box.
- When typing date values, ensure that the date format is correct for your
database type.
- To copy and paste expression components in the Expression Definition
pane, you can use the copy button and the paste button.

For information about specific functions, see “Calculation components” on page
519.

5. Click the validate button.

Tips:
- To show or hide the Available Components pane, click the available
components button.
- To show or hide the Information pane, click the information button.
- To copy and paste expression components in the Expression Definition
pane, you can use the copy button and the paste button.

Related concepts:
Chapter 18, “Using Query Macros,” on page 467
A macro is a fragment of code that you can insert in the Select statement of a
query or in an expression. For example, add a macro to insert a new data item
containing the user’s name.

Create a Layout Calculation
Create a layout calculation to add run-time information to your report, such as
current date, current time, and user name.

When you create layout calculations, unsupported functions do not appear in the
Functions tab of the expression editor. Specifically, there is no Summaries folder,
and some operators, constants, and constructs are also unavailable. These functions
are not available because only the database can perform them. Report expressions
and calculations based on layout expressions are performed in IBM Cognos Report
Studio.
To see the complete list of functions available in the expression editor, except for report functions, create a query calculation. All functions are available when you create a query calculation because these calculations are performed in the database and not in Report Studio.

Procedure

1. From the **Toolbox** tab, drag **Layout Calculation** to the report.
2. In the **Available Components** box, define the calculation:
 - To add data items that are not shown in the report, on the source tab, double-click data items.
 - To add data items from a specific query, on the queries tab, double-click data items.
 - To add functions, summaries, and operators, on the functions tab, double-click elements.
 - To add a value that is derived from a parameter, on the parameters tab, double-click a parameter.
 Parameters define prompts, drill-through reports, and master detail relationships.
 Tips:
 - You can also type the calculation directly in the **Expression Definition** box.
 - When typing date values, ensure that the date format is correct for your database type.
 - To copy and paste expression components in the **Expression Definition** pane, you can use the copy button and the paste button.
 For more information about creating expressions, see "Calculation components" on page 619.
3. Click the validate button.

Create an Intersection (Tuple)

When working with dimensional data, an intersection, also known as a tuple, is useful for obtaining a value from the combination of two or more members that you specify. Each member must be from a different hierarchy. The intersection can include only one measure.

For example, the intersection (Revenue, 2004, Cooking Gear) shows the revenue value for the year 2004 and for the product line Cooking Gear.

Use tuples to avoid report summaries that do not reflect the visible data. For more information about this issue, see "Summaries in a report do not correspond to the visible members" on page 556.

Procedure

1. From the **Toolbox** tab, drag the **Intersection (Tuple)** object to the report.
2. From the Available members and measures pane, select items and click the right arrow to move them to the Intersection members and measures box. You can also use items from the Calculated Members and Measures tab.

3. To define the hierarchy for this intersection, click a parent object in the Intersection hierarchy box.

Assigning a Hierarchy or Dimension
You must assign each calculated member, set expression, and intersection (tuple) to a hierarchy or dimension. We recommend that you select the hierarchy or dimension upon which your calculation focuses. For example, if your calculated member is based on years, select the Time hierarchy. If you create a calculated measure, select the Measures dimension.

Select only a hierarchy that cannot affect the value of the calculation. For example, the hierarchy Camping Equipment has the same value no matter what Products context it appears in the report. Therefore,
- the calculation ([Camping Equipment]-[Mountaineering Equipment]) has a well-defined meaning only in the Products hierarchy, so select that hierarchy.
- the calculation tuple ([Revenue], [Camping Equipment]) can be assigned to either the Products or Measures hierarchy, as it is not affected by either context.
- the calculations ([1999] - [Camping Equipment]) and ([Fiscal Year 1999] - [Calendar Year 1999]) do not have a well-defined meaning in any hierarchy, and therefore cannot be used reliably at all.

Browse or Search the Values of a Data Item
When building expressions in the expression editor, you can browse the data of a data item. This is useful when you do not know how a particular value is stored in the database. For example, you want to filter a report so that it shows data for only New South Wales. The actual value in the database for New South Wales is NSW, and this is what you must insert in the filter expression to obtain the correct results.

You can also browse the data of a data item when creating conditional styles.

Procedure
1. In the source, data items, or query tab, right-click the data item you want to browse.

 Note: For dimensional and mixed model data sources, you can view the full data tree by clicking the view package tree button or the dimensional-only data tree by clicking the view members tree button.

2. If you want to insert a single value, click Select Value.

3. If you want to insert multiple values, click Select Multiple Values.

4. In the Values box, click the value you want to insert in the expression.

 Tip: Use the Words box to search for specific values. If the data source is case sensitive and you want to perform a case insensitive search, click the Search arrow and then click Case Insensitive.
5. If you clicked multiple values, click the right arrow button to add them to the **Selected values** box.
6. Click **Insert**.

Tip: To control where values appear in the **Expression Definition** box, you can click the copy button if you selected a single value or the copy all button if you selected multiple values instead. The values are copied to the clipboard, and you can then paste them where you want.

Searching for values might return unexpected results

In the expression editor, when searching for values for a data item, the results you obtain might contain unexpected results if the data item is not a string data type. Because you can edit the expression for a data item, IBM Cognos Business Intelligence cannot determine with certainty what the data type is.

Therefore, IBM Cognos Business Intelligence guesses the data type of the data item by looking at its aggregate and rollup aggregate set.

Drilling Up and Drilling Down in Dimensional Reports

When working with dimensional or dimensionally-modeled relational (DMR) data sources, you can create reports that allow the reader to view more general or more detailed information on your data within a predefined dimensional hierarchy (such as Years - Year - Quarter - Month) without having to create different reports.

You can link groups of data items from different queries so that when you drill up or drill down in one query, the data item also drills up or drills down in the linked queries. Linking data items is useful if your report includes more than one query with the same data item. For example, if your report shows a list and a crosstab that each include the Product Line data item, you can link the Product Line data item from the crosstab query to the Product Line data item from the list query so that when you drill up in the crosstab Product Line data item, the list Product Line data item also drills up.

Member Sets

Member sets are used to group data items that are logically related for various actions, such as drill actions, zero suppression, and ranking. They can be defined as a flat list or as a tree structure in which member sets in the same parent chain are considered related.

For example, for drill operations, a member set defines the set of items that can potentially change when a given item in the set is drilled on. The values of other items in the query or even those in the same hierarchy are preserved when any item in this set is drilled on. Usually, a member set references items that have logical roles in a drill action, such as a detail, a summary of the detail, or a parent of the detail. A single data item can belong to only one member set.

If you do not define member sets for items, the IBM Cognos Business Intelligence server associates items into default member sets and behaviors using simple dimension rules on item expressions. You can override the behavior for a particular item while other items continue to use the default.
When you define a member set, you must explicitly define behaviors for each item in the set. Items in the set that have no behaviors have their values preserved.

Drill behaviors always act from a root member set. This means that when an item is drilled on, the root member of its member set is found and all items from the root down are processed. Although calculations and aggregates are not directly related by hierarchy, they respond because of their dependence on the items upon which they are based.

Create Member Sets
Create a member set when you want to define a non-default drill behavior. You specify what items respond to a drill action by adding them to the member set.

Procedure
1. Pause the pointer over the query explorer button and click the query in which to create a member set.
2. In the Properties pane, set the Define Member Sets property to Yes.
3. Double-click the query and click the Member Sets tab.
4. From the Source tab, drag items to the work area.
 - To define a member set as a tree structure, drag the item that will serve as the root item of the set to the work area, and then drag other items over the root item to create the tree structure.

 Note: You can also nest member sets.

Create a Drill-up and Drill-down Report
You can link groups of data items from different queries so that when you drill up or drill down in one query, the data item also drills up or drills down in the linked queries.

When you drill down or up, you can specify whether the column title shows the member caption value or the level label value. By default, titles use member captions. Using level labels may be more meaningful. For example, within the Country or Region column, you drill down on Australia. By default, the column title becomes Australia, the member caption. It may be more meaningful to use Country or Region, the level label, as the column title.

Tip: The Returned Items sample report in the GO Data Warehouse (analysis) package includes drilling. For more information about The Sample Outdoors Company samples, see [Appendix C, “Sample Reports and Packages,” on page 567.](#)

Before you begin
Before you begin, ensure that you are using a dimensional data source.

Procedure
1. From the Data menu, click Drill Behavior.
2. On the Basic tab, in the Report output drill capabilities box, select the Allow drill-up and drill-down check box.

 By default, IBM Cognos Report Studio determines which items can be drilled on based on the dimensional structure.
Tip: To enable the report to be used as the source during a package drill-through, select the **Allow this report to be a package-based drill-through source** check box and click **OK**. For more information about package drill-through, see the *Administration and Security Guide*.

3. To disable drill-up or drill-down for a data item, select the data item in either the **Disable drill-up for** box or the **Disable drill-down for** box.

4. From the **Advanced** tab, you can change the drill-up or drill-down behavior for any data item by selecting the data item and then choosing one of the following behaviors.

<table>
<thead>
<tr>
<th>Behavior name</th>
<th>Drill-up behavior</th>
<th>Drill-down behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preserve</td>
<td>The data item’s value will remain unchanged.</td>
<td>The data item’s value will remain unchanged.</td>
</tr>
<tr>
<td>Empty Set</td>
<td>The set of values associated with this data item is set to be the empty set (novalues). For crosstabs, the data item will effectively be removed from the report.</td>
<td>The data item will be removed from the report.</td>
</tr>
<tr>
<td>Replace Item</td>
<td>The data item’s value will change to become the parent (if a lowest-level summary was drilled up on) or the grandparent (if a lowest-level detail of a dimension was drilled up on) of the item that was drilled on.</td>
<td>The data item’s value will change to become the item that was drilled on.</td>
</tr>
<tr>
<td>Replace Expression</td>
<td>The data item’s value will change to become the children of the parent (if a lowest-level summary was drilled up on) or the children of the grandparent (if a lowest-level detail of a dimension was drilled up on) of the item that was drilled on.</td>
<td>The data item’s value will change to become the children of the item that was drilled on.</td>
</tr>
<tr>
<td>Change Expression</td>
<td>The data item’s value will change to become the value of some other data item in the query.</td>
<td>The data item’s value will change to become the value of some other data item in the query.</td>
</tr>
<tr>
<td>Depth Based Expression</td>
<td>The data item’s value will change to become all data items n generations higher in the dimensional hierarchy than the item that was drilled on. The number of generations or levels is determined by the Depth value.</td>
<td>The data item’s value will change to become all data items n generations higher in the dimensional hierarchy than the item that was drilled on. The number of generations or levels is determined by the Depth value.</td>
</tr>
<tr>
<td>Behavior name</td>
<td>Drill-up behavior</td>
<td>Drill-down behavior</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Ancestor</td>
<td>The data item’s value will change to become the data value of the ancestor (n) generations higher in the dimensional hierarchy than the item that was drilled on. The number of generations or levels is determined by the Depth value.</td>
<td>The data item’s value will change to become the data value of the ancestor (n) generations higher in the dimensional hierarchy than the item that was drilled on. The number of generations or levels is determined by the Depth value.</td>
</tr>
</tbody>
</table>

5. In the **Column title drill behavior** box, specify whether to use member captions or level labels as the columns titles for each data item.

6. From the **Data Items Linking** tab, you can link groups of data items:
 - Click the new button
 - Type a name for this group of linked data items and click **OK**.
 To rename a group of linked data items, click the group, click the rename button, type a name, and click **OK**.
 - Use the arrows to move data items from the queries on the left to the groups on the right.

 Note: You can only add a data item to one group.

Results

The report will generate links for any item that can be drilled up or down on.

When you run a report, you can drill down or drill up by right-clicking the data item and choosing the action from the context menu. The menu items will be disabled if an item cannot be drilled up or down on.

Related tasks:

“Create a Drill-up and Drill-down Chart” on page 152

If you use a dimensionally-modeled data source, you can create a chart that allows you to drill down to lower-level data or drill up to higher-level data.

Recommendation - Drilling Down in Very Large Data Sources

When you drill down in a report that uses a very large data sources query results can be much larger than what can be held in memory. For example, if you insert the lowest level of four hierarchies that each contain 1000 members, the report can contain 1000,000,000,000 cells. At best, this query will take a very long time to run. While this large query executes, all other queries for the same server process will likely be blocked. For most data sources, the query will likely fail due to insufficient memory or timing out. Then the memory is released and normal services resume.

However, when using a Microsoft SQL Server 2005 Analysis Services (SSAS) cube, the memory consumed by the SSAS client is not always released in a way that other queries can effectively re-use. The server continues to run with insufficient memory, causing new queries to either run very slowly or fail completely. You may encounter an error, and, to continue, the system administrator must manually stop and restart the IBM Cognos BI service.
To avoid these problems, consider the size of hierarchy levels and sets when
creating reports and avoid combining them in ways that create large queries. To
determine the size of a set, create and run a very small report that includes only a
count of the members within that set. You can also use filtering techniques to focus
your data.

Example - Create a Dashboard Report

Create a dashboard report to show a high-level graphical view of company
performance indicators.

By using dashboard reports, users can
• drill up and drill down to see higher and lower levels of detail
• navigate to other targets, including IBM Cognos Report Studio reports, IBM
 Cognos Query Studio reports, and IBM Cognos Analysis Studio analyses
• include multiple charts derived from different data sources in a single report

Dashboard reports are not the same as workspaces or dashboards created in IBM
Cognos Workspace. Dashboard reports display several different report objects in
one report, but the information in the report is static. Workspaces created in
Cognos Workspace are a collection of IBM Cognos content that you assemble into
an interactive workspace. Content is displayed in widgets. For information about
creating interactive and sophisticated workspaces, see the IBM Cognos Workspace
User Guide. You can also create dashboards within IBM Cognos Connection. In
these dashboards, content is displayed in portlets within pages. For more
information, see the IBM Cognos Connection *User Guide*.

In this topic, you learn how to create a dashboard report so that users can examine
important sales data in a single view.

It should take 15 to 20 minutes to complete this topic, and your dashboard report
will look like this.
Procedure

1. Create a blank report with the GO Data Warehouse (analysis) sample package.
2. Add a column chart, a bullet chart, and a crosstab.
3. Drag the following items to the bullet chart:
 - Revenue (in Sales and Marketing (analysis), Sales, Sales fact) to the Bullet Measure drop zone
 - Planned Revenue to the Target Measure drop zone
 - Product line level (in Products) to the Series (matrix rows) drop zone
 - Region level (in Retailers) to the Categories (matrix columns) drop zone
4. Drag the following items to the column chart:
 - Revenue (in Sales fact) to the Default measure (y-axis) drop zone
 - Product line level (in Product) to the Categories (x-axis) drop zone
 - Retailers level (in Retailers) to the Series (primary axis) drop zone
5. Drag the following items to the crosstab:
 - Gross margin (in Sales fact) to the Measures drop zone
 - Product line level (in Product) to the Rows drop zone
 - Region level (in Retailer site) to the Columns drop zone
6. Click the bullet chart.
7. Set the **Size & Overflow** property width to **300 px** and height to **300 px**.
8. Set the **Title** property to **Show**.
9. Double-click the chart title and type the following text:
 Gross Profit for Product Lines by Region
10. Set the **Font** property for the chart title to **Arial, 12pt, Bold**.
11. Set the **Padding** property for the left and bottom padding to **20 px**.
12. In the **Bullet Indicators** property, set the bar width to 30%.
13. Click the chart, click the palette button ☑️, and click **Contemporary** from the available palettes.
14. Set the **Size & Overflow** property width to **300 px**.
15. Set the **Title** property to **Show**.
16. Double-click the chart title and type the following text:
 Product Lines: Revenue by Retailer
17. Set the **Font** property for the chart title to **Arial, 12pt, Bold**.
18. From the **Data** menu, click **Drill Behavior**.
19. Select the **Allow drill-up and drill-down** check box.
20. Run the dashboard report to view what it will look like for your users.

Results

Users can drill up or drill down on values in the report to view related information.

For more information, see the following references:

- [Creating Report Templates](#)
- [Add Relational Data to a Report](#) or [Add Dimensional Data to a Report](#)
- [Customize a Current® Default Gauge Chart](#)
- [Customize a Legacy Gauge Chart](#)
- [Specify the Height and Width](#)
- [Specify the Font](#)
- [Create a Drill-up and Drill-down Report](#)
Chapter 12. Adding Prompts to Filter Data

You can add prompts to a report to add interactivity for users. Prompts act as questions that help users to customize the information in a report to suit their own needs. For example, you create a prompt so that users can select a product type. Only products belonging to the selected product type are retrieved and shown in the report.

Prompts are composed of three interrelated components: parameters, prompt controls, and parameter values. Parameters are based on parameterized filters and form the questions to ask users. Prompt controls provide the user interface in which the questions are asked. Parameter values provide the answers to the questions.

IBM Cognos Report Studio provides several ways to create prompts. You can

- use the Build Prompt Page tool
- build your own prompt and prompt page
- create a parameter to produce a prompt
- insert prompts directly into the report page
- in dimensional reporting, you can also define prompts using context filters

If you include reports from different packages in an interactive dashboard that uses global filters, ensure that you use the same parameter name for the prompt in all the reports. For more information about creating interactive dashboards in IBM Cognos Connection, see the IBM Cognos Business Intelligence Administration and Security Guide.

You can also create prompts in the package. For more information, see the IBM Cognos Framework Manager User Guide.

You can also use context filters, also known as slicer filters, to focus the data in your report.

Syntax of Prompt Expressions

Prompt expressions use the following syntax, where p represents the parameter name.

You can also use these expressions to create parameterized data items that you can then use in master detail relationships.

The type of expression you use depends on whether you have chosen relational or dimensional reporting style. For more information about reporting styles, see “Relational and dimensional reporting styles” on page 20.

<table>
<thead>
<tr>
<th>Relational: Detail Filter Expressions</th>
<th>Dimensional: Context (Slicer) or Edge Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>[data item] = ?p?</td>
<td>[level or hierarchy]->?p?</td>
</tr>
<tr>
<td>for single-select prompts and master detail relationships</td>
<td>For single-select member prompts and master detail relationships</td>
</tr>
<tr>
<td>Relational: Detail Filter Expressions</td>
<td>Dimensional: Context (Slicer) or Edge Expressions</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>[data item] in ?p?</td>
<td>set([level or hierarchy]->?p?)</td>
</tr>
<tr>
<td>for multi-select prompts</td>
<td>For multi-select member prompts</td>
</tr>
<tr>
<td></td>
<td>filter [set], [property expression] = ?p?)</td>
</tr>
<tr>
<td></td>
<td>For single-select value prompts and master</td>
</tr>
<tr>
<td></td>
<td>detail relationships</td>
</tr>
<tr>
<td></td>
<td>A property expression is an expression that</td>
</tr>
<tr>
<td></td>
<td>is assigned to a property to enable dynamic</td>
</tr>
<tr>
<td></td>
<td>update of the property when the report runs.</td>
</tr>
<tr>
<td></td>
<td>filter [set], [property expression] IN ?p?)</td>
</tr>
<tr>
<td></td>
<td>For multi-select value prompts</td>
</tr>
<tr>
<td></td>
<td>A property expression is an expression that</td>
</tr>
<tr>
<td></td>
<td>is assigned to a property to enable dynamic</td>
</tr>
<tr>
<td></td>
<td>update of the property when the report runs.</td>
</tr>
</tbody>
</table>

Related tasks:

“Associating labels with prompt controls using field sets” on page 536
You can associate labels with prompt controls using field sets.

“Associating labels with prompt controls using HTML items” on page 536
Instead of using the field set object, you can associate labels with prompt controls using HTML items. You use the HTML items to create the field sets.

Related reference:

Appendix H, “Prompt API for IBM Cognos BI,” on page 1021
The JavaScript Prompt API provides report authors with a method of customizing prompt interaction in the reports they author.

Use the Build Prompt Page Tool

Use the **Build Prompt Page** tool to quickly add filters and prompts to a report. This tool creates filters in the query using the prompt information properties that are set in the IBM Cognos Framework Manager model. For more information about the prompt information properties, see the Framework Manager **User Guide**.

Note: The Promotion Success sample report in the GO Data Warehouse (analysis) package includes a prompt page. The Historical Revenue sample report in the Sales and Marketing (cube) package and the Eyewear Revenue by Brand and Size sample report in the GO Data Warehouse (analysis) package include multiple prompts. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Before you begin

Note: The **Build Prompt Page** tool creates a static report specification, so if the prompt information properties are updated in the Framework Manager model, those updates will not be reflected in your report.
Procedure

1. Click the column or row on which users will be prompted.
 To create multiple prompts or a [cascading prompt](#), click more than one column or row.

2. From the **Tools** menu, click **Build Prompt Page**.
 A prompt page is created that has
 - a page header
 - a prompt control for each selected column
 - a page footer containing **Cancel**, **Back**, **Next**, and **Finish** buttons

Build Your Own Prompt and Prompt Page

Create your own prompt and prompt page to control how they appear in a report.

Note: The Promotion Success sample report in the GO Data Warehouse (analysis) package includes a prompt page. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Procedure

1. Pause the pointer over the page explorer button and click **Prompt Pages**.

2. From the **Toolbox** tab, drag **Page** to the **Prompt Pages** box.

3. Double-click the page you just created.

4. From the **Toolbox** tab, drag one of the following prompt controls to the prompt page.

<table>
<thead>
<tr>
<th>Prompt control</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text Box Prompt</td>
<td>Retrieves data based on a value that users type.</td>
</tr>
<tr>
<td></td>
<td>Use this control when users know exactly what value they want to enter, such as a name or account number.</td>
</tr>
<tr>
<td>Value Prompt</td>
<td>Retrieves data based on values that users select from a list.</td>
</tr>
<tr>
<td></td>
<td>Use this control to show a list of possible values from which users can choose.</td>
</tr>
</tbody>
</table>

Note: The maximum number of items that can appear in a list is 5000.
<table>
<thead>
<tr>
<th>Prompt control</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select & Search Prompt</td>
<td>Retrieves values based on search criteria that users specify. Data is then retrieved based on values users select from the search results. Use this control instead of a value prompt if the list of values is very long, which can slow down performance. Tip: Users have the option of performing a case sensitive or case insensitive search. A case sensitive search is faster, while a case insensitive search usually returns more values. You cannot use this control if you are working with SAP BW data sources.</td>
</tr>
<tr>
<td>Date Prompt</td>
<td>Retrieves data based on a date that users select. Use this control to filter a date column. Users can retrieve data for a specific day, a set of days, or a range of days.</td>
</tr>
<tr>
<td>Time Prompt</td>
<td>Retrieves data based on a time that users select. Use this control to restrict a report to a particular time or time range. For example, users can see how many orders are received after business hours. Users can then use this information to determine the number of staff needed to work after hours.</td>
</tr>
<tr>
<td>Date & Time Prompt</td>
<td>Retrieves data based on a date and time that users select. Use this control to filter a datetime or timestamp column. This control is useful for specifying ranges. For example, users can retrieve all orders received from Monday at 12:00 a.m. to Friday at 5:00 p.m.</td>
</tr>
<tr>
<td>Interval Prompt</td>
<td>Retrieves data based on a time interval that users specify. Use this control to retrieve data that is related to the passage of time. For example, users can retrieve a list of products that were returned 30 or more days after they were purchased.</td>
</tr>
<tr>
<td>Prompt control</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Tree Prompt</td>
<td>Retrieves data based on values that users select from a list. Values are organized hierarchically. This control is useful when you are working with dimensional data sources. Data is shown from the top of a dimension hierarchy to the most detailed member, and users can choose the level of detail they want to view in the report. For more information about tree prompts, see “Control the Data That Appears in a Tree Prompt” on page 392. Tree prompts let you page through large numbers of prompt values with a More link at the bottom of the tree.</td>
</tr>
<tr>
<td>Generated Prompt</td>
<td>Selects a prompt control based on the data type of the data item. This control acts like a placeholder. When users run the report, the control is replaced by the appropriate prompt control. For example, if users are prompted for date values, the control is replaced by a date & time prompt.</td>
</tr>
</tbody>
</table>

The Prompt Wizard dialog box appears.

5. If you are creating a text box, date, time, date and time, interval, or generated prompt, do the following:
 - Create a new parameter for the prompt or use an existing parameter.
 - Click Next.
 - If you created a new parameter, define the expression by selecting a data item from the package and the operator to use.

 Tip: Make the prompt optional by selecting the Make the filter optional check box.
 - Go to step 7.

6. If you are creating a value, select & search, or tree prompt, do the following:
 - Create a new parameter for the prompt or use an existing parameter.
 - Click Next.
 - If you created a new parameter and you want to use the parameter to filter data, select the Create a parameterized filter check box and define the expression by selecting a data item from the package and the operator to use.
 - If you are creating a tree prompt, you must choose in in the Operator box.
 - You can also use a parameter to provide a value for a layout calculation, such as showing a user’s name in the report. When the report is run, you can use a parameter to prompt the user to type his name and have it appear in the report.
Tip: Make the prompt optional by selecting the **Make the filter optional** check box.

- Click **Next**.
- If you created a parameterized filter and you have more than one query defined in the report, select the check box for the query on which to filter and click **Next**.
- Select the **Create new query** check box to create the query that will be used to build the list of data values shown when the report is run.

Tip: Do not create a new query if you want to link the prompt to an existing query or if you intend to create the query at a later time.

- Click the ellipsis (...) button beside **Values to use** and click the data item on which to prompt.
- To choose a data item that is different than what users will see when they are prompted, click the ellipsis (...) button beside **Values to display** and click the data item.
- To create a **cascading prompt** in the **Cascading source** box, click the parameter that represents the cascade source.

7. Click **Finish**.

Results

The prompt control is added to the prompt page. A prompt page is like a report page. You can insert graphics and text and apply formatting.

You can also **modify** the properties of the prompt control by clicking it and making changes in the **Properties** pane.

Example - Create a Report Showing Products Shipped for a Specific Time Interval

You are a report author at The Sample Outdoors Company, which sells sporting equipment. You are requested to create a report that shows the time interval between closing and shipping dates.

Procedure

1. Open IBM Cognos Report Studio with the **GO Data Warehouse (query)** package.
2. In the **Welcome** dialog box, click **Create a new report or template**.
3. In the **New** dialog box, click **List** and click **OK**.
4. From the **Source** tab, expand **Sales and Marketing (query)** and **Sales (query)**.
5. Expand **Sales fact** and double-click **Quantity**.
6. Expand **Products** and double-click **Product type**.
7. Expand **Sales order** and double-click **Order number**.
8. Create a time interval calculation:
 - From the **Toolbox** tab, drag **Query Calculation** to the right of **Quantity** in the list.
 - In the **Name** box, type the following and click **OK**:
 Time Interval
9. Create a filter:

- From the Data menu, click Filters.
- Click the add button.
- In the Expression Definition box, from the Data Items tab, double-click Time Interval calculation you created.
 - Add > ?p1? after Time Interval to create the following expression:
 \[\text{Time Interval} > ?p1?\]
- Click OK twice.

A parameterized filter is created that will return data when the difference between the return date and the order date is greater than the value specified by the user.

10. Create a prompt page:

- Pause the pointer over the page explorer button and click Prompt Pages.
- From the Toolbox tab, drag Page to the Prompt Pages pane, and then double-click it.
- From the Toolbox tab, drag Interval Prompt to the work area.
 The Prompt Wizard dialog box appears.
- Click Use existing parameter, and then click p1.
- Click Finish.

11. Run the report.

An interval prompt appears.

12. In the Days box, type a value and click Finish.

Tip: You can also type values for the Hrs and Mins boxes.

Results

A list report appears showing all products that were shipped after the time interval you specified. For example, if you typed 5, the list will show products that were shipped more than 5 days after the order date.
Create a Parameter to Produce a Prompt

IBM Cognos Report Studio can automatically generate prompted reports based on parameters you create. When you run the report, Report Studio can generate a prompt page for each parameter not associated to an existing prompt page depending on whether the prompt run option is selected or not.

Note: When Report Studio automatically generates a prompt, it creates filters in the query using the prompt information properties that are set in the IBM Cognos Framework Manager model. For more information about the prompt information properties, see the Framework Manager User Guide.

You can also define parameters when you want to create a drill-through report or define master detail relationships.

Procedure

1. From the Data menu, click Filters.
2. On the Detail Filters tab, click the add button.
 The Detail Filter dialog box appears.
3. In the Available Components box, click the Source tab or the Data Items tab to select the data item to use for the prompt:
 • To filter data based on data items not shown in the report, double-click a data item on the Source tab.
 • To filter data that appears in the report but not necessarily in the model, such as calculations, double-click a data item on the Data Items tab.
 The data item appears in the Expression Definition box.
4. In the **Expression Definition** box, type an operator after the data item or select an operator from the **Functions tab**.

The operator sets some of the default properties of the prompt. For example, if the operator is equals (=), users will be able to select only a single prompt value and the prompt’s **Multi-Select** property is set to **No**.

For more information about creating expressions, see “Using Relational Calculations” on page 313 or “Using Dimensional Calculations” on page 365.

5. Type a name after the operator to define the prompt parameter. A question mark must precede and follow the name.

6. To specify whether the prompt is mandatory, in the **Usage** box, click **Required**, **Optional**, or **Disabled**.

Create a Prompt Directly in a Report Page

You can add prompt controls directly in a report page instead of creating a prompt page.

Prompt controls that are added to report pages will not appear in the following:

- saved reports
- PDF reports
- reports that are sent to users by email
- scheduled reports

Prompt controls are interactive. They are used to satisfy parameter values before running a report. As a result, prompt controls added to a report page only appear when you run the report in HTML format. When you run a report in HTML format, users select which values they want to see, and the report is refreshed, producing a new report.

For the non-interactive reports listed above, prompt parameter values must be collected and satisfied before the report is run. You provide the parameter values using the **Run options** tab in IBM Cognos Connection. If you do not provide all the required values, the report will fail to run. You can access the Run options tab by clicking the set properties button for the report.

Tip: The Revenue by Product Brand (2005) sample report in the Sales and Marketing (cube) package and the Rolling and Moving Averages interactive sample report include value prompts. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Procedure

1. From the **Toolbox tab**, drag a **prompt control** to the report.

 The **Prompt Wizard** dialog box appears.

2. **Provide the information** necessary to create the prompt.

 Tip: Make the prompt optional by selecting the **Make the filter optional** check box. Otherwise, when you run the report for the first time, the prompt appears in a generated prompt page rather than in the report page. Alternatively, you can specify a default selection for the prompt.

3. In the work area, click the prompt.
4. In the **Properties** pane, set the **Auto-Submit** property to **Yes**.

If you do not set the **Auto-Submit** property to **Yes**, the report will not refresh when users select a different prompt value.

Tip: An alternative to setting the prompt to auto-submit is to add a prompt button from the **Toolbox** tab and set its **Type** property to **Finish**.

Results

The prompt control is added to the report page. You can modify its properties by clicking it and making changes in the **Properties** pane.

Modifying Prompts

For each prompt you create, you can modify its properties by specifying values in the **Properties** pane.

For example, you can

- change the prompt control interface
- require user input
- enable multiple selections
- show or hide prompt statuses
- specify default selections
- specify prompt values
- add prompt buttons
- create cascading prompts

Some properties you set for a prompt may be overridden under some conditions. For example, some properties set for the filter associated with a prompt may override the corresponding prompt property.

Change the Prompt Control Interface

By default, when you create a prompt, IBM Cognos Report Studio selects the prompt control interface. You can change the prompt control interface depending on the type of prompt you created. For example, for a value prompt, you can choose a drop-down list, a list box, or a radio button group.

Procedure

1. Click the prompt control.
2. In the **Properties** pane, set the **Select UI** property to the interface.

Specify That a Prompt Requires User Input

You can specify that a prompt requires user input before the report can run.

Procedure

1. Click the prompt control.
2. In the **Properties** pane, set the **Required** property to **Yes**.
3. Pause the pointer over the page explorer button and click a report page.
4. From the **Data** menu, click **Filters**.
5. Click the filter associated with the prompt.
6. In the Usage box, click Required.

Results

When you run the report, a star appears next to the prompt indicating that the user must select or type a value.

If you have a cascading prompt and the parent prompt control is required, the child prompt control is disabled. This ensures that users choose at least one value in the parent prompt before they can choose a value in the child prompt. Conversely, if the parent control is optional, then the child control is populated. This gives users the ability to choose values in the child prompt without having to choose a value in the parent prompt.

Allow Users to Select Multiple Values in a Prompt

You can allow users to select more than one value in a prompt. For example, you have a prompt for which users must select a product line. You can modify the prompt so that users can select more than one product line.

If you enable multiple selections, the Auto-Submit property is always set to no.

Procedure

1. Click the prompt control.
2. In the Properties pane, choose whether to allow users to specify more than one value or a range of values:
 - To allow users to specify more than one value, set the Multi-Select property to Yes.
 - To allow users to specify a range of values, set the Range property to Yes.
3. Pause the pointer over the page explorer button and click a report page.
4. From the Data menu, click Filters and click a report page.
 - If you have more than one query defined in the report, you must first click an object linked to a query.
5. Double-click the filter associated with the prompt.
6. Change the operator to one of the following:
 - If you are creating a multi-select prompt, change the operator to in.
 For example, [Product_line] in ?Product line? where [Product_Line] is the name of the data item allows users to select multiple product lines.
 - If you are creating a range prompt, change the operator to in_range.
 For example, [Margin] in_range ?Margin? where [Margin] is the name of the data item allows users to specify a margin range.

Show or Hide Prompt Status

Each prompt you create in a report provides dynamic validation when the report is run. Validity checks are performed to ensure that the data is correct and that required values are supplied. For example, a star appears next to each required prompt. An arrow appears next to a prompt if you must select or type a value. If you type an incorrect value, a dotted line appears. You can choose whether to show the star and arrow for each prompt.
Procedure
1. Click the prompt control.
2. In the Properties pane, set the Hide Adornments property to Yes to hide the prompt characters or No to show them.

Specify a Default Selection for a Prompt
You can specify a default selection for a prompt so that users do not have to select or type a value when they run the report.

Procedure
1. Click the prompt control.
2. To define a range of values, in the Properties pane, set the Range property to Yes.
3. To specify more than one default selection, in the Properties pane, set the Multi-Select property to Yes.
4. In the Properties pane, double-click the Default Selections property.
5. Click the add button and do one of the following:
 • If you chose to define a single value, type the value as the default selection.
 • If you chose to define a range of values, type the minimum and maximum values of the range in the Minimum value and Maximum value boxes, respectively.
6. Repeat step 4 to specify other default selections.

Customize Prompt Text
You can customize the instructional text that appears around prompts. For example, a value prompt with multiple selections includes a Select all link below the choices that you can customize to text other than Select all. You can also specify translated text in many languages for international report users.

Procedure
1. Click the prompt control.
2. To change the default prompt text, in the Properties pane, double-click any of the properties under Prompt Text.

 Note: When you select a property in the Properties pane, its description appears in the information pane below the Properties pane.
3. Click Specified text, and then click the ellipsis (...) button.
4. In the Localized Text dialog box, type the text that you want to appear.
5. To add customized text for other languages:
 • Click Add.
 • Select the countries and regions for which you want to specify localized text and click OK.
 • To specify text for a country and region, select the country and region and click Edit, and then type the localized text in the text box.

Specify Prompt Values
You can provide your own values in a prompt instead of the default values that come from the database.
You can specify your own prompt values to
- show something different from what is in the database
- improve performance by not accessing the database
- provide text for optional prompts, such as Select a value
- restrict the number of values available

For example, you have a prompt in which users choose a country or region. For the database value United States, you want USA to appear in the prompt.

Tip: The Rolling and Moving Averages interactive sample report includes a value prompt. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Procedure

1. Click the prompt control.
2. In the **Properties** pane, double-click the **Static Choices** property.
3. Click the add button.
4. In the **Use** box, type the prompt value to add.
5. In the **Display** box, type the value that will appear in the prompt.
6. Repeat steps 3 to 5 to add other prompt values.
7. To link a prompt value to a condition, do the following:
 - In the **Variable** box, choose the variable to use or create your own.
 For information about creating variables, see “Add a Variable from the Condition Explorer” on page 436.
 - In the **Value** box, click one of the possible values for the variable.
 - Click the static value to link to the variable and click the edit button.
 - In the **Display** box, type the value to appear in the prompt.
 - Repeat this procedure for each additional value.

Add a Prompt Button

Add prompt buttons so that users can submit selected items, cancel reports, or navigate between pages.

When you are building prompts and prompt pages, you may have to add prompt buttons to submit selections. Some prompt controls, such as the value prompt, can be set to submit selections automatically. Other prompt controls, such as the date prompt, require a prompt button.

Procedure

1. Pause the pointer over the page explorer button and click the page to which to add a prompt button.
2. From the **Toolbox** tab, drag **Prompt Button** to the work area.
3. Click the prompt button and, in the **Properties** pane, set the **Type** property to one of the following actions.
Goal | Action
--- | ---
Cancel the report | Cancel
Go to the previous prompt page | Back
Go to the next prompt page | Next
Run the report | Finish
Reprompt the user | Reprompt

Create a Cascading Prompt

Create a cascading prompt to use values from one prompt to filter values in another prompt. For example, a report contains the columns Product line and Product type. You create prompts for these columns, and you specify that the Product type prompt is a cascading prompt that uses Product line as the source. When users select a product line, they see only the product types related to the selected product line.

Tip: The Employee Training by Year sample report in the GO Data Warehouse (analysis) package includes cascading prompts. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Procedure

1. To make the cascading source a required prompt, select it and, in the Properties pane, set the Required property to Yes.
2. Click the prompt control to use as a cascading prompt.
3. In the Properties pane, double-click the Cascade Source property.
4. Click the parameter that represents the cascade source.
5. If the prompt allows users to select multiple values, add a prompt button to the cascade source to provide the cascading prompt with the appropriate values:
 - From the Toolbox tab, drag Prompt Button to the report.
 - Click the prompt button and, in the Properties pane, set the Type property to Reprompt.
 - To change the text in the prompt button, on the Toolbox tab, drag Text Item to the prompt button and type the text.

Control the Data That Appears in a Tree Prompt

You can control what data appears in a tree prompt and how the data is structured to get the results that you want. To do this, you add various functions to the filter expression.
In addition, the operator that you chose in the Prompt Wizard dialog box controls what appears next to each prompt value. If the operator is in or not in, check boxes appear next to each prompt value. If the operator is equals (=), no check boxes appear.

Procedure

1. Pause the pointer over the query explorer button and click the query that is associated with the prompt.
2. In the Data Items pane, double-click the data item on which you are prompting.
3. In the Expression Definition box, type one of the following functions.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show the hierarchical structure of all members in the hierarchy. If this function is not used, all members are shown in a flat list.</td>
<td>rootmembers (data_item)</td>
</tr>
<tr>
<td>Show the descendants of the data item in a hierarchical structure where x represents the level. For example, if you are prompting on the Year hierarchy and x=1, you will see 2004, 2005, and 2006 in the tree. If x=2, you will see 2004 Q1, 2004 Q2, and so on.</td>
<td>descendants (rootmembers (data_item, x))</td>
</tr>
<tr>
<td>Show the children of a member. For example, 2004 Q1, 2004 Q2, 2004 Q3, and 2004 Q4 appear for the member 2004.</td>
<td>children (member)</td>
</tr>
</tbody>
</table>

Using in_range Filters with Character Data

If you use an in_range filter with character data, and the From value is greater than the To value, the filter returns no results. For example, if the From value is "Zone" and the To value is "Aloe Relief", the report returns no data.

To allow results within a range regardless of whether the From value is greater than the To value, your IBM Cognos administrator can enable a prompting setting. For more information, see the IBM Cognos Business Intelligence Administration and Security Guide.

Showing prompt values in generated SQL or MDX

You can show prompt values when viewing the generated SQL or MDX of a query or report.

Procedure

1. Pause the pointer over the query explorer button and click the query for which you want to view the generated SQL or MDX.
2. In the Properties pane, set the Use SQL Parameters property to Literal.
Related tasks:

- “View the SQL for an Entire Report or a Query” on page 311
 View the SQL to see what is passed to the database when you run a report.

- “View the SQL or MDX for an Entire Report or a Query” on page 359
 View the SQL or MDX to see what is passed to the database when you run a report.
Chapter 13. Laying Out a Report

When creating a report, a good layout is essential to ensure that the information in the report is presented in a clear and effective manner.

Report Layout Recommendations

Consider the following recommendations when creating the layout of a report.

- Define the page structure.
 Determine what goes into the page header, body, and footer. The page header contains information that appears at the top of each page. The page body contains information that starts on the first instance of the page. If there is too much data to fit on a single page, it continues across all instances of the page. The page footer contains information that appears at the bottom of each page.

- Identify horizontal bands of information.
 Look for natural bands of information running across the page. Each of these bands typically translates into a block.

- Identify vertical bands of information.
 In each horizontal band of information, look for bands that run up and down the page. Each of these bands typically translates into table cells.

- Decide which data frames to use to lay out the data.
 Choose a list, crosstab, chart, repeater, or text frame.

- Set properties at the highest level item possible.
 By setting properties at the highest level, you set them once instead of setting them for each child object. For example, if you want all text items in a report to appear in a specific font, set the font for the page.

 Tip: When setting properties for an object, click the select ancestor button in the Properties pane title bar to see the different levels available.

- Use padding and margins to create white space.
 Do not use fixed object sizing unless it is absolutely necessary. When you specify that an object has a fixed size, your layout becomes less flexible.

The Page Structure View

When you add objects to a report, you usually work in the layout. An alternative view of the report is available.

From the View menu, click Page Structure to view the report in a different way.
Use the page structure view

- to view the entire contents of a report page in a tree structure
 Using a tree structure is useful for locating the objects in a page and troubleshooting problems with nested objects.
- to quickly move objects from one area of a page to another
 If you have a complex layout, it may be difficult to select, cut, and paste objects in the layout view. Objects are easier to locate in the page structure view.
- to modify object properties
 You can modify object properties in the layout or in the page structure view.

Tip: To switch back to the report layout, from the View menu, click Page Design.

Related concepts:
“Work in design or structure view” on page 27

IBM Cognos Report Studio has two views in which you can author reports: Page Design view and Page Structure view. You can choose a report authoring view on the View menu.

Copy Object Formatting

You can quickly copy the formatting of items in your report, such as fonts, colors, borders, and number formats, and apply that formatting to other items.

Procedure

1. Click an item that has the formatting to copy.
2. Do one of the following:
 - To copy all the formatting applied to the item, click the pick up style button, click the item to format, and then click the apply style button.
 - To copy only one of the formatting styles, click the down arrow to the right of the pick up style button and click the style to copy. Then click the item to format and click the apply style button.
3. If you want to make changes to a style that you copied, click the down arrow to the right of the pick up style button and click Edit Dropper Style.
4. In the **Style** dialog box, specify basic and advanced style characteristics.

Add a Header or Footer to a Report or List

Add a header or footer to make a report easier to read. Headers and footers are containers in which you can add objects like text, images, and report expressions such as the current date and page numbers. You can add headers and footers to pages and lists.

Tip: The Revenue by Product Brand (2005) sample report in the Sales and Marketing (cube) package includes a customized header and footer. For more information about The Sample Outdoors Company samples, see [Appendix C, “Sample Reports and Packages,” on page 567](#).

Add a page header or footer when you want information to appear on every page in the report, such as a title or page numbers. You can use combinations of text, data items, and report expressions in titles.

You can add the following headers and footers to lists to organize data into logical sections or to identify every change in value of a column.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>List page header</td>
<td>Adds a header that appears at the top of the list on every page in which list data appears.</td>
</tr>
<tr>
<td>Overall header</td>
<td>Adds a header that appears once at the top of the list.</td>
</tr>
<tr>
<td>Group or section header</td>
<td>Adds a header that appears for each group of a grouped column or each section.</td>
</tr>
<tr>
<td>Group or section footer</td>
<td>Adds a footer that appears for each group of a grouped column or each section.</td>
</tr>
<tr>
<td>Overall footer</td>
<td>Adds a footer that appears once at the bottom of the list.</td>
</tr>
<tr>
<td>List page footer</td>
<td>Adds a footer that appears at the bottom of the list on every page in which list data appears. Note that summary calculations in list page footers only summarize the data that is visible on that page of the list report.</td>
</tr>
</tbody>
</table>

You can also add section footers by adding a summary.

Before you begin

To see the headers and footers, ensure that the visual aids are turned on.

Procedure

1. If you want to add a page header or footer, from the **Structure** menu, click **Headers & Footers, Page Header & Footer**, select the appropriate check boxes, and click **OK**.
Tip: You can also click the headers & footers button on the toolbar.

2. If you want to add a list header or footer, from the Structure menu, click Headers & Footers, List Headers & Footers, select the appropriate check boxes, and click OK.

Tip: You can also click the headers & footers button on the toolbar and then click the list headers & footers button.

3. If you want to add objects to a header or footer, drag the objects from the Toolbox tab to the appropriate location.

To add objects to a list header or footer, you must first unlock the report. From the Structure menu, click Lock Page Objects.

Tip: To add data items to the page header or footer, you must associate a query to the page.

4. To split a header or footer into multiple cells that span the list, from the Structure menu, click Headers & Footers and click Split List Row Cell.

5. To merge multiple cells in a header or footer, from the Structure menu, click Headers & Footers and click Merge List Row Cells.

6. To add rows to a header or footer, from the Structure menu, click Headers & Footers and click Insert List Row Cells Above or Insert List Row Cells Below.

Add Borders to an Object

You can add borders to objects in a report such as a column, a header, or a footer or to the whole report.

Tip: You can also add borders using the IBM Cognos Report Studio toolbar.

Procedure

1. Click the object to which to add a border.

 Tip: To quickly select the parent of an object, click the object, and then click the select ancestor button in the title bar of the Properties pane.

2. In the Properties pane, double-click the Border property and select values in the Color, Style, and Width boxes.

 Note: Specifying a width using % as the unit of measure is not supported when producing reports in PDF.

3. Apply the selected values to the top, bottom, left side, right side, or all sides of the object by clicking the appropriate button in the Preview section.

 Tip: To clear the border applied, click the clear borders button.

Add a Text Item to a Report

You can add text to a report. You can insert text in other objects, such as a block or table cell, or directly in the report page.

You can also add multilingual text to a report.
You can now format the text by changing the font, color, size, and so on. Select the text and make the appropriate changes in the Properties pane.

Procedure

1. From the Toolbox tab, drag the Text Item object to the report. The Text dialog box appears.
2. Type the text and click OK.

 Tip: You can also paste text from another part of the report.

Specify the Font for a Report

You can specify the font for text in a report.

Procedure

1. Click the object.

 Tip: To specify the default font for the report, click the page.

2. Do one of the following:
 - From the toolbar, specify the font properties.
 - In the Properties pane, double-click the Font property and specify the font properties.

 To specify the color of the text, click Foreground Color. Alternatively, you can specify the color of the text by clicking the Foreground Color property for the object.

 Tip: Type a list of fonts in the Family box if you are not sure whether a specific font is installed on a user’s computer. For example, if you type Times New Roman, Arial, monospace, IBM Cognos Report Studio checks to see if Times New Roman is installed. If it is not, Report Studio checks for Arial. If Arial is not installed, the monospace font used by the computer is used.

Results

If you clicked (Default) for any of the font properties, the default value for the property is used. Default values are stored in a style sheet that is used across all IBM Cognos Business Intelligence tools. You can modify default values by modifying classes.

Insert an Image in a Report

You can insert an image in a report. You can insert images in other objects, such as blocks or table cells, directly in the report page or as the background image of another object.

Before you begin

The images that you insert must first be uploaded to the IBM Cognos Business Intelligence server or another Web server and must be .gif or .jpg format.
Procedure

1. From the Toolbox tab, drag the Image object to the report and then double-click it.
2. In the Image URL dialog box, type the URL of the image to insert or click Browse to go to the location containing the image.
 To browse images on a Web server, you must enable Web-based Distributed Authoring and Versioning (WebDAV) on your Web server. For more information about configuring Web servers, see the IBM Cognos Business Intelligence Installation and Configuration Guide.

Insert a Background Image in an Object

You can insert a background image for objects in a report. For example, use a background image to add a watermark to a page.

You can also create your own background visual effects, such as drop shadows and gradient fills. For more information, see “Add Background Effects.”

Before you begin

The images that you insert must first be uploaded to the IBM Cognos Business Intelligence server or another Web server and must be .gif or .jpg format.

Procedure

1. Select the object.
2. In the Properties pane, under Color & Background, double-click the Background Image property.
3. To use the background from the default style for the object (Cascading Style Sheet (CSS) class), click Default.
4. To explicitly not insert a background image, click None.
 This option overrides any default background images including background gradients on objects that appear in the 10.x report styles.
5. To insert a specific image, click Specified and in the Image URL box, type the URL of the image to insert or click Browse to go to the location containing the image.
 To browse images on a Web server, you must enable Web-based Distributed Authoring and Versioning (WebDAV) on your Web server. For more information about configuring Web servers, see the IBM Cognos Business Intelligence Installation and Configuration Guide.
6. In the Position box, choose how to align the image in the object.
7. In the Tiling box, click a tiling option.

Related tasks:
“Change a Chart Background in a Legacy Chart” on page 113
You can use a solid color, a pattern, or a gradient fill effect to customize the chart background.

Add Background Effects

You can add background effects to enhance the appearance of your report. You can enhance objects, such as data containers (lists, crosstabs, and charts), headers, footers, page bodies, and so on with borders, gradient fill effects, drop shadows, and background images. You can also apply background effects as a class style.
The background effect is rendered within the rectangle area that bounds the object. To use a generated background in a chart, the chart must have a fixed size.

If the background image is complex and large, the size of the report output may be affected proportionately.

Background effects are rendered only if the data container has a fixed height and width; if a percentage size is used, the effects are ignored.

Resizing or overflow behavior is ignored for generated images in HTML reports.

Add background effects to a chart

Background effects include borders, fills, drop shadows, and images.

Procedure
1. Click the chart object.
2. To choose a preset background effect, click the background effects presets button on the style toolbar, and then click a background.
3. In the Properties pane, under Color & Background, double-click the Background Effects property.
4. Select one or more of the following:
 - To apply a border, click Border and specify settings for border style, width, color, corner radius for rounded rectangles, and transparency. If the element also includes a fill with a transparency setting, select the Allow transparent bleed check box to apply the same transparency to the border.
 - To apply a fill effect, click Fill and specify the settings. The fill effect can either be a solid color, a gradient, or a pattern. You can define a gradient fill effect as a linear, radial line, or radial rectangle gradient.
 - To apply a drop shadow effect, click Drop Shadow and specify the shadow color, transparency value, color, and offset settings. The default horizontal and vertical offset is 5 pixels.
 - To specify one or more images as a background, click Images. You can specify the transparency value and the position for each defined image. You can also specify a custom position for each image.

 Tip: To remove the effect, clear its check box.

Add a background gradient to a page

A background gradient is a shading that goes from one color to another either horizontally or vertically across your page.

Procedure
1. Click anywhere in the report page.
2. In the Properties pane title bar, click the select ancestor button and click Page.
3. Under Color & Background, double-click the Gradient property.
4. Select the Gradient check box and then select the colors and direction for the gradient.
Background gradients and drop shadows do not appear in Microsoft Excel spreadsheet software output. They are also supported only for report outputs run in the Microsoft Internet Explorer Web browser.

Tip: To remove the effect, clear the **Gradient** check box.

Add a drop shadow to a container

A drop shadow is a border on the bottom and right of an object. You can specify the color and transparency of this shadow.

Procedure

1. Click the crosstab, list, repeater table, or table in the report.
2. In the **Properties** pane title bar, click the select ancestor button and click **Crosstab, List, Repeater Table, or Table**.

 Tip: You can also click the container selector (three orange dots) of the container to select it.
3. Under **Color & Background**, double-click the **Drop Shadow** property.
4. Select the **Drop shadow** check box and then select the color, offset, and transparency values.

Background gradients and drop shadows do not appear in Excel output. They are also supported only for report outputs run in the Internet Explorer Web browsers.

If you add a drop shadow, ensure that you also specify a background color for the object. Otherwise, if you keep the default transparent background, data values also have a drop shadow and are difficult to read.

Tip: To remove the effect, clear the **Drop shadow** check box.

Insert a Formatting Object in a Report

In addition to text and images, the **Toolbox** tab contains other objects that you can add to the report layout.

<table>
<thead>
<tr>
<th>Object</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Block** | Adds an empty block, which is a container in which you can insert other objects. This is useful for controlling where objects appear.
Tip: You can use blocks to add space between objects. However, empty blocks are not rendered. You must insert an object or specify the height and width.
Tip: The Revenue by GO Subsidiary 2005 sample report in the GO Data Warehouse (analysis) package includes an empty block. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567. |
<p>| Table | Adds a table which is a container in which you can insert other objects. This is useful for controlling where objects appear. |
| Field Set | Adds an empty block that has a caption. This is similar to the Block object, but with a caption. |</p>
<table>
<thead>
<tr>
<th>Object</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersection (Tuple)</td>
<td>Adds an intersection (tuple). For more information, see “Create an Intersection (Tuple)” on page 369.</td>
</tr>
<tr>
<td>Query Calculation</td>
<td>Adds a calculated column. For more information, see “Using Relational Calculations” on page 313 or “Using Dimensional Calculations” on page 365.</td>
</tr>
<tr>
<td>Crosstab Space</td>
<td>Inserts an empty cell on a crosstab edge. Allows for the insertion of non-data cells on an edge. Blank cells appear for the edge when the report is run.</td>
</tr>
<tr>
<td>Insert this object when a crosstab edge does not produce useful data and you want blanks to appear in the cells instead.</td>
<td></td>
</tr>
<tr>
<td>Crosstab Space (with fact cells)</td>
<td>Inserts an empty cell on a crosstab edge. Allows for the insertion of non-data cells on an edge. The contents of the fact cells for the edge are rendered when a measure is added or the default measure is specified.</td>
</tr>
<tr>
<td>• If the crosstab space is nested, the scope of the fact cells is the scope of the item that is at the level before the space.</td>
<td></td>
</tr>
<tr>
<td>• If the crosstab space is not nested and there are no items nested below it, the scope of the fact cells is the default measure.</td>
<td></td>
</tr>
<tr>
<td>Singleton</td>
<td>Inserts a single data item.</td>
</tr>
<tr>
<td>Conditional Blocks</td>
<td>Adds an empty block that you can use for conditional formatting.</td>
</tr>
<tr>
<td>HTML Item</td>
<td>Adds a container in which you can insert HTML code. HTML items can be anything that your browser will execute, including links, images, multimedia, tooltips, or JavaScript.</td>
</tr>
<tr>
<td>HTML items appear only when you run the report in HTML format.</td>
<td></td>
</tr>
<tr>
<td>Note: You cannot include <code><form></code> tags in HTML items.</td>
<td></td>
</tr>
<tr>
<td>Tip: The Table of Contents sample report in the GO Sales (analysis) package includes an HTML item. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.</td>
<td></td>
</tr>
<tr>
<td>Note: When you upgrade to the next version of IBM Cognos Business Intelligence, the report upgrade processes do not account for the use of undocumented and unsupported mechanisms or features, such as JavaScript, that refers to IBM Cognos HTML objects.</td>
<td></td>
</tr>
<tr>
<td>Object</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Rich Text Item</td>
<td>Inserts an object that is used to render HTML in the layout. This object is similar to the HTML Item, except that rich text items also render in PDF output. Using rich text items is useful when you want to add annotations defined in a data source to a report. Note: Rich text items support only a restricted set of well-formed XHTML.</td>
</tr>
<tr>
<td>Hyperlink</td>
<td>Adds a hyperlink so that users can jump to another place, such as a Web site.</td>
</tr>
<tr>
<td>Hyperlink Button</td>
<td>Adds a hyperlink in the form of a button.</td>
</tr>
<tr>
<td>As of Time Expression</td>
<td>Adds an As of Time expression so that you can show data for a specific time period.</td>
</tr>
<tr>
<td>Page Number</td>
<td>Inserts page numbers that you can customize.</td>
</tr>
<tr>
<td>Row Number</td>
<td>Numbers each row of data returned when the report is run. Note: You can add row numbers only to lists and repeaters.</td>
</tr>
<tr>
<td>Layout Component Reference</td>
<td>Adds a reference to another object. Useful when you want to reuse an object.</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>Creates a table of contents that is rendered in the output of a report.</td>
</tr>
<tr>
<td>Table of Contents Entry</td>
<td>Adds a table of contents marker.</td>
</tr>
<tr>
<td>Bookmark</td>
<td>Inserts a bookmark so that users can move from one part of a report to another.</td>
</tr>
</tbody>
</table>

For information about each prompt control and prompt buttons, see Chapter 12, “Adding Prompts to Filter Data,” on page 379. The Toolbox tab contains other objects when you work in other areas such as Query Explorer and Condition Explorer.

Before you begin

Before you can add a hyperlink, HTML item, or hyperlink button, you must have the HTML Items in Report capability. For more information, see the IBM Cognos Business Intelligence Administration and Security Guide.

Procedure

To add an object, drag or double-click it from the Toolbox tab.
Elements Supported in Rich Text Items

Rich text items support all XHTML character entities, such as (non-breaking space), and the following elements: div, span, ul, ol, and li.

Each element only supports the style attribute, which must contain a valid CSS style. In addition, ul and ol elements support list-style attributes. Specifically, the ol element supports decimal, and the ul element supports circle, disc, and square, as well as list-style-image.

For example, the following code produces an unordered list entitled List: with three items. Each list item is in a different color, and the list-style attribute used is circle.

```html
<div style="font-size:14pt; text-decoration:underline">List:</div>
<ul style="list-style-type:circle">
    <li style="color:green">Item <span style="font-weight:bold">A</span></li>
    <li style="color:red">Item B</li>
    <li style="color:blue">Item C</li>
</ul>
```

Example - Add a Multimedia File to a Report

You are a report author at The Sample Outdoors Company, which sells sporting equipment. You want to insert a Microsoft Windows Media Audio/Video file named GO.wmv in a template that serves as a cover page for all reports.

You must have Windows Media Player installed on your computer.

Procedure

1. Open IBM Cognos Report Studio with the GO Data Warehouse (query) package.
2. In the Welcome dialog box, click Create a new report or template and in the New dialog box, click Blank.
3. From the Toolbox tab, drag the HTML Item object to the report.
4. Select the HTML Item.
5. In the Properties pane, double-click the HTML property.
6. In the HTML dialog box, type the following:
   ```html
   <OBJECT classid="CLSID:6BF52A52-394A-11D3-B153-00C04F79FAA6">
       <PARAM NAME="URL" VALUE="/c10/webcontent/samples/images/GO.wmv"/>
   </OBJECT>
   ```

Results

When you run the report in HTML format, the multimedia file plays in Windows Media Player.

Align an Object in a Report

You can specify a horizontal and vertical alignment for an object in a report to determine where they appear.

Tables can also be used to determine where objects appear in a report.

Note: The Justify horizontal alignment works with HTML output but does not apply to PDF output.
Using a table to control where objects appear

You can use tables in your report to control where objects appear. Tables can be inserted anywhere in a report, such as a header, a footer, or the page body. After you create a table, insert the objects you want in the cells.

You can also apply a predefined table style to tables. Other table properties are described in Appendix G, “Report Studio Object and Property Reference,” on page 821.

The alignment buttons can also be used to determine where objects appear in a report.

Tip: The Singletons on Page Body sample report in the GO Sales (analysis) package includes a table to control the report layout. For more information about the Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Procedure

1. From the Toolbox tab, drag Table to the report. The Insert Table dialog box appears.
2. In the Number of columns and Number of rows boxes, type the number of columns and rows for the table.
3. If you want to have the table span the width of the report page, select the Maximize width check box.
4. If you want to add borders to the table, select the Show borders check box.
5. If you want to merge cells in the table, select the cells and click the merge cells button.
6. Select the table object.
7. In the Properties pane, under Positioning, double-click the Table Properties property.
8. To display both the inside and outside borders, do the following:
 - Clear the Collapse borders check box.
 - Type a number in the Cell spacing text box to define how much space to add between the table cells.
 - Select the Show empty cell borders check box to display the borders even for empty cells.
9. To fix the size of the columns in the table, check the Fixed size check box. When this check box is cleared, the table columns expand to fit the text.

Apply a Table Style

Apply a table style to quickly format tables. You can also apply a table style to lists, crosstabs, and repeater tables.
About this task

By default, when a new object is inserted in a list or crosstab, the object inherits the style from an object of the same type in the data container. For example, if you insert a measure in a list, the measure inherits the style of a measure that is already in the list, if there is one. If you do not want objects to inherit styles, clear the Table Style inheritance option in the Tools menu (Tools, Options, Report tab).

The following rules explain how style inheritance is applied to lists and crosstabs.

- Styles are inherited in the following order: custom, client default, and server default.

 A custom style is a style that you manually apply. A client default style is one of the styles available in the Apply Table Style dialog box. The server default style is the style applied when Default is selected in the Apply Table Style window.

- When a new column or row is inserted, it inherits the style from the sibling of the same type that is on its right or below.

- If there is no sibling of the same type, then the nearest sibling that is on its left or above is applied.

- If there is no sibling of the same type in the container, then the client or server default table style is applied.

- If a custom style is applied to a column or row and the object is then moved to another location, the object retains the custom style.

 Custom styles applied to part of an object, such as the header, body, or footer, may be lost. For example, if a container has a footer, the footer is recreated when a column is moved. The recreated footer is rendered using the style that was applied to the footer before you customized its style.

- Deleting a column or row has no impact on the styles of the other objects in the container.

- Styles are preserved if a column is grouped or ungrouped. The same applies when creating or removing sections.

- When drilling up or down, the style of the parent item is applied.

Procedure

1. Click the table, list, crosstab, or repeater table.
2. From the Table menu, click Apply Table Style.
3. In the Table styles box, click a table style.

 Tip: Some styles are unique to tables, lists, or crosstabs.

4. If you are applying a table style to a table or list, in the Apply special styles to section, select or clear the various column and row check boxes based on how you want to treat the first and last columns and rows.

 Some check boxes may not be available for particular table styles, or to particular columns or rows.

5. If you are applying a table style to a list or crosstab and you want the style to be applied to all lists or crosstabs in the report, select the Set this style as the default for this object type check box.

 For a list, you may need to clear the First column and Last column check boxes in the Apply special styles to section before you can select this check box. In addition, some table styles cannot be set as the default.
Apply Padding to an Object

Apply padding to an object to add white space between the object and its margin or, if there is a border, between the object and its border.

Tip: You can quickly apply left or right padding by either pressing Tab and Shift+Tab or by clicking the increase indent and decrease indent buttons in the toolbar. When using the toolbar buttons, you can indent an object by up to nine times the indentation length. You can specify the indentation length to use by clicking the arrow beside either button and clicking Set Default Indent Length.

Tip: The GO Balance Sheet as at Dec 31 2006 sample report in the GO Data Warehouse (analysis) package includes padding. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Procedure
1. Select the object to which to apply padding.
2. In the Properties pane, double-click the Padding property.
3. Specify top, bottom, left, and right padding by typing values in the corresponding boxes and choosing the unit of measure.

Note: Specifying padding using % as the unit of measure is not supported when producing reports in PDF.

Set Margins for an Object

Set the margins for objects in a report to add white space around them.

For Date, Time, Row Number, and Page Number objects, you can only set the left and right margins. If you want to set the top or bottom margins for these objects, place them in a table or a block. Then set the margin or padding properties on the table or block object.

Procedure
1. Select the object.
2. In the Properties pane, double-click the Margin property.
3. Specify the top, bottom, left, and right margins by typing values in the corresponding boxes and choosing the unit of measure.

Note: Specifying margins using % as the unit of measure is not supported when producing reports in PDF.

Add Multiple Items to a Single Column

You can add multiple items to a single column to condense a report. For example, you have a list report that contains many columns. You can reduce the number of columns in the list by putting related information in a single column.

Procedure
1. From the Structure menu, click Lock Page Objects to unlock the report.
2. From the content pane, drag the items to the column.
For example, you can add data items from the Source tab or text items from the Toolbox tab.

Example - Create a Report with Multiple Items in One Column

You are a report author at The Sample Outdoors Company, which sells sporting equipment. You are requested to create a list report showing the name, position, email address, phone number, extension, and fax number for each sales representative in each city organized by country or region. To reduce the number of columns in the list, you show email addresses, phone numbers, extensions, and fax numbers in a single column.

Procedure

1. Open IBM Cognos Report Studio with the GO Data Warehouse (query) package.
2. In the Welcome dialog box, click Create a new report or template.
3. In the New dialog box, click List and click OK.
4. From the Source tab, expand HR (query), Employee summary (query), and Employee by region. Add the following data items to the list by double-clicking them:
 - Country or Region
 - City
 - Employee name
 - Position name
 - Email
 - Work phone
 - Extension
 - Fax
5. Click the Country or Region column and, from the Structure menu, click Section.
6. From the Structure menu, ensure that the report is unlocked
7. Click Country or Region and, in the Properties pane, double-click the Font property.
8. Change the font to Arial Black, 11 pt, and Bold, and then click OK.
9. From the Toolbox tab, drag Table to the right of the Work phone text item in the first row of Work phone column and create a table that has one column and three rows.
10. Drag the following data items to the table:
 - Email to the first row
 - Work phone to the second row
 - Fax to the third row
11. Drag Extension to the right of Work phone in the table.
12. From the Toolbox tab, drag Text Item to the left of each item in the table and type the following for each item, putting a blank space before and after the text:
 - Email:
- **Work phone:**
- **ext:**
- **Fax:**

13. Ctrl+click the **Extension**, **Email**, and **Fax** column titles and click the delete button.

14. Click the **Work phone** column title.

15. In the **Properties** pane, click the **Source Type** property and click **Text**.

16. Double-click the **Text** property.

17. Type the following and click **OK**:

 Contact Information

18. Select the **Work phone** data item in the first row of the list above the table and click the delete button.

19. Double-click the text item in the page header, type the following, and click **OK**:

 Sales Representatives Contact List

20. From the **Structure** menu, click **Lock Page Objects**.

 The report is locked.

21. Run the report.

Results

Contact information for each sales representative appears in a single column.
Reuse a Layout Object

You can save time by reusing layout objects that you add to a report instead of re-creating them. For example, you have a multiple-page report and you want to show the company logo in the page header of each page. Insert the logo once and reuse it on all other pages.

Procedure

1. Click the object to reuse.

 Tip: To quickly select the parent of an object, click the object, and then click the select ancestor button in the title bar of the Properties pane.

2. In the Properties pane, set the Name property to a value beginning with a letter to uniquely identify the object and press the Enter key.
 IBM Cognos Report Studio may have already specified a name for the object.

3. To reuse the object in another report, open that report.
4. From the Toolbox tab, drag the Layout Component Reference object to the location in which it will be reused.

5. In the Component Location box, do one of the following:
 - To reference an object in the current report, click This report.
 - To reference an object in another report, click Another report, click the ellipsis (...) button, and open the report.

6. In the Available components to reference box, click the object and click OK.

7. If the referenced object is in another report, click the Layout Component Reference object and in the Properties pane, set the Embed property to specify how to store the referenced object in the report:
 - Click Copy to store a copy of the object.
 The copy is not automatically updated if the source object is modified.
 - Click Reference to store a reference, or pointer, of the object.
 The reference of the object is automatically updated if the source object is modified. For example, if you open or run the report, you see the modified object.

Results

A copy or reference of the object appears where you placed the Layout Component Reference object. If a source object is changed, you can update reused objects.

Tip: You can also create a new report or template and add all the objects to share. All your shared objects then reside in a single location, like a library.

Change a Reused Object

If you reuse an object that contains other objects, you can change the child objects to something different. For example, you have a block object containing a text item in the page header and you decide to reuse the block in the page footer. However, you want the text item in the page footer block to show different text from that in the page header.

Procedure

1. In the parent object to reuse, click the child object to change.
2. In the Properties pane, set the Name property to a value beginning with a letter to uniquely identify the object.
 IBM Cognos Report Studio may have already specified a name for the object.
3. Select the copy of the parent object you created with the Layout Component Reference object.
4. In the Properties pane, double-click the Overrides property.
5. In the Overrides dialog box, select the child object to change and click OK.
 The child object in the copy of the parent object is replaced by the following text:
 Drop item to override component child.
6. Drag an object to replace the child object.
 You can replace the child object with any other object, not just an object of the same type. For example, if the child object is a text item, you can replace it with an image.
Update Reused Objects

If a report contains objects referenced in another report, you can quickly update the referenced objects if the source objects have changed. Shared objects are stored in the layout component cache.

Procedure

1. Open the report to update.
2. From the Tools menu, click Layout Component Cache.
 The Layout Component Cache dialog box appears, showing all reports that contain referenced objects and the source reports where the objects exist.
3. To view which components are reused, click a source report.
 The components that are reused appear in the Components used pane.
4. Click Reload Components to refresh all referenced objects.
 Although referenced objects are automatically refreshed when you open or run a report, clicking this button updates components that were changed while the report is open.
5. Click Update All Component Copies to refresh all copied objects.
6. Click Close.

Specify text and container direction

You can specify text and container direction by choosing any of these options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| Direction | Sets the reading order of an object, such as right-to-left. If Inherit is selected, the direction is inherited from the parent object. The default is left-to-right.
 For text objects, an additional choice named Contextual exists. This choice sets the text direction based on the first letter in the text. If the letter belongs to a right-to-left script, the text direction is right-to-left. Otherwise, the text direction is left-to-right. Numbers and special characters do not influence the text direction. For example, if the text starts with a number followed by an Arabic letter, the direction is right-to-left. If the text starts with a number followed by a Latin letter, the direction is left-to-right.
 Tip: You can also set the direction of text objects by clicking the Text direction icon in the toolbar. This icon is visible only when the IBM Cognos Connection user preference Enable bidirectional support is selected. |
<p>| Writing mode | Sets the direction and flow of content in an object. |
| Bidirectional| Sets the level of embedding in an object. |
| Justification| Sets the type of alignment used to justify text in an object. |</p>
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kashida space</td>
<td>Sets the ratio of kashida expansion to white space expansion when justifying lines of text in the object. This property is used in languages that use the Arabic writing script.</td>
</tr>
</tbody>
</table>

About this task

Specifying text direction and container direction depends on the object selected in the report. The following list describes the types of objects in Report Studio that you can specify text or container direction.

- **Compound objects**
 Compound objects are container objects that contain text. Examples include charts, maps, active reports, and prompts. You cannot set text direction for specific text objects in a compound object.

 To specify container direction for compound objects, click the **Direction & Justification** property for the object. To specify text direction for text in compound objects, click the **Contained Text Direction** property for the object.

- **Container objects**
 You can specify only container direction for container objects, such as a report page. Click the **Direction & Justification** property for the object to specify container direction.

 By default, the text direction of text in a container object is inherited from the container.

- **Text objects**
 For all text objects, the **Direction & Justification** property specifies the text direction.

In charts, container direction impacts all aspects of a chart. The following list describes the parts of a chart that are affected by container direction.

- The chart itself.
- The location of the Y-axis and the horizontal run direction of the X-axis.
- The labeling, including the orientation of angled labels on axes.
- The location of the legend as well as the legend content.

Container direction has no impact on rotary axes. For example, the slices in a pie always progress in the same direction around the pie. However, container direction does affect labelling as well as position and direction of the legend.

Note: You cannot specify base text direction and container direction for legacy charts.

Procedure

1. Click an object.

 Tip: To specify the base text direction of a text object that is inside another object, such as a list column, you must first unlock the report.

2. In the **Properties** pane, click one of the following properties:
 - **Direction & Justification**
• Contained Text Direction
 This property applies only to compound objects.

3. Specify the text direction and container direction options that you want.

Related concepts:
“Support for bidirectional languages” on page 51
You can author reports that support bidirectional languages. You can specify base text direction, digit shaping, and container direction.

Specify Line Spacing and Breaking

You can specify text properties by choosing any of these options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Height</td>
<td>Sets the distance between lines of text in an object.</td>
</tr>
<tr>
<td>Letter Spacing</td>
<td>Sets the amount of additional space between letters in an object.</td>
</tr>
<tr>
<td>Text Indent</td>
<td>Sets the indentation of the first line of text in an object.</td>
</tr>
<tr>
<td></td>
<td>Note: This property works with HTML output but does not apply to PDF output.</td>
</tr>
<tr>
<td>Word Break</td>
<td>Sets line-breaking behavior within words.</td>
</tr>
<tr>
<td>Break words when necessary</td>
<td>Sets whether to break words when the content exceeds the boundaries of an object.</td>
</tr>
</tbody>
</table>

Procedure
1. Click an object.
2. In the Properties pane, double-click the Spacing & Breaking property.
3. Specify the text properties.

Specify the Height and Width of an Object

You can specify the height and width of objects using various units of measurement. In addition, if the object is a field set, text box prompt, prompt button, hyperlink button, block, or a conditional block, you can specify how to handle content overflow. Specify the height and width by choosing any of these options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>Sets the height of the object.</td>
</tr>
<tr>
<td>Width</td>
<td>Sets the width of the object.</td>
</tr>
<tr>
<td>Content is not clipped</td>
<td>If the contents of the block exceed the height or width of the block, the block automatically resizes to fit the contents.</td>
</tr>
<tr>
<td>Content is clipped</td>
<td>If the contents of the block exceed the height or width of the block, the content is clipped. Note: The clipped content still exists. It is just not visible in the block.</td>
</tr>
</tbody>
</table>
Option | Description
--- | ---
Use scrollbars only when necessary | If the contents of the block exceed the height or width of the block, scrollbars are added to the block.
Always use scrollbars | Scrollbars are added to the block.

Do not use percentages to resize charts and maps that contain interactive elements that are activated when you pause the pointer over them, such as tooltips or drill-through links, because the browser is unable to realign the hard-coded hot spots after an image is resized.

When you use a percentage to specify the size of an object, the percentage is relative to the object’s parent. In some cases, setting the size of an object using percentages will not give you the results that you want unless you also specify the size of the parent container.

Procedure
1. Click an object.
2. In the Properties pane, double-click the Size & Overflow property and specify the height and width.

Control How Other Objects Flow Around an Object

You can control how objects flow around other objects by choosing any of the following options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float</td>
<td>Sets how other objects flow around the object.</td>
</tr>
<tr>
<td>Allow floating objects on both sides</td>
<td>Allows other objects to flow on both sides. The Float property must be set.</td>
</tr>
<tr>
<td>Move below any floating object on the left side</td>
<td>If there are other objects to the left of the object, the object moves below those objects. The Float property must be set.</td>
</tr>
<tr>
<td>Move below any floating object on the right side</td>
<td>If there are other objects to the right of the object, the object moves under those objects. The Float property must be set.</td>
</tr>
<tr>
<td>Move below any floating object</td>
<td>Moves the object under any other object in which the Float property was set.</td>
</tr>
</tbody>
</table>

Procedure
1. Click an object.
2. In the Properties pane, double-click the Floating property.
3. Specify how other objects flow around the object by specifying the floating options.

Specify Report Properties

You can change the default report property settings.
Procedure

1. From the File menu, click Report Properties.

2. To specify the classes that IBM Cognos Report Studio uses to format objects, click Report styles and choose one of the available options.
 For more information, see “Create and Modify Report and Object Styles.”

3. For reports with multiple data containers, to render the default number of rows of each data container on each HTML page, you must set the Page break by data container for interactive HTML option to Yes. The default value is No.
 For more information, see “Controlling the Rows Per Page for Multiple Containers in HTML and PDF” on page 45.

4. To automatically create extended data items every time a data item is inserted, select the Always create extended data items check box.
 IBM Cognos Report Studio creates extended data items by default. For more information about extended data items, see “Extended Data Items” on page 327.

5. To create a single, scrollable HTML page when you run and save this report as HTML from IBM Cognos Connection, clear the Paginate saved HTML output check box.
 The default is to paginate HTML reports with the same page breaks as PDF reports. The single, scrollable HTML page will be available from IBM Cognos Connection when you click the view report output versions action.

6. If you are working with reports created in IBM Cognos ReportNet and you want to create CSV report output, click Use 1.x CSV export.
 This option ensures that all the query columns are exported. In IBM Cognos ReportNet, if a data item was referenced using the Properties property of a list, it was included in the CSV output. In IBM Cognos Business Intelligence, the default is to export only the columns in the list.

Create and Modify Report and Object Styles

Create your own classes or modify existing classes in a report to format objects across a report according to your particular needs. In IBM Cognos Report Studio, objects in reports are assigned a Cascading Style Sheet (CSS) class that provides a default style for the object. For example, when you create a new report, the report title has the class property Report title text assigned to it. In addition, objects inherit the classes set on their parent objects.

You can use classes to highlight data using conditional styles.

Classes you create or modify can be applied only to the current report. To create or modify classes for all reports, you must modify a layout style sheet. In addition, some classes can be used to format Query Studio reports.

If you use the Microsoft Internet Explorer Web browser, version 6, some color gradients used in the 10.x default report styles are not supported.

Modify the report style

You can define whether your report uses the default styles for this version or the styles from a previous version.
Procedure
1. From the File menu, click Report Properties.

2. Click Report styles and select one of the following options:
 - To work with classes in the default style sheet, click 10.x styles.
 - To work with classes that were used in IBM Cognos 8, click 8.x styles.
 Use 8.x report styles when you are working with reports created in IBM Cognos 8 and you want to preserve their original appearance.
 - To work with classes that were used in IBM Cognos ReportNet, click 1.x styles.
 Use 1.x report styles when you are working with reports created in ReportNet and you want to preserve their original appearance.
 - To work with classes that have minimal styling defined, click Simplified styles.
 This option is useful when creating financial reports.

Modify object styles
You can change global classes to modify the style of all objects in a report or you can modify local classes and apply them to specific objects.

Procedure
1. Pause the pointer over the page explorer button and click Classes.

2. To create a new class, from the Toolbox tab, drag Class to the Local Classes pane.

3. To modify an existing class, in the Local Classes or Global Class Extensions pane, click the class.
 Modify a global class to apply a change to all objects that use that class. For example, if you modified the style List column title cell, all column titles in lists will reflect your modifications.

 Tip: Ctrl+click classes to make the same change to more than one class.

4. In the Properties pane, modify the properties to specify your desired formatting.

 Tip: Look at the Preview pane to preview your changes for different report objects, such as blocks, table cells, and text items.
 If you modify a global class, a pencil symbol appears beside the global class icon to indicate that the class was modified.

5. Apply the class to objects:
 - Pause the pointer over the page explorer button and click a report page.
 - Click an object to which to apply a class.
 - In the Properties pane, double-click the Class property.
 - Click the classes to apply from the Local classes and Global classes panes and click the right arrow button.
 - If you applied more than one class, in the Selected classes pane, specify the order in which the classes are applied using the up and down arrow buttons.
 Classes in the Selected classes pane are applied from top to bottom. The style properties from all classes are merged together when they are applied.
However, if the classes have style properties in common, the properties from the last class applied override those from previous classes.

(Don't Print) Class

The (Don't Print) class allows HTML items to display in the Web browser but not to print.

The (Don't Print) class behaves as follows in the various report output formats:

- **HTML**
 The Web browser defines the behavior. The HTML standard is that the item appears on the screen in the Web browser but is excluded by the print operation of the Web browser.

- **PDF**
 The item is excluded from the output.

- **Microsoft Excel 2002 spreadsheet software**
 The class is specified in the HTML that IBM Cognos uses to render Microsoft Excel 2002 output. However, Microsoft Excel 2002 does not appear to honor it and displays the item as missing some or all other style definitions.

- **Microsoft Excel 2007 spreadsheet software**
 The item is excluded from the output.

- **CSV**
 The item is included in the output.

- **XML**
 The item is included in the output.

An alternative way to consistently exclude a report object from HTML, PDF and Microsoft Excel output is to set the *Box Type* property for the object to *None*. CSV and XML report outputs will still contain the object.

Modify Classes to Format Query Studio Reports

Some global classes are specific to IBM Cognos Query Studio or can be applied to Query Studio reports. You can modify the following classes to format Query Studio reports.

To format a Query Studio report using the modified classes, the template must be applied to the report. For more information about applying a template to a Query Studio report, see the Query Studio User Guide.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>List column body cell</td>
<td>Style used to format list data.</td>
</tr>
<tr>
<td>List column title cell</td>
<td>Style used to format list column titles.</td>
</tr>
</tbody>
</table>

To modify classes, you must
1. Create a Query Studio template.
2. Modify the global classes.
3. Save the template.
Modifying the Default Layout Style Sheet

In addition to creating or modifying classes in a report, you can create and modify classes that will apply to all reports. Default styles are stored in a style sheet named GlobalReportStyles.css.

For information about modifying the style sheet, see the IBM Cognos Business Intelligence Administration and Security Guide.

Add Color to an Object

You can add background and foreground color to objects in the report. The foreground color applies to the text within objects.

Tip: The TOC Report sample report in the GO Data Warehouse (query) package includes objects with color. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Procedure

1. Select the object.

 Tip: To quickly select the parent of an object, click the object, and then click the select ancestor button in the title bar of the Properties pane.

2. Do one of the following:

 • Click the background color button or the foreground color button.
 • In the Properties pane, double-click the Background Color or Foreground Color property.

3. To apply an existing color, click the Named Colors tab or Web Safe Colors tab and choose one of the available colors.
 Use a named color to select a color from a small set of colors. Use Web safe colors to select from 216 available colors.

4. To apply a custom color, click the Custom Color tab and type values in the Red, Green, and Blue boxes.
 The values must be hexadecimal.

Related tasks:

"Add Background Effects to a Chart Object in a Legacy Chart” on page 114
You can change the look of certain charts and chart objects by applying visual effects such as drop shadows, borders, fills, texture effects, and bevel effects.
Chapter 14. Working With Your External Data

You can supplement your enterprise data with your own external or personal data file.

This allows you to create a report using an external file that contains data which is not part of your IBM Cognos Business Intelligence enterprise data. For example, you are an analyst and you receive a spreadsheet that contains what-if data about opening new branches of your retail store. You are asked to analyze the impact of these possible new branches on existing sales volumes. You link this scenario data with your enterprise data and create a professional report using IBM Cognos BI.

You import your own data file and start reporting on it right away. After importing, your external data file is protected by the same IBM Cognos security as your enterprise data, thus allowing you to report on your data in a secure and private environment.

You can use the following types of files:

- Microsoft Excel (.xls) spreadsheet software files
- IBM Cognos BI supports external data sources from Microsoft Excel up to version Microsoft Excel 2007. For an up-to-date list of environments supported by IBM Cognos products, such as operating systems, patches, browsers, Web servers, directory servers, database servers, and application servers, visit http://www.ibm.com/.
- tab-delimited text (.txt) files
- comma-separated (.csv) files
- XML (*.xml) files

Your XML files must adhere to the IBM Cognos schema specified at c10_location/bin/xmldata.xsd. For more information, contact your IBM Cognos administrator.

This schema consists of a dataset element, which contains a metadata element and a data element. The metadata element contains the data item information in item elements. The data element contains all the row and value elements.

For example, the following simple XML code produces a table with two columns (Product Number and Color) and two rows of data.

```xml
<?xml version="1.0" ?> <dataset xmlns="http://developer.cognos.com/schemas/xmldata/1/" xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"> <metadata> <item name="Product Number" type="xs:string" length="6" scale="0" precision="2" /> <item name="Color" type="xs:string" length="18" scale="0" precision="8" /> </metadata> <data> <row> <value>1</value> <value>Red</value> </row> <row> <value>2</value> <value>Blue</value> </row> </data> </dataset>
```

To work with your external data, you start with an existing IBM Cognos package. You import data from your external file into the package and create links between data items in your file and data items in your enterprise data source. You then publish a new package that allows you to create reports that use your data and your enterprise data, or reports that use only your data. You can link your external data with both dimensional and relational data sources.
Before you can import your own external data file, your IBM Cognos administrator must grant you permission for the Allow External Data capability found within the Report Studio capability, and you must have permission to use IBM Cognos Report Studio or IBM Cognos Workspace Advanced. For more information, see the IBM Cognos Business Intelligence Administration and Security Guide.

External Data Packages

When you import external data into a package, you do not overwrite the original package. You create a new package that includes the original package, the new external data, and any links or relationships that you defined between the two. By default, the new package is saved in the My Folders area of IBM Cognos Connection appends External Data to the original package name.

You can change where your package is published.

IBM Cognos Samples

Sample external data sources in Microsoft Excel (.xls) format are provided with IBM Cognos BI. You can import these sample files into the Sample Outdoors Company sample reports found within the Cognos Workspace Advanced folder of the GO Data Warehouse (analysis) or GO Data Warehouse (query) package.

You can find the following external data source files on the server where IBM Cognos BI is installed in the c10_location/webcontent/samples/datasources/other directory.

- accounts.xls
- employee.xls
- organization.xls
- product_brand.xls
- product_color.xls
- product_line.xls
- product_name.xls
- product_size.xls
- product_type.xls
- products.xls
- promo_sets.xls
- promotions.xls
- region.xls
- retailers_site.xls
- time.xls

To obtain these files, contact your IBM Cognos administrator.

Import Data

You select the file to import from your own computer, or from your local area network.

You select which columns to import.
You then specify a namespace to use. The namespace provides a unique name to associate with the data items that you import. The namespace appears in the data tree in the Source tab and is used to organize the data items. By default, the namespace is the imported file name without the extension.

If you change the default name for the namespace, you are prompted to select the external data file each time you run the report. To avoid this, select the Allow server to automatically load file check box.

Procedure
1. From the Tools menu, click Manage External Data.

 Tip: You can also click the manage external data button at the top of the Source tab.

2. On the Select Data page of the wizard, under External data file, click Browse and select your external data file to import.

 If you want the server to load the file without prompting users when they run the report, select the Allow the server to automatically load the file check box.

 If selected, you must use the Universal Naming Convention (UNC) path, such as \servername\filename and you must ensure that the IBM Cognos server has access to the file.

3. Under Data items, select the check box for the data items that you want to import.

4. Type a name for the namespace and click Next.

 The namespace appears in the Source tree, and identifies the external data within the package. By default, the name is the name of your imported external data file.

5. If you do not want to link your data or change the data attributes, click Finish now.

 Related tasks:
 “MSR-PD-0012 error when importing external data” on page 548
 When you try to import an external data file, you receive an MSR-PD-0012 error.
 “MSR-PD-0013 error when importing external data” on page 548
 When you try to import an external data file, you receive an MSR-PD-0013 error.

Map Data

If you want to create reports that contain data from both your external file and from your enterprise data, you must link at least one query subject from your package or from an existing report to a data item in your external data. This mapping creates a relationship between your external data and your enterprise data. For example, your external data contains information about employees, including an employee number. You map the employee number from your external data file to the employee number in your enterprise data. This ensures that your data is integrated smoothly.

Procedure
1. On the Data Mapping page, link existing query subjects in your enterprise data to data items in your external data file

2. Under Existing query subject / report, click the ellipsis (...) button and do one of the following:
If you want to select a query subject from the data tree, click **Choose Query Subject** and select a query subject.

If you want to select from the query subjects included in a report, click **Choose a Report** and select a report.

3. Click the two data items that you want to link and click the **New link** button. A link appears linking two data items.

 Tip: You can create multiple links for multiple data items. To delete a link, select the link and click **Delete Link**.

4. Click **Next**.

Finish Importing Data

You can change how query items from your external data file appear after they are imported into IBM Cognos Business Intelligence. For example, you can change the number of decimal places or the default summary.

If you want to use numeric data from your external data source as a measure in a crosstab, you must assign that data item a default summary other than **Unsupported**. A specified default summary makes the data item appear as a measure in the data tree in the **Source** tab. Otherwise, if you add the data item with an **Unsupported** default summary as the measure in a crosstab, no values appear.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data type</td>
<td>Identifies whether data in the file is one of the following type:</td>
</tr>
<tr>
<td></td>
<td>Integer, which represents numeric values.</td>
</tr>
<tr>
<td></td>
<td>Decimal, which represents integer values that are scaled by a variable power of 10.</td>
</tr>
<tr>
<td></td>
<td>Text, which represents values that contain letters and symbols.</td>
</tr>
<tr>
<td></td>
<td>Date or Date Time, which represent dates and times.</td>
</tr>
<tr>
<td>Default summary</td>
<td>Identifies Sum, Average, Max, Min, Count or Unsupported as the default type of summary for the data item. Applies only to Integer and Decimal data types.</td>
</tr>
<tr>
<td>Decimal places</td>
<td>Specifies the number of decimal places for the data item.</td>
</tr>
<tr>
<td></td>
<td>Applies only to the Decimal data type.</td>
</tr>
</tbody>
</table>

If you mapped links between data items in your external data and data items in your enterprise data, specify the options that define the relationships between the data items.

For each data item that you import and link, specify whether values are unique or exist more than once in both your external data and in your enterprise data. You can also specify how to handle rows that contain missing values in the report results.
Procedure
1. On the Data Attributes page, specify the attributes for each data item after it is imported and click Next.
 For example, if you import numeric data items, you can change the default summary and number of decimal places.
2. On the Mapping Options page, specify the relationships between the linked data items and how to process the results in the report output.
3. Click Finish.

Preparing to Work with your External Data

To work with your external data, follow the process in this section.

There are four steps to preparing to work with your external data. The following diagram details these steps.

1. Prepare your external data file for import.
 Ensure that your external data file matches your enterprise data for your reporting needs. For example, if your external data file contains sales values by month, ensure that the formatting of months in your file matches the formatting used in your enterprise data source. Ensure that you can uniquely link at least one column from your external data file, such as product codes or years, with your enterprise data source.
 The maximum file size that you can import is 2.5 MB, with a maximum of 20000 rows. You can import a maximum of one external data file per package. Your IBM Cognos modeler can override these governors in IBM Cognos Framework Manager.
2. Import your external data.
 You import your external data file from your own computer or from a location on your network into an existing IBM Cognos package.
 A step-by-step wizard guides you through importing your data. If you want to create reports that contain data from both your external data file and your enterprise data source, you must link data items from the two data sources. You can import all or a subset of data columns from your external file.
 By adding external data, you extend an existing IBM Cognos package definition with the new data items from your file and you create a new package.
3. Create reports with your external data file.
 After you import and link your external data, it appears as a new namespace in the data tree of the Source tab and is integrated with the IBM Cognos content.
You can then create reports with your data and perform any operation, such as filtering, sorting, grouping, or adding calculations. When you run the report, it uses data items from your external data file.

You can save reports that contain your external data within the My Folders area of the IBM Cognos portal.

4. Determine whether you want to share your reports that use external data with other people in your organization. If you decide to share, take into account these considerations.

Working with Date Data

If the data that you import contains dates, ensure that the dates use the format yyyy-mm-dd.

Working with Dimensional Data Sources

If your enterprise data source is dimensional, such as OLAP or dimensionally-modeled relational, and you want to link your external data with your enterprise data, you must first create a tabular or list report. Create and save a list report with your enterprise data that contains the data items that you want to use to link with your external data. Ensure that you remove the aggregate rows that are automatically added in the footer of the list. This list is a projection of your dimensional data source.

When you import your external data, use the list report that you created to link your external data with the query subject from your enterprise data.

Data in your external file is relational by nature because it consists of tables and rows. If your enterprise data source is dimensional, you can still import and work with your external data. However, you cannot mix relational data from your external data files, and dimensional data from your enterprise data source within the same query. For example, a data container, such as a list, crosstab, or chart, uses one query and you cannot mix relational and dimensional data within the same list, crosstab, or chart. Doing so will cause an error.

If you want to use data from both the external data file and the original package within the same query, you must link the external data to a query subject within the current package instead of another report.

Working with External Data in an Unsecured IBM Cognos Application

If your IBM Cognos application is not secured, and users can log on anonymously, you may encounter issues if multiple people import external data in the same package.

For example, Robert imports his external data into package A and saves the package and reports he created in My Folders. Then, Valerie also imports her external data into the same package A and saves the package in My Folders. Valerie has therefore overwritten Robert’s external data in package A. Now, if Robert tries to run one of his reports, he encounters errors because his external data is no longer in package A.

To avoid this problem,
 • save packages that contain external data with a unique name.
- apply security to your IBM Cognos applications so that users do not share the same My Folders area.

Publish the Package

You can change the name and location of the package with your external data to help you differentiate between data packages.

Procedure

1. If you want to rename the package that will be published or change the location where it is published, do the following:
 - In the Manage External Data dialog, under Package name, click the ellipsis (…) button.
 - Type a new name for the package and select the location where to save it.
 - Click Save.
2. Click Publish.

Results

IBM Cognos Business Intelligence imports your external data into a new package. A namespace with the data items from your external file appears in the data tree in the Source tab.

You can now create reports with your external data.

Edit Your External Data

After you import your data, you can change the data mappings and options that you originally specified and republish the package.

You can
- rename the namespace, which renames the organizational folder that appears in the data tree in the Source tab. If you change the namespace, you are prompted for the external data file when you run the report.
- change which columns to import
- change the data mapping links
- change the data attributes
- change the mapping options

You can also import multiple external data files into the same package. To do this, your data modeler must modify governors in the model and republish the package that contains your enterprise data. For more information, see the IBM Cognos Framework Manager User Guide.

Procedure

1. From the Tools menu, click Manage External Data.
2. In the Manage External Data dialog box, select the external data to edit and click the edit button.
3. In the left pane, select the options that you want to change.
4. Click **OK** and the re-publish the package.

Results

IBM Cognos Business Intelligence re-exports your external data and updates the data items that appears in the data tree in the **Source** tab.

You can now create and update reports with your external data.

Delete Your External Data

You can delete your external data from within the package that you created if you no longer need it.

Procedure

1. From the **Tools** menu, click **Manage External Data**.
2. In the **Manage External Data** dialog box, select the external data package to delete and click the **delete button**.
3. Click **Publish**.

Results

The external data namespace is removed from the package.

If you also no longer require the external data package or any reports created with the package, you can delete it from within IBM Cognos Connection.

Running a Report That Contains External Data

Reports that contain external data run the same way as reports that contain only enterprise data. If you have access to the report, you will also have access to the external data included within the report.

You may be prompted to select the location of the external data file when you run the report if either

- the report author did not specify to automatically load the file.
- the IBM Cognos Business Intelligence server can not locate the file.

However, you are not re-prompted within the same Web browser session.

You can determine whether data in a report uses external data by tracing its lineage. For more information, see “View Lineage Information for a Data Item” on page 49.

Making your Reports Public

After you created a report that uses your external data, you may want to make it public to share it with coworkers. They can run your report using your external data file that you made available on a public network drive that the IBM Cognos server can access. They can also use their own version of the file. If they use their own version, the file must contain the same columns as your original external data file that you used to import the data and create the report. In addition, you must
clear the Allow server to automatically load file check box in the Select Data page of the Manage External Data wizard.

To make reports public, you must save them in the Public Folders area of the IBM Cognos portal. To save content in Public Folders, you must have the appropriate permissions. Contact your IBM Cognos administrator to obtain permissions and to inform him or her that you are sharing a package or files.

If you share your reports, ensure that you maintain the reports.
Chapter 15. Using Conditions

You can define conditions to control what users see when they run a report. Conditions can apply to specific items in a report. For example, you can define a conditional style to highlight exceptional data, such as product revenue that exceeds your target.

Conditions can also apply at the report layout level. Conditional layouts are useful for delivering reports to a multilingual audience. For example, you can have text items, such as titles and cover pages, appear in the same language as the data in the report.

Related concepts:
“Creating a Conditional Color Palette in a Chart” on page 109
You can create a conditional palette to color data items in your chart in different ways depending on a condition. For example, in a column chart that shows revenue per month, you want to make the columns for the months that have a revenue greater than $1,000,000 green.

Highlight Data Using a Conditional Style

Add conditional styles to your report to better identify exceptional or unexpected results. A conditional style is a format, such as cell shading or font color, that is applied to objects if a specified condition is true.

For example, you want to automatically highlight in green the departments in your organization that meet their budget quotas and highlight in red the departments that go over budget. Creating conditional styles color-codes information in your reports so that you can find areas that need attention.

You can apply multiple conditional styles to objects. For example, you can apply one style in specific cells and another style for the overall report. If multiple styles set the same property, such as font color, the last style in the list is applied.

You can apply conditional styles based on any data item in your report.

You can create the following types of conditional styles.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric Range</td>
<td>Highlights straight numerical data, such as revenues and losses.</td>
</tr>
<tr>
<td>Date/Time Range</td>
<td>Highlights data from specific dates and times.</td>
</tr>
<tr>
<td>Date Range</td>
<td>Highlights data from specific dates.</td>
</tr>
<tr>
<td>Time Range</td>
<td>Highlights data from specific times.</td>
</tr>
<tr>
<td>Interval</td>
<td>Highlights data falling between set intervals.</td>
</tr>
<tr>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>String</td>
<td>Highlights specific alphanumeric items in a report. For example, you can highlight all instances of a specific word or phrase, such as Equipment. String criteria are case-sensitive. If multiple string conditions are met, only the first conditional style is applied.</td>
</tr>
<tr>
<td>Advanced</td>
<td>Creates conditional styles that use calculations or expressions. If multiple advanced conditions are met, only the first conditional style is applied.</td>
</tr>
</tbody>
</table>

You can also apply a conditional color palette to a chart.

You can perform a search to find objects in your report that use conditional styles. You can also view all the conditional styles used in your report to delete or modify them.

You can also use variables to highlight data. If a report contains both conditional styles and style variables, the style variables are applied first and then the conditional styles are applied.

Tip: The Return Quantity by Order Method sample report in the GO Data Warehouse (analysis) package includes conditional highlighting. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Create a New Conditional Style

You can apply conditional styles based on any data item in your report.

Procedure

1. Click the object for which you want to define a conditional style and click the conditional styles button.

 Tip: You can also right-click the object and click **Style, Conditional Styles** or click the object, and then, in the **Properties** pane, set the **Conditional Styles** property.

2. Click the add button and click **New Conditional Style**.
3. Select the data item to determine the condition and click **OK**.

 The type of conditional style that you can use depends on the type of data item you select.

4. In the **Name** box, type a name for the conditional style.
5. To define a numeric value, date/time, date, time, or interval condition:

 - Click the new button and select a value to define a threshold. The value appears in the **Range** column, and two ranges are created.
• For each range, under **Style**, click one of the predefined styles to apply to the range or click the edit button and create a new style.

Tip: You can also define a style for the cells in your report that have missing values.

• Repeat the steps above to add other conditions.

Tip: Under **Style**, pause the pointer over each range to see the condition produced for that range.

• To move a value above or below a threshold, click the arrow button next to the value.
 For example, you insert a threshold value of five million. By default, the ranges are less than or equal to five million and greater than five million. Moving the five million value above the threshold changes the ranges to less than five million and greater than or equal to five million.

6. To define a string condition:
 • Click the new button and select how to define the condition.
 • To select more than one individual value, click **Select Multiple Values** and click the values.
 • To type specific values, click **Enter Values** and type the values.
 • To specify your own criteria, such as values that begin with the letter A, click **Enter String Criteria** and specify the condition.
 • For each condition, under **Style**, click one of the predefined styles to apply or click the edit style button and create a new style. Specify the style to apply to remaining values by clicking one of the predefined styles beside **Remaining values (including future values)**.
 • Specify the order in which to evaluate the conditions.
 Conditions are evaluated from top to bottom, and the first condition that is met is applied.

Reuse an Existing Conditional Style
You can create a conditional style once and reuse it on multiple objects in your report. You can specify the order in which conditional styles are applied. You can also use existing local classes as your conditional styles.

Procedure

1. Click the data item for which you want to define a conditional style, and then click the conditional styles button.

 Tip: You can also right-click the data item and click **Style, Conditional Styles** or click the data item, and then, in the **Properties** pane, set the **Conditional Styles** property.

2. Click the add button, click **Use Existing Conditional Style**, and select the style.
Create an Advanced Conditional Style

You can create advanced conditional styles that use calculations or expressions.

If multiple advanced conditions are met, only the first conditional style is applied.

Procedure
1. Click the data item for which you want to define a conditional style, and then click the conditional styles button.

 Tip: You can also right-click the data item and click Style, Conditional Styles or click the data item, and then, in the Properties pane, set the Conditional Styles property.

2. Click the add button and click Advanced Conditional Style.

3. Type a name for the conditional style.

4. Click the add button and specify the expression that defines the condition.

5. For each condition, under Style, click one of the predefined styles to apply or click the edit button and create a new style. Specify the style to apply to remaining values by clicking one of the predefined styles beside Remaining values (including future values).

6. Specify the order in which to evaluate the conditions by clicking a condition and then clicking the move up or move down arrow.

 Conditions are evaluated from top to bottom, and the first condition that is met is applied.

Manage Conditional Styles

You can view, modify, or delete the conditional styles that are applied to your report. You can also define a new conditional style.

In the IBM Cognos Report Studio options, you can specify whether to automatically delete conditional styles that are no longer used in a report.

Procedure

From the Tools menu, click Manage Conditional Styles.

Example - Add a Conditional Style to an Existing Report

You are a report writer at The Sample Outdoors Company, which sells sporting equipment. You have a report that compares current year data to previous year data and highlights negative percentage variances in red (Poor) and positive percentage variances in green (Excellent). You want to add a third conditional style to indicate percentage variances above 0 but less than 10. You create a conditional style that highlights percentage variances between 0 and 10% in yellow (Average).

Procedure
1. Open the GO Balance Sheet as at Dec 31 2006 report from the GO Data Warehouse (analysis) package.

2. Right-click any cell in the % Variance column and click Style, Conditional Styles.
3. Select **Conditional Style 1** and click the edit button.
4. Select the first advanced condition listed and click the edit button.
5. Delete =0 from the expression definition.
6. Click the **Functions** tab, and then expand the **Operators** folder.
7. Double-click **between**, and then click after **between** in the expression, add a space, and type 0.
8. Double-click **and**, and then click after **and** in the expression, add a space, type .1, and click **OK**.
9. From the **Style** box associated with this condition, click **Average**.
10. Select the second advanced condition listed and click the edit button.
11. Replace >0 in the expression with >.1 and click **OK**.
12. Leave the style associated with this condition as is.
13. Run the report.

The new conditional style appears in the % **Variance** column.

Highlight Data Using a Style Variable

Highlight data in your report to better identify exceptional results. For example, you want to identify sales representatives who have exceeded their quota. You create a condition that checks whether each representative's sales for the year is greater than their quota for the year.

Style variables are useful if you are working with reports that were created in a previous version of IBM Cognos Business Intelligence or if you want to use language variables to specify conditional styles.

You can also use conditional styles to highlight data. If a report contains both conditional styles and style variables, the style variables are applied before the conditional styles.
Procedure

1. Create a variable and define the condition that determines if the data will be highlighted.
2. In the work area, click the column to highlight based on the condition.
3. In the Properties pane, double-click the Style Variable property.
4. Click Variable, click the variable to assign to the object, and click OK.
5. If you assigned a string variable, in the Values box, select the values for the condition to support.

 Tip: A default value exists for the variable, and it is always selected.
6. If you assigned a language variable, in the Values box, select the languages for the condition to support.

 Tip: A default value exists for the variable, and it is always selected.
7. Click OK.
8. Pause the pointer over the condition explorer button and click a value other than the default value.

 Tip: When you select a value in the condition explorer, the Explorer bar becomes green to indicate that conditional formatting is turned on and that any changes you make to the report apply only to the variable value.

 For example, if you created a Boolean variable, click Yes.
9. In the Properties pane, specify the formatting with which to highlight the column when the condition is satisfied.

 For example, click the Border property to create a thicker border around the column.
10. Repeat steps 8 to 9 for other possible values defined for the variable.

 Tip: To view the report with no variables applied, pause the pointer over the condition explorer button and click (No variable) or triple-click the Explorer bar.

Results

When you run the report, the report objects to which you applied the variable are highlighted when the condition is satisfied. For example, if you created a Boolean variable, the objects are highlighted when the condition is met. If the condition is not satisfied for any object, no conditional formatting is applied.

Adding Conditional Rendering to a Report

You can specify which objects are rendered when a report is run.

Before you can add conditional formatting or conditional rendering to your report, you must add a variable. You can create a variable in the condition explorer or in the Properties pane.

Add a Variable from the Condition Explorer

Before you can add conditional formatting or conditional rendering to your report, you must add a variable. You can create a variable in the condition explorer or in the Properties pane.
Procedure

1. Pause the pointer over the condition explorer button and click **Variables**.

2. From the **Toolbox** tab, drag one of the following variables to the **Variables** pane:
 - To create a variable that has only two possible values, Yes and No, drag **Boolean Variable**.
 - To create a variable whose values are string-based, drag **String Variable**.
 - To create a variable whose values are different languages, drag **Report Language Variable**.

3. If you created a Boolean variable, in the **Expression Definition** box, define the condition and click **OK**.

 For example, the following expression returns the value **Yes** if revenue is less than one million and the value **No** if revenue is greater than or equal to one million:

 $\text{[Revenue]} < 1000000$

 For information about creating expressions, see “Using Relational Calculations” on page 313 or “Using Dimensional Calculations” on page 365 and “Calculation components” on page 619.

4. If you created a string variable, do the following:

 - In the **Expression Definition** box, define the condition and click **OK**.

 For example, the following expression returns the value **high** if revenue is greater than one million and the value **low** if revenue is less than or equal to one million:

 \[
 \text{if } ([\text{Revenue}] > 1000000) \text{ then 'high' else 'low'}
 \]

 For information about creating expressions, see “Using Relational Calculations” on page 313 or “Using Dimensional Calculations” on page 365 and “Calculation components” on page 619.

 - Click the add button in the **Values** pane.

 - For each value that the variable can assume, type the name of the value that corresponds with the possible outcomes defined in the expression.

 For example, in the previous expression, you must create two values for the variable, high and low.

 Tip: You can create a group by clicking two or more values and then clicking the group values button. For example, you can create a group that includes the available French languages.

5. If you created a language-specific variable, in the **Languages** dialog box, select the languages to support.

Add a Variable from the Properties Pane

Before you can add conditional formatting or conditional rendering to your report, you must add a variable. You can create a variable in the condition explorer or in the **Properties** pane.

Procedure

1. Select the report object.
2. In the Properties pane, under Conditional, double-click the conditional property to which to assign the variable.

The following conditional properties are available:

<table>
<thead>
<tr>
<th>Goal</th>
<th>Conditional Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify a variable based on which text can be conditionally shown.</td>
<td>Text Source Variable</td>
</tr>
<tr>
<td>For example, you want different text to appear when a report is run in a different language.</td>
<td></td>
</tr>
<tr>
<td>Specify a variable based on which object can be conditionally rendered.</td>
<td>Render Variable</td>
</tr>
<tr>
<td>For example, you want to make a revenue report smaller by not rendering rows that are below a threshold.</td>
<td></td>
</tr>
<tr>
<td>Specify a variable based on which object can be conditionally styled.</td>
<td>Style Variable</td>
</tr>
<tr>
<td>For example, you want data that meets some criterion to appear in a different color.</td>
<td></td>
</tr>
<tr>
<td>Specify a variable based on which objects in a block can be conditionally rendered. Applies only to conditional block objects that you insert in a report.</td>
<td>Block Variable</td>
</tr>
</tbody>
</table>

3. In the Variable box, click an existing variable or one of the following variable types:
 - <New language variable>
 - <New string variable>
 - <New boolean variable>

4. In the New Variable dialog box, in the Name box, type the name of the variable.

5. If you created a string variable, click the add button, type the string values to define, and click OK.

6. If you created a language variable, select the languages to support and click OK.

7. In the Expression Definition box, define the condition.

Hide or Show an Object

You can hide and show objects in a report based on a condition you define.

You can also specify that an object should not be rendered based on a condition.

Tip: The Global Bonus Report sample report in the GO Data Warehouse (analysis) package includes hidden objects. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.
Procedure

1. Create a variable and define the condition that determines if the object is shown or hidden.

 Tip: Create a Boolean variable to show and hide objects, as this type of variable has only two possible values.

2. From the Toolbox tab, drag a Conditional Blocks object to the work area.
3. Select the conditional block.
4. In the Properties pane, double-click the Block Variable property.
5. In the Variable box, click the variable you created and click OK.
6. Set the Current Block property to Yes.
7. From the content pane, drag the object to show or hide to the conditional block.
 For example, drag a data item from the Source tab or from the Data Items tab.
 You may need to link the report page to a query before you can add a data item to the block.

Results

When you run the report, the report objects to which you applied the variable are visible when the condition is satisfied and invisible when it is not.

Add Conditional Rendering

Add conditional rendering to specify which objects are rendered when a report is run. This is useful when your report contains sensitive data.

Conditional rendering is not the same as hiding objects. When you hide an object, the object exists but is transparent. If an object is not rendered, it is not in the report.

For a list of objects that can be rendered conditionally, see the Render Variable property in Appendix G, “Report Studio Object and Property Reference,” on page 821.

Procedure

1. Select the list column to be rendered conditionally.

 Tip: You must select the list column, not the list column body or the list column title. If the body or title is selected, as indicated in the Properties pane, click the select ancestor button and click the list column.
2. In the Properties pane, double-click the Render Variable property.
3. Click Variable and click the variable that will determine if the column will be rendered.
4. In the Render for box, select the values that the condition will support.

 Tip: A default value exists for the variable, and it is always selected.

Example - Create a Conditional Report

You are a report author at The Sample Outdoors Company, which sells sporting equipment. You are requested to create a report that shows orders after a date specified by the user. The report will prompt the user for a date and ask whether the user wants to see a description for each order.
Procedure
1. Open IBM Cognos Report Studio with the GO Data Warehouse (query) package.
2. In the Welcome dialog box, click Create a new report or template.
3. In the New dialog box, click List and click OK.
4. From the Source tab, expand Sales and Marketing (query), and Sales (query) and add data items to the list:
 - Expand Time dimension and add Date.
 - Expand Sales order and add Order number.
 - Expand Product and add Product name and Product description.
 - Expand Sales fact and add Quantity, Unit price, and Revenue.
5. Click Date, and then click the section button.
6. Select the Order Number column and click the group button.
7. Click Revenue, and then click the summarize button and click Total.
8. Change the title of the report to New Orders.
9. Pause the pointer over the page explorer button and click Prompt Pages.
11. Double-click the new prompt page.
12. From the Toolbox tab, double-click Text Item and type the following text:
 Enter the start date, and select if descriptions will be shown.
13. Insert a 2 by 2 table into the prompt page by clicking the insert table button and moving the pointer until four squares are highlighted in a 2 by 2 pattern.
14. From the Toolbox tab, drag a Text Item into the upper-left cell and type the following text:
 Starting Date
15. From the Toolbox tab, drag a Text Item into the lower-left cell and type the following text:
 Show Descriptions
16. From the Toolbox tab, drag a Date Prompt into the upper-right cell.
17. In the Prompt Wizard window, select Create a new parameter, type p_Date in the space provided, and then click Next.
18. In the Create Filter window, select Create a parameterized filter with the following entries:
 - For Package item, click the ellipsis (...) button and open Sales (query) and Time dimension, and then click Date.
 - For Operator, click >.
19. Click Finish.
20. From the Toolbox tab, drag a Value Prompt into the lower-right cell.
21. In the Prompt Wizard, in the Choose Parameter window, select Create a new parameter, type p_ShowDesc in the space provided, and then click Finish.
22. Select the Value Prompt and, in the Properties pane, double-click Static Choices.

23. Click the add button.

24. In the Edit dialog box, type Yes in both the Use and Display boxes.

25. Click the add button.

26. In the Edit dialog box, type No in both the Use and Display boxes.

27. Click OK.

28. Pause the pointer over the condition explorer button and click Variables.

29. From the Toolbox tab, create a new Boolean variable by double-clicking Boolean Variable.

30. In the Report Expression dialog box, type the following in the Expression Definition window and click OK:
 \(\text{ParamDisplayValue("p_ShowDesc") = 'Yes'} \)

31. In the Properties pane, set the Name property to showDesc.

32. Pause the pointer over the page explorer button and click the report page.

33. Click the Product descriptions column.

34. In the Properties pane, click the select ancestor button and click List Column.

35. In the Properties pane, set the Render Variable property to the showDesc Boolean variable you created.

36. Run the report.

Results

The report prompts you for a date. Orders that occur after the date you entered are shown. The report also asks whether to show the Descriptions column, and the column is rendered only if you choose Yes.

Add Multiple Layouts

Add multiple layouts to show a report in different ways. For example, you can define a different layout for each language in a multilingual report. This allows you to create a single report that can be viewed by report consumers that use different regional settings.

Procedure

1. Create a variable and define the condition that will be used for each layout.
 For example, create a report language variable that includes each language that requires a conditional layout.
 Note: Expressions used in a conditional layout cannot reference a query.

2. From the File menu, click Conditional Layouts.

3. Select a variable, and then select the values that require a separate layout.

Results

A layout is created for each value you selected. Use the page explorer to navigate the different layouts. For each layout, click Report Pages to create a report page or Prompt Pages to create a prompt page and add objects.
Tip: You can create new variables from the Conditional Layouts dialog. The variables are added to the condition explorer. For more information, see “Add a Variable from the Condition Explorer” on page 436.

Setting up a Multilingual Reporting Environment

You can create reports that show data in more than one language and use different regional settings. This means that you can create a single report that can be used by report consumers anywhere in the world.

The samples databases provided with IBM Cognos store a selection of text fields, such as names and descriptions, in more than 25 languages to demonstrate a multilingual reporting environment. For information about how data is stored in the samples databases and how the samples databases are set up to use multilingual data, see the Administration and Security Guide.

Here is the process for creating a multilingual reporting environment:

- Use multilingual metadata.

 The data source administrator can store multilingual data in either individual tables, rows, or columns.

 For more information about configuring your database for multilingual reporting, see the Administration and Security Guide.

- Create a multilingual model.

 Modelers use IBM Cognos Framework Manager to add multilingual metadata to the model from any data source type except OLAP. They add multilingual metadata by defining which languages the model supports, translating text strings in the model for things such as object names and descriptions, and defining which languages are exported in each package. If the data source contains multilingual data, modelers can define queries that retrieve data in the default language for the report user.

 For more information, see the Framework Manager User Guide.

- Create multilingual maps.

 Administrators and modelers use a Microsoft Windows operating system utility named Map Manager to import maps and update labels for maps in IBM Cognos Report Studio. For map features such as country or region and city names, administrators and modelers can define alternative names to provide multilingual versions of text that appears on the map.

 For more information, see the Map Manager Installation and User Guide.

- Create a multilingual report.

 The report author uses Report Studio to create a report that can be viewed in different languages. For example, you can specify that text, such as the title, appears in German when the report is opened by a German user. You can also add translations for text objects, and create other language-dependent objects.

- Specify the language in which a report is viewed.

 You can use IBM Cognos Connection to do the following:

 - Define multilingual properties, such as a name, screen tip, and description, for each entry in the portal.

 - Specify the default language to be used when a report is run.

 Tip: You can specify the default language on the run options page, in the report properties, or in your preferences.

 - Specify a language, other than the default, to be used when a report is run.

 For more information, see the IBM Cognos Connection User Guide.
The data then appears in the language and with the regional settings specified in
• the user's Web browser options
• the run options
• the IBM Cognos Connection preferences

Any text that users or authors add appears in the language in which they typed it.

Create a Multilingual Report in Report Studio

You can create a report in IBM Cognos Report Studio that can be viewed in
different languages. For example, you can specify that text such as the title appears
in German when the report is opened by a German user. You can also add
translations for text objects and create other language-dependent objects.

Before you begin

If you want the report to show data in different languages, the model must also be
multilingual.

Procedure

1. Create a report language variable.
2. In the work area, select the object to modify based on a language.
3. In the Properties pane, double-click the Style Variable property.
 If you are changing the language of a text string, click Text Source Variable
 instead.
4. Click Variable and click the language variable you created.
5. In the Values box, select the languages for the condition to support and click
 OK.
 Tip: A default value exists for the variable, and it is always selected.
6. Pause the pointer over the condition explorer button and a language for
 the variable.
 Tip: When you select a value in the condition explorer, the Explorer bar
 becomes green to indicate that conditional formatting is turned on and that any
 changes you make to the report apply only to the variable value.
7. In the Properties pane, specify the formatting for the language.
 For example, to change the language of a text string, double-click the Text
 property and select the new string.
8. Press Enter when you are done.
9. Repeat steps 6 to 8 for all other languages specified for the variable.
 Tip: To view the report with no variables applied, pause the pointer over the
 condition explorer button and click (No variable) or triple-click the Explorer
 bar.

Results

When you run the report, the report objects to which you applied the variable are
formatted according to the browser's language.
Chapter 16. Bursting Reports

Burst a report to distribute its contents to various recipients. Bursting is the process of running a report once and then dividing the results for recipients who each view a subset of the data. For example, salespeople in different regions each need a report showing the sales target for their country or region. You use burst reports to send each salesperson only the information they need. Burst reports can be distributed by email or saved to a folder for viewing in IBM Cognos Connection.

Tip: The Bursted Sales Performance Report sample report in the GO Data Warehouse (analysis) package includes bursting. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

To burst a report against a dimensional data source, see “Creating Burst Reports Using Dimensional Data Sources” on page 449.

You cannot burst crosstab or chart reports. However you can burst a report where a container includes a crosstab or chart that is part of a master detail relationship. In this situation, you can burst only HTML, PDF, and XLS output formats; you cannot burst CSV or XML output formats.

For information about avoiding disk space exhaustion when bursting charts or crosstabs, see “Master Detail or Burst Reports with Charts or Crosstabs May Result in Denial of Service” on page 563.

Procedure
1. define burst recipients
2. specify burst groups
3. set burst options
4. enable bursting

Defining Burst Recipients

Define the recipients who will receive data when the report is run. You can distribute burst reports to individual users, groups, roles, distribution lists, and contacts.

To define the recipients, you create a calculated field, create the burst table in the source database, and then import the table into a package.

Create a Calculated Field

You can use a calculated field to dynamically create burst report recipients.

Procedure
1. Pause the pointer over the query explorer button and click the query that will produce the data to distribute.
2. From the Toolbox tab, drag Data Item to the Data Items pane.
3. In the **Expression Definition** box, type the expression that will generate the list of recipients and click **OK**.

For example, typing the following expression builds the list of the employees of The Samples Outdoors Company. The expression concatenates the first letter of each employee’s first name with their last name.

```plaintext
lower(substring([Employee summary (query)].[Employee by organization].[First name],1,1) + [Employee summary (query)].[Employee by organization].[Last name])
```

4. To give the data item a more meaningful name, in the **Properties** pane, set the **Name** property to a different name and press the Enter key.

Creating the Burst Table in the Source Database

You can create a burst table in the source database for the list of recipients. The steps you must follow depend on the database system you are using. The burst table must contain the following columns:

- A unique identifier

 Tip: Some database systems do not require a unique identifier for each table.

- A recipient column

- The data item on which to burst

You can also include other columns that provide additional information. For example, if you plan to distribute reports by email, you can add a column for the email address of each recipient.

After you create the table, add the recipients who will receive the report. You can create a mixed recipients list that includes individual users, groups, roles, contacts, distribution lists, or email addresses. For example, a burst table may contain the following recipients.

<table>
<thead>
<tr>
<th>Recipient example</th>
<th>Recipient type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMID("Canada")</td>
<td>Group</td>
</tr>
<tr>
<td>CAMID("":")/contact[@name='Silvano Allessori']</td>
<td>Contact</td>
</tr>
<tr>
<td>CAMID("":")/distributionList[@name='European Partners']</td>
<td>Distribution list</td>
</tr>
<tr>
<td>CAMID("LDAP_Local_ID :uid=gbelding,ou=people")</td>
<td>Authentication provider user or group, where LDAP_Local_ID is the name of an LDAP namespace ID, and people is the name of an organizational unit</td>
</tr>
<tr>
<td>c10@ibmcognos99.com</td>
<td>Email address</td>
</tr>
</tbody>
</table>

CAMID stands for Cognos Access Manager ID, and it represents an internal search path to the recipients. Specify search paths when you want to save burst reports in a folder. You can obtain the search path in IBM Cognos Connection by opening the **Set properties** page for each recipient and clicking **View the search path**. Ensure that you use the proper syntax when adding recipients to the burst table.
In the case of NTLM namespaces, user IDs in the search path use alphanumeric or numeric characters that make them difficult to read. You can use the following alternate search path syntax:

directory/namespace[@name="Local NT"]//account[@userName="gbelding"]

where Local NT is the name of a namespace and gbelding is the name of a user. The double slash before the account element indicates that you are searching all accounts under the specified namespace.

Note: If you have a mixed recipients list, do not mix email address recipients and alternate path recipients. Because the alternate path syntax contains the @ symbol, it will be mistaken for an email address.

For more information about users, groups, roles, contacts, and distribution lists, see the IBM Cognos Business Intelligence Administration and Security Guide.

Importing the Table into a Package

After you create the burst table in the source database, you must add it to the package that you will use to create the report.

For more information about importing tables and creating relationships, see the Framework Manager User Guide.

Procedure

1. Open the package.
2. Import the table.
3. Define the relationship between the burst table and the table containing the data item on which to burst.

 For example, you are bursting on country or region code. You define a relationship between country or region code in the burst table and country or region code in the Country or Region table.
4. Save and publish the package.

Specify a Burst Group

Specify burst groups to set how the report will be distributed. Burst groups are defined by a data item that you create in the report or that you add from the burst table.

Procedure

1. Pause the pointer over the query explorer button and click the query that will produce the data to distribute.
2. If you are creating a data item, do the following:

 • From the Toolbox tab, drag Data Item to the Data Items pane.
 • In the Expression Definition box, type the expression that defines the burst key.

 For example, the following expression builds an email address for each sales representative in The Sample Outdoors Company. The expression incorporates the calculated field that was previously created which is named userID below, with ibmcognos99.com as the domain name.

 `[userID]`+'@ibmcognos99.com'
Tip: To give the data item a more meaningful name, in the Properties pane, set the Name property to a different name and press Enter.

3. To specify a burst table column as the data item, do the following:

- From the Source tab, expand the burst table.
- Drag the data item to the Data Items pane.
 For example, if you are bursting reports by email, drag the data item containing email addresses.

Set Burst Options

Set burst options for the report to indicate the data item on which to burst and the recipients.

Before you begin

Before you set burst options, ensure that the data item on which you intend to burst is in the report and is grouped. The grouped column will create the appropriate subsets of data. In addition, you must associate the burst key with this level of grouping.

Procedure

1. From the File menu, click Burst Options.
2. Select the Make report available for bursting check box.
3. Under Burst Groups, in the Query box, click the query that contains the data item on which to burst.

 Tip: You can choose a query that does not appear in the layout. This is useful to distribute the same report to all burst recipients.
4. In the Label box, click the data item with which to label each burst report.
5. Click the edit button.
6. In the Data Items box, drag the data item on which to burst to the Groups folder and click OK.

 Tip: You can specify the sort order of data within each group by dragging data items to the Sort List folder and then clicking the sort order button.
7. Under Burst Recipient, in the Query box, click the query that contains the data item to be used as the distribution list.
8. In the Data Item box, click the data item that contains the recipients.
9. In the Type box, choose the method to burst the report:

 - Click Automatic to let IBM Cognos Business Intelligence determine from the data item whether to email reports or send them to folders in IBM Cognos Connection.
 - Click Email addresses to distribute reports by email.
 - Click Directory entries to distribute reports to folders that recipients can access in IBM Cognos Connection.

Note: To burst reports to multiple mobile device users, you must choose to distribute reports to folders. You can choose Directory entries, or you can
choose **Automatic** if the data item returns directory entries instead of email addresses. To view the reports, the recipients must have IBM Cognos Mobile installed on their mobile devices. For more information about IBM Cognos Mobile, see the IBM Cognos Mobile *Installation and Administration Guide*.

When recipients log into IBM Cognos BI, they will see only the report that is specific to them.

10. If the report contains two nested data containers, such as a list and a chart, click the ellipsis (...) button beside **Master detail relationships** and define the relationship between the data containers.

 For information about master detail relationships, see “Create a Master Detail Relationship” on page 356.

Enable Bursting

When the report is ready to be distributed, enable bursting for the report in IBM Cognos Connection.

Procedure

1. Locate the report in IBM Cognos Connection.

2. Under **Actions**, click the run with options button []

3. Click **advanced options** on the right of the screen.

4. Under **Time and mode**, click **Run in the background**.

5. Select the **Burst the report** check box.

6. If you are distributing reports by email, select the **Send the report by email** check box.

 Tip: If you are bursting the report to a folder, you can also send the report by email if the **Send the report by email** check box is selected. Reports will be emailed if the recipient's email address is stored in the authentication source you are using or if they are entered in the recipient's personal information in IBM Cognos Connection.

7. If the burst report contains a drill-through link to another report and you are distributing the burst report by email, do the following:

 • Click **Edit the options**.

 • Select the **Include a link to the report** check box.

 If you do not select the check box, the drill-through links in the burst report will not work.

8. Run the report.

Results

 Allow a few moments for the report to run. If you are an administrator, you can view all outputs for the report. Under **Actions**, click **View the output versions for this report**. When burst recipients log into IBM Cognos Connection or access their email accounts, they will see only the data that is meant for them.

Creating Burst Reports Using Dimensional Data Sources

You can burst a report using a dimensional data source by using burst information that is stored in the data source. Because you do not want to append bursting information to existing dimensional data sources, you can create a relational data source that contains the burst information.
Report bursting is limited when the underlying data source is a cube (MOLAP data source such as IBM Cognos PowerCube, Microsoft Analysis Services, Oracle Essbase, or IBM DB2/OLAP). The burst report must be a grouped report, and the burst is restricted to the outermost grouping in the report. For example, if you have a report grouped on Country or Region and State, then you can burst the report only on Country or Region.

Procedure

1. In IBM Cognos Framework Manager, include both the dimensional data source that is the basis for reporting and the relational burst table in the model.

 For more information about models, see the Framework Manager *User Guide*.

2. In IBM Cognos Report Studio, create a master detail report in which the master query drives the report and the detail query contains the burst information.

 You must group the master query on the data item on which you are bursting. This data item must have a corresponding data item in the relational burst table.

 Author the detail query against the relational burst table. The burst table must contain two columns: the data item corresponding to the data item used in the master report for bursting and the data item that contains the recipient information. The recipient can be an email address or an expression that results in a search path to an object in IBM Content Manager, such as an account, group, role, contact, or distribution list.

 For more information about master detail queries, see "Create a Master Detail Relationship" on page 356.

3. Ensure that the detail query, which must be evaluated by IBM Cognos Business Intelligence when the report is executed, is not visible:

 - Place a list that is based on the detail query in a conditional block with a box type of None.
 - Link the master and detail queries using the following expression:

 \[
 [\text{Master Burst Key}] = [\text{Detail Burst Key}]
 \]

Results

When you set the burst options for the report, the master query provides the data items for the burst key and the detail report provides the data items for the burst recipients.

Example - Burst a Report

You are a report author at The Sample Outdoors Company, which sells sporting equipment. You are requested to create a report that lists product sales for each sales representative. The report is to be emailed to each sales representative, but they only need to see the data that pertains to them. You create a list report that you burst to each sales representative.

Procedure

1. Open IBM Cognos Report Studio with the GO Data Warehouse (query) package.

2. In the Welcome dialog box, click Create a new report or template.

3. In the New dialog box, click List and click OK.

4. From the Source tab, expand Sales and marketing (query) and Sales (query). Add the following data items:
5. Group the Employee name, Product line, and Product type columns.

6. Click the Employee name column, click the headers and footers button, and then click Create Header. Employee name appears as a header in the list. You no longer need to keep the data item as a list column.

7. In the list, click the Employee name column and click the delete button.

8. Click Revenue, and then click the summarize button and click Total.

9. Pause the pointer over the query explorer button and click Query1.

10. From the Source tab, drag Email from the Employee by region folder to the Data Items pane.

11. From the File menu, click Burst Options.

12. Select the Make report available for bursting check box.

13. Under Burst Groups, in the Query box, click Query1.

14. In the Label box, click Employee name.

15. Click the edit button.

16. In the Data items box, drag Employee name to the Groups folder and click OK.

17. Under Burst Recipient, in the Query box, click Query1.

18. In the Data Item box, click Email.

19. In the Type box, click Email addresses.

20. Save the report.

21. Locate the report in IBM Cognos Connection.

22. Under Actions, click Run with options.

23. Click advanced options on the right of the screen.

24. Under Time and mode, click Run in the background.

25. Select the Burst the report check box.

26. Select the Send the report by email check box.

27. Run the report.

Results

When sales representatives access their email accounts, they will see reports with only the data that is meant for them.
Chapter 17. Format Data

Format data in a report to improve readability. For example, you can show all date values in the order year, month, and day. If you do not set **Data Format** properties here, data is formatted according to the properties set in the model. If the properties were not set in the model, data is formatted according to the International Components for Unicode (ICU) formats.

Special cells, such as overflow or underflow, errors, or not applicable values, appear with two dash (--) characters unless you override them.

You can also format data based on a condition or specify the format for a particular object.

If you create a calculation that uses mixed currency values, an asterisk character (*) appears as the unit of measure. To remove the asterisk character, change the format of the corresponding row or column.

Set the Default Data Formats

Set the default data properties for each type of data, including text, number, currency, percent, date, time, date/time, and time interval.

Procedure

1. From the **Data** menu, click **Default Data Formats**.
2. In the **Format type** box, click a format type.
 - The properties that you can set for the selected format type appear in the **Properties** box.
3. If you clicked the **Currency** format type and require different currencies in the report, click the add button and select currency check boxes.
 - For example, you may have one column with values are in euros and another column whose values are in US dollars.
4. Set the properties.
 - If you added currencies in step 3, click each one and set the properties. If you did not add any currencies, any properties you set will apply to all currencies.
 - For properties in which you type meta-characters that represent certain types of information, such as YYYY-MM-DD for dates, the meta-characters that are required depend on the authoring language specified for the report. For more information, see “Using Patterns to Format Data” on page 459.
 - If you set a value for the **Pattern** property, all other formatting properties are ignored with the following exceptions:
 - **Missing Value Characters**
 - **Zero Value Characters**
 - **Negative Pattern**
 - Some properties are language-sensitive and should be changed only with caution.
Results

The data formatting properties you set are applied to objects only in the current layout. If a data item contains values in multiple currencies but only a subset of those currencies have defined formats, the default format for the locale in which you are working is applied to values with no specified format.

Specify the Data Format for an Object

Specify the format for a particular object if you are not getting the results you want.

For example, you add a measure to a report and you want to see two decimals when you run the report. You set the number of decimals to two for the Number format type for the current layout. However, when you run the report, you see more than two decimals for the measure. To get the results you want, you must map the measure to the Number format type.

Data formats are not applied in delimited text (CSV) and XML report outputs.

Procedure

1. Click the object.
2. In the Properties pane, double-click the Data Format property.
3. Under Format type, click the format type to apply to the object.
4. To override any of the properties of the format type that were defined for the current layout, in the Properties box, click the property and specify its value.

Specifying the Number of Decimals in Numbers

When specifying the number of decimals, IBM Cognos Business Intelligence uses the IEEE 754 default rounding mode known as half even. With half even rounding, numbers are rounded toward the nearest truncated value, unless both truncated values are equidistant, in which case the value ending in an even digit is chosen, as follows:

- If the digit immediately after the precision to be shown is greater than 5, the number is rounded up.
- If the digit immediately after the precision to be shown is less than 5, the number is rounded down.
- If the digit immediately after the precision is a 5, the number is rounded down when the preceding digit is even and rounded up when the preceding digit is odd.

For example, the number 78.5 is rounded to 78, while the number 73.5 is rounded to 74.

In addition, if the maximum number of decimals is lower than the actual number of decimals in the number, the number is rounded to the maximum number of decimals.

Digit shaping in charts and maps

When working with bidirectional content, you cannot specify digit shaping at the chart or map level. You can specify digit shaping for the objects in charts and maps.
To understand how digit shaping is applied to charts and maps, you must know which chart and map objects are considered text and which objects are considered numeric values.

The following table describes the chart and map objects that are considered text.

Table 1. Chart and map objects that are considered text

<table>
<thead>
<tr>
<th>Container</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chart</td>
<td>chart title, subtitle, footer, notes, legend item, legend title, regression label, marker label, background image label, axis titles, discrete axis label (for example, category axis label, x-axis), baseline labels</td>
</tr>
<tr>
<td>Map</td>
<td>map title, subtitle, footer, legend title, notes, axis labels</td>
</tr>
</tbody>
</table>

The following table describes the chart and map objects that are considered numeric values.

Table 2. Chart and map objects that are considered numeric values

<table>
<thead>
<tr>
<th>Container</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chart</td>
<td>numeric axis label (for example, measure axis label, y-axis), numeric values that appear in the legend (you can select to show the first, last, maximum, minimum value for each item in legends), numeric values that appear in the chart</td>
</tr>
<tr>
<td>Map</td>
<td>legend items</td>
</tr>
</tbody>
</table>

The following list describes the different digit shaping options and how digit shaping is applied to charts and maps.

- The digit shape options for text objects, which include titles, footers, and labels, are Default, None, National, and Contextual. Digit shape options for numeric values are Default, None, and National. There is no Contextual option for numeric values.
- By default, digit shaping is not applied to numbers that appear on an object that is considered text. For example, if a chart shows year data on the x-axis and the content language specified in IBM Cognos Connection is Arabic (Egypt), no digit shaping is applied because the x-axis label is considered a string.

The following list describes the default digit shaping behavior for charts and maps when the content language implies non-European digits, such as Arabic (Egypt).

- Numeric values that have a specific format, such as decimal or currency, are displayed as Arabic-Indic.
- Except for matrix charts, numeric axis labels for charts and maps are displayed in European digits. This is due to the way that charts and maps are rendered. The engine used to render charts and maps does not perform any formatting for numeric axis labels. No locale information is passed, and consequently the labels are displayed as European digits. To display the labels as Arabic-Indic, select the digit shaping option National.
- Matrix charts are rendered using International Components for Unicode (ICU) to format numbers. Locale information is passed and the numbers are shaped accordingly. For example, when the content language is Arabic (Egypt), ICU displays numbers as Arabic-Indic.
- Numbers within text labels are displayed as is. That is, no digit shaping is applied.
The following list describes the default digit shaping behavior for charts and maps when the content language is Thai.

- Numeric values that have a specific format, such as decimal or currency, are displayed as European digits.
- Numbers within text labels are displayed as is. That is, no digit shaping is applied.

Related concepts:

“Support for bidirectional languages” on page 51

You can author reports that support bidirectional languages. You can specify base text direction, digit shaping, and container direction.

Related information:

“Digit Shaping” on page 1015

Specifies the digit shaping option to apply. When National is selected, digit shapes are determined from the user’s content language. When Contextual is selected, digit shapes are determined from adjoining characters in the value. For example, if the most recent strongly directional character before the numerical character is left-to-right, the number is displayed as a European number. If the most recent strongly directional character before the numerical character is right-to-left, the number is displayed in Arabic-Indic format. If there are no strongly directional characters before the numerical character, the number is displayed according to the base text direction of the field. When None is selected, no shaping is performed, and the value as it appears in the data source is shown. The default depends on the type of value. When the value is a string, the default is None.

Locale-sensitive Properties

IBM Cognos Report Studio contains an extensive library of customized properties adapted to users from different regions who speak different languages. For example, if a modeler specifies that a given data item is a currency, only the proper currency symbol must be specified. When reports are created, Report Studio automatically adapts the format of the currency numbers to each user according to the content language specified in IBM Cognos Connection.

When modelers or report authors specify properties, these properties override user preferences and risk creating inconsistent formatting for users of other cultures. It is usually much easier and safer to let Report Studio take care of formatting. For example, for the date format type, different regions use different characters to represent the date separator. If you specify a date separator, you may confuse users in other regions.

The following data formatting properties are locale-sensitive:

- Currency Symbol Position
- Date Separator
- Date Ordering
- Calendar Type
- Time Separator
- Display AM/PM Symbols
- Clock
- Decimal Symbol
- Negative Sign Position
- Thousands Separator
- Group Size (digits)
• Secondary Group Size (digits)
• Missing Value Characters
• Zero Value Characters
• Pattern
• Negative Pattern

Suppress Empty Cells

Sparse data may result in crosstabs showing empty cells. For example, a crosstab
that matches employees with products results in many rows of empty values for
the revenue measure if the employee does not sell those products.

You can suppress rows, columns, or rows and columns based on divide by zero,
missing, and overflow values. Suppressing rows or columns without data gives
you a more concise view or your report.

Calculations are performed before suppression is applied. If you have multiple
crosstabs or charts, you must select one in order to access suppression options.

Within a list report, suppression applies only to rows and is based on non-grouped
data items. If details of a group are null, then the header and footer are also
suppressed.

Suppression can also be applied to charts, repeaters, and repeater tables.

Access to the suppression feature depends on the settings in your modeling
component, IBM Cognos Transformer, IBM Cognos Framework Manager, and IBM
Cognos Administration.

Procedure

1. From the Data menu, click Suppress and click Suppression Options.
2. Under Suppress, choose what sections to suppress.
3. Under Suppress the following, choose which values to suppress.

Related concepts:
“Limitations When Formatting Empty Cells in SAP BW Data Sources” on page 612
When working with SAP BW data sources, if the SAP BW server administrator
configured custom formatting for empty cells on the SAP BW server, this custom
format does not appear in IBM Cognos Business Intelligence reports. Ask your
administrator to configure the formatting of empty cells in IBM Cognos BI.

Suppress Null Cells Using Filters

You can also use filters to suppress null cells in your reports. Using filters ensures
that calculations take suppression into account. You may also obtain better report
performance because the filtering is done at the data source.

If your report includes more than one measure or fact expression, it is best to base
the filter on only one underlying fact or measure.

Relational-style Reports

In relational-style reports, you can use detail and summary filters.
Dimensional-style Reports

In dimensional-style reports, you can use the filter function.

For example, insert a set expression in your crosstab and use the expression filter \(\text{descendants ([Set]) is not null} \). If your crosstab includes three or more levels within the same dimension on an edge, use the expression filter \(\text{descendants (currentMember([Hierarchy]) is not null)} \).

If your crosstab includes nested sets, filter the sets using a cascading approach to improve performance. For example, first filter the outermost (or highest nested level) set, and then filter the remaining sets proceeding inward.

Example - Suppress Zeros in Rows and Columns in an Existing Report

You are a report writer at The Sample Outdoors Company, which sells sporting equipment. You have a report that compares current year data to previous year data. You want to suppress zeros in the report to make the report more concise. You use the zero suppression tool to set the level of suppression.

Procedure

2. From the Data menu, click Suppress and click Suppression Options.
3. Under Suppress the following, click Rows and columns.
4. Under Suppress the following type of values, select the Zero values check box.
5. Run the report.

Rows and columns containing zeros are hidden.

<table>
<thead>
<tr>
<th>Year to date (USD $ 000's)</th>
<th>2006 Actual results in USD</th>
<th>2005 Actual results in USD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>December</td>
<td>December</td>
</tr>
<tr>
<td>Assets (total)</td>
<td>$4,353,363,798</td>
<td>$3,804,483,176</td>
</tr>
<tr>
<td>Current assets (total)</td>
<td>$2,336,392,807</td>
<td>$2,139,066,575</td>
</tr>
<tr>
<td>Operating assets (total)</td>
<td>$1,778,012,688</td>
<td>$1,484,257,572</td>
</tr>
<tr>
<td>Other assets (total)</td>
<td>$230,950,300</td>
<td>$161,159,029</td>
</tr>
<tr>
<td>Liabilities (total)</td>
<td>($1,602,289,213)</td>
<td>($1,754,874,006)</td>
</tr>
<tr>
<td>Current liabilities (total)</td>
<td>($1,144,967,294)</td>
<td>($1,206,577,775)</td>
</tr>
<tr>
<td>Long-term and other liabilities (total)</td>
<td>($457,321,919)</td>
<td>($548,299,231)</td>
</tr>
<tr>
<td>Equity (total)</td>
<td>($2,751,074,586)</td>
<td>($2,049,609,170)</td>
</tr>
<tr>
<td>Common stock</td>
<td>($719,183,000)</td>
<td>($749,178,000)</td>
</tr>
<tr>
<td>Other capital</td>
<td>($69,921,200)</td>
<td>($183,898,457)</td>
</tr>
<tr>
<td>Retained earnings - net</td>
<td>($1,361,541,522)</td>
<td>($1,116,126,225)</td>
</tr>
<tr>
<td>Currency translation gain (or loss)</td>
<td>($428,864)</td>
<td>($404,488)</td>
</tr>
</tbody>
</table>
Specify what appears for data containers that contain no data

You can specify what appears in a data container when no data is available from the database.

When no data is available, you can show one of the following options:

- An empty data container, such as a blank list.
- Alternate content, such as another data container or an image. You can insert any object from the Toolbox tab.
- Text, such as *There is no data available for this month.* If you show text, you can format it. By default, the text *No Data Available* appears.

You can specify what appears when no data is available for the following data containers: lists, crosstabs, charts, maps, repeaters, repeater tables, and tables of contents.

If your report includes multiple data containers, you can specify different no data contents for each container.

Tip: The No Data sample report in the GO Sales (query) package includes data containers that have no data. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Procedure

1. Select a data container.
2. In the Properties pane, click the select ancestor icon and click the data container type.
3. Click the ellipsis (...) button next to the **No Data Contents** property and select what should appear for data containers that contain no data:
 - To show an empty data container, click **No Contents**.
 - To show alternate content, click **Content specified in the No data tab**.
 - Two tabs appear at the top of the data container and the **No Data Contents** tab is selected automatically.
 - From the Toolbox tab, insert the objects to appear when there is no data available into the **No Data Contents** tab.
 - To show text, click **Specified text** and type the text that you want to appear.

Using Patterns to Format Data

You can format data so that it matches any pattern of text and numbers when default formats are not appropriate. For example, you can format dates to use full text including the era, or you can format them to only use numbers and show the last two digits of years to save space.

Using symbols and patterns can provide similar results as basic data formatting tasks. For example, you can set how many digits appear after the decimal point. You can achieve these types of results with a pattern, or you can set the **No. of Decimal Places** property. Patterns allow flexibility for more complex requirements.

Each supported content language code requires a specific set of symbols to be used in patterns. For each language code, there are two tables you will need; one for
date and time symbols, and one for decimal symbols. The decimal symbols are the same for all locales, however, date and time symbols are grouped into six locale groups. Check the Date and Time Symbol section to see which locale group is used for your locale.

To define patterns, open the **Data Format** dialog box, and edit the **Pattern** property for each format type. Use the symbols that are defined in the language code tables, and follow these guidelines.

Pattern Guidelines

When you define a pattern, the number of symbols you use affects how the data will be shown. There are different rules for text, numbers, and values that can take the form of text or numbers.

Text

You can specify whether text is produced in full or abbreviated form.

<table>
<thead>
<tr>
<th>Number of symbols</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 or more</td>
<td>Full text form</td>
<td>EEEE produces Monday</td>
</tr>
<tr>
<td>Less than 4</td>
<td>Abbreviated form</td>
<td>EEE produces Mon</td>
</tr>
</tbody>
</table>

Numbers

The number of symbols you use in a pattern sets the minimum number of digits that are produced in a report. Numbers that have fewer digits than specified are zero-padded. For example, if you specify mm for minutes, and the database value is 6, the report will show 06.

Note: The year value is handled differently. If you specify two symbols for year, the last two digits of the year value is produced. For example, yyyy produces 1997, and yy produces 97.

Text and Numbers

For values that can produce text or numbers, such as months, you can specify whether text or numbers are produced, and whether words are abbreviated.

<table>
<thead>
<tr>
<th>Number of symbols</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 or more</td>
<td>Text</td>
<td>MMMM produces January</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMM produces Jan</td>
</tr>
<tr>
<td>Less than 3</td>
<td>Numbers</td>
<td>MM produces 01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M produces 1</td>
</tr>
</tbody>
</table>

Date and Time Symbols

Date and time symbols are divided into locales, each of which is detailed below.

Locale Group A

Locales: af-za, en, en-au, en-be, en-bw, en-ca, en-gb, en-hk, en-ie, en-in, en-mt, en-nz, en-ph, en-sg, en-us, en-vi, en-za, fo-fo, gl-es, id, id-id, is, is-is, it, it-ch, it-it,
<table>
<thead>
<tr>
<th>Meaning</th>
<th>Symbol</th>
<th>Presentation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Era</td>
<td>G</td>
<td>Text</td>
<td>AD</td>
</tr>
<tr>
<td>Year</td>
<td>y</td>
<td>Number</td>
<td>1996</td>
</tr>
<tr>
<td>Year (of ‘Week of Year’)</td>
<td>Y</td>
<td>Number</td>
<td>1996</td>
</tr>
<tr>
<td>Month in year</td>
<td>M</td>
<td>Text and number</td>
<td>July and 07</td>
</tr>
<tr>
<td>Week in year</td>
<td>w</td>
<td>Number</td>
<td>27</td>
</tr>
<tr>
<td>Week in month</td>
<td>W</td>
<td>Number</td>
<td>2</td>
</tr>
<tr>
<td>Day in year</td>
<td>D</td>
<td>Number</td>
<td>189</td>
</tr>
<tr>
<td>Day in month</td>
<td>d</td>
<td>Number</td>
<td>10</td>
</tr>
<tr>
<td>Day of week in month</td>
<td>F</td>
<td>Number</td>
<td>2 (2nd Wed in July)</td>
</tr>
<tr>
<td>Day of Week (1=first day)</td>
<td>e</td>
<td>Number</td>
<td>2</td>
</tr>
<tr>
<td>Day in week</td>
<td>E</td>
<td>Text</td>
<td>Tuesday</td>
</tr>
<tr>
<td>a.m. or p.m. marker</td>
<td>a</td>
<td>Text</td>
<td>pm</td>
</tr>
<tr>
<td>Hour in day (1 to 24)</td>
<td>k</td>
<td>Number</td>
<td>24</td>
</tr>
<tr>
<td>Hour in a.m. or p.m. (0 to 11)</td>
<td>K</td>
<td>Number</td>
<td>0</td>
</tr>
<tr>
<td>Hour in a.m. or p.m. (1 to 12)</td>
<td>h</td>
<td>Number</td>
<td>12</td>
</tr>
<tr>
<td>Hour in day (0 to 23)</td>
<td>H</td>
<td>Number</td>
<td>0</td>
</tr>
<tr>
<td>Minute in hour</td>
<td>m</td>
<td>Number</td>
<td>30</td>
</tr>
<tr>
<td>Second in minute</td>
<td>s</td>
<td>Number</td>
<td>55</td>
</tr>
<tr>
<td>Millisecond</td>
<td>S</td>
<td>Number</td>
<td>978</td>
</tr>
<tr>
<td>Time zone</td>
<td>z</td>
<td>Text</td>
<td>Pacific Standard Time</td>
</tr>
<tr>
<td>Escape used in text</td>
<td>'</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Single quote</td>
<td>"</td>
<td>n/a</td>
<td>"</td>
</tr>
</tbody>
</table>

Locale Group B

Locales: be-by, bg-bg, el, el-gr, fi, fi-fi, hr, hr-hr, hu, hu-hu, ja, ja-jp, ko, ko-kr, ro, ro-ro, ru, ru-ua, ru-ru, sh-yu, sk, sk-sk, sl-si, sq-al, sr-sp, th, tr, tr-tr, uk-ua, zh, zh-cn, zh-hk, zh-mo, zh-sg, zh-tw

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Symbol</th>
<th>Presentation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Era</td>
<td>G</td>
<td>Text</td>
<td>AD</td>
</tr>
<tr>
<td>Year</td>
<td>a</td>
<td>Number</td>
<td>1996</td>
</tr>
<tr>
<td>Year (of ‘Week of Year’)</td>
<td>A</td>
<td>Number</td>
<td>1996</td>
</tr>
<tr>
<td>Month in year</td>
<td>n</td>
<td>Text and number</td>
<td>July and 07</td>
</tr>
<tr>
<td>Week in year</td>
<td>w</td>
<td>Number</td>
<td>27</td>
</tr>
<tr>
<td>Week in month</td>
<td>W</td>
<td>Number</td>
<td>2</td>
</tr>
<tr>
<td>Meaning</td>
<td>Symbol</td>
<td>Presentation</td>
<td>Example</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Day in year</td>
<td>D</td>
<td>Number</td>
<td>189</td>
</tr>
<tr>
<td>Day in month</td>
<td>j</td>
<td>Number</td>
<td>10</td>
</tr>
<tr>
<td>Day of week in month</td>
<td>F</td>
<td>Number</td>
<td>2 (2nd Wed in July)</td>
</tr>
<tr>
<td>Day of Week (1=first day)</td>
<td>e</td>
<td>Number</td>
<td>2</td>
</tr>
<tr>
<td>Day in week</td>
<td>E</td>
<td>Text</td>
<td>Tuesday</td>
</tr>
<tr>
<td>a.m. or p.m. marker</td>
<td>x</td>
<td>Text</td>
<td>pm</td>
</tr>
<tr>
<td>Hour in day (1 to 24)</td>
<td>h</td>
<td>Number</td>
<td>24</td>
</tr>
<tr>
<td>Hour in a.m. or p.m. (0 to 11)</td>
<td>K</td>
<td>Number</td>
<td>0</td>
</tr>
<tr>
<td>Hour in a.m. or p.m. (1 to 12)</td>
<td>k</td>
<td>Number</td>
<td>12</td>
</tr>
<tr>
<td>Hour in day (0 to 23)</td>
<td>H</td>
<td>Number</td>
<td>0</td>
</tr>
<tr>
<td>Minute in hour</td>
<td>m</td>
<td>Number</td>
<td>30</td>
</tr>
<tr>
<td>Second in hour</td>
<td>s</td>
<td>Number</td>
<td>55</td>
</tr>
<tr>
<td>Millisecond</td>
<td>S</td>
<td>Number</td>
<td>978</td>
</tr>
<tr>
<td>Time zone</td>
<td>z</td>
<td>Text</td>
<td>Pacific Standard Time</td>
</tr>
<tr>
<td>Escape used in text</td>
<td>`</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Single quote</td>
<td>"</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

Locale Group C

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Symbol</th>
<th>Presentation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Era</td>
<td>G</td>
<td>Text</td>
<td>AD</td>
</tr>
<tr>
<td>Year</td>
<td>u</td>
<td>Number</td>
<td>1996</td>
</tr>
<tr>
<td>Year (of 'Week of Year')</td>
<td>U</td>
<td>Number</td>
<td>1996</td>
</tr>
<tr>
<td>Month in year</td>
<td>M</td>
<td>Text and number</td>
<td>July and 07</td>
</tr>
<tr>
<td>Week in year</td>
<td>w</td>
<td>Number</td>
<td>27</td>
</tr>
<tr>
<td>Week in month</td>
<td>W</td>
<td>Number</td>
<td>2</td>
</tr>
<tr>
<td>Day in year</td>
<td>D</td>
<td>Number</td>
<td>189</td>
</tr>
<tr>
<td>Day in month</td>
<td>t</td>
<td>Number</td>
<td>10</td>
</tr>
<tr>
<td>Day of week in month</td>
<td>F</td>
<td>Number</td>
<td>2 (2nd Wed in July)</td>
</tr>
<tr>
<td>Day of Week (1=first day)</td>
<td>e</td>
<td>Number</td>
<td>2</td>
</tr>
<tr>
<td>Day in week</td>
<td>E</td>
<td>Text</td>
<td>Tuesday</td>
</tr>
<tr>
<td>a.m. or p.m. marker</td>
<td>a</td>
<td>Text</td>
<td>pm</td>
</tr>
<tr>
<td>Hour in day (1 to 24)</td>
<td>h</td>
<td>Number</td>
<td>24</td>
</tr>
</tbody>
</table>
Meaning | Symbol | Presentation | Example |
--- | --- | --- | --- |
Hour in a.m. or p.m. (0 to 11) | K | Number | 0 |
Hour in a.m. or p.m. (1 to 12) | k | Number | 12 |
Hour in day (0 to 23) | H | Number | 0 |
Minute in hour | m | Number | 30 |
Second in minute | s | Number | 55 |
Milliseconds | S | Number | 978 |
Time zone | z | Text | Pacific Standard Time |
Escape used in text | ' | n/a | n/a |
Single quote | " | n/a | " |
Locale Group E

Locales: fr, fr-be, fr-ca, fr-ch, fr-fr, fr-lu

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Symbol</th>
<th>Presentation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Era</td>
<td>G</td>
<td>Text</td>
<td>AD</td>
</tr>
<tr>
<td>Year</td>
<td>a</td>
<td>Number</td>
<td>1996</td>
</tr>
<tr>
<td>Year (of 'Week of Year')</td>
<td>A</td>
<td>Number</td>
<td>1996</td>
</tr>
<tr>
<td>Month in year</td>
<td>M</td>
<td>Text and number</td>
<td>July and 07</td>
</tr>
<tr>
<td>Week in year</td>
<td>w</td>
<td>Number</td>
<td>27</td>
</tr>
<tr>
<td>Week in month</td>
<td>W</td>
<td>Number</td>
<td>2</td>
</tr>
<tr>
<td>Day in year</td>
<td>D</td>
<td>Number</td>
<td>189</td>
</tr>
<tr>
<td>Day in month</td>
<td>j</td>
<td>Number</td>
<td>10</td>
</tr>
<tr>
<td>Day of week in month</td>
<td>F</td>
<td>Number</td>
<td>2 (2nd Wed in July)</td>
</tr>
<tr>
<td>Day of Week (1=first day)</td>
<td>e</td>
<td>Number</td>
<td>2</td>
</tr>
<tr>
<td>Day in week</td>
<td>E</td>
<td>Text</td>
<td>Tuesday</td>
</tr>
<tr>
<td>a.m. or p.m. marker</td>
<td>x</td>
<td>Text</td>
<td>pm</td>
</tr>
<tr>
<td>Hour in day (1 to 24)</td>
<td>h</td>
<td>Number</td>
<td>24</td>
</tr>
<tr>
<td>Hour in a.m. or p.m. (0 to 11)</td>
<td>k</td>
<td>Number</td>
<td>0</td>
</tr>
<tr>
<td>Hour in a.m. or p.m. (1 to 12)</td>
<td>k</td>
<td>Number</td>
<td>12</td>
</tr>
<tr>
<td>Hour in day (0 to 23)</td>
<td>H</td>
<td>Number</td>
<td>0</td>
</tr>
<tr>
<td>Minute in hour</td>
<td>m</td>
<td>Number</td>
<td>30</td>
</tr>
<tr>
<td>Second in minute</td>
<td>s</td>
<td>Number</td>
<td>55</td>
</tr>
<tr>
<td>Millisecond</td>
<td>S</td>
<td>Number</td>
<td>978</td>
</tr>
<tr>
<td>Time zone</td>
<td>z</td>
<td>Text</td>
<td>Pacific Standard Time</td>
</tr>
<tr>
<td>Escape used in text</td>
<td>'</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Single quote</td>
<td>"</td>
<td>n/a</td>
<td>"</td>
</tr>
</tbody>
</table>

Locale Group F

Locales: ga-ie

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Symbol</th>
<th>Presentation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Era</td>
<td>R</td>
<td>Text</td>
<td>AD</td>
</tr>
<tr>
<td>Year</td>
<td>b</td>
<td>Number</td>
<td>1996</td>
</tr>
<tr>
<td>Year (of 'Week of Year')</td>
<td>B</td>
<td>Number</td>
<td>1996</td>
</tr>
<tr>
<td>Month in year</td>
<td>M</td>
<td>Text and number</td>
<td>July and 07</td>
</tr>
<tr>
<td>Week in year</td>
<td>t</td>
<td>Number</td>
<td>27</td>
</tr>
<tr>
<td>Meaning</td>
<td>Symbol</td>
<td>Presentation</td>
<td>Example</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>--------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Week in month</td>
<td>T</td>
<td>Number</td>
<td>2</td>
</tr>
<tr>
<td>Day in year</td>
<td>l</td>
<td>Number</td>
<td>189</td>
</tr>
<tr>
<td>Day in month</td>
<td>L</td>
<td>Number</td>
<td>10</td>
</tr>
<tr>
<td>Day of week in month</td>
<td>F</td>
<td>Number</td>
<td>2 (2nd Wed in July)</td>
</tr>
<tr>
<td>Day of Week (1=first day)</td>
<td>e</td>
<td>Number</td>
<td>2</td>
</tr>
<tr>
<td>Day in week</td>
<td>E</td>
<td>Text</td>
<td>Tuesday</td>
</tr>
<tr>
<td>a.m. or p.m. marker</td>
<td>a</td>
<td>Text</td>
<td>pm</td>
</tr>
<tr>
<td>Hour in day (1 to 24)</td>
<td>u</td>
<td>Number</td>
<td>24</td>
</tr>
<tr>
<td>Hour in a.m. or p.m. (0 to 11)</td>
<td>K</td>
<td>Number</td>
<td>0</td>
</tr>
<tr>
<td>Hour in a.m. or p.m. (1 to 12)</td>
<td>k</td>
<td>Number</td>
<td>12</td>
</tr>
<tr>
<td>Hour in day (0 to 23)</td>
<td>U</td>
<td>Number</td>
<td>0</td>
</tr>
<tr>
<td>Minute in hour</td>
<td>n</td>
<td>Number</td>
<td>30</td>
</tr>
<tr>
<td>Second in minute</td>
<td>s</td>
<td>Number</td>
<td>55</td>
</tr>
<tr>
<td>Millisecond</td>
<td>S</td>
<td>Number</td>
<td>978</td>
</tr>
<tr>
<td>Time zone</td>
<td>c</td>
<td>Text</td>
<td>Pacific Standard Time</td>
</tr>
<tr>
<td>Escape used in text</td>
<td>'</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Single quote</td>
<td>"</td>
<td>n/a</td>
<td>'</td>
</tr>
</tbody>
</table>

Decimal Format Symbols

All locales

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A digit that is shown even if the value is zero.</td>
</tr>
<tr>
<td>#</td>
<td>A digit that is suppressed if the value is zero.</td>
</tr>
<tr>
<td>;</td>
<td>A placeholder for decimal separator.</td>
</tr>
<tr>
<td>,</td>
<td>A placeholder for thousands grouping separator.</td>
</tr>
<tr>
<td>E</td>
<td>Separates mantissa and exponent for exponential formats.</td>
</tr>
<tr>
<td>;</td>
<td>Separates formats for positive numbers and formats for negative numbers.</td>
</tr>
<tr>
<td>-</td>
<td>The default negative prefix.</td>
</tr>
<tr>
<td>%</td>
<td>Multiplied by 100, as percentage.</td>
</tr>
<tr>
<td>%%%</td>
<td>Multiplied by 1000, as per mille.</td>
</tr>
<tr>
<td>☺</td>
<td>The currency symbol. If this symbol is present in a pattern, the monetary decimal separator is used instead of the decimal separator.</td>
</tr>
<tr>
<td>Symbol</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>☢️</td>
<td>The international currency sign. It will be replaced by an international currency symbol. If it is present in a pattern, the monetary decimal separator is used instead of the decimal separator.</td>
</tr>
<tr>
<td>X</td>
<td>Other characters that can be used in the prefix or suffix.</td>
</tr>
<tr>
<td>:</td>
<td>Used to quote special characters in a prefix or suffix.</td>
</tr>
<tr>
<td>/u221E</td>
<td>Infinity symbol.</td>
</tr>
<tr>
<td>/uFFFD</td>
<td>Not a Number symbol.</td>
</tr>
</tbody>
</table>
Chapter 18. Using Query Macros

A macro is a fragment of code that you can insert in the Select statement of a query or in an expression. For example, add a macro to insert a new data item containing the user's name.

You can include references to session parameters, parameter maps, and parameter map entries in macros. Parameter values are set when you run the query. For example, you can use the language session parameter to show only the data that matches the language setting for the current user.

Macros can be used in these different ways:

- They can be inserted in the SQL.

 An example is `SELECT * FROM Country WHERE Country.Name = #$myMap{$runLocale}#`

- They can supply an argument to a stored procedure query subject.

 If a value is not hard-coded for the argument, the stored procedure query subject can be used to return different data.

- They can be inserted in expressions, such as calculations and filters.

 An example is a filter `[gosales].[Sales staff].[Staff name] = #$UserLookUpMap{$UserId}#`

- They can be used as a parameter wizard.

 Parameters can reference other parameters. An example is `Map1, Key = en-us, Value = #$myMap{$UserId}#`

You can also add query macros to the IBM Cognos Framework Manager model. For more information, see the Framework Manager User Guide.

Support for query macros in IBM Cognos Report Studio includes the same capabilities as macros used in Framework Manager. However, Report Studio query macros do not extend to the layout. Therefore, when making changes to the query using macros, you must bear in mind the side-effects on the layout. For example, if a macro removes a column from the query that the layout refers to, a run-time error will occur.

Syntax

Use the following syntax to reference session parameter and parameter values.

<table>
<thead>
<tr>
<th>Object</th>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session key</td>
<td>$session_key</td>
<td>#$my_account#</td>
</tr>
<tr>
<td>Parameter map key</td>
<td>$map(<key>)</td>
<td>#$map_one('abc')#</td>
</tr>
<tr>
<td>Parameter map entry whose key is defined by a session parameter</td>
<td>$map($session_key)</td>
<td>#$map_one($my_account)#</td>
</tr>
</tbody>
</table>
You can add the following elements to further define the macro expression.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single quotation marks '</td>
<td>Delineates a literal string that has a single quotation mark as part of the string. If the single quotation mark displays in a string, such as a query item, the string must be enclosed in a single quotation mark on both sides of the string and the single quotation mark must be doubled. For example, ab'c is written as 'ab''c'. If the single quotation mark displays in a macro, the string must be enclosed in square brackets. For example, ab'c is written as [ab'c] If the single quotation mark displays in a prompt, there is no need to enclose the string. To escape a single quotation mark in an expression, use '</td>
</tr>
<tr>
<td>Square brackets []</td>
<td>Encloses model objects, such as a namespace or query subject and macro names that contain restricted characters, such as a number sign, hyphen, or space.</td>
</tr>
<tr>
<td>Curly brackets, also known as braces { }</td>
<td>Calls a function that is unknown to the parser, such as dateadd in DB2, and whose first argument is a keyword. Example: dateadd ({month},2,<date expression>)</td>
</tr>
<tr>
<td>+ operator</td>
<td>Concatenates two strings, such as 'abc' + 'xyz'</td>
</tr>
<tr>
<td>Single quote function (sq)</td>
<td>Surrounds the result of a string expression with single quotation marks. If the single quotation mark displays in a string, such as a query item, the string must be enclosed in a single quotation mark on both sides of the string and the single quotation mark must be doubled. You can use this function to build clauses to test against literal parameter-driven values. Here is an example: #sq($my_sp)# If a session parameter (my_sp) has the value ab'cc, the result is 'ab''cc'</td>
</tr>
</tbody>
</table>
Symbol Purpose

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Double quote function (dq) | Surrounds the result of a string expression with double quotation marks. You can use this function to refer to table and column names with non-identifier characters, such as a blank space or a percent sign (%). Here is an example: #dq ('Column' + $runLocale)# If runLocale=en-us, the result is "Column en-us"
| | |
| Square bracket function (sb) | Inserts a set of square brackets into the argument to build object references in a model query and model expressions, such as filters and calculations. Here is an example: #sb ('my item in ' + $runLocale)# If runLocale=en-us, the result is [my item in en-us] |

For information about functions, see Appendix E, “Using the expression editor,” on page 619.

Add a Query Macro

Add a query macro to allow run-time changes to be made to SQL queries.

About this task

When you reference a parameter, you must do the following:

- Use a number sign (#) at the beginning and end of each set of one or more parameters. Everything between the number signs is treated as a macro expression, which is processed at runtime. Framework Manager removes anything that is outside the number signs.
- Precede each parameter map entry with a dollar sign ($)
- Use a name that starts with an alpha character (a..z, A..Z)

Do not insert macros between existing quotation marks or square brackets because IBM Cognos Report Studio does not execute anything within these elements.

Tip: For a list of supported macro functions, see "Calculation components" on page 619.
Procedure
1. To add a macro to an expression, in the Expression Editor, click the macros tab.
2. Pause the pointer over the query explorer button and click Queries.
3. If the query to which you are adding a macro was built by using your own SQL, do the following:
 • Click the SQL object that is linked to the query.
 • In the Properties pane, double-click the SQL property.
 • In the SQL dialog box, type the macro.
4. If the query to which you are adding a macro was not built by using your own SQL, do the following:
 • Click the query.
 • In the Properties pane, double-click the Generated SQL/MDX property.
 • In the Generated SQL/MDX dialog box, click Convert.
 • In the SQL dialog box, type the macro.

Creating Prompts Using Query Macros

You can create mandatory and optional prompts in reports using query macros.

Use the prompt macro functions prompt and promptmany to create single-value and multiple-value prompts. You can use prompt macro functions when working with a relational data source or a dimensionally-modeled relational (DMR) data source.

If you want to use a prompt macro in an expression such as a calculation, you must specify the data type when using an overloaded operator, such as a plus sign (+). You can use the plus sign to concatenate two items and to add two items.

If you want to define a filter on a dimension level and have the filter use the prompt or promptmany macro, you must provide the data type as memberuniquename and a default value.

Here is an example:

```
members( [MS_gosales].[New Dimension].[PRODUCTLINE].[PRODUCTLINE])
  in ( set{ #promptmany('what', 'memberuniquename',
    '[MS_gosales].[PROD1].[PRODUCTLINE].[PRODUCTLINE] 
    ->[all].[1]') } )
```

Here is an example of a mandatory prompt:

```
select
  COUNTRY_MULTILINGUAL.COUNTRY_CODE as COUNTRY_CODE,
  COUNTRY_MULTILINGUAL.COUNTRY as COUNTRY,
  COUNTRY_MULTILINGUAL."LANGUAGE" as LANGUAGE1,
  COUNTRY_MULTILINGUAL.CURRENCY_NAME as CURRENCY_NAME
from
  gosales.gosales.dbo.COUNTRY_MULTILINGUAL
where COUNTRY_MULTILINGUAL.COUNTRY = #prompt('CountryName')#
```

When default values are specified in the syntax of macro prompts, you may see an error. Use prompt syntax such as where Country = ?Enter Country?.
The prompt and promptmany functions have the following mandatory and optional parameters. All argument values must be specified as strings.

Name

This mandatory parameter is the name of the prompt. Name can also refer to the name of a parameter on a user-created prompt page, in which case the user-created prompt page appears when the report is run instead of the default prompt page that the macro would generate.

Datatype

This optional parameter is the prompt value data type. The default value is string. Prompt values are validated. In the case of strings, the provided value is enclosed in single quotation marks and embedded single quotation marks are doubled.

Values include the following:
- boolean
- date
- datetime
- decimal
- double
- float
- int
- integer
- interval
- long
- memberuniquename

Memberuniquename is not an actual data type. This value must be used when the data type of the parameter is member unique name (MUN).
- numeric
- real
- short
- string
- time
- timeinterval
- timestamp
- token

Token is not an actual data type. It is a way to pass SQL. A token does not pass values.
- xsddate
- xsddatetimel
- xsddecimal
- xsddouble
- xsdduration
- xsdfloat
- xsdint
- xsdlonl
DefaultText

This optional parameter is the text to be used by default. If a value is specified, the prompt is optional.

If you use a space and no values are provided in the Prompt Value dialog box, a Where clause is usually not generated.

If you use text and no values are provided in the Prompt Value dialog box, a Where clause is usually generated using the default value.

Ensure that the text you provide results in a valid SQL statement.

Note: If the data type is memberuniquename, a value for the DefaultText parameter must be provided. For example:

```sql
(#prompt('WhichLevel', 'memberuniquename', '[goSalesAgain].[PRODUCT1].[PRODUCT].[PRODUCT(All)]->[all]')#)
```

Text

This optional parameter is text that precedes any user-provided values, such as 'and column1 = '.

QueryItem

This parameter is optional. The prompt engine can take advantage of the Prompt Info properties of the query item. Descriptive information can be shown, although the prompt value is a code.

TextFollowing

This optional parameter is the closing parenthesis that is used most often for the promptmany function. This parameter is also useful when the prompt is optional and is followed by hardcoded filters in the SQL statement.

Examples - selecting country or region prompts

When a report is run, you want your users to be prompted to choose the country or region for which they want to see data. The following code examples describe how you can use macros to create different prompts.

Mandatory prompt with no data type specified

Note the following:
- The Datatype argument is not specified. Therefore, it is a string, which is correct in this case.
- The DefaultText argument is not specified. Therefore, it is a mandatory prompt.

```sql
select
COUNTRY_MULTILINGUAL.COUNTRY_CODE as COUNTRY_CODE,
COUNTRY_MULTILINGUAL.COUNTRY as COUNTRY,
COUNTRY_MULTILINGUAL."LANGUAGE" as LANGUAGE1,
```
Mandatory prompt with the data type specified

Note the following:
• This prompt requires a valid integer value as response.
• The DefaultText argument is not specified. Therefore, it is a mandatory prompt.

Optional prompt and mandatory filter with the data type and default value specified

Note the following:
• This prompt allows the user to supply a valid integer response.
• The DefaultText argument is specified. Therefore, the user may omit entering a value, in which case the value 10 is used. This makes it an optional prompt, but not an optional filter.

Example 1:

```sql
select
    COUNTRY_MULTILINGUAL.COUNTRY_CODE as COUNTRY_CODE,
    COUNTRY_MULTILINGUAL.COUNTRY as COUNTRY,
    COUNTRY_MULTILINGUAL."LANGUAGE" as LANGUAGE1,
    CURRENCY_NAME as CURRENCY_NAME
from
    gosales.gosales.dbo.COUNTRY_MULTILINGUAL COUNTRY_MULTILINGUAL
where COUNTRY_MULTILINGUAL.COUNTRY_CODE >
    #prompt('Starting CountryCode',
        'integer',
        '',
        '',
        '[gosales].[COUNTRY_MULTILINGUAL].[COUNTRY_CODE]')#
```

Example 2:

```sql
[gosales].[COUNTRY].[COUNTRY] = #prompt('countryPrompt','string','''Canada''')#
Result 2:
[gosales].[COUNTRY].[COUNTRY] = 'Canada'
```

Note the following:
• The DefaultText parameter must be specified such that is literally valid in the context of the macro, because no formatting takes place on this value. See details below.
• The default string Canada in Example 2 is specified as a string using single quotes, in which the embedded single quotes are doubled up, thus 3 quotes. This results in the string being properly displayed within single quotes in the expression.

• As a general rule for the string datatype, the defaultText should always be specified as in the previous note, except in the context of a stored procedure parameter.

• For the defaultText of types date or datetime, a special format should be used in the context of SQL. Examples of these formats are 'DATE ''2001-12-25''' and 'DATETIME ''2001-12-25 12:00:00'''. In all other contexts, you use the date/datetime without the keyword and escaped single quotes (e.g., '2001-12-25').

Prompt that appends text to the value

Note the following:

• The DefaultText argument is specified as a space character. In this case, the generated text is just the space character, which eliminates the Where clause from the query.

• The Text argument is specified, which is written into the generated SQL before the user-provided prompt value.

```sql
select COUNTRY_MULTILINGUAL.COUNTRY_CODE as COUNTRY_CODE,
       COUNTRY_MULTILINGUAL.COUNTRY as COUNTRY,
       COUNTRY_MULTILINGUAL."LANGUAGE" as LANGUAGE1,
       COUNTRY_MULTILINGUAL.CURRENCY_NAME as CURRENCY_NAME
from gosales.gosales.dbo.COUNTRY_MULTILINGUAL COUNTRY_MULTILINGUAL
#prompt('Starting CountryCode',
       'integer',
       ' ', // <= this is a space
       'where COUNTRY_MULTILINGUAL.COUNTRY_CODE >'
)#
```

Syntax substitution

Note the following:

• The Datatype argument is set to token, which means that the user-provided value is entered without any checking on the provided value.

 Because checking is not performed on the value, the expression editor may indicate that the expression is not valid. When a valid user-provided value is supplied or if you provide a valid default value, expression editor will interpret the expression as valid.

• Token should be used only if there is a list of pick-values for the user.

• The DefaultText argument is specified. Therefore, this is an optional prompt and group by COUNTRY is used in the generated SQL.

```sql
select COUNTRY_MULTILINGUAL.COUNTRY_CODE as COUNTRY_CODE,
       COUNTRY_MULTILINGUAL.COUNTRY as COUNTRY,
       COUNTRY_MULTILINGUAL."LANGUAGE" as LANGUAGE1,
       COUNTRY_MULTILINGUAL.CURRENCY_NAME as CURRENCY_NAME
from gosales.gosales.dbo.COUNTRY_MULTILINGUAL COUNTRY_MULTILINGUAL
#prompt('Sort column',
       'token',
       'group by COUNTRY',
       'group by ')
)#
```
Examples - creating prompts that use parameter maps

When a report is run, you want your users to select a language for the data in the report. The following examples describe several ways you can do this.

Prompt that uses session variables

Note the following:

- The name of the prompt is specified using a lookup in the parameter map named PromptLabels. The key value is the session variable $language.
- The WHERE clause is using a parameterized column.

```sql
select
ORDER_METHOD.ORDER_METHOD_CODE as ORDER_METHOD_CODE,
ORDER_METHOD.ORDER_METHOD_#$language# as ORDER_METHOD_EN
from
gosales.gosales.dbo.ORDER_METHOD ORDER_METHOD
#prompt($PromptLabels{$language},
'','','where ORDER_METHOD.ORDER_METHOD_ ' + $language + ' >'
)#
```

A parameter map that nests prompts

Note the following:

- In the model, there is a parameter map DynPromptLabels with
 #${PromptLabels}$language#.
- Part of the prompt information is run from a parameter map instead of being coded directly inside the SQL.
- The whole macro containing the prompt can be a value in a parameter map.

```sql
select
ORDER_METHOD.ORDER_METHOD_CODE as ORDER_METHOD_CODE,
ORDER_METHOD.ORDER_METHOD_#$language# as ORDER_METHOD_EN
from
gosales.gosales.dbo.ORDER_METHOD ORDER_METHOD
#prompt($DynPromptLabels{'ex9'},
'','','where ORDER_METHOD.ORDER_METHOD_ ' + $language + ' >'
)#
```

Examples - creating a multiple value prompt

When a report is run, you want your users to select one or more values. The following examples describe several ways you can do this.

Prompt with a required minimum

Note the following:

- The user must enter at least a single value.
- This resembles the first example on prompting for a country or region.

```sql
select
COUNTRY_MULTILINGUAL.COUNTRY_CODE as COUNTRY_CODE,
COUNTRY_MULTILINGUAL.COUNTRY as COUNTRY,
COUNTRY_MULTILINGUAL."LANGUAGE" as LANGUAGE1,
COUNTRY_MULTILINGUAL.CURRENCY_NAME as CURRENCY_NAME
```

Chapter 18. Using Query Macros 475
Prompt with a required minimum with the data type specified

Note the following:

- This resembles the second example on prompting for a country or region. "Mandatory prompt with the data type specified" on page 473.

```sql
select
  COUNTRY_MULTILINGUAL.COUNTRY_CODE as COUNTRY_CODE,
  COUNTRY_MULTILINGUAL.COUNTRY as COUNTRY,
  COUNTRY_MULTILINGUAL."LANGUAGE" as LANGUAGE1,
  COUNTRY_MULTILINGUAL.CURRENCY_NAME as CURRENCY_NAME
from
  gosales.gosales.dbo.COUNTRY_MULTILINGUAL COUNTRY_MULTILINGUAL
where COUNTRY_MULTILINGUAL.COUNTRY_CODE IN (
  #promptmany('Selected CountryCodes',
    'integer',
    '' , / /<==this
  )#
)
```

Optional prompt with the data type and default value specified

The In clause and both parentheses are part of the SQL statement.

```sql
select
  COUNTRY_MULTILINGUAL.COUNTRY_CODE as COUNTRY_CODE,
  COUNTRY_MULTILINGUAL.COUNTRY as COUNTRY,
  COUNTRY_MULTILINGUAL."LANGUAGE" as LANGUAGE1,
  COUNTRY_MULTILINGUAL.CURRENCY_NAME as CURRENCY_NAME
from
  gosales.gosales.dbo.COUNTRY_MULTILINGUAL COUNTRY_MULTILINGUAL
where COUNTRY_MULTILINGUAL.COUNTRY_CODE IN ("10")#
```

Prompt that adds text before the syntax

Note the following:

- This example uses the TextFollowing argument.

```sql
select
  COUNTRY_MULTILINGUAL.COUNTRY_CODE as COUNTRY_CODE,
  COUNTRY_MULTILINGUAL.COUNTRY as COUNTRY,
  COUNTRY_MULTILINGUAL."LANGUAGE" as LANGUAGE1,
  COUNTRY_MULTILINGUAL.CURRENCY_NAME as CURRENCY_NAME
from
  gosales.gosales.dbo.COUNTRY_MULTILINGUAL COUNTRY_MULTILINGUAL
#promptmany('Selected CountryCodes',
  'integer',
  '' , / /<==this
is a space
  'where COUNTRY_MULTILINGUAL.COUNTRY_CODE IN
( ',
  ',
  ')'#
)
**Optional prompt that adds text before the syntax**

Select
COUNTRY_MULTILINGUAL.COUNTRY_CODE as COUNTRY_CODE,
COUNTRY_MULTILINGUAL.COUNTRY as COUNTRY,
COUNTRY_MULTILINGUAL."LANGUAGE" as LANGUAGE1,
COUNTRY_MULTILINGUAL.CURRENCY_NAME as CURRENCY_NAME
from
gosales.gosales.dbo.COUNTRY_MULTILINGUAL COUNTRY_MULTILINGUAL,
gosales.gosales.dbo.COUNTRY XX
where COUNTRY_MULTILINGUAL.COUNTRY_CODE = XX.COUNTRY_CODE
#promptmany("Selected CountryCodes",
  'integer',
  ' ',
  ' and COUNTRY_MULTILINGUAL.COUNTRY_CODE IN (',
    '',
    ');'
);
Chapter 19. Using Drill-through Access

Using drill-through access, you can move from one report to another within a session while maintaining your focus on the same piece of data. For example, you select a product in a sales report and move to an inventory report about that product.

Drill-through access helps you to build business intelligence applications that are bigger than a single report. Drill-through applications are a network of linked reports that users can navigate, retaining their context and focus, to explore and analyze information.

Drill-through access works by defining the target report or object and then using information from the source report to filter the target. IBM Cognos BI can match data from the source to metadata in the target report, or you can define parameters in the target for greater control.

Note: In the dimensional reporting style, you can also enable drilling up and drilling down. For more information about drilling up and drilling down, see “Create a Drill-up and Drill-down Report” on page 372.

What You Should Know

For a drill-through link to work, it is necessary to know

• the source
• the target
• how the data in the packages that contain these objects is related

Depending on the underlying data, you may create a drill-through definition and have IBM Cognos BI match the data (dynamic drill-through) or create parameters in the target (parameterized drill-through).

• whether to run the target report or to open it

The target of drill-through access is usually a saved report definition. The report can be created in IBM Cognos Report Studio, IBM Cognos Query Studio, IBM Cognos PowerPlay Studio, or IBM Cognos Analysis Studio. The target of drill-through access can also be a package that contains an IBM Cognos PowerCube, in which case a default view of the PowerCube is created.

• whether the users of the drill-through link in the source report have the appropriate permissions to view or run the target report
• if the target is being run, in what format to run it, and what filters to use on the target

If you do not want to run the target report on demand, you may link to a bookmark in the saved output instead of running the report. For more information, see the IBM Cognos Business Intelligence Administration and Security Guide.

Sources and Targets

In IBM Cognos BI, there are many different examples of source and target. For example, you can drill through
between reports created in different packages against different data source types, such as from an analysis against a package that contains a PowerCube to a detailed report against a package based on a relational data source.

from one existing report to another report using definitions created in Report Studio.

between IBM Cognos Viewer reports authored in Report Studio, Query Studio, and Analysis Studio.

to and from a package built on a PowerCube.

from IBM Cognos Series 7 to IBM Cognos BI reports.

from Metric Studio to other IBM Cognos BI reports by passing parameters using URLs.

For more information, see the IBM Cognos Metric Studio User Guide.

Tip: In the GO Data Warehouse (analysis) package, the Positions to Fill sample report is a drill-through target report and the Recruitment Report sample report is a drill-through source report. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Understanding Drill-through Concepts

Before you set up drill-through access, you must understand the key concepts about drilling through. Knowing these concepts will help you to avoid errors so that report consumers drill through as efficiently as possible.

Drill-through Paths

You can create a drill-through path in a source report in IBM Cognos Report Studio, or using Drill-through Definitions in IBM Cognos Connection. A drill-through path is the definition of the path that is taken when moving from one report to another, including how the data values are passed between the reports.

Using Drill-through Definitions, you can create a drill-through path from any report in the source package to any target report in any other package in IBM Cognos Connection. This type of drill-through definition is stored in the source package. Users of any report in the package can use the drill-through definition to drill between any combination of IBM Cognos Analysis Studio, IBM Cognos Query Studio, IBM Cognos PowerPlay Studio, or IBM Cognos Viewer reports in any package.

For any target report that contains parameters, you should map the target parameters to the correct metadata in the drill-through path. This ensures that the values from the source report are passed to the correct parameter values, and that the target report is filtered correctly. If you do not map parameters, then the users may be prompted for values when the target report is run.

A report-based drill-through path refers to a path created and stored in a Report Studio source report. This type of drill-through path is also called authored drill through. The path is associated with a specific data column, chart, or cross tab in the source report, and is available only when users select that area of the report. If an authored drill-through definition is available, a hyperlink appears in the source report when it is run.

Report-based drill-through is limited to Report Studio source reports and any target reports. Use this type of drill-through access when you want to pass data...
item values or parameter results from within a source report to the target report, pass the results of a report expression to a target report, or a use URL link as a part of the drill-through definition.

Selection Contexts

The selection context represents the structure of the values selected by the user in the source.

In IBM Cognos Analysis Studio, this includes the context area. When a package drill-through definition is used, the selection context is used to give values for mapped parameters (parameterized drill-through) or also to map the appropriate data items and values.

Drill-through links can also be defined to open the target object at a bookmark. The content of this bookmark may also specified by the selection context.

Drill-through access is possible between most combinations of the IBM Cognos Business Intelligence studios. Each studio is optimized for the goals and skills of the audience that uses it, and in some cases for the type of data source it is designed for. Therefore, you may need to consider how the various studios manage the selection context when you drill through between objects created in different studios, and how the data sources are conformed. During testing or debugging, you can see how source values are being mapped in different contexts using the drill-through assistant.

Drilling Through to Different Report Formats

The settings in the drill-through definition determine the format in which users see the report results.

For example, the users may see the reports in IBM Cognos Viewer as an HTML Web page, or the reports may open in IBM Cognos Query Studio, IBM Cognos PowerPlay Studio, or IBM Cognos Analysis Studio. If your users have PowerPlay Studio, then they may also see the default view of a PowerCube.

Reports can be opened as HTML pages, or as PDF, XML, CSV, or Microsoft Excel spreadsheet software formats. When you define a drill-through path, you can choose the output format. This can be useful if the expected use of the target report is something other than online viewing. If the report will be printed, output it as PDF; if it will be exported to Excel for further processing, output it as Excel or CSV, and so on.

If you define a drill-through path to a report that is created in Analysis Studio, PowerPlay Studio, or Query Studio, consumers can open the report in its studio instead of in IBM Cognos Viewer. This can be useful if you expect a consumer to use the drill-through target report as the start of an analysis or query session to find more information.

For example, if an application contains a dashboard style report of high-level data, you can define a drill-through link to Analysis Studio to investigate items of interest. The Analysis Studio view can then be drilled through to a PDF report for printing.

Note: IBM Cognos Report Studio does not display data results.
Drilling Through Between Packages
You can set up drill-through access between packages.

The two packages can be based on different types of data source, but there are some limits. The following table shows the data source mappings that support drill-through access.

*Table 3. Data source mappings that support drill-through access*

<table>
<thead>
<tr>
<th>Source data source</th>
<th>Target data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLAP</td>
<td>OLAP</td>
</tr>
<tr>
<td></td>
<td>Note: OLAP to OLAP drill through is supported only if the data source type is the same, for example, SSAS to SSAS.</td>
</tr>
<tr>
<td>OLAP</td>
<td>Dimensionally modeled relational</td>
</tr>
<tr>
<td>OLAP</td>
<td>Relational data</td>
</tr>
<tr>
<td></td>
<td>Note: For more information, see <a href="#">Business Keys</a> on page 483.</td>
</tr>
<tr>
<td>Dimensionally modeled relational</td>
<td>Dimensionally modeled relational</td>
</tr>
<tr>
<td>Dimensionally modeled relational</td>
<td>Relational</td>
</tr>
<tr>
<td>Relational</td>
<td>Relational</td>
</tr>
</tbody>
</table>

Bookmark References
When you drill through, the values that you pass are usually, but not always, used to filter the report. IBM Cognos Business Intelligence supports bookmarks within saved PDF and HTML reports so that a user can scroll a report to view the relevant part based on a URL parameter.

For example, you have a large inventory report scheduled to run daily or weekly during off hours because of resource considerations. Your users may want to view this report as a target because it contains detailed information, but you want them to view the saved output rather than run this large report. Using this Action option and bookmark settings, users can drill through from another source location based on products to open the saved report to the page that shows the product they want to focus on.

When a bookmark in the source report is used in a drill-through definition, it provides the value for the URL parameter. When report consumers drill through using this definition, they see the relevant section of the target report.

Bookmark references are limited to previously run reports that are output as PDF or HTML and contain bookmark objects.
Members and Values

Dimensionally modeled data, whether stored in cubes or stored as dimensionally modeled relational (DMR) data, organizes data into dimensions. These dimensions contain hierarchies. The hierarchies contain levels. And the levels contain members.

An example of a dimension is Locations. A Locations dimension may contain two hierarchies: Locations by Organization Structure and Locations by Geography. Either of these hierarchies may contain levels like Country or Region and City.

Members are the instances in a level. For example, New York and London are members in the City level. A member may have multiple properties, such as Population, Latitude, and Longitude. Internally, a member is identified by a Member Unique Name (MUN). The method by which a MUN is derived depends on the cube vendor.

Relational data models are made up of data subjects, such as Employees, which are made up of data items, such as Name or Extension. These data items have values, such as Peter Smith.

In IBM Cognos Business Intelligence, the methods of drilling through available are

- Dimensional (member) to Dimensional (member)
- Dimensional (member) to Relational (data item value)
- Relational (data item value) to Relational (data item value)

If the target parameter is a member, the source must be a member. The source and target should usually be from a conformed dimension. However, if the data supports it, you may also choose to define a mapping using different properties of the source metadata item.

If the target parameter is a value, the source can be either a value or a member. If the source is a dimensional member, you must ensure that the level or dimension is mapped to the target data item correctly in the drill-through definition. The business key from which the member is sourced should usually match the relational target value, which is most often the business key. However, if the data supports it, you may also choose to define a mapping from the caption of the source metadata item.

Member Unique Names

The member unique name (MUN) is a unique identifier for a member in IBM Cognos reports. It is stored in the report specification when the member is referenced in the report directly.

The MUN is used in drill-through between OLAP data sources. The member keys in the MUN for the different OLAP data sources must match.

The MUN is used to find the member in the data source, which is similar to how business keys are used to find records in a table. For example, when you create OLAP dimension Products, you use the Product Line database column as a label for the members in your Product Line level. However, you use the Product Line Code business key from the database table to ensure that all the Product lines are unique in that level. The source value that you used to create the members is used in combination with the data source name, hierarchy, and level information in the member unique name.
If the MUN changes, members that are directly referenced in expressions, filters, or reports are no longer found. Changes to the MUN may be related to other changes. For example, changes to the hierarchy and level structures may change the level unique name, and changes to the business key values may change the member key path. Other factors that can affect the MUN are application changes during the design stage or over time, IBM Cognos PowerCube category codes that are unpredictably unique, the production environment that has more members than the test environment, or removing the member from the data source.

To avoid potential problems, we recommend the following best practices when you build OLAP data sources:

- Use unique codes and keys within a dimension for the member keys.
- Define your OLAP and relational packages using unique conformed values for the source values (business keys) within similar dimensions or data values where drill-through between applications may be required.
- Ensure that the business keys and dimension metadata structure are the same in the production and test environments.
- Do not change the business keys in IBM Cognos Framework Manager in the production environment.
- Resolve the non-unique keys in a dimension in the data source before you build the cube.
- Ensure that there are no duplicate source values in all levels of a dimension before you build a PowerCube. We do not recommend using the tilde character (~) in the category codes.

For more information, see the section about uniqueness in the IBM Cognos Series 7 Step-by-Step Transformer.

For information about PowerCubes migrated from IBM Cognos Series 7, see the IBM Cognos PowerPlay Migration and Administration Guide.

### Conformed Dimensions

If you work with more than one dimensional data source, you may notice that some dimensions are structured the same, and some are not.

The reason that dimensions can be structured differently is that the data sources may serve different purposes.

For example, a Customer dimension appears in a Revenue data store, but not in an Inventory data store. However, the Products dimension and the Time dimension appear in both data stores.

Dimensions that appear in multiple data stores are conformed if their structure is identical for all of the following:

- hierarchy names
- level names
- level order
- internal keys

Drilling through is possible between different dimensional data stores only if the dimensions are conformed, and if the dimension data store is of the same vendor type, such as IBM Cognos PowerCube as the source and the target. For example, in two data stores for Revenue and Inventory that contain Products and Time dimensions, it is possible to define the Products and Time dimensions differently.
for each data store. However, for drill-through between the Products and Time dimensions to work, their structures must be identical in each data store.

If you are not sure whether your dimensions are conformed, then you should check with the data modeler to ensure that the drilling through will produce meaningful results.

IBM Cognos Business Intelligence does not support conformed dimensions generated by IBM Cognos Framework Manager for SAP BW data sources.

**Dimensionally modeled Relational Data Sources**

Ensure that each level contains a business key that has values that match your PowerCube or other DMR models. Also, you must also ensure that the **Root Business Key** property is set and uses the business key of the first level in the hierarchy. This helps to ensure that you have a conformed member unique name when attempting to drill through using members from this dimension.

**Related concepts:**

“Data Does Not Appear in a Target Report or the Wrong Data Appears” on page 560

If no data appears when you drill through to a target report or if the wrong data appears, the problem might be data source conformance. The business keys might be different or might be mismatched.

**Related tasks:**

“Unexpected or Empty Results When Drilling Through” on page 564

When you drill from a source report to a target report, there might be no data returned. This might be the correct result if there is no data that corresponds to the drill-through selections or if you do not have permission to view the data.

**Business Keys**

When drill-through access is defined from a member to a relational value, the business key of the member is passed by default.

This means that your relational target parameter must be set up using the data item with a matching value, which is most often the business key data item. You can also choose to pass the caption of the source metadata item.

For example, employees are usually uniquely identified by an employee number, not by their name, because their name is not necessarily unique. When you drill through from a dimensional member to a relational data item, the value provided is the business key. Therefore, the parameter in the target report must be defined to accept a business key value. The exact logic used to define the business key value supplied depends on the cube vendor. For IBM Cognos PowerCubes, the business key value is the **Source** property defined for the level in IBM Cognos Transformer. IBM Cognos Series 7 Transformer PowerCubes pass the source value if the drill-through flag was enabled before the cube was built. Otherwise, the category code is used.

In IBM Cognos Report Studio, you can determine what the member business key is using an expression such as `roleValue('_businessKey', [Camping Equipment])`. This expression is case-sensitive.

SSAS 2005 multipart business keys are not supported in drill-through operations.
Tip: When other users run your drill-through report, you may not want them to be prompted for a business key. In Report Studio, you can build a prompt page with a text that is familiar to the users, but filters on the business key. Your IBM Cognos Framework Manager modeler can also set the `Display Item Reference` option for the `Prompt Info` property to use the business key when the data item is used in a prompt.

**Related concepts:**
- “Data Does Not Appear in a Target Report or the Wrong Data Appears” on page 560

If no data appears when you drill through to a target report or if the wrong data appears, the problem might be data source conformance. The business keys might be different or might be mismatched.

**Related tasks:**
- “Unexpected or Empty Results When Drilling Through” on page 564

When you drill from a source report to a target report, there might be no data returned. This might be the correct result if there is no data that corresponds to the drill-through selections or if you do not have permission to view the data.

**Scope**

Scope is specific to drill-through definitions created using Drill-through Definitions in IBM Cognos Connection (package drill-through definitions). The scope you set defines when the target report is shown to the users, based on the items they have in the source report.

Usually, you define the scope of a drill-through path to match a parameter that it passes. For example, if a target report contains a list of employees, typically you want to display the report as an available drill-through choice only when a user is viewing employee names in a source report. If employee names are not in the source report and the scope was set on the employee name in the drill-through definition, the employee report does not appear on the list of available drill-through target reports in the Go To page. You can set the scope to a measure or to an item in the report.

In report-based drill-through access, where the drill-through path is associated with a specific report column, the column serves as the scope.

**Mapped Parameters**

Drill-through targets may contain existing parameters or you can add parameters to the target for greater control over the drill-through link.

You usually map all parameters in a drill-through target to items from the source.

When you map source items that are OLAP or DMR members to target parameters, you can select from a set of related member properties to satisfy the requirements of the target parameter. For a dimensional target, a dimensional source item uses the member unique name by default. For a relational target, a dimensional source item uses the business key by default.

For example, you could change the source member property that is used for a mapping to the member caption instead of the business key to match the parameter in a relational target. For a dimensional target, you could define a parameter that accepts a particular property (such as business key or parent unique name), then pass the appropriate source property to satisfy that target.
**Note:** If you define drill through between non-conformed dimensions, you should test carefully to ensure that the results behave as expected.

If you do not specify parameter mappings, then by default, you will be prompted for any parameters required in the target when you use the drill-through link. To customize this behavior, use the display prompt pages setting.

When the action is set to **Run using dynamic filtering**, then additional filtering is applied if names from the context in the source report match names of items in the target. Use this action as well when there are no parameters defined in the target.

If parameters are not mapped correctly, then you may receive an empty report, the wrong results, or an error message.

The source and target cannot contain identical parameter names when they are from different packages, even if the data structure is conformed. If the source and target are from the same package, there is no restriction.

If you have the necessary permissions, you can use the drill-through assistant to look at what source parameters are passed, and what target parameters are mapped for a given drill-through link.

You can change the dynamic drill-through filter behavior if you want drill-through to generate a filter using the Member Business Key instead of the default Member Caption. For more information, see Changing Drill-Through Filter Behavior in the *IBM Cognos Administration and Security Guide*.

**Drilling Through on Dates Between PowerCubes and Relational Packages**

The usual method of drilling through from OLAP to relational packages requires that the target report parameter is set using the business key in the relational data, which does not work well for dates.

OLAP data sources typically view dates as members, such as Quarter 1 2006, while relational data sources view dates as ranges, such as 1/Jan/2006 to 31/March/2006.

A special feature exists for drilling through between PowerCubes and relational packages. Ensure that the target report parameter is set up using `in_range`. The parameter must be of type date-time, and not integer.

An example follows:

```plaintext
[gosales_goretailers].[Orders].[Order date] in_range ?Date?
```

Also ensure that the drill-through definition maps the parameter at the dimension level and that the PowerCube date level is not set to suppress blank categories. Enabling the option to suppress blank categories in the Transformer model before you build the cube may cause the drill-through on dates to be unsuccessful. This happens because there are missing values in the range.

**Set Up Drill-through Access in a Report**

Set up drill-through access in a source report to link two reports containing related information.
You can then access related or more detailed information in one report (the target) by selecting one or more data item values from another report (the source). IBM Cognos passes values from the source to the target and uses the passed values to filter the target object. If the data in the source and target is conformed or if the data item names are the same, then the system may map the source values to filter the target (dynamic drill-through). If you require greater control, you may define parameters in the target object (parameterized drill-through).

For instructions about creating parameters in other kinds of targets, see the IBM Cognos Business Intelligence Administration and Security Guide.

When you define the drill-through path in IBM Cognos Report Studio, you can pass a value from a different data item that is hidden from the user for display purposes but still in the query. For example, users see the Product Name data item and can drill through on that item, but the drill-through definition passes the Product Number value for the product name the user chose. You can also define the target parameter to accept multiple values or a range of values from the data item in the drill-through source report or to accept a value from a parameter in the source report.

Drill-through definitions that have been authored inside a Report Studio report appear in the source report as blue underlined links. Users click the hyperlink to select the value they want passed to the target and to drill through to the target report. If a user selects multiple items within a single column then when the drill-through target report is run, the values from each selected row are passed to the target parameters. This occurs as an and condition.

You can also drill through within the same report by creating bookmarks. As well, you can create drill-through definitions in the source package instead of the Report Studio report. Users can use package drill-through definitions to navigate to a target report from an IBM Cognos Analysis Studio analysis, an IBM Cognos Query Studio report, an IBM Cognos PowerPlay Studio report or IBM Cognos PowerCube package, or a Report Studio report. For more information, see the Administration and Security Guide.

If you have the IBM Cognos Software Development Kit, you can use URLs to set up drill-through access to and from third-party sources.

You can also drill through from a map.
Related concepts:
“Example - Creating Drill-through Access in a Legacy Chart” on page 152

You are a report author at The Sample Outdoors Company, which sells sporting equipment. You are requested to create a chart that shows the revenue for each product line and allows the reader to drill through from the revenue chart to view the product details for any item selected. You create a drill-through report to link two reports containing related information. You can then access related or more detailed information in one report by selecting a value in the chart. You create two reports: a target list report that contains the details for the item and a source report that contains the chart that shows the product line revenue.

Create a parameter in the target

Set up drill-through access in a source report to link two reports containing related information. You can then access related or more detailed information in one report (the target) by selecting one or more data item values from another report (the source).

If you are using an SAP BW data source for the target report and the target report contains a variable for a hierarchy node, values from the source report can be values only of the data item representing the leaf-level identifier of the hierarchy.

Before you begin

Before you begin, ensure that you have a report that will serve as the source report and another report that will serve as the target report.

Procedure

1. In IBM Cognos Report Studio, open the target report.
2. Create a parameter that will serve as the drill-through column or that will filter the report.
   For example, to drill through or filter Product line, create the following parameter:
   [Product line]=?prodline_p?

   Tip: Use the operators in or in_range to enable the target report to accept multiple values or a range of values.
3. In the Usage box, specify what to do when a value for the target parameter is not passed as part of a drill through:
   • To specify that users must select a value, click Required.
     If a value for the target parameter is not passed, users are prompted to choose a value.
   • To specify that users do not need to select a value, click Optional.
     Users are not prompted to choose a value and so the value is unfiltered.
   • To specify not to use the parameter, click Disabled.
     The parameter is not used during the drill-through. It will also not be used in the report for any other purposes.

   Tip: If the parameter is needed in the report for other reasons, then you can also specify not to use it in the drill-through definition (Parameters table, Method, Do not use parameter).
Create a drill-through definition

Create a drill-through definition to link two reports containing related information (the source report and the target report).

Drill-through definitions that have been authored inside an IBM Cognos Report Studio report appear in the source report as blue underlined links. Users click the hyperlink to select the value they want passed to the target and to drill through to the target report. If a user selects multiple items within a single column then when the drill-through target report is run, the values from each selected row are passed to the target parameters. This occurs as an and condition.

Before you begin

Before you begin, ensure that you have a report that will serve as the source report and another report that will serve as the target report.

Procedure

1. Check the drill-through target:
   - Confirm that the drill-through users have access to the target.
   - If necessary, check what parameters exist in the target.
2. Open the source report.
3. Click the element in the report that will serve as the starting point for the drill-through link.
   You can select a data item that your report users are likely to choose to drill on for more detailed information, such as an Employee Name data item.
   Tip: If you are passing only parameter values to the target report, you do not have to drill on a data item. Instead, you can drill on any object in the report, such as the report title. Therefore, you can drill from outside the context of a query.
4. Click the drill-through definitions button, or, from the Properties pane, double-click the Drill-Through Definitions property.
5. Click the new drill-through definition button.
   A drill-through definition is created.
   Tip: To change the drill-through name, click the rename button, type the new name, and click OK.
6. On the Target Report tab, click the ellipsis (...) button next to the Report box and select the drill-through target report.
7. In the Action box, decide how users will view the target report when they click the drill-through link in the parent report:
   - To view the latest data in IBM Cognos Viewer, select Run the report.
   - To edit an IBM Cognos Query Studio, IBM Cognos Analysis Studio, or IBM Cognos PowerPlay Studio target, select Edit the report.
   - To have IBM Cognos Business Intelligence match values from the selection context with data in the target (dynamic filtering), select Run the report using dynamic filtering.
     Note: If you chose this option, any parameters in the target report are still used for the drill-through access.
   - To view the most recently saved output version of the target report from IBM Cognos Connection, select View the most recent report.
• To use the default action specified for the report in IBM Cognos Connection, select (Default).

8. If the target report contains parameters, then, under the Parameters box, click the edit button.

Each required and optional parameter defined in the target report appears in the Parameters dialog box.

9. For each parameter, specify the Method of treatment:
   • To specify not to pass any value, click (Default).
   • To specify not to use this parameter, click Do not use parameter.
     The target report will not be filtered by this parameter.
   • To pass values from a data item, click Pass data item value, click Value, and then click the data item.
     Values for the selected data item are passed to the target report.
   • To pass values from a source report parameter, click Pass parameter value, click Value, and then click the parameter.
     Values for the selected parameter are passed to the target report.
   • If you choose to pass parameters, and the source report is based on a dimensional package, then click an item from the drop-down list in the Source metadata item properties column. You can pass the default property of the source metadata item (business key) or another property, such as the member caption.

10. Click OK.

11. If you chose to run the target report, in the Format box, click the output format for your report.

   Tip: Click (Default) to run the report using the default format specified for the report in IBM Cognos Connection.

12. To open the target report in a new window, select the Open in new window check box.

13. In the Display prompt pages box, choose how to display prompt pages:
   • To always display prompt pages when the drill-through action occurs regardless of whether values were specified for the required parameter values, click Always.
   • To use the prompt settings of the target report (specified by the Prompt for Values check box in IBM Cognos Connection, Report Properties, Report tab) to determine whether to show the prompt pages, click Based on the default prompt settings of the target report.
   • To not display prompt pages when the required parameter values are provided by the drill-through definition, click Only when required parameter values are missing. This is the default setting.

Results

The drill-through text appears as a blue hyperlink in text items in the non-chart areas of the report. Report consumers can also start the drill-through action by clicking the Go To button or by right-clicking the item and clicking Go To, Related links. If you have the necessary permissions, you can view which parameters were passed from the source and how they are mapped in the target object from the Go To page using the drill-through assistant.

For more information, see the Administration and Security Guide.
Defining independent drill-through definitions for crosstabs

By default, you can create only one drill-through definition for fact cells in a crosstab, regardless of how many facts there are. This topic describes how to define different drill-through definitions for different measures in crosstab fact cells.

For example, a crosstab has Quantity and Revenue as measures. For the Quantity cells, you want to define a drill-through definition to a target report that contains more information about quantities sold. For the Revenue cells, you want to define a drill-through definition to a different target report that shows details about revenue generated.

Procedure

1. Open the source report.
2. On the toolbar, click the unlock icon.
3. In the crosstab, click the white space inside one of the fact cells of the measure for which you want to define a drill-through definition.
   Do not click the measure text. You want to select the crosstab intersection and not the text item. In the Properties pane title bar, ensure that Crosstab Intersection appears.
4. In the Properties pane, set the Define Contents property to Yes. The text item in the crosstab intersection disappears.
5. Click the Data Items tab.
6. From the crosstab query, drag the measure that disappeared in step 4 to the empty crosstab intersection.
7. Right-click the measure in the crosstab intersection and then click Drill-Through Definitions.
8. Create the drill-through definition.

Results

A drill-through definition is defined for the selected measure. Repeat the steps to define different drill-through definitions for other measures in the crosstab. When users run the report, clicking values from different measures takes them to a different target report.

Specify the Drill-through Text

You can specify the drill-through text that appears when users can drill through to more than one target.

For example, if users from different regions view the report, you can show text in a different language for each region.

Procedure

1. Right-click the drill-through object and click Drill-Through Definitions.
2. If more than one drill-through definition exists for the object, in the Drill-Through Definitions box, click a drill-through definition.
3. Click the Label tab.
4. To link the label to a condition, in the Condition box, do the following:
   - Click Variable and click an existing variable or create a new one.
Click Value and click one of the possible values for the variable.

5. In the Source type box, click the source type to use.

6. If the source type is Text, click the ellipsis (...) button that corresponds to the Text box and type text.

7. If the source type is Data Item Value or Data Item Label, click Data Item and click a data item.

8. If the source type is Report Expression, click the ellipsis (...) button that corresponds to the Report Expression box and define the expression.

9. If the label is linked to a condition, repeat steps 5 to 8 for the remaining possible values.

Results

When users run the source report and click a drill-through link, the Go to page appears. The drill-through text you specified appears for each target. If you did not specify the drill-through text for a target, the drill-through name is used.

Example - Drill Through to a Hidden Report from a Report Studio Report

You want to set up a drill-through link from an employee satisfaction report created in IBM Cognos Report Studio to a hidden list report about compensation, also created in Report Studio.

The source report (Employee Satisfaction 2006) is based on the package GO Data Warehouse (analysis) which is modeled on a DMR data source. The target report (Compensation (hidden)) is based on the package GO Data Warehouse (query). You set up this drill-through connection from within Report Studio (report-based, or authored drill through) because you do not want to make a report about compensation available for drill through from any source report in the package. The target report is already hidden in the portal, so that it is unlikely to be run by anyone who does not use the drill through link.

You must have the IBM Cognos Business Intelligence samples from the deployment zip file Cognos_DrillThroughSamples installed to follow this exercise, and you must have access to Report Studio.

The Compensation report is a hidden report. You may be able to set whether hidden reports are visible (My Preferences, General tab) and whether you can hide reports. This capability is set by your administrator.

Check the Target Report

Check the target report to make sure the drill-through will work.

Procedure

1. Open the target report:
   • In IBM Cognos Connection, go to Public Folders, Samples, Models, GO Data Warehouse (query), Report Studio Report Samples.
   • Locate the report Compensation (hidden) and open it in Report Studio.

   Tip: If you do not see the report, go to IBM Cognos Connection and confirm that you can view hidden reports (My Preferences, General tab).
2. In Report Studio, from the Data menu, click Filters and check what filter parameters are available.
   You want to filter from the source report on department, not time, so you will only use the pPosition parameter in the drill-through definition.

3. In the report body, select the list column body Position-department (level 3) and review the data item properties.
   Because the drill-through definition goes from DMR to relational, the data item values will need to match.


Create and Test the Drill-Through Definition

Create and test the drill-through definition to make sure it works.

Procedure

1. Open the source report:
   - In IBM Cognos Connection, go to Public Folders, Samples, Models, GO Data Warehouse (analysis), Report Studio Report Samples.
   - Locate the Employee Satisfaction 2012 report and open it in Report Studio.

2. Save the Employee Satisfaction 2012 report with a new name, such as Employee Satisfaction 2012 New.
   This is to keep the original report and drill-through definition intact for comparison.

3. In the table Employee rankings and terminations by department, select the column Position-department (level 3).

4. In the properties pane, review the data item properties, to confirm that the data item names match values in the target report.

5. In the properties pane, under Data, double-click Drill-through definitions.

6. Select the definition DrilltoHiddenRep and delete it.
   Note: In the following steps, you recreate the drill-through definition. For comparison, use the original sample report.

7. In the Drill-through Definitions box, click the new drill-through definition button.

8. Click the rename button, and type a name for the drill-through definition.
   Tip: This is the name that consumers see when they select from a list of possible drill-through definitions in the final report.

9. In the Target Report tab, select the target report:
   - Under Report, click the ellipsis button (...).
   - Navigate to GO Data Warehouse (query), Report Studio Report Samples, and select the Compensation (hidden) report.
     Tip: If you do not see the report, go to IBM Cognos Connection and confirm that you can see hidden reports (My Preferences, General tab).

10. Under Action, select Run the report.

11. Under Parameters, click the edit button.
    A table of parameters available in the target report appears, showing the parameter pPosition.

12. Map the parameter from the Compensation (Hidden) report to the metadata in the Employee Satisfaction 2012 report:
   - In the Method column, select Pass data item value, because the target report is based on a relational data source.
• In the Value column, select Position-department (level 3).

  Tip: In this report, you pass values from the column where the drill-through is defined. In other cases, you might pass a related parameter. For example, you could drill through on employee name, but pass the employee number.

13. Save the report.
14. Run the report, and click a department to test the drill-through definition.

Results

When you test the drill-through link, the Compensation (hidden) report appears, filtered by the department you selected. The report appears as a drill-through target whether or not it is hidden in IBM Cognos Connection.

If your administrator has given you the Drill Through Assistant capability, then you can see additional information you right-click on the link and select Go To see a list of drill-through targets. From the Go To page, you can see what source values are passed, and what target parameters are mapped.

Try It Yourself - Create a Report with Drill-through Access to Itself

Create a report that drills to itself so that users can view detailed information in the same report.

In this topic, you learn how to create a report that shows revenue by each retailer. Users can access detailed order information for a particular retailer.

It should take 20-25 minutes to complete this topic, and your report will look like this.
Procedure

1. Create a new blank report that uses the GO Data Warehouse (query) package.
2. Add a table with two columns and one row.
3. Add a list object to each column in the table.
4. Add these data items to the first list:
   - Retailer name (in Retailer)
   - Revenue (in Sales fact)

   **Tip:** Use the Source tab.
5. Set the sort order for the Retailer name column to Sort Ascending.
6. Add Retailer name in Retailer to the second list.
7. Add these data items to the second list:
   - Order number in Sales order
   - Date in Time Dimension
   - Product name in Product
   - Quantity in Sales fact
   - Revenue in Sales fact

   **Tip:** To simultaneously add all the data items to the list, Ctrl+click the items before dragging them to the list.
8. In the second list, click the Retailer name column and click the cut button.
9. In the second list, create the following parameterized filter:
   - [Retailer name]=?Selected retailer?
10. Save the report.
11. In the left list, right-click a Retailer name column (and not the column title) and click Drill-Through Definitions.
12. Create a new drill-through definition.
13. Specify the report as the target report.
14. Under Parameters, click the edit button.
15. Set the Selected retailer parameter to pass data item values using the Retailer name data item.
16. In the Toolbox tab, add a value prompt under the table. Because you are setting up drill-through access to the same report, you must add a prompt with a default value so that users are not prompted when they run the report.
17. In the Prompt Wizard, specify that the prompt is to use the existing parameter named Selected retailer, and click Finish.
18. Click the value prompt.
19. In the Properties pane, double-click the Default Selections property and add a simple selection named NoRetailer.
20. Set the following properties:
   • Required to No
   • Hide Adornments to Yes
   • Visible to No
21. Double-click the report title and type the following text, adding a blank space at the end:
   Order Details for
22. In the Toolbox tab, add the following layout calculation to the right of the report title:
   if(ParamDisplayValue('Selected retailer')='NoRetailer') then 'All Retailers'
   else (ParamDisplayValue('Selected retailer'))
   When the report is run, the report title changes to reflect the retailer selected by the user. If no retailer is selected, 'All Retailers' appears.
23. Click the layout calculation and, in the Properties pane, set the class to Report title text.
24. Pause the pointer over the condition explorer button and click Variables. Use conditional formatting to show a message above the second list when users have not selected a retailer from the first list.
25. Create this Boolean variable named HighLevel:
   ParamDisplayValue('Selected retailer')<>'NoRetailer'
26. Pause the pointer over the page explorer button and click Page1.
27. In the Toolbox tab, add a block above the second list.
28. Insert a text item in the block with the following text:
   Select a retailer in the left list to view order details below
29. Set the font style for the text to bold.
30. Click the text item and, in the Properties pane, set the Style Variable property to the HighLevel variable.
31. Pause the pointer over the condition explorer and click the Yes value for the HighLevel variable.
32. Set the Visible property for the text item to No.
33. Triple-click the explorer bar to turn off conditional formatting.
34. Run the report to view what it will look like for your users.

Results

A list appears on the left that shows revenue for each retailer. When users click a retailer, order information for the selected retailer appears in the second list.

For more information, see the following references:

- “Using a table to control where objects appear” on page 406
- Add Relational Data to a Report
- Create a Parameter to Produce a Prompt
- Set Up Drill-through Access in a Report
- Create a Prompt Directly in a Report Page
- Using Calculations
- Calculation Components
- Add a Variable
- Hide and Show Objects

Drilling Through from IBM Cognos Series 7 to IBM Cognos BI

You can set up drill-through access from IBM Cognos Series 7 to IBM Cognos Business Intelligence. Specifically, you can drill through to an IBM Cognos BI report from an IBM Cognos Series 7 PowerPlay Web report or IBM Cognos Series 7 Visualizer report. Drill through is supported for both PowerCubes and other cubes.

You must complete steps in both IBM Cognos Series 7 and IBM Cognos BI to enable drill through. Refer to the IBM Cognos Series 7 documentation for the specific steps you must complete in the IBM Cognos Series 7 components. Cross references to the appropriate IBM Cognos Series 7 documents are included below.

Setting Up Drill-through Access from IBM Cognos Series 7 Visualizer

Setting up drill-through access from IBM Cognos Series 7 Visualizer to IBM Cognos Business Intelligence involves setting up the target report.

To set up drill-through access, you must do the following:

- Specify the IBM Cognos BI target and select the filters to add to the target report.
  
  You must configure drill through to IBM Cognos BI for individual IBM Cognos Visualizer reports. For more information, see the IBM Cognos Visualizer User Guide.

- Create and test the target report.

Setting Up Drill-through Access from PowerPlay Web

Setting up drill-through access from IBM Cognos Series 7 PowerPlay Web to IBM Cognos Business Intelligence involves setting up target reports.

To set up drill-through access, you must do the following:

- For PowerCubes, specify drill-through targets for IBM Cognos BI reports in the Transformer model.
  
  For more information, see the Transformer documentation.
• For other cubes, specify drill-through targets for IBM Cognos BI reports in IBM Cognos Series 7 PowerPlay Connect.
  For more information, see the PowerPlay OLAP Server Connection Guide.
• Configure drill-through access in PowerPlay Server Administration.
  In addition to enabling drill-through access to IBM Cognos BI, you must specify the location of the IBM Cognos BI server and the IBM Cognos BI folder that contains the target reports. For more information, see the PowerPlay Enterprise Server Guide.
• Select the filters to add to the target report.
  In PowerPlay Enterprise Server Administration, enable and use IBM Cognos BI Assistance to identify the filter expressions required in the target report. For more information, see the PowerPlay Enterprise Server Guide.
• Create and test the target report.

Create and Test the Target for a Series 7 Report

You can create and test an IBM Cognos Series 7 report target to ensure the drill-through works properly.

When you create the target report, ensure that the names of the parameters you add are identical to the parameter names listed in the Drill Through Assistant page in IBM Cognos Series 7. However, the metadata item that you use in the target report for that parameter name does not have to be the identical label. The data values between the target parameter and the source value shown in the drill assistant must match. You may also need to change the type of operator in the target parameter from what is recommended in the Drill Through Assistant. For example, if the assistant recommends an = operator but you want to pass a date range, you should change the parameter operator in the target to in_range.

Before you begin

The target report must be based on a published package that contains the metadata items that you want to filter on, or contains items that are mapped to those metadata items.

Procedure

2. Add the data items and other objects you want.
3. From the Data menu, click Filters.
4. In the Detail Filters tab, click the add button.
5. In the Expression Definition box, create the parameterized filter you want by typing the filter expression.
6. Click OK.
7. In the Usage box, click Optional.
   If you do not make the filter optional, a prompt page appears when you drill through to the report.
8. Repeat steps 4 to 7 for other parameterized filters you want to add.
9. Save the report.
   The report name must match what you specified as a target in the PowerCube, other cube, or IBM Cognos Series 7 Visualizer report.
10. Test the drill through in the IBM Cognos Series 7 PowerPlay report or IBM Cognos Visualizer report.
Chapter 20. Working with Multiple Pages

Divide a report into multiple pages and add navigation elements to make it easier to use.

Note: The pages that you see in the Page Explorer differ from physical, printed pages. For example, if you create page breaks in a long report, the Page Explorer could show only one page, but your report could include several physical pages when you print it.

Add a Page to a Report

Reports may contain pages with a variety of content. Pages may be added to create a multiple-page report. For example, you are creating a sales report and you want to include general information about the company. You decide to create an introduction page to show this information. When you run the report, page 1 of the report is the introduction page and the following pages contain data.

Tip: The TOC Report sample report in the GO Data Warehouse (query) package includes multiple pages. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

You can also create page sets to control the rendering of pages in a report.

Procedure

1. Pause the pointer over the page explorer button and click Report Pages.

   Tip: Click Prompt Pages to add a prompt page.

2. From the Toolbox tab, drag Page to the work area.
3. To change the order of pages, drag pages above or below other pages.
4. To associate a query to the page, in the Properties pane, set the Query property to the query.

   Associate the page to a query to add data-related objects directly to the page header, body, or footer, such as data items and filters.

5. Double-click the page to open it in page design view.
6. Add objects to the page.

Create a Page Break or Page Set

You can create simple page breaks, or you can create advanced page sets to associate pages with a query structure to force page breaks.

For example, a query contains the data item Product line, which is grouped. Creating a page set that is associated with this query adds page breaks for each product line. When working with dimensional data, you can use the Page layers area to show values on a separate page for each member.
Tip: The Global Bonus Report sample report in the GO Data Warehouse (analysis) package includes page sets. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Create simple page breaks
Simple page breaks use data items to define where your report starts a new page.

Procedure
1. Click the data item at which the report should break to a new page.
2. From the Structure menu, do one of the following:
   • To create a page break without creating a master detail relationship, click Set Page Break.
     This option only works if the data item is in a list or repeater. If the data item is in a crosstab or chart, IBM Cognos Report Studio creates a page break using a master detail relationship. Setting page breaks without using master detail relationships can improve performance when running the report.
   • To create a page break using a master detail relationship, click Set Page Break Using Master/Detail.
     Report Studio confirms the page break setting.
Tip: To modify simple page break settings, pause the pointer over the page explorer button and click Report Pages, and then select and modify the page set.

Create advanced page sets
You can use advanced page sets to define sets of pages within your report, and then customize the grouping and sorting for each page set.

Procedure
1. Pause the pointer over the page explorer button and click Report Pages.
2. Create the report pages.
3. From the Toolbox tab, drag the Page Set object to the Report Pages pane.
4. In the Properties pane, set the Query property to the query to associate with the page set.
5. Organize the pages in the report by dragging report pages to page sets.
6. Insert the page containing details in the Detail Pages folder.
   Detail pages are the pages that repeat based on the items by which you group in the following step.
Tip: You can insert multiple detail pages into the same page set and link them using a master detail relationship.
7. Define the grouping structure for the page set:
   • Click the page set.
   • In the Properties pane, double-click the Grouping & Sorting property.
   • In the Data Items pane, drag the data item by which to group data items to the Groups folder in the Groups pane.
   • To sort the data within each group, in the Data Items pane, drag the data item by which to sort to the Detail Sort List folder, and then click the sort
order button  to specify the sort order. For more information about sorting data, see "Sorting Relational Data" on page 300 or "Sorting Dimensional Data" on page 345.

Note: Grouping an item for a page set is not the same as grouping a column in the layout. Grouping a column in the layout visually shows groups in a report. Grouping an item for a page set groups the item in the query. If you want to use an item that is already grouped in the layout, you must still perform step 7.

8. Repeat steps 3 to 7 to create other page sets.

Tip: You can nest page sets and join them by defining a master detail relationship. Create nested page sets to have pages occur within other pages. For example, you want pages containing product type information to occur within pages containing product line information.

Join Nested Page Sets

If you have nested page sets in your report, define a master detail relationship between them to see data in the nested page set that is related to the data in the parent page set.

For example, you have a page set that shows pages of product line information. The page set contains a nested page set that shows pages of product type information. For each product line page, you want to see the related product type pages, as shown below:

Product line_1
• Product type_1
• Product type_2
• Product type_3

Product line_2
• Product type_4
• Product type_5
• Product type_6

For more information about master detail relationships, see "Create a Master Detail Relationship" on page 356.

Procedure

1. Pause the pointer over the page explorer button  and click Report Pages.
2. In the Report Pages pane, click the nested page set.
3. In the Properties pane, double-click the Master Detail Relationships property.
4. Click the New Link button.
5. In the Master Query box, click the data item that provides the primary information.
6. Link the master data item to the details by doing one of the following:
   • To link to another data item in the detail query, in the Detail Query box, click the data item that provides the detailed information.
To link to a parameter, in the Parameters box, click the parameter that provides the detailed information.

7. Repeat steps 4 to 6 to create other links.

Tip: To delete a link, select it and press the Delete key.

Example - Preparing a Product List Report

You are a report author at The Sample Outdoors Company, which sells sporting equipment. You are requested to create a multiple-page report showing all products sold by the company. You are asked to create title and end pages and to have each product line appear on a new page preceded by a header page and followed by a footer page.

Procedure

1. Open IBM Cognos Report Studio with the GO Data Warehouse (query) package.
2. In the Welcome dialog box, click Create a new report or template.
3. In the New dialog box, click List and click OK.
4. From the Source tab, expand Sales and Marketing (query), Sales (query), and Product, and double-click the following:
   - Product line
   - Product type
   - Product name
5. Expand Sales fact and double-click Product cost.
6. Group the Product line and Product type columns.
7. Pause the pointer over the page explorer button and click Report Pages.
8. From the Toolbox tab, drag Page Set to the work area and associate it to Query1.
9. From the Toolbox tab, drag Page to the work area four times to add four new pages.
10. For each page, click the page, and in the Properties pane, set the Name property as follows:
    - Title page
    - End page
    - Product Line Header
    - Product Line Footer
11. For each page you just created, add objects.
    For example, add a text item to each page to uniquely identify it.
12. Rename the Page1 page, which contains the list, to List.
13. Click the page set and, in the Properties pane, double-click the Grouping & Sorting property.
14. In the Data Items box, drag Product line to the Groups folder in the Groups box and click OK.
15. Organize the report pages into the following hierarchy by dragging them to the appropriate location.
Results

When you run the report, the following pages appear:
- Title page
- Product line header page
- A page for Product line_1
- Product line footer page
- Product line header
- A page for Product line_2
- Product line footer
- ...
- End page

Add a Bookmark

Add a bookmark so that users can quickly move from one part of a report to another. For example, a list report contains many rows of data. You add bookmarks so that users can move to specific rows.

You can also drill through to another report.

If you want to use page numbers to move from one part of a report to another, you can also create a table of contents.

Bookmarks work for reports produced in HTML format or PDF. In HTML format, they work best when viewing saved report outputs, as the entire report appears in a single HTML page. When reports are run interactively, more than one HTML page may be generated, and a bookmark works only if the target exists in the page currently being viewed.

If you run a saved report using a URL, and you specify a bookmark within the URL, you always go to the first page of the report. The bookmark defined in the URL is not honored. For more information about using URLs to run reports, see the Administration and Security Guide.

Tip: You can reduce the number of HTML pages generated when a report is run interactively by specifying a value for the Rows Per Page property for a data container in the report.
Tip: The Briefing Book sample report in the GO Sales (analysis) package includes bookmarks. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

Procedure

1. From the Toolbox tab, drag a Bookmark object to the report.
2. Click the bookmark and, in the Properties pane, set the Source Type property to a source type.

<table>
<thead>
<tr>
<th>Source type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>Creates a static bookmark using a text value. For example, a list has sections and you want users to jump from each section to the top of the report.</td>
</tr>
<tr>
<td>Report Expression</td>
<td>Creates a dynamic bookmark whose values are derived from an expression that you define.</td>
</tr>
<tr>
<td>Data Item Value</td>
<td>Creates a dynamic bookmark that has data as possible values. This is useful for creating a context-based bookmark. For example, a list has sections and you want users to jump from the top of the report to a specific section. Note: This source type appears only if the bookmark is inserted next to a data item.</td>
</tr>
<tr>
<td>Data Item Label</td>
<td>Creates a bookmark that has the label of a data item as its value. Use this source type to jump to the first occurrence of a data item label. For example, a list is divided into sections using Product line. You want users to jump to the first product line section that appears in the list rather than to a specific section, such as Camping Equipment. Note: This source type appears only if the bookmark is inserted next to a data item.</td>
</tr>
<tr>
<td>Member Caption</td>
<td>In a crosstab, creates a dynamic bookmark that uses member captions as possible values.</td>
</tr>
<tr>
<td>Cell Value</td>
<td>In a crosstab, creates a dynamic bookmark that uses cell values as possible values.</td>
</tr>
</tbody>
</table>

3. Set the property that appears under the source type you chose to the bookmark value. For example, if the source type is Data Item Value, set the Data Item Value property to the data item.
4. Right-click the object that will jump to the bookmark and click **Drill-Through Definitions**.
   For example, right-click a data item, image, chart, or text item.

   **Tip:** The object can exist in a different report, so you can jump from one report to another.

5. Click the new drill-through definition button.

6. Click the **Bookmark** tab.

7. Click **Source type** and click one of the source types described in step 3.
   Click the source type to use to produce the value needed to jump to the bookmark. For example, click **Data Item Values** if you want the value to come from a data item such as Product line.

8. If you clicked one of the following source types, specify the value to use to jump to the bookmark.
   - For **Text**, click the ellipsis (...) button next to **Text** and type a text value.
   - For **Data Item Value** or **Data Item Label**, in the **Data item** list, choose a data item.
   - For **Report Expression**, click the ellipsis (...) button next to **Report expression** and define the expression.

---

**Create a Table of Contents**

You can create a table of contents that appears in the rendered output of your report. A table of contents is useful for reports that include sectioned items, grouped items, or multiple pages in the layout. The report output indicates page numbers and allows for easy navigation.

You can include multiple tables of contents in your report, which are useful if your report contains grouped lists. You can also add section numbers in front of entries in the table of contents by modifying the heading level property.

Table of contents entries are logical markers placed anywhere in a report. For example, you can place entries at the top of a page or in a list group header to mark each grouped data value. Although table of contents entries are visible in IBM Cognos Report Studio, they cannot be seen when a report is run.

A table of contents works only for reports produced in PDF or non-interactive HTML format. In HTML format, they work best when viewing saved report outputs, as the entire report appears in a single HTML page. When reports are run interactively, more than one HTML page may be generated, and a table of contents works only if the target exists in the page currently being viewed.

**Tip:** You can reduce the number of HTML pages generated when a report is run interactively by specifying a value for the **Rows Per Page** property for a data container in the report.

If you want to quickly move from one part of a report to another without using page numbers, you can add bookmarks.

**Tip:** The Briefing Book sample report in the GO Sales (analysis) package includes a table of contents. For more information about The Sample Outdoors Company samples, see [Appendix C, “Sample Reports and Packages,” on page 567](#).
Before you begin

You must first create a table of contents before adding entries in the report. All entries must be inserted after the table of contents in the report layout.

Procedure

1. From the Toolbox tab, drag the Table of Contents object to the new location, which can be anywhere in the report.
   A table of contents placeholder appears.
2. Drag the Table of Contents Entry object to the location of your first table of contents marker.
   Tip: You can also click Insert Table of Contents Entry from the Structure menu.
   The new entry appears in the table of contents.
3. Double-click the Double click to edit text box of the new marker.
4. In the Text box, type the text to appear in the table of contents and click OK.
5. To edit the heading level of a table of contents entry, click the entry and, in the Properties pane, set the Heading Level property to the level.
   The heading level is used to insert section numbers in front of entries in the table of contents using layout calculations.
6. When you finish creating the table of contents, run the report. By clicking the arrow to the right of the run report button, you can specify whether to run the report as HTML or PDF.

Example - Add a Table of Contents to a Report

You are a report author at The Sample Outdoors Company, which sells sporting equipment. You are requested to add a table of contents to an existing report so that users can more easily navigate your report.

Procedure

1. Open IBM Cognos Report Studio with the GO Data Warehouse (analysis) package.
2. Open the Budget vs. Actual sample report from the Report Studio Report Samples folder.
3. Create the report pages:
   • Pause the pointer over the page explorer button and click Report Pages.
   • Click Page1, and then, in the Properties pane, set the Name property to Budget vs. Actual Sales.
   • Click the Budget vs. Actual Sales page and, from the Edit menu, click Copy.
   • From the Edit menu, click Paste to paste the copy of the page in the Report Pages pane.
   • Select the new page, and in the Properties pane, set the Name property to Table of Contents.
   • In the Report Pages pane, drag the Table of Contents page to the top of the list.
4. Pause the pointer over the page explorer button and click Table of Contents.
5. Delete the crosstab object:
   - Click somewhere in the report page.
   - In the Properties pane, click the select ancestor button and click Crosstab.

   **Tip:** You can also click the container selector (three orange dots) of the crosstab to select it.
   - Click the delete button.

6. Select the Camping Equipment block object and click the delete button.
7. Double-click the report title, type Table of Contents, and click OK.
8. From the Toolbox tab, drag a Table of Contents object onto the page.
9. Pause the pointer over the page explorer button and click Budget vs. Actual Sales.
10. From the Toolbox tab, drag a Table of Contents Entry object to the left of each region.
11. Pause the pointer over the page explorer button and click Table of Contents.
12. Double-click the first entry in the table of contents, type Americas, and click OK.
13. Rename the other table of contents entries as Asia Pacific, Northern Europe, Central Europe, and Southern Europe.
14. Save the report.
15. Number the table of contents entries:
   - From the Toolbox tab, drag a Layout Calculation object to just before the word Americas.

   - In the Report Expression dialog box, on the Functions tab, expand the Report Functions folder and double-click the TOCHeadingCount expression.

   - At the end of the expression definition, type 1) and click OK.
   - Repeat the above three steps to add layout calculations before the other table of contents entries.
   - Ctrl+click only the five table of contents entries and not the five layout calculations.

   - In the Properties pane, double-click the Padding property and set the left padding to 10 px.
16. Change the color of table of contents entries:
   - Ctrl+click the five layout calculations, the five table of contents entries, and the five page number calculations.

   - In the Properties pane, double-click the Foreground Color property and set the foreground color to blue.
17. Add links to the table of contents from another page:
   - From the Toolbox tab, drag a Bookmark object to just before the title.

   - Select the bookmark and, in the Properties pane, double-click the Label property, type TOC, and click OK.

   - Pause the pointer over the page explorer button and click Budget vs. Actual Sales.
From the Toolbox tab, drag a Text Item object to the right of the crosstab object.

In the Text dialog box, type Return to the Table of Contents and click OK.

Right-click the text object and click Drill Through Definitions.

Click the add button.

On the Bookmark tab, in the Source Type list, click Text.

Click the ellipsis (...) button, type TOC, and then click OK twice.

18. Save the report.

19. Click the arrow to the right of the run report button and click Run Report - PDF.

Results

On the first page, the table of contents appears. Clicking a region brings you to the corresponding page in the report. You can return to the table of contents by clicking Return to the Table of Contents at the end of the last page.

<table>
<thead>
<tr>
<th></th>
<th>Americas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Asia Pacific</td>
</tr>
<tr>
<td>3</td>
<td>Northern Europe</td>
</tr>
<tr>
<td>4</td>
<td>Central Europe</td>
</tr>
<tr>
<td>5</td>
<td>Southern Europe</td>
</tr>
</tbody>
</table>

Insert Page Numbers in a Report

You can insert page numbers in a report and specify the number style to use.

You can select a predefined page numbering scheme or create a custom scheme. You can easily insert page numbers using the Page Number object.

You can also manually create an expression to insert page numbers by inserting a layout calculation and using the different page report functions in the expression editor.

Procedure

1. From the Toolbox tab, drag Page Number to the report.

   Tip: When you create a new report using one of the existing report layouts, Page Number is already inserted in the page footer.

2. Right-click the page number symbol and click Edit Number Style.

3. Choose the style to use.

   The first three choices apply only to vertical page numbers. The remaining choices specify how vertical and horizontal page values appear.

Note: The 1 of 3 number style works only for reports produced in PDF or non-interactive HTML format. In HTML format, the 1 of 3 number style works when viewing saved report outputs, as the entire report appears in a single HTML page.
4. If you want to customize the choice that you made in the previous step, click the edit button, make your changes, and click **OK**.

A custom number style is created. If you later choose a different number style, the custom style is removed from the list.

**Tip:** In the **Custom Number Style** dialog box, when you pause the pointer over a box, a tooltip describes how that box affects page numbers. For example, the **Separator Text** box contains the text, such as a hyphen, that separates page values for both vertical and horizontal pages.

---

**Control Page Breaks and Page Numbering**

You can control page breaks and page numbering in a list, crosstab, table, or report page by choosing any of these options.

The options that are available depend on which object you have selected. All the options for all the objects are described in the following table.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep with header</td>
<td>Keeps all headers on the same page with the number of detail rows specified.</td>
</tr>
<tr>
<td>Keep with footer</td>
<td>Keeps all footers on the same page with the number of detail rows specified.</td>
</tr>
<tr>
<td>Keep with previous</td>
<td>Keeps the object with the specified number of preceding objects on the same page, if space permits.</td>
</tr>
<tr>
<td>Keep with next</td>
<td>Keeps the object with the specified number of subsequent objects on the same page, if space permits.</td>
</tr>
<tr>
<td>Reset page count</td>
<td>Resets the page count after a page break to the value specified.</td>
</tr>
<tr>
<td>Reset page number</td>
<td>Resets the page number after a page break to the value specified.</td>
</tr>
<tr>
<td>Repeat every page</td>
<td>If the report renders multiple pages, this object is repeated on every page.</td>
</tr>
<tr>
<td>Allow contents to break across pages</td>
<td>Allows contents to break across pages. In lists and crosstabs, controls whether a cell is broken across pages, which is useful when there is a lot of text.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Allow horizontal pagination</td>
<td>In PDF output, allows the columns of a list or crosstab to break across horizontal pages if they do not fit on a single page. <strong>Tip:</strong> In lists, you can select the Repeat every page option for list columns that show on every horizontal page. If the Allow horizontal pagination option is not selected, the size of the list or crosstab is scaled down when necessary so that it fits on a single page. <strong>Tip:</strong> The Horizontal Pagination sample report in the GO Sales (analysis) package includes horizontal pagination. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567. If your report includes nested data frames such as a list within a list, horizontal pagination is supported on either the parent or child frame; but not both. If horizontal pagination is enabled on both the parent and child frame, it will be ignored on the child frame when the report runs. We recommend that you do not enable horizontal pagination on both the parent and child frames. Horizontal pagination is not supported for data containers, such as a list or crosstab, that are nested in repeater tables. You can also specify page number options that use compound numbering schemes. For example, you can use the numbering scheme 1-1, 1-2, 2-1, 2-2, and so on. For more information, see “Insert Page Numbers in a Report” on page 510.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Enable horizontal page numbering</td>
<td>Increments page numbers of horizontal pages separately from the main page numbers when you select a page numbering style that includes horizontal pages. For example, if a page has three page breaks horizontally and you selected the page number style 1a, the horizontal pages are numbered 1a, 1b, and 1c. If you did not select a numbering style that includes horizontal pages, the horizontal pages are all numbered 1 for the first vertical page, 2 for the second vertical page, and so on. If this option is not selected and there are horizontal pages, all pages are numbered sequentially. For example, if a report has two vertical pages and three horizontal pages, the PDF pages are numbered from 1 to 6. Pages 1 to 3 are the three horizontal pages for the first vertical page and pages 4 to 6 are the three horizontal pages for the second vertical page.</td>
</tr>
<tr>
<td>Allow row contents to break across pages</td>
<td>In tables, allows the contents of a row to break across pages. For example, if a row contains four lines of text, the first two lines from the row appear on the first page, and the last two lines appear on the next page.</td>
</tr>
<tr>
<td>Repeat table rows on page break</td>
<td>In tables, if a row breaks across pages, repeats the rows that were previously rendered on each page. By default, table rows are repeated.                                                                                                                                                    Note: This option applies to saved reports only. In interactive HTML reports, table rows are always repeated even if this option is not selected.</td>
</tr>
</tbody>
</table>

You can also specify the style to use for page numbers.

**Procedure**

1. Click an object.
2. In the Properties pane, double-click the Pagination property.
3. Specify the page break and numbering options.

**Create Page Layers**

When working with dimensional data, you can create page layers in a report to show values for each member on a separate page. For example, your report contains payroll information for the entire company. You want to view values for each department on a separate page.

After you create page layers, a caption appears in the header to indicate the contents of each page. You can navigate between the different pages using links below the report.
Creating page layers is similar to filtering using context. However, with context filters, values are filtered according to the member you add to the Context filter area. With page layers, the report is split into a separate page for each child of the member you add to the Page layers area.

To create more complex page layers in your reports, such as a report book with title and end pages, create page sets.

**Procedure**

1. In the source tree, select or search for one or more items on which to filter.
2. Drag the item into the Page layers section of the overview area.
   
   The crosstab shows the results for the children of the selected item on separate pages, and a list appears under Page layers.

   **Tip:** To navigate between pages, click Page down and Page up below the report.
3. To replace the page breaks with items from the same dimension, select an item from the list. To delete the page breaks, from the list, click Delete. To delete all the page breaks, right-click the Page layers area and click Delete All.
Chapter 21. Creating Report Templates

A report template is a pattern you use to build reports. Create your own report templates when you frequently produce the same type of report.

Tip: You can add your own report templates to the New dialog box that appears when you open IBM Cognos Report Studio. For more information, see the IBM Cognos Business Intelligence Administration and Security Guide.

Convert a Report to a Template

Convert a new or existing report to a template so it can be reused. You can use sample reports provided with IBM Cognos Report Studio.

Procedure
1. Create a new report or open an existing report.
2. Add objects to the work area.
3. From the File menu, click Convert To Template.
   Any query-related information in the original report, such as data items, calculations, and filters, is removed from the template.
4. From the File menu, click Save As to save the template as a new file and keep the original report intact.

Create a New Template

Create a new template to provide report authors with a layout that they can use to create reports or they can apply to existing reports. IBM Cognos Query Studio and IBM Cognos Analysis Studio users can also use these templates. You can also use the template in Query Studio to define a layout for prompt pages.

When you create a new template, the Source tab is empty; you can add only report objects.

Procedure
1. From the File menu, click New.
2. Click Report Template and click OK.
3. Pause the pointer over the page explorer button and click the report page or prompt page to format.
   Tip: To create a new report page or prompt page, click the Report Pages or Prompt Pages folder and drag the page to the Report Pages or Prompt Pages pane.
4. From the Toolbox tab, add the objects to the work area.
   Note: If you add objects that are not supported by Query Studio, the objects will be ignored when you apply the template.
5. Save the template.
Chapter 22. Managing Existing Reports

After you have created a report, you can make changes or enhancements, such as setting up the report for bursting.

Before you modify an existing report, ensure that you have the proper security permissions. For more information, see the IBM Cognos Business Intelligence Administration and Security Guide.

Copy a Report to the Clipboard

You can copy a report specification to the clipboard so you can open it from the clipboard later.

This process is different for the Microsoft Internet Explorer and Mozilla Firefox Web browsers because the clipboard works differently in each Web browser.

Copy a Report to the Clipboard in Internet Explorer

This process is different for the Microsoft Internet Explorer and Mozilla Firefox Web browsers because the clipboard works differently in each Web browser.

Procedure

From the Tools menu, click Copy To Clipboard.

Copy a Report to the Clipboard in Firefox

This process is different for the Microsoft Internet Explorer and Mozilla Firefox Web browsers because the clipboard works differently in each Web browser.

Procedure

1. From the Tools menu, click Copy To Clipboard.
2. In the Copy Report to Clipboard dialog box, copy the entire report specification.
3. Open a text editor and paste the report specification.
4. Copy all the text from the text editor report specification.
   Now the text is saved on your computer's clipboard.

Open a Report from the Clipboard

You can open a report specification that was previously copied to the clipboard.

To copy a report to the clipboard, see “Copy a Report to the Clipboard.” This is useful for importing an XML report specification from outside the IBM Cognos Business Intelligence environment.

Although IBM Cognos Report Studio attempts to validate the report specification, it is your responsibility to ensure that it is correct. For more information, see the IBM Cognos Software Developer Kit Developer Guide.
Procedure

From the Tools menu, click Open Report from Clipboard.

Open a File from Another Studio

You can open reports, templates, or analyses that were created in IBM Cognos Query Studio or IBM Cognos Analysis Studio in IBM Cognos Report Studio. All the capabilities of Report Studio are available to you so you can change formatting, layout, calculations, and queries.

You can also open a report, template, or analysis in Report Studio from IBM Cognos Connection with the Open with Report Studio action.

Note: If you make and save changes to a Query Studio report or an Analysis Studio analysis in Report Studio, the report or analysis can no longer be opened in Query Studio and Analysis Studio.

Procedure
1. From the File menu, click Open.
2. Click the report, template, or analysis.
3. Click Open.

Analysis Studio Query Specification

Analysis Studio defines each group of rows and columns as a set. When you import an analysis into Report Studio, the report will have one query that processes all the sets found on the crosstab. Each set is defined by 18 data items that segment and summarize the base set definition. To maintain reports converted from Analysis Studio, you must understand what each of these items represents and how they relate to each other.

Before you modify any of the data items in the Analysis Studio set definitions, we recommend that you fully understand each data item and its dependencies. Modifying the data items may cause unpredictable results and may slow the performance of your report.

The data items for a set specify the following:
- the set definition
- set segments, including which members were excluded and hidden individually
- filter rules for defining which members are to be retrieved
- calculations for Subtotal (N items), More & Hidden, Subtotal (included), Subtotal (excluded), and the total

For more information, see the Analysis Studio User Guide.
The default measure identifies which measure is the default for the crosstab or chart. If no default measure is specified, the default measure may be empty.

Set Definitions

The following table shows the definitions and dependencies for the data items in the set definition.

<table>
<thead>
<tr>
<th>Data item</th>
<th>Definition</th>
<th>Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;set name&gt; (base)</td>
<td>Defines the set of members to be used for sorting, filtering, and summary operations. This data item provides a generic reference for all other data items and may reference one of the other set definitions.</td>
<td>None</td>
</tr>
<tr>
<td>&lt;set name&gt; (level)</td>
<td>Identifies the level for a level-based set.</td>
<td>None</td>
</tr>
<tr>
<td>&lt;set name&gt; (list)</td>
<td>Defines the list of members in a selection-based set.</td>
<td>None</td>
</tr>
<tr>
<td>&lt;set name&gt; (depth N)</td>
<td>Defines the set of members at N, number of levels down.</td>
<td>None</td>
</tr>
<tr>
<td>&lt;set name&gt; (named set)</td>
<td>References a predefined set.</td>
<td>None</td>
</tr>
</tbody>
</table>

Set Segments Definitions

The following table shows the definitions and dependencies for the data items in the set segment definition.

<table>
<thead>
<tr>
<th>Data item</th>
<th>Definition</th>
<th>Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;set definition&gt; (hidden list)</td>
<td>Lists the members that are manually hidden using the Hide command in Analysis Studio. This set appears when you try to unhide a member.</td>
<td>&lt;set definition&gt;</td>
</tr>
</tbody>
</table>
### Filters

The following table shows the definitions and dependencies for the data items in the filter.

<table>
<thead>
<tr>
<th>Data item</th>
<th>Definition</th>
<th>Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;set definition&gt; (filter rules)</td>
<td>Specifies the user-defined filter rules to reduce the set definition using operators such as greater than or less than based on measures, calculations, or attributes.</td>
<td>&lt;set definition&gt;</td>
</tr>
<tr>
<td>&lt;set definition&gt; (excluded filters)</td>
<td>Removes members that were manually excluded from the results after applying the user-defined rules.</td>
<td>&lt;set definition&gt; (excluded list), &lt;set definition&gt; (filter rules)</td>
</tr>
<tr>
<td>&lt;set definition&gt; (filter top bottom)</td>
<td>Focuses on the members based on top / bottom / first n where n can be a count or a percentile. For more information about Top/Bottom filters, see the Analysis Studio User Guide.</td>
<td>&lt;set definition&gt; (excluded filters) and totals for sets on the opposite axis</td>
</tr>
</tbody>
</table>
### Subtotals and Related Conditions

The following table shows the definitions and dependencies for the data items in the subtotals and related conditions.

<table>
<thead>
<tr>
<th>Data item</th>
<th>Definition</th>
<th>Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;set definition&gt;</code> (subtotal)</td>
<td>Aggregates the visible items in the set.</td>
<td><code>&lt;set definition&gt;</code> (visible items set)</td>
</tr>
<tr>
<td><code>&lt;set definition&gt;</code> (subtotal display)</td>
<td>Shows the subtotal if the number of included items is greater than the number of visible items.</td>
<td><code>&lt;set definition&gt;</code> (visible items set), <code>&lt;set definition&gt;</code> (included set), <code>&lt;set definition&gt;</code> (subtotal)</td>
</tr>
<tr>
<td><code>&lt;set definition&gt;</code> (more and hidden subtotal)</td>
<td>Calculates the More &amp; hidden subtotal by subtracting the aggregation of the included members from the aggregation of those members that were manually hidden or hidden by exceeding the maximum display limit. Not available for selection-based sets.</td>
<td><code>&lt;set definition&gt;</code> (included set), <code>&lt;set definition&gt;</code> (visible items set), <code>&lt;set definition&gt;</code></td>
</tr>
<tr>
<td><code>&lt;set definition&gt;</code> (more and hidden subtotal as set)</td>
<td>Converts the More &amp; hidden subtotal member to a set for use in set operations.</td>
<td><code>&lt;set definition&gt;</code> (more and hidden subtotal)</td>
</tr>
<tr>
<td><code>&lt;set definition&gt;</code> (more and hidden subtotal as member)</td>
<td>Generically references the More &amp; hidden subtotal.</td>
<td><code>&lt;set definition&gt;</code> (more and hidden subtotal)</td>
</tr>
<tr>
<td><code>&lt;set definition&gt;</code> (more and hidden subtotal display)</td>
<td>Shows the More &amp; hidden subtotal if the number of items hidden or clipped is greater than zero.</td>
<td><code>&lt;set definition&gt;</code> (more and hidden subtotal)</td>
</tr>
<tr>
<td><code>&lt;set definition&gt;</code> (included subtotal)</td>
<td>Calculates the Subtotal (included). For selection-based sets, this data item references the summary data item for the set.</td>
<td><code>&lt;set definition&gt;</code> (included set)</td>
</tr>
<tr>
<td><code>&lt;set definition&gt;</code> (included subtotal display)</td>
<td>Shows the Subtotal (included) if any members passed the filter criteria.</td>
<td><code>&lt;set definition&gt;</code> (included set)</td>
</tr>
<tr>
<td><code>&lt;set definition&gt;</code> (excluded subtotal)</td>
<td>Calculates the value for Subtotal (excluded). This data item is not available for selection-based sets.</td>
<td><code>&lt;set definition&gt;</code> (total), <code>&lt;set definition&gt;</code> (included subtotal), <code>&lt;set definition&gt;</code></td>
</tr>
</tbody>
</table>
### Managing Changes in the Package

If changes were made to the package that was used to create a report, the report must be updated.

When you open a report, IBM Cognos Report Studio automatically checks to see if the package has changed. If it has, a message appears indicating that the report will be updated to the latest version of the package. However, you may need to make additional changes to the report if
- the namespace name or query subject and data item names in the package have changed
- the name of the package has changed

### Update a Name Reference

If the namespace name or query subject and data item names in the package have changed, you must update reports that were created with the package to reflect the change.

The names of data items in a report are a concatenation of the namespace name, the query subject name, and the data item name. For example, if you add Order number from the GO Data Warehouse (query) sample package to a filter expression, you will see `[Sales (query)].[Sales order].[Order number]` in the expression. Similarly, package filter names are a concatenation of the namespace name and the filter name.

### Procedure

1. To update a data item name reference:
   - Click the data item.
   - In the **Properties** pane, double-click the **Expression** property.
• In the Expression Definition box, update the data item name reference.

2. To update a package filter name reference:

• From the Data menu, click Filters.
• Double-click the package filter.
• In the Expression Definition box, update the namespace name.

Change the Package

If the name of the package that were used to create a report has changed, you must change the package connection to update the report.

At the same time, you can also change the authoring language for the report.

Procedure

1. From the File menu, click Report Package.
2. Click Another package and choose the new package.
3. To change the authoring language, click the ellipsis (...) button beside the Language box and choose a different report language.
   You may need to update the report to reflect the change. For example, any filter expressions in the report must be modified to reflect the syntax rules of the new language.
4. Click OK.
   The new package is loaded and the report is validated. If errors are found, the Validation Errors dialog box appears, showing the elements that must be updated to reflect the package change.
5. Click Close.
6. Make any required changes in the report to support the new package.
   For example, you may need to link the data items in the report to the new package.

   Tip: You can use Query Explorer to make the changes.
Chapter 23. Upgrading Reports

When you open a report that was created in a previous version of IBM Cognos Business Intelligence, it is automatically upgraded. Any problems detected during the upgrade process appear as information messages and error messages in the Upgrade Information dialog box. You must fix any errors in the report and then validate the report before you can run it. In some cases, the information or error message is linked to the location of the issue in your report. To go to the location of the issue, click the message, and then click Select. If only warnings and information appear in the dialog box, these will disappear when you click OK.

Tip: To view this dialog box again, from the File menu, click Upgrade Information.

After you upgrade a report to the most recent version of IBM Cognos BI, you can no longer open it with a previous version.

Lifecycle Manager

You can download IBM Cognos Lifecycle Manager from http://www.ibm.com/ to help you test your reports. Lifecycle Manager is a verification tool that checks that your reports run and produce the same results in the new environment.

Lifecycle Manager is a Microsoft Windows operating system-based application for auditing upgrades to the latest version of IBM Cognos BI from IBM Cognos ReportNet 1.1 MR3 or MR4, and from IBM Cognos 8 versions 8.2, 8.3, or 8.4.

It provides a verification feature that validates, executes, and compares report results from two different IBM Cognos BI releases. This helps to identify upgrade and compatibility issues between releases. User interface design and status reporting functionality provide both a proven practice process and support for upgrade project planning and status reporting. Lifecycle Manager also automates much of the process of bundling the required files, such as reports and models, for the test case. For more information, see the Lifecycle Manager User Guide.

Upgrading Reports from IBM Cognos BI Version 8.4

When you upgrade to IBM Cognos Business Intelligence version 10 from IBM Cognos 8 BI version 8.4, some reports may look or behave differently after the upgrade. This section describes changes that you may encounter in your reports.

Upgrading Report Styles

IBM Cognos Business Intelligence includes a new default report style with updated colors and gradients. If your report uses a custom report template, your report will appear the same in this version of IBM Cognos Report Studio as it did in previous versions. By default, new reports and new report objects, such as lists and crosstabs, appear in the new report style.

If you want to continue to work with the previous 8.x report style, set the Override 10.x styles with 8.x styles on new reports option (Tools, Options, Advanced tab).
You can update the style of an upgraded report to use the new 10.x style (File, Report Properties, Report styles, 10.x styles).

For more information about report styles, see “Create and Modify Report and Object Styles” on page 417.

### Upgrading Legacy Charts

IBM Cognos Report Studio version 10.1.0 includes a new default chart technology. You can continue to use and work with the legacy charts or upgrade your legacy charts to the current default charts.

When you open a report that uses the legacy charts, the legacy charts is not upgraded to the current default charts automatically. You can upgrade your legacy charts one at a time to the current default chart. For more information, see “Convert Charts From One Type to Another” on page 100.

When you add a new chart to a report, Report Studio adds the current default charts. If you want to add new legacy charts or continue to work with existing legacy charts, set the Use legacy chart authoring option (Tools, Options, Advanced tab).

### New Default for Hidden or Deleted Axis Titles

The default for rendering hidden or deleted axis titles has changed. This can change the size or placement of chart elements in your chart report output.

In previous versions of IBM Cognos Report Studio, hidden or deleted axis titles were defined and rendered as empty spaces in the report.

In Report Studio, Version 10.1.0, hidden or deleted axis titles are not rendered at all, so the space that was reserved for the title is available for other chart elements. This can affect the placement or size of chart elements, such as labels, the chart body, or the bars in a bar chart.

To make the charts appear the way they did in the previous version, set the x-axis' Title property to Show and then set the x-axis title's Default Title property to No. This adds the space for a custom axis title to the report specification but leaves the title blank.

### Upgrading Reports with SAP BW Prompt Variables

When you upgrade reports that use SAP BW data sources and contain variables as prompts from version 8.3 SP2 to version 8.4 or 10.1.0, the upgrade may fail. Prompts that contained SAP BW variables are now empty. This occurs because a default setting in an IBM Cognos configuration file changed in version 8.4.

To successfully upgrade these reports, do one of the following:

1. Fully qualify all of the variables in the report by changing [variable_name] to [infoquery].[variable_name]. Ask your IBM Cognos administrator to change the value for the DetectSAPVariableUniqueness parameter in the configuration file, as follows:
   - In the c10_location\configuration directory, locate the qfs_config.xml file.
   - Find the DetectSAPVariableUniqueness parameter and change its value to false.
   - Save the qfs_config.xml file.
• Restart the IBM Cognos service.

If more than one variable with the same name exists in the package, this change may cause problems.

---

**Upgrading Reports from IBM Cognos BI Version 8.1 or 8.2**

When you upgrade IBM Cognos Business Intelligence, some features in IBM Cognos BI may behave differently after the upgrade. When you upgrade reports, for example, changes in behavior may cause validation errors. Documentation is available about the behavior changes. This documentation includes examples of the changed behavior and solutions for issues that may occur during the upgrade.

For more information, see Upgrading to Cognos 8 BI 8.3 - Changes in Product Behavior on [http://www.ibm.com/](http://www.ibm.com/)

**Members Containing No Data Are Not Suppressed for SAP BW**

If you upgrade a crosstab report that uses a SAP BW data source and includes calculations, filters, or nesting, the suppression of null values may not occur as expected. You may see additional empty rows and columns.

By default, null values are suppressed for list and grouped list reports.

To effectively remove null values in crosstabs that use a SAP BW data source, insert individual members to create the report. You can also ensure that SAP BW members are assigned to proper dimension hierarchies and levels within the BW cube.

**Thousands Separators Missing**

You may encounter missing thousands separators in your reports in the following circumstances:

• The report contains an item that does not specify an explicit data format.
• The report item refers to another item in the same report.
• That second report item refers to an item in the IBM Cognos Framework Manager model with Usage property set to **Identifier** or **Attribute**.
• The model item does not specify an explicit format.

To restore the data formats, specify an explicit format either in the report item properties or in the model item properties.

**RQP-DEF-0177 Error When Upgrading Reports**

When you upgrade your report from IBM Cognos Business Intelligence, version 8.2, you encounter the following errors:

RQP-DEF-0177 An error occurred while performing operation 'sqlPrepareWithOptions' status='-120'.

UDA-SQL-0458 PREPARE failed because the query requires local processing of the data. The option to allow local processing has not been enabled.

This error occurs when the query requires local processing because some or all of its constructs are not supported by the database vendor. In IBM Cognos BI, version
8.2 and earlier, IBM Cognos BI proceeded with local processing. In version 8.3 and later versions, you must explicitly set the query Processing property to Limited Local in order to enable local processing.

**Procedure**

1. In IBM Cognos Report Studio, pause the pointer over the query explorer button and click the query.
2. In the Properties pane, set the Processing property to Limited Local.

---

**Upgrading Reports from IBM Cognos ReportNet**

When you upgrade from IBM Cognos ReportNet, some reports may look or behave differently after the upgrade. The upgrade does not account for the following issues.

---

**Undocumented and Unsupported Features**

If advanced report authors used undocumented and unsupported features such as JavaScript that refer to IBM Cognos HTML objects, they may have to recreate the features to complete the upgrade of the report.

---

**No Sort Order**

Data may appear in a different order after upgrading. If sort order is important, ensure that the report or model specifies a sort order before upgrading.

---

**Layout Errors**

Layout errors are suppressed by default in ReportNet. IBM Cognos Business Intelligence does not suppress layout errors. Users may have to correct or remove report layout expressions that cause errors.

---

**Report Format**

If you used the default format in ReportNet, upgraded reports will retain that format. However, new reports in IBM Cognos Business Intelligence will use the IBM Cognos BI format. If you want a consistent style across all reports, you must edit the styles property in each report and select or deselect the Use 1.x report styles option.

---

**Customized Style Sheets**

If you edited the ReportNet style sheet (default_layout.css) or the IBM Cognos Business Intelligence stylesheet (globalreportstyles.css), reports will lose the formatting after upgrading. You must reapply the changes to the IBM Cognos BI stylesheets and copy the stylesheets to the IBM Cognos BI server and the Web server.

---

**PDF Reports**

PDF rendering in IBM Cognos Business Intelligence behaves like HTML rendering. After upgrading, PDF reports may have different font size, column wrapping, or word wrapping. You may have to change each affected report or change the default font in the IBM Cognos BI style sheet.
IF-THEN-ELSE Statements

If you use assignments of different data types after THEN and ELSE in ReportNet, the reports will generate invalid coercion errors after upgrading. You may have to recast the variables or change the assignments in the affected reports.

Solve Order

In previous versions of IBM Cognos Business Intelligence, you could specify the solve order for objects such as crosstab node members. Solve order is now specified for data items. When you upgrade a report, solve orders specified in the report are moved to data items.

For more information about solve order, see “Resolve Multiple Calculations for Crosstabs and Charts” on page 604.

Chart Behavior

In ReportNet, if a chart is created with a user-specified minimum value and all data values are below the minimum value, the chart starts at the user-specified minimum value and contains no data.

In IBM Cognos Business Intelligence, the same parameters result in a chart that ignores the user-specified minimum value and uses a range that includes all of the data values for the chart.

Database Only Processing of Queries

If you specified in ReportNet that the processing for a query should be Database Only, when you upgrade your report to IBM Cognos Business Intelligence, some processing may now occur locally.

Changes in the Behavior of Functions Between ReportNet 1.1 and IBM Cognos BI

In ReportNet 1.1, double counting could occur when applying count or count distinct to a query item. This occurred primarily when querying multiple query subjects that were joined 1-to-N in the model if the counted item existed in the query subject on the 1 side of the join. The explanation is that count or count distinct was applied after the join operation.

Count distinct worked only when the item to which count distinct was applied was the column used in the join. In this case, the column to be counted could have identical values for the different values used in the join condition.

In IBM Cognos Business Intelligence, improvements to the count functionality cannot be handled through an automatic upgrade. The new approach avoids double counting on the 1 side of a 1-to-N join. The explanation is that count or count distinct is now applied before the join operation.

There is now a lesser need to use count distinct and, when used, it will be successful more often. Count distinct is no longer required to overcome double counting. Instead, it can be used as intended to select distinct values that exist in a query subject.

When you want to count repeated occurrences of a value, we recommend that you do one of the following:
• Apply a count operation on a column based on a query in which an explicit join occurs. This applies the count after the join.
• Count rows in a report by using a layout calculation object or by counting the literal value 1.
Appendix A. Accessibility Features

Accessibility features help users who have a physical disability, such as restricted mobility or limited vision, to use information technology products.

See the IBM Accessibility Center (http://www.ibm.com/able) for more information about the commitment that IBM has to accessibility.

Accessibility features in IBM Cognos Report Studio

There are several accessibility features in IBM Cognos Report Studio.

The major accessibility features are described in the following list:

- You can use command keys, or shortcut keys, to navigate through Report Studio. Shortcut keys directly trigger an action and usually make use of the Ctrl keys.
- Report Studio uses Web Accessibility Initiative—Accessible Rich Internet Applications (WAI-ARIA). This means that people with limited vision can use screen-reader software, along with a digital speech synthesizer, to listen to what is displayed on the screen.

Note: To take full advantage of the accessible features of Report Studio, use Mozilla Firefox version 4.0 or higher and Freedom Scientific JAWS version 12.0.

Keyboard Shortcuts

This product uses some standard Microsoft Windows and accessibility shortcut keys.

<table>
<thead>
<tr>
<th>Action</th>
<th>Shortcut keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enables or disables the accessibility feature - an IBM Cognos Report Studio restart is required. The default is <strong>disabled</strong>.</td>
<td>Ctrl+Shift+Tab</td>
</tr>
<tr>
<td>Opens the context menu for the selected item, if available.</td>
<td>Shift+F10</td>
</tr>
<tr>
<td>Switches focus from or to the main menu bar and the main worksheet.</td>
<td>Ctrl+F10</td>
</tr>
<tr>
<td>Opens the online help.</td>
<td>F1</td>
</tr>
<tr>
<td>Closes the Web browser window.</td>
<td>Alt+F4</td>
</tr>
<tr>
<td>Copies objects.</td>
<td>Ctrl+C</td>
</tr>
<tr>
<td>Pastes objects.</td>
<td>Ctrl+V</td>
</tr>
<tr>
<td>Closes objects, such as a dialog box, menu, drop-down list, or page.</td>
<td>Esc</td>
</tr>
<tr>
<td>Cycles through objects, such as the tabs in a dialog, the objects in a page, the cells in a list, the rows in a crosstab, or check boxes.</td>
<td>Tab, Shift+Tab, Arrow keys</td>
</tr>
<tr>
<td>Selects the first or last item in a list.</td>
<td>Home/Pg Up or End/Pg Dn keys</td>
</tr>
</tbody>
</table>
### Action Shortcut keys

<table>
<thead>
<tr>
<th>Action</th>
<th>Shortcut keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selects or clicks one or multiple objects, such as a radio button, menu or toolbar item, or node in a tree widget.</td>
<td>Space or Enter, Ctrl+space or Shift+space, Ctrl+Enter or Shift+Enter</td>
</tr>
<tr>
<td>In the Properties pane, expands or collapses a property group.</td>
<td></td>
</tr>
</tbody>
</table>

## Considerations to Improve Report Accessibility

Creating accessible reports ensures access of information to all users, with all levels of ability.

For example, people with a visual impairment may use screen reading technology to access the information in a report.

The following are some design considerations for creating accessible reports:

- Avoid using visual cues, such as bold text or color, to convey important information.
- Avoid using pictures and OLE Objects in PDF documents, as these items are tagged as artifacts and ignored by the screen reader.
- Avoid using conditional formatting to convey important information.
- When selecting color palettes for report objects, choose patterns or shades of gray.
- Ensure that there is a table corresponding to chart types that are rendered as images because the screen reader ignores this information.
- Deliver reports in HTML format, which is the most supported output format for most screen readers.
- Ensure that the report has a title.
- Gain an understanding for screen reading technology.
- Avoid spelling and grammatical errors, as they cause the screen reading software to misinterpret the information.
- Avoid using features like calendar boxes and up and down selections on time controls. Instead use prompts such as check boxes, radio buttons, combo boxes, and multi-select boxes.
- Ensure that the target application is accessible when using embedded Web applications or drill-through paths.
- Avoid using large, complex list or crosstab reports.
  - Displaying the information in multiple simple lists or crosstab reports is more manageable for assistive technology users.
- Add alternate text to images, charts, and other visual objects so that screen readers can provide context for them.
- When using tables, add summary text to provide context for the table content. If the top cells in a table behave as headers, designate these cells as headers so that screen readers can identify the relationships.
- Avoid using range prompt controls that contain radio buttons.
When users tab to a radio group, the focus should be in the selected radio button. In the case of range prompts, for both the From and To sections, the radio button groups start first in the tab order. However, the secondary input elements, which can be text boxes, drop-down lists, date edit boxes, and so on, are located before the selected radio button in the tab order. Instead of going to the selected radio button, the focus goes to the secondary input element. As a result, users using a screen reader do not know that the input element is one of two options.

Enable Accessible Report Outputs

If you want to include accessibility features, such as alternate text, summary text, designated cell headers in tables and accessible conditional layouts, you must enable these accessibility features in the report output.

You can enable accessible report outputs in one of the following ways:

• in the IBM Cognos Report Studio run options, so that the report has accessibility features enabled when you run the report from within Report Studio.

• in IBM Cognos Connection as a run option (Run with options, Enable accessibility support), so that report consumers can run the report once with accessibility features.

• in IBM Cognos Connection as a property (Set properties, Report tab), so that report consumers can always run the report with accessibility features.

• in IBM Cognos Connection, as a user preference (My area, My preferences), so that report consumers can enable accessibility features for all of their reports. Accessibility settings in the report properties overwrite this setting.

• in IBM Cognos Administration, as a server-wide option, so that all reports for all IBM Cognos users have accessibility features enabled. Accessibility settings in the user preferences and report properties overwrite this setting.

Administrators can also change a system-level setting that forces the accessibility features on or off regardless of any other settings.

For information about the last four options, see the IBM Cognos Connection User Guide or the IBM Cognos Administration and Security Guide.

Procedure

In Report Studio, from the Run menu, click Run Options and select the Include accessibility features check box.
Alternate text and summary text

To make reports accessible, you can add alternate text or summary text to objects such as images, charts, and tables. When a screen reader encounters one of these objects, it reads the text that you added to the object.

Related tasks:
- “Customize Prompt Text” on page 390

You can customize the instructional text that appears around prompts. For example, a value prompt with multiple selections includes a Select all link below the choices that you can customize to text other than Select all. You can also specify translated text in many languages for international report users.

Add Alternate Text to Images and Charts

You can add alternate text for images, maps, and charts to make your reports accessible. When a screen reader encounters one of these objects, it reads the alternate text that you added to the object.

You can add translations for the text to support users in multiple languages. When users run a report, IBM Cognos Business Intelligence uses the alternate text in the appropriate language.

If you use images only for visual spacing in your report, leave the Alternate Text property empty.

Before you begin

For the report output to contain the alternate text, you must enable the accessibility features for the report. For more information, see “Enable Accessible Report Outputs” on page 533.

Procedure

1. Select the image or chart object.
2. In the Properties pane, click the select ancestor button and select the Image, Map, or chart object.
3. Double-click the Alternate Text property.
4. Select Specified text and click the ellipsis (...) button.
5. In the Default text box, type a description for the object, and click Add.
6. In the Languages dialog box, select the languages that apply to your text.
7. Double-click a language and type the translation of the text for each language and click OK.

Add Summary Text to Tables

You can provide summary text for crosstabs, lists, repeater tables, and table objects. This text provides context for the entire object to make your reports accessible. When a screen reader encounters one of these objects in HTML report outputs, it reads the description that you added to the object.

The table summary is not displayed in visual Web browsers. Only screen readers and speech browsers use the summary text. The summary text is usually read immediately before the table caption.

You can add translations for the text to support users in multiple languages. When users run a report, IBM Cognos Business Intelligence uses the summary text in the appropriate language.
If you use tables for report layout, leave the summary empty to indicate to screen readers that the table is used exclusively for visual layout and not for presenting tabular data.

**Before you begin**

For the report output to contain the summary text, you must enable the accessibility features for the report. For more information, see “Enable Accessible Report Outputs” on page 533.

**Procedure**

1. Select the crosstab, list, or table.
2. In the Properties pane, click the select ancestor button and select the Crosstab, List, Repeater Table, or Table object.
   
   **Tip:** You can also click the container selector (three orange dots) of the container to select it.
3. Double-click the Summary Text property.
4. Select Specified text and click the ellipsis (...) button.
5. In the Default text box, type a description for the object, and click Add.
6. In the Languages dialog box, select the languages that apply to your text.
7. Double-click a language and type the translation of the text for each language.

**Designate Cells Headers in Tables**

You can specify whether specific table cells are table headers. This allows screen readers and speech browsers to identify the relationships between the cells in your tables.

**Before you begin**

For the report output to contain the cell headers, you must enable the accessibility features for the report. For more information, see “Enable Accessible Report Outputs” on page 533.

**Procedure**

1. Select the table cells.
2. In the Properties pane, set the Table Header property to Yes.

**Headings and emphasis**

You can apply certain global classes to text objects to make the text easier to read for visually impaired users.

The following global classes are available to improve text readability for headings and blocks of text:

- **Heading 1 through 6**
  
  **Tip:** In HTML output, these classes are converted to `<h1>` to `<h6>` tags.

- **Emphasize Text and Strong Text**
  
  **Tip:** In HTML output, these classes are converted to `<em>` and `<strong>` tags.
You apply one of these global classes to text by accessing the Classes property of the text and choosing the class that you want to apply.

**Prompt control labels**

You can associate labels to prompt controls to make your reports accessible.

There are two methods that you can use to associate a label to a prompt control:

- Insert the prompt control in a field set and use the caption of the field set to specify the label.
- Use HTML items to define a field set.

Screen readers read the label of the field set when the focus moves to any input element within the field set.

**Associating labels with prompt controls using field sets**

You can associate labels with prompt controls using field sets.

**Procedure**

1. From the Toolbox tab, drag Field Set to the report.
2. Double-click the caption of the field set and type the text that you want to appear as the prompt control label.
3. From the Toolbox tab, drag a prompt control to the field set.
4. Optional: To hide the field set border so that only the prompt control border appears in the prompt page, set the border to none.
   a. Select the field set.
   b. In the Properties pane, click the Border property.
   c. In the Style box, click None.
   d. Under Preview, click the apply all borders icon and click OK.

**Related concepts:**

Chapter 12, “Adding Prompts to Filter Data,” on page 379

You can add prompts to a report to add interactivity for users. Prompts act as questions that help users to customize the information in a report to suit their own needs. For example, you create a prompt so that users can select a product type. Only products belonging to the selected product type are retrieved and shown in the report.

**Associating labels with prompt controls using HTML items**

Instead of using the field set object, you can associate labels with prompt controls using HTML items. You use the HTML items to create the field sets.

**Procedure**

1. From the Toolbox tab, drag HTML Item to the left of the prompt.
2. Click the HTML item.
3. In the Properties pane, double-click the HTML property.
4. In the HTML window, type the following text and click OK.
   
   ```html
 <fieldset style="border:0;">
 <legend>
 Prompt label
 </legend>
   ```

   ```html
   ```
5. From the **Toolbox** tab, drag **HTML Item** to the right of the prompt.
6. Click the **HTML** item.
7. In the **Properties** pane, double-click the **HTML** property.
8. In the **HTML** window, type the following text and click **OK**.

```html
</fieldset>
```

**Related concepts:**
Chapter 12, “Adding Prompts to Filter Data,” on page 379

You can add prompts to a report to add interactivity for users. Prompts act as questions that help users to customize the information in a report to suit their own needs. For example, you create a prompt so that users can select a product type. Only products belonging to the selected product type are retrieved and shown in the report.

**Example - Conditionally Show a List Below a Chart for an Accessible Report**

Charts are rendered as images in report outputs, such as HTML and PDF. As a result, they are difficult to navigate for visually impaired users and screen readers cannot convey the information shown in charts. To make your reports accessible, you can add a conditional layout that shows list or crosstab equivalents of the chart when the accessibility features are enabled for the report output.

To set up this conditional layout, use a conditional block that contains the list or crosstab and the report function `IsAccessible`. The `IsAccessible` function is a Boolean function that returns **Yes** (or true) when the accessibility features are enabled for the report output and **No** (or false) when the accessibility features are not enabled.

Therefore, the list or crosstab becomes conditional and appears only when the accessible report output option is enabled. In addition, you should add alternate text for the chart object so that screen readers can let users know that an accessible list or crosstab follows.

**Procedure**

1. Open IBM Cognos Report Studio with the sample GO Sales (query) package.
2. Create a new report with a pie chart.
3. Add data items to the chart. From the **Source** tab, do the following:
   - Expand **Sales (query)** and **Sales** and then insert **Quantity** in the **Default measure** area.
   - Expand **Products** and insert **Product line** in the **Series (Pie Slices)** area.
4. Run the report to see your chart.
5. Add alternate text for the pie chart:
   - Select the chart and, in the **Properties** pane, double-click the **Alternate Text** property.
   - Select **Specified text** and click the ellipsis (...) button.
   - Type default text for the chart, such as
     
     A pie chart shows the quantity of sales by product line as a percentage of total sales. An equivalent list is below.
If you want to add the alternate text in additional languages, click the add button.

6. From the Toolbox tab, insert a Conditional Blocks object below the chart.

7. Select the conditional block and, from the Properties pane, double-click the Block Variable property.

8. Under Variable, select New boolean variable and type a name for the variable, such as accessibility_condition.

9. In the Report Expression dialog box, specify the expression that defines the variable:

   - From the Functions tab, expand Report Functions and insert the IsAccessible function to the Expression Definition box.
   - Type a closing bracket at the end of the function IsAccessible () and click OK.

10. Select the conditional block and in the Properties pane, change the Current Block property to Yes.

11. From the Toolbox tab, add a list inside the conditional block.

12. Add the same data items from the chart to the list. From the Source tab, do the following:
   - Expand Sales (query) and Products and insert Product line in the list.
   - Expand Sales and insert Quantity as the second column in the list.

13. Add summary text for the list
   - Select the list and in the Properties pane, double-click the Summary Text property.
   - Select Specified text and click the ellipsis (...) button.
   - Type default text for the list, such as The first column lists all product lines and the second column lists sales quantities.

14. Select the conditional block and in the Properties pane, change the Current Block property to No.

15. From the Run menu, click Run Options and select the Include accessibility features check box.

16. Run the report.

Results

Because we just chose to include the accessibility features, you see both the chart and the list. Also, when a screen reader encounters the image for the chart, it reads the alternate text that you added.

If you clear the Include accessibility features check box and run the report again, you see only the chart.
IBM and accessibility

See the IBM Accessibility Center for more information about the commitment that IBM has to accessibility.

The IBM Accessibility Center is available online at [http://www.ibm.com/able](http://www.ibm.com/able)
Appendix B. Troubleshooting

This chapter describes some common problems you may encounter.

For more troubleshooting problems, see the IBM Cognos Business Intelligence
Troubleshooting Guide.

Problems Creating Reports

The topics in this section document problems you may encounter when creating reports.

Division by Zero Operation Appears Differently in Lists and Crosstabs

If you have a list that accesses a relational data source, a calculation containing a division by zero operation appears as a null value, such as an empty cell. In a crosstab, the division by zero operation appears as /0. This happens when the Avoid Division by Zero property is set to Yes, which is the default.

To have a consistent display of null values in lists and crosstabs, define an if-then-else statement in the expression in the crosstab cell that changes the value /0 to the value null.

Application Error Appears When Upgrading a Report

When upgrading a report, the following error appears if the report contains data items in the page layout that are not in a data container:

RSV-SRV-0040 An application error has occurred. Please contact your Administrator.

This error occurs when IBM Cognos BI cannot determine the query reference for a data item. Such data items are identified by a small red circle with a white x icon that appears in the lower left corner.

To correct the error, drag the data items into a container. If the container is a list, we recommend that you drag the data items into the list page header or footer, or the overall header or footer. If you want to see the first row of the item on each page or in the overall report, drag the item to the list page header or overall header. If you want to see the item’s last row on each page or in the overall report, drag the item to the list page footer or overall footer.

Tip: If a header or footer does not exist, create it.

Nested List Report Containing a Data Item That is Grouped More Than Once Does Not Run After Upgrade

When you upgrade a nested list report that contains a data item that is grouped in both lists, the report does not run.

The following error occurs when the report is run against a dimensional data source and both lists are using the same query. This error does not occur if the report is run against a relational data source.
OP-ERR-0199: The query is not supported. The dimensions on the edge are inconsistent. The dataItems from dimension="[Product line]" must be adjacent.

For example, you have a list that contains the grouped items Product line and Product type and a nested list that contains the data items Year, Quarter, and Unit sale price. Year, Quarter, and Product line are grouped items in the nested list.

To resolve the issue, delete the data item that is grouped in both lists from the inner list.

Procedure
1. Click anywhere in the report.
2. In the Properties pane, click the select ancestor button and click the List link that represents the inner list.
3. Double-click the Grouping & Sorting property.
4. In the Groups pane, select the data item that you want and click the delete button.

Background Color in Template Does not Appear
When creating a Query Studio template in Report Studio, if you add a list object and change its background color, the color change does not appear when you apply the template to a Query Studio report.

To work around this issue, do one of the following:
• Edit the style sheet (CSS) classes for lists in Report Studio.
• Do not add any objects to the page body when you are creating a Query Studio template.
• Leave the page body blank.

Subtotals in Grouped Lists
When using an IBM Cognos PowerCube that contains a ragged hierarchy, if you group on the first level in the hierarchy, subtotals may appear in the wrong place or show wrong values.

To resolve the issue, group on the second level.

Chart Labels Overwrite One Another
In Report Studio and Query Studio, if you define a chart and render it in HTML or PDF format using the default sizes, the axis labels of the chart may overwrite each other.

To avoid this problem, make the chart wider or taller by modifying the height and width properties of the chart or enable the Allow Skip property.

Chart Shows Only Every Second Label
You create a report that includes a chart. The Allow Skip option is set to false, but when you run the report, labels are skipped.

This can occur if there is not enough room for all labels and the options Allow 45 Degree Rotation, Allow 90 Degree Rotation, and Allow Stagger are also set to false. IBM Cognos BI has no options for making the labels fit, so it skips every second label.
The solution is to select either Allow 45 Degree Rotation, Allow 90 Degree Rotation, or Allow Stagger.

**Chart Gradient Backgrounds Appear Gray in Internet Explorer**

In Report Studio, you can define a custom palette for a chart that includes a gradient. When the chart is rendered in HTML format in Microsoft Internet Explorer, the chart background appears gray. This is an Internet Explorer issue.

To avoid this problem, select the chart and define the color white as the chart background.

*For more information, see the Microsoft Knowledge Base article # 294714 at [http://support.microsoft.com](http://support.microsoft.com)*

**Metadata Change in Oracle Essbase Not Reflected in Reports and in the Studios**

When there is a metadata change on the Oracle Essbase server, the change is not immediately reflected in the metadata tree in the studios. In addition, when a report is run, the report does not pick up the republished changes.

To view the new structure, you must restart the IBM Cognos Content Manager server.

**Relationships Not Maintained in a Report With Overlapping Set Levels**

In a report, the relationship between nested or parallel member sets at overlapping levels in the same dimension may not always be maintained.

For example, a named set in the data source that contains members from both a Year and Month member is nested under Year, but is not properly grouped by year.

In another example, an error message such as this appears:

*OP-ERR-0201 Values cannot be computed correctly in the presence of multiple hierarchies ([Product].[B1], [Product].[Product]) that each have a level based on the same attribute (Product).*

This problem occurs in the following scenarios involving non-measure data items X and Y, which overlap in the same dimension:

- X and Y together as ungrouped report details
- Y nested under X
- Y appended as an attribute of a group based on X

When using named sets, or sets that cover more than one level of a hierarchy, do not use sets from the same dimension in more than one place in the same report. They should appear on only one level of one edge.
Summaries in Query Calculations Include Nulls with SAP BW Data Sources

When using an SAP BW data source in IBM Cognos Report Studio, null values in the database are returned in the result set and the count summary function includes the empty cells in the following scenarios:

- A query calculation includes an arithmetic calculation where one or more NULL operands and an aggregation is performed on the calculation.
- The result of a query calculation is a constant, such as current_time and current_date.

The count summary function should normally exclude null values.

To avoid this problem, for the first scenario, ensure that both operands do not return null values. For example, the original expression is [num1]+[num2]. Instead, use the following expression:

\[
\begin{align*}
\text{if } ([\text{num1}] \text{ is null}) \text{ then } (0) \text{ else } ([\text{num1}]) \\
\text{if } ([\text{num2}] \text{ is null}) \text{ then } (0) \text{ else } ([\text{num2}])
\end{align*}
\]

There is no workaround for the second scenario.

Creating Sections on Reports That Access SAP BW Data Sources

SAP BW data sources may have problems with sections in reports under different circumstances:

If a section in a report uses the lowest-level query item in a ragged hierarchy, such as the children of the not assigned node, the following BAPI error may appear:

*BAPI error occurred in function module BAPI_MDDATASET_SELECT_DATA. Value <valueName> for characteristic <cubeName> unknown*

Lowest-level Query Item in a Ragged Hierarchy

The solution is to remove the section from the lowest-level query item.

Several Multicubes with SAP Variables

The solution is to use one SAP multicube when creating sections in reports.

Related concepts:

“Tips for Working with Ragged or Unbalanced Hierarchies” on page 328

In ragged or unbalanced hierarchies, some members that are not at the lowest level of the hierarchy may have no descendants at one or more lower levels. Support for these hierarchy gaps in relational data sources is limited. More complete support is provided for OLAP data sources, but some reports may still result in unexpected behavior.

Error Characters (-->) Appear in Reports

When you run a report, you see two dash (--> ) characters in your report instead of values.
These characters may appear if you use an OLAP data sources other than PowerCube and Microsoft SQL Server 2005 Analysis Services (SSAS), and you apply aggregation to calculations and measures that use rollups other than Sum (Total), Maximum, Minimum, First, Last, and Count.

All other types of rollup either fail or return error cells, which typically display as two dash characters (--).

This problem occurs in, but is not limited to, the following:
- footers
- aggregate function
- summary filters and detail filters that use a summary
- detail, summary, and context filters that select more than one member of a hierarchy that is used elsewhere on the report

If you are working with a SSAS 2005 data source, these characters may also appear in summary cells if you use an OR filter in the summary. To avoid this problem, do not use OR filters in summaries.

### Columns, Rows, or Data Disappear With SSAS 2005 Cubes

Microsoft SQL Server 2005 Analysis Services (SSAS) has a feature called AutoExists that removes tuples that have no facts at the intersection of two hierarchies of the same dimension.

Columns, rows, or data can disappear if you set the default member of a hierarchy to a member that does not exist with every other member in the dimension. To avoid this problem, change the default member that caused the disappearance to a member that exists with all other members in the dimension.

Columns, rows, or data can also disappear if members are specified that result in one or more non-existent tuples. There is currently no workaround for this scenario. For more information, see Microsoft Knowledge Base article #944527 at [http://support.microsoft.com](http://support.microsoft.com).

You may also encounter unexpected results if the default member of a hierarchy is a member that doesn’t also exist in all other hierarchies in the dimension, and if you query members from different hierarchies in the same dimension.

For example a crosstab includes the following (using the Adventure Works cube):
- Rows: Generate([Adventure_Works].[Account].[Accounts],set([Balance Sheet],[Units])) nested with children([Adventure_Works].[Department].[Departments].>:[YK].[[Department].,[Departments]].&[1]))
- Column: [Adventure_Works].[Account].[Account Number].[Account Number]
- Measure: [Adventure_Works].[Measures].[Amount]

You run the report and notice that the query renders with some blanks cells. You then apply the simple detail filter [Amount]>1 and run the report. Only row labels are displayed and all data and columns are missing.

In the Adventure Works cube, the [Account].[Accounts] attribute has a default member set to [Net Income]. When evaluating the GENERATE set expression, SSAS looks in the entire cube space and looks at all coordinates for the [Account]
dimension. These coordinates include both [Account][Account Type].[] and
(Account).[Accounts].[Net Income]. Because these two coordinates don’t exist
within the same hierarchy, SSAS returns an empty set.

To avoid this problem the SSAS administrator must set the default member in the
cube to a member that exists in all other hierarchies.

**Function Unreliable with Sets**

If you create an expression that uses the descendants function with sets, you may
encounter unpredictable results. Some expected members may be missing or may
have blank captions or labels.

This problem occurs if the descendants function uses a set as its first parameter
instead of a single member and if the descendants function is nested under
another data item from the same hierarchy.

To avoid this problem, replace the first parameter in the descendants function with
the function `currentmember(H)` where `H` is the hierarchy of the desired set and
under which the expression is nested. For example, use
descendants(currentmember(H)).

**Report Differences Between TM1 Executive Viewer and IBM
Cognos Business Intelligence with TM1 Data Sources**

When using an IBM Cognos TM1 data source, comparable reports created in an
IBM Cognos Business Intelligence studio and in TM1 Executive Viewer may
contain different cell values. This occurs because the TM1 Executive Viewer
product uses an algorithm for selecting default members for non-projected
dimensions that differs slightly from traditional OLAP clients.

To avoid this problem, when filtering your reports in the IBM Cognos Business
Intelligence studios, use context filters that match the default selections shown in
the Executive Viewer user interface. This ensures that the cell values in IBM
Cognos Business Intelligence match the values in Executive Viewer.

**Order of Metadata Tree Differs for TM1 Data Sources**

When using a an IBM Cognos TM1 data source, the order of members in the
metadata tree of the Source tab of an IBM Cognos Business Intelligence studio may
differ from the order shown in TM1 Architect.

By default, TM1 Architect renders members of hierarchies using a slightly different
algorithm than does IBM Cognos BI. IBM Cognos BI automatically renders
member metadata from TM1 data sources in hierarchical order.

From within TM1 Architect, if you want to see how an IBM Cognos BI studio will
render a hierarchy, click the Hierarchy Sort button.

**IBM Cognos Statistics Do Not Support CSV and XML Output**

If you run a report based on a statistical object in CSV or XML format, the output
is blank.
Chi-square Test of Independence Generates a Warning about Counts When Using IBM Cognos Statistics

If you use either a one-way chi-square tests with counts or a two-way chi-square tests with counts and the count measure has a zero or negative value, a warning appears.

For example, a typical category and count may look like example A below:

Table 4. Example A

<table>
<thead>
<tr>
<th>Color</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>5</td>
</tr>
<tr>
<td>blue</td>
<td>3</td>
</tr>
<tr>
<td>green</td>
<td>20</td>
</tr>
<tr>
<td>yellow</td>
<td>1</td>
</tr>
<tr>
<td>green</td>
<td>12</td>
</tr>
<tr>
<td>blue</td>
<td>46</td>
</tr>
</tbody>
</table>

Example B below is a problem because blue contains the negative value -2. The chi-square test cannot calculate negative values.

Table 5. Example B

<table>
<thead>
<tr>
<th>Color</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>5</td>
</tr>
<tr>
<td>blue</td>
<td>3</td>
</tr>
<tr>
<td>green</td>
<td>20</td>
</tr>
<tr>
<td>yellow</td>
<td>1</td>
</tr>
<tr>
<td>green</td>
<td>12</td>
</tr>
<tr>
<td>blue</td>
<td>-2</td>
</tr>
</tbody>
</table>

You must modify the query so that you get a result similar to example C below.

Table 6. Example C

<table>
<thead>
<tr>
<th>Color</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>5</td>
</tr>
<tr>
<td>blue</td>
<td>1</td>
</tr>
<tr>
<td>green</td>
<td>32</td>
</tr>
<tr>
<td>yellow</td>
<td>1</td>
</tr>
</tbody>
</table>

Example D below will give a warning because yellow contains a zero value, but it will still calculate.

Table 7. Example D

<table>
<thead>
<tr>
<th>Color</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>5</td>
</tr>
<tr>
<td>blue</td>
<td>1</td>
</tr>
<tr>
<td>green</td>
<td>32</td>
</tr>
</tbody>
</table>
Table 7. Example D (continued)

<table>
<thead>
<tr>
<th>Color</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>yellow</td>
<td>0</td>
</tr>
</tbody>
</table>

**MSR-PD-0012 error when importing external data**

When you try to import an external data file, you receive an MSR-PD-0012 error.

*MSR-PD-0012: Unable to upload the specified external data file. It exceeds the permitted file size of "0(KB)", as specified by your system administrator.*

This error occurs when the size of the file you are trying to import is greater than the value specified for the **Maximum external data file size (KB)** governor in the Framework Manager model.

To resolve the issue, the modeler must update the governor, save the model, and republish the package.

**MSR-PD-0013 error when importing external data**

When you try to import an external data file, you receive an MSR-PD-0013 error.

*MSR-PD-0013: Unable to upload the specified external data file. It exceeds the permitted maximum number of rows "0", as specified by your system administrator.*

This error occurs when the number of lines in the file you are trying to import is greater than the value specified for the **Maximum external data row count** governor in the Framework Manager model.

To resolve the issue, the modeler must update the governor, save the model, and republish the package.

**Problems Calculating Data**

The topics in this section document problems you may encounter when calculating or summarizing data.

**Unexpected Summary Values in Nested Sets**

If a report contains nested sets, summaries other than the inner set summaries may contain unexpected values. For example, you insert a summary in a crosstab that contains a set with years in the rows.

![Revenue](image)

*Figure 16. Example of revenue numbers for the years 2004 and 2005*

You then nest a product line set within years.
Notice that the summary value does not change to represent the total of the new values. This occurs because the within set aggregation used with dimensional packages does not take into account sets that are nested below the set that is summarized.

To show the correct summary values, if the inner and outer sets do not belong to the same dimension, you can nest a copy of the inner summary item under the outer summary item, as follows.

### Null Results for Calculations Using SAP BW Data Sources

When using a SAP BW data source, the expression you use in your calculation is evaluated as a null value if your expression contains a null item. For example, in the calculation `some_expression = result`, the result is null if a row or column that the expression references includes a null value.

To avoid obtaining null values as the result of your calculations, suppress null values before you create the calculation.

### Incorrect Results with IBM Cognos PowerCubes and Time Measures

If a report uses an IBM Cognos PowerCube data source and a combination of data items, you will encounter incorrect results.

The following combination of data items in a report that uses an IBM Cognos PowerCube data source will give incorrect results.
- a measure with a Time State Rollup set to Average or Weighted Average
- an aggregate (members from time dimension) expression
- an intersection with a member in a relative time hierarchy

To avoid incorrect results, do not use this combination in your reports.
Incorrect Results in Summaries When Using OLAP Data Sources

When using an OLAP data source, summaries that use for clauses give incorrect results.

This occurs because for clauses require access to the detail rows of the fact table. OLAP data sources do not have detail rows.

For example, this report uses a dimensionally-modeled relational (DMR) data source and contains the following summaries:

- mx: maximum ([Revenue] for [Year (ship date)])
- mx2: maximum (Aggregate([Revenue]) for [Year (ship date)])

Notice that the mx and mx2 values are different, where mx2 is based on visible data, but mx is not. This result is correct.

The following report uses an OLAP data source and contains the same summaries.

Figure 19. Example list report that uses a dimensionally-modeled relational data source and revenue for four years
In the example report, mx and mx2 values are now the same. Both summaries are based on visible data. The mx value is incorrect.

Incorrect results also appear for footer summaries.

To avoid this problem, when using OLAP data sources, ensure that the parameter that precedes the for clause is an aggregate function.

**Figure 20. Example list report that uses a dimensional data source and revenue for four years**

In the example report, mx and mx2 values are now the same. Both summaries are based on visible data. The mx value is incorrect.

Incorrect results also appear for footer summaries.

To avoid this problem, when using OLAP data sources, ensure that the parameter that precedes the for clause is an aggregate function.

### Problems Filtering Data

The topics in this section document problems you may encounter when filtering data.

**Unexplained Discrepancies in Number Calculations**

You might find unexplained discrepancies in number calculations due to round-off errors.

For example:

- You run regression tests and find differences in numbers. They are different only because of the rounding off of decimal places.
You choose not to display zeros in reports, but the zeros are displayed anyway because there are decimal places (0.00000000000000426, for example) that are rounded off to zero in reports.

Round-off problems are not specific to IBM Cognos software. They can occur in any environment where rounding off occurs.

**Binary Round-Off Errors**

Discrepancies in calculations might occur due to binary round-off errors. For example, if the number 1.1 is represented as a binary floating point number and your report format includes a large number of decimal places, the number 1.1 might actually be something like 1.09999999999997.

If your report is formatted to use only one decimal point, decimal round-off takes place, compensating for the binary round-off. So the number appears to be 1.1 when it is really 1.09999999999997. When the number is used in calculations, you might get round-off errors. For example, Microsoft Excel calculations use binary numbers (without rounding off decimal places) but formatting in reports shows rounded off decimal places, which can create small discrepancies.

**Division Round-Off Errors**

Calculations that involve division typically incur round-off errors, regardless of how the numbers are represented. Examples of such calculations are Average and Percent of Base.

**Design Guidelines to Minimize Round-Off Effect**

The best solution is to change the underlying database schema or cube model but that may not always be possible. Another solution is to minimize the round-off effect by following these guidelines when authoring reports and creating models in IBM Cognos Framework Manager and external OLAP cubes:

- Avoid storing data in floating point format whenever possible. This is especially true for currency values, which should be stored as either fixed-point decimals or as integers with a scale value such as 2.

  For example, in a cube, the Revenue for Camping Equipment in 2004 is $20,471,328.88. If revenue details are stored as floating point numbers, round-off errors might occur when revenue is calculated.

  The round up errors might have slight differences, depending on the order of calculation. If revenue for Products is calculated first and revenue for Time is calculated second, you might get a different round-off error than if Time is calculated first and Products is calculated second.

  Total revenue might be calculated as the number above. Or there might be slight discrepancies, for example, $20,471,328.8800001 as opposed to $20,471,328.88. The internal number might be slightly different than what is displayed. The number might even be for different runs of the same report, depending on the order that the OLAP engine uses for calculation.

- In reports, avoid division whenever possible. When division is unavoidable, try to do it as late as possible in the calculation process. For example, instead of Total([Revenue]/1000), use Total([Revenue])/1000.

- When doing comparisons, add a margin to allow for round-off. For example, you may want [Profit %] to be a fractional value formatted as a percentage with
no decimals. However, the filter [Profit %]<0 (or [Profit %] NOT BETWEEN 0 and 0) rejects zero values and may still return values that appear to be 0% after formatting.

To avoid this, filter in one of these two ways:
- [Profit %] NOT BETWEEN -0.005 and 0.005
- ([Profit %] < -0.005) OR ([Profit %] > 0.005)

Note that 0.005 is equivalent to 0.5%, which displays as either 0% or 1%, depending on floating point precision losses.

In some cases, you may prefer control round-off errors by rounding values explicitly. For example, instead of [Profit %], use round([Profit %],2).

- Recalculate numbers every time instead of reusing calculations that might contain rounded off decimals.

There might be additional considerations for Microsoft Analysis Services 2005/2008, especially when comparing report results from different runs (as happens in Lifecycle Manager). Refer to Microsoft documentation for more information.

**HRESULT= DB_E_CANTCONVERTVALUE Error When Filtering on a _make_timestamp Column**

You cannot filter on a _make_timestamp column, and the following error messages appear:

*UDA-SQL-0114 The cursor supplied to the operation "sqlOpenResult" is inactive*

*UDA-SQL-0206 The OLEDB driver returned the following value: HRESULT= DB_E_CANTCONVERTVALUE*

*RSV-SRV-0025 Unable to execute this request*

The solution is to apply the filter after aggregation and not before.

**Problems Running Reports**

The topics in this section document problems you may encounter when viewing or running reports.

**Report Runs Slowly**

The following is a list of questions that will help you to troubleshoot a slow report.

- Does your IBM Cognos environment conform with the supported environments?
- Has the report always been slow or did it recently become slow?

If it recently became slow, can you identify an event that occurred just before the report began to run slowly? Events could include changes to configuration settings, changes to tuning settings, a recent upgrade where your previous settings have not been applied, an introduction of firewalls or proxies, changes to existing firewalls or proxies, changes to virus scans on temp directories, or temporary table space restrictions on the database. This event could have caused the change in report performance.

- Is the performance slow for all reports or just one report?
If all reports are slow, the issue may be due to your environment or database. If all reports from a specific package are slow, the issue may due to the model design. If just one report is slow, the issue may be due to a specific report element.

- **How many queries does your report contain?**
  The number of queries on the report will proportionally affect the report execution time.

- **Does the report run slowly for everyone, or just for one user?**
  If the report runs slowly for just one user, the issue may be due to something in that user’s environment, such as virus scanning, page file size or location settings, or their location on the network.

- **Is the report burst or run often by many people?**
  If many people are running the same report at the same time, you may need to scale your environment or consider using dispatcher routing rules to direct all requests for a specific package or group of users to a specific server or server group. For more information, see the *IBM Cognos Business Intelligence Administration and Security Guide*.

- **Do your queries require local processing?**
  The following report elements require local processing: crosstabs and charts, master relationships, unions or joins, multiple fact queries, bursting, and non-vendor specific functions. Local processing requires the IBM Cognos server to compute operations on the result set returned by the database, which can impact the SQL execution time.

- **Does your environment use a Custom Authentication Provider?**
  Using a Custom Authentication Provider could cause a memory leak if the code is not destroying objects correctly.

- **Have you reviewed the logs in the c10_location/logs directory and the audit logs?**
  They may help you identify the source of the problem. Monitoring your processes, such as the Java and Business Intelligence bus processes could also identify excessive memory use.

- **Is your environment tuned correctly?**
  For more information, see the Performance Tuning Settings for IBM Cognos 8 Business Intelligence and the IBM Cognos 8 Business Intelligence Performance Tuning Cheat Sheet documents.

- **Have you recently upgraded?**
  Ensure that any tuning settings that were applied to your previous installation are applied to the new environment. Ensure that your models have been verified, upgraded, and republished. Verify that the IBM Cognos Framework Manager governor that allows enhanced model portability at runtime is not enabled. Depending on your upgrade method, you may also need to open and save the reports again after upgrading.

The following tips may help you improve report performance.

- **Change the order in which items are queried from the database.** For more information, see “Working with Relational Queries” on page 301 or “Working with Dimensional Queries” on page 347.

- **Create sections without creating master detail relationships.** For more information, see “Divide Data into Sections” on page 284.

- **Share queries between lists and repeaters.**
You can share an identical query between data containers that use it. To share a query, data containers must be lists, repeaters, or repeater tables and must use the same grouping structure and list of properties. The data containers cannot be part of a master detail relationship. Sharing queries improves performance by minimizing the number of queries executed against the database.

To share a query, set the **Share Result Set** property for the data container to **Yes**.

- Convert queries to SQL. For more information, see “Convert a Query to SQL” on page 312 for relational reporting or “Convert a Query to SQL” on page 360 for dimensional reporting.
- Avoid using functions with limited support, as indicated by the quality of service indicators. For more information, see “Insert a Query Calculation” on page 315 for relational reporting or “Quality of Service Indicators” on page 601 for dimensional reporting.
- Be aware of the limitations of creating expressions with SAP BW data sources. For more information, see “Using Microsoft Excel Functions with SSAS 2005 Data Sources” on page 603.
- Use Select & Search prompts instead of value prompts if your list of prompts is long. For more information, see “Build Your Own Prompt and Prompt Page” on page 381.
- Provide your own prompt values in a prompt to avoid accessing the database. For more information, see “Specify Prompt Values” on page 390.
- Suppress null cells using filters. For more information, see “Suppress Null Cells Using Filters” on page 457.
- Set page breaks without creating master detail relationships. For more information, see “Create a Page Break or Page Set” on page 501.
- Do not modify IBM Cognos Analysis Studio set definitions. For more information, see “Analysis Studio Query Specification” on page 518.
- Do not put filters on non-identifiers.
- Avoid combining large hierarchy levels and sets in a drill-through report in a way that creates large queries. For more information, see “Recommendation - Drilling Down in Very Large Data Sources” on page 374.
- Use database functions when possible. For more information, see “Calculation components” on page 619.
- Use fixed width objects in PDF reports by setting their **Size & Overflow** properties. For more information, see “Set List Properties” on page 59, “Set Crosstab Properties” on page 65, “Customizing Chart Properties” on page 102, or “Set Map Properties” on page 161.

The following are **Proven Practices** (www.ibm.com) documents that may help you improve your report performance.

- Performance Tuning Settings for IBM Cognos 8 Business Intelligence
- IBM Cognos 8 Business Intelligence Performance Tuning Cheat Sheet
- Writing Efficient OLAP Queries
- Cognos 8 Business Intelligence (BI) on IBM AIX® best practices
- IBM Cognos ReportNet and Java Heap

The *IBM Cognos Business Intelligence Installation and Configuration Guide* also includes a section on performance maintenance.
Summaries in a report do not correspond to the visible members

If a crosstab or chart created in IBM Cognos Report Studio using a dimensional data source has a context-dependent set function such as filter or topCount on an edge, summaries do not correspond to the visible members. This occurs when the summaries use the within set aggregation mode.

This problem occurs because a summary that uses the within set aggregation mode uses a set that is dependent on the members that it intersects with on the opposite edge. For example, the following crosstab has the top three products returned as columns. The expression used to generate the columns is

topCount ([Product],3,[Return quantity])

where [Product] is the level.

<table>
<thead>
<tr>
<th>Return quantity</th>
<th>Bug Shield Lotion</th>
<th>Bug Shield Extreme</th>
<th>Sun Shelter 30</th>
<th>Total</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americas</td>
<td>25,219</td>
<td>19,870</td>
<td>13,814</td>
<td>58,903</td>
<td>13,814</td>
</tr>
<tr>
<td>Asia Pacific</td>
<td>20,822</td>
<td>19,171</td>
<td>6,389</td>
<td>46,382</td>
<td>6,389</td>
</tr>
<tr>
<td>Northern Europe</td>
<td>8,325</td>
<td>14,534</td>
<td>4,065</td>
<td>27,024</td>
<td>4,065</td>
</tr>
<tr>
<td>Central Europe</td>
<td>17,627</td>
<td>13,854</td>
<td>14,089</td>
<td>45,570</td>
<td>13,854</td>
</tr>
<tr>
<td>Southern Europe</td>
<td>7,196</td>
<td>4,726</td>
<td>5,401</td>
<td>17,323</td>
<td>4,726</td>
</tr>
<tr>
<td>Total</td>
<td>81,199</td>
<td>72,255</td>
<td>43,758</td>
<td>197,202</td>
<td>42,848</td>
</tr>
<tr>
<td>Minimum</td>
<td>7,196</td>
<td>4,726</td>
<td>4,065</td>
<td>17,323</td>
<td>4,065</td>
</tr>
</tbody>
</table>

The summary values for Total(ReturnedProducts) and Minimum(ReturnedProducts) for all rows except Central Europe do not correspond to the member values in the crosstab. This means that the top three products returned in all regions except for Central Europe are not Bug Shield Lotion 89110, Bug Shield Extreme 90110, and Sun Shelter 30 94110. Note that the summary values for Total(Region) and Minimum(Region) do correspond to the visible member values. That is because those summary values represent the total and minimum quantities returned for those three products in each region.

You can see what the top three products returned in each region are by dragging the columns to the right of the rows, creating the following single-edge crosstab.
To obtain summary values that reflect the visible members, modify the expression of the data item containing the context-dependent set function so that it includes a tuple that is locked to the default member of every hierarchy that appears on the opposite edge. For this example, modify the expression to the following:

```
topCount ([Product], 3, tuple ([Return quantity], defaultMember ([Retailer site])))
```

where [Product] is the level and [Retailer site] is the hierarchy.

When you run the report, all summary values reflect the visible members in the crosstab.

<table>
<thead>
<tr>
<th>Region</th>
<th>BugShield Lotion 89110</th>
<th>BugShield Extreme 90110</th>
<th>Sun Shelter 30 94110</th>
<th>Total (Returned Products)</th>
<th>Minimum (Returned Products)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americas</td>
<td>20,219</td>
<td>19,870</td>
<td>17,303</td>
<td>62,392</td>
<td>17,303</td>
</tr>
<tr>
<td>Asia Pacific</td>
<td>22,822</td>
<td>19,171</td>
<td>12,765</td>
<td>54,756</td>
<td>12,765</td>
</tr>
<tr>
<td>Northern Europe</td>
<td>14,634</td>
<td>9,577</td>
<td>8,325</td>
<td>32,936</td>
<td>8,325</td>
</tr>
<tr>
<td>Central Europe</td>
<td>17,627</td>
<td>14,689</td>
<td>12,854</td>
<td>45,570</td>
<td>13,854</td>
</tr>
<tr>
<td>Southern Europe</td>
<td>7,234</td>
<td>7,396</td>
<td>5,790</td>
<td>20,220</td>
<td>5,790</td>
</tr>
</tbody>
</table>

Appendix B. Troubleshooting 557
Cannot Find the Database in the Content Store (Error QE-DEF-0288)

You cannot retrieve data from the selected database when running a report from IBM Cognos Query Studio, IBM Cognos Connection, or Report Studio.

The following error message appears:

QE-DEF-0288 Unable to find the database...

If this error does not occur when you are logged on as an administrator, then to solve the problem, ensure that the user has permissions to the signon embedded. If this error always occurs, the data source has not been created. Create the data source with the name mentioned in the error message.

Parse Errors When Opening or Running an Upgraded Report

Earlier versions of ReportNet and IBM Cognos Business Intelligence included the cast_Date function for reports that run on an Oracle database. This function does not exist for Oracle in IBM Cognos 8.1.2 MR1 and later versions. If a report that uses an Oracle database includes the cast_Date function, parse errors will be received when you try to open or run the report.

Overflow Error Occurs When a Value in a Crosstab Is More Than 19 Characters

In a crosstab report, values support a maximum of 19 characters, including the decimal point. If a value exceeds 19 digits, an overflow error occurs. By default, the decimal precision is set to 7 digits, which restricts the number of integers to 11 digits.

To use more than 11 integers, you must edit the qfs_config.xml file in the configuration directory. For more information, see the section about reducing decimal precision in the IBM Cognos Business Intelligence Administration and Security Guide.

The ORA-00907 Error Appears When Running a Report

When using an Oracle 9.2 data source, under certain circumstances, multiple or nested join operations may fail and produce the following error.

ORA-00907: missing right parenthesis

A query that uses both a left outer join and an ON clause condition returns zero values instead of null values.

A Report or Analysis Does Not Run Because of Missing Items

You attempt to run a report or analysis and a message indicates that one or more items are missing or changed. Each missing item is listed by its MUN (member unique name). The MUN includes the complete path within the hierarchy for the item. When you place your cursor on an item in the Source tab, the MUN for that item is displayed in a tooltip. This situation may occur if members have been removed from or changed in the data source. It may also occur when you attempt to run a report that uses items to which you do not have access. For example, an administrator may create an analysis that includes items that you do not have the correct permission to access.
The solution is to find a suitable replacement in the **Source** tab, and drag it to the **New Item** column. The report or analysis will then run.

**Cannot View Burst Report**

When you burst a report, each burst output is sent to the associated list of recipients.

If a list of recipients contains invalid entries, the following occurs:

- The burst output is not saved to IBM Cognos Content Manager.
  Consequently, you cannot view the burst output in IBM Cognos Connection.
- If you choose to send the output by email, only valid recipients will receive an email. Although the output is sent as an attachment if you select the **Attach the report** check box, no link is generated if you select the **Include a link to the report** check box.
- The following error message appears in the run history for the report, where parameter 1 is the burst key, parameter 2 is the list of recipients, and parameter 3 contains the error messages returned by Content Manager:

  
  An error occurred while saving the output for the burst instance `<param type="string" index="1"/>` with the recipients `<param type="string" index="2"/>`. Here are the details: `<param type="string" index="3"/>

  **Note:** The list of recipients includes both the valid and invalid recipients.

For example, a report is set up to burst on Country or Region, and the recipients are managers. Running the report produces the following countries and regions and recipients:

- Canada: John, Mary
- US: Peter, Frank
- France: Danielle, Maryse

Frank is an invalid recipient. The burst outputs for Canada and France are saved to Content Manager, but not the U.S. output. If you choose to send an e-mail to each recipient and you selected the **Include a link to the report** check box, the e-mail to Peter will not contain a link to the output for US. The error message that is generated will contain Peter and Frank as values for parameter 2 with no indication as to which is invalid.

**Procedure**

1. View the error message in the run history for the report.
2. From the list of recipients, determine which recipients are invalid.
   
   You may need to consult with your administrator to find out which recipients are invalid.
3. Correct or remove the invalid recipients.
   
   Correcting or removing invalid recipients will depend on how the list of recipients was defined, such as through a calculated field or a burst table.
4. Run the report again.

**A report upgraded from ReportNet does not retain its original look**

When you upgrade a report to IBM Cognos Business Intelligence, a new style sheet is applied that changes the look of the report.
To preserve the formatting that was used in the original report, you can select a different style sheet. This retains the original look of the report and specifies that any new items added to the report, such as list columns or crosstab levels, have the original formatting applied to them.

**Procedure**

1. In IBM Cognos Report Studio, from the **File** menu, click **Report Properties**.
2. Click **Report styles** and select **1.x styles**.

**Measure Format Disappears in SSAS 2005**

Microsoft SQL Server 2005 Analysis Services (SSAS) does not propagate formatting through calculations. IBM Cognos compensates for this whenever possible, but cannot guarantee to do so in all cases. As a result, if you are working with a Microsoft SSAS cube, any calculation (other than a non-count summary) that is based on or intersects with a formatted measure, such as a currency, may lose the measure format. This may also happen if you use a detail filter or context filter (slicer).

For example, a crosstab includes members on one edge and a measure with formatting, such as a currency symbol and decimal places, applied on the other edge. When you run the report, you see the formatting for each cell. However, if you add a detail filter, such as measure > 1 and run the report, all the formatting disappears.

Additionally, the fine details of the MDX generated by IBM Cognos Business Intelligence can change from release to release. As the SSAS behavior depends on the MDX generated, the loss of formatting in reports might not occur in a future release.

To avoid this problem, specify explicit formatting for the affected row, column, or cell.

**Drill-through Links are Not Active in the Safari Browser**

When viewing a PDF report in the Macintosh Safari browser, you cannot open hyperlinks. This is because the Macintosh Safari browser does not have the necessary Adobe Acrobat plug-in.

To avoid this problem, use the HTML format when creating drill-through reports that may be viewed in Safari.

**Data Does Not Appear in a Target Report or the Wrong Data Appears**

If no data appears when you drill through to a target report or if the wrong data appears, the problem might be data source conformance. The business keys might be different or might be mismatched.

For example, the business key for Camping Equipment might be 100 in the data source for the source report and 1 in the data source for the target report, in which case no data appears in the target report. Another example might be that the business key for Camping Equipment is 100 in the data source for the source report but, in the data source for the target report, 100 is the business key for Golf Equipment, in which case the wrong data appears in the target report.
To solve the problem, ensure that business keys have the same value in both data
sources. If there are cases where data does not appear to match, contact your
database administrator or data modeler.

For more information about data source conformance, search for "conformed
dimensions" and "business keys" in the IBM Cognos Transformer User Guide

You might also want to see “Unexpected or Empty Results When Drilling:
Through” on page 564.

Related concepts:
"Conformed Dimensions” on page 484
If you work with more than one dimensional data source, you may notice that
some dimensions are structured the same, and some are not.
“Business Keys” on page 485
When drill-through access is defined from a member to a relational value, the
business key of the member is passed by default.

A Running Total in Grouped Reports Gives Unexpected
Results
You have a running total calculation in a grouped report that returns unexpected
values.

Because tabulation of the running total calculation depends on the order in which
the grouping is executed, you must ensure that the grouped totals are tabulated
before applying the running total.

To ensure that the grouping is executed in correct order, define a running total
calculation as a freestanding calculation outside the query subject in IBM Cognos
Framework Manager, and ensure that the Regular Aggregate property is set to
Automatic.

This may also be an issue with other running, moving, and ranking aggregations.

PCA-ERR-0057 Recursive Evaluation Error
You run a report and encounter the following error.

PCA-ERR-0057 Recursive evaluation has exceeded limit. Calculated member trace:
COG_OQP_USR_Aggregate(Retailer Type): COG_OQP_INT_m2: COG_OQP_INT_m1:
COG_OQP_USR_Aggregate(Retailer Type): COG_OQP_INT_m2: COG_OQP_INT_m1:
COG_OQP_USR_Aggregate(Retailer Type): COG_OQP_INT_m2: COG_OQP_INT_m1:
COG_OQP_USR_Aggregate(Retailer Type): COG_OQP_INT_m2: COG_OQP_INT_m1

You may encounter this error when two or more data items form a recursive
evaluation. For example, in the above error, the calculation of Aggregate(Retailer
Type) is dependent on a column expression while at the same time the column
expression is dependent on Aggregate(Retailer Type). Therefore, the cyclic
relationship cannot be resolved.

To avoid this problem, ensure that calculations do not have cyclic relationships.
Arithmetic Overflow Error When Running a Report in PDF Format

If you use a Microsoft SQL Server 2005 data source and your report includes aggregations, you may encounter the following error when you run your report in PDF format:

RQP-DEF-0177 An error occurred while performing operation 'sqlOpenResult' status='-28'. UDA-SQL-0114 The cursor supplied to the operation "sqlOpenResult" is inactive. UDA-SQL-0564 [Microsoft OLE DB Provider for SQL Server] Arithmetic overflow error converting expression to data type int. (SQLSTATE=22003, SQLERRORCODE=8115)

This error occurs because the action is performed in the database, and the database data type is too small.

This error did not occur in IBM Cognos Business Intelligence version 8.3 or earlier because aggregation was processed locally, by the Business Intelligence server. In version 8.4 or later, aggregation is processed at the database level.

To avoid this problem, increase the size of the database data type.

RQP-DEF-0177 An error occurred while performing operation 'sqlPrepareWithOptions' status='-69' UDA-SQL-0043 Error

You cannot run a report in IBM Cognos Report Studio or IBM Cognos Query Studio, and the following error messages appear.

RQP-DEF-0177 An error occurred while performing operation 'sqlPrepareWithOptions' status='-69' UDA-SQL-0043 The underlying database detected an error during processing the SQL request.[NCR][ODBC Teradata Driver][Teradata Database] Partial string matching requires character operands

These error messages do not indicate an IBM Cognos Application Firewall problem.

There is a problem with your data source not converting numeric data items. Ask your administrator to consult the topic Enable Conversion of Numeric Search Keys to Strings in Queries in the IBM Cognos Business Intelligence Administration and Security Guide.

Unable to View Active Reports in Mozilla Firefox

When you try to view an active report in the Mozilla Firefox browser, you may see a blank page or a message such as the one below appears.

Your report is ready and will download to your Web browser in a few moments.

However, the report never appears. This problem occurs in the following scenarios:

- You try to open the saved output of an active report in IBM Cognos Connection.
- You try to run an active report from within IBM Cognos Report Studio.

The issue is with the UnMHT add-on, and was reported on the UnMHT Warehouse Web site.
A solution was implemented for each scenario above to work around the issue when using the Mozilla Firefox browser.

- When you try to view an active report in IBM Cognos Connection, instead of opening directly, the download dialog box appears, prompting you to open or save the report.
- In Report Studio, the default action is **Download Active Report** when clicking the run report button. Note that if you click the drop-down arrow and choose **Run Active Report**, the report will not render.

### Running Large SAP BW Queries

When working with a SAP BW data source, if your report includes a data set greater than one million cells, you may encounter the following error:


To avoid this error, set the Processing property for the query to Limited Local. This allows the report to process locally.

### Master Detail or Burst Reports with Charts or Crosstabs May Result in Denial of Service

When running a master detail or burst report that includes a chart or crosstab, disk space exhaustion may cause the report or other requests to fail. A large set of burst keys or master rows may produce one or more charts per detail, resulting in many master detail executions. This may cause the temp folder to accumulate many gigabytes of temporary files containing data required for successful chart rendering.

To avoid this issue, we recommend that you test large master detail or burst reports that include charts or crosstabs to determine the potential peak disk requirements for the report.

### Problems When Drilling Through

The topics in this section document problems you may encounter when drilling through reports.

#### Cannot Drill Through Between PowerCubes Because MUNs Do Not Match

We recommend that business keys be unique throughout the dimension for PowerCubes. These keys are used as the source value for levels in a hierarchy of a dimension. If the values are not unique throughout the dimension, the corresponding Category Code values may be generated with tildes.

For example, if a category for the Product Line level has a source value of 101 and a category in the Product Type level has a source value of 101, the Category Code value for the Product Type level is automatically generated with a unique value such as 101~245. The Category Code values are used in the Member Unique Name
(MUN) for each member, for example, [Sales and Marketing].[Products].[Products].[Product type]->:[PC].[@MEMBER].[101~245].

Because these values are generated automatically, they cannot be guaranteed from one cube build to the next or in a build for another cube with the same dimension structure using the same source values. Therefore, drilling from one PowerCube to another on what appears to be the same member might not work since the MUNs might not match.

If the MUNs do not match, consult the cube modellers to see if the business keys can be made unique throughout the dimension. If this is not likely, or might take some time to resolve, you can use calculations to pass the source value from one PowerCube to another for drill-through.

For more information about drill-through access, see the Drill-Through Access chapter in the IBM Cognos Business Intelligence Administration and Security Guide.

**Procedure**

1. In the target report, create a filter with the following syntax:

   \[\text{filter}(\text{Hierarchy or Level}, \text{roleValue(’_businessKey’, [Hierarchy or Level]}) = \text{?Parameter})\]

   For example:

   \[\text{filter(Sales Cube].[Products].[Products].[Product type}, \text{roleValue(’_businessKey’, Sales Cube].[Products].[Products].[Product type}) = \text{?Prod Type})\]

2. In the source report, create a Query Calculation which is used to pass the business key (source value) to the target report by mapping it to the target parameter in the drill-through definition. Use the following syntax:

   \[\text{roleValue(’_businessKey’, [Hierarchy or Level])}\]

   For example:

   \[\text{roleValue(’_businessKey’, sales_and_marketing].[Products].[Products].[Product type})}\]

**Unexpected or Empty Results When Drilling Through**

When you drill from a source report to a target report, there might be no data returned. This might be the correct result if there is no data that corresponds to the drill-through selections or if you do not have permission to view the data.

In other cases, if no data or the wrong data appears, the source item might not be mapped to the target correctly or the values in the data sources might not be conformed (the values do not match in both data sources).

If you have the necessary permissions, you can debug drill-through definitions by using the drill-through assistant from the Go To page (right-click the selection in the source report and select Go To). You can view the passed source values and the mapping to the target report parameters. You can use this tool for both authored and package drill-through definitions.

You might be able to correct the problem by modifying the parameter mapping in the drill-through definition. For example, when you drill from a cube to a relational data source, sometimes no data is returned or the wrong data is returned because the business key values in the two data sources do not match. You can change the drill-through definition to pass the caption of the IBM Cognos
PowerCube member instead of the business key, but you must also change the target report to filter on the corresponding string value and not the business key value.

However, it is best to ensure the data sources are conformed. In this example, the business keys in the cube should match the business keys in the relational source. Filtering on a key is more efficient than filtering on a larger string that may or may not be indexed in the database.

For more information on data source conformance, search for "conformed dimensions" and "business keys" in the *IBM Cognos Transformer User Guide*.

**Procedure**

1. Ensure that the target report filters on a string value that matches the caption being passed from the PowerCube.
2. Edit the drill-through definition as follows:
   - If the drill-through definition was created in IBM Cognos Report Studio, open the report, and go to the drill-through definition associated with the drill-through source object. On the parameter mapping page, select **Member Caption** in the **Property to pass** column.
   - If the drill-through definition was created in the source package, go to IBM Cognos Connection, **Drill-Through Definitions**, and open the package drill-through definition. On the **Target** tab of the drill-through definition, select **Member Caption** in the **Property to pass** column for the appropriate parameter.

**Results**

When you drill through, instead of the business key, the caption is passed to the target.

You might also want to see "Data Does Not Appear in a Target Report or the Wrong Data Appears" on page 560. For more information about drill-through access, see the Drill-Through Access chapter in the *IBM Cognos Business Intelligence Administration and Security Guide*.

**Related concepts:**

- "Conformed Dimensions" on page 484
- "Business Keys" on page 485

If you work with more than one dimensional data source, you may notice that some dimensions are structured the same, and some are not.

**Cannot Drill Through From a Relational Source to a Cube**

By default, you cannot drill through from a relational data source to a cube. This is because a cube expects a Member Unique Name (MUN) as a parameter value and relational sources do not use MUNs.

Members have properties which include a business key and a caption. If either of these match data items within the relational source, drilling through can be performed as long as the cube target report is authored in Report Studio.
If the source data source has a query item, for example display name, that corresponds to a member property in the target cube, for example caption, you must create the parameter on the caption in the target report.

To pass the data item to the cube target, do the following:
- In the cube target report, create a parameter that accepts the caption of the member. This parameter should be created in a Query Calculation object from the Toolbox tab with the following syntax. Type the following

  `filter([Hierarchy or Level], caption([Hierarchy of Level]) = ?Parameter?)`

  For example:

  `filter([sales_and_marketing].[Products].[Products].[Product line],
  caption([sales_and_marketing].[Products].[Products].[Product line]) = ?Product Line?)`

  For more information about drill-through access, see the Drill-Through Access chapter in the IBM Cognos Business Intelligence Administration and Security Guide.

**Drill-through links in active reports do not work**

When viewing an active report that contains drill-through links in Microsoft Internet Explorer 8 and later, the links do not work.

Clicking on a drill-through link produces an error like the following:

The search path "<drill_through_target_search_path>" is invalid. An object may contain invalid syntax, or an unsupported character, or the user account in the namespace may not have sufficient privileges. Check the object to ensure that the target destination location does not contain special characters.

Details

CM-REQ-4069 The property "na" is unknown. Replace it with a valid property.

When clicking a link in an active report, you are attempting to move from a local domain (the active report MHT file on your computer) to the IBM Cognos Business Intelligence server's domain. Internet Explorer views this as a potential risk. To resolve the problem, make the following changes to the security settings in Internet Explorer.

**Procedure**

1. Click **Tools, Internet Options**.
2. Click the **Security** tab.
3. Click **Trusted sites** and then click **Sites**.
4. In the **Add this website to the zone** box, type the IBM Cognos BI server's domain.
5. Click **Add** and then **Close**.
6. Click **Custom level**.
7. In the **Scripting** section, under **Enable XSS filter**, click **Disable** and then click **OK** twice.
Appendix C. Sample Reports and Packages

Sample reports are included with IBM Cognos Business Intelligence. When installed, you can find them in the Public Folders tab in IBM Cognos Connection.

Related tasks:
- “Showing Correlation Between Variables” on page 241
  You can use correlation to measure the strength of a relationship between two variables using the correlation coefficient.
- “Use Linear Regression” on page 245
  Linear regression displays the regression coefficients of the linear equation involving one or more independent variables that best predict the value of the dependent variable. When there is more than one independent variable, this is known as multiple regression.
- “Create p,np Charts” on page 272
  You can use a p chart or an np chart to plot attribute data where you are tracking whole units that are defective.

The Sample Outdoors Company

The Sample Outdoors Company samples illustrate product features and technical and business best practices.

You can also use them for experimenting with and sharing report design techniques and for troubleshooting. As you use the samples, you can connect to features in the product.

For examples related to different kinds of businesses, see the product blueprints on the IBM Cognos Information Centers (http://publib.boulder.ibm.com/infocenter/cogic/v1r0m0/index.jsp).

For information about audit samples, see the IBM Cognos Business Intelligence Administration and Security Guide.

For information about Mobile samples, see the IBM Cognos Mobile Installation and Administration Guide.

The Sample Outdoors Company, or GO Sales, or any variation of the Sample Outdoors name, is the name of a fictitious business operation whose sample data is used to develop sample applications for IBM and IBM customers. Its fictitious records include sample data for sales transactions, product distribution, finance, and human resources. Any resemblance to actual names, addresses, contact numbers, or transaction values, is coincidental. Unauthorized duplication is prohibited.

Where to find the samples

The samples are included with the product and the samples for each studio are described in the related user guide and online help. To use the samples, you must install, set up, and configure them or contact your administrator to find out where they are installed.
Samples outline

The samples consist of the following:

- Two databases that contain all corporate data, and the related sample models for query and analysis
- Five samples cubes and the related models
- A metrics data source including associated metrics and a strategy map for the consolidated company, and a model for Metric extracts.
- Reports, queries, query templates, and workspaces
  
  To run interactive reports, scripts are required. To see all the reports included in the samples packages, copy the files from the samples content installation into deployment folder and then import the deployments into the IBM Cognos Business Intelligence product.

Security

Samples are available to all users.

The Sample Outdoors Group of Companies

To make designing examples faster, especially financial examples, some general information about The Sample Outdoors Company is useful.

To look for samples that use particular product features, see the individual sample descriptions in this section.

Revenue for The Sample Outdoors Company comes from corporate stores and from franchise operations. The revenues are consolidated from the wholly-owned subsidiaries. There are six distinct organizations, each with its own departments and sales branches. Five of these are regionally-based companies.

The sixth company, GO Accessories:

- Has its own collection of products, differentiated from the other GO companies by brand, name, price, color and size.
- Sells from a single branch to all regions and retailers.
- Functions both as an operating company based in Geneva, and as a part owner of the three GO subsidiaries in Europe.

The diagram illustrates the consolidated corporate structure, including the percentage changes in ownership for GO Central Europe, and shows the reporting currency and GL prefix for each subsidiary.
Each corporation has the same departmental structure and the same GL structure, shown in the table. Divisions may not report in the same currencies. For example, the Americas subsidiary reports in US dollars, but the Corporate division local currency is Canadian dollars, and the Operations division local currency is pesos.

Table 8. Departmental structure

<table>
<thead>
<tr>
<th>Division (GL)</th>
<th>Department (GL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate (1700)</td>
<td>Sales (1720)</td>
</tr>
<tr>
<td></td>
<td>Marketing (1750)</td>
</tr>
<tr>
<td></td>
<td>IS&amp;T (1760)</td>
</tr>
<tr>
<td></td>
<td>Human Resources (1730)</td>
</tr>
<tr>
<td></td>
<td>Finance (1740)</td>
</tr>
<tr>
<td></td>
<td>Procurement (1710)</td>
</tr>
<tr>
<td>Operations (1800)</td>
<td>Production and Distribution (1820)</td>
</tr>
<tr>
<td></td>
<td>Customer Service (1820)</td>
</tr>
</tbody>
</table>

Each corporation has a complete chart of accounts. Most of the accounts, such as those under non-personnel expenses, are at the department level, and contain only summary amounts. For example, although each marketing department has expenses, the cost is unspecified at the transaction level where marketing promotions occur.
**Employees**

The Sample Outdoors data contains a full list of employees in all divisions, departments, and locations.

Data is available for reports about bonuses (Global Bonus report) and sales commissions (Sales Commissions for Central Europe report), training (Employee Training by Year report), and performance reviews and employee satisfaction surveys (Employee Satisfaction 2012). If you use Metric Studio, sample metrics for human resources are also available.

In the GO Data Warehouse (analysis) package, groups of measures and the related dimensions are organized into folders. The employees are organized in hierarchies for region and manager, to make different kinds of aggregation easy to report on. Aggregation has been defined for the Employee Position Summary measures, so that Position count and Planned position count aggregate correctly at each level of time: monthly, quarterly, or yearly. For example, see the Planned Headcount report.

The employees are also listed in a sample LDIF file which could be used for any LDAP IBM product authentication including Tivoli®. This authentication directory is necessary for IBM Cognos Planning samples. No other samples depend on security profiles.

**Sales and marketing**

Data about sales and marketing is available for all of the companies in the Sample Outdoors group.

GO Accessories has richer details to support analysis examples. For example, see the Revenue vs % Profit Margin by Product Brand analysis, based on the Sales and Marketing cube. Marketing and sales campaigns are tied to the Sample Outdoors regional companies.

Overall, the GO companies have experienced solid growth across most product lines (Sales Growth Year Over Year), in all regions (Revenue by GO Subsidiary 2011), because of factors like an increase in repeat business and new or improved products, such as the high margin sunglasses product line. In the product lines sold by the five regional companies (all but GO Accessories) promotions have had mixed success (Promotion Success by Campaign, Bundle and Quarter). If you use Metric Studio, this can also be seen in the sample metrics.

**Customer surveys**

The data also contains information from customer surveys. For example, the product line that includes bug spray, sun screen, and so on has not been successful (Product Satisfaction - Outdoor Protection 2011) and a source of retailer dissatisfaction may be the level of customer service rather than the returns (Customer Returns and Satisfaction). If you use Metric Studio, this information can also be monitored in metrics.

**Sales outlets**

Revenue from the corporate outlets is available at the transaction level. Revenue from the franchise outlets is available at the consolidated level only (Sales and Marketing cube). Metrics about retailers show that the number of new retail outlets has dropped over the time period covered by this data.
GO Accessories sells worldwide, and sells only accessories. Transaction data for GO Accessories is the primary source for analysis of product by brand, color and size. The other five subsidiaries in the group of companies are regional and sell all product lines for retailers in their region. For example, the report Top 10 Retailers in 2011 uses sparklines and list data to review revenues at the retailer level.

Sample Outdoors database, models, and packages

The Sample Outdoors models illustrate modeling techniques and support the samples.

The models are based on the GO data warehouse and the GO sales transactional database and are the basis for the sample reports and queries. Each model contains two packages for publishing analysis (dimensional) and query views of the data.

For a description of each sample report or query, see the user guide for the studio that you open the sample in. For more information about modeling techniques, see the Guidelines for Modeling Metadata, or the IBM Cognos Framework Manager User Guide.

You must have access to Framework Manager, the modeling tool in IBM Cognos Business Intelligence, to look at the sample models. You may also need to set up the sample databases and connections.

GO Data Warehouse

The GO Data Warehouse model, great_outdoors_data_warehouse.cpf, is based on the database GOSALESDBW. It contains data about human resources, sales and marketing, and finance, grouped into business areas. In the Database view, the three business areas are grouped into separate namespaces. The Database view contains a fourth namespace (GO Data) for the common information.

The Database view is very similar to the structure of the underlying database. All tables (database query subjects) are unchanged. This enables IBM Cognos BI to retrieve metadata directly from the package in most cases, instead of using a metadata call to the database. The following changes and additions have been made in the Database view:

- Joins have been added as necessary.
- To allow for aggregation at different levels of granularity, some model query subjects have been created. For example, see the relationships between Time and Sales or Sales fact.
- To allow single joins to be made between the lookup tables and each level in a dimension, lookup tables have been copied. For example, see the Products lookup tables.

The Business view contains only model query subjects, with no joins. The following changes and additions have been made in the Business view:

- Calculations were added to the model query subjects. For example, the time dimension contains language calculations.
- Where the database has multiple hierarchies, new dimensions have been created to organize each hierarchy. For example, see the employee hierarchies, where employees are organized by manager and region.
The GO Sales transactional database

The GO Sales model, `great_outdoors_sales.cpf`, is based on the GOSALES database, which is structured as a transactional database. It contains principally sales data.

The Database view is very similar to the underlying database structure. The following changes and additions have been made in the Database view:
- To make it possible to join the fact tables to the time dimension, model query subjects and multipart joins have been used.
- Other joins have been added as necessary.

The Business view contains only model query subjects, with no joins. The following changes and additions have been made in the Business view:
- Calculations were added to the model query subjects.
- Model query subjects that were created in the Database view to enable joins on the time dimension have been linked as reference shortcuts.
- Where the database has multiple hierarchies, new dimensions have been created to organize each hierarchy.
- Sales Staff is a subset of the slowly changing Employee dimension. There is no unique Employee key in GO Sales, so a filter retrieves the current record only. This model does not use historical data.

The samples PowerCubes

The following cubes are delivered with the Sample Outdoors samples in English, French, German, Japanese and Chinese:
- `sales_and_marketing.mdc`
- `employee_expenses.mdc`
The samples packages

The Sample Outdoors samples include six packages. A brief description of each available package is provided.

Go Data Warehouse (analysis) is a dimensionally modeled view of the GOSALESDW database. This package can be used in all studios, including IBM Cognos Analysis Studio. Using this package you can drill up and down.

Go Sales (analysis) is a dimensionally modeled view of the GOSALES database. This package can be used in all studios, including Analysis Studio. Using this package you can drill up and down.

Go Data Warehouse (query) is a non-dimensional view of the GOSALESDW database. This package can be used in all studios except Analysis Studio, and is useful for reporting when there is no need for drilling up and down.

Go Sales (query) is a non-dimension view of the GOSALES database. This package can be used in all studios except Analysis Studio, and is useful for reporting when there is no need for drilling up and down.

Sales and Marketing (cube) is an OLAP package, based on the sales_and_marketing.mdc cube.

Great Outdoor Sales (cube) is an OLAP package, based on the great_outdoors_sales_en.mdc cube.

Note: The OLAP packages, Great Outdoor Sales (cube) and Sales and Marketing (cube), are not multilingual. The IBM_Cognos_PowerCube.zip archive contains five versions of each package; one in English, French, German, Japanese and Chinese.

Samples in the Sample Outdoors Sales (cube) package

The following report is found in the Sample Outdoors Sales (cube) package.

Consecutive Periods Comparison

This report shows the revenue and gross profit for Camping Equipment and Personal Accessories, as well as quantity for Camping Equipment, in two consecutive periods selected by the user.

Samples in the Sales and Marketing (Cube) Package

The following reports are some of the reports found in the Sales and Marketing (Cube) package.

Actual vs. Planned Revenue

This report shows the actual revenue versus planned revenue by order method and year. This report is also a target for the measure based scope drill-through from other reports in the same package.
This report uses the following features:
- lists
- filters
- multiple prompts
- grouping
- sorting
- summarizing

**Historical Revenue**

This prompted report shows a 13-month rolling forecast of monthly and year-to-date revenue.

This report uses the following features:
- filters
- cascading prompts
- combination charts
- axis titles

**Revenue by Date Range**

This report shows revenue for a date range that is specified on a prompt page.

This report uses the following features:
- lists
- crosstabs
- context filters
- custom headers and footers
- multiple prompts
- calculations

**Revenue by Product Brand (2011)**

This report shows the revenue and gross profit by product filtered by the product brand. There is always product turnover, so the report conditionally highlights products that are discontinued.

This report uses the following features:
- lists
- filters
- prompts
- combination charts
- bar charts
- HTML items
- grouping
- sorting
- axis titles

**Running Total For Promotion**

This report shows planned revenue by percentage for product line. This report is optimized for mobile devices.
This report uses the following features:
- drill down
- query calculations
- crosstabs
- lists
- pie charts
- tables
- custom headers and footers

**Sales Revenue Expectation**
This report shows the goal for the percentage change in sales revenue for retailers. It uses a calculated value for forecasted revenue. This report is optimized for mobile devices.

This report uses the following features:
- crosstabs
- bar charts
- line charts
- pie charts
- calculations
- custom headers and footers
- text items

**Same Month Prior Year**
This report shows sales volume by product line in one or more months. The report is filtered by a prompt for month. The report generates totals for the selected months and for the same months in the prior year.

This report uses the following features:
- crosstabs
- prompts
- custom headers and footers

**Selected Retailer Country or Region**
This report uses the revenue from a selected country or region as a baseline value for a set of countries or regions. A chart shows the difference in revenue for each country and region as it compares to the base country and region. The report is filtered by a prompt for country and region.

This report uses the following features:
- crosstabs
- bar charts
- tables to control where objects appear

**Top Retailers by Country or Region**
This report shows the top 10 retailers by country or region. It is used as source for drill-through to the Total Revenue by Country or Region report.

This report uses the following features:
Tree Prompt Retailers Set
This report shows the revenue for the retailers set. This report is optimized for mobile devices. It is a drill-through target for the Sales Revenue Expectation report.

This report uses the following features:
- crosstabs
- tree prompts
- combination charts
- prompt pages
- query calculations
- custom headers and footers

Samples in the GO Data Warehouse (analysis) Package
The following reports are some of the reports found in the GO Data Warehouse (analysis) package.

Budget vs. Actual
This report shows three years of data by retailer and retailer site for the camping equipment product line. Each year includes budget and actual data.

This report uses the following features:
- summarizing
- crosstabs
- context filters

Core products results
This active report shows revenue data for the core products Camping Equipment and Golf Equipment.

This list report uses two drop-down list controls to filter data by
- core product
- country or region

Customer Returns and Satisfaction
This report shows the customer satisfaction survey results for Asia Pacific in 2013. It highlights the customers who are the least satisfied. It also provides information about customers with the highest number of product returns.
This report uses the following features:
- combination charts
- customizing the color and size of a chart
- lists
- formatting a list
- conditional highlighting
- filters
- custom headers and footers
- colors
- lineage
- text items
- grouping
- baselines
- summarizing
- calculations
- drilling through

**Employee Satisfaction 2012**
This report shows employee satisfaction survey results by department, compared to targets and industry standards. It also shows employee rankings and terminations.

This report uses the following features:
- crosstabs
- conditional highlighting
- combination charts
- lineage
- text items
- calculations

**Employee Training by Year**
This report shows employee training data for the selected year and quarter(s). A bar chart shows training costs by region and a crosstab shows data for the selected quarter(s).

This report uses the following features:
- context filters
- cascading prompts
- bar charts
- customizing the color of a chart
- crosstabs
- calculations

**Eyewear Revenue by Brand and Size**
This report shows a summary of eyewear revenue by brand and compares two prompted retailer sites. The report is filtered by prompts for region, retailer type, and year.
This report uses the following features:
- prompts
- bar charts
- lists
- conditional styles
- calculations
- text items
- custom headers and footers
- combination charts
- axis titles
- crosstabs
- grouping

**Global Bonus Report**

This list report shows employees who received more than $2,500 bonus in a year by region. It is grouped by country or region. It also shows how much the sales target was exceeded for each region.

This report uses the following features:
- lists
- page sets (page breaks by country or region with different sorting and grouping)
- multiple prompts and parameters
- calculations
- filters
- conditional highlighting
- hidden objects
- lineage

**GO Balance Sheet as at Dec 31 2012**

This is the Balance sheet report for Americas where current year data is compared to the previous year data. Analysts can see negative trends under Variance where negative percentages are highlighted.

This report uses the following features:
- conditional highlighting
- padding
- crosstabs
- text items
- context filters

**Sample Outdoors Company Balance Sheet as at Dec 31 2012**

This report shows a simple balance sheet with assets, liabilities, and equity for 2012 with a 2011 comparative. It uses IBM Cognos Workspace Advanced. The IBM Cognos Business Intelligence Getting Started guide provides a step-by-step example of how to create this report.

This report uses the following feature:
- crosstabs
Manager Profile
This report shows information about managers, including salary, bonuses, and all compensations grouped by year.

This report uses the following features:
- column charts
- lists
- grouping
- summarizing
- custom chart palette
- prompts

New order methods
This active report shows revenue by order method, with focus on the new order methods.

This list report has the following features:
- check box control that allows you to filter data by new order method
- sorting by year or new order method

Planned Headcount
This chart report shows headcount variance compared to the plan for each organization for 2010.

This report uses the following features:
- progressive column charts
- templates
- hidden objects
- custom headers and footers
- lists
- baselines

Positions to Fill
This report shows a list of department names, positions, longest days to fill the positions, and ranking. The report uses a prompt for the year and is a drill-through target for the Recruitment report.

This report uses the following features:
- combination charts
- lists
- prompts
- baselines

Promotion Plan Revenue
This report shows the planned revenue for all the promotions of a selected campaign. It is a drill-through target for the Top 10 Promotions by Retailer report that is based on the Sales and Marketing (cube) package.

This report uses the following features:
Promotion Success
This report shows the financial results of the company's promotions. It shows how much of the company's total revenue is attributable to each promotional campaign.

This report uses the following features:
- prompts
- bar charts
- crosstabs
- axis titles

Quantity Sold vs. Shipped and Inventory
This report compares the quantity of goods sold and shipped with the opening and closing inventory levels.

This report uses the following features:
- filters
- combination charts
- defined y-axes
- custom headers and footers

Recruitment Report
This report shows a variety of recruitment techniques for certain positions or organizations.

This report uses the following features:
- drilling through
- crosstabs
- prompt pages
- colors
- floating object adjustment
- custom headers and footers

Return Quantity by Order Method
This report shows quantity sold, number of returns, and percentage of returns (with those greater than 5% highlighted) by return reason for each product in the Outdoor Protection product line.

This report uses the following features:
- filters
- lists
• conditional highlighting
• grouping

Returns by Order Method
This report shows product returns and reasons filtered on the order method. The Getting Started guide provides a step-by-step example of how to create this report.

This report uses the following features:
• bar charts
• prompts
Returns by Order Method - Prompted Chart
This prompted chart report shows product returns and reasons filtered on a prompted order method. The Getting Started guide provides a step-by-step example of how to create this report.

This report uses the following features:
- bar charts
- prompts
- crosstabs
- filters
- custom headers and footers

Revenue by GO Subsidiary 2011
This prompted chart report shows 2011 quarterly revenues for each GO subsidiary.

This report uses the following features:
- templates
- colors
- prompts
- hyperlinks
- customizing charts
- singletons
- bar charts
- drilling through
- layout calculations
- pie charts
- calculations
- combination charts
- text items
- blocks
- sorting

Sales Commissions for Central Europe
This report shows an annual summary of sales commissions, revenues, and gross profit for each branch in Central Europe. It also compares actual commission expenses with planned commission expenses.

This report uses the following features:
- prompts
- calculations
- bar charts
- lists
- conditional highlighting
• drilling through
• custom headers and footers
• axis titles

**Sales Growth Year Over Year**
This report shows annual sales growth in both percentage and dollar amounts.

This report uses the following features:
• bar charts
• lists
• filters
• sorting
• baselines
• axis titles

**Sales target by region**
This active report shows sales target by region, including the percentage differences between planned and actual revenue.

**Succession Report**
This report shows the succession data by department and status for percent ready in a column chart. It also contains a detailed crosstab for the managers associated with the possible successors.

This report uses the following features:
• drilling through to the Manager Profile report
• filters
• lists
• grouping

**Top 10 Retailers for 2011**
This report shows the top 10 retailers for 2011 by revenue and sales target.

This report uses the following features:
• bar charts
• lists
• filters
• multiple queries
• combination charts
• line charts
• notes
• axis titles
• text items
• custom headers and footers
Samples in the GO Data Warehouse (query) Package

The following reports are some of the reports found in the GO Data Warehouse (query) package.

Advertising-cost vs revenue
This active report shows the advertising cost vs revenue by year. Tab controls are used for grouping similar report items.

Bursted Sales Performance Report
This list report shows how to burst a product sales report to a sales manager for Northern Europe sales staff. To successfully burst this report, IBM Cognos Business Intelligence must be configured to use an email server.

This report uses the following features:
- lists
- bursting
- conditional highlighting
- filters
- calculations
- summarizing
- blocks
- custom headers and footers
- sorting
- grouping

Employee Expenses (report)
This report is used as a data source for the Employee Expenses Power Cube.

This report uses the following feature:
- lists

Health Insurance
This report is used as a data source for the Employee Expenses Power Cube.

This report uses the following features:
- lists
- filters

Pension Plan
This report is used as a data source for the Employee Expenses Power Cube.

This report uses the following features:
- lists
- filters
Regular Salary

This report is used as a data source for the Employee Expenses Power Cube.

This report uses the following features:
• lists
• filters

TOC Report

This report takes advantage of the bookmark object to allow a user to navigate through this report easily. This report should be run in PDF or saved HTML format. The report contents show a product order table and an expected volume fact table.

This report uses the following features:
• lists
• bookmarks
• background color
• multiple pages
• grouping

Total Revenue by Country or Region

This report summarizes revenue for Retailer Country or Region and Product Line. It is also a drill-through target for the Top Retailers by Country or Region and Revenue by Order Method reports.

This report uses the following features:
• crosstabs
• combination charts
• summarizing
• tables to control where objects appear

Samples in the GO Sales (analysis) Package

The following reports are some of the reports found in the GO Sales (analysis) package.

2011 Quarterly Sales Forecast

This report shows the sales forecast by product line and region for each quarter in 2011.

This report uses the following features:
• lists
• summarizing
• grouping
• sorting

2011 Sales Summary

This report summarizes revenue and gross profit for 2011 and shows the top sales representatives by revenue and quantity sold.
This report uses the following features:
- lists
- filters
- combination charts
- axis titles
- custom headers and footers
- conditions

**Samples in the GO Sales (query) Package**

The following reports are some of the reports found in the GO Sales (query) package.

**Active Report Techniques**

This report demonstrates common active report and dashboard features and functionality.

**Briefing Book**

This report shows a Briefing Book style of report.

This report uses the following features:
- multiple pages
- crosstabs
- multiple queries
- filters
- pie charts
- singletons
- tables of contents
- bookmarks
- PDF options
- horizontal pagination
- sorting
- custom headers and footers
- text items

**Film strip**

This active report shows detailed sales facts in different charts. Deck controls are used for navigation.

**Horizontal Pagination**

This report shows crosstabs rendered across several horizontal pages. The first crosstab shows the fit-to-page behavior while the second crosstab shows the horizontal pagination.

This report uses the following features:
- multiple pages
- horizontal pagination
- crosstabs
Matrix-chart and graph
This active report shows a summary of sales facts for each province or state in the Americas. Clicking a category in the map displays the data in a list.

Order Invoices - Donald Chow, Sales Person
This report generates invoices for all the sales by Donald Chow.

This report uses the following features:
• lists
• adding list row cells
• calculations
• formatting tables
• calculations
• filters
• grouping
• tables to control where objects appear

No Data
Each page of this report presents a different option for dealing with a No Data condition. It also generates invoices of sales for the Order Invoices - Donald Chow, Sales Person report in the GO Sales (query) package.

This report uses the following features:
• crosstabs
• custom headers and footers
• no data
• lists

PDF Page Properties
The two pages of this report appear with different Page Orientation (portrait and landscape) when the report is run in PDF format.

This report uses the following features:
• crosstabs
• lists
• page orientation
• PDF options
• custom headers and footers

Product details
This active report shows attributes as color, size, and description for products.

Sales analysis
This active report shows interactions with charts. Clicking a pie series in a chart filters the product line selected.
Sales Dashboard
This active report focuses on sales details by region and product brand. Describes the top performers and the best performance by region.

Singletons on Page Body
This report uses singleton results to display information with no data relationship in the same layout context.

This report uses the following features:
- singletons
- tables
- custom headers and footers

Table of Contents
This report shows two Tables of Contents: one for the main pages and another for the appendices.

This report uses the following features:
- crosstabs
- pie charts
- bookmarks
- tables
- tables of contents
- custom headers and footers
- hyperlinks

Samples in the IBM Cognos Statistics Package
The following reports are some of the sample reports found in IBM Cognos Statistics.

IBM Cognos Statistics contains the following data sources:
- GOSALEDW
- BANKLOAN_CS
- CATALOG_SALES
- CLOTHING_DEFECTS
- DISCHARGEDATA
- DVDPLAYER
- SHAMPOO_PH

Advertising Costs on Sales Revenue - Linear Regression
This report uses a linear regression statistical object to show the impact of advertising costs on sales revenue.

This report uses the following features:
- Linear regression
- crosstabs
Catalog Sales - Correlation
This report uses a correlation statistical object to summarize the relationship between two critical business variables in a retail organization from 1999-2008.

This report uses the following features:
- correlation
- lists

Clothing Manufacturer Quality - Control Chart
This report uses a control chart statistical object to monitor the clothing manufacturing process to ensure that the proportion of detective clothing is consistent over time and across batches.

This report uses the following features:
- a p, np control chart

Discharged Patients - One-way Chi-square
This report uses a one-way chi-square statistical object to report analyze whether the number of patients that are discharged varies by day of week.

This report uses the following features:
- a one-way chi-square test
- combination charts

DVD Score - One-way ANOVA
This report uses a one-way ANOVA statistical object to discover if consumers of various ages rate the design of a DVD player differently.

This report uses the following features:
- one-way ANOVA
- pie charts

Income Growth - Boxplot
This report uses a boxplot object to understand the key influencers of income.

This report uses the following features:
- a boxplot
- curve estimation
- column charts
- lists

Shampoo pH Level - Control Chart
This report uses a control chart statistical object to monitor the processing of pH level in shampoo production.

This report uses the following features:
- an X-bar chart and an R chart
Interactive Samples

The following reports are some of the reports found in the Interactive Samples folder.

**Bursted Sales Performance Report**

This list report shows how to burst a product sales report to a sales manager for Northern Europe sales staff. To successfully burst this report, IBM Cognos Business Intelligence must be configured to use an email server.

This report uses the following features:
- lists
- bursting
- conditional highlighting
- filters
- calculations
- summarizing
- blocks
- custom headers and footers
- sorting
- grouping

**Percentage Calculation (by year)**

This prompted report shows a percentage calculation based on a particular year.

This report uses the following features:
- lists
- pie charts

**Recruitment Report**

This report shows a variety of recruitment techniques for certain positions or organizations.

This report uses the following features:
- drilling through
- crosstabs
- prompt pages
- colors
- floating object adjustment
- custom headers and footers

**Revenue by GO Subsidiary 2011**

This prompted chart report shows 2011 quarterly revenues for each GO subsidiary.

This report uses the following features:
- templates
- colors
- prompts
• hyperlinks
• customizing charts
• singletons
• bar charts
• drilling through
• layout calculations
• pie charts
• calculations
• combination charts
• text items
• blocks
• sorting

**Rolling and Moving Averages**

This report shows the rolling and moving average count for the return quantity. A prompt uses a macro to provide static choices within a time dimension.

This report uses the following features:

• prompts
• calculations
• crosstabs
• combination charts

**Top 10 Retailers for 2011**

This report shows the top 10 retailers for 2011 by revenue and sales target.

This report uses the following features:

• bar charts
• lists
• filters
• multiple queries
• combination charts
• line charts
• notes
• axis titles
• text items
• custom headers and footers

---

**Prompt API samples**

The following reports are some of the reports found in the Samples_Prompt_API folder.

**Clear prompt selections**

This report demonstrates using the prompt API to clear selections from all prompts.
Date prompt presets
This report uses the prompt API to provide the user with a set of prompt selection presets based on today’s date.

Display all prompt values ignoring user selections
This report uses the prompt API to display all the values in the prompt, whether they are selected or not.

Display user selected prompt values
This report uses the prompt API to display the prompt values selected by the user.

Filter country by letter
This report uses a custom prompt control to provide parameters to filter the report.

Limit date prompt selection by database value
This report demonstrates limiting the selection of a date to a value less than or equal to a latest date value in a query item.

Limit numeric prompt selection by database value
This report demonstrates limiting the selection of a value less than or equal to a largest value in a query item.

Limit time between two dates
This report demonstrates preventing the user from selecting a date range greater than 10 days.

Limit user selection to two items
This report shows how to validate prompt values to stop the user from selecting more than two items.

Pass parameter via hidden prompt
This report demonstrates setting the value of a hidden prompt.

Personal default prompt selections - set selections
This report allows the user to save a set of default prompt selections for use in subsequent reports. The prompt selections are saved to browser cookies for reuse in other reports.

Personal default prompt selections - use selections
This report shows how to use the personal default prompt selections.

Validate prompt values when button pushed
This sample shows how to validate prompt values when a prompt button is clicked.

Validate type-in postal code values
The report uses the prompt API to validate user input as the user types.
Validate type-in product line code

The report uses the prompt API to validate user input as the user types.
Appendix D. Limitations when using dimensional data sources

There are limitations when authoring or running reports against dimensional data sources.

Running a Report Against a Dimensional Data Source

You can cancel a report that is running against Microsoft SQL Server Analysis Services only during the initial portion of its execution. After this time, the report runs to completion.

The same behavior applies to SAP BW data sources.

In IBM Cognos Framework Manager, you can also control the number of levels within a hierarchy from which members, or values, are extracted from the hierarchy to populate a tree prompt.

For SAP BW, you can reduce the number of hierarchy levels to limit the number of nodes by setting the SAP BW variable property trimHierarchyLevels to 1. This removes the lowest level from the hierarchy prior to creating the list of nodes.

Units of Measure Notation

When running a report against an SAP BW data source, units of measure are included in the same column as the data values, separated by one space. For example, Celsius and Fahrenheit notations are appended to the end of the value.

If you see an asterisk character (*), one of the following was detected:
- an unknown currency
- a value with an unknown or questionable unit of measure, such as a mixed currency calculation or rollup
  Mixed currency values occur when you calculate values with different currencies.

This behavior occurs when you are using an IBM Cognos cube as a data source.

This behavior also occurs for SAP BW data sources.

Unsupported SAP Variable Properties

The following SAP variable properties are not supported:
- Exclusionary ranges appear as an inclusionary prompt.
- Mandatory not initial appears as a mandatory prompt.

When using Business Explorer (BEx) to define variables in your SAP data source, avoid using exclusionary ranges and the mandatory not initial property.
Limitations When Using Set Expressions in List Reports

In list reports, we recommend that you avoid using set expressions. When in a list, set expressions, such as `TopCount`, may produce fewer rows than in the corresponding crosstab.

For example, the following list report includes Year in the first column, followed by a column containing an expression that returns the top three months by revenue. Only three rows appear in the report and they correspond to the top three months across all years. If you group by Year, the report still shows only three months. However, the corresponding crosstab report, you see three months for each year.

<table>
<thead>
<tr>
<th>Year</th>
<th>Top 3 Months</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>March</td>
<td>171,457,960.73</td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>166,411,082.56</td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>151,995,729.54</td>
</tr>
</tbody>
</table>

In crosstab reports in IBM Cognos Business Intelligence, set evaluation is always done in the context of what the set is nested under in the report. However, in list reports set evaluation is done independently of the grouping. For example, if the first column contains Country or Region instead of Year, you see the top three months for each country or region (across all years) in both cases.

In the case of different dimensions, you can force context independence by replacing `[Revenue]` in the `topCount` expression with `tuple([Revenue], X)`, where X is the default member of the hierarchy that contains Month.

However, for nested levels in the same hierarchy, there is no such workaround at this time.

Limitations When Using Clauses in Summary Functions

A summary function that uses a `for` clause may yield unexpected results. These may include error messages, warnings, incorrect numbers, and more or fewer than expected rows, columns, or chart points and lines.
To avoid these problems, ensure that the parameters that follow the for clause adhere to the following constraints:

- Parameters must be simple data item references.
- All data items in the parameter list must appear on every list, crosstab, or chart that uses that summary.
- For any edge used in the for clause, data items listed in the for clause must start with the first data item on that edge.
- Data items must be listed in the order in which they appear on each edge of the report with no gaps.
- In crosstabs and charts, there must be no sibling data items that are considered details. Summaries are normally not considered details.
- Section headers must not be included in the parameter list.

If following these constraints does not resolve the problems and your report uses dimensional data with no detail or summary filters, consider using the within set clause instead of the for clause.

---

**Limited Support for Relational Functions When Used with OLAP Data Sources**

When working with an OLAP data source, we recommend that you not use relational functions, such as substring and concatenation functions, in a report that also contains a measure with the Aggregate Function property set to Calculated or Automatic in the model. If you do so, you may encounter unexpected results. For example, some summaries are calculated using the Minimum function instead of the aggregate function derived from the individual query items.

In the expression editor, an exclamation mark (!) that precedes a function indicates that the function is not naturally supported for that data source. IBM Cognos Business Intelligence uses a local approximation for that function. Because an approximation is used, performance can be degraded and the results may not be what you expect.

For example, you create an IBM Cognos Query Studio report that contains the data items Product line and Retailer site count. The footer summary is set to Calculated. You then insert a calculated column that returns the first three characters of the Product line item, which uses the relational concatenation function. The footer summary now shows the lowest gross margin value.

<table>
<thead>
<tr>
<th>Product line</th>
<th>First Three Characters</th>
<th>Retailer site count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camping Equipment</td>
<td>Cam</td>
<td>632</td>
</tr>
<tr>
<td>Mountaineering Equipment</td>
<td>Mou</td>
<td>265</td>
</tr>
<tr>
<td>Personal Accessories</td>
<td>Per</td>
<td>810</td>
</tr>
<tr>
<td>Outdoor Protection</td>
<td>Out</td>
<td>639</td>
</tr>
<tr>
<td>Golf Equipment</td>
<td>Gol</td>
<td>367</td>
</tr>
<tr>
<td><strong>Summary</strong></td>
<td></td>
<td><strong>265</strong></td>
</tr>
</tbody>
</table>
Limitations When Summarizing Measures in DMR Data Sources

There are limitations when summarizing dimensionally-modeled relational (DMR) measures and semi-additive measures in crosstabs using the aggregation function count distinct, median, standard-deviation, or variance. The following limitations can produce empty or error cells when the report is run:

- The aggregation function must apply to all members of a level or all children of a member.
- To use OLAP functions in detail filters that are applied to a dimension that is not in the report, or is at a level below what is being reported, only the functions children, level, members, roleValue, and rootMembers will work.
- You cannot define detail filters that reference one or more measures and are set to After auto aggregation.
- You cannot define context filters that have more than one member from a dimension that does not appear in the report.
- Context filters that have more than one member from a dimension that appears in the report produce errors in all cells that are ancestors of the slicer members.
- If a crosstab has a row that is a set of members from one dimension (dimension A) and another row that is a set of members from another dimension (dimension B), and a context filter containing members from dimension A is defined, error cells are produced in the row that contains members from dimension B.
- If a context filter contains members from a dimension, and a crosstab has a row that is a set of members from a higher level than the slicer members, error cells are produced for that row.
- Error cells are produced when drilling down on a crosstab that has two nested levels.

If you do not consider these limitations in a calculation, the report may return inaccurate results.

If there is a non-measure calculation that returns a constant or contains a summary function, and the calculation has a lower solve order than the measure being aggregated, error cells are returned for the aggregated measure.

In list reports, error cells are produced as a result of these limitations if the list uses an OLAP function other than children, filter, level, members, roleValue, and rootMembers.

Limitations When Filtering Dimensional Data Sources

Avoid combining context filters (slicers) with dimensional constructs that involve members from hierarchies that are used elsewhere in the report. This combination gives results that are often not what you might expect and that may change in a future release.

Dimensional data sources provide implicit rollup at all levels of each dimensional hierarchy. Context filters and slicers with more than one member invalidate any pre-computed rollup of members at hierarchy levels above the level at which the filter applies.
The following types of filtering are safe for dimensional reporting:

- Context filters (slicers) with one or more explicit, non-calculated members per hierarchy, if those hierarchies are not used elsewhere in the report.
- Expressions that use the filter function (not in a slicer), comparing measure, tuple, or attribute values.

**Nesting Incomplete Sets**

When you nest sets (especially sets of explicit members, and sets that result from the functions such as filter and intersect), there may be members at one nesting level that have no corresponding members that can appear nested below them. In such cases, filtering results may not be what you expect: the higher-lever members may or may not appear in the result.

While this is most commonly seen within a single hierarchy, it can also happen across different hierarchies and dimensions.

To avoid this problem, ensure that the lower-level sets are constructed to ensure that they are never empty for any of the members in the higher-level set. For example, you could filter only the top level set and nest only the complete set of descendants at the desired levels below.

**Error Characters (--) When Filtering**

When you use slicers or context filters with a calculated fact or measure, you may see two dashes (--) as values for some or all of the cells in the report that represent aggregates that are calculated in the database (aggregation is set to Automatic). This means that the data source is unable to compute these values.

You can avoid this error by using an explicit rollup rule or aggregation function such as Total. However, do this only if you are familiar with the data and absolutely certain that this is the appropriate answer for that report.

**Time Hierarchies**

Error characters also appear in summaries if your report includes a time hierarchy and you use two or more members from a different time hierarchy as a context filter. To avoid the error, use only one member as the context filter.

**Filters in Queries and Sub-queries**

For dimensional data sources, filters in queries and sub-queries are considered equivalent. The same applies to slicers.

**Limitations When Specifying the Scope of Summary Filters with Dimensional Data Sources**

When you specify the scope for a summary filter, consider the following limitations. The scope of a summary filter

- must refer to a grouped data item for list reports. Otherwise, you encounter the following error:

  OP-ERR-0212 The summary filter scope (Scope1) found in the query (Query1) is not valid. It must refer to a grouped query item.

- can refer to multiple data items, but it can refer to only one data item per edge of the crosstab. Otherwise, you encounter the following error:
OP-ERR-0213 The summary filter scope (Scope1) found in the query (Query1) is not valid. Referencing more than one query item from the same edge is not supported.

- must refer to a level and cannot refer to a measure. Otherwise, you encounter the following error:
  OP-ERR-0209 The summary filter scope (Scope1) found in the query (Query1) is not valid. It must refer to a level.
- must refer to a data item that is projected on an edge of the crosstab. If the scope of a summary filter refers to a data item that was deleted from the report layout, you may encounter unexpected results. Otherwise, you encounter the following error:
  OP-ERR-0213 The summary filter scope (Scope1) found in the query (Query1) is not valid. Referencing more than one query item from the same edge is not supported.
- must refer to unique data items. For example, the summary filter cannot refer to the same data item more than once.

### Limitations When Filtering Data Using an SAP BW Data Source

If you are working with an SAP BW data source, you must consider additional exceptions when applying filters.

If you apply a filter and a sort to an item that corresponds to the leaf-level of a recursive hierarchy, siblings may appear in the report even though the aggregated values are correct. Siblings are characteristic values with the same parent as the filtered member.

Each level in an SAP BW hierarchy has an item with the same name as the level and a role of _businessKey. Such items are known as level identifiers. The level identifier must be an exact value for the operators =, <, and > to work. For example, for the filter [Office] > 'Chicago' to work, the value 'Chicago' must exist in the data source. If you do not know the exact values, you can apply the filter to one of the attribute items associated with the level, such as [OfficeLongName] > 'C'. Filters on non-identifiers are possible, but they are slower because SAP BW data sources are optimized for queries based on level identifiers.

When filtering time-related data, only the level identifier items of the time-related characteristics in SAP BW, such as 0CALDAY and 0CALMONTH, should be used for performing anything other than equality filters. All other (attribute) items in these hierarchies are formatted string representations of the characteristic values with which they are associated. These formatted values sort alphanumerically and not chronologically.

### Using Prompt Expressions in Filters

If you create a filter expression using report item attributes, such as the following, no data is returned.

```
[report item attribute] = ?prompt?
```

To resolve the problem, do one of the following:
- Fully qualify the item by using items from the source tree instead of data items from the report.
- Use prompt controls in the report instead of hand coded prompts.
Considerations when Creating Calculations

Consider the following information and limitations when creating dimensional calculations.

**Calculation Solve Order**

When calculations in the rows and columns of a report intersect, calculations are performed in the following order: addition or subtraction, multiplication or division, aggregation (rollup), and then the remaining arithmetic functions.

The remaining functions are as follows:
- absolute, round, average, minimum, maximum, medium, count
- percentage, % difference (growth), or % of total
- rank, quartile, quantile, percentile

If both calculations have the same precedence, for example, if they are both business functions, then the row calculation takes precedence.

You can override the order of precedence by changing the solve order property. For more information, see "Resolve Multiple Calculations for Crosstabs and Charts" on page 604.

**Length of Expressions**

When creating layout calculations that use complex expressions, limit the length of the expression to less than 1,000 tokens. A token is a keyword, identifier, constant, or special character symbol that the server identifies when it parses the SQL. For example, the expression 1+1+1+1+1+1+1+1 contains approximately 28 tokens, whereas the expression 1+1+1...+1 (400 times) contains more than 1000 tokens.

**Tip:** The Sales Commissions for Central Europe sample report in the GO Data Warehouse (analysis) package includes expressions. For more information about The Sample Outdoors Company samples, see Appendix C, “Sample Reports and Packages,” on page 567.

**Quality of Service Indicators**

Not all data sources support functions the same way. The data modeler can set a quality of service indicator on functions to give a visual clue about the behavior of the functions. Report authors can use the quality of service indicators to determine which functions to use in a report. The quality of service indicators are:
- not available (X)
  The function is not available for any data source in the package.
- limited availability (!)
  The function is not available for some data sources in the package.
- limited support (!)
  The function is available for all data sources in the package but is not naturally supported for that data source. IBM Cognos Business Intelligence uses a local approximation for that function. Because an approximation is used, performance can be poor and the results may not be what you expect.
- unconstrained (check mark)
  The function is available for all data sources.
Using Quotation Marks in Literal Strings

When inserting literal strings in an expression, you must enclose the string in single quotation marks. If the string contains a quotation mark, it must be escaped. For example, if you want to insert the string ab’c, you must type ‘ab’c’.

Limitations of Calculations

You should use only the expressions and functions available in IBM Cognos Report Studio, and follow their syntax.

Minimal checking exists for calculations. If your calculation uses an invalid expression, your report results may contain unexpected values.

In addition, you should define member summaries as follows:

```
summary_function (currentMeasure within set set_reference)
```

where `set_reference` is a level or set inserted from the `Source` tab.

Unless otherwise required, `summary_function` should be the aggregate function. If you use an explicit summary function, you may encounter problems with measures (such as profit margin, distinct count, and so on) that have complex rollup values, and/or scenario or account dimension members that do not roll up.

Know your data, and confirm with the owner of the cube where overriding the automatic aggregation is safe.

Because of the above limitations, summaries of calculations may not provide reliable values. For convenience, you may have to build reports where row summaries and calculated member columns intersect. In such reports, these intersections may contain unexpected values. In contrast, row calculations intersecting with column aggregates using the aggregate function are safe because the calculation is performed on the reliably summarized values.

Units of Measure

When creating calculations in IBM Cognos Report Studio and IBM Cognos Query Studio, you may encounter problems with the units of measure. For example, the calculation Cost*Cost returns the unit of measure * instead of a currency unit of measure. To avoid this problem, change the format of the corresponding column to obtain the desired unit of measure.

Limitation When Using Dimensional Functions with Running and Moving Summaries

IBM Cognos Business Intelligence does not currently support queries that contain both dimensional functions and running summaries or moving summaries. For example, when you drill down in a report, the query uses the dimensional function `children`, which is not compatible with running and moving summaries. Running and moving summaries are supported for only the overall level of a dimension.

Creating Expressions Using SAP BW Data Sources

You must consider the following when creating expressions using an SAP BW data source, or you may not get the results you expect.
The case and if/then/else constructs are not supported in filters.

The query item identifier of the leaf-level of the 0CALDAY characteristic and its presentation hierarchies is of type date. When the values for the query item identifier are presented in IBM Cognos Report Studio, they are formatted as dates. These formatted values should not be used in filter expressions. The correct date constant format for use in expressions is YYYY-MM-DD.

You can apply a comparison expression with an operator other than equals to a query item that represents a level identifier. However, level identifiers are more efficient for identifying specific values. Range comparisons must be performed on the IBM Cognos application server, which slows down the performance of the report.

**Using Microsoft Excel Functions with SSAS 2005 Data Sources**

If you are working with a Microsoft SQL Server 2005 Analysis Services (SSAS) data source and you want to use Microsoft Excel VBA functions such as ROUNDDOWN in MDX queries, the following Microsoft Office features must be installed on the SSAS server:

- Microsoft Office Excel
- Microsoft Visual Basic for Applications

To see a list of Excel VBA functions, see the Microsoft Web site [http://www.microsoft.com](http://www.microsoft.com).

If these Microsoft Office features are not installed on the SSAS 2005 server, and you use Excel VBA functions, you encounter an error such as the following: YK-ERR-0008 The data provider returned an error message: "The [Excel].[ROUNDDOWN] function does not exist."

This error occurs because the OLAP server cannot process the function since Excel function libraries are missing.

For more information, see the Microsoft Knowledge Base article # 932214 at [http://support.microsoft.com](http://support.microsoft.com).

**Concatenating Strings**

When IBM Cognos Business Intelligence concatenates strings locally and if any of the involved strings contain null values, the result of the concatenation is an empty cell or a null value. This occurs because IBM Cognos BI requires that an expression that involves a null value returns a null value. Many databases ignore null strings when they perform concatenations. For example, if you concatenate strings A, B, and C, and if string B is a null value, the database may concatenate only strings A and C.

**Intersecting Calculations in Crosstabs and Charts**

An intersection point in a crosstab or chart can contain a value that is derived from multiple calculations.

If the query expressions for the row and column that intersect in a crosstab both include calculations, the intersecting value is the result of performing both calculations. The second calculation is performed on the result of the first calculation. If you change the order in which the calculations are performed, the resulting value at the intersection point changes.
The solve order is a positive numeric value that you assign to data items. Negative values are not supported. The data item with the lowest value is calculated first, followed by the next higher value, and so on. The data item with the highest solve order is computed last. If you do not specify a solve order, the default value of 0 is used. In crosstabs, if more than one data item has the same solve order, column items are calculated first and row items are calculated second.

For example, a crosstab contains the columns Actual revenue, Sales target, and a column that calculates the percentage by which actual revenue exceeds target revenue. The crosstab contains a row for each Sales year and a summary row that calculates the overall totals for each of the three columns. The cell where the percentage calculation and the overall total calculation intersect contains only one value. By default, IBM Cognos Business Intelligence calculates the column percentage first and the summary row last. The value that appears at the intersection is therefore a sum of the percentages, which is not a meaningful result. The value is more meaningful if the overall percentage is calculated after the actual and sales target revenues are summed. Specifying a solve order for the percentage calculation that is higher than the overall total calculation gives the following result:

<table>
<thead>
<tr>
<th>Year</th>
<th>Actual revenue</th>
<th>Sales target</th>
<th>Percentage by which Actual Exceeds Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>$43,025,310.66</td>
<td>$15,051,551.00</td>
<td>187%</td>
</tr>
<tr>
<td>2005</td>
<td>$65,096,447.76</td>
<td>$29,406,080.00</td>
<td>127%</td>
</tr>
<tr>
<td>2006</td>
<td>$102,253,419.64</td>
<td>$36,065,756.00</td>
<td>123%</td>
</tr>
<tr>
<td>Total (Sales year)</td>
<td>$231,375,178.06</td>
<td>$80,528,327.00</td>
<td>187%</td>
</tr>
</tbody>
</table>

It is not necessary to specify the solve order for the overall total calculation. Because the default solve order is 0, setting the solve order for the percentage calculation to a value higher than 0 is sufficient.

**Nested Calculations in Crosstabs**

If a crosstab contains nested calculations, the calculations are performed in the following order by default:
1. outermost calculation on the columns
2. innermost calculation on the columns
3. outermost calculation on the rows
4. innermost calculation on the rows

If there are solve order ties, column items are calculated before row items and outer nesting items are calculated before inner nesting items.

**Resolve Multiple Calculations for Crosstabs and Charts**

If an intersection in a crosstab or chart contains a value that is derived from multiple calculations, you can specify the order in which to perform the calculations. The solve order must be a positive numeric value. The calculations are performed from lowest to highest solve order value.

Setting the Rollup Aggregate Function property to Calculated for a data item assigns a solve order that is higher than any other data item in a query unless a solve order is explicitly specified. If there are multiple data items that have the Rollup Aggregate Function property set to Calculated, the normal rules for solve order apply.
Procedure

1. Click the data item for which to specify the solve order.
   
   A data item can have only one solve order value. Consequently, if a data item is in a query that is used in more than one context and you want the data item to have a different solve order in each context, you must use a separate data item.

   **Tip:** In crosstabs, to specify the solve order for the default measure, click the crosstab and, in the Properties pane, click the select ancestor button and click Crosstab. Or you can click the container selector (three orange dots) of the crosstab to select it.

2. In the Properties pane, set the Solve Order property to an integer value.
   
   **Tip:** To specify the solve order for the default measure, click Default Measure Solve Order.

Resolve Query Calculations that Intersect with Calculated Measures Defined in Microsoft Analysis Services

Microsoft SQL Server Analysis Services (SSAS) data sources may include data source calculations. Because IBM Cognos Business Intelligence cannot predict the presence of a solve order on such calculations, setting the Solve Order property may not resolve the solve order correctly. You can suppress potentially meaningless results when querying dimensional data sources that include data source calculations. In the following example, the columns YTD Change and YTD Growth are data source calculated members and the summary values for these two columns were suppressed.

<table>
<thead>
<tr>
<th>Revenue</th>
<th>Prior YTD</th>
<th>YTD</th>
<th>YTD Change</th>
<th>YTD Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camping Equipment</td>
<td>296,355,466.50</td>
<td>352,910,329.57</td>
<td>62,554,853.47</td>
<td>21.54%</td>
</tr>
<tr>
<td>Personal Accessories</td>
<td>325,883,402.11</td>
<td>443,693,499.65</td>
<td>113,810,047.74</td>
<td>34.50%</td>
</tr>
<tr>
<td>Outdoor Protection</td>
<td>5,942,914.77</td>
<td>4,471,025.26</td>
<td>-1,471,919.51</td>
<td>-24.77%</td>
</tr>
<tr>
<td>Golf Equipment</td>
<td>136,993,550.79</td>
<td>174,740,819.29</td>
<td>35,747,258.50</td>
<td>25.72%</td>
</tr>
<tr>
<td>Mountaineering Equipment</td>
<td>93,654,629.48</td>
<td>141,520,649.70</td>
<td>47,866,020.22</td>
<td>51.11%</td>
</tr>
<tr>
<td><strong>Total</strong> (Product line)</td>
<td><strong>858,830,003.65</strong></td>
<td><strong>1,117,336,274.07</strong></td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

When a query-defined calculated member and a data source calculated member intersect, the value is the result of performing both calculations. The second calculation is performed on the result of the first calculation. Whether the final value is meaningful depends on the order in which the calculations are performed. Because IBM Cognos BI cannot determine the presence of these members ahead of time, it cannot automatically determine the correct solve order.

In most cases, SSAS 2005 gives the expected results when no solve order is defined in the cube. Therefore, when using SSAS 2005, you do not need to set either the Solve Order property in the query or the Calculation Intersection property.

**Note:** Dimensionally-modeled relational (DMR) data sources query one or more underlying relational databases, and therefore cannot contain data source calculations. They are not considered dimensional data sources in the context of this topic.
Procedure

1. Pause the pointer over the query explorer button and click the query that contains the data item for which to suppress values.
2. In the Data Items pane, click the data item.
3. In the Properties pane, set the Calculation Intersection property to Show "Not applicable".

Results

When a query-defined calculated member and a data source calculated member intersect, the resulting value is suppressed. If the intersecting members do not contain data source calculations, the value is not suppressed.

Null (Missing) Values in Calculations and Summaries

The data source that you use determines how null (or missing) values are handled in calculations, summaries, and other expressions.

Null values represent missing data values. For example, a new eyewear product, called Abby, is introduced in 2009. Therefore there are no sales in 2008. If you create a report with the years 2008 and 2009, the values for sales of Abby for the year 2008 are null (missing).

By default, null values appear as blank cells in a crosstab or list report. You can change the default to specify the display of other characters, such as the word null, by changing the data format of the Missing Value Characters property for the cells or report. For more information, see "Set the Default Data Formats" on page 453.

Arithmetic Operations

Null values in arithmetic operations yield different results depending on the type of data source.

In Microsoft SQL Server Analysis Services (SSAS) and Cubing Services data sources, a null value in arithmetic operations is treated as follows:

- In operations such as addition (+), a null value yields the same result as zero (9 + NULL = 9)
- In operations such as multiplication (*), a null value yields a null result (9 * NULL = NULL)

You can accommodate this behavior by using more complex expressions such as the following:

- if ([M] is not NULL, then ([M]) else (0)
- if ([M] is not NULL, then (<expression involving M> else NULL)

In relational and other OLAP data sources the result of an operation that includes a null value is always null. For example, 9 + NULL = NULL.

Equality Comparisons

Equality comparisons, such as equal to (=) and not equal to (<>), compare two values and return a Boolean value of true or false.
For all data sources, equality comparisons are treated as tests for missing data. Inequality comparisons are treated as tests for non-missing data.

For example, NULL=NULL is true and NULL=0 is false.

Ordered Comparisons

In ordered comparisons, such as rank and quantile functions, null values are handled as follows.

For relational data sources, the result of the comparison is always false. For example, NULL < 1 is false.

For Microsoft SSAS, Cubing Services, and other OLAP data sources, the null value is treated as zero. For example, NULL < 1 is true.

Boolean Functions

In Boolean operations, such as or, null values are handled as follows.

For relational and dimensionally-modeled relational data sources, the result of a Boolean operation is always null. Boolean functions are used in conditions and the null result is treated as a false condition. For example, NULL OR TRUE = NULL (FALSE)

For Microsoft SSAS, Cubing Services, and other OLAP data sources, the null value is treated as if it is false. For example, NULL OR TRUE = TRUE.

Summary Functions

All summary functions, such as aggregate, average, and maximum, ignore null values. For all functions except count, if all values in the expression are null, the result is null. For count, if all values in the expression are null, the result is zero.

For example, if the value for Quantity for 2003 is 10 and the values for 2001 and 2002 are null, then the average is as follows:

- \( \text{average} ([\text{Quantity}] \text{ within set set([2002], [2003])}) = 10 \)
- \( \text{average} ([\text{Quantity}] \text{ within set set([2002], [2001])}) = \text{NULL} \)

The count is as follows:

- \( \text{count} ([\text{Quantity}] \text{ within set set([2002], [2003])}) = 1 \)
- \( \text{count} ([\text{Quantity}] \text{ within set set([2002], [2001])}) = 0 \)

String Operations

For all data sources, the result of string operations, such as concatenation (||), that include a null value is always null.

For example, 'A' || NULL = NULL and NULL || NULL = NULL.

Dimensional Coercion Rules

IBM Cognos Business Intelligence uses dimensional coercion rules to automatically convert dimensional types to better match other types. These conversions help you build simpler expressions, making them easier to understand. In addition to the
implicit rules that IBM Cognos BI provides, you can make explicit data type conversions using various functions, such as children.

IBM Cognos BI supports the following types of coercion:
- coercion of an object of one dimensional type into another, such as a level into a member set
- coercion of a dimensional object into a numeric, date, time, or string value, such as a numeric measure into a numeric value

Coercion rules are applied to expressions and data items. In expressions, an operator or function may require operands to be of a particular dimensional type. When an operand is not of the required type, one or more coercion rules may be applied to coerce the operand to the appropriate type. Coercion rules may also be applied to data items to coerce the data item to a collection of members or values.

**Function Operands**

The following describes how coercion rules are applied to function operands:
- If the operand is of the required type, no coercion is required.
- If the function operand is supposed to be a numeric value, it is coerced into one. A coercion rule exists for each type of dimensional object coercion.
- If the function operand is supposed to be a dimensional object and a coercion exists to coerce the operand to the required type, the coercion is applied.

If no coercion exists, an error message with the code QE-DEF-0478 appears to indicate that an unsupported conversion of a dimensional object from the source to target type occurred.

**Comparison and Other Symmetric Operators**

Binary operators that accept operands of more than one type, such as equals (=) and in, need both operands to be the same dimensional type.

No coercion is possible between value domains (numeric, date, time, and string) or between members and values. Consequently, if either operand is a value type, both must be in the same value domain and converted explicitly using a function. Otherwise, the query fails.

Members and member set operands are valid only with the operators equals (=), not equals (<>), in, and not in, where the right side of the expression is a member, member set, or prompt. Only the following are valid:
- [member / member set] = [member]
- [member / member set] <> [member]
- [member / member set] = ?p?
- [member / member set] <> ?p?
- [member / member set] in ([member], ...)[member / member set] not in ([member], ...)
- [member / member set] in ([member set])[member / member set] not in ([member set])[member / member set] in ?p?[member / member set] not in ?p?
Exceptions

For the left operand, member sets are supported in detail and summary filter expressions, but not in expressions that use the *filter* function. Members are not supported in detail and summary filters, but they may be used in expressions that use the *filter* function.

The *in_range* operator is not supported for members and member sets.

Normal coercion rules apply to these operands.

NULL operands are considered values, rather than members.

Examples

The following examples illustrate how coercion is applied to levels in expressions with operators.

[Sales].[Products].].[Product Line] = [Sales].[Products].].[Product Line] -> [Outdoor Equipment]

The left operand is coerced to the following member set:

members ([Sales].[Products].].[Product Line])

The following expressions are invalid:
• [Sales].[Products].].[Product Line] = NULL
• [Sales].[Products].].[Product Line] + 1
• [Sales].[Products].].[Product Line] = 'Canada'
• [Sales].[Products].].[Product Line] > 2000

The following examples illustrate how coercion is applied to members in expressions with operators. In each of the examples below, the left operand is coerced to a value of the current cell at this member:

(tuple ([Sales].[Products].].[Product Line] -> [Outdoor Equipment]))
• [Sales].[Products].].[Product Line] -> [Outdoor Equipment] = NULL
• [Sales].[Products].].[Product Line] -> [Outdoor Equipment] + 1
• [Sales].[Products].].[Product Line] -> [Outdoor Equipment] + 'Canada'

Coercion Rules for Dimensional Objects

The following table describes coercion rules that are applied when coercing an object of one dimensional type into another.

<table>
<thead>
<tr>
<th>Source type</th>
<th>Target type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure dimension</td>
<td>Hierarchy</td>
<td>A measure dimension can be used without any conversion as a hierarchy.</td>
</tr>
</tbody>
</table>

Note: Measures and Member Unique Names (MUNs) are considered members.
<table>
<thead>
<tr>
<th>Source type</th>
<th>Target type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure dimension</td>
<td>Member set</td>
<td>The member set contains the members of the measure dimension. This coercion is done in two steps. First, measure dimensions are coerced to hierarchies, and then hierarchies are coerced to member sets.</td>
</tr>
<tr>
<td>Hierarchy</td>
<td>Member set</td>
<td>A set containing the members of the hierarchy.</td>
</tr>
<tr>
<td>Level</td>
<td>Member set</td>
<td>A set containing the members of the level. The equivalent expression is members (level).</td>
</tr>
<tr>
<td>Measure</td>
<td>Member</td>
<td>A measure can be used without any conversion as a member.</td>
</tr>
<tr>
<td>Measure</td>
<td>Tuple</td>
<td>This coercion is done in two steps. First, measures are coerced to members, and then members are coerced to tuples.</td>
</tr>
<tr>
<td>Measure</td>
<td>Member set</td>
<td>This coercion is done in two steps. First, measures are coerced to members, and then members are coerced to member sets.</td>
</tr>
<tr>
<td>Member</td>
<td>Tuple</td>
<td>The tuple consists of the member. The equivalent expression is tuple (member).</td>
</tr>
<tr>
<td>Member</td>
<td>Member set</td>
<td>The set consists of the member. This coercion is done in two steps. First, members are coerced to tuples, and then tuples are coerced to member sets.</td>
</tr>
</tbody>
</table>

**Coercion Rules for Numeric and String Values**

The following table describes the coercion rules for expressions or prompts that return a numeric or string value. These rules apply to functions and operators that require an operand of a particular data type, as well as to binary operators that require operands of the same type.

<table>
<thead>
<tr>
<th>Source type</th>
<th>Target type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure</td>
<td>Number, Date/Time, or String</td>
<td>The result is the value of the measure at the current cube intersection.</td>
</tr>
</tbody>
</table>
### Source type  |  Target type  |  Result
--- | --- | ---
Member  |  Number  |  The result is the value of the cell at the cube intersection specified by the member.

This coercion is done in two steps. First, members are coerced to tuples, and then tuples are coerced to the target type.

Tuple  |  Number  |  The value of the cell at the cube intersection specified by the tuple.

The equivalent expression is `value (operand or parameter)`.

---

### Coercion Paths

The following diagram shows how coercion rules are connected. The expression that coerces a source node type to a target node type is built by following the path that connects them. A dotted line indicates a coercion that does not require an explicit conversion function. This occurs whenever the source type is a specialization of the target type. For example, every measure is a member so you can use measures without conversion wherever a member is required.

---

### Recommendation - Use Member Unique Name (MUN) Aliases

If you are working with a dimensional data source, use MUN aliases to simplify building reports and expressions. In addition, you can tie the MUN back to the member in the package.

When working with dimensional data sources, IBM Cognos Business Intelligence uses MUNs to uniquely identify members. MUNs are very complex. For example, the MUN for the member 2004 might appear as
When you build expressions that involve members, the use of MUNs makes these expressions difficult to read and maintain.

**Tip:** To view the MUN of a member, in the Source tab, right-click the member and click Properties.

IBM Cognos Report Studio has an option that automatically generates an alias for MUNs (Tools > Options > Report tab > Alias member unique names). The MUN alias is a data item that has the MUN as its definition. For the previous example, you would see 2004 as the MUN alias in the Expression property for the data item. If the MUN alias is not enabled, you would see the complex MUN as shown above in the Expression property.

**Important:** Do not modify or rename MUN aliases, because they will lose their connection to their respective members in the package.

**Running a Report That Contains Members**

If you are using members in a report and your modeler has updated the data source in a way that changes member unique names, the following problems may arise when you run the report.

- If the report queries an OLAP data source, you receive an error message explaining that some specific members cannot be found.
- If the report queries a dimensionally modeled relational (DMR) data source, data items whose member unique names have changed do not appear in the report. Calculations that refer to members that have changed no longer contain values from the members.

To resolve these problems, you must update the member unique names in the report. Open the query that contains the members that you need to update in Query Explorer. Delete the member from the pane in which it appears and reinsert it from the Source tab. For example, if you inserted the member as a detail filter, delete it from the Detail Filters pane and reinsert it.

**Limitations When Formatting Empty Cells in SAP BW Data Sources**

When working with SAP BW data sources, if the SAP BW server administrator configured custom formatting for empty cells on the SAP BW server, this custom format does not appear in IBM Cognos Business Intelligence reports. Ask your administrator to configure the formatting of empty cells in IBM Cognos BI.

**Related tasks:**

- “Suppress Empty Cells” on page 457

Sparse data may result in crosstabs showing empty cells. For example, a crosstab that matches employees with products results in many rows of empty values for the revenue measure if the employee does not sell those products.
Appendix E. Limitations When Producing Reports in Microsoft Excel Format

There are limitations when producing reports in Microsoft Excel format.

Unable to Load Images from the IBM Cognos Business Intelligence Content Store in a Report

If a report contains an image whose URL points to the IBM Cognos Business Intelligence content store, the Microsoft Excel spreadsheet software generates an access violation error and shuts down.

This problem is a known issue in the Microsoft knowledge base, and Microsoft is currently investigating the problem. This problem occurs only in Excel 2002.

Blank Worksheet Appears

If the Microsoft Excel spreadsheet software cannot download a worksheet within a timeout period, Excel may instead open a blank worksheet.

Warning Message Appears When Excel Opens an IBM Cognos Business Intelligence Report

Each time the Microsoft Excel spreadsheet software opens an IBM Cognos Business Intelligence report, a warning message appears.

The warning message is as follows:

Some of the files in this Web page are not in the expected location. Do you want to download them anyway? If you are sure the Web page is from a trusted source, click Yes.

The Excel workbook in HTML/XML format requires the presence of the file filelist.xml. IBM Cognos BI does not allow the creation of local files on the client side. In addition, a local file that contains URLs introduces a security issue. Consequently, this message will appear whenever you open an IBM Cognos BI report in Excel. If you see this error message, click Yes to open the report.

Spreadsheet Content Not Saved for Reports Saved in XLS Format

If you open a report that was saved in XLS format or run a report in XLS format, and security settings in your Web browser are set so that you are prompted to open or save the report, do not click Save. If you save the report, the spreadsheet content will not be saved. This is because Microsoft Excel reports in Microsoft Office 2000 HTML format use relative paths to the spreadsheets. The relative URL paths are no longer available when you open a saved XLS report.

Instead, click Open first and then choose to save the report.
Unable to Load Excel Report in Netscape 7.01

This version of IBM Cognos Business Intelligence does not support loading Microsoft Excel reports in Netscape 7.01.

Unable to Nest Labels in Charts

Currently, it is not possible to specify nested labels for the category axis via XML.

Data Series Are Truncated

The Microsoft Excel spreadsheet software may group data series or categories differently when compared to a chart produced by IBM Cognos Business Intelligence.

A 1 KB buffer limit in Excel limits the maximum number of data series per chart to 120. Data series over 120 are truncated.

Colors Different From Those in HTML or PDF

If an IBM Cognos Business Intelligence report contains a chart that uses custom colors, the Microsoft Excel spreadsheet software may not be able to add the custom color to the Excel color palette. Excel will attempt to match the custom color to one of its available standard colors. As a result, colors in Excel may vary from those seen in HTML or PDF.

We recommend that you use standard colors in charts.

Repeating Pie Charts

If you have a report that has repeating pie charts and you define a chart title, the Microsoft Excel spreadsheet software will show each pie with a title that is a concatenation of the chart title and the data series. For example, if the chart title is Quantity Sold by Order Method and Product Line and the data series is Order method, the title of each pie in Excel will be Quantity Sold by Order Method and Product Line, order method.

Unable to Skip Discrete Axis Labels

In IBM Cognos Business Intelligence charts, you can control the skipping of discrete axis labels. This feature is not supported in Microsoft Excel charts.

Unsupported IBM Cognos BI Formatting

About 30% of the formatting functions available in IBM Cognos Business Intelligence are not supported in the Microsoft Excel spreadsheet software.

In particular, Excel does not allow changing locale-dependent formatting attributes, such as the following:

- Decimal Separator
- Exponential Symbol
- Group Separator
- Monetary Decimal Separator
- AM String
• Day Name
• Day Short Name
• Decimal Delimiter Symbol
• Month Name
• Month Short Name
• PM String

In addition, Excel does not support the following:
• Format Width
• International Currency Symbol
• List Separator
• Percent Symbol (Excel does not support percent symbols for charts)
• Multiplier
• Overline Text Format
• PerMill Symbol
• Plus Sign
• Scale (Excel has a different scaling formula than IBM Cognos BI)
• Calendar (Excel does not allow changing the calendar)
• Era Name
• First Day Of Week
• Show Era

**Cells Contain Series of #**

Cells in the Microsoft Excel spreadsheet software have a limit of 255 characters. If your report contains text strings that are longer than 255 characters, they will be formatted as text and appear as ######.

To resolve this problem, use fewer characters.

**Table and Column Widths**

The Microsoft Excel spreadsheet software does not support using percentages to determine the width of tables.

If the report contains only one table, the value of the width attribute for the Table element in the report specification determines the width of the table in the Excel worksheet. If the report contains more than one table, Excel determines the width of all the tables in the worksheet. If the tables are nested, the width specified for the outer table is used and, if necessary, the width is adjusted to accommodate data in the nested tables. The columns and rows around the table are merged to preserve the appearance of the nested table. When you save the workbook, only a single table is saved per worksheet.

**Secure Socket Layer (SSL) Is Not Supported in Some Excel Formats and Versions**

SSL is supported for only the Microsoft Excel 2002 format in Microsoft Excel 2002 and Microsoft Excel 2003.
Number Formats Become Currency Formats in Japanese Excel

A report uses the Number data format and you save it as Microsoft Excel output. When you open the report in the Japanese version of Microsoft Excel, the data format is listed as Currency rather than Number. This occurs because Japanese Excel interprets the standard Number data format slightly differently than other versions of Excel.

The value appears correctly in Number format. For example, if you specified five digits as your number format, five digits still appear. In Excel, click the Custom number format to see the exact format string being used.

Reports Show Data in Wrong Columns

A report contains a large amount of data that is presented using a large number of nested report objects, such as tables and blocks. When the report is produced in Microsoft Excel format, some of the data appears in the wrong columns. This occurs because Excel has a 64K limit on how many nested cell objects can appear in a single spreadsheet.

To solve this problem, you can redesign the report to present the data using non-nested structures.

Unable to Access Reports on Remote Servers

You cannot access a report in Microsoft Excel format on a remote server.

To resolve this problem, you must change the hostname portion of the gateway URI from localhost to either the IP address of the computer or the computer name. You do this using IBM Cognos Configuration.

Drill-through Reports Are Not Supported in Excel

IBM Cognos Business Intelligence does not support drill-through for reports in Microsoft Excel format.

Map Reports Are Not Supported in Excel

IBM Cognos Business Intelligence does not support map reports in Microsoft Excel format.

Unsupported Excel Formatting

IBM Cognos Business Intelligence does not support some formatting.

The following formatting functions that are available in the Microsoft Excel spreadsheet software are not supported by IBM Cognos BI:

- background images in table cells
- Excel-specific headers and footers
- text flow and justification
- floating text objects
- white space, normal, and wrap text formatting
- maximum characters
Some layouts do not show exactly in HTML and PDF due to Excel limitations.

Hyperlink Buttons Are Not Supported in Excel

The Microsoft Excel spreadsheet software does not support hyperlink buttons.

Unable to View Reports in Excel Format Sent as Email Attachments

IBM Cognos Business Intelligence can send Microsoft Excel reports in HTML and XML format by email. However, you cannot open them directly from the email message.

Save the Excel email attachments to your computer and view them from there.

Unsupported Chart Properties in Excel

The following IBM Cognos Business Intelligence chart properties are not supported in the Microsoft Excel spreadsheet software:

- tool tips
- conditional text
- depth
- visual angle
- show values
- marker text location
- show baseline
- new note
- new marker
- truncation text and allow n-degrees rotation category labels
- border
- margin
- box type
- font and font alignment
- footer
- subtitle
- regression line
- baseline
- Include Zero For Auto Scale

In addition, IBM Cognos BI makes sure that Excel reuses the same color palette that is defined in IBM Cognos BI. However, Excel can only use the first 16 colors from the IBM Cognos BI palette. If the number of categories in a chart exceeds 16, the rest of the colors are taken from the default Excel palette.

Unsupported Chart Types in Excel

About 30% of the chart types available in IBM Cognos Business Intelligence are not matched in the Microsoft Excel spreadsheet software.

The following chart types appear differently or are not supported. Charts that are not supported appear as a default column chart in Excel.

- Bubble charts
Excel does not support regression lines.

- **Combination charts**
  In Excel, combination charts appear as two-dimensional. If a three-dimensional or two-dimensional combination chart includes only an area, column, or line chart, only the one chart appears.

- **Gauge charts**
- **Donut charts**
  Excel may fill in the donut hole to accommodate extra measures. Excel shows donut three-dimensional charts as donut charts.

- **Maps**
  In Excel, no chart appears.

- **Metrics range charts**
  In Excel, they appear as combination charts with two line charts for the tolerance bars.

- **Pareto charts**
  In Excel, the cumulative line is not displayed.

- **Pie charts**
  Excel shows only one type of pie chart and may show it at a different angle.

- **Progressive column charts**
- **Polar charts**
  In Excel, a scatter chart appears instead.

- **Quadrant charts**
- **Radar charts**
  Excel does not support stacked area radar charts. Excel names area radar charts as filled radar charts. Excel shows radar charts as radar with markers.

- **Scatter charts**
  In Excel, three-dimensional scatter charts appear as two-dimensional scatter charts. The z-axis is dropped.

- **100% stacked bar and column charts**
  In Excel, the percentage of each value in the bar or column is not displayed. Instead, the underlying values are displayed.

---

**Cell Height and Width Are Incorrect**

The width and height of cells that contain data with curly brackets {} or parentheses () may appear incorrectly.

This is because the Microsoft Excel spreadsheet software uses different word wrapping algorithms than IBM Cognos Business Intelligence.
Appendix F. Using the expression editor

An expression is any combination of operators, constants, functions, and other components that evaluates to a single value. You build expressions to create calculation and filter definitions. A calculation is an expression that you use to create a new value from existing values contained within a data item. A filter is an expression that you use to retrieve a specific subset of records.

Calculation components

You can build calculations, or expressions, in the expression editor using the components that are defined in this section.

Operators

Operators specify what happens to the values on either side of the operator. Operators are similar to functions, in that they manipulate data items and return a result.

( Identifies the beginning of an expression.

Syntax
( expression )

) Identifies the end of an expression.

Syntax
( expression )

* Multiplies two numeric values.

Syntax
value1 * value2

, Separates expression components.

Syntax
expression ( parameter1, parameter2 )

/ Divides two numeric values.

Syntax
value1 / value2

|| Concatenates, or joins, strings.

Syntax
string1 || string2

+  
Adds two numeric values.

Syntax
value1 + value2

-  
Subtracts two numeric values or negates a numeric value.

Syntax
value1 - value2
or
- value

<  
Compares the values that are represented by "value1" against "value2" and retrieves the values that are less than "value2".

Syntax
value1 < value2

<=  
Compares the values that are represented by "value1" against "value2" and retrieves the values that are less than or equal to "value2".

Syntax
value1 <= value2

<>  
Compares the values that are represented by "value1" against "value2" and retrieves the values that are not equal to "value2".

Syntax
value1 <> value2

=  
Compares the values that are represented by "value1" against "value2" and retrieves the values that are equal to "value2".

Syntax
value1 = value2

>  
Compares the values that are represented by "value1" against "value2" and retrieves the values that are greater than "value2".

Syntax
value1 > value2

->  
Separates the components in a literal member expression.

Syntax
[namespace].[dimension].[hierarchy].[level]->[L1]
**>=**
Compares the values that are represented by "value1" against "value2" and retrieves the values that are greater than or equal to "value2".

**Syntax**
value1 >= value2

**and**
Returns "true" if the conditions on both sides of the expression are true.

**Syntax**
argument1 and argument2

**auto**
Works with summary expressions to define the scope to be adjusted based on the grouping columns in the query. The scope is context-dependent.

**Syntax**
aggregate_function ( expression AUTO )

**between**
Determines if a value falls in a given range.

**Syntax**
expression between value1 and value2

**Example**
[Revenue] between 200 and 300

**Result**
Returns the number of results with revenues between 200 and 300.

**Result data**

<table>
<thead>
<tr>
<th>Revenue</th>
<th>Between</th>
</tr>
</thead>
<tbody>
<tr>
<td>$332.06</td>
<td>false</td>
</tr>
<tr>
<td>$230.55</td>
<td>true</td>
</tr>
<tr>
<td>$107.94</td>
<td>false</td>
</tr>
</tbody>
</table>

**case**
Works with when, then, else, and end. Case identifies the beginning of a specific situation, in which when, then, and else actions are defined.

**Syntax**
case expression { when expression then expression } [ else expression ] end

**contains**
Determines if "string1" contains "string2".

**Syntax**
string1 contains string2
**currentMeasure**
Keyword that can be used as the first argument of member summary functions. This function appears in the Total Revenue by Country sample report in the GO Data Warehouse (query) package.

**Syntax**
aggregate_function ( currentMeasure within set expression )

**default**
Works with the lookup construct.

**Syntax**
lookup (....) in (....) default (....)

**distinct**
A keyword used in an aggregate expression to include only distinct occurrences of values. See also the function unique.

**Syntax**
distinct dataItem

**Example**
count ( distinct [OrderDetailQuantity] )

**Result**
1704

**else**
Works with the if or case constructs. If the if condition or the case expression are not true, then the else expression is used. This function appears in the Top 10 Retailers for 2005 sample report in the GO Data Warehouse (analysis) package.

**Syntax**
if ( condition ) then .... else ( expression ), or case .... else ( expression ) end

**end**
Indicates the end of a case or when construct.

**Syntax**
case .... end

**ends with**
Determines if "string1" ends with "string2".

**Syntax**
string1 ends with string2

**for**
Works with summary expressions to define the scope of the aggregation in the query.

**Syntax**
aggregate_function ( expression for expression [ , expression ] )
for all
Works with summary expressions to define the scope to be all the specified grouping columns in the query. See also the for clause.

Syntax
aggregate_function { expression for ALL expression { , expression } }

for any
Works with summary expressions to define the scope to be adjusted based on a subset of the grouping columns in the query. Equivalent to the for clause.

Syntax
aggregate_function { expression for ANY expression { , expression } }

for report
Works with summary expressions to set the scope to be the whole query. See also the for clause. This function appears in the Customer Returns and Satisfaction sample report in the GO Data Warehouse (analysis) package.

Syntax
aggregate_function { expression for report }

if
Works with the then and else constructs. If defines a condition; when the if condition is true, the then expression is used. When the if condition is not true, the else expression is used. This function appears in the Top 10 Retailers for 2005 sample report in the GO Data Warehouse (analysis) package.

Syntax
if ( condition ) then ( expression ) else ( expression )

in
Determines if "expression1" exists in a given list of expressions.

Syntax
expression1 in ( expression_list )

in_range
Determines if "expression1" exists in a given list of constant values or ranges.

Syntax
expression1 in_range { constant : constant [ , constant : constant ] }

Example 1
[code] in_range { 5 }

Result
This is equivalent to [code] = 5.

Example 2
[code] in_range { 5: }

Result
This is equivalent to [code] >= 5.

**Example 3**
[code] in_range { :5 }

**Result**
This is equivalent to [code] <= 5.

**Example 4**
[code] in_range { 5:10 }

**Result**
This is equivalent to ( [code] >= 5 and [code] <= 10 ).

**Example 5**
[code] in_range { :5,10,20: }

**Result**
This is equivalent to ( [code] <= 5 or [code] = 10 or [code] >= 20 ).

**is missing**
Determines if "value" is undefined in the data.

**Syntax**
value is missing

**is null**
Determines if "value" is undefined in the data.

**Syntax**
value is null

**is not missing**
Determines if "value" is defined in the data.

**Syntax**
value is not missing

**is not null**
Determines if "value" is defined in the data.

**Syntax**
value is not null

**like**
Determines if "string1" matches the pattern of "string2".

**Syntax**
string1 LIKE string2
**lookup**
Finds and replaces data with a value you specify. It is preferable to use the case construct.

**Syntax**
lookup ( name ) in ( value1 --> value2 ) default ( expression )

**Example**
lookup ( [Country] ) in ( 'Canada'--> ( [List Price] * 0.60),
 'Australia'--> ( [List Price] * 0.80 ) ) default ( [List Price] )

**not**
Returns TRUE if “argument” is false or returns FALSE if “argument” is true.

**Syntax**
NOT argument

**or**
Returns TRUE if either of “argument1” or “argument2” are true.

**Syntax**
argument1 or argument2

**prefilter**
Performs a summary calculation before applying the summary filter.

**Syntax**
summary_function ([expression] prefilter)

**Example**
total ( [Quantity] for report prefilter )
summaryFilter: total( [Quantity] for [ProductNo] ) > 50000

**Result**
Sums the quantities in a report before the summary filter is applied.

**Result data**

<table>
<thead>
<tr>
<th>ProductNo</th>
<th>Total_forProductNo</th>
<th>Total_forReport</th>
<th>Total_forReport_Prefilter</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>54928</td>
<td>298140</td>
<td>2215354</td>
</tr>
<tr>
<td>89</td>
<td>51126</td>
<td>298140</td>
<td>2215354</td>
</tr>
<tr>
<td>90</td>
<td>69996</td>
<td>298140</td>
<td>2215354</td>
</tr>
<tr>
<td>94</td>
<td>69004</td>
<td>298140</td>
<td>2215354</td>
</tr>
<tr>
<td>95</td>
<td>53086</td>
<td>298140</td>
<td>2215354</td>
</tr>
</tbody>
</table>

**rows**
Counts the number of rows output by the query. Use with Count().

**Syntax**
count ( ROWS )
**starts with**
Determines if "string1" starts with "string2".

**Syntax**
string1 starts with string2

**then**
Works with the if or case constructs. When the if condition or the when expression are true, the then expression is used. This function appears in the Top 10 Retailers for 2005 sample report in the GO Data Warehouse (analysis) package.

**Syntax**
if ( condition ) then ...., or case expression when expression 
then .... end

**when**
Works with the case construct. You can define conditions to occur when the when expression is true.

**Syntax**
case [expression] when ... end

**Summaries**
This list contains predefined functions that return either a single summary value for a group of related values or a different summary value for each instance of a group of related values.

**aggregate**
Returns a calculated value using the appropriate aggregation function, based on the aggregation type of the expression. This function appears in the Budget vs. Actual sample report in the GO Data Warehouse (analysis) package.

**Syntax**
aggregate ( expression [ auto ] )
aggregate ( expression for [ all|any ] expression { , expression } )
aggregate ( expression for report )

**average**
Returns the average value of selected data items. Distinct is an alternative expression that is compatible with earlier versions of the product.

**Syntax**
average ( [ distinct ] expression [ auto ] )
average ( [ distinct ] expression for [ all|any ] expression { , expression } )
average ( [ distinct ] expression for report )

**Example**
average ( Sales )

**Result**
Returns the average of all Sales values.
**count**
Returns the number of selected data items excluding null values. Distinct is an alternative expression that is compatible with earlier versions of the product.

**Syntax**
```plaintext
count ([distinct] expression [auto])
count ([distinct] expression for [all|any] expression { ,
expression })
count ([distinct] expression for report)
```

**Example**
count ( Sales )

**Result**
Returns the total number of entries under Sales.

**maximum**
Returns the maximum value of selected data items. Distinct is an alternative expression that is compatible with earlier versions of the product.

**Syntax**
```plaintext
maximum ([distinct] expression [auto])
maximum ([distinct] expression for [all|any] expression { ,
expression })
maximum ([distinct] expression for report)
```

**Example**
maximum ( Sales )

**Result**
Returns the maximum value out of all Sales values.

**median**
Returns the median value of selected data items.

**Syntax**
```plaintext
median (expression [auto])
median (expression for [all|any] expression { , expression })
median (expression for report)
```

**minimum**
Returns the minimum value of selected data items. Distinct is an alternative expression that is compatible with earlier versions of the product.

**Syntax**
```plaintext
minimum ([distinct] expression [auto])
minimum ([distinct] expression for [all|any] expression { ,
expression })
minimum ([distinct] expression for report)
```

**Example**
minimum ( Sales )

**Result**
Returns the minimum value out of all Sales values.

**moving-average**

Returns a moving average by row for a specified set of values of over a specified number of rows. The "<for-option>" defines the scope of the function. The "at" option defines the level of aggregation and can be used only in the context of relational datasources.

**Syntax**

```
moving-average (numeric_expression , numeric_expression [at expression { , expression }] [<for-option>] [prefilter])
moving-average (numeric_expression , numeric_expression [<for-option>] [prefilter])
<for-option> ::= for expression { , expression }|for report|auto
```

**Example**

```
moving-average (Qty , 3)
```

**Result**

For each row, returns the quantity and a moving average of the current row and the preceding two rows.

**Result data**

<table>
<thead>
<tr>
<th>Qty</th>
<th>Moving-Average (Qty, 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>700</td>
<td>450</td>
</tr>
<tr>
<td>400</td>
<td>433.3333</td>
</tr>
<tr>
<td>200</td>
<td>433.3333</td>
</tr>
<tr>
<td>200</td>
<td>266.6667</td>
</tr>
<tr>
<td>500</td>
<td>300.0000</td>
</tr>
</tbody>
</table>

**moving-total**

Returns a moving total by row for a specified set of values over a specified number of rows. The "<for-option>" defines the scope of the function. The "at" option defines the level of aggregation and can be used only in the context of relational datasources.

**Syntax**

```
moving-total (numeric_expression , numeric_expression [at expression { , expression }] [<for-option>] [prefilter])
moving-total (numeric_expression , numeric_expression [<for-option>] [prefilter])
<for-option> ::= for expression { , expression }|for report|auto
```

**Example**

```
moving-total (Qty , 3)
```

**Result**

For each row, returns the quantity and a moving total of the current row and the preceding two rows.

**Result data**
<table>
<thead>
<tr>
<th>Qty</th>
<th>Moving-Total (Qty, 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>700</td>
<td>900</td>
</tr>
<tr>
<td>400</td>
<td>1300</td>
</tr>
<tr>
<td>200</td>
<td>1300</td>
</tr>
<tr>
<td>200</td>
<td>800</td>
</tr>
<tr>
<td>500</td>
<td>900</td>
</tr>
</tbody>
</table>

**percentage**

Returns the percent of the total value for selected data items. The "<for-option>" defines the scope of the function. The "at" option defines the level of aggregation and can be used only in the context of relational datasources. This function appears in the Percentage Calculation (by year) interactive sample report.

**Syntax**

```plaintext
percentage (numeric_expression [at expression { , expression }] [<for-option>] [prefilter])
```

**Example**

```plaintext
percentage (Sales 98)
```

**Result**

Returns the percentage of the total sales for 1998 that is attributed to each sales representative.

**Result data**

<table>
<thead>
<tr>
<th>Sales Rep</th>
<th>Sales 98</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gibbons</td>
<td>60646</td>
<td>7.11%</td>
</tr>
<tr>
<td>Flertjan</td>
<td>62523</td>
<td>7.35%</td>
</tr>
<tr>
<td>Cornel</td>
<td>22396</td>
<td>2.63%</td>
</tr>
</tbody>
</table>

**percentile**

Returns a value, on a scale of one hundred, that indicates the percent of a distribution that is equal to or below the selected data items. The "<for-option>" defines the scope of the function. The "at" option defines the level of aggregation and can be used only in the context of relational datasources.

**Syntax**

```plaintext
percentile (numeric_expression [at expression { , expression }] [<for-option>] [prefilter])
```

**Example**

```plaintext
percentile (Sales 98)
```

**Result**

For each row, returns the percentage of rows that are equal to or less than the quantity value of that row.
**quantile**

Returns the rank of a value within a range that you specify. It returns integers to represent any range of ranks, such as 1 (highest) to 100 (lowest). The "<for-option>" defines the scope of the function. The "at" option defines the level of aggregation and can be used only in the context of relational datasources.

**Syntax**

\[
\text{quantile} \left( \text{numeric_expression}, \text{numeric_expression} \left[ \text{at} \text{expression} \left\{ \text{expression} \right\} \right] \right) \left[ \text{<for-option>} \right] \left[ \text{prefilter} \right]
\]

\[
\text{quantile} \left( \text{numeric_expression} \left[ \text{<for-option>} \right] \left[ \text{prefilter} \right] \right)
\]

**<for-option> ::= for expression \left\{ expression \right\} | for report | auto**

**Example**

\[
\text{quantile} \left( \text{Qty}, 4 \right)
\]

**Result**

Returns the quantity, the rank of the quantity value, and the quantity values broken down into 4 quantile groups (quartiles).

**Result data**

<table>
<thead>
<tr>
<th>Qty</th>
<th>Rank (Qty)</th>
<th>Quantile (Qty, 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>700</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>600</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>500</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>400</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>400</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>200</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>200</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

**quartile**

Returns the rank of a value, represented as integers from 1 (highest) to 4 (lowest), relative to a group of values. The "<for-option>" defines the scope of the function. The "at" option defines the level of aggregation and can be used only in the context of relational datasources.

**Syntax**

\[
\text{quartile} \left( \text{numeric_expression}, \text{numeric_expression} \left[ \text{at} \text{expression} \left\{ \text{expression} \right\} \right] \right) \left[ \text{<for-option>} \right] \left[ \text{prefilter} \right]
\]

\[
\text{quartile} \left( \text{numeric_expression} \left[ \text{<for-option>} \right] \left[ \text{prefilter} \right] \right)
\]

**<for-option> ::= for expression \left\{ expression \right\} | for report | auto**

**Example**

\[
\text{quartile} \left( \text{Qty}, 4 \right)
\]

**Result**

Returns the quantity, the rank of the quantity value, and the quantity values broken down into 4 quantile groups (quartiles).

**Result data**

<table>
<thead>
<tr>
<th>Qty</th>
<th>Rank (Qty)</th>
<th>Quantile (Qty, 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>700</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>600</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>500</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>400</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>400</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>200</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>200</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>
Example

quartile ( Qty )

Result

Returns the quantity and the quartile of the quantity value represented as integers from 1 (highest) to 4 (lowest).

Result data

<table>
<thead>
<tr>
<th>Qty</th>
<th>Quartile (Qty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
<td>1</td>
</tr>
<tr>
<td>400</td>
<td>1</td>
</tr>
<tr>
<td>350</td>
<td>2</td>
</tr>
<tr>
<td>300</td>
<td>2</td>
</tr>
<tr>
<td>250</td>
<td>3</td>
</tr>
<tr>
<td>200</td>
<td>3</td>
</tr>
<tr>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

rank

Returns the rank value of selected data items. The sort order is optional; descending order (DESC) is assumed by default. If two or more rows tie, then there is a gap in the sequence of ranked values (also known as Olympic ranking). The "<for-option>" defines the scope of the function. The "at" option defines the level of aggregation and can be used only in the context of relational datasources. Distinct is an alternative expression that is compatible with earlier versions of the product. Null values are ranked last. This function appears in the Top 10 Retailers for 2005 sample report in the GO Data Warehouse (analysis) package.

Syntax

rank ( expression [ ASC|DESC ] { , expression [ ASC|DESC ] } [ at expression { , expression } ] [ <for-option> ] [ prefilter ] )
rank ( [ distinct ] expression [ ASC|DESC ] { , expression [ ASC|DESC ] } [ <for-option> ] [ prefilter ] )
<for-option> ::= for expression { , expression }|for report|auto

Example

rank ( Sales 98 )

Result

For each row, returns the rank value of sales for 1998 that is attributed to each sales representative. Some numbers are skipped when a tie between rows occurs.

Result data

<table>
<thead>
<tr>
<th>Sales Rep</th>
<th>Sales 98</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gibbons</td>
<td>60000</td>
<td>1</td>
</tr>
<tr>
<td>Flertjan</td>
<td>50000</td>
<td>2</td>
</tr>
<tr>
<td>Cornel</td>
<td>50000</td>
<td>2</td>
</tr>
<tr>
<td>Smith</td>
<td>48000</td>
<td>4</td>
</tr>
</tbody>
</table>
running-average
Returns the running average by row (including the current row) for a set of values. The "<for-option>" defines the scope of the function. The "at" option defines the level of aggregation and can be used only in the context of relational datasources.

Syntax
running-average ( numeric_expression [ at expression { , expression } ] [ <for-option> ] [ prefilter ] )
running-average ( numeric_expression [ <for-option> ] [ prefilter ] )
<for-option> ::= for expression { , expression }|for report|auto

Example
running-average ( Qty )

Result
For each row, returns the quantity and a running average of the current and the previous rows.

Result data

<table>
<thead>
<tr>
<th>Name</th>
<th>Qty</th>
<th>Avg</th>
<th>Running-Average for name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>7</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Smith</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Smith</td>
<td>6</td>
<td>5</td>
<td>5.33</td>
</tr>
<tr>
<td>Smith</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Wong</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Wong</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

running-count
Returns the running count by row (including the current row) for a set of values. The "<for-option>" defines the scope of the function. The "at" option defines the level of aggregation and can be used only in the context of relational datasources.

Syntax
running-count ( numeric_expression [ at expression { , expression } ] [ <for-option> ] [ prefilter ] )
running-count ( numeric_expression [ <for-option> ] [ prefilter ] )
<for-option> ::= for expression { , expression }|for report|auto

Example
running-count ( Qty )

Result
For each row, returns the quantity and a running count of the position of the current row.

Result data

<table>
<thead>
<tr>
<th>Name</th>
<th>Qty</th>
<th>Count</th>
<th>Running-Count for name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>7</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Smith</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Smith</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
### running-difference

Returns a running difference by row, calculated as the difference between the value for the current row and the preceding row, (including the current row) for a set of values. The "<for-option>" defines the scope of the function. The "at" option defines the level of aggregation and can be used only in the context of relational datasources.

**Syntax**

```
running-difference (numeric_expression [at expression { , expression }] [<for-option>] [prefilter])
```

**Example**

```
running-difference (Qty)
```

**Result**

For each row, returns the quantity and a running difference between the value for the current row and the preceding row.

**Result data**

<table>
<thead>
<tr>
<th>Name</th>
<th>Qty</th>
<th>Running-Difference for name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>7</td>
<td>NULL</td>
</tr>
<tr>
<td>Smith</td>
<td>3</td>
<td>-4</td>
</tr>
<tr>
<td>Smith</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Smith</td>
<td>4</td>
<td>-2</td>
</tr>
<tr>
<td>Wong</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Wong</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

### running-maximum

Returns the running maximum by row (including the current row) for a set of values. The "<for-option>" defines the scope of the function. The "at" option defines the level of aggregation and can be used only in the context of relational datasources.

**Syntax**

```
running-maximum (numeric_expression [at expression { , expression }] [<for-option>] [prefilter])
```

**Example**

```
running-maximum (Qty)
```

**Result**

For each row, the maximum quantity and a running maximum between the current row and the preceding row.
For each row, returns the quantity and a running maximum of the current and previous rows.

**Result data**

<table>
<thead>
<tr>
<th>Name</th>
<th>Qty</th>
<th>Max</th>
<th>Running-Maximum (Qty) for name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>2</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Smith</td>
<td>3</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Smith</td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Smith</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Wong</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Wong</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

**running-minimum**

Returns the running minimum by row (including the current row) for a set of values. The "<for-option>" defines the scope of the function. The "at" option defines the level of aggregation and can be used only in the context of relational datasources.

**Syntax**

```
running-minimum (numeric_expression [at expression { , expression }] [<for-option>] [prefilter])
```

**Example**

```
running-minimum (Qty)
```

**Result**

For each row, returns the quantity and a running minimum of the current and previous rows.

**Result data**

<table>
<thead>
<tr>
<th>Name</th>
<th>Qty</th>
<th>Min</th>
<th>Running-Minimum (Qty) for name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>7</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Smith</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Smith</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Smith</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Wong</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Wong</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

**running-total**

Returns a running total by row (including the current row) for a set of values. The "<for-option>" defines the scope of the function. The "at" option defines the level of aggregation and can be used only in the context of relational datasources.

**Syntax**

```
running-total (numeric_expression [at expression { , expression }] [<for-option>] [prefilter])
```

**Example**

```
running-total (Qty)
```

**Result**

For each row, returns the quantity and a running total of the current and previous rows.
Example

running-total ( Qty )

Result

For each row, returns the quantity and a running total of the current and previous rows.

Result data

<table>
<thead>
<tr>
<th>Name</th>
<th>Qty</th>
<th>Total</th>
<th>Running-Total (Qty) for name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>2</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>Smith</td>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>Smith</td>
<td>6</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td>Smith</td>
<td>7</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Wong</td>
<td>3</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Wong</td>
<td>5</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

standard-deviation

Returns the standard deviation of selected data items.

Syntax

standard-deviation { expression [ auto ] }
standard-deviation { expression for [ all|any ] expression { , expression } }
standard-deviation { expression for report }

Example

standard-deviation ( ProductCost )

Result

Returns a value indicating the deviation between product costs and the average product cost.

standard-deviation-pop

Computes the population standard deviation and returns the square root of the population variance.

Syntax

standard-deviation-pop { expression [ auto ] }
standard-deviation-pop { expression for [ all|any ] expression { , expression } }
standard-deviation-pop { expression for report }

Example

standard-deviation-pop ( ProductCost )

Result

Returns a value of the square root of the population variance.
**total**
Returns the total value of selected data items. Distinct is an alternative expression that is compatible with earlier versions of the product. This function appears in the Budget vs. Actual sample report in the GO Data Warehouse (analysis) package.

**Syntax**

\[
\text{total} \left( \left[ \text{distinct} \right] \text{expression} \left[ \text{auto} \right] \right)
\]

\[
\text{total} \left( \left[ \text{distinct} \right] \text{expression} \text{for} \left[ \text{all}\text{|any} \right] \text{expression} \left\{, \text{expression} \right\} \right)
\]

\[
\text{total} \left( \left[ \text{distinct} \right] \text{expression} \text{for} \text{report} \right)
\]

**Example**

\[
\text{total} \left( \text{Sales} \right)
\]

**Result**

Returns the total value of all Sales values.

**variance**
Returns the variance of selected data items.

**Syntax**

\[
\text{variance} \left( \text{expression} \left[ \text{auto} \right] \right)
\]

\[
\text{variance} \left( \text{expression} \text{for} \left[ \text{all}\text{|any} \right] \text{expression} \left\{, \text{expression} \right\} \right)
\]

\[
\text{variance} \left( \text{expression} \text{for} \text{report} \right)
\]

**Example**

\[
\text{variance} \left( \text{Product Cost} \right)
\]

**Result**

Returns a value indicating how widely product costs vary from the average product cost.

**variance-pop**
Returns the population variance of a set of numbers after discarding the nulls in this set.

**Syntax**

\[
\text{variance-pop} \left( \text{expression} \left[ \text{auto} \right] \right)
\]

\[
\text{variance-pop} \left( \text{expression} \text{for} \left[ \text{all}\text{|any} \right] \text{expression} \left\{, \text{expression} \right\} \right)
\]

\[
\text{variance-pop} \left( \text{expression} \text{for} \text{report} \right)
\]

**Example**

\[
\text{variance-pop} \left( \text{Qty} \right)
\]

**Result**

For each row, returns the population variance of a set of numbers after discarding the nulls in this set.

**Member Summaries**
This list contains predefined functions that return either a single summary value for a set of members or a different summary value for each member of a set of members.
**aggregate**
Returns a calculated value using the appropriate aggregation function based on the aggregation type of the expression.

**Syntax**
aggregate ( < currentMeasure|numeric_expression > within set set_expression )
agegregate ( < currentMeasure|numeric_expression > within < detail|aggregate > expression )

**average**
Returns the average value of the selected data items.

**Syntax**
average ( < currentMeasure|numeric_expression > within set set_expression )
ageaverage ( < currentMeasure|numeric_expression > within < detail|aggregate > expression )

**Example**

average ( Sales )

**Result**

Returns the average of all Sales values.

**count**
Returns the number of selected data items excluding null values.

**Syntax**
count ( < currentMeasure|numeric_expression > within set set_expression )
count ( < currentMeasure|numeric_expression > within < detail|aggregate > expression )

**Example**
count ( Sales )

**Result**

Returns the total number of entries under Sales.

**maximum**
Returns the maximum value of selected data items.

**Syntax**
maximum ( < currentMeasure|numeric_expression > within set set_expression )
maximum ( < currentMeasure|numeric_expression > within < detail|aggregate > expression )

**Example**

maximum ( Sales )

**Result**

Returns the maximum value out of all Sales values.
**median**
Returns the median value of selected data items.

**Syntax**
```
median (< currentMeasure|numeric_expression > within set set_expression)
median (< currentMeasure|numeric_expression > within < detail|aggregate > expression)
```

**minimum**
Returns the minimum value of selected data items.

**Syntax**
```
minimum (< currentMeasure|numeric_expression > within set set_expression)
minimum (< currentMeasure|numeric_expression > within < detail|aggregate > expression)
```

**Example**
```
minimum (Sales)
```

**Result**
Returns the minimum value out of all Sales values.

**percentage**
Returns the percent of the total value for the selected data items.

**Syntax**
```
percentage (numeric_expression [tuple member_expression { , member_expression }] within set set_expression)
```

**Example**
```
percentage ([gosales],[sales measures],[quantity] tuple [gosales].[Staff].[].[department] -> [West] within set children ([gosales].[Staff].[].[Staff]))
```

**percentile**
Returns a value, on a scale from 0 to 100, that indicates the percent of a distribution that is equal to or below the selected data items.

**Syntax**
```
percentile (numeric_expression [tuple member_expression { , member_expression }] within set set_expression)
```

**quantile**
Returns the rank of a value for the specified range. It returns integers to represent any range of ranks, such as 1 (highest) to 100 (lowest).

**Syntax**
```
quantile (numeric_expression , numeric_expression [tuple member_expression { , member_expression }] within set set_expression)
```

**quartile**
Returns the rank of a value, represented as integers from 1 (highest) to 4 (lowest), relative to a group of values.
Syntax
quartile ( numeric_expression [ tuple member_expression { ,
               member_expression } ] within set set_expression )

rank
Returns the rank value of the selected data items. The type of ranking returned
(Olympic, dense, or serial) is data source dependent. The sort order is optional;
DESC is assumed by default.

Syntax
rank ( numeric_expression [ ASC|DESC ] [ tuple member_expression { ,
               member_expression } ] within set set_expression )

Example
rank ( [gosales].[sales measures].[quantity] tuple [gosales].[Staff].
       [].[department] -> [West] within set children ( [gosales].[Staff].[].
              [Staff] )

standard-deviation
Returns the standard deviation of the selected data items.

Syntax
standard-deviation ( < currentMeasure|numeric_expression > within set
                   set_expression )
standard-deviation ( < currentMeasure|numeric_expression > within <
                   detail|aggregate > expression )

standard-deviation-pop
Returns the standard deviation population of the selected data items.

Syntax
standard-deviation-pop ( < currentMeasure|numeric_expression > within set
                        set_expression )
standard-deviation-pop ( < currentMeasure|numeric_expression > within <
                        detail|aggregate > expression )

total
Returns the total value of the selected data items.

Syntax
total ( < currentMeasure|numeric_expression > within set
       set_expression )
total ( < currentMeasure|numeric_expression > within <
       detail|aggregate > expression )

variance
Returns the variance of the selected data items.

Syntax
variance ( < currentMeasure|numeric_expression > within set
          set_expression )
variance ( < currentMeasure|numeric_expression > within <
          detail|aggregate > expression )

variance-pop
Returns the variance population of the selected data items.

Syntax
variance-pop ( < currentMeasure|numeric_expression > within set
  set_expression )
variance-pop ( < currentMeasure|numeric_expression > within <
detail|aggregate > expression )

**Constants**

A constant is a fixed value that you can use in an expression.

- **date**
  Inserts the current system date.

- **date-time**
  Inserts the current system date and time.

- **time with time zone**
  Inserts a zero time with time zone.

- **timestamp with time zone**
  Inserts an example of a timestamp with time zone.

- **interval**
  Inserts a zero interval: 000 00:00:00.000.

- **interval year**
  Inserts a zero year interval: 0 year.

- **interval month**
  Inserts a zero month interval: 0 month.

- **interval year to month**
  Inserts a zero year to month interval: 0000-00 year to month.

- **interval day**
  Inserts a zero day interval: 0 day.

- **interval hour**
  Inserts a zero hour interval: 0 hour.

- **interval minute**
  Inserts a zero minute interval: 0 minute.

- **interval second**
  Inserts a zero second interval: 0 second.

- **interval day to hour**
  Inserts a zero day to hour interval: 0 00 day to hour.

- **interval day to minute**
  Inserts a zero day to minute interval: 0 00:00 day to minute.

- **interval day to second**
  Inserts a zero day to second interval: 0 00:00:00.000000000 day to second.

- **interval hour to minute**
  Inserts a zero hour to minute interval: 00:00 hour to minute.
interval hour to second
Inserts a zero hour to second interval: 00:00:00.000000000 hour to second.

interval minute to second
Inserts a zero minute to second interval: 00:00.000000000 minute to second.

null
Inserts "null" if the expression conditions are not met.

number
Inserts the number 0, which can be replaced with a new numeric value.

string
Inserts an empty string as two single quotation marks between which you can type a string.

time
Inserts the current system time.

Constructs
This list contains constructs and templates that can be used to create an expression. Templates combine multiple functions into a group. For example, the search case template includes the case, when, else, and end functions.

if then else
This construct is the template for an if...then...else statement. This construct appears in the Top 10 Retailers for 2005 sample report in the GO Data Warehouse (analysis) package.

Syntax
IF ([Country] = 'Canada') THEN ([List Price] * 0.60) ELSE ([List Price])

in_range
This is the template for an in_range expression.

Syntax
[code] IN_RANGE { :30, 40, 50, 999: }

Example 1
[code] IN_RANGE { 5 }

Result
This is equivalent to [code] = 5.

Example 2
[code] IN_RANGE { 5: }

Result
This is equivalent to [code] >= 5.

Example 3
[code] IN_RANGE { :5 }

Appendix F: Using the expression editor  641
**Result**

This is equivalent to \([\text{code}] \leq 5\).  

**Example 4**

\([\text{code}] \text{ IN_RANGE } \{ 5:10 \}\)

**Result**

This is equivalent to \(( [\text{code}] \geq 5 \text{ and } [\text{code}] \leq 10 )\).  

**Example 5**

\([\text{code}] \text{ IN_RANGE } \{ :5,10,20: \}\)

**Result**

This is equivalent to \(( [\text{code}] \leq 5 \text{ or } [\text{code}] = 10 \text{ or } [\text{code}] \geq 20 )\).

**search case**

This construct is the template for a search case, including the case, when, else, and end functions.

**Syntax**

\[
\text{CASE WHEN } [\text{Country}] = \text{'Canada'} \text{ THEN } ([\text{List Price}] \times 0.60) \text{ WHEN } \\
[\text{CountryCode}] > 100 \text{ THEN } [\text{List Price}] \times 0.80 \\
\text{ELSE } [\text{List Price}] \text{ END}
\]

**simple case**

This construct is the template for a simple case, including the case, when, else, and end functions.

**Syntax**

\[
\text{CASE } [\text{Country}] \text{ WHEN } \text{'Canada'} \text{ THEN } ([\text{List Price}] \times 0.60) \text{ WHEN } \\
\text{'Australia'} \text{ THEN } [\text{List Price}] \times 0.80 \\
\text{ELSE } [\text{List Price}] \text{ END}
\]

**Business Date/Time Functions**

This list contains business functions for performing date and time calculations.

**_add_days**

Returns the date or datetime, depending on the format of "date_expression", that results from adding "integer_expression" days to "date_expression".

**Syntax**

\[
_{\text{add}} \text{ days} ( \text{date_expression}, \text{integer_expression} )
\]

**Example 1**

\[
_{\text{add}} \text{ days} ( 2002-04-30 , 1 )
\]

**Result**

2002-05-01

**Example 2**

\[
_{\text{add}} \text{ days} ( 2002-04-30 12:10:10.000, 1 )
\]
Example 3
```sql
_add_days ('2002-04-30 00:00:00.000', 1/24)
```
Note that the second argument is not a whole number. This is supported by some database technologies and increments the time portion.

Result
2002-04-30 01:00:00.000

### _add_months

Returns the date or datetime, depending on the format of "date_expression", that results from the addition of "integer_expression" months to "date_expression".

**Syntax**
```sql
_add_months (date_expression, integer_expression)
```

**Example 1**
```sql
_add_months ('2002-04-30', 1)
```

Result
2002-05-30

**Example 2**
```sql
_add_months ('2002-04-30 12:10:10.000', 1)
```

Result
2002-05-30 12:10:10.000

### _add_years

Returns the date or datetime, depending on the format of "date_expression", that results from the addition of "integer_expression" years to "date_expression".

**Syntax**
```sql
_add_years (date_expression, integer_expression)
```

**Example 1**
```sql
_add_years ('2002-04-30', 1)
```

Result
2003-04-30

**Example 2**
```sql
_add_years ('2002-04-30 12:10:10.000', 1)
```

Result
2003-04-30 12:10:10.000
_age
Returns a number that is obtained from subtracting "date_expression" from today's date. The returned value has the form YYYYMMDD, where YYYY represents the number of years, MM represents the number of months, and DD represents the number of days.

Syntax
_age ( date_expression )

Example
_age ( 1990-04-30 ) (if today's date is 2003-02-05)

Result
120906, meaning 12 years, 9 months, and 6 days.

_day_of_week
Returns the day of week (1 to 7), where 1 is the first day of the week as indicated by the second parameter (1 to 7, 1 being Monday and 7 being Sunday). Note that in ISO 8601 standard, a week begins with Monday being day 1.

Syntax
_day_of_week ( date_expression, integer )

Example
_day_of_week ( 2003-01-01,1 )

Result
3

_day_of_year
Returns the day of year (1 to 366) in "date_expression". Also known as Julian day.

Syntax
_day_of_year ( date_expression )

Example
_day_of_year ( 2003-03-01 )

Result
61

_days_between
Returns a positive or negative number representing the number of days between "date_expression1" and "date_expression2". If "date_expression1" < "date_expression2", then the result will be a negative number.

Syntax
_days_between ( date_expression1 , date_expression2 )

Example
_days_between ( 2002-04-30 , 2002-06-21 )
Result

-52

_days_to_end_of_month
Returns a number representing the number of days remaining in the month represented by "date_expression".

Syntax
_days_to_end_of_month ( date_expression )

Example
_days_to_end_of_month ( 2002-04-20 14:30:22.123 )

Result

10

_first_of_month
Returns a date or datetime, depending on the argument, by converting "date_expression" to a date with the same year and month but with the day set to 1.

Syntax
_first_of_month ( date_expression )

Example 1
_first_of_month ( 2002-04-20 )

Result

2002-04-01

Example 2
_first_of_month ( 2002-04-20 12:10:10.000 )

Result

2002-04-01 12:10:10.000

_last_of_month
Returns a date or datetime, depending on the argument, that is the last day of the month represented by "date_expression".

Syntax
_last_of_month ( date_expression )

Example 1
_last_of_month ( 2002-01-14 )

Result

2002-01-31

Example 2
_last_of_month ( 2002-01-14 12:10:10.000 )

Result

2002-01-31 12:10:10.000

_make_timestamp
Returns a timestamp constructed from "integer_expression1" (the year), "integer_expression2" (the month), and "integer_expression3" (the day). The time portion defaults to 00:00:00.000.

Syntax
_make_timestamp ( integer_expression1, integer_expression2, integer_expression3 )

Example
_make_timestamp ( 2002, 01, 14 )

Result

2002-01-14 00:00:00.000

_months_between
Returns a positive or negative integer number representing the number of months between "date_expression1" and "date_expression2". If "date_expression1" is earlier than "date_expression2", then a negative number is returned.

Syntax
_months_between ( date_expression1, date_expression2 )

Example
_months_between ( 2002-04-03, 2002-01-30 )

Result

2

_week_of_year
Returns the number of the week of the year of "date_expression" according to the ISO 8601 standard. Week 1 of the year is the first week of the year to contain a Thursday, which is equivalent to the first week containing January 4th. A week starts on Monday (day 1) and ends on Sunday (day 7).

Syntax
_week_of_year ( date_expression )

Example
_week_of_year ( 2003-01-01 )

Result

1
_years_between
Returns a positive or negative integer number representing the number of years
between "date_expression1" and "date_expression2". If "date_expression1" <
"date_expression2" then a negative value is returned.

Syntax
_years_between ( date_expression1, date_expression2 )

Example
_years_between ( 2003-01-30 , 2001-04-03 )

Result
1

_ymdint_between
Returns a number representing the difference between "date_expression1" and
"date_expression2". The returned value has the form YYYYMMDDD, where YYYY
represents the number of years, MM represents the number of months, and DD
represents the number of days.

Syntax
_ymdint_between ( date_expression1 , date_expression2 )

Example
_ymdint_between ( 1990-04-30 , 2003-02-05 )

Result
120906, meaning 12 years, 9 months and 6 days.

Block Functions
This list contains functions used to access members of a set, usually in the context
of Analysis Studio.

_firstFromSet
Returns the first members found in the set up to "numeric_expression_maximum"
+ "numeric_expression_overflow". If "numeric_expression_maximum" +
"numeric_expression_overflow" is exceeded, then only the maximum number of
members are returned. For a set that has only a few members more than the
specified numeric_expression_maximum, the numeric_expression_overflow allows
the small set of extra members to be included. If the set has more members than
the overflow allows, then only the numeric_expression_maximum members will be
returned.

Syntax
_firstFromSet ( set_expression , numeric_expression_maximum ,
numeric_expression_overflow )

Example 1
_firstFromSet ( [great_outdoors_company].[Products].[Products].
[Product line] , 2 , 8 )

Result
Returns the five members in the Product line set. The first two members are returned within the maximum and the following three members are returned as the overflow.

**Result data**
- Camping Equipment
- Golf Equipment
- Mountaineering Equipment
- Outdoor Protection
- Personal Accessories

**Example 2**

```plaintext
_firstFromSet ([great_outdoors_company].[Products].[Products].[Product line], 2, 2)
```

**Result**

Camping Equipment, Golf Equipment

**_remainderSet**

Returns the set containing "member_expression" when the size of "set_expression" is greater than "numeric_expression"; i.e., a new member will be generated if the number of members in "set_expression" is larger than the specified "numeric_expression".

**Syntax**

```plaintext
_remainderSet (member_expression, set_expression, numeric_expression)
```

**Example**

```plaintext
_remainderSet (member (aggregate (currentMeasure within set [great_outdoors_company].[Products].[Products].[Product line]), 'Product Aggregate', 'Product Aggregate', [great_outdoors_company].[Products].[Products].[Product line], 1)
```

**Result**

Quantity sold for Product Aggregate

**Aster Data**

**Aster Data String**

**overlay:**

Returns the "string_exp1" replacing "string_exp2" from character position numeric_exp.

**Syntax**

```plaintext
overlay (string_exp1, string_exp2, numeric_exp1 [, numeric_exp2])
```

**btrim:**

Returns string_exp1 after removing the longest string of characters in string_exp2.

**Syntax**


btrim( string_exp1 [, string_exp2] )

initcap:
Returns "string_exp", with the first letter of each word in uppercase and all other letters in lowercase. Words are delimited by white space or characters that are not alphanumeric.

Syntax
initcap ( string_exp )

lpad:
Returns "string_exp1" padded to length "integer_exp" with occurrences of "string_exp2". If "string_exp1" is longer than "integer_exp", the appropriate portion of "string_exp1" is returned.

Syntax
lpad ( string_exp1, integer_exp [ , string_exp2 ] )

ltrim:
Returns "string_exp1", with leading characters removed up to the first character not in "string_exp2", e.g., ltrim('xyxXxyAB', 'xy') returns 'XxyAB'.

Syntax
ltrim ( string_exp1 [ , string_exp2 ] )

md5:
Returns the MD5 hash of "string_exp1".

Syntax
md5 ( string_exp1 )

to_hex:
Returns the hexadecimal string representation of "numeric_exp1".

Syntax
to_hex ( numeric_exp1 )

repeat:
Returns the "string_exp" repeated "numeric_exp1" times.

Syntax
repeat ( string_exp, numeric_exp1 )

replace:
Returns "string_exp" having replaced "string_exp2" with "string_exp3".

Syntax
replace( string_exp, string_exp2, string_exp3)
rpad:

Returns "string_exp1" right-padded to length "integer_exp" with occurrences of "string_exp2". If "string_exp1" is longer than "integer_exp", the appropriate portion of "string_exp1" is returned. If "string_exp2" is not specified, then spaces are used.

Syntax
rpad ( string_exp1, integer_exp [ , string_exp2 ] )

rtrim:

Returns "string_exp1", with final characters removed after the last character not in "string_exp2", e.g., rtrim('ABxXxyx', 'xy') returns 'ABxX'. If "string_exp2" is not specified, the final space characters are removed.

Syntax
rtrim ( string_exp1 [ , string_exp2 ] )

split_part:

Returns "numeric_exp" field having split "string_exp1" on "string_exp2".

Syntax
split_part ( string_exp1 , string_exp2 , numeric_exp )

Aster Data Data Type Formatting

to_char:

Returns the string representation of "exp" with the format of "string_exp". "Exp" can be either a date value or a numeric value.

Syntax
to_char ( exp , string_exp )

to_date:

Converts "string_exp1" to a date value as specified by the format "string_exp2".

Syntax
to_date ( string_exp1 , string_exp2 )

to_number:

Converts "string_exp1" to a numeric value as specified by the format "string_exp2".

Syntax
to_number ( string_exp1, string_exp2 )

to_timestamp:

Converts "string_exp1" to a timestamp value as specified by the format "string_exp2".

Syntax
to_timestamp ( string_exp1, string_exp2 )
Aster Data Math

log:

Returns the base 10 logarithm of "numeric_exp1" or logarithm to the base "numeric_exp2".

Syntax
log ( numeric_exp1[ , numeric_exp2] )

ln:

Returns the natural logarithm of "numeric_exp1".

Syntax
ln ( numeric_exp )

cbrt:

Returns the cube root of "numeric_exp1".

Syntax
cbrt ( numeric_exp )

pi:

Returns the constant of pi.

Syntax
pi( )

Aster Data Trigonometry

acos:

Returns the arccosine of "numeric_exp" in radians. The arccosine is the angle whose cosine is "numeric_exp".

Syntax
acos ( numeric_exp )

asin:

Returns the arcsine of "numeric_exp" in radians. The arcsine is the angle whose sine is "numeric_exp".

Syntax
asin ( numeric_exp )

atan:

Returns the arctangent of "numeric_exp" in radians. The arctangent is the angle whose tangent is "numeric_exp".

Syntax
atan ( numeric_exp )
atan2:

Returns the arctangent of the x and y coordinates specified by "numeric_exp1" and
"numeric_exp2", respectively, in radians. The arctangent is the angle whose tangent
is "numeric_exp2" / "numeric_exp1".

Syntax
atan2 ( numeric_exp1, numeric_exp2 )

cos:

Returns the cosine of "numeric_exp", where "numeric_exp" is an angle expressed in
radians.

Syntax
cos ( numeric_exp )

cot:

Returns the cotangent of "numeric_exp", where "numeric_exp" is an angle
expressed in radians.

Syntax
cot ( numeric_exp )

degrees:

Returns the degrees where "numeric_exp" is an angle expressed in radians.

Syntax
degrees ( numeric_exp )

radians:

Returns the radians where "numeric_exp" is an angle expressed in degrees.

Syntax
radians ( numeric_exp )

sin:

Returns the sine of "numeric_exp", where "numeric_exp" is an angle expressed in
radians.

Syntax
sin ( numeric_exp )

tan:

Returns the tangent of "numeric_exp", where "numeric_exp" is an angle expressed
in radians.

Syntax
tan ( numeric_exp )
**ascii**

Returns a number representing the ASCII code value of the leftmost character of "string_exp", e.g., ascii('A') is 65.

**Syntax**

```
ascii (string_exp)
```

**chr**

Returns the character that has the ASCII code value specified by "integer_exp". "Integer_exp" should be between 0 and 255.

**Syntax**

```
chr (integer_exp)
```

**current_schema**

Returns the name of the current schema

**Syntax**

```
current_schema ()
```

**translate**

Returns "string_exp1", with each occurrence of each character in "string_exp2" replaced by its corresponding character in "string_exp3".

**Syntax**

```
translate (string_exp1, string_exp2, string_exp3)
```

**date_trunc**

Returns the timestamp to the specified precision.

**Syntax**

```
date_trunc (string_exp, timestamp_exp)
```

**version**

Returns the string value of the database version.

**Syntax**

```
version ()
```

---

**DB2**

**DB2 Math**

**log**:

Returns the natural logarithm of "numeric_expression".

**Syntax**

```
log (numeric_expression)
```

**log10**:

Returns the base ten logarithm of "numeric_expression".

**Syntax**
log10 ( numeric_expression )

rand:
Generates a random number using "integer_expression" as a seed value.

Syntax
rand ( integer_expression )

**DB2 Trigonometry**

acos:
Returns the arccosine of "numeric_expression" in radians. The arccosine is the angle whose cosine is "numeric_expression".

Syntax
acos ( numeric_expression )

asin:
Returns the arcsine of "numeric_expression" in radians. The arcsine is the angle whose sine is "numeric_expression".

Syntax
asin ( numeric_expression )

atan:
Returns the arctangent of "numeric_expression" in radians. The arctangent is the angle whose tangent is "numeric_expression".

Syntax
atan ( numeric_expression )

atanh:
Returns the hyperbolic arctangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
atanh ( numeric_expression )

atan2:
Returns the arctangent of the x and y coordinates specified by "numeric_expression1" and "numeric_expression2", respectively, in radians. The arctangent is the angle whose tangent is "numeric_expression2" / "numeric_expression1".

Syntax
atan2 ( numeric_expression1, numeric_expression2 )

cos:
Returns the cosine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

**Syntax**
```
 cos (numeric_expression)
```

**cosh:**

Returns the hyperbolic cosine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

**Syntax**
```
 cosh (numeric_expression)
```

**cot:**

Returns the cotangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

**Syntax**
```
 cot (numeric_expression)
```

**degrees:**

Returns "numeric_expression" radians converted to degrees.

**Syntax**
```
 degrees (numeric_expression)
```

**sin:**

Returns the sine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

**Syntax**
```
 sin (numeric_expression)
```

**sinh:**

Returns the hyperbolic sine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

**Syntax**
```
 sinh (numeric_expression)
```

**tan:**

Returns the tangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

**Syntax**
```
 tan (numeric_expression)
```

**tanh:**
Returns the hyperbolic tangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

**Syntax**

```plaintext
tanh (numeric_expression)
```

**ascii**

Returns the ASCII code value of the leftmost character of the argument as an integer.

**Syntax**

```plaintext
ascii (string_expression)
```

**Example**

```plaintext
ascii (a)
```

**Result**

Returns 65, the ASCII code value of "a".

**ceiling**

Returns the smallest integer greater than or equal to "numeric_expression".

**Syntax**

```plaintext
ceiling (numeric_expression)
```

**Example**

```plaintext
ceiling (0.75)
```

**Result**

Returns 0.8.

**char**

Returns a string representation of a date/time value or a decimal number.

**Syntax**

```plaintext
char (expression)
```

**chr**

Returns the character that has the ASCII code value specified by "integer_expression". "Integer_expression" should be between 0 and 255.

**Syntax**

```plaintext
chr (integer_expression)
```

**Example**

```plaintext
chr (65)
```

**Result**

Returns a, the character for the ASCII code value of 65.
**concat**
Returns a string that is the result of concatenating "string_expression1" with "string_expression2".

**Syntax**
concat ( string_expression1, string_expression2 )

**Example**
concat ( [Sales target (query)].[Sales staff].[First name], [Sales target (query)].[Sales staff].[Last name] )

**Result**
Returns the first name and last name; e.g., Bob Smith.

**date**
Returns a date from a single input value. "Expression" can be a string or integer representation of a date.

**Syntax**
date ( expression )

**Example**
date ( '1998-01-08' )

**Result**
Returns 8 January 1998.

**day**
Returns the day of the month (1-31) from "date_expression". "Date_expression" can be a date value or a string representation of a date.

**Syntax**
day ( date_expression )

**Example**
day ( '1998-01-08' )

**Result**
Returns 8.

**dayname**
Returns a character string containing the data source-specific name of the day (for example, Sunday through Saturday or Sun. through Sat. for a data source that uses English, or Sonntag through Samstag for a data source that uses German) for the day portion of "date_expression". "Date_expression" can be a date value or a string representation of a date.

**Syntax**
dayname ( date_expression )

**Example**
dayname ( '1998-01-08' )
Result

Returns Thursday.

dayofweek
Returns the day of the week in "date_expression" as an integer in the range 1 to 7, where 1 represents Sunday. "date_expression" can be a date value or a string representation of a date.

Syntax
dayofweek ( date_expression )

Example
dayofweek ( '1998-01-08' )

Result

Returns 5.

dayofweek_iso
Returns the day of the week in "date_expression" as an integer in the range 1 to 7, where 1 represents Monday. "date_expression" can be a date value or a string representation of a date.

Syntax
dayofweek_iso ( date_expression )

Example
dayofweek_iso ( '1998-01-08' )

Result

Returns 4.

dayofyear
Returns the day of the year in "date_expression" as an integer in the range 1 to 366. "Date_expression" can be a date value or a string representation of a date.

Syntax
dayofyear ( date_expression )

Example
dayofyear ( current_date )

Result

Returns the day of the year for the current date; e.g., if it was January 28, the expression would return 28.

days
Returns an integer representation of a date. "Expression" can be a date value or a string representation of a date.

Syntax
days ( expression )
**dec**
Returns the decimal representation of "string_expression1" with precision "numeric_expression1", scale "numeric_expression2", and decimal character "string_expression2". "String_expression1" must be formatted as an SQL Integer or Decimal constant.

**Syntax**
```
```

**decimal**
Returns the decimal representation of "string_expression1" with precision "numeric_expression1", scale "numeric_expression2" and decimal character "string_expression2". "String_expression1" must be formatted as an SQL Integer or Decimal constant.

**Syntax**
```
```

**difference**
Returns an integer value representing the difference between the values returned by the data source-specific soundex function for "string_expression1" and "string_expression2". The value returned ranges from 0 to 4, with 4 indicating the best match. Note that 4 does not mean that the strings are equal.

**Syntax**
```
difference (string_expression1 , string_expression2)
```

**Example 1**
```
difference ([Sales target (query)].[Sales staff].[First name],[Sales (query)].[Retailers].[Contact first name])
```

**Result**
```
0
```

**Example 2**
```
difference ([Sales target (query)].[Sales staff].[First name],[Sales target (query)].[Sales staff].[First name])
```

**Result**
```
4
```

**digits**
Returns the character string representation of a non-floating point number.

**Syntax**
```
digits (numeric_expression)
```

**double**
Returns the floating-point representation of an expression. "Expression" can either be a numeric or string expression.

**Syntax**
```
double (expression)
```
double ( expression )

**event_mon_state**
Returns the operational state of a particular state monitor.

**Syntax**
```
event_mon_state (string_expression)
```

**float**
Returns the floating-point representation of a number.

**Syntax**
```
float (numeric_expression)
```

**hex**
Returns the hexadecimal representation of a value.

**Syntax**
```
hex (expression)
```

**hour**
Returns the hour, an integer from 0 (midnight) to 23 (11:00 pm), from
"time_expression". "Time_expression" can be a time value or a string representation
of a time.

**Syntax**
```
hour (time_expression)
```

**Example**
```
hour (01:22:45)
```

**Result**
Returns 1.

**insert**
Returns a string where "integer_expression2" characters have been deleted from
"string_expression1" beginning at "integer_expression1" and where
"string_expression2" has been inserted into "string_expression1" at its start. The
first character in the string is at position 1.

**Syntax**
```
insert (string_expression1, integer_expression1,
integer_expression2, string_expression2)
```

**integer**
Returns the integer representation of an expression. "Expression" can be a numeric
value or a string representation of a number.

**Syntax**
```
integer (expression)
```

**Example**
```
integer (84.95)
```
**int**
Returns the integer representation of an expression. "Expression" can be a numeric value or a string representation of a number.

**Syntax**
```plaintext
int (expression)
```

**Example**
```plaintext
int (84.95)
```

**Result**
85

**julian_day**
Returns an integer value representing the number of days from January 1, 4712 BC (the start of the Julian date calendar) to the date value specified in "expression". "Expression" can be a date value or a string representation of a date.

**Syntax**
```plaintext
julian_day (expression)
```

**Example**
```plaintext
julian_day ('2009-06-29')
```

**Result**
2455012.221307395741034

**lcase**
Returns "string_expression" with all uppercase characters shifted to lowercase.

**Syntax**
```plaintext
lcase (string_expression)
```

**Example**
```plaintext
lcase ([Sales (query)].[Sales staff].[Last name])
```

**Result**
Returns last names with no uppercase letters.

**left**
Returns the leftmost "integer_expression" characters of "string_expression".

**Syntax**
```plaintext
left (string_expression, integer_expression)
```

**Example**
```plaintext
left ([Sales (query)].[Sales staff].[Last name] , 3)
```
Result
Returns the first three characters of each last name.

**length**
Returns the length of the operand in bytes. Exception: double byte string types return the length in characters.

**Syntax**
length ( expression )

**Example**
length ( [Sales (query)].[Sales staff].[Record start date] )

**Result**
Returns 4; dates always return a value of 4.

**locate**
Returns the starting position of the first occurrence of "string_expression1" within "string_expression2". The search starts at position start "integer_expression" of "string_expression2". The first character in a string is at position 1. If "string_expression1" is not found, zero is returned.

**Syntax**
locate ( string_expression1, string_expression2 [ , integer_expression ] )

**Example**
locate ( A, [Sales (query)].[Sales staff].[Last name] , 2 )

**Result**
Returns the position of the character A in the last names starting at the second character of the last name.

**long_varchar**
Returns a long string.

**Syntax**
long_varchar ( string_expression )

**ltrim**
Returns "string_expression" with leading spaces removed.

**Syntax**
ltrim ( string_expression )

**Example**
ltrim ( [Sales (query)].[Sales staff].[Last name] )

**Result**
Returns last names with any leading spaces removed.
**microsecond**
Returns the microsecond (time-unit) part of a value. "Expression" can be a timestamp or a string representation of a timestamp.

**Syntax**
microsecond ( expression )

**Example**
microsecond ( 01:45:34.056 )

**Result**
Returns 056.

**midnight_seconds**
Returns an integer value in the range 0 to 86400 representing the number of seconds between midnight and time value specified in the argument. "Expression" can be a time value, a timestamp or a string representation of a time.

**Syntax**
midnight_seconds ( expression )

**Example**
midnight_seconds ( 01:45:34.056 )

**Result**
Returns 6334.

**minute**
Returns the minute (an integer from 0-59) from "time_expression". "Time_expression" can be a time value, a timestamp, or a string representation of a time.

**Syntax**
minute ( time_expression )

**Example**
minute ( 01:45:34.056 )

**Result**
Returns 45.

**month**
Returns the month (an integer from 1-12) from "date_expression".

**Syntax**
month ( date_expression )

**Example**
month ( 2005-11-01 )

**Result**
Returns 11.

**monthname**
Returns a character string containing the data source-specific name of the month (for example, January through December or Jan. through Dec. for an English data source, or Januar through Dezember for a German data source) for the month portion of "date_expression".

**Syntax**
monthname ( date_expression )

**Example**
monthname ( 2005-11-01 )

**Result**
November

**quarter**
Returns the quarter in "date_expression" as a number in the range 1 to 4, where 1 represents January 1 through March 31.

**Syntax**
quarter ( date_expression )

**Example**
quarter ( 2005-11-01 )

**Result**
Returns 4.

**radians**
Returns the number of radians converted from "numeric_expression" degrees.

**Syntax**
radians ( numeric_expression )

**repeat**
Returns a string consisting of "string_expression" repeated "integer_expression" times.

**Syntax**
repeat ( string_expression, integer_expression )

**Example**
repeat ( XYZ, 3 )

**Result**
Returns XYZXYZXYZ.

**replace**
Replaces all occurrences of "string_expression2" in "string_expression1" with "string_expression3".
Syntax
replace ( string_expression1, string_expression2, string_expression3 )

Example
replace ( [Sales (query)].[Sales staff].[Position code], A, a )

Result
Returns position codes with all occurrences of "A" replaced by "a".

right
Returns the rightmost "integer_expression" characters of "string_expression".

Syntax
right ( string_expression, integer_expression )

Example
right ( [Sales (query)].[Sales staff].[Position code], 3 )

Result
Returns the rightmost 3 characters of each position code.

round
Returns "numeric_expression" rounded to "integer_expression" places to the right of the decimal point. If "integer_expression" is negative, "numeric_expression" is rounded to the nearest absolute value "integer_expression" places to the left of the decimal point. Rounding takes place before data formatting is applied.

Syntax
round ( numeric_expression, integer_expression )

Example
round ( 3.14159265, 3 )

Result
Returns 3.142.

rtrim
Returns "string_expression" with trailing spaces removed.

Syntax
rtrim ( string_expression )

Example
rtrim ( [Sales (query)].[Sales staff].[Last name] )

Result
Returns last names with any spaces at the end of the name removed.
**second**
Returns the second (an integer from 0-59) from "time_expression".

**Syntax**
second ( time_expression )

**Example**
second ( 01:45:34.056 )

**Result**
Returns 34.

**sign**
Returns an indicator of the sign of "numeric_expression": +1 if "numeric_expression" is positive, 0 if zero, or -1 if negative.

**Syntax**
sign ( numeric_expression )

**Example**
sign ( [Revenue] )

**Result**
Returns + for positive values and - for negative values.

**smallint**
Returns the small integer representation of a number.

**Syntax**
smallint ( expression )

**soundex**
Returns a 4 character string code obtained by systematically abbreviating words and names in "string_expression" according to phonetics. Can be used to determine if two strings sound the same. For example, does sound-of ('SMITH') = sound-of ('SMYTH').

**Syntax**
soundex ( string_expression )

**space**
Returns a string consisting of "integer_expression" spaces.

**Syntax**
space ( integer_expression )

**Example**
space ( 5 )

**Result**
Returns 5 spaces.
**substr**
Returns the substring of "string_expression" that starts at position "integer_expression1" for "integer_expression2" characters. The first character in "string_expression" is at position 1.

**Syntax**
```
substr (string_expression , integer_expression1 [,
 integer_expression2])
```

**Example**
```
substr ([Sales (query)].[Sales staff].[Position code], 3, 5)
```

**Result**
Returns characters 3 to 7 of the position codes.

**table_name**
Returns an unqualified name of a table or view based on the object name in "string_expression1" and the schema name given in "string_expression2". It is used to resolve aliases.

**Syntax**
```
table_name (string_expression1 [, string_expression2])
```

**table_schema**
Returns the schema name portion of the two-part table or view name based on the object name in "string_expression1" and the schema name in "string_expression2". It is used to resolve aliases.

**Syntax**
```
table_schema (string_expression1 [, string_expression2])
```

**time**
Returns a time from a value.

**Syntax**
```
time (expression)
```

**timestamp**
Returns a timestamp from a value or a pair of values. "Expression1" must represent a date value, and "expression2" must represent a time value.

**Syntax**
```
timestamp (expression1 [, expression2])
```

**Example**
```
timestamp (11 November 2005, 12:00:00.000000)
```

**Result**
Returns 2005-11-11-12:00:00.000000.
**timestamp_iso**

Returns a datetime in the ISO format (yyyy-mm-dd hh:mm:ss.nnnnnn) converted from the IBM format (yyyy-mm-dd-hh.mm.ss.nnnnnn). If "expression" is a time, it inserts the value of the CURRENT DATE for the date elements and zero for the fractional time element.

**Syntax**

timestamp_iso ( expression )

**Example**

timestamp_iso ( 11 November 2005, 12:00:00.000000 )

**Result**

Returns 2005-11-11 12:00:00.000000.

**timestampdiff**

Returns an estimated number of intervals of type "expression1" based on the difference between two timestamps. "Expression2" is the result of subtracting two timestamp types and converting the result to CHAR. Valid values of "expression1" are: 1 Fractions of a second; 2 Seconds; 4 Minutes; 8 Hours; 16 Days; 32 Weeks; 64 Months; 128 Quarters; 256 Years.

**Syntax**

timestampdiff ( expression1, expression2 )

**to_char**

Returns the string representation of a timestamp with the format of "string_expression".

**Syntax**

to_char ( timestamp_expression , string_expression )

**translate**

Returns "string_expression1" in which characters from "string_expression3" are translated to the equivalent characters in "string_expression2". "String_expression4" is a single character that is used to pad "string_expression2" if it is shorter than "string_expression3". If only "string_expression1" is present, then this function translates it to uppercase characters.

**Syntax**

translate ( string_expression1 [ , string_expression2, string_expression3 [ , string_expression4 ] ] )

**Example 1**

translate ( 'abcdefg' )

**Result**

Returns ABCDEFG.

**Example 2**

translate ( 'mnop', n, m, - )
Returns n-nlop.

**trunc**

Returns "numeric_expression1" truncated to "numeric_expression2" places to the right of the decimal point. If "numeric_expression2" is negative, "numeric_expression1" is truncated to the absolute value of "numeric_expression2" places to the left of the decimal point.

**Syntax**

\[
\text{trunc} \left( \text{numeric_expression1}, \text{numeric_expression2} \right)
\]

**Example**

\[
\text{trunc} \left( 3.14159265, 3 \right)
\]

**Result**

Returns 3.141.

**truncate**

Returns "numeric_expression1" truncated to "numeric_expression2" places to the right of the decimal point. If "numeric_expression2" is negative, "numeric_expression1" is truncated to the absolute value of "numeric_expression2" places to the left of the decimal point.

**Syntax**

\[
\text{truncate} \left( \text{numeric_expression1}, \text{numeric_expression2} \right)
\]

**Example**

\[
\text{truncate} \left( 3141.59265, -3 \right)
\]

**Result**

Returns 3.

**ucase**

Returns 'string_expression' with all lowercase characters shifted to uppercase.

**Syntax**

\[
\text{ucase} \left( \text{string_expression} \right)
\]

**Example**

\[
\text{ucase} \left( \text{XY896Zbced789} \right)
\]

**Result**

Returns XY896ZBCED789.

**value**

Returns the first non-null argument (or null if all arguments are null). The Value function takes two or more arguments.

**Syntax**

\[
\text{value} \left( \text{expression_list} \right)
\]

**Example**
value ( [Unit cost], [Unit price], [Unit sale price] )

Result

Returns the first non-null value.

**varchar**

Returns a VARCHAR representation of expression, with length numeric_expression.

**Syntax**

varchar ( expression [ , numeric_expression ] )

**week**

Returns the week of the year in "date_expression" as an integer value in the range 1 to 53.

**Syntax**

week ( date_expression )

**Example**

week ( 11 November 2005 )

**Result**

Returns 45.

**year**

Returns the year from "date_expression".

**Syntax**

year ( date_expression )

**Example**

year ( 11 November 2005 )

**Result**

Returns 2005.

**Greenplum**

**Greenplum String**

**overlay:**

Returns the "string_expression1" replacing "string_expression2" from character position "numeric_expression".

**Syntax**

overlay ( string_expression1 , string_expression2 , numeric_expression1 [ , numeric_expression2 ] )

**btrim:**
Returns "string_expression1" after removing the longest string of characters in "string_expression2".

**Syntax**

\[
\text{btrim} ( \text{string_expression1} \ [ , \text{string_expression2} ] )
\]

**initcap:**

Returns "string_expression" with the first letter of each word in uppercase and all other letters in lowercase. Words are delimited by white space or characters that are not alphanumeric.

**Syntax**

\[
\text{initcap} ( \text{string_expression} )
\]

**lpad:**

Returns "string_expression1" padded to length "integer_expression" with occurrences of "string_expression2". If "string_expression1" is longer than "integer_expression", the appropriate portion of "string_expression1" is returned.

**Syntax**

\[
\text{lpad} ( \text{string_expression1} , \text{integer_expression} \ [ , \text{string_expression2} ] )
\]

**ltrim:**

Returns "string_expression1", with leading characters removed up to the first character not in "string_expression2"; for example, \text{ltrim} ( 'xyxXxyAB', 'xy' ) returns XxyAB.

**Syntax**

\[
\text{ltrim} ( \text{string_expression1} \ [ , \text{string_expression2} ] )
\]

**md5:**

Returns the MD5 hash of "string_expression1".

**Syntax**

\[
\text{md5} ( \text{string_expression1} )
\]

**to_hex:**

Returns the hexadecimal string representation of "numeric_expression1".

**Syntax**

\[
\text{to_hex} ( \text{numeric_expression1} )
\]

**repeat:**

Returns the "string_expression" repeated "numeric_expression1" times.

**Syntax**

\[
\text{repeat} ( \text{string_expression} , \text{numeric_expression1} )
\]

**replace:**
Returns "string_expression" having replaced "string_expression2" with "string_expression3".

**Syntax**

```sql
replace (string_expression , string_expression2 , string_expression3)
```

**rpad:**

Returns "string_expression1" right-padded to length "integer_expression" with occurrences of "string_expression2". If "string_expression1" is longer than "integer_expression", the appropriate portion of "string_expression1" is returned. If "string_expression2" is not specified, then spaces are used.

**Syntax**

```sql
rpad (string_expression1 , integer_expression [, string_expression2])
```

**rtrim:**

Returns "string_expression1", with final characters removed after the last character not in "string_expression2"; for example, rtrim ('ABXxyx', 'xy') returns ABX. If "string_expression2" is not specified, the final space characters are removed.

**Syntax**

```sql
rtrim (string_expression1 [, string_expression2])
```

**split_part:**

Returns "numeric_expression" field having split "string_expression1" on "string_expression2".

**Syntax**

```sql
split_part (string_expression1 , string_expression2 , numeric_expression)
```

**Greenplum Data type formatting**

**to_char:**

Returns the string representation of "expression" with the format of "string_expression". "Expression" can either be a date value or a numeric value.

**Syntax**

```sql
to_char (expression , string_expression)
```

**to_date:**

Converts "string_expression1" to a date value as specified by the format "string_expression2".

**Syntax**

```sql
to_date (string_expression1 , string_expression2)
```

**to_number:**
Converts "string_expression1" to a numeric value as specified by the format
"string_expression2".

**Syntax**

```
to_number (string_expression1 , string_expression2)
```

**to_timestamp:**

Converts "string_expression1" to a timestamp value as specified by the format
"string_expression2".

**Syntax**

```
to_timestamp (string_expression1 , string_expression2)
```

**Greenplum Math**

**log:**

Returns the base 10 logarithm of "numeric_expression1" or logarithm to the base
"numeric_expression2".

**Syntax**

```
log (numeric_expression1 [, numeric_expression2])
```

**ln:**

Returns the natural logarithm of "numeric_expression1".

**Syntax**

```
ln (numeric_expression)
```

**cbrt:**

Returns the cube root of "numeric_expression1".

**Syntax**

```
cbrt (numeric_expression)
```

**pi:**

Returns the constant of pi.

**Syntax**

```
pi ()
```

**Greenplum Trigonometry**

**acos:**

Returns the arccosine of "numeric_expression" in radians. The arccosine is the
angle whose cosine is "numeric_expression".

**Syntax**

```
acos (numeric_expression)
```

**asin:**
Returns the arcsine of "numeric_expression" in radians. The arcsine is the angle whose sine is "numeric_expression".

Syntax
asin ( numeric_expression )

atan:
Returns the arctangent of "numeric_expression" in radians. The arctangent is the angle whose tangent is "numeric_expression".

Syntax
atan ( numeric_expression )

atan2:
Returns the arctangent of the x and y coordinates specified by "numeric_expression1" and "numeric_expression2", respectively, in radians. The arctangent is the angle whose tangent is "numeric_expression2" / "numeric_expression1".

Syntax
atan2 ( numeric_expression1 ,numeric_expression2 )

cos:
Returns the cosine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
cos ( numeric_expression )

cot:
Returns the cotangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
cot ( numeric_expression )

degrees:
Returns the degrees where "numeric_expression" is an angle expressed in radians.

Syntax
degrees ( numeric_expression )

radians:
Returns the radians where "numeric_expression" is an angle expressed in degrees.

Syntax
radians ( numeric_expression )

sin:
Returns the sine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

**Syntax**
```
sin (numeric_expression)
```

**tan:**

Returns the tangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

**Syntax**
```
tan (numeric_expression)
```

**ascii**

Returns a number representing the ascii code value of the leftmost character of "string_expression"; for example, ascii ( 'A' ) is 65.

**Syntax**
```
ascii (string_expression)
```

**chr**

Returns the character that has the ASCII code value specified by "integer_expression". "Integer_expression" should be between 0 and 255.

**Syntax**
```
chr (integer_expression)
```

**current_database**

Returns the name of the current database.

**Syntax**
```
current_database ()
```

**current_schema**

Returns the name of the current schema.

**Syntax**
```
current_schema ()
```

**{current_user}**

**Syntax**
```
{current_user}
```

**{session_user}**

**Syntax**
```
{session_user}
```

**translate**

Returns "string_expression1" with each occurrence of each character in "string_expression2" replaced by its corresponding character in "string_expression3".

**Syntax**
```
translate (string_expression1, string_expression2, string_expression3)
```
translate ( string_expression1 , string_expression2 ,
string_expression3 )

date_trunc
Returns the timestamp to the specified precision.

Syntax
date_trunc ( string_expression , timestamp_expression)

version
Returns the string value of the database version.

Syntax
version ()

Informix

Informix Math

log10:
Returns the logarithm of "numeric_expression" to base 10.

Syntax
log10 ( numeric_expression )

logn:
Returns the natural logarithm of "numeric_expression".

Syntax
logn ( numeric_expression )

root:
Returns the root value of "numeric_expression1". Requires at least one numeric argument (the radians argument). If only "numeric_expression1" is supplied, 2 is used as a default value for "numeric_expression2". Zero cannot be used as the value of "numeric_expression2".

Syntax
root ( numeric_expression1 [ , numeric_expression2 ] )

Informix Trigonometry

acos:
Returns the arccosine of "numeric_expression" in radians. The arccosine is the angle whose cosine is "numeric_expression".

Syntax
acos ( numeric_expression )

asin:
Returns the arcsine of "numeric_expression" in radians. The arcsine is the angle whose sine is "numeric_expression".

Syntax
asin ( numeric_expression )

atan:

Returns the arctangent of "numeric_expression" in radians. The arctangent is the angle whose tangent is "numeric_expression".

Syntax
atan ( numeric_expression )

atan2:

Returns the arctangent of the x and y coordinates specified by "numeric_expression1" and "numeric_expression2", respectively, in radians. The arctangent is the angle whose tangent is "numeric_expression1".

Syntax
atan2 ( numeric_expression1, numeric_expression2 )

cos:

Returns the cosine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
cos ( numeric_expression )

sin:

Returns the sine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
sin ( numeric_expression )

tan:

Returns the tangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
tan ( numeric_expression )

cardinality

Returns the number of elements in a collection column (SET, MULTISET, LIST).

Syntax
cardinality ( string_expression )
char_length
Returns the number of logical characters in "string_expression". The number of logical characters can be distinct from the number of bytes in some East Asian locales.

Syntax
char_length ( string_expression )

concat
Returns a string that is the result of concatenating, or joining, "string_expression1" to "string_expression2".

Syntax
concat ( string_expression1 , string_expression2 )

Example
concat ( [Sales (query)].[Sales staff].[First name], [Sales (query)].[Sales staff].[Last name] )

Result
Returns the first name and last name; e.g., Bob Smith.

date
Returns the date value of "string_expression", "date_expression", or "integer_expression".

Syntax
date ( string_expression|date_expression|integer_expression )

day
Returns an integer that represents the day of the month (1-31).

Syntax
day ( date_expression )

extend
Adjusts the precision of a datetime or date expression. The expression cannot be a quoted string representation of a date value. If you do not specify first and last qualifiers, the default qualifiers are year to fraction (3). If the expression contains fields that are not specified by the qualifiers, the unwanted fields are discarded. If the first qualifier specifies a larger (more significant) field than what exists in the expression, the new fields are filled in with values returned by the current function. If the last qualifier specifies a smaller (less significant) field than what exists in the expression, the new fields are filled in with constant values. A missing month or day field is filled in with 1, and missing hour to fraction fields are filled in with 0.

Syntax
extend ( date_expression , '{ year to second }' )

Example
extend ( some_date_column , { year to second } )
**hex**
Returns the hexadecimal encoding of "integer_expression".

**Syntax**
```sql
hex (integer_expression)
```

**initcap**
Returns "string_expression" with the first letter of each word in uppercase and all other letters in lowercase. A word begins after any character other than a letter. Thus, in addition to a blank space, symbols such as commas, periods, and colons can introduce a new word.

**Syntax**
```sql
initcap (string_expression)
```

**length**
Returns the number of bytes in "string_expression", not including any trailing blank spaces. For byte or text "string_expression", length returns the full number of bytes, including any trailing blank spaces.

**Syntax**
```sql
length (string_expression)
```

**lpad**
Returns "string_expression1" left-padded by "string_expression2" to the total number of characters specified by "integer_expression". The sequence of "string_expression2" occurs as many times as necessary to make the return string the length specified by "integer_expression".

**Syntax**
```sql
lpad (string_expression1 , integer_expression , string_expression2)
```

**mdy**
Returns a type date value with three expressions that evaluate to integers that represent the month (integer_expression1), day (integer_expression2), and year (integer_expression3).

**Syntax**
```sql
mdy (integer_expression1 , integer_expression2 ,
 integer_expression3)
```

**month**
Returns an integer corresponding to the month portion of "date_expression".

**Syntax**
```sql
month (date_expression)
```

**nvl**
Returns the value of "expression1" if "expression1" is not NULL. If "expression1" is NULL, then returns the value of "expression2".

**Syntax**
```sql
nvl (expression1 , expression2)
```
nvl ( [Unit sale price] , [Unit price] )

Result

Returns the unit sale price, or returns the unit price if the unit sale price is NULL.

octet_length

Returns the number of bytes in "string_expression", including any trailing spaces.

Syntax

octet_length ( string_expression )

replace

Returns "string_expression1" in which every occurrence of "string_expression2" is replaced by "string_expression3". If you omit the "string_expression3" option, every occurrence of "string_expression2" is omitted from the return string.

Syntax

replace ( string_expression1 , string_expression2 [ , string_expression3 ] )

Example

replace ( [Sales (query)].[Products].[Product line code] , - )

Result

Returns all product line codes without the character "-"

round

Returns the rounded value of "numeric_expression". If you omit "integer_expression", the value is rounded to zero digits or to the units place. The digit range of 32 (+ and -) refers to the entire decimal value. Rounding takes place before data formatting is applied.

Syntax

round ( numeric_expression [ , integer_expression ] )

Example

round (125, -1)

Result

130

rpad

Returns "string_expression1" right-padded by "string_expression2" to the total number of characters specified by "integer_expression". The sequence of "string_expression2" occurs as many times as necessary to make the return string the length specified by "integer_expression".

Syntax

rpad ( string_expression1 , integer_expression , string_expression2 )

substr

Returns the substring of "string_expression" that starts at position "integer_expression1" for "integer_expression2" characters. The first character in
"string_expression" is at position 1. If you omit "integer_expression2", returns the substring of "string_expression" that starts at position "integer_expression1" and ends at the end of "string_expression".

Syntax

\[
\text{substr ( string_expression, integer_expression1 [ , integer_expression2 ] )}
\]

Example

\[
\text{substr ([Sales (query)].[Sales staff].[Position code], 3, 5)}
\]

Result

Returns characters 3 to 7 of the position codes.

to_char

Returns the character string "date_expression" with the specified "string_expression" formatting. You can use this function only with built-in data types.

Syntax

to_char ( date_expression , string_expression )

to_date

Returns "string_expression1" as a date according to the date format you specify in "string_expression2". If "string_expression1" is NULL, then a NULL value is returned.

Syntax

to_date ( string_expression1 , string_expression2 )

trunc

Returns the truncated value of "numeric_expression". If you omit "integer_expression", then "numeric_expression" is truncated to zero digits or to the unit's place. The digit limitation of 32 (+ and -) refers to the entire decimal value.

Syntax

\[
\text{trunc ( numeric_expression [ , integer_expression ] )}
\]

weekday

Returns an integer that represents the day of the week of "date_expression". Zero (0) represents Sunday, one (1) represents Monday, and so on.

Syntax

\[
\text{weekday ( date_expression )}
\]

year

Returns a four-digit integer that represents the year of "date_expression".

Syntax

\[
\text{year ( date_expression )}
\]
**MS Access**

**MS Access Cast**

**cast_decimal:**

Returns the value of "expression" cast as a decimal.

**Syntax**
cast_decimal ( expression )

**cast_float:**

Returns the value of "expression" cast as a float.

**Syntax**
cast_float ( expression )

**cast_integer:**

Returns the value of "expression" cast as an integer.

**Syntax**
cast_integer ( expression )

**Example**
cast_integer ( 84.95 )

**Result**

84

**cast_numeric:**

Returns "string_expression" cast as a numeric value.

**Syntax**
cast_numeric ( string_expression )

**cast_real:**

Returns the value of "expression" cast as a real value.

**Syntax**
cast_real ( expression )

**cast_smallint:**

Returns "expression" cast as a small integer.

**Syntax**
cast_smallint ( expression )

**cast_varchar:**
Returns the value of "expression" cast as a variable character field.

**Syntax**

\texttt{cast\_varchar ( expression )}

**MS Access Math**

**log:**

Returns the natural logarithm of "numeric\_expression".

**Syntax**

\texttt{log ( numeric\_expression )}

**rand:**

Generates a random number using "integer\_expression" as a seed value.

**Syntax**

\texttt{rand ( integer\_expression )}

**MS Access Trigonometry**

**atan:**

Returns the arctangent of "numeric\_expression" in radians. The arctangent is the angle whose tangent is "numeric\_expression".

**Syntax**

\texttt{atan ( numeric\_expression )}

**cos:**

Returns the cosine of "numeric\_expression" where "numeric\_expression" is an angle expressed in radians.

**Syntax**

\texttt{cos ( numeric\_expression )}

**sin:**

Returns the sine of "numeric\_expression" where "numeric\_expression" is an angle expressed in radians.

**Syntax**

\texttt{sin ( numeric\_expression )}

**tan:**

Returns the tangent of "numeric\_expression" where "numeric\_expression" is an angle expressed in radians.

**Syntax**

\texttt{tan ( numeric\_expression )}
ascii
Returns the ascii code value of the leftmost character of "string_expression".

Syntax
ascii ( string_expression )

ceiling
Returns the smallest integer greater than or equal to "numeric_expression".

Syntax
ceiling ( numeric_expression )

chr
Returns the character that has the ASCII code value specified by "integer_expression". "Integer_expression" should be between 0 and 255.

Syntax
chr ( integer_expression )

concat
Returns a string that is the result of concatenating, or joining, "string_expression1" to "string_expression2".

Syntax
concat ( string_expression1 , string_expression2 )

Example
concat ( [Sales (query)].[Sales staff].[First name] , [Sales (query)].[Sales staff].[Last name] )

Result
Returns the first name and last name; e.g., Bob Smith.

curdate
Returns a date value representing the current date of the computer that the database software runs on.

Syntax
curdate ()

curtime
Returns a time value representing the current time of the computer that the database software runs on.

Syntax
curtime ()

dayname
Returns a character string containing the data source-specific name of the day (for example, Sunday through Saturday or Sun. through Sat. for an English data source, or Sonntag through Samstag for a German data source) for the day portion of "date_expression".

Syntax
dayname ( date_expression )

dayofmonth
Returns the day of the month (1-31) from "date_expression". Returns the days field (a signed integer) from "interval_expression".

Syntax
dayofmonth ( date_expression|interval_expression )

dayofweek
Returns the day of the week in "date_expression" as an integer (1-7), where 1 represents Monday.

Syntax
dayofweek ( date_expression )

dayofyear
Returns the day of the year in "date_expression" as an integer (1-366).

Syntax
dayofyear ( date_expression )

hour
Returns the hour from "time_expression" as an integer from 0 (midnight) to 23 (11:00 pm).

Syntax
hour ( time_expression )
instr
Searches "string_expression1" for the first occurrence of "string_expression2" and returns an integer specifying the position of "string_expression2".
"Integer_expression1" sets the starting position for the search. If "integer_expression1" is omitted, the search begins at the first character position of "string_expression1". "Integer_expression2" specifies the type of string comparison. "Integer_expression1" is required if "integer_expression2" is specified.

Syntax
instr ( [ integer_expression1 , ] string_expression1 ,
    string_expression2 [ , integer_expression2 ] )
lcase
Returns 'string_expression' with all uppercase characters converted to lowercase.

Syntax
lcase ( string_expression )
left
Returns the leftmost "integer_expression" characters of "string_expression".

Syntax
left ( string_expression , integer_expression )

Example
left ( [Sales (query)].[Sales staff].[Last name] , 3 )
Result
Returns the first three characters of each last name.

**length**
Returns the number of characters in "string_expression", excluding trailing blanks and the string termination character.

**Syntax**
```plaintext
length (string_expression)
```

**locate**
Returns the starting position of the first occurrence of "string_expression1" within "string_expression2". The search starts at position "integer_expression" of "string_expression2". The first character in a string is at position 1. If "string_expression1" is not found, then zero is returned.

**Syntax**
```plaintext
locate (string_expression1 , string_expression2 [,
 integer_expression])
```

**ltrim**
Returns "string_expression" with leading spaces removed.

**Syntax**
```plaintext
ltrim (string_expression)
```

**minute**
Returns the minute (an integer from 0-59) from "time_expression".

**Syntax**
```plaintext
minute (time_expression)
```

**month**
Returns the month (an integer from 1-12) from "date_expression".

**Syntax**
```plaintext
month (date_expression)
```

**monthname**
Returns a character string containing the data source-specific name of the month (for example, January through December or Jan. through Dec. for an English data source, or Januar through Dezember for a German data source) for the month portion of "date_expression".

**Syntax**
```plaintext
monthname (date_expression)
```

**Example**
```plaintext
monthname (2005-11-01)
```

**Result**
November
**now**
Returns a datetime value representing the current date and time of the computer that the database software runs on.

**Syntax**
```
now ()
```

**position**
Returns the starting position of "string_expression1" in "string_expression2". The first character in a string is at position 1.

**Syntax**
```
position (string_expression1 , string_expression2)
```

**quarter**
Returns the quarter in "date_expression" as a number (1-4), where 1 represents January 1 through March 31.

**Syntax**
```
quarter (date_expression)
```

**right**
Returns the rightmost "integer_expression" characters of "string_expression".

**Syntax**
```
right (string_expression , integer_expression)
```

**round**
Returns "numeric_expression" rounded to the nearest value "integer_expression" places right of the decimal point. If "integer_expression" is negative, "numeric_expression" is rounded to the nearest absolute value "integer_expression" places to the left of the decimal point. Rounding takes place before data formatting is applied.

**Syntax**
```
round (numeric_expression , integer_expression)
```

**Example**
```
round (125, -1)
```

**Result**
```
130
```

**rtrim**
Returns "string_expression" with trailing spaces removed.

**Syntax**
```
rtrim (string_expression)
```

**Example**
```
rtrim ([Sales (query)].[Sales staff].[Last name])
```

**Result**
Returns last names with any spaces at the end of the name removed.

**sign**
Returns an indicator of the sign of "numeric_expression", +1 if positive, 0 if zero, or -1 if negative.

**Syntax**
sign ( numeric_expression )

**space**
Returns a string consisting of "integer_expression" spaces.

**Syntax**
space ( integer_expression )

**substr**
Returns the substring of "string_expression" that starts at position "integer_expression1" for "integer_expression2" characters. The first character in "string_expression" is at position 1.

**Syntax**
substr ( string_expression , integer_expression1 , integer_expression2 )

**Example**
substr ( [Sales (query)].[Sales staff].[Position code],3,5 )

**Result**
Returns characters 3 to 7 of the position codes.

**substring**
Returns the substring of "string_expression" that starts at position "integer_expression1" for "integer_expression2" characters. The first character in "string_expression" is at position 1.

**Syntax**
substring ( string_expression , integer_expression1 , integer_expression2 )

**Example**
substring ( [Sales (query)].[Sales staff].[Position code],3,5 )

**Result**
Returns characters 3 to 7 of the position codes.

**truncate**
Returns "string_expression" with trailing spaces removed.

**Syntax**
truncate ( string_expression )
**ucase**
Returns "string_expression" with all lowercase characters converted to uppercase.

**Syntax**
ucase ( string_expression )

**week**
Returns the week of the year in "date_expression" as an integer value (1-53), where 1 represents the first week of the year.

**Syntax**
week ( date_expression )

**year**
Returns the year from "date_expression".

**Syntax**
year ( date_expression )

**MySQL**

**MySQL String**

**lpad:**
Returns "string_expression1" padded to length "integer_expression" with occurrences of "string_expression2". If "string_expression1" is longer than "integer_expression", the appropriate portion of "string_expression1" is returned.

**Syntax**
lpad ( string_expression1 , integer_expression [ , string_expression2 ] )

dltrim:
Returns "string_expression1", with leading characters removed up to the first character not in "string_expression2"; for example, ltrim ( 'xyxXxyAB' , 'xy' ) returns XxyAB.

**Syntax**
ltrim ( string_expression1 [ , string_expression2 ] )

**hex:**
Returns the hexadecimal string representation of "numeric_expression1".

**Syntax**
hex ( numeric_expression1 )

**repeat:**
Returns the "string_expression" repeated "numeric_expression1" times.

**Syntax**
repeat ( string_expression , numeric_expression1 )
replace:

Returns "string_expression" having replaced "string_expression2" with "string_expression3".

Syntax
replace ( string_expression , string_expression2 , string_expression3 )

reverse:

Returns "string_expression" reversed.

Syntax
reverse ( string_expression )

right:

Returns the rightmost "numeric_expression" characters from "string_expression1".

Syntax
right ( string_expression1 , numeric_expression )

rpad:

Returns "string_expression1" right-padded to length "integer_expression" with occurrences of "string_expression2". If "string_expression1" is longer than "integer_expression", the appropriate portion of "string_expression1" is returned. If "string_expression2" is not specified, then spaces are used.

Syntax
rpad ( string_expression1 , integer_expression [, string_expression2 ] )

rtrim:

Returns "string_expression1", with final characters removed after the last character not in "string_expression2"; for example, rtrim ('ABxXxyx', 'xy') returns ABx. If "string_expression2" is not specified, the final space characters are removed.

Syntax
rtrim ( string_expression1 [, , string_expression2 ] )

soundex:

Returns a soundex string of "string_expression1".

Syntax
soundex ( string_expression1 )

MySQL Math

log:

Returns the base 10 logarithm of "numeric_expression1" or logarithm to the base "numeric_expression2".
Syntax

log ( numeric_expression )

**ln:**
Returns the natural logarithm of "numeric_expression1".

Syntax

ln ( numeric_expression )

**pi:**
Returns the constant of pi.

Syntax

pi ()

**MySQL Trigonometry**

**acos:**
Returns the arccosine of "numeric_expression" in radians. The arccosine is the angle whose cosine is "numeric_expression".

Syntax

acos ( numeric_expression )

**asin:**
Returns the arcsine of "numeric_expression" in radians. The arcsine is the angle whose sine is "numeric_expression".

Syntax

asin ( numeric_expression )

**atan:**
Returns the arctangent of "numeric_expression" in radians. The arctangent is the angle whose tangent is "numeric_expression".

Syntax

atan ( numeric_expression )

**atan2:**
Returns the arctangent of the x and y coordinates specified by "numeric_expression1" and "numeric_expression2", respectively, in radians. The arctangent is the angle whose tangent is "numeric_expression2" / "numeric_expression1".

Syntax

atan2 ( numeric_expression1 ,numeric_expression2 )

cos:
Returns the cosine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

**Syntax**
\[
\text{cos ( numeric_expression )}
\]

cot:

Returns the cotangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

**Syntax**
\[
cot ( numeric_expression )
\]

degrees:

Returns the degrees where "numeric_expression" is an angle expressed in radians.

**Syntax**
\[
degrees ( numeric_expression )
\]

radians:

Returns the radians where "numeric_expression" is an angle expressed in degrees.

**Syntax**
\[
radians ( numeric_expression )
\]

sin:

Returns the sine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

**Syntax**
\[
sin ( numeric_expression )
\]

tan:

Returns the tangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

**Syntax**
\[
tan ( numeric_expression )
\]

ascii

Returns a number representing the ASCII code value of the leftmost character of "string_expression"; for example, ascii ( 'A' ) is 65.

**Syntax**
\[
ascii ( string_expression )
\]

database

Returns the current database name

**Syntax**
database ()

**schema**
Returns the current schema name

**Syntax**
schema ()

**session_user**
Return the user name returned by the client

**Syntax**
session_user ()

**system_user**
Return the user name returned by the client

**Syntax**
system_user ()

**version**
Returns the string value of the database version.

**Syntax**
version ()

---

**Netezza**

**Netezza Math**

**log:**
Returns the logarithm of "numeric_expression2" to the base "numeric_expression1".

**Syntax**
log ( numeric_expression1 , numeric_expression2 )

**Netezza Trigonometry**

**acos:**
Returns the arccosine of "numeric_expression" in radians. The arccosine is the angle whose cosine is "numeric_expression".

**Syntax**
acos ( numeric_expression )

**asin:**
Returns the arcsine of "numeric_expression" in radians. The arcsine is the angle whose sine is "numeric_expression".

**Syntax**
asin ( numeric_expression )

**atan:**
Returns the arctangent of "numeric_expression" in radians. The arctangent is the angle whose tangent is "numeric_expression".

Syntax
atan ( numeric_expression )

atan2:
Returns the arctangent of the x and y coordinates specified by "numeric_expression1" and "numeric_expression2", respectively, in radians. The arctangent is the angle whose tangent is "numeric_expression2" / "numeric_expression1".

Syntax
atan2 ( numeric_expression1 , numeric_expression2 )

cos:
Returns the cosine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
cos ( numeric_expression )

degrees:
Returns the degrees where "numeric_expression" is an angle expressed in radians.

Syntax
degrees ( numeric_expression )

radians:
Returns the radians where "numeric_expression" is an angle expressed in degrees.

Syntax
radians ( numeric_expression )

sin:
Returns the sine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
sin ( numeric_expression )

tan:
Returns the tangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
tan ( numeric_expression )
Netezza Fuzzy

**le_dst:**
Returns a value indicating how different the two input strings are, calculated according to the Levenshtein edit distance algorithm.

**Syntax**
```
le_dst (string_expression1 , string_expression2)
```

**dle_dst:**
Returns a value indicating how different the two input strings are, calculated according to the Damerau-Levenshtein distance algorithm

**Syntax**
```
dle_dst (string_expression1 , string_expression2)
```

Netezza Phonetic

**nysiis:**
Returns a Soundex representation of "string_expression" using the New York State Identification and Intelligence System (NYSIIS) variation of Soundex.

**Syntax**
```
nysiis (string_expression)
```

**dbl_mp:**
Returns a composite 32-bit value of "string_expression".

**Syntax**
```
dbl_mp (string_expression)
```

**pri_mp:**
Returns the 4 character primary metaphone string from "numeric_expression" returned by dbl_mp.

**Syntax**
```
pri_mp (numeric_expression)
```

**sec_mp:**
Returns the 4 character secondary metaphone string from "numeric_expression" returned by dbl_mp.

**Syntax**
```
sec_mp (numeric_expression)
```

**score_mp:**
Returns a score for how closely "numeric_expression" and "numeric_expression2" match.
**Syntax**
```
score_mp (numeric_expression , numeric_expression2 ,
 numeric_expression3 , numeric_expression4 , numeric_expression5 ,
 numeric_expression6)
```

**ascii**
Returns a number representing the ASCII code value of the leftmost character of "string_expression"; for example, ascii ( 'A' ) is 65.

**Syntax**
```
ascii (string_expression)
```

**chr**
Returns the character that has the ASCII code value specified by "integer_expression". "Integer_expression" should be between 0 and 255.

**Syntax**
```
chr (integer_expression)
```

**decode**
Compares "expr" to each search value one by one. If "expr" is equal to a search, then it returns the corresponding result. If no match is found, it returns "default". If "default" is omitted, it returns null.

**Syntax**
```
de decode (expr , search , result [, search , result]... [, default])
```

**initcap**
Returns "string_expression", with the first letter of each word in uppercase, all other letters in lowercase. Words are delimited by white space or characters that are not alphanumeric.

**Syntax**
```
initcap (string_expression)
```

**instr**
Searches "string_expression1" starting at position "integer_expression1" for the "integer_expression2" occurrence of "string_expression2". If "integer_expression1" is negative then the search is backwards from the end of "string_expression1". Returns an integer indicating the position of "string_expression2".

**Syntax**
```
instr (string_expression1 , string_expression2 [,
 integer_expression1 [, integer_expression2]])
```

**lpad**
Returns "string_expression1" padded to length "integer_expression" with occurrences of "string_expression2". If "string_expression1" is longer than "integer_expression", the appropriate portion of "string_expression1" is returned.

**Syntax**
```
lpad (string_expression1 , integer_expression [, string_expression2])
```
**ltrim**
Returns "string_expression1", with leading characters removed up to the first character not in "string_expression2"; for example, ltrim ( 'xyXxyAB' , 'xy' ) returns XxyAB.

**Syntax**
ltrim ( string_expression1 [ , string_expression2 ] )

**months_between**
Returns the number of months from "date_expression1" to "date_expression2". If "date_expression1" is later than "date_expression2" then the result will be a positive number. The days and time portions of the difference are ignored, i.e., the months are not rounded, except if "date_expression1" and "date_expression2" are the last days of a month.

**Syntax**
months_between ( date_expression1 , date_expression2 )

**next_day**
Returns the datetime of the first weekday named by "string_expression" that is later than "datetime_expression". The return value has the same hours, minutes, and seconds as "datetime_expression".

**Syntax**
next_day ( datetime_expression , string_expression )

**nvl**
Returns the value of "expression1" if "expression1" is not NULL. If "expression1" is NULL, then returns the value of "expression2".

**Syntax**
nvl ( expression1 , expression2 )

**Example**
nvl ( [Unit sale price] , 0 )

**Result**
Returns the unit sale price, or returns 0 if the unit sale price is NULL.

**round**
Returns "numeric_expression" rounded to the nearest value "integer_expression" places right of the decimal point. If "integer_expression" is negative, "numeric_expression" is rounded to the nearest absolute value "integer_expression" places to the left of the decimal point; for example, round (125, -1) rounds to 130.

**Syntax**
round ( numeric_expression [ , integer_expression ] )

**rpad**
Returns "string_expression1" right-padded to length "integer_expression" with occurrences of "string_expression2". If "string_expression1" is longer than "integer_expression", the appropriate portion of "string_expression1" is returned. If "string_expression2" is not specified, then spaces are used.
Syntax
\[ \text{rpad} (\text{string_expression1}, \text{integer_expression} [ , \text{string_expression2} ]) \]

\textbf{rtrim}
Returns "string_expression1", with final characters removed after the last character not in "string_expression2"; for example, \text{rtrim} ( 'ABxXyx' , 'xy' ) returns ABx. If "string_expression2" is not specified, the final space characters are removed.

Syntax
\[ \text{rtrim} (\text{string_expression1} [ , \text{string_expression2} ]) \]

\textbf{substr}
Returns the substring of "string_expression" that starts at position "integer_expression1". The first character in "string_expression" is at position 1. "Integer_expression2" can be used to select fewer characters; by default it selects characters to the end of the string.

Syntax
\[ \text{substr} (\text{string_expression} , \text{integer_expression1} [ , \text{integer_expression2} ] ) \]

\texttt{\{current_db\}}
Syntax
\{current_db\}

\texttt{\{current_user\}}
Syntax
\{current_user\}

\texttt{\{session_user\}}
Syntax
\{session_user\}

\textbf{to_char}
Returns the string representation of "expression" with the format of "string_expression". "Expression" can be either a date value or a numeric value.

Syntax
\[ \text{to_char} (\text{expression} [ , \text{string_expression} ]) \]

\textbf{to_date}
Converts "string_expression1" to a datetime value as specified by the format "string_expression2".

Syntax
\[ \text{to_date} (\text{string_expression1} , \text{string_expression2} ) \]

\textbf{to_number}
Converts "string_expression1" to a numeric value as specified by the format "string_expression2".

Syntax
to_number ( string_expression1 , string_expression2 )

**translate**
Returns "string_expression1", with all occurrences of each character in "string_expression2" replaced by its corresponding character in "string_expression3".

**Syntax**
translate ( string_expression1 , string_expression2 , string_expression3 )

date_trunc
Truncates "date_expression1" to a value as specified by the format "string_expression1".

**Syntax**
date_trunc ( string_expression1 , date_expression1 )

**trunc**
Truncates digits from "numeric_expression1" using "numeric_expression2" as the precision.

**Syntax**
trunc ( numeric_expression1 [ , numeric_expression2 ] )

**version**
Returns the "string_expression1" value of the database version.

**Syntax**
version ( )

**Oracle**

**Oracle Math**

**log:**
Returns the logarithm of "numeric_expression2" to the base "numeric_expression1".

**Syntax**
log ( numeric_expression1 , numeric_expression2 )

**Oracle Trigonometry**

**acos:**
Returns the arccosine of "numeric_expression" in radians. The arccosine is the angle whose cosine is "numeric_expression".

**Syntax**
acos ( numeric_expression )

**asin:**
Returns the arcsine of "numeric_expression" in radians. The arcsine is the angle whose sine is "numeric_expression".
Syntax
asin ( numeric_expression )

atan:

Returns the arctangent of "numeric_expression" in radians. The arctangent is the angle whose tangent is "numeric_expression".

Syntax
atan ( numeric_expression )

atan2:

Returns the arctangent of the x and y coordinates specified by "numeric_expression1" and "numeric_expression2", respectively, in radians. The arctangent is the angle whose tangent is "numeric_expression2" / "numeric_expression1".

Syntax
atan2 ( numeric_expression1 ,numeric_expression2 )

cos:

Returns the cosine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
cos ( numeric_expression )

cosh:

Returns the hyperbolic cosine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
cosh ( numeric_expression )

sin:

Returns the sine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
sin ( numeric_expression )

sinh:

Returns the hyperbolic sine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
sinh ( numeric_expression )

tan:
Returns the tangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
\[ \tan ( \text{numeric_expression} ) \]

\[ \text{tanh} \]

Returns the hyperbolic tangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
\[ \tanh ( \text{numeric_expression} ) \]

\[ \text{add_months} \]

Returns the datetime resulting from adding "integer_expression" months to "date_expression".

Syntax
\[ \text{add_months} ( \text{date_expression}, \text{integer_expression} ) \]

\[ \text{ascii} \]

Returns a number representing the ASCII code value of the leftmost character of "string_expression".

Syntax
\[ \text{ascii} ( \text{string_expression} ) \]

Example
ascii ( 'A' )

Result
Returns '65'

\[ \text{ceil} \]

Returns the smallest integer greater than or equal to "numeric_expression".

Syntax
\[ \text{ceil} ( \text{numeric_expression} ) \]

\[ \text{char_length} \]

Returns the number of logical characters in "string_expression". The number of logical characters can be distinct from the number of bytes in some East Asian locales.

Syntax
\[ \text{char_length} ( \text{string_expression} ) \]

\[ \text{chr} \]

Returns the character that has the ASCII code value specified by "integer_expression". "Integer_expression" should be between 0 and 255.

Syntax
\[ \text{chr} ( \text{integer_expression} ) \]
**concat**
Returns a string that is the result of concatenating, or joining, "string_expression1" to "string_expression2".

**Syntax**
```
concat (string_expression1 , string_expression2)
```

**Example**
```
concat ([Sales (query)].[Sales staff].[First name] , [Sales (query)].
[Sales staff].[Last name])
```

**Result**
Returns the first name and last name; e.g., Bob Smith.

**decode**
Compares "expression" to each search value one by one. If "expression" is equal to a search, then it returns the corresponding result. If no match is found, it returns "default", or if "default" is omitted, it returns null.

**Syntax**
```
decode (expression , search , result [, search , result]... [,
default])
```

**dump**
Returns internal representation of "expression" with the format of "numeric_expression1" starting from position "numeric_expression2" for "numeric_expression3" characters.

**Syntax**
```
dump (expression [, numeric_expression1 [, numeric_expression2 [,
```

**greatest**
Returns the greatest value in "expression_list".

**Syntax**
```
greatest (expression_list)
```

**initcap**
Returns "string_expression" with the first letter of each word in uppercase and all other letters in lowercase. Words are delimited by white space or characters that are not alphanumeric.

**Syntax**
```
initcap (string_expression)
```

**instr**
Searches "string_expression1" starting at position "integer_expression1" for the "integer_expression2" occurrence of "string_expression2". If "integer_expression1" is negative, then the search occurs backwards from the end of "string_expression1". Returns an integer indicating the position of "string_expression2".

**Syntax**
```
instr (string_expression1 , string_expression2 [,
integer_expression1 [, integer_expression2]])
```
**instrb**
Searches "string_expression1" starting at position "integer_expression1" for the "integer_expression2" occurrence of "string_expression2". If "integer_expression1" is negative, then the search occurs backwards from the end of "string_expression1". Returns the position (byte number) where "string_expression2" was found.

**Syntax**

```plaintext
instrb (string_expression1, string_expression2 [, integer_expression1 [, integer_expression2]])
```

**least**
Returns the least value in "expression_list".

**Syntax**

```plaintext
least (expression_list)
```

**length**
Returns the number of characters in "string_expression".

**Syntax**

```plaintext
length (string_expression)
```

**lengthb**
Returns the number of bytes in "string_expression".

**Syntax**

```plaintext
lengthb (string_expression)
```

**lpad**
Returns "string_expression1" left-padded to the length defined by "integer_expression" with occurrences of "string_expression2". If "string_expression1" is longer than "integer_expression", the appropriate portion of "string_expression1" is returned.

**Syntax**

```plaintext
lpad (string_expression1, integer_expression [, string_expression2])
```

**ltrim**
Returns "string_expression1" with leading characters removed up to the first character not in "string_expression2".

**Syntax**

```plaintext
ltrim (string_expression1 [, string_expression2])
```

**Example**

```plaintext
ltrim ('xyxXxyAB' , 'xy')
```

**Result**

```
XxyAB
```

**months_between**
Returns the number of months from "date_expression1" to "date_expression2". If "date_expression1" is later than "date_expression2" then the result will be a positive
number. The days and time portion of the difference are ignored, so the months are not rounded unless "date_expression1" and "date_expression2" are the last days of a month.

**Syntax**

`months_between ( date_expression1 , date_expression2 )`

**new_time**

Returns the datetime in "new_timezone" for "datetime_expression" in "old_timezone". "Old_timezone" and "new_timezone" can be one of 'AST', 'ADT', 'BST', 'BDT', 'CST', 'CDT', 'EST', 'EDT', 'HST', 'HDT', 'MST', 'MDT', 'NST', 'PST', 'PDT', 'YST', or 'YDT'.

**Syntax**

`new_time ( datetime_expression , old_timezone , new_timezone )`

**next_day**

Returns the datetime of the first weekday named by "string_expression" that is later than "datetime_expression". The return value has the same format as "datetime_expression".

**Syntax**

`next_day ( datetime_expression , string_expression )`

**nls_initcap**

Returns "string_expression1" with the first letter of each word in uppercase and all other letters in lowercase. A word begins after any character other than a letter. Thus, in addition to a blank space, symbols such as commas, periods, and colons can introduce a new word. "String_expression2" specifies the sorting sequence.

**Syntax**

`nls_initcap ( string_expression1 [ , string_expression2 ] )`

**nls_lower**

Returns "string_expression1" with all letters in lowercase. "String_expression2" specifies the sorting sequence.

**Syntax**

`nls_lower ( string_expression1 [ , string_expression2 ] )`

**nls_upper**

Returns "string_expression1" with all letters in uppercase. "String_expression2" specifies the sorting sequence.

**Syntax**

`nls_upper ( string_expression1 [ , string_expression2 ] )`

**nvl**

Returns the value of "expression1" if "expression1" is not NULL. If "expression1" is NULL, then returns the value of "expression2".

**Syntax**

`nvl ( expression1 , expression2 )`

**Example**
nvl ( [Unit sale price] , 0 )

Result

Returns the unit sale price, or returns 0 if the unit sale price is NULL.

replace

Replaces all occurrences of "string_expression2" in "string_expression1" with "string_expression3". If "string_expression3" is not specified, then it removes all occurrences of "string_expression2".

Syntax

replace ( string_expression1 , string_expression2 [ ,
        string_expression3 ] )

round

Returns "numeric_expression" rounded to the nearest value "integer_expression" places right of the decimal point. If "integer_expression" is negative, "numeric_expression" is rounded to the nearest absolute value "integer_expression" places to the left of the decimal point. Rounding takes place before data formatting is applied.

Syntax

round ( numeric_expression [ , integer_expression ] )

Example

round ( 125 , -1 )

Result

Returns 130

rpad

Returns "string_expression1" right-padded to length "integer_expression" with occurrences of "string_expression2". If "string_expression1" is longer than "integer_expression", the appropriate portion of "string_expression1" is returned. If "string_expression2" is not specified, then occurrences of "string_expression2" are replaced with spaces.

Syntax

rpad ( string_expression1 , integer_expression [ ,
        string_expression2 ] )

rtrim

Returns "string_expression1" with the final characters removed after the last character not in "string_expression2". If "string_expression2" is not specified, the final space characters are removed.

Syntax

rtrim ( string_expression1 [ , string_expression2 ] )

Example

rtrim ( 'ABxXxyx' , 'xy' )

Result
Returns 'ABxX'

**sign**
Returns an indicator of the sign of "numeric_expression", +1 if positive, 0 if zero, or -1 if negative.

**Syntax**
sign ( numeric_expression )

**soundex**
Returns a character string containing the phonetic representation of "string_expression".

**Syntax**
soundex ( string_expression )

**substr**
Returns the substring of "string_expression" that starts at position "integer_expression1" for "integer_expression2" characters or to the end of "string_expression" if "integer_expression2" is omitted. The first character in "string_expression" is at position 1.

**Syntax**
substr ( string_expression , integer_expression1 [ ,
integer_expression2 ] )

**Example**
substr ( [Sales (query)].[Sales staff].[Position code], 3, 5 )

**Result**
Returns characters 3 to 7 of the position codes.

**substrb**
Returns the substring of "string_expression" that starts at position "numeric_expression1" and ends after "numeric_expression2" bytes. The first byte in "string_expression" is at position 1. If you omit "numeric_expression2", returns the substring of "string_expression" that starts at position "numeric_expression1" and ends at the end of "string_expression".

**Syntax**
substrb ( string_expression , numeric_expression1 [ ,
numeric_expression2 ] )

**Example**
substrb ( [Sales (query)].[Sales staff].[Position code], 3, 5 )

**Result**
Returns characters 3 to 7 of the position codes.

**{sysdate}**
Returns a datetime value representing the current date and time of the computer that the database software runs on.

**Syntax**
to_char
Returns the string representation of "expression" with the format of "string_expression". "Expression" can be either a date value or a numeric value.

Syntax
to_char ( expression [ , string_expression ] )

to_date
Converts "string_expression1" to a datetime value as specified by the format "string_expression2". "String_expression3" specifies the format elements, such as language.

Syntax
to_date ( string_expression1 [ , string_expression2 [ , string_expression3 ] ] )

to_number
Converts "string_expression1" to a numeric value as specified by the format "string_expression2". "String_expression3" specifies the format elements, such as currency information.

Syntax
to_number ( string_expression1 , string_expression2 , string_expression3 )

translate
Returns "string_expression1" with all occurrences of each character in "string_expression2" replaced by the corresponding character in "string_expression3".

Syntax
translate ( string_expression1 , string_expression2 , string_expression3 )

trunc
Truncates "date_expression" using the format specified by "string_expression". For example, if 'string_expression' is 'year', then 'date_expression' is truncated to the first day of the year.

Syntax
trunc ( date_expression , string_expression )

Example
trunc ( 2003-08-22 , 'year' )

Result
Returns 2003-01-01.

trunc
Truncates digits from "numeric_expression1" using "numeric_expression2" as the precision.

Syntax
trunc( numeric_expression1 , numeric_expression2 )

{user}
Returns the username of the current Oracle user.

Syntax
{ user }

vsize
Returns the number of bytes in the internal representation of "expression". "Expression" must be a string expression.

Syntax
vsize( expression )

Paraccel
Paraccel String
overlay:
Returns the "string_expression1", replacing "string_expression2" from character position numeric_expression.

Syntax
overlay( string_expression1 , string_expression2 ,
numeric_expression1 [ , numeric_expression2 ] )

ltrim:
Returns "string_expression1", with leading characters removed up to the first character not in "string_expression2"; for example, ltrim('xyxXxyAB', 'xy') returns XxyAB.

Syntax
ltrim( string_expression1 [ , string_expression2 ] )

replace:
Returns "string_expression", having replaced "string_expression2" with "string_expression3".

Syntax
replace( string_expression , string_expression2 , string_expression3 )

rtrim:
Returns "string_expression1", with final characters removed after the last character not in "string_expression2"; for example, rtrim('ABxXyx', 'xy') returns ABxX. If "string_expression2" is not specified, the final space characters are removed.

Syntax
rtrim( string_expression1 [ , string_expression2 ] )
**Paraccel Data type formatting**

**to_char:**
Returns the string representation of "expression" with the format of "string_expression". "Expression" can be either a date value or a numeric value.

Syntax
```
to_char (expression , string_expression)
```

**to_date:**
Converts "string_expression1" to a date value as specified by the format "string_expression2".

Syntax
```
to_date (string_expression1 , string_expression2)
```

**to_number:**
Converts "string_expression1" to a numeric value as specified by the format "string_expression2".

Syntax
```
to_number (string_expression1 , string_expression2)
```

**Paraccel Math**

**cbrt:**
Returns the cube root of "numeric_expression1".

Syntax
```
cbrt (numeric_expression)
```

**pi:**
Returns the constant of pi.

Syntax
```
pi ()
```

**current_database**
Returns the name of the current database.

Syntax
```
current_database ()
```

**current_schema**
Returns the name of the current schema

Syntax
```
current_schema ()
```
{current_user}

Syntax
{current_user}

{session_user}

Syntax
{session_user}

**translate**

Returns "string_expression1", with each occurrence of each character in "string_expression2" replaced by its corresponding character in "string_expression3".

**Syntax**

```
translate (string_expression1 , string_expression2 , string_expression3)
```

**version**

Returns the string value of the database version.

**Syntax**

```
version ()
```

**Postgres**

**Postgres String**

**overlay:**

Returns the "string_expression1" replacing "string_expression2" from character position numeric_expression.

**Syntax**

```
overlay (string_expression1 , string_expression2 , numeric_expression1 [, numeric_expression2])
```

**btrim:**

Returns string_expression1 after removing the longest string of characters in "string_expression2".

**Syntax**

```
btrim (string_expression1 [, string_expression2])
```

**initcap:**

Returns "string_expression", with the first letter of each word in uppercase and all other letters in lowercase. Words are delimited by white space or characters that are not alphanumeric.

**Syntax**

```
initcap (string_expression)
```

**lpad:**
Returns "string_expression1" padded to length "integer_expression" with occurrences of "string_expression2". If "string_expression1" is longer than "integer_expression", the appropriate portion of "string_expression1" is returned.

**Syntax**
lpad ( string_expression1 , integer_expression [ , string_expression2 ] )

**ltrim:**

Returns "string_expression1", with leading characters removed up to the first character not in "string_expression2"; for example, ltrim ( 'xyxXxyAB' , 'xy' ) returns XxyAB.

**Syntax**
ltrim ( string_expression1 [ , string_expression2 ] )

**md5:**

Returns the MD5 hash of "string_expression1".

**Syntax**
md5 ( string_expression1 )

**to_hex:**

Returns the hexadecimal string representation of "numeric_expression1".

**Syntax**
to_hex ( numeric_expression1 )

**repeat:**

Returns the "string_expression" repeated "numeric_expression1" times.

**Syntax**
repeat ( string_expression , numeric_expression1 )

**replace:**

Returns "string_expression" with "string_expression2" replaced with "string_expression3".

**Syntax**
replace ( string_expression , string_expression2 , string_expression3)

**rpad:**

Returns "string_expression1" right-padded to length "integer_expression" with occurrences of "string_expression2". If "string_expression1" is longer than "integer_expression", the appropriate portion of "string_expression1" is returned. If "string_expression2" is not specified, then spaces are used.

**Syntax**
rpad ( string_expression1 , integer_expression [ , string_expression2 ] )
rtrim:

Returns "string_expression1", with final characters removed after the last character not in "string_expression2"; for example, rtrim ('ABxxyx', 'xy') returns ABxX. If "string_expression2" is not specified, the final space characters are removed.

Syntax
rtrim ( string_expression1 [, string_expression2 ] )

split_part:

Returns "numeric_expression" field having split "string_expression1" on "string_expression2".

Syntax
split_part ( string_expression1 , string_expression2 , numeric_expression )

Postgres Data type formatting

to_char:

Returns the string representation of "expression" with the format of "string_expression". "Expression" can be either a date value or a numeric value.

Syntax
to_char ( expression , string_expression )

to_date:

Converts "string_expression1" to a date value as specified by the format "string_expression2".

Syntax
to_date ( string_expression1 , string_expression2 )

to_number:

Converts "string_expression1" to a numeric value as specified by the format "string_expression2".

Syntax
to_number ( string_expression1 , string_expression2 )

to_timestamp:

Converts "string_expression1" to a timestamp value as specified by the format "string_expression2".

Syntax
to_timestamp ( string_expression1 , string_expression2 )

Postgres Math

log:
Returns the base 10 logarithm of "numeric_expression1" or logarithm to the base "numeric_expression2".

Syntax
\[ \text{log} \ ( \text{numeric_expression1} \ [ , \text{numeric_expression2} ] ) \]

ln:
Returns the natural logarithm of "numeric_expression1".

Syntax
\[ \text{ln} \ ( \text{numeric_expression} ) \]

cbrt:
Returns the cube root of "numeric_expression1".

Syntax
\[ \text{cbrt} \ ( \text{numeric_expression} ) \]

div:
Returns the integer quotient of "numeric_expression1" divided by "numeric_expression2".

Syntax
\[ \text{div} \ ( \text{numeric_expression1} , \text{numeric_expression2} ) \]

pi:
Returns the constant of pi.

Syntax
\[ \text{pi} () \]

**Postgres Trigonometry**

acos:
Returns the arccosine of "numeric_expression" in radians. The arccosine is the angle whose cosine is "numeric_expression".

Syntax
\[ \text{acos} \ ( \text{numeric_expression} ) \]

asin:
Returns the arcsine of "numeric_expression" in radians. The arcsine is the angle whose sine is "numeric_expression".

Syntax
\[ \text{asin} \ ( \text{numeric_expression} ) \]

atan:
Returns the arctangent of "numeric_expression" in radians. The arctangent is the angle whose tangent is "numeric_expression".

**Syntax**

\[
\text{atan ( numeric_expression )}
\]

**atan2:**

Returns the arctangent of the x and y coordinates specified by "numeric_expression1" and "numeric_expression2", respectively, in radians. The arctangent is the angle whose tangent is 

\[
\frac{\text{numeric_expression2}}{\text{numeric_expression1}}.
\]

**Syntax**

\[
\text{atan2 ( numeric_expression1 , numeric_expression2 )}
\]

**cos:**

Returns the cosine of "numeric_expression", where "numeric_expression" is an angle expressed in radians.

**Syntax**

\[
\text{cos ( numeric_expression )}
\]

**cot:**

Returns the cotangent of "numeric_expression", where "numeric_expression" is an angle expressed in radians.

**Syntax**

\[
\text{cot ( numeric_expression )}
\]

**degrees:**

Returns the degrees where "numeric_expression" is an angle expressed in radians.

**Syntax**

\[
\text{degrees ( numeric_expression )}
\]

**radians:**

Returns the radians where "numeric_expression" is an angle expressed in degrees.

**Syntax**

\[
\text{radians ( numeric_expression )}
\]

**sin:**

Returns the sine of "numeric_expression", where "numeric_expression" is an angle expressed in radians.

**Syntax**

\[
\text{sin ( numeric_expression )}
\]

**tan:**


Returns the tangent of "numeric_expression", where "numeric_expression" is an angle expressed in radians.

**Syntax**

```
tan (numeric_expression)
```

**ascii**

Returns a number representing the ASCII code value of the leftmost character of "string_expression"; for example, ascii ( 'A' ) is 65.

**Syntax**

```
ascii (string_expression)
```

**chr**

Returns the character that has the ASCII code value specified by "integer_expression". "Integer_expression" should be between 0 and 255.

**Syntax**

```
chr (integer_expression)
```

{current_catalog}

**Syntax**

```
{current_catalog}
```

{current_db}

**Syntax**

```
{current_db}
```

{current_schema}

**Syntax**

```
{current_schema}
```

{current_user}

**Syntax**

```
{current_user}
```

{session_user}

**Syntax**

```
{session_user}
```

**translate**

Returns "string_expression1", with each occurrence of each character in "string_expression2" replaced by its corresponding character in "string_expression3".

**Syntax**

```
translate (string_expression1, string_expression2, string_expression3)
```
date_trunc
Returns the timestamp to the specified precision.

Syntax
date_trunc ( string_expression , timestamp_expression )

version
Returns the string value of the database version.

Syntax
version ()

Red Brick

ceil
Returns the smallest integer greater than or equal to "numeric_expression" or "string_expression". Note that "string_expression" must represent a valid numeric value.

Syntax
ceil ( numeric_expression|string_expression )

concat
Returns a string that is the result of concatenating, or joining, "string_expression1" to "string_expression2".

Syntax
concat ( string_expression1 , string_expression2 )

Example
concat ( [Sales (query)].[Sales staff].[First name], [Sales (query)].[Sales staff].[Last name] )

Result
Returns the first name and last name; e.g., Bob Smith.

{current_user}
Returns the database username (authorization ID) of the current user.

Syntax
{ current_user }

date
Returns a date value. "Expression" can be either characters or a timestamp.

Syntax
date ( expression )

dateadd
Adds "interval" to "datetime_expression" and returns a result that is the same datetime data type as "datetime_expression". "Datepart" refers to the year, month, day, hour, minute, second. "Interval" must be an integer and "datetime_expression" can be a date, time, or timestamp.
Syntax
dateadd ( { datepart }, interval, datetime_expression )

datediff
Determines the difference between two datetime expressions and returns an integer result in "datepart" units. "Datepart" refers to a year, month, day, hour, minute, or second. "Datetime_expression1" and "datetime_expression2" can be dates, times, or timestamps.

Syntax
datediff ( { datepart }, datetime_expression1, datetime_expression2 )

datename
Extracts "datepart" of "datetime_expression" and returns its value as a character string. "Datepart" refers to a year, month, day, hour, minute, or second. "Datetime_expression" can be a date, a time, or a timestamp.

Syntax
datename ( { datepart }, datetime_expression )

dec
Converts "expression" to a decimal value with the data type decimal (precision, scale). The default value of precision is 9. The default value of scale is 0.

Syntax
dec ( expression, [ precision, scale ] )

decimal
Converts "expression" to a decimal value with the data type decimal (precision, scale). The default value of precision is 9. The default value of scale is 0.

Syntax
decimal ( expression, [ precision, scale ] )

decode
Compares and converts "expression" to another value. If "expression" matches "target", it is replaced, otherwise it is replaced by "default" or null if no default is specified. The expressions can be any data type as long as they are all the same data type.

Syntax
decode ( expression, target, replacement [ ,default ] )

float
Converts "numeric_expression" into a double-precision floating-point value.

Syntax
float ( numeric_expression )

ifnull
Tests "expression" for missing values and replaces each one with "substitute". If "expression" is null, "substitute" is returned, otherwise it returns the value of "expression". The expressions can be any data type as long as they are all the same data type.
**Syntax**

ifnull ( expression, substitute )

**int**

Converts "numeric_expression" into an integer value and returns an integer value. If "numeric_expression" is null, it returns null.

**Syntax**

int ( numeric_expression )

**integer**

Converts "numeric_expression" into an integer value and returns an integer value. If "numeric_expression" is null, it returns null.

**Syntax**

integer ( numeric_expression )

**Example**

integer ( 84.95 )

**Result**

85

**length**

Returns an integer result specifying the number of characters in "string_expression". If "string_expression" is null, it returns null.

**Syntax**

length ( string_expression )

**lengthb**

Returns an integer result specifying the number of bytes in "string_expression". If "string_expression" is null, it returns null.

**Syntax**

lengthb ( string_expression )

**ltrim**

Removes leading blanks from "string_expression". If "string_expression" is null, it returns null.

**Syntax**

ltrim ( string_expression )

**nullif**

Returns null if both "expression1" and "expression2" have the same value. If they have different values, the value of "expression1" is returned. "Expression1" and "expression2" can be any data type as long as they are the same data type.

**Syntax**

nullif ( expression1, expression2 )
**positionb**
Returns an integer that is relative to the beginning byte position of "string_expression1" in "string_expression2". If "string_expression1" is not located, the result is 0. If "string_expression1" is of zero length, the result is 1. If "string_expression1" is null, an error message is returned. If "string_expression2" is null, the result is 0.

**Syntax**

```plaintext
positionb (string_expression1, string_expression2)
```

**real**
Returns a real value. If "numeric_expression" is null, it returns null.

**Syntax**

```plaintext
real (numeric_expression)
```

**round**
Returns "numeric_expression" rounded to the nearest value "integer_expression" places to the right of the decimal point. If "integer_expression" is negative, "numeric_expression" is rounded to the nearest absolute value "integer_expression" places to the left of the decimal point. Rounding takes place before data formatting is applied.

**Syntax**

```plaintext
round (numeric_expression , integer_expression)
```

**Example**

```plaintext
round (125, -1)
```

**Result**

130

**rtrim**
Removes trailing blanks from "string_expression". If "string_expression" is null, it returns null.

**Syntax**

```plaintext
rtrim (string_expression)
```

**Example**

```plaintext
rtrim ([Sales (query)][Sales staff][Last name])
```

**Result**

Returns last names with any spaces at the end of the name removed.

**sign**
Determines the sign of "numeric_expression", and returns 1 for a positive value, –1 for a negative value, and 0 for zero.

**Syntax**

```plaintext
sign (numeric_expression)
```
**string**
Converts "expression" to a character string. "Expression" can be either numeric or datetime.

**Syntax**
```
string (expression [, length [, scale]])
```

**substr**
Returns a substring of "string_expression" that begins at position "start_integer" and continues for "length_integer" characters. If "length_integer" is not specified, a substring from "start_integer" to the end of "string_expression" is returned.

**Syntax**
```
substr (string_expression , start_integer , length_integer)
```

**Example**
```
substr ([Sales (query)].[Sales staff].[Position code], 3, 5)
```

**Result**
Returns characters 3 to 7 of the position codes.

**substrb**
Returns a substring of "string_expression" that begins at position "start_integer" and continues for "length_integer" bytes. If "length_integer" is not specified, a substring from "start_integer" to the end of "string_expression" is returned.

**Syntax**
```
substrb (string_expression , start_integer , length_integer)
```

**time**
Creates a time value from "expression", which can be a character string or a time-stamp data type expression.

**Syntax**
```
time (expression)
```

**timestamp**
Creates a time-stamp value from "timestamp_expression", which is a character string.

**Syntax**
```
timestamp (timestamp_expression)
```

**timestamp**
Creates a time-stamp value from "time_expression" and "date_expression". If either "time_expression" or "date_expression" is null, the resulting time-stamp expression is also null.

**Syntax**
```
timestamp (date_expression , time_expression)
```

**to_char**
Converts "source_date" to the character string specified by "format_string". "Source_date" can be a date, time, or timestamp data type.
SAP BW Trigonometry

arccos:

Returns the arccosine of "numeric_expression" in radians. The arccosine is the angle whose cosine is "numeric_expression".

Syntax
arccos ( numeric_expression )

arcsin:

Returns the arcsine of "numeric_expression" in radians. The arcsine is the angle whose sine is "numeric_expression".

Syntax
arcsin ( numeric_expression )

arctan:

Returns the arctangent of "numeric_expression" in radians. The arctangent is the angle whose tangent is "numeric_expression".

Syntax
arctan ( numeric_expression )

cos:

Returns the cosine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
cos ( numeric_expression )

sin:

Returns the sine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
sin ( numeric_expression )

tan:

Returns the tangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
tan ( numeric_expression )
coshyp:
Returns the hyperbolic cosine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
coshyp ( numeric_expression )

sinhyp:
Returns the hyperbolic sine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
sinhyp ( numeric_expression )

tanhyp:
Returns the hyperbolic tangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
tanhyp ( numeric_expression )

SAP BW Math
log10:
Returns the base ten logarithm of "numeric_expression".

Syntax
log10 ( numeric_expression )

Salesforce.com
Date Functions
CALENDAR_MONTH:
Returns a number representing the calendar month of "date_expression".

Syntax
CALENDAR_MONTH ( date_expression )

Example
CALENDAR_MONTH ( '2012-02-29' )

Result
2

CALENDAR_QUARTER:
Returns a number representing the calendar quarter of "date_expression".

Syntax
CALENDAR_QUARTER ( date_expression )

Example

CALENDAR_QUARTER ( '2012-02-29' )

Result

1

CALENDAR_YEAR:

Returns a number representing the calendar year of "date_expression".

Syntax

CALENDAR_YEAR ( date_expression )

Example

CALENDAR_YEAR ( '2012-02-29' )

Result

2012

DAY_IN_MONTH:

Returns a number representing the day in the month of "date_expression".

Syntax

DAY_IN_MONTH ( date_expression )

Example

DAY_IN_MONTH ( '2012-02-29' )

Result

29

DAY_IN_WEEK:

Returns a number representing the day of the week for "date_expression" 1 for Sunday, 7 for Saturday.

Syntax

DAY_IN_WEEK ( date_expression )

Example

DAY_IN_WEEK ( '2012-02-29' )

Result

4 (Wednesday)

DAY_IN_YEAR:

Returns a number representing the day in the year for "date_expression".
Syntax
DAY_IN_YEAR ( date_expression )

Example
DAY_IN_YEAR ( '2012-02-29' )

Result
60

DAY_ONLY:
Returns a date representing the day portion of "dateTime_expression".

Syntax
DAY_ONLY ( dateTime_expression )

Example
DAY_ONLY ( '2012-02-29T23:00:01Z' )

Result
2012-02-29

FISCAL_MONTH:
Returns a number representing the fiscal month of "date_expression". This differs from CALENDAR_MONTH() if your organization uses a fiscal year that does not match the Gregorian calendar. If your fiscal year starts in March, 1 for March 12 for February.

Syntax
FISCAL_MONTH ( date_expression )

Example
FISCAL_MONTH ( '2012-02-29' )

Result
12

FISCAL_QUARTER:
Returns a number representing the fiscal quarter of "date_expression". This differs from CALENDAR_QUARTER() if your organization uses a fiscal year that does not match the Gregorian calendar. If your fiscal year starts in July, 1 for July 15 and 4 for June 6.

Syntax
FISCAL_QUARTER ( date_expression )

Example
FISCAL_QUARTER ( '2012-02-29' )

Result
FISCAL_YEAR:

Returns a number representing the fiscal year of "date_expression". This differs from CALENDAR_YEAR() if your organization uses a fiscal year that does not match the Gregorian calendar.

Syntax
FISCAL_YEAR ( date_expression )

Example
FISCAL_YEAR ( '2012-02-29' )

Result
2012

HOUR_IN_DAY:

Returns a number representing the hour in the day for "dateTime_expression".

Syntax
HOUR_IN_DAY ( dateTime_expression )

Example
HOUR_IN_DAY ( '2012-02-29T23:00:01Z' )

Result
23

WEEK_IN_MONTH:

Returns a number representing the week in the month for "date_expression". The first week is from the first through the seventh day of the month

Syntax
WEEK_IN_MONTH ( date_expression )

Example
WEEK_IN_MONTH ( '2012-02-29' )

Result
5

WEEK_IN_YEAR:

Returns a number representing the calendar week of a "date_expression". The first week is from January 1 through January 7

Syntax
WEEK_IN_YEAR ( date_expression )
Example
WEEK IN YEAR ('2012-02-29')

Result
9

currentCurrency
Converts "numeric_expression" to the user's currency when multicurrency is enabled.

Syntax
convertCurrency ( numeric_expression )

currentTimezone
Converts "dateTime_expression" to the user's time zone.

Syntax
convertTimezone ( dateTime_expression )

SQL Server
SQL Server Math
log:
Returns the natural logarithm of "numeric_expression".

Syntax
log ( numeric_expression )

log10:
Returns the base ten logarithm of "numeric_expression".

Syntax
log10 ( numeric_expression )

pi:
Returns the constant value of pi as a floating point value.

Syntax
pi ()

rand:
Generates a random number using "integer_expression" as the seed value.

Syntax
rand ( integer_expression )

SQL Server Trigonometry
acos:
Returns the arccosine of "numeric_expression" in radians. The arccosine is the angle whose cosine is "numeric_expression".

Syntax
acos ( numeric_expression )

asin:

Returns the arcsine of "numeric_expression" in radians. The arcsine is the angle whose sine is "numeric_expression".

Syntax
asin ( numeric_expression )

atan:

Returns the arctangent of "numeric_expression" in radians. The arctangent is the angle whose tangent is "numeric_expression".

Syntax
atan ( numeric_expression )

atn2:

Returns the arctangent of the x and y coordinates specified by "numeric_expression1" and "numeric_expression2", respectively, in radians. The arctangent is the angle whose tangent is "numeric_expression1".

Syntax
atn2 ( numeric_expression1, numeric_expression2 )

cos:

Returns the cosine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
cos ( numeric_expression )

cot:

Returns the cotangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
cot ( numeric_expression )

degrees:

Returns "numeric_expression" radians converted to degrees.

Syntax
degrees ( numeric_expression )
radians:
Returns the number of radians converted from "numeric_expression" degrees.

**Syntax**

radians ( numeric_expression )

**sin:**

Returns the sine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

**Syntax**

sin ( numeric_expression )

tan:

Returns the tangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

**Syntax**

tan ( numeric_expression )

**ascii**

Returns a number representing the ASCII code value of the leftmost character of "string_expression".

**Syntax**

ascii ( string_expression )

**Example**

ascii ( 'A' )

**Result**

65

**char**

Returns the character that has the ASCII code value specified by "integer_expression". "Integer_expression" should be between 0 and 255.

**Syntax**

char ( integer_expression )

**Example**

char ( 65 )

**Result**

A

**charindex**

Searches "string_expression2" for the first occurrence of "string_expression1" and returns an integer. "Start_location" is the character position to start searching for "string_expression1" in "string_expression2". If "start_location" is not specified, is a negative number, or is zero, the search starts at the beginning of "string_expression2".
Syntax
charindex ( string_expression1 , string_expression2 [ ,
start_location ] )

{current_user}
Returns the name of the current user.

Syntax
{ current_user }

datalength
Returns the length in bytes of "string_expression".

Syntax
datalength ( string_expression )

dateadd
Returns the date resulting from the addition of "integer_expression" units
(indicated by "datepart" (day, month, year)) to "date_expression".

Syntax
dateadd ( { datepart } , integer_expression , date_expression )

datediff
Returns the number of "datepart" (day, month, year) units between
"date_expression1" and "date_expression2".

Syntax
datediff ( {datepart} , date_expression1 , date_expression2 )

Example
datediff ( {yy} , 1984-01-01 , 1997-01-01 )

Result
13

datename
Returns "datepart" from "date_expression", which can be a datetime, smalldatetime,
date, or time value as an ASCII string. Note that "datepart" must be a keyword
representing a datepart or its abbreviation recognized by Microsoft® SQL Server
and must be enclosed in curly brackets.

Syntax
datename ( '{ ' datepart ' } ' , date_expression )

Example
datename ( {mm} , 2000-01-01 )

Result
January
**datepart**

Returns part of "date_expression" (for example, the month) as an integer. "date_expression" can be a datetime, smalldatetime, date, or time value. Note that "datepart" must be a keyword representing a datepart or its abbreviation recognized by Microsoft® SQL Server and must be enclosed in curly brackets.

**Syntax**

datepart ( '{' datepart '} ', date_expression )

**Example**

datepart ( {wk} , 2000-01-01 )

**Result**

1 (first week of the year)

**day**

Returns the day portion of "date_expression". Same as extract (day from date_expression).

**Syntax**

day ( date_expression )

**difference**

Returns an integer value representing the difference between the values returned by the data source-specific soundex function for "string_expression1" and "string_expression2". The value returned ranges from 0 to 4, with 4 indicating the best match. Note that 4 does not mean that the strings are equal.

**Syntax**

difference ( string_expression1 , string_expression2 )

**Example 1**

difference ([Sales target (query)].[Sales Staff].[First name],[Sales (query)].[Retailers].[Contact first name])

**Result**

0

**Example 2**

difference ([Sales target (query)].[Sales Staff].[First name],[Sales target (query)].[Sales Staff].[First name])

**Result**

4

**getdate**

Returns a datetime value representing the current date and time of the computer that the database software runs on.

**Syntax**

getdate ()
isnull
Returns the first non-null argument (or null if both arguments are null). It is recommended to use the sql standard COALESCE function instead.

Syntax
isnull ( expression , expression )

Example
isnull ( [Sales (query)].[Sales Fact].[Sales quantity] , 0 )

Result
Returns the sales quantity if it's not null, otherwise returns 0.

left
Returns the leftmost "integer_expression" characters of "string_expression".

Syntax
left ( string_expression , integer_expression )

Example
left ( [Sales (query)].[Sales staff].[Last name] , 3 )

Result
Returns the first three characters of each last name.

ltrim
Returns "string_expression" with leading spaces removed.

Syntax
ltrim ( string_expression )

month
Returns the month portion of "date_expression". Same as extract (month from date_expression).

Syntax
month ( date_expression )

patindex
Returns an integer that represents the starting position of the first occurrence of "string_expression1" in the "string_expression2". Returns 0 if "string_expression1" is not found. The % wildcard character must precede and follow "string_expression1", except when searching for first or last characters.

Syntax
patindex ( string_expression1 , string_expression2 )

Example
patindex ( '%po%', 'Report' )

Result
3
replace
Replaces all occurrences of "string_expression2" in "string_expression1" with "string_expression3".

Syntax
replace ( string_expression1 , string_expression2 ,
          string_expression3 )

replicate
Returns a string consisting of "string_expression" repeated "integer_expression" times.

Syntax
replicate ( string_expression , integer_expression )

reverse
Returns "string_expression" in reverse order.

Syntax
reverse ( string_expression )

right
Returns the rightmost "integer_expression" characters of "string_expression".

Syntax
right ( string_expression , integer_expression )

round
Returns "numeric_expression" rounded to the nearest value "integer_expression" places to the right of the decimal point. Rounding takes place before data formatting is applied.

Syntax
round ( numeric_expression , integer_expression )

Example
round (125, -1)

Result
130

rtrim
Returns "string_expression" with trailing spaces removed.

Syntax
rtrim ( string_expression )

Example
rtrim ( [Sales (query)].[Sales staff].[Last name] )

Result
Returns last names with any spaces at the end of the name removed.
**sign**
Returns an indicator of the sign "numeric_expression": +1 if "numeric_expression" is positive, 0 if zero or -1 if negative.

**Syntax**
sign ( numeric_expression )

**soundex**
Returns a four character string representing the sound of the words in "string_expression".

**Syntax**
soundex ( string_expression )

**space**
Returns a string consisting of "integer_expression" spaces.

**Syntax**
space ( integer_expression )

**str**
Returns a string representation of "numeric_expression" where "integer_expression1" is the length of the string returned and "integer_expression2" is the number of decimal digits.

**Syntax**
str ( numeric_expression [ , integer_expression1 [ , integer_expression2 ] ] )

**stuff**
Returns a string where "integer_expression2" characters have been deleted from "string_expression1" beginning at "integer_expression1", and where "string_expression2" has been inserted into "string_expression1" at its start. The first character in a string is at position 1.

**Syntax**
stuff ( string_expression1 , integer_expression1 , integer_expression2 , string_expression2 )

**year**
Returns the year portion of "date_expression". Same as extract (year from date_expression).

**Syntax**
year ( date_expression )

**Sybase**

**Sybase Math**

**log:**
Returns the natural logarithm of "numeric_expression".

**Syntax**
**log ( numeric_expression )**

**log10:**
Returns the base ten logarithm of "numeric_expression".

**Syntax**
log10 ( numeric_expression )

**pi:**
Returns the constant value of pi as a floating point value.

**Syntax**
pi ()

**sign:**
Returns an indicator denoting the sign of "numeric_expression": +1 if "numeric_expression" is positive, 0 if "numeric_expression" is zero, or -1 if "numeric_expression" is negative.

**Syntax**
sign ( numeric_expression )

**Sybase Trigonometry**

**acos:**
Returns the arccosine of "numeric_expression" in radians. The arccosine is the angle whose cosine is "numeric_expression".

**Syntax**
acos ( numeric_expression )

**asin:**
Returns the arcsine of "numeric_expression" in radians. The arcsine is the angle whose sine is "numeric_expression".

**Syntax**
asin ( numeric_expression )

**atan:**
Returns the arctangent of "numeric_expression" in radians. The arctangent is the angle whose tangent is "numeric_expression".

**Syntax**
atan ( numeric_expression )

**tan:**
Returns the tangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.
Syntax
```
tan (numeric_expression)
```

**atan2:**
Returns the angle, in radians, whose tangent is "numeric_expression1" / "numeric_expression2".

Syntax
```
atn2 (numeric_expression1, numeric_expression2)
```

**cos:**
Returns the cosine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
```
cos (numeric_expression)
```

**cot:**
Returns the cotangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
```
cot (numeric_expression)
```

**degrees:**
Returns "numeric_expression" radians converted to degrees.

Syntax
```
degrees (numeric_expression)
```

**radians:**
Returns the degree equivalent of "numeric_expression". Results are of the same type as "numeric_expression". For numeric or decimal expressions, the results have an internal precision of 77 and a scale equal to that of "numeric_expression". When the money datatype is used, an internal conversion to float may cause some loss of precision.

Syntax
```
radians (numeric_expression)
```

**sin:**
Returns the sine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
```
sin (numeric_expression)
```
**ascii**
Returns a number representing the ascii code value of the leftmost character of "string_expression".

**Syntax**
```sql
ascii (string_expression)
```

**Example**
```sql
ascii ('A')
```

**Result**
65

**char**
Converts "integer_expression" to a character value. Char is usually used as the inverse of ascii where "integer_expression" must be between 0 and 255. If the resulting value is the first byte of a multibyte character, the character may be undefined.

**Syntax**
```sql
char (integer_expression)
```

**charindex**
Returns an integer that represents the starting position of "string_expression1" within "string_expression2". If "string_expression1" is not found, zero is returned. If "string_expression1" contains wildcard characters, charindex treats them as literals.

**Syntax**
```sql
charindex (string_expression1 , string_expression2)
```

**datalength**
Returns the length in bytes of "string_expression".

**Syntax**
```sql
datalength (string_expression)
```

**dateadd**
Returns the date resulting from adding "integer_expression" units indicated by datepart (day, month, year) to "date_expression". Note that "datepart" must be enclosed in curly brackets.

**Syntax**
```sql
dateadd ('{' datepart '}' , integer_expression ,
 date_expression)
```

**Example**
```sql
dateadd ('{dd}' , 16 , 1997-06-16)
```

**Result**
Jul 2, 1997
datediff
Returns the number of units indicated by "datepart" (day, month, year) between "date_expression1" and "date_expression2". Note that "datepart" must be enclosed in curly brackets.

Syntax
datediff ('{ datepart }', date_expression1, date_expression2)

Example
datediff ( {yy} , 1984-01-01 , 1997-01-01 )

Result
13

datename
Returns "datepart" of "date_expression" as an ASCII string. "Date_expression" can be a datetime, smalldatetime, date, or time value. Note that "datepart" must be enclosed in curly brackets.

Syntax
datename ('{ datepart }', date_expression)

Example
datename ( {mm} , 1999-05-01 )

Result
May

datepart
Returns "datepart" of "date_expression" as an integer. "Date_expression" can be a datetime, smalldatetime, date, or time value. Note that the datepart argument must be enclosed in curly brackets.

Syntax
datepart ('{ datepart }', date_expression)

Example
datepart ( {mm} , 1999-05-01 )

Result
5

day
Returns the day of the month (1-31) from "date_expression".

Syntax
day ( date_expression )

difference
Returns an integer value representing the difference between the values returned by the data source-specific soundex function for "string_expression1" and
"string_expression2". The value that is returned ranges from 0 to 4, with 4 indicating the best match. Note that 4 does not mean that the strings are equal.

**Syntax**

difference ( string_expression1 , string_expression2 )

**Example 1**
difference ([Sales target (query)].[Sales staff].[First name],[Sales (query)].[Retailers].[Contact first name])

**Result**

0

**Example 2**
difference ([Sales target (query)].[Sales staff].[First name],[Sales target (query)].[Sales staff].[First name])

**Result**

4

**getdate**

Returns current system date and time.

**Syntax**

getdate ()

**left**

Returns the leftmost "integer_expression" characters of "string_expression".

**Syntax**

left ( string_expression , integer_expression )

**Example**

left ( [Sales (query)].[Sales staff].[Last name] , 3 )

**Result**

Returns the first three characters of each last name.

**ltrim**

Returns "string_expression" with any leading spaces removed.

**Syntax**

ltrim ( string_expression )

**month**

Returns the month number (1-12) from "date_expression".

**Syntax**

month ( date_expression )
**patindex**
Returns an integer representing the starting position of the first occurrence of "string_expression1" in "string_expression2" or returns 0 if "string_expression1" is not found. By default, patindex returns the offset in characters. The offset can be returned in bytes by setting the return type to bytes. The % wildcard character must precede and follow the pattern in "string_expression1", except when searching for first or last characters.

**Syntax**
```
patindex (string_expression1, string_expression2 [using {bytes|chars|characters}])
```

**rand**
Returns a random float value between 0 and 1, using the optional "integer_expression" as a seed value.

**Syntax**
```
rand (integer_expression)
```

**replicate**
Returns a string with the same datatype as "string_expression", containing the same expression repeated "integer_expression" times or as many times as will fit into a 225-byte space, whichever is less.

**Syntax**
```
replicate (string_expression, integer_expression)
```

**reverse**
Returns the reverse of "string_expression".

**Syntax**
```
reverse (string_expression)
```

**right**
Returns the rightmost "integer_expression" characters of "string_expression".

**Syntax**
```
right (string_expression, integer_expression)
```

**round**
Returns "numeric_expression" rounded to the nearest value "integer_expression" places to the right of the decimal point. Rounding takes place before data formatting is applied.

**Syntax**
```
round (numeric_expression, integer_expression)
```

**Example**
```
round (125, -1)
```

**Result**
```
130
```
**rtrim**
Returns "string_expression" with trailing spaces removed.

**Syntax**
rtrim ( string_expression )

**Example**
rtrim ( [Sales (query)].[Sales staff].[Last name] )

**Result**
Returns last names with any spaces at the end of the name removed.

**soundex**
Returns a four-character soundex code for character strings that are composed of a contiguous sequence of valid single- or double-byte Roman letter.

**Syntax**
soundex ( string_expression )

**space**
Returns a string with "integer_expression" single-byte spacing.

**Syntax**
space ( integer_expression )

**str**
Returns a string representation of "numeric_expression". "Integer_expression1" is the length of the returned string and has a default setting of 10. "Integer_expression2" is the number of decimal digits and has a default setting of 0. Both are optional values.

**Syntax**
str ( numeric_expression [ , integer_expression1 [ ,
integer_expression2 ] ] )

**stuff**
Deletes "integer_expression2" characters from "string_expression1" starting at "integer_expression1", and inserts "string_expression2" into "string_expression1" at that position. To delete characters without inserting other characters, "string_expression2" should be null and not " ", which indicates a single space.

**Syntax**
stuff ( string_expression1 , integer_expression1 ,
integer_expression2 , string_expression2 )

**substring**
Returns the substring of "string_expression" that starts at position "integer_expression1". "Integer_expression2" specifies the number of characters in the substring.

**Syntax**
substring ( string_expression , integer_expression1 ,
integer_expression2 )

**Example**
substring ([Sales (query)].[Sales staff].[Position code], 3, 5)

Result

Returns characters 3 to 7 of the position codes.

**to_unichar**

Returns a unichar expression with the value "integer_expression". If "integer_expression" is in the range 0xD800..0xDFFF, the operation is aborted. If the "integer_expression" is in the range 0..0xFFFF, a single Unicode value is returned. If "integer_expression" is in the range 0x10000..0x10FFFF, a surrogate pair is returned.

**Syntax**

```plaintext
to_unichar (integer_expression)
```

**uhighsurr**

Returns 1 if the Unicode value at "integer_expression" is the high half of a surrogate pair (which should appear first in the pair). Otherwise, it returns 0. This function allows you to write explicit code for surrogate handling. Particularly, if a substring starts on a Unicode character where uhighsurr () is true, extract a substring of at least 2 Unicode values, as substr() does not extract just 1. Substr () does not extract half of a surrogate pair.

**Syntax**

```plaintext
uhighsurr (string_expression , integer_expression)
```

**ulowsurr**

Returns 1 if the Unicode value at "integer_expression" is the low half of a surrogate pair (which should appear second in the pair). Otherwise, it returns 0. This function allows you to explicitly code around the adjustments performed by substr (), stuff (), and right (). Particularly, if a substring ends on a Unicode value where ulowsurr () is true, extract a substring of 1 less characters (or 1 more), since substr () does not extract a string that contains an unmatched surrogate pair.

**Syntax**

```plaintext
ulowsurr (string_expression , integer_expression)
```

**uscalar**

Returns the Unicode scalar value for the first Unicode character in "string_expression". If the first character is not the high-order half of a surrogate pair, then the value is in the range 0..0xFFFF. If the first character is the high-order half of a surrogate pair, a second value must be a low-order half, and the return value is in the range 0x10000..0x10FFFF. If this function is called on a Unicode character expression containing an unmatched surrogate half, the operation is aborted.

**Syntax**

```plaintext
uscalar (string_expression)
```

**year**

Returns the year from date_expression.

**Syntax**

```plaintext
year (date_expression)
```
Teradata

Teradata Trigonometry

acos:

Returns the arccosine of "numeric_expression" in radians. The arccosine is the angle whose cosine is "numeric_expression". "Numeric_expression" must be between -1 and 1, inclusive.

Syntax
acos ( numeric_expression )

acosh:

Returns the inverse hyperbolic cosine of "numeric_expression" where "numeric_expression" can be any real number equal to or greater than 1.

Syntax
acosh ( numeric_expression )

asin:

Returns the arcsine of "numeric_expression" in radians. The arcsine is the angle whose sine is "numeric_expression". "Numeric_expression" must be between -1 and 1, inclusive.

Syntax
asin ( numeric_expression )

asinh:

Returns the inverse hyperbolic sine of "numeric_expression" where "numeric_expression" can be any real number.

Syntax
asinh ( numeric_expression )

atan:

Returns the arctangent of "numeric_expression" in radians where the arctangent is the angle whose tangent is "numeric_expression".

Syntax
atan ( numeric_expression )

atan2:

Returns the arctangent of the x and y coordinates specified by "numeric_expression1" and "numeric_expression2", respectively, in radians. The returned angle will be between - and π radians, excluding π.

Syntax
atan2 ( numeric_expression1, numeric_expression2 )
atanh:
Returns the inverse hyperbolic tangent of "numeric_expression" where
"numeric_expression" can be any real number between 1 and -1, excluding 1 and
-1.

Syntax
atanh ( numeric_expression )

cos:
Returns the cosine of "numeric_expression" where "numeric_expression" is an angle
expressed in radians.

Syntax
cos ( numeric_expression )

cosh:
Returns the hyperbolic cosine of "numeric_expression" where "numeric_expression" can be any real number.

Syntax
cosh ( numeric_expression )

sin:
Returns the sine of "numeric_expression" where "numeric_expression" is an angle
expressed in radians.

Syntax
sin ( numeric_expression )

sinh:
Returns the hyperbolic sine of "numeric_expression" where "numeric_expression" can be any real number.

Syntax
sinh ( numeric_expression )

tan:
Returns the tangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
tan ( numeric_expression )

tanh:
Returns the hyperbolic tangent of "numeric_expression" where
"numeric_expression" can be any real number.
Syntax
tanh ( numeric_expression )

account
Returns the account string for the current user.

Syntax
{account}

add_months
Returns the date or the datetime resulting from adding "integer_expression" months to "date_expression" or "datetime_expression".

Syntax
add_months ( date_expression|datetime_expression ,
integer_expression )

bytes
Returns the number of bytes contained in "byte_expression". "Byte_expression" is restricted to BYTE or VARBYTE.

Syntax
bytes ( byte_expression )

case_n
Evaluates "condition_expression_list" and returns the position of the first true condition, provided that no prior condition in the list evaluates to unknown. The keywords must be enclosed in curly brackets. No case is an optional condition that evaluates to true if every expression in the list evaluates to false. No case or unknown is an optional condition that evaluates to true if every expression in the list evaluates to false, or if an expression evaluates to unknown and all prior conditions in the list evaluate to false. Unknown is an optional condition that evaluates to true if an expression evaluates to unknown and all prior conditions in the list evaluate to false.

Syntax
case_n ( condition_expression_list [ , NO CASE|UNKNOWN|NO CASE OR
UNKNOWN [ , UNKNOWN ] ] )

char2hexint
Returns the hexadecimal representation for "string_expression".

Syntax
char2hexint ( string_expression )

characters
Returns an integer value representing the number of logical characters or bytes contained in "string_expression".

Syntax
characters ( string_expression )

database
Returns the name of the default database for the current user.
Syntax
{database}

date
Returns the current date.

Syntax
{date}

format
Returns the declared format for "expression" as a variable character string of up to 30 characters.

Syntax
format ( expression )

index
Returns the starting position of "string_expression2" in "string_expression1".

Syntax
index ( string_expression1 , string_expression2 )

log
Computes the base 10 logarithm of "numeric_expression". "Numeric_expression" must be a non-zero, positive, numeric expression.

Syntax
log ( numeric_expression )

nullif
Returns null if "scalar_expression1" and "scalar_expression2" are equal. Otherwise, it returns "scalar_expression1". "Scalar_expression1" and "scalar_expression2" can be any data type.

Syntax
nullif ( scalar_expression1 , scalar_expression2 )

nullifzero
If "numeric_expression" is zero, converts it to null to avoid division by zero.

Syntax
nullifzero ( numeric_expression )

profile
Returns the current profile for the session or null if none.

Syntax
{profile}

random
Returns a random integer number for each row of the results table. "Lower_bound" and "upper_bound" are integer constants. The limits for "lower_bound" and "upper_bound" range from -2147483648 to 2147483647 inclusive. "Upper_bound" must be greater than or equal to "lower_bound".
Syntax
random (lower_bound, upper_bound)

ole
Returns the current role for the session or null if none.

Syntax
{role}

session
Returns the number of the session for the current user.

Syntax
{session}

soundex
Returns a character string that represents the Soundex code for "string_expression".

Syntax
soundex (string_expression)

strubtr
Returns the substring of "string_expression" that starts at position "integer_expression1" for "integer_expression2" characters. The first character in "string_expression" is at position 1. If "integer_expression2" is omitted, returns the substring of "string_expression" that starts at position "integer_expression1" and ends at the end of "string_expression".

Syntax
substr (string_expression, integer_expression1 [ , integer_expression2 ])

Example
substr ([Sales (query)].[Sales staff].[Position code], 3, 5)

Result: Returns characters 3 to 7 of the position codes.

time
Returns the current time based on a 24-hour day.

Syntax
{time}

type
Returns the data type defined for "expression".

Syntax
type (expression)

user
Returns the user name of the current user.

Syntax
{user}
**vargraphic**
Returns a character string that represents the vargraphic code for "string_expression".

**Syntax**
```
vargraphic (string_expression)
```

**zeroifnull**
Converts data from null to 0 to avoid errors created by a null value. If "numeric_expression" is not null, returns the value of "numeric_expression". If "numeric_expression" is a character string, it is converted to a numeric value of float data type. If "numeric_expression" is null or zero, it returns zero.

**Syntax**
```
zeroifnull (numeric_expression)
```

**Vectorwise**

**Vectorwise String**

**lpad:**
Returns "string_exp1" padded to length "integer_exp" with occurrences of "string_exp2". If "string_exp1" is longer than "integer_exp", the appropriate portion of "string_exp1" is returned.

**Syntax**
```
lpad (string_exp1, integer_exp [, string_exp2])
```

**ltrim:**
Returns "string_exp1", with leading blank characters removed.

**Syntax**
```
ltrim (string_exp1)
```

**rtrim:**
Returns "string_exp1", with trailing blank characters removed.

**Syntax**
```
rtrim (string_exp1)
```

**shift:**
Returns "string_exp1" shifted by numeric_exp character. If "numeric_exp" is greater than zero shift to the right else shift to the left.

**Syntax**
```
shift (string_exp1, numeric_exp)
```

**soundex:**
Returns a four character code for the "string_exp1".
Syntax
soundex ( string_exp1 )

squeeze:
Returns "string_exp1" with multiple whitespace characters collapsed into a single whitespace character.

Syntax
squeeze ( string_exp1 )

**Vectorwise Math**

log:
Returns the base 10 logarithm of "numeric_exp1".

Syntax
log ( numeric_exp1 )

ln:
Returns the natural logarithm of "numeric_exp1".

Syntax
ln ( numeric_exp )

pi:
Returns the constant of pi.

Syntax
pi( )

**Vectorwise Trigonometry**

acos:
Returns the arccosine of "numeric_exp" in radians. The arccosine is the angle whose cosine is "numeric_exp".

Syntax
acos ( numeric_exp )

asin:
Returns the arcsine of "numeric_exp" in radians. The arcsine is the angle whose sine is "numeric_exp".

Syntax
asin ( numeric_exp )

atan:
Returns the arctangent of "numeric_exp" in radians. The arctangent is the angle whose tangent is "numeric_exp".
Syntax
atan ( numeric_exp )

atan2:

Returns the arctangent of the x and y coordinates specified by "numeric_exp1" and "numeric_exp2", respectively, in radians. The arctangent is the angle whose tangent is "numeric_exp2" / "numeric_exp1".

Syntax
atan2 ( numeric_exp1 , numeric_exp2 )

cos:

Returns the cosine of "numeric_exp" where "numeric_exp" is an angle expressed in radians.

Syntax
cos ( numeric_exp )

sin:

Returns the sine of "numeric_exp" where "numeric_exp" is an angle expressed in radians.

Syntax
sin ( numeric_exp )

tan:

Returns the tangent of "numeric_exp" where "numeric_exp" is an angle expressed in radians.

Syntax
tan ( numeric_exp )

{initial_user}
Returns the initial username.

Syntax
{ initial_user }

{session_user}
Returns the session username.

Syntax
{ session_user }

numeric_trunc
Returns the numeric_exp1 truncated at the decimal place or numeric_exp2 digits to the left or right of the decimal place.

Syntax
trunc ( numeric_exp1 , numeric_exp2 )
Vertica

Vertica String

overlay:

Returns the "string_expression1", replacing "string_expression2" from character position numeric_expression.

Syntax
overlay ( string_expression1 , string_expression2 , numeric_expression1 [ , numeric_expression2 ] )

btrim:

Returns string_expression1 after removing the longest string of characters in string_expression2.

Syntax
btrim ( string_expression1 [ , string_expression2 ] )

initcap:

Returns "string_expression", with the first letter of each word in uppercase and all other letters in lowercase. Words are delimited by white space or characters that are not alphanumeric.

Syntax
initcap ( string_expression )

lpad:

Returns "string_expression1" padded to length "integer_expression" with occurrences of "string_expression2". If "string_expression1" is longer than "integer_expression", the appropriate portion of "string_expression1" is returned.

Syntax
lpad ( string_expression1 , integer_expression [ , string_expression2 ] )

ltrim:

Returns "string_expression1", with leading characters removed up to the first character not in "string_expression2"; for example, ltrim ( 'xyxXxyAB' , 'xy' ) returns XxyAB.

Syntax
ltrim ( string_expression1 [ , string_expression2 ] )

to_hex:

Returns the hexadecimal string representation of "numeric_exp1".

Syntax
to_hex ( numeric_expression1 )
**repeat:**

Returns the "string_expression" repeated "numeric_expression1" times.

**Syntax**

```
repeat (string_expression , numeric_expression1)
```

**replace:**

Returns "string_expression" having replaced "string_expression2" with "string_expression3".

**Syntax**

```
replace (string_expression , string_expression2 , string_expression3)
```

**rpad:**

Returns "string_expression1" right-padded to length "integer_expression" with occurrences of "string_expression2". If "string_expression1" is longer than "integer_expression", the appropriate portion of "string_expression1" is returned. If "string_expression2" is not specified, then spaces are used.

**Syntax**

```
rpad (string_expression1 , integer_expression [, string_expression2])
```

**rtrim:**

Returns "string_expression1", with final characters removed after the last character not in "string_expression2"; for example, rtrim ('ABxXyx', 'xy') returns ABx. If "string_expression2" is not specified, the final space characters are removed.

**Syntax**

```
rtrim (string_expression1 [, string_expression2])
```

**Vertica Data type formatting**

**to_char:**

Returns the string representation of "expression" with the format of "string_expression". "Expression" can be either a date value or a numeric value.

**Syntax**

```
to_char (expression , string_expression)
```

**to_date:**

Converts "string_expression1" to a date value as specified by the format "string_expression2".

**Syntax**

```
to_date (string_expression1 , string_expression2)
```

**to_number:**
Converts "string_expression1" to a numeric value as specified by the format "string_expression2".

Syntax

to_number ( string_expression1, string_expression2 )

to_timestamp:

Converts "string_expression1" to a timestamp value as specified by the format "string_expression2".

Syntax
to_timestamp ( string_expression1, string_expression2 )

Vertica Math

log:

Returns the base 10 logarithm of "numeric_expression1" or logarithm to the base "numeric_expression2".

Syntax

to_number ( numeric_expression1 [ , numeric_expression2 ] )

ln:

Returns the natural logarithm of "numeric_expression1".

Syntax

to_number ( numeric_expression )

cbrt:

Returns the cube root of "numeric_expression1".

Syntax

to_number ( numeric_expression )

pi:

Returns the constant of pi.

Syntax

to_number ( )

Vertica Trigonometry

acos:

Returns the arccosine of "numeric_expression" in radians. The arccosine is the angle whose cosine is "numeric_expression".

Syntax

to_number ( numeric_expression )
asin:
Returns the arcsine of "numeric_expression" in radians. The arcsine is the angle whose sine is "numeric_expression".

Syntax
asin ( numeric_expression )

atan:
Returns the arctangent of "numeric_expression" in radians. The arctangent is the angle whose tangent is "numeric_expression".

Syntax
atan ( numeric_expression )

atan2:
Returns the arctangent of the x and y coordinates specified by "numeric_expression1" and "numeric_expression2", respectively, in radians. The arctangent is the angle whose tangent is "numeric_expression2" / "numeric_expression1".

Syntax
atan2 ( numeric_expression1 , numeric_expression2 )

cos:
Returns the cosine of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
cos ( numeric_expression )

cot:
Returns the cotangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

Syntax
cot ( numeric_expression )

degrees:
Returns the degrees where "numeric_expression" is an angle expressed in radians.

Syntax
degrees ( numeric_expression )

radians:
Returns the radians where "numeric_expression" is an angle expressed in degrees.

Syntax
radians ( numeric_expression )

sin:
Returns the sine of "numeric_exp" where "numeric_expression" is an angle expressed in radians.

**Syntax**
\[ \sin \ ( \text{numeric_expression} ) \]

**tan:**

Returns the tangent of "numeric_expression" where "numeric_expression" is an angle expressed in radians.

**Syntax**
\[ \tan \ ( \text{numeric_expression} ) \]

**ascii**

Returns a number representing the ASCII code value of the leftmost character of "string_expression"; for example, ascii ('A') is 65.

**Syntax**
\[ \text{ascii} \ ( \text{string_expression} ) \]

**chr**

Returns the character that has the ASCII code value specified by "integer_expression". "Integer_expression" should be between 0 and 255.

**Syntax**
\[ \text{chr} \ ( \text{integer_expression} ) \]

**current_database**

Returns the name of the current database.

**Syntax**
\[ \text{current_database} \ () \]

**current_schema**

Returns the name of the current schema.

**Syntax**
\[ \text{current_schema} \ () \]

**{current_user}**

**Syntax**
\[ \text{current_user} \]

**{session_user}**

**Syntax**
\[ \text{session_user} \]

**translate**

Returns "string_expression1", with each occurrence of each character in "string_expression2" replaced by its corresponding character in "string_expression3".

**Syntax**
translate ( string_expression1 , string_expression2 , string_expression3 )

date_trunc
Returns the timestamp to the specified precision.

Syntax
date_trunc ( string_expression , timestamp_expression )

version
Returns the string value of the database version.

Syntax
version ()

Macro Functions
This list contains functions that can be used within a macro. A macro may contain one or more macro functions. A macro is delimited by a number sign (#) at the beginning and at the end. Everything between the number signs is treated as a macro expression and is executed at run time. For macro functions that accept expressions of datatype timestamp with time zone as arguments, the accepted format is 'yyyy-mm-dd hh:mm:ss[.ff]+hh:mm' where fractional seconds are optional and can be represented by 1 to 9 digits. In lieu of a space separating the date portion to the time portion, the character 'T' is also accepted. Also, in lieu of the time zone '+hh:mm', the character 'Z' is accepted and will be processed internally as '+00:00'. The macro functions that return expressions of datatype timestamp with time zone return 9 digits by default for their fractional seconds. The macro function timestampMask () can be used to trim the output if required.

+
Concatenates two strings.

Syntax
value1 + value2

Example
# '{ ' + $runLocale + ' }' #

Result
[en-us]

_add_days
Returns the timestamp with time zone (as a string) that results from adding "integer_expression" number of days to "string_expression", where "string_expression" represents a timestamp with time zone.

Syntax
_add_days ( string_expression , integer_expression )

Example 1
# _add_days ( '2005-11-01 12:00:00.000-05:00' , -1 ) #

Result
Example 2
# _add_days ( $current_timestamp , 1 ) #

Result
2005-11-02 12:00:00.000000000-05:00

Example 3
# timestampMask ( _add_days ( $current_timestamp , 1 ) ,
'yyyy-mm-dd' ) #

Result
2005-11-02

_add_months

Returns the timestamp with time zone (as a string) that results from adding
"integer_expression" number of months to "string_expression", where
"string_expression" represents a timestamp with time zone.

Syntax
_add_months ( string_expression , integer_expression )

Example 1
# _add_months ( '2005-11-01 12:00:00.000-05:00' , -1 ) #

Result
2005-10-01 12:00:00.000000000-05:00

Example 2
# _add_months ( $current_timestamp , 1 ) #

Result
2005-12-01 12:00:00.000000000-05:00

Example 3
# timestampMask ( _add_months ( $current_timestamp , 1 ) ,
'yyyy-mm-dd' ) #

Result
2005-12-01

_add_years

Returns the timestamp with time zone (as a string) that results from adding
"integer_expression" number of years to "string_expression", where
"string_expression" represents a timestamp with time zone.

Syntax
_add_years ( string_expression , integer_expression )
Example 1

```
_add_years ('2005-11-01 12:00:00.000-05:00' , -1)
```

**Result**

2004-11-01 12:00:00.000000000-05:00

Example 2

```
_add_years ($current_timestamp , 1)
```

**Result**

2006-11-01 12:00:00.000000000-05:00

Example 3

```
timestampMask (_add_years ($current_timestamp , 1) , 'yyyy-mm-dd')
```

**Result**

2006-11-01

**array**

Constructs an array out of the list of parameters.

**Syntax**

```
array (string_expression|array_expression { ,
 string_expression|array_expression })
```

**Example**

```
csv (array ('a1' , array ('x1' , 'x2') , 'a2'))
```

**Result**

'a1', 'x1', 'x2', 'a2'

**csv**

Constructs a string from the elements of the array where the values are separated by commas. Optionally, the separator and quote strings can be specified. The default separator is a comma ( , ) and the default quote character is a single quote ( ').

**Syntax**

```
csv (array_expression [, separator_string [, quote_string]])
```

**Example**

```
csv (array ('a1' , 'a2'))
```

**Result**

'a1', 'a2'
dq
Surrounds "string_expression" with double quotes.

Syntax
dq ( string_expression )

Example
# dq ( 'zero' ) #

Result
"zero"

getConfigurationEntry
Get an entry from the IBM® Cognos® configuration file. The force_decode_flag is optional and must be one of: 'true', '1', 'false', '0', 0. The default is 'true'. When true, the value of the configuration entry will be decrypted into plain text if it is encrypted.

Syntax
getConfigurationEntry ( entry_string, force_decode_flag )

Example
# getConfigurationEntry ( 'serverLocale' ) #

Result
en

grep
Searches for and returns elements of an array that match the pattern specified in "pattern_string".

Syntax
grep ( pattern_string, array_expression )

Example
# csv ( grep ( 's', array ( 'as', 'an', 'arts' ) ) ) #

Result
'as', 'arts'

_first_of_month
Returns a timestamp with time zone (as a string) by converting the day value in "string_expression" to 1, where "string_expression" is a timestamp with time zone.

Syntax
_first_of_month ( string_expression )

Example 1
# _first_of_month ( '2005-11-11 12:00:00.000-05:00' ) #

Result
Example 2
# timestampMask (_first_of_month ('2005-11-11 12:00:00.000-05:00'), 'yyyymmdd') #

Result
20051101

_last_of_month
Returns a timestamp with time zone (as a string) that is the last day of the month represented by "string_expression", where "string_expression" is a timestamp with time zone.

Syntax
_last_of_month ( string_expression )

Example 1
# _last_of_month ( '2005-11-11 12:00:00.000-05:00' ) #

Result
2005-11-30 12:00:00.000000000-05:00

Example 2
# timestampMask (_last_of_month ( '2005-11-11 12:00:00.000-05:00' ), 'yyyy-mm-dd') #

Result
2005-11-30

join
Joins the elements of an array using "separator_string".

Syntax
join ( separator_string , array_expression )

Example
# sq ( join ( ' | | ', array ( 'as', 'an', 'arts' ) ) ) #

Result
'as || an || arts'

lstrip
Strips the leading characters from the first argument. The optional second argument defines the set of characters to strip. By default, this function strips white space (ie. space, tab, carriage return and line feed).

Syntax
lstrip ( string_expression [, set_of_characters ] )

Example 1


result

'abc'

example 2

) #

result

53.2100

prompt

Prompts the user for a single value. Only "prompt_name" is required. The datatype
defaults to "string" when it is not specified. The prompt is optional when
"defaultText" is specified. "Text", when specified, will precede the value.
"QueryItem" can be specified to take advantage of the prompt information
properties of "queryItem". "Trailing_text", when specified, will be appended to the
value.

syntax

prompt ( prompt_name , datatype , defaultText , text , queryItem ,
trailing_text )

example 1

select . . . where COUNTRY_MULTILINGUAL.COUNTRY_CODE > #prompt ( 
'Starting CountryCode' , 'integer' , '10' ) #

result

select . . . where COUNTRY_MULTILINGUAL.COUNTRY_CODE > 10

example 2

[gosales].[COUNTRY].[COUNTRY] = # prompt ( 'countryPrompt' ,
'string' , '''Canada''' ) #

result

[gosales].[COUNTRY].[COUNTRY] = 'Canada'

notes

- The "defaultText" parameter must be specified such that it is literally valid in the
context of the macro since no formatting takes place on this value. The default
string "Canada" in Example 2 is specified as a string using single quotes, in
which the embedded single quotes are doubled up, thus 3 quotes. This results in
the string being properly displayed within single quotes in the expression. As a
general rule for the string datatype, "defaultText" should always be specified like
this, except in the context of a stored procedure parameter. For "defaultText" of
types 'date' or 'datetime', a special format should be used in the context of SQL.
Examples of these formats are 'DATE "2001-12-25"' and 'DATETIME "2001-12-25
12:00:00"'. In all other contexts, use the date/datetime without the keyword and
escaped single quotes (e.g., '2001-12-25').
**promptmany**

Prompts the user for one or more values. Only "prompt_name" is required. The
datatype defaults to string when it is not specified. The prompt is optional when
"defaultText" is specified. "Text", when specified, will precede the list of values.
"QueryItem" can be specified to take advantage of the prompt information
properties of "queryItem". "Trailing_text", when specified, will be appended to the
list of values.

Syntax

promptmany ( prompt_name , datatype , defaultText , text , queryItem ,
trailing_text )

Example 1

select... where COUNTRY_MULTILINGUAL.COUNTRY in ( # promptmany ( 'CountryName')#)

Result

select... where COUNTRY_MULTILINGUAL.COUNTRY_CODE in ( 'Canada' , 'The Netherlands' , 'Russia' )

Example 2

select... from gosales.gosales.dbo.COUNTRY_MULTILINGUAL
COUNTRY_MULTILINGUAL , gosales.gosales.dbo.COUNTRY XX where
COUNTRY_MULTILINGUAL.COUNTRY_CODE = XX.COUNTRY_CODE # promptmany ( 'Selected CountryCodes' , 'integer' , '' , 'and
COUNTRY_MULTILINGUAL.COUNTRY_CODE in ( 'Canada' , 'The
Netherlands' , 'Russia' )#

Result

select... from gosales.gosales.dbo.COUNTRY_MULTILINGUAL
COUNTRY_MULTILINGUAL , gosales.gosales.dbo.COUNTRY XX where
COUNTRY_MULTILINGUAL.COUNTRY_CODE = XX.COUNTRY_CODE and
COUNTRY_MULTILINGUAL.COUNTRY_CODE in ( 'Canada' , 'The
Netherlands' , 'Russia' )

**rstrip**

Strips the trailing characters from the first argument. The optional second
argument defines the set of characters to strip. By default, this function strips
white space (ie. space, tab, carriage return and line feed).

Syntax

rstrip ( string_expression [ , set_of_characters ] )

Example 1

# sq( rstrip ( ' abc ' ))#

Result

' abc'

Example 2

' ' )#

Result
sb
Surrounds "string_expression" with square brackets.

**Syntax**
sb ( string_expression )

**Example**
```
sb ('abc')
```

**Result**
[abc]

sq
Surrounds "string_expression" with single quotes.

**Syntax**
sq ( string_expression )

**Example**
```
sq ('zero')
```

**Result**
'zero'

sort
Sorts the elements of the array in alphabetical order. Duplicates are retained.

**Syntax**
sort ( array_expression )

**Example**
```
csv (sort (array ('s3', 'a', 'x')))#
```

**Result**
'a', 's3', 'x'

split
Splits a string or string elements of the array into separate elements.

**Syntax**
split ( pattern_string, string_expression|array_expression )

**Example 1**
```
csv (split (':=' , 'ab=c::de=f::gh=i'))
```

**Result**
'ab=c', 'de=f', 'gh=i'

**Example 2**
# csv ( split ( '=' , split ( '::', 'ab=c::de=f::gh=i')) ) #

Result

'ab', 'c', 'de', 'f', 'gh', 'i'

**strip**
Strips the leading and trailing characters from the first argument. The optional
second argument defines the set of characters to strip. By default, this function
strips white space (ie. space, tab, carriage return and line feed).

**Syntax**
strip ( string_expression [ , set_of_characters ] )

**Example 1**

# sq( strip ( ' abc ')) #

Result

'abc'

**Example 2**

' ) #

Result

53.21

**substitute**
Searches for a pattern in a string or in the string elements of an array and
substitutes the first occurrence of "pattern_string" with "replacement_string".

**Syntax**
substitute ( pattern_string, replacement_string, string_expression|array_expression )

**Example 1**

# sq ( substitute ( '^cn=', '***', 'cn=help' ) )#

Result

'***help'

**Example 2**

# csv ( substitute ( '^cn=', '***', array ( 'cn=help' , 'acn=5'))) #

Result

'***help', 'acn=5'

**Example 3**

# csv ( substitute ( 'cn=', '', array ( 'cn=help' , 'acn=5'))) #

Result
'help', 'a5'

timestampMask
Returns "string_expression1", representing a timestamp with time zone, trimmed to
the format specified in "string_expression2". The format in "string_expression2"
must be one of the following: 'yyyy', 'mm', 'dd', 'yyyy-mm', 'yyyyYmm',
'yyyy-mm-dd', 'yyyyYmmdd', 'yyyy-mm-dd hh:mm:ss', 'yyyy-mm-dd
hh:mm:ss+hh:mm', 'yyyy-mm-dd hh:mm:ss:ff3', 'yyyy-mm-dd hh:mm:ss:ff3+hh:mm', 'yyyy-mm-ddThh:mm:ss', 'yyyy-mm-ddThh:mm:ss+hh:mm',
'yyyy-mm-ddThh:mm:ss:ff3', 'yyyy-mm-ddThh:mm:ss:ff3+hh:mm'. The
macro functions that return a string representation of a timestamp with time zone
show a precision of 9 digits for the fractional part of the seconds by default. The
format options allow this to be trimmed down to a precision of 3 or 0.

Syntax
timestampMask ( string_expression1 , string_expression2 )

Example 1
# timestampMask ( $current_timestamp , 'yyyy-mm-dd' ) #

Result
2005-11-01

Example 2
# timestampMask ( '2005-11-01 12:00:00.000-05:00' , 'yyyy-mm-dd
hh:mm:ss+hh:mm' ) #

Result
2005-11-01 12:00:00-05:00

Example 3
# timestampMask ( '2005-11-01 12:00:00.123456789-05:00' , 'yyyy-mm-ddThh:mm:ss:ff3+hh:mm' ) #

Result
2005-11-01T12:00:00.123-05:00

toLocal
Returns the string representing a timestamp with time zone resulting from
adjusting "string_expression" to the time zone of the operating system. Note that
the macro function timestampMask () can be used to trim the output.

Syntax
toLocal ( string_expression )

Example 1
# toLocal ( '2005-11-01 17:00:00.000-00:00' ) # where OS local time
zone is -05:00

Result
2005-11-01 12:00:00.000000000-05:00
Example 2
# timestampMask ( toLocal ( '2005-11-01 17:00:00.000-00:00' ),
'yyyy-mm-dd hh:mm:ss+hh:mm' ) # where OS local time zone is -05:00

Result
2005-11-01 12:00:00-05:00

Example 3
# toLocal ( '2005-11-01 13:30:00.000-03:30' ) # where OS local time
zone is -05:00

Result
2005-11-01 12:00:00.000000000-05:00

tolower
Returns the string "string_expression" with all the characters converted to lower
case using the rules of the locale "locale_string". If no locale is specified, the locale
'en' is used.

Syntax
tolower ( string_expression [ , locale_string ] )

Example 1
# tolower ( 'ABC' ) #

Result
abc

Example 2
# tolower ( 'ABC' , 'fr' ) #

Result
abc

toupper
Returns the string "string_expression" with all the characters converted to upper
case using the rules of the locale defined in "locale_string". If "locale_string" is not
specified, the locale 'en' is used.

Syntax
toupper ( string_expression [ , locale_string ] )

Example 1
# toupper ( 'abc' ) #

Result
ABC

Example 2
# toupper ( 'abc' , 'fr' ) #
**Result**

ABC

**toUTC**

Returns the string representing a timestamp with time zone resulting from adjusting "string_expression" to the zero-point reference UTC time zone, also known as GMT time. Note that the macro function timestampMask () can be used to trim the output.

**Syntax**

toUTC ( string_expression )

**Example 1**

# toUTC ( '2005-11-01 12:00:00.000-05:00' ) #

**Result**

2005-11-01 17:00:00.000000000-00:00

**Example 2**

# timestampMask( toUTC ( '2005-11-01 12:00:00.000-05:00' ),
   'yyyy-mm-dd hh:mm:ss.ff3+hh:mm' ) #

**Result**

2005-11-01 17:00:00.000-00:00

**Example 3**

# toUTC ( $current_timestamp ) #

**Result**

2005-11-01 17:00:00.000000000-00:00

**unique**

Removes duplicate entries from the array. The order of the elements is retained.

**Syntax**

unique ( array_expression )

**Example**

# csv ( unique ( array ( 's3', 'a', 's3', 'x' ))) #

**Result**

's3', 'a', 'x'

**urlencode**

URL-encodes the passed argument. This function is useful when specifying XML connection strings.

**Syntax**

urlencode ( prompt ( 'userValue' ) )
urlencode ( prompt ( 'some_val' ) )

Result

%27testValue%27

CSVIdentityName
Uses the identity information of the current authenticated user to look up values in the specified parameter map. Each individual piece of the user’s identity (account name, group names, role names) is used as a key into the map. The unique list of values that is retrieved from the parameter map is then returned as a string, where each value is surrounded by single quotes and where multiple values are separated by commas.

Syntax
CSVIdentityName ( %parameter_map_name [ , separator_string ] )

Example
# CSVIdentityName ( %security_clearance_level_map ) #

Result

'level_500', 'level_501', 'level_700'

CSVIdentityNameList
Returns the pieces of the user's identity (account name, group names, role names) as a list of strings. The unique list of values is returned as a string, where each value is surrounded by single quotes and where multiple values are separated by commas.

Syntax
CSVIdentityNameList ( [ separator_string ] )

Example
# CSVIdentityNameList ( ) #

Result

'Everyone', 'Report Administrators', 'Query User'

CAMPassport
Returns the Cognos® Access Manager passport.

Syntax
CAMPassport ( )

Example
# CAMPassport ( ) #

Result

111.98812d62-4fd4-037b-4354-26414cf7ebe:3677162321
**CAMIDList**
Returns the pieces of the user's Cognos® Access Manager ID (CAMID), such as account name, group names, or role names, as a list of values separated by commas.

**Syntax**
CAMIDList ( [ separator_string ] )

**Example**
#CAMIDList ( ) #

**Result**
CAMID ( "::Everyone" ) , CAMID ( ":Authors" ) , CAMID ( ":Query Users" ) , CAMID ( ":Consumers" ) , CAMID ( ":Metrics Authors" )

**CAMIDListForType**
Returns an array of the user's Cognos® Access Manager IDs (CAMIDs) based on the identity type (account, group, or role). CAMIDListForType can be used with the macro functions csv or join.

**Syntax**
CAMIDListForType ( identity type )

**Example**
[qS].[UserRole] in ( # csv ( CAMIDListForType ( 'role' ) ) # )

**Result**
[qS].[UserRole] in ( 'CAMID ( "::System Administrators" )' , 'CAMID ( ":Authors" )' )

**simple case**
This macro construct is the template for a simple case, including the case, when, else, and end functions.

**Syntax**
CASE <expression> WHEN <literal> THEN <expression> [ELSE <expression>] END

**Example**
#CASE prompt('pDateRange','token') WHEN 'Current Week' THEN '[PR Current Week]' ELSE '[PR Prior Week]' END#

**Result**
[PR Current Week]

**Common Functions**

**abs**
Returns the absolute value of "numeric_expression". Negative values are returned as positive values.

**Syntax**
abs(numeric_expression)

Example 1
abs(15)

Result
15

Example 2
abs(-15)

Result
15

cast
Converts "expression" to a specified data type. Some data types allow for a length and precision to be specified. Make sure that the target is of the appropriate type and size. The following can be used for "datatype_specification": character, varchar, char, numeric, decimal, integer, smallint, real, float, date, time, timestamp, time with time zone, timestamp with time zone, and interval. When type casting to an interval type, one of the following interval qualifiers must be specified: year, month, or year to month for the year-to-month interval datatype; day, hour, minute, second, day to hour, day to minute, day to second, hour to minute, hour to second, or minute to second for the day-to-second interval datatype. Notes: When you convert a value of type timestamp to type date, the time portion of the timestamp value is ignored. When you convert a value of type timestamp to type time, the date portion of the timestamp is ignored. When you convert a value of type date to type timestamp, the time components of the timestamp are set to zero. When you convert a value of type time to type timestamp, the date component is set to the current system date. It is invalid to convert one interval datatype to the other (for instance because the number of days in a month is variable). Note that you can specify the number of digits for the leading qualifier only, i.e. YEAR(4) TO MONTH, DAY(5). Errors will be reported if the target type and size are not compatible with the source type and size.

Syntax
cast(expression, datatype_specification)

Example 1
cast(‘123’, integer)

Result
123

Example 2
cast(12345, varchar(10))

Result
a string containing 12345
**ceil**
Returns the smallest integer that is greater than or equal to "numeric_expression".

**Syntax**
ceil ( numeric_expression )

**ceiling**
Returns the smallest integer that is greater than or equal to "numeric_expression".

**Syntax**
ceiling ( numeric_expression )

**Example 1**
ceiling ( 4.22 )

**Result**
5

**Example 2**
ceiling ( -1.23 )

**Result**
-1

**char_length**
Returns the number of logical characters in "string_expression". The number of logical characters can be distinct from the number of bytes in some East Asian locales.

**Syntax**
cchar_length ( string_expression )

**Example**
cchar_length ( 'Canada' )

**Result**
6

**character_length**
Returns the number of characters in "string_expression".

**Syntax**
ccharacter_length ( string_expression )

**Example**
ccharacter_length ( 'Canada' )

**Result**
6
coalesce
Returns the first non-null argument (or null if all arguments are null). Requires
two or more arguments in "expression_list".

Syntax
coalesce ( expression_list )

Example
coalesce ( [Unit price], [Unit sale price] )

Result
Returns the unit price, or the unit sale price if the unit price is null.

current_date
Returns a date value representing the current date of the computer that the
database software runs on.

Syntax
current_date

Example
current_date

Result
2003-03-04

current_time
Returns a time with time zone value, representing the current time of the computer
that runs the database software if the database supports this function. Otherwise, it
represents the current time of the computer that runs IBM® Cognos® BI software.

Syntax
current_time

Example
current_time

Result
16:33:11+05:00

current_timestamp
Returns a datetime with time zone value, representing the current time of the
computer that runs the database software if the database supports this function. Otherwise, it
represents the current time of the computer that runs IBM® Cognos® BI software.

Syntax
current_timestamp

Example
current_timestamp
exp
Returns 'e' raised to the power of "numeric_expression". The constant 'e' is the base of the natural logarithm.

Syntax
exp ( numeric_expression )

Example
exp ( 2 )

Result
7.389056

eextract
Returns an integer representing the value of datepart (year, month, day, hour, minute, second) in "datetime_expression".

Syntax
eextract ( datepart , datetime_expression )

Example 1
eextract ( year , 2003-03-03 16:40:15.535 )

Result
2003

Example 2
eextract ( hour , 2003-03-03 16:40:15.535 )

Result
16

floor
Returns the largest integer that is less than or equal to "numeric_expression".

Syntax
floor ( numeric_expression )

Example 1
floor ( 3.22 )

Result
3

Example 2
floor ( -1.23 )
ln
Returns the natural logarithm of "numeric_expression".

Syntax
ln ( numeric_expression )

Example
ln ( 4 )

Result
1.38629

localtime
Returns a time value, representing the current time of the computer that runs the database software.

Syntax
localtime

Example
localtime

Result
16:33:11

localtimestamp
Returns a datetime value, representing the current timestamp of the computer that runs the database software.

Syntax
localtimestamp

Example
localtimestamp

Result
2003-03-03 16:40:15.535000

lower
Returns "string_expression" with all uppercase characters shifted to lowercase.

Syntax
lower ( string_expression )

Example
lower ( 'ABCDEF' )

Result
mod
Returns the remainder (modulus) of "integer_expression1" divided by "integer_expression2". "Integer_expression2" must not be zero or an exception condition is raised.

Syntax
mod ( integer_expression1, integer_expression2 )

Example
mod ( 20, 3 )

Result
2

nullif
Returns null if "expression1" equals "expression2", otherwise returns "expression1".

Syntax
nullif ( expression1, expression2 )

octet_length
Returns the number of bytes in "string_expression".

Syntax
octet_length ( string_expression )

Example 1
octet_length ( 'ABCDEF' )

Result
6

Example 2
octet_length ( '' )

Result
0

position
Returns the integer value representing the starting position of "string_expression1" in "string_expression2" or 0 when the "string_expression1" is not found.

Syntax
position ( string_expression1, string_expression2 )

Example 1
position ( 'C', 'ABCDEF' )

Result
Example 2

position ('H', 'ABCDEF')

Result

0

**power**
Returns "numeric_expression1" raised to the power "numeric_expression2". If "numeric_expression1" is negative, then "numeric_expression2" must result in an integer value.

**Syntax**

```plaintext
-power (numeric_expression1 , numeric_expression2)
```

**Example**

```plaintext
-power (3 , 2)
```

**Result**

9

**_round**
Returns "numeric_expression" rounded to "integer_expression" places to the right of the decimal point. Notes: "integer_expression" must be a non-negative integer. Rounding takes place before data formatting is applied.

**Syntax**

```plaintext
-round (numeric_expression , integer_expression)
```

**Example**

```plaintext
-round (1220.42369 , 2)
```

**Result**

1220.42

**sqrt**
Returns the square root of "numeric_expression". "Numeric_expression" must be non-negative.

**Syntax**

```plaintext
-sqrt (numeric_expression)
```

**Example**

```plaintext
-sqrt (9)
```

**Result**

3
**substring**
Returns the substring of "string_expression" that starts at position "integer_expression1" for "integer_expression2" characters or to the end of "string_expression" if "integer_expression2" is omitted. The first character in "string_expression" is at position 1.

**Syntax**
substring ( string_expression, integer_expression1 [, integer_expression2 ] )

**Example**
substring ( 'abcdefg', 3, 2 )

**Result**
cd

**trim**
Returns "string_expression" trimmed of leading and trailing blanks or trimmed of a certain character specified in "match_character_expression". "Both" is implicit when the first argument is not stated and blank is implicit when the second argument is not stated.

**Syntax**
trim ( [ [ trailing|leading|both ] [ match_character_expression ] ], string_expression )

**Example 1**
trim ( trailing 'A', 'ABCDEFA' )

**Result**
ABCDEF

**Example 2**
trim ( both, ' ABCDEF ' )

**Result**
ABCDEF

**upper**
Returns "string_expression" with all lowercase characters converted to uppercase.

**Syntax**
upper ( string_expression )

**Example**
upper ( 'abcdef' )

**Result**
ABCDEF
Dimensional Functions

ancestor
Returns the ancestor of "member" at "level" or at "integer" number of levels above "member". Note: The result is not guaranteed to be consistent when there is more than one such ancestor.

Syntax
ancestor ( member, level|integer )

Example 1
ancestor ( [TrailChef Water Bag] , 1 )
Result
Cooking Gear

Example 2
ancestor ( [TrailChef Water Bag] , 2 )
Result
Camping Equipment

Example 3
ancestor ( [TrailChef Water Bag] , [great_outdoors_company].[Products].[Products].[Product type] )
Result
Cooking Gear

ancestors
Returns all the ancestors of "member" at "level" or "index" distance above the member. (Most data sources support only one ancestor at a specified level. If the data source supports more than one ancestor, the result is a member set.)

Syntax
ancestors ( member , level|index )

Example 1
ancestors ( [TrailChef Water Bag] , 1 )
Result
Cooking Gear

Example 2
ancestors ( [TrailChef Water Bag] , 2 )
Result
Camping Equipment

Example 3
ancestors ( [TrailChef Water Bag], [great_outdoors_company].[Products].[Products].[Product type] )

Result
Cooking Gear

**bottomCount**

Sorts a set according to the value of "numeric_expression" evaluated at each of the members of "set_expression" and returns the bottom "index_expression" members.

**Syntax**

bottomCount ( set_expression, index_expression, numeric_expression )

**Example**

bottomCount ( [great_outdoors_company].[Products].[Products].[Product line], 2, [Revenue] )

Result

Returns the bottom two members of the set sorted by revenue.

**Result data**

<table>
<thead>
<tr>
<th>Product line</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Protection</td>
<td>$3,171,114.92</td>
</tr>
<tr>
<td>Mountaineering Equipment</td>
<td>$20,891,350.60</td>
</tr>
</tbody>
</table>

**bottomPercent**

Sorts the set specified in "set_expression" in ascending order and returns the bottommost elements from the sorted set whose cumulative percentage of the total is greater than or equal to "percentage".

**Syntax**

bottomPercent ( set_expression, percentage, numeric_expression )

**Example**

bottomPercent ( set ([Camping Equipment], [Golf Equipment], [Mountaineering Equipment]), 40, [2006] )

Result

For the set of Camping Equipment, Golf Equipment, and Mountaineering Equipment, returns the members with the smallest Gross profit whose total for the year 2006 is at least 40% of the overall total.

**bottomSum**

Sorts the set specified in "set_expression" in ascending order and returns the bottommost elements from the sorted set whose cumulative total is greater than or equal to "value".

**Syntax**

bottomSum ( set_expression, value, numeric_expression )

**Example**
bottomSum ( members ( [great_outdoors_company].[Products].[Products].
[Product line] ) , 6000000 , tuple ( [2006] ,
[great_outdoors_company].[Measures].[Gross profit] ) )

Result

For the Product line members, returns the members with the smallest Gross profit
whose total for the year 2006 is at least $6,000,000.

caption

Returns the caption values of "level", "member", or "set_expression". The caption is
the string display name for an element and does not necessarily match the unique
identifier used to generate the business key or member unique name (MUN) for
the element. The caption is not necessarily unique; for example, the caption for a
month may return the month name without further year details to make the value
unique.

Syntax

caption ( level|member|set_expression )

Example 1

caption ( [TrailChef Water Bag] )

Result

TrailChef Water Bag

Example 2

caption ( [great_outdoors_company].[Products].[Products].[Product
line] )

Result

Returns the caption values of the Product line set.

Result data

Camping Equipment
Mountaineering Equipment
Personal Accessories
Outdoor Protection
Golf Equipment

children

Returns the set of children of a specified member.

Syntax

children ( member )

Example

children ( [Camping Equipment] )

Result

Returns the set of children for Camping Equipment.

Result data
closingPeriod
Returns the last sibling member among the descendants of a member at "level". This function is typically used with a time dimension.

Syntax
closingPeriod ( level [ , member ] )

Example 1
closingPeriod ( [great_outdoors_company].[Years].[Years].[Month] )

Result
2006/Dec

Example 2
closingPeriod ( [great_outdoors_company].[Years].[Years].[Year] )

Result
2006

Example 3
closingPeriod ( [great_outdoors_company].[Years].[Years].[Month] ,
[2006 Q 4] )

Result
2006/Dec

cousin
Returns the child member of "member2" with the same relative position as "member1" to its parent. This function appears in the Revenue by GO Subsidiary 2005 sample report in the GO Data Warehouse (analysis) package.

Syntax
cousin ( member1 , member2 )

Example 1
cousin ( [Irons] , [Camping Equipment] )

Result
Cooking Gear

Example 2
cousin ( [Putters] , [Camping Equipment] )

Result
Sleeping Bags
**completeTuple**

Identifies a cell location (intersection) based on the specified members, each of which must be from a different dimension. However, completeTuple () implicitly includes the default member from all dimensions not otherwise specified in the arguments, rather than the current member. CompleteTuple will use the default measure rather than the currentMeasure in the query if the measure is not defined in the completetuple function. This function appears in the Planned Headcount sample report in the GO Data Warehouse (analysis) package.

**Syntax**

```plaintext
completeTuple (member { , member })
```

**Example 1**

```plaintext
completeTuple ([Mountaineering Equipment] , [Fax])
```

**Result**

The completeTuple does not pick up the currentMember by default as the tuple function does. The values in the first column are identical across each year because the default member of the Years dimension, the root member, is used rather than the current member. Likewise, the first column displays Revenue rather than Quantity Sold because the Revenue measure is the default from the Measures dimension. CompleteTuple will use the default measure rather than the currentMeasure in the query if the measure is not defined in the completetuple function.

**Result data**

<table>
<thead>
<tr>
<th>Quantity Sold</th>
<th>Mountaineering Sales by Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>$1,220,329.38</td>
</tr>
<tr>
<td>2005</td>
<td>$1,220,329.38</td>
</tr>
<tr>
<td>2006</td>
<td>$1,220,329.38</td>
</tr>
</tbody>
</table>

**Example 2**

```plaintext
completeTuple ([Mountaineering Equipment] , [Fax] , [Quantity sold] ,
currentMember ([great_outdoors_company].[Years].[Years]))
```

**Result**

The completeTuple function uses the currentMember of the Years dimension and the Quantity sold measure.

**Result data**

<table>
<thead>
<tr>
<th>Quantity Sold</th>
<th>Mountaineering Sales by Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>8,746</td>
</tr>
<tr>
<td>2006</td>
<td>7,860</td>
</tr>
</tbody>
</table>

**currentMember**

Returns the current member of the hierarchy during an iteration. If "hierarchy" is not present in the context in which the expression is being evaluated, its default member is assumed. This function appears in the Rolling and Moving Averages interactive sample report.
Syntax
currentMember ( hierarchy )

defaultMember
Returns the default member of "hierarchy".

Syntax
defaultMember ( hierarchy )

Example 1
defaultMember ( [great_outdoors_company].[Products].[Products] )

Result
Products

Example 2
defaultMember ( [great_outdoors_company].[Years].[Years] )

Result
Year

Example 3
defaultMember ( hierarchy ( [great_outdoors_company].[Measures].
[Quantity sold] ) )

Result
Revenue

descendants
Returns the set of descendants of "member" or "set_expression" at "level" (qualified name) or "distance" (integer 0..n) from the root. Multiple options may be specified (separated by a space) to determine which members are returned. self: Only the members at the specified level are included in the final set (this is the default behaviour in the absence of any options). before: If there are any intermediate levels between the member's level and the one specified, members from those levels are included. beforewithmember: If there are any intermediate levels between the member's level and the one specified, members from those levels are included. The member upon which the function is applied is also included in the final set. after: If other levels exist after the specified level, members from those levels are included in the final set. This function appears in the Sales Commissions for Central Europe sample report in the GO Data Warehouse (analysis) package.

Syntax
descendants ( member|set_expression , level|distance [ ,
{ self|before|beforewithmember|after } ] )

Example 1
descendants ( [great_outdoors_company].[Products].[Products].
[Products] , [great_outdoors_company].[Products].[Products].[Product
type] )
Result

Returns the set of descendants of the Products set at the Product type level. Note: 
[great_outdoors_company].[Products].[Products].[Products] is the root member of 
the Products hierarchy.

Result data
Cooking Gear
Sleeping Bags
Packs
Tents
...
Eyewear
Knives
Watches

Example 2
descendants ( [great_outdoors_company].[Products].[Products].
[Products] , 1 )

Result

Returns the set of descendants of the Products set at the first level.

Result data
Camping Equipment
Golf Equipment
Mountaineering Equipment
Outdoor Protection
Personal Accessories

Example 3
descendants ( [great_outdoors_company].[Products].[Products].
[Products] , 3 , before )

Result

Returns the descendants of the Products set before the third level.

Result data
Camping Equipment
Cooking Gear
Sleeping Bags
Packs
Tents
...
Eyewear
Knives
Watches

Example 4
descendants ( [great_outdoors_company].[Products].[Products].
[Products] , 2 , self before )

Result

Returns the set of descendants of the Products set before and including the second 
level.
Result data
Camping Equipment
Cooking Gear
Sleeping Bags
Packs
Tents
...
Eyewear
Knives
Watches

except
Returns the members of "set_expression1" that are not also in "set_expression2". Duplicates are retained only if the optional keyword all is supplied as the third argument.

Syntax
except ( set_expression1 , set_expression2 [ , all ] )

Example
except ( set ( [Camping Equipment] , [Mountaineering Equipment] ) ,
       set ( [Camping Equipment] , [Golf Equipment] ) )

Result
Mountaineering Equipment

filter
Returns the set resulting from filtering a specified set based on the Boolean condition. Each member is included in the result if and only if the corresponding value of "Boolean_expression" is true.

Syntax
filter ( set_expression , Boolean_expression )

Example
filter ( [Product line] , [Gross margin] > .30 )

Result
Mountaineering Equipment

firstChild
Returns the first child of "member".

Syntax
firstChild ( member )

Example 1
firstChild ( [By Product Lines] )

Result
Camping Equipment

Example 2
firstChild ( [Camping Equipment] )

Result

Cooking Gear

firstSibling

Returns the first child of the parent of "member".

Syntax

firstSibling ( member )

Example 1

firstSibling ( [Outdoor Protection] )

Result

Camping Equipment

Example 2

firstSibling ( [Camping Equipment] )

Result

Camping Equipment

_format

Associates a format with the expression. The format_keyword can be PERCENTAGE_0, PERCENTAGE_1, or PERCENTAGE_2. PERCENTAGE_1 returns a percentage with one digit to the right of the decimal point, PERCENTAGE_2 returns a percentage with two digits to the right of the decimal point, and PERCENTAGE_3 returns a percentage value out of one with three digits to the right of the decimal point (for example, 0.965).

Syntax

_format ( expression , format_keyword )

Example

_format ( [Unit Sale Price] / [Unit Price] , PERCENTAGE_2 )

Result

75.12%

emptySet

Returns an empty member set for "hierarchy". This is most often used as a placeholder during development or with dynamic report design (either with the IBM® Cognos® Software Development Kit or via report design). By creating a data item that contains the emptyset function, it is possible to build complex expressions that can later be revised by redefining the emptyset data item.

Syntax

emptySet ( hierarchy )

Example
except ([great_outdoors_company].[Products].[Products].[Product line], emptyset ([great_outdoors_company].[Products].[Products]))

Result

Returns the Product line set and an empty set for the Products set.

Result data
Camping Equipment
Golf Equipment
Mountaineering Equipment
Outdoor Protection
Personal Accessories

generate
Evaluates "set_expression2" for each member of "set_expression1" and joins the resulting sets by union. The result retains duplicates only when the optional keyword "all" is supplied as the third argument.

Syntax
generate ( set_expression1 , set_expression2 [, all ] )

Example
generate ( [Product line] , topCount ( descendants ( currentMember ([great_outdoors_company].[Products].[Products]), [great_outdoors_company].[Products].[Products].[Product name] ), 2 , [Revenue] ) )

Result

Returns the top two products by revenue for each product line.

head
Returns the first "index_expression" elements of "set_expression". The default for "index_expression" is 1.

Syntax
head ( set_expression [, index_expression ] )

Example 1
head ( members ([great_outdoors_company].[Products].[Products].[Product line] ) )

Result
Camping Equipment

Example 2
head ( members ([great_outdoors_company].[Products].[Products].[Product line] ) , 2 )

Result
Returns the top two members of the Product line set.

Result data
**hierarchize**
Orders the members of "set_expression" in a hierarchy. Members in a level are sorted in their natural order. This is the default ordering of the members along a dimension when no other sort conditions are specified.

**Syntax**
hierarchize ( set_expression )

**Example**

**Result**
Returns Camping Equipment, Golf Equipment, Mountaineering Equipment.

**hierarchy**
Returns the hierarchy that contains "level", "member", or "set_expression".

**Syntax**
hierarchy ( level|member|set_expression )

**Example 1**
hierarchy ( [Cooking Gear] )

**Result**
Returns every member in the hierarchy that contains Cooking Gear.

**Result data**
Products
   Camping Equipment
   Cooking Gear
   TrailChef Water Bag
   TrailChef Canteen
   ...
   Mountain Man Extreme
   Mountain Man Deluxe

**Example 2**
hierarchy ( [great_outdoors_company].[Products].[Products].[Product line] )

**Result**
Returns every member in the hierarchy that contains the Product line.

**Result data**
Products
   Camping Equipment
   Cooking Gear
   TrailChef Water Bag
item
Returns a member from the “index” location within "set_expression". The index into the set is zero based.

Syntax
item ( set_expression, index )

Example
item ( children ( [Camping Equipment]), 2 )

Result
Sleeping Bags

intersect
Returns the intersection of "set_expression1" and "set_expression2". The result retains duplicates only when the optional keyword "all" is supplied as the third argument.

Syntax
intersect ( set_expression1, set_expression2[, all ])

Example
intersect ( set ( [Camping Equipment], [Mountaineering Equipment]),
set ( [Camping Equipment], [Outdoor Protection]), all )

Result
Camping Equipment

lag
Returns the sibling member that is "index_expression" number of positions prior to "member".

Syntax
lag ( member, index_expression )

Example 1
lag ( [Tents], 1 )

Result
Cooking Gear

Example 2
lag ( [Tents], -2 )

Result
Packs
**lastChild**
Returns the last child of a specified member.

**Syntax**
```
lastChild(member)
```

**Example 1**
```
lastChild(Cooking Gear)
```
**Result**
TrailChef Utensils

**Example 2**
```
lastChild([By Product Line])
```
**Result**
Golf Equipment

**lastPeriods**
Returns the set of members from the same level that ends with "member". The number of members returned is the absolute value of "integer_expression". If "integer_expression" is negative, members following and including the specified member are returned. Typically used with a time dimension. This function appears in the Rolling and Moving Averages interactive sample report.

**Syntax**
```
lastPeriods(integer_expression, member)
```

**Example 1**
```
lastPeriods(2, [2006 Q 4])
```
**Result**
Returns the last two members from the level that ends with 2006 Q 4.

**Result data**
```
2006 Q 3
2006 Q 4
```

**Example 2**
```
lastPeriods(-3, [2006 Q 4])
```
**Result**
Returns the last three members from the level that starts with 2006 Q 4.

**Result data**
```
2006 Q 4
2007 Q 1
2007 Q 2
```
lastSibling
Returns the last child of the parent of a specified member.

Syntax
lastSibling ( member )

Example
lastSibling ( [Camping Equipment] )

Result
Golf Equipment

lead
Returns the sibling member that is "index_expression" number of positions after "member". If "index_expression" is negative, returns the sibling member that is "index_expression" number of positions before "member".

Syntax
lead ( member , index_expression )

Example 1
lead ( [Outdoor Protection] , 1 )

Result
Personal Accessories

Example 2
lead ( [Outdoor Protection] , -2 )

Result
Golf Equipment

level
Returns the level of “member”.

Syntax
level ( member )

Example
level ( [Golf Equipment] )

Result
Returns the members on the Golf Equipment level.

Result data
Camping Equipment
Mountaineering Equipment
Personal Accessories
Outdoor Protection
Golf Equipment
**levels**
Returns the level in "hierarchy" whose distance from the root is specified by "index".

**Syntax**
```plaintext
levels (hierarchy, index)
```

**Example 1**
```plaintext
levels ([great_outdoors_company].[Products].[Products], 2)
```
**Result**
Returns the members two levels from the root Products hierarchy.

**Result data**
- Cooking Gear
- Sleeping Bags
- Packs
- Tents
- Irons
- Putters
- Woods
- Golf Accessories

**Example 2**
```plaintext
levels ([great_outdoors_company].[Products].[Products], 1)
```
**Result**
Returns the members one level from the root Products hierarchy.

**Result data**
- Camping Equipment
- Mountaineering Equipment
- Personal Accessories
- Outdoor Protection
- Golf Equipment

**linkMember**
Returns the corresponding member in "level" or "hierarchy" (of the same dimension). For level-based hierarchies, a level must be specified as the second argument, and for parent-child hierarchies, a hierarchy must be specified. An exception is thrown when the second parameter does not resolve to a hierarchy of the member's dimension. Note that calculated members are not supported as the first argument.

**Syntax**
```plaintext
linkMember (member, level|hierarchy)
```

**members**
Returns the set of members in "hierarchy" or "level". In the case of a hierarchy, the order of the members in the result is not guaranteed. If a predictable order is required, an explicit ordering function (such as hierarchize) must be used.

**Syntax**
```plaintext
members (hierarchy|level)
```
Example 1
members ( [great_outdoors_company].[Years].[Years] )

Result
Returns the members in Years.

Example 2
members ( [great_outdoors_company].[Products].[Products].[Product line] )

Result
Returns the members in Product line.

nextMember
Returns the next member in the "member" level.

Syntax
nextMember ( member )

Example
nextMember ( [Outdoor Protection] )

Result
Golf Equipment

openingPeriod
Returns the first sibling member among the descendants of a member at "level".
This function is typically used with a time dimension.

Syntax
openingPeriod ( level [ , member ] )

Example 1
openingPeriod ( [great_outdoors_company].[Years].[Years].[Month] )

Result
2004/Jan

Example 2
openingPeriod ( [great_outdoors_company].[Years].[Years].[Year] )

Result
2004

Example 3
openingPeriod ( [great_outdoors_company].[Years].[Years].[Month] , [2006 Q 4] )

Result
order
Arranges the members of "set_expression" according to their "value_expression" and the third parameter. ASC and DESC arrange members in ascending or descending order, respectively, according to their position in the set hierarchy. Then the children of each member are arranged according to "value_expression". BASC and BDESC arrange members in the set without regard to the hierarchy. In the absence of an explicit specification, ASC is the default.

Syntax
order ( set_expression, value_expression [ , ASC|DESC|BASC|BDESC ] )

Example 1
order ( members ( [Great Outdoors Company].[Product].[Product].[Product type] ), [Quantity sold], BASC )

Result
Returns the quantity sold for each product type in no particular order.

Result data

<table>
<thead>
<tr>
<th>Product Line</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woods</td>
<td>13,924</td>
</tr>
<tr>
<td>Irons</td>
<td>14,244</td>
</tr>
<tr>
<td>Safety</td>
<td>22,332</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Sunscreen</td>
<td>215,432</td>
</tr>
<tr>
<td>Insect Repellents</td>
<td>270,074</td>
</tr>
<tr>
<td>Lanterns</td>
<td>345,096</td>
</tr>
</tbody>
</table>

Example 2
order ( members ( [Great Outdoors Company].[Product].[Product].[Product type] ), [Quantity sold], ASC )

Result
Returns the quantity sold for each product type in ascending order.

Result data

<table>
<thead>
<tr>
<th>Product Line</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woods</td>
<td>13,924</td>
</tr>
<tr>
<td>Irons</td>
<td>14,244</td>
</tr>
<tr>
<td>Putters</td>
<td>23,244</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Tents</td>
<td>130,664</td>
</tr>
<tr>
<td>Cooking Gear</td>
<td>198,676</td>
</tr>
<tr>
<td>Lanterns</td>
<td>345,096</td>
</tr>
</tbody>
</table>

ordinal
Returns the zero-based ordinal value (distance from the root level) of "level".

Syntax
ordinal ( level )

Example 1
ordinal ( [great_outdoors_company].[Products].[Products].[Product line] )

Result
1

Example 2
ordinal ( [great_outdoors_company].[Products].[Products].[Product type] )

Result
2

parallelPeriod
Returns a member from a prior period in the same relative position as "member". This function is similar to the cousin function, but is more closely related to time series. It takes the ancestor of "member" at "level" (called "ancestor") and the sibling of "ancestor" that lags by "integer_expression" positions, and returns the parallel period of "member" among the descendants of that sibling. When unspecified, "integer_expression" defaults to 1 and "member" defaults to the current member.

Syntax
parallelPeriod ( level [ , integer_expression [ , member ] ] )

Example 1
parallelPeriod ( [great_outdoors_company].[Years].[Years].[Quarter] , -1 , [2006/Aug] )

Result
2006/Nov

Example 2
parallelPeriod ( [great_outdoors_company].[Years].[Years].[Quarter] , 1 , [2006/Aug] )

Result
2006/May

Example 3
parallelPeriod ( [great_outdoors_company].[Years].[Years].[Year] , 2 , [2006/Aug] )

Result
2004/Aug
parent
Returns the member that is the parent of "member" or "measure".

Syntax
parent ( member|measure )

Example
parent ( [Cooking Gear] )

Result
Camping Equipment

periodsToDate
Returns a set of sibling members from the same level as "member", as constrained by "level". It locates the ancestor of "member" at "level" and returns that ancestor's descendants at the same level as "member" (up to and including "member"). Typically used with a time dimension. This function appears in the Rolling and Moving Averages interactive sample report.

Syntax
periodsToDate ( level , member )

Example
periodsToDate ( [great_outdoors_company].[Years].[Years].[Year] , [2004/Mar] )

Result
Returns values for [2004/Jan], [2004/Feb], [2004/Mar]

prevMember
Returns the member that immediately precedes "member" in the same level. This function appears in the Sales Growth Year Over Year sample report in the GO Data Warehouse (analysis) package.

Syntax
prevMember ( member )

Example 1
prevMember ( [Outdoor Protection] )

Result
Personal Accessories

Example 2
prevMember ( [2005] )

Result
2004
**member**
Defines a member based on "value_expression" in "hierarchy". "String1" identifies the member created by this function. It must be unique in the query and different from any other member in the same hierarchy. "String2" is the caption of the member; if it is absent, the caption is empty. To ensure predictable results, it is recommended that you supply the "hierarchy". Note: All calculations used as grouping items whose sibling items are other calculations or member sets should be explicitly assigned to a hierarchy using this function. The results are not predictable otherwise. The only exception is where the calculation involves only members of the same hierarchy as the siblings. In this case, the calculation is assumed to belong to that hierarchy.

**Syntax**
```
member (value_expression [, string1 [, string2 [,
 hierarchy]]])
```

**Example**
```
member (total (currentMeasure within set filter {
 [great_outdoors_company].[Products].[Products].[Product name] ,
 caption ([great_outdoors_company].[Products].[Products].[Product name]) starts with 'B') }, 'BProducts', 'B Products',
 [great_outdoors_company].[Products].[Products])
```

**Result**
Returns the quantity sold and revenue for all products that start with the letter B.

**nestedSet**
This function is intended for use only by Analysis Studio

**Syntax**
```
nestedSet (set_expression1 , set_expression2)
```

**set**
Returns the list of members defined in the expression. The members must belong to the same hierarchy.

**Syntax**
```
set (member { , member })
```

**Example**
```
set ([Golf Equipment] , [Irons] , [TrailChef Cup])
```

**Result**
Returns Golf Equipment, Irons, and TrailChef Cup.

**siblings**
Returns the children of the parent of the specified member.

**Syntax**
```
siblings (member)
```

**Example**
```
siblings ([Golf Equipment])
```
Result

Returns the siblings of Golf Equipment.

Result data
Camping Equipment
Golf Equipment
Mountaineering Equipment
Outdoor Protection
Personal Accessories

**tail**

Returns the last "index_expression" elements of "set expression". The default for "index_expression" is 1.

Syntax
\[
tail ( \text{set_expression} [ , \text{index_expression} ] )
\]

Example 1
\[
tail ( \text{members ( [great_outdoors_company].[Products].[Products]. [Product line] )} )
\]

Result

Returns the last member of the Product line set.

Result data
Personal Accessories

Example 2
\[
tail ( \text{members ( [great_outdoors_company].[Products].[Products]. [Product line] )} , 2 )
\]

Result

Returns the last two members of the Product line set.

Result data
Outdoor Protection
Personal Accessories

**topCount**

Sorts a set according to the values of "numeric_expression" evaluated at each of the members of "set_expression" and returns the top "index_expression" members.

Syntax
\[
topCount ( \text{set_expression} , \text{index_expression} , \text{numeric_expression} )
\]

Example
\[
topCount ( [great_outdoors_company].[Products].[Products].[Product line] , 2 , [Revenue] )
\]

Result

Returns the top two revenues for the Product line set.
Result data

<table>
<thead>
<tr>
<th>Product line</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camping Equipment</td>
<td>$89,713,990.92</td>
</tr>
<tr>
<td>Personal Accessories</td>
<td>$31,894,465.86</td>
</tr>
</tbody>
</table>

topPercent

Sorts the set specified in "set_expression" in descending order and returns the topmost elements from the sorted set whose cumulative percentage of the total is greater than or equal to "percentage".

Syntax

topPercent ( set_expression, percentage, numeric_expression2 )

Example

topPercent ( set ( [Camping Equipment], [Golf Equipment], [Mountaineering Equipment]), 40, [2006] )

Result

For the set of Camping Equipment, Golf Equipment, and Mountaineering Equipment, returns the members with the largest Gross profit whose total for the year 2006 is at least 40% of the overall total.

topSum

Sorts the set specified in "set_expression" in descending order and returns the topmost elements from the sorted set whose cumulative total is greater than or equal to "value".

Syntax

topSum ( set_expression, value, numeric_expression2 )

Example

topSum ( children ( [Products] ), 16000000, tuple ( [2006], [great_outdoors_company].[Measures].[Gross profit] ) )

Result

For the Product line members, returns the members with the largest Gross profit whose total for the year 2006 is at least $6,000,000.

tuple

Identifies a cell location (intersection) based on the specified members, each of which must be from a different dimension. This function implicitly includes the current member from all dimensions that are not otherwise specified in the arguments. The current member of any dimension not specified in the evaluating context is assumed to be the default member of that dimension. The value of this cell can be obtained with the "value" function.

Syntax

tuple ( member { , member } )

Example

tuple ( [Mountaineering Equipment], [Fax] )
Result
Returns the Mountaineering Equipment sales by fax.

**union**
Returns data for "set_expression1" and "set_expression2". The result retains duplicates only when the optional keyword "all" is supplied as the third argument.

**Syntax**
union ( set_expression1 , set_expression2 [, all ] )

**Example 1**

Result
Returns data for both sets as one new set, showing the Golf Equipment column only once.

**Example 2**

Result
Returns data for both sets as one new set, showing the Golf Equipment column twice.

**roleValue**
Returns the value of the attribute that is associated with the role whose name is specified by "string" within the specified context. "Member" or "set_expression" is optional only in a number of limited circumstances, where it can be derived from another context. Applications can be made portable across different data sources and models by accessing attributes by role rather than by query item ID. For dimensionally-modeled relational (DMR) data sources, assignment of roles is the modeler's responsibility. Intrinsic roles that are defined for members of all data source types include: _'businessKey'_ , _'memberCaption'_ , _'memberDescription'_ , _'memberUniqueName'_ . Additional roles can be defined in Framework Manager for each level in a hierarchy. For example, a Product type level may have an attribute column called "Type Shipping Container", and the Product level may have a "Product Shipping Container" attribute. Each of these could be assigned a custom role in Framework Manager called "Container". The property could then be referenced independently of the actual column name by using the roleValue function.

**Syntax**
roleIdValue ( string [, member|set_expression ] )

**Example 1**
roleValue ( '_memberCaption' , [Sales].[Product].[Product].[Product line] -> [all].[1] )

Result
Camping Equipment
Example 2
roleValue ( '_businessKey', [great_outdoors_company].[Years].[Years].[Year] )

Result
Returns the value of the attribute that is associated with the business key role.

Result data
("2004-01-01", "2004-12-31")
("2005-01-01", "2005-12-31")
("2006-01-01", "2006-12-31")

Example 3
roleValue ( '_memberUniqueName', [great_outdoors_company].[Years].[Years].[Year] )

Result
Returns the value of the attribute that is associated with the MUN role.

Result data
[great_outdoors_company].[Years].[Years].[Year] ->: [PC].[Years (Root)].[20040101-20041231]
[great_outdoors_company].[Years].[Years].[Year] ->: [PC].[Years (Root)].[20050101-20051231]
[great_outdoors_company].[Years].[Years].[Year] ->: [PC].[Years (Root)].[20060101-20061231]

rootMember
Returns the root member of a single-root hierarchy. This function appears in the Promotion Success sample report in the GO Data Warehouse (analysis) package.

Syntax
rootMember ( hierarchy )

rootMembers
Returns the root members of a hierarchy.

Syntax
rootMembers ( hierarchy )

Example
rootMembers ( [great_outdoors_company].[Years].[Years] )

Result
By Time

subset
Returns a subset of members in "set_expression" starting at "index_expression1" from the beginning. If the count "index_expression2" is specified, that many members are returned (if available). Otherwise, all remaining members are returned.

Syntax
subset (set_expression, index_expression1 [ , index_expression2 ])

Example 1
subset (members ([great_outdoors_company].[Products].[Products].[Product line]), 2)

Result
Returns the members of the Product line set starting at the second member.

Result data
Mountaineering Equipment
Outdoor Protection
Personal Accessories

Example 2
subset (members ([great_outdoors_company].[Products].[Products].[Product line]), 2, 2)

Result
Returns two members of the Product line set starting at the second member.

Result data
Mountaineering Equipment
Outdoor Protection

unique
Removes all duplicates from "set_expression". The remaining members retain their original order.

Syntax
unique (set_expression)

value
Returns the value of the cell identified by "tuple". Note that the default member of the Measures dimension is the Default Measure.

Syntax
value (tuple)

Example 1
value (tuple { [great_outdoors_company].[Years].[Years].[Year] ->:[PC].[Years (Root)].[20040101-20041231] , [great_outdoors_company].[Measures].[Revenue] })

Result
$34,750,563.50

Example 2
value (tuple ([2004] , [Camping Equipment] , [Revenue] ))

Result
$20,471,328.88
Report Functions

AsOfDate
Returns the date value of the AsOfDate expression, if it is defined. Otherwise, AsOfDate returns the report execution date.

Syntax
AsOfDate ()

AsOfTime
Returns the time value of the AsOfTime expression, if it is defined. Otherwise, AsOfTime returns the report execution time.

Syntax
AsOfTime ()

BurstKey
Returns the burst key.

Syntax
BurstKey ()

BurstRecipients
Returns the distribution list of burst recipients.

Syntax
BurstRecipients ()

CellValue
Returns the value of the current crosstab cell.

Syntax
CellValue ()

ColumnNumber
Returns the current column number.

Syntax
ColumnNumber ()

CubeCreatedOn
Returns the date and time when the cube was created. "Dimension" specifies from which cube to retrieve the metadata. If the dimension source is an IBM® Cognos® PowerCube (.mdc), the function returns a blank string because the initial creation date of a PowerCube is not maintained.

Syntax
CubeCreatedOn ( dimension )

CubeCurrentPeriod
Returns the current period for the cube. "Dimension" specifies from which cube to retrieve the metadata.

Syntax
CubeCurrentPeriod ( dimension )
**CubeDataUpdatedOn**
Returns the date time that data in the cube was last updated. "Dimension" specifies from which cube to retrieve the metadata.

**Syntax**
```
CubeDataUpdatedOn (dimension)
```

**CubeDefaultMeasure**
Returns the name of the default measure for the cube. "Dimension" specifies from which cube to retrieve the metadata.

**Syntax**
```
CubeDefaultMeasure (dimension)
```

**CubeDescription**
Returns the description of the cube. "Dimension" specifies from which cube to retrieve the metadata.

**Syntax**
```
CubeDescription (dimension)
```

**CubeIsOptimized**
Returns "true" if the cube is optimized. "Dimension" specifies from which cube to retrieve the metadata.

**Syntax**
```
CubeIsOptimized (dimension)
```

**CubeName**
Returns the name of the cube. "Dimension" specifies from which cube to retrieve the metadata.

**Syntax**
```
CubeName (dimension)
```

**CubeSchemaUpdatedOn**
Returns the date time that the cube schema was last updated. "Dimension" specifies from which cube to retrieve the metadata.

**Syntax**
```
CubeSchemaUpdatedOn (dimension)
```

**GetLocale**
Returns the run locale (deprecated).

**Syntax**
```
GetLocale ()
```

**HorizontalPageCount**
Returns the current horizontal page count.

**Syntax**
```
HorizontalPageCount ()
```
**HorizontalPageNumber**
Returns the current horizontal page number.

**Syntax**
HorizontalPageNumber ()

**InScope**
Returns Boolean 1 (true) when the cell is in the scope of the data items and MUNs; otherwise, returns Boolean 0 (false).

**Syntax**
InScope ( dataItem , MUN , ... )

**IsAccessible**
Returns Boolean 1 (true) if the report is run with the accessibility features enabled. Use this function as a variable expression with a conditional block to make your reports accessible. For example, you can add a list or crosstab equivalent to a chart in reports that are run with accessibility features enabled.

**Syntax**
IsAccessible ()

**IsBursting**
Returns Boolean 1 (true) when the report will be distributed to the recipient; otherwise, returns Boolean 0 (false).

**Syntax**
IsBursting ( 'recipientName' )

**IsCrosstabColumnNodeMember**
Returns Boolean 1 (true) if the current node is a crosstab column node member.

**Syntax**
IsCrosstabColumnNodeMember ()

**IsCrosstabRowNodeMember**
Returns Boolean 1 (true) if the current node is a crosstab row node member.

**Syntax**
IsCrosstabRowNodeMember ()

**IsFirstColumn**
Returns Boolean 1 (true) if the current column is the first column.

**Syntax**
IsFirstColumn ()

**IsInnerMostCrosstabColumnNodeMember**
Returns Boolean 1 (true) if the current node is an innermost crosstab column node member.

**Syntax**
IsInnerMostCrosstabColumnNodeMember ()
IsInnerMostCrosstabRowNodeMember
Returns Boolean 1 (true) if the current node is an innermost crosstab row node member.

Syntax
IsInnerMostCrosstabRowNodeMember ()

IsLastColumn
Returns Boolean 1 (true) if the current column is the last column.

Syntax
IsLastColumn ()

IsLastInnerMostCrosstabColumnNodeMember
Returns Boolean 1 (true) if the current node is the last innermost crosstab column node member.

Syntax
IsLastInnerMostCrosstabColumnNodeMember ()

IsLastInnerMostCrosstabRowNodeMember
Returns Boolean 1 (true) if the current node is the last innermost crosstab row node member.

Syntax
IsLastInnerMostCrosstabRowNodeMember ()

IsOuterMostCrosstabColumnNodeMember
Returns Boolean 1 (true) if the current node is an outermost crosstab column node member.

Syntax
IsOuterMostCrosstabColumnNodeMember ()

IsOuterMostCrosstabRowNodeMember
Returns Boolean 1 (true) if the current node is an outermost crosstab row node member.

Syntax
IsOuterMostCrosstabRowNodeMember ()

IsPageCountAvailable
Returns Boolean 1 (true) if the page count is available for the current execution of the report; otherwise, returns Boolean 0 (false).

Syntax
IsPageCountAvailable ()

Locale
Returns the run locale.

Syntax
Locale ()
**ModelPath**
Returns the model path.

**Syntax**
ModelPath ()

**Now**
Returns the current system time.

**Syntax**
Now ()

**PageCount**
Returns the current page count. This function works only when the report output is Adobe® PDF or Microsoft® Excel. If you save the report output, this function works for all formats.

**Syntax**
PageCount ()

**PageName**
Returns the current page name.

**Syntax**
PageName ()

**PageNumber**
Returns the current page number.

**Syntax**
PageNumber ()

**ParamCount**
Returns the parameter count of "parameterName".

**Syntax**
ParamCount ('parameterName')

**ParamDisplayValue**
Returns a string that is the parameter display value of "parameterName". This function appears in the Recruitment Report sample report in the GO Data Warehouse (analysis) package.

**Syntax**
ParamDisplayValue ('parameterName')

**ParamName**
Returns the parameter name of "parameterName".

**Syntax**
ParamName ('parameterName')
**ParamNames**
Returns all parameter names.

**Syntax**
ParamNames ()

**ParamValue**
Returns the parameter value of "parameterName".

**Syntax**
ParamValue ('parameterName')

**ReportAuthorLocale**
Returns the author locale.

**Syntax**
ReportAuthorLocale ()

**ReportCreateDate**
Returns the date when the report was created.

**Syntax**
ReportCreateDate ()

**ReportDate**
Returns the report execution date and time.

**Syntax**
ReportDate ()

**ReportDescription**
Returns the report description. This function works only when the report is run from IBM® Cognos® Connection.

**Syntax**
ReportDescription ()

**ReportID**
Returns the report ID.

**Syntax**
ReportID ()

**ReportLocale**
Returns the run locale.

**Syntax**
ReportLocale ()

**ReportName**
Returns the report name. This function works only when the report is run from IBM® Cognos® Connection.

**Syntax**
ReportName ()
**ReportOption**
Returns the value of the run option variable identified by "optionName", such as attachmentEncoding, burst, cssURL, email, emailAsAttachment, emailAsURL, emailBody, emailSubject, emailTo, emailToAddress, metadataModel, outputEncapsulation, outputFormat, outputLocale, outputPageDefinition, outputPageOrientation, primaryWaitThreshold, print, printer, printerAddress, prompt, promptFormat, saveAs, saveOutput, secondaryWaitThreshold, verticalElements, or xslURL.

**Syntax**
```
ReportOption ('optionName')
```

**ReportOutput**
Returns the name of the output format, such as CSV, HTML, layoutDataXML, MHT, PDF, rawXML, singleXLS, spreadsheetML, XLS, XML, or XLWA.

**Syntax**
```
ReportOutput ()
```

**ReportPath**
Returns the report path. This function works only when the report is run from IBM® Cognos® Connection.

**Syntax**
```
ReportPath ()
```

**ReportProductLocale**
Returns the product locale.

**Syntax**
```
ReportProductLocale ()
```

**ReportSaveDate**
Returns the date when the report was last saved.

**Syntax**
```
ReportSaveDate ()
```

**RowNumber**
Returns the current row.

**Syntax**
```
RowNumber ()
```

**ServerLocale**
Returns the locale of the server that runs the report.

**Syntax**
```
ServerLocale ()
```

**ServerName**
Returns the name of the web server where the run request originated from. The value may be empty if the request is executed from the scheduler.

**Syntax**
```
```
ServerName ()

**TOCHeadingCount**
Returns the table of contents heading count for a specified heading level.

**Syntax**
TOCHeadingCount ( headingLevel )

**Today**
Returns the current system date.

**Syntax**
Today ()

**URLEncode**
Returns the URL encoded value of the input text.

**Syntax**
URLEncode ('text')

### Data Type Casting Functions

**_add_days**
Returns the datetime resulting from adding "integer_expression" days to "timestamp_expression".

**Syntax**
_add_days ( timestamp_expression , integer_expression )

**Example**
_add_days ( 2007-01-14 00:00:00.000 , 3 )

**Result**
2007-01-17 00:00:00.000

**_add_months**
Returns the datetime resulting from adding "integer_expression" months to "timestamp_expression".

**Syntax**
_add_months ( timestamp_expression , integer_expression )

**_add_years**
Returns the datetime resulting from adding "integer_expression" years to "timestamp_expression".

**Syntax**
_add_years ( timestamp_expression , integer_expression )

**_age**
Returns a number by subtracting "timestamp_expression" from today's date.

**Syntax**
_age ( timestamp_expression )
Example

\_age \{[Query1].[Date]\}, where [Query1].[Date] is March 2, 2004, and today is July 8, 2009

Result

50,406, where 5 is the number of years, 04 is the number of months, and 06 is the number of days.

\_day_of_week

Returns the day of the week (between 1 and 7) for "timestamp_expression" where "integer_expression" indicates which day of that week is day 1. To determine "integer_expression", choose the day of the week and count from Monday; for example, if you choose Wednesday, "integer_expression" would be 3 because Wednesday is the third day from Monday.

Syntax

\_day_of_week ( timestamp_expression , integer_expression )

Example

\_day_of_week ( 2009-01-01 , 7 ), where 7 means that Sunday is the first day of the week.

Result

5

\_day_of_year

Returns the ordinal for the day of the year in "timestamp_expression" (1 to 366). Also known as Julian day.

Syntax

\_day_of_year ( timestamp_expression )

\_days_between

Returns a positive or negative number representing the number of days between "timestamp_expression1" and "timestamp_expression2". If "timestamp_expression1" < "timestamp_expression2", the result will be a negative number.

Syntax

\_days_between ( timestamp_expression1 , timestamp_expression2 )

\_days_to_end_of_month

Returns a number representing the number of days remaining in the month represented by "timestamp_expression".

Syntax

\_days_to_end_of_month ( timestamp_expression )

\_first_of_month

Returns a datetime that is the first day of the month represented by "timestamp_expression".

Syntax

\_first_of_month ( timestamp_expression )
Example 1
\_first_of_month ( 2009-05-04 00:00:00.000 )

Result

Returns 2009-05-01 00:00:00.000

Example 2
\_first_of_month (current_date)

Result

Returns Jul 1, 2009 if the current date is July 30, 2009.

\_last_of_month

Returns a datetime that is the last day of the month represented by "timestamp_expression".

Syntax
\_last_of_month ( timestamp_expression )

\_make_timestamp

Returns a timestamp constructed from "integer_expression1" (the year), "integer_expression2" (the month), and "integer_expression3" (the day). The time portion defaults to 00:00:00.000.

Syntax
\_make_timestamp ( integer_expression1 , integer_expression2 , integer_expression3 )

\_months_between

Returns a positive or negative number representing the number of months between "timestamp_expression1" and "timestamp_expression2". If "timestamp_expression1" < "timestamp_expression2", the result will be a negative number.

Syntax
\_months_between ( timestamp_expression1 , timestamp_expression2 )

\_week_of_year

Returns the week number (1-53) of the year for "timestamp_expression". According to the ISO 8601, week 1 of the year is the first week to contain a Thursday, which is equivalent to the first week containing January 4th. A week starts on a Monday (day 1) and ends on a Sunday (day 7).

Syntax
\_week_of_year ( timestamp_expression )

\_years_between

Returns a positive or negative integer representing the number of years between "timestamp_expression1" and "timestamp_expression2". If "timestamp_expression1" < "timestamp_expression2", a negative value is returned.

Syntax
\_years_between ( timestamp_expression1 , timestamp_expression2 )
**_ymdint_between_**
Returns a number representing the difference between "timestamp_expression1" and "timestamp_expression2". This value has the form YYMMDD, where YY represents the number of years, MM represents the number of months, and DD represents the number of days.

**Syntax**

```plaintext
_ymdint_between (timestamp_expression1 , timestamp_expression2)
```

**Example**

```plaintext
_ymdint_between ([Query1].[Date (close date)] , [Query1].[Date (ship date)]), where [Query1].[Date (close date)] is February 20, 2004, and [Query1].[Date (ship date)] is January 19, 2004.
```

**Result**

101, where 1 is the number of months and 01 is the number of days.

**abs**
Returns the absolute value of "numeric_expression". If "numeric_expression" is negative, a positive value is returned.

**Syntax**

```plaintext
abs (numeric_expression)
```

**ceiling**
Returns the smallest integer that is greater than or equal to "numeric_expression".

**Syntax**

```plaintext
ceiling (numeric_expression)
```

**character_length**
Returns the number of characters in "string_expression".

**Syntax**

```plaintext
character_length (string_expression)
```

**date2string**
Returns a date as a string in YYYY-MM-DD format.

**Syntax**

```plaintext
date2string (date_expression)
```

**date2timestamp**
Converts "date_expression" to a timestamp. The time part of the timestamp will equal zero.

**Syntax**

```plaintext
date2timestamp (date_expression)
```

**date2timestampTZ**
Converts "date_expression" to a timestamp with a time zone. The time and time zone parts of the timestamp will equal zero.

**Syntax**
date2timestampTZ ( date_expression )

**DTinterval2string**
Returns a date time interval as a string in DDDD HH:MM:SS.FFFFFF or -DDDD HH:MM:SS.FFF format.

**Syntax**
DTinterval2string ( date_time_interval_expression )

**DTinterval2stringAsTime**
Returns a date time interval as a string in HHHH:MM:SS.FFFFFF or HH:MM:SS.FFF format. Days are converted to hours.

**Syntax**
DTinterval2stringAsTime ( date_time_interval_expression )

**exp**
Returns the constant 'e' raised to the power of "numeric_expression". The constant 'e' is the base of the natural logarithm.

**Syntax**
exp ( numeric_expression )

**Example**
exp ( 2 )

**Result**
7.389056

**extract**
Returns an integer representing the value of "date_part_expression" in "datetime_expression". "Date_part_expression" could be the year, month, day, hour, minute, or second.

**Syntax**
extract ( date_part_expression , datetime_expression )

**Example 1**
extract ( year , 2003-03-03 16:40:15.535 )

**Result**
2003

**Example 2**
extract ( hour , 2003-03-03 16:40:15.535 )

**Result**
16

Appendix F. Using the expression editor 813
floor
Returns the largest integer that is less than or equal to "numeric_expression".

Syntax
floor ( numeric_expression )

int2DTinterval
Converts an integer to a date time interval. "String_expression" specifies what
"integer_expression" represents: "ns" = nanoseconds, "s" = seconds (default), "m" =
minutes, "h" = hours, "d" = days.

Syntax
int2DTinterval ( integer_expression , string_expression )

Example 1
int2DTinterval (1020,"h")

Result
42 days 12 hours

Example 2
int2DTinterval (1020,"s")

Result
17 minutes

int2YMinterval
Converts "integer_expression" to a year month interval. "String_expression"
specifies what "integer_expression" represents: "y" = years, "m" = months (default).

Syntax
int2YMinterval ( integer_expression , string_expression )

In
Returns the natural logarithm of "numeric_expression".

Syntax
ln ( numeric_expression )

lower
Returns "string_expression" with all uppercase characters converted to lowercase.
This function appears in the Bursted Sales Performance Report sample report in
the GO Data Warehouse (query) package.

Syntax
lower ( string_expression )

mapNumberToLetter
Adds "integer_expression" to "string_expression".

Syntax
mapNumberToLetter ( string_expression , integer_expression )
Example
mapNumberToLetter ( 'a', 1 )

Result
b

**mod**
Returns an integer value representing the remainder (modulo) of "integer_expression1" / "integer_expression2".

**Syntax**
mod ( integer_expression1 , integer_expression2 )

**nullif**
Returns null if "string_expression1" equals "string_expression2" (case-insensitive), otherwise returns "string_expression1".

**Syntax**
nullif ( string_expression1 , string_expression2 )

**number2string**
Converts "numeric_expression" to a string, using the %g format specifier (C/C++ syntax).

**Syntax**
number2string ( numeric_expression )

**octet_length**
Returns the number of bytes in "string_expression".

**Syntax**
octet_length ( string_expression )

**position**
Returns the integer value representing the starting position of "string_expression1" in "string_expression2". Returns 0 if "string_expression1" is not found.

**Syntax**
position ( string_expression1 , string_expression2 )

**power**
Returns "numeric_expression1" raised to the power of "numeric_expression2".

**Syntax**
power ( numeric_expression1 , numeric_expression2 )

Example
power ( 3 , 2 )

Result
9
**round**

Returns "numeric_expression" rounded to the nearest value with "integer_expression" significant digits to the right of the decimal point. If "integer_expression" is negative, "numeric_expression" is rounded to the nearest absolute value with "integer_expression" significant digits to the left of the decimal point. Rounding takes place before data formatting is applied.

**Syntax**

```
round (numeric_expression , integer_expression)
```

**Example**

```
round (125, -1)
```

**Result**

130

**sqrt**

Returns the square root of "numeric_expression". "numeric_expression" must not be a negative value.

**Syntax**

```
sqrt (numeric_expression)
```

**string2date**

Returns "string_expression" as a date in YYYY-MM-DD format.

**Syntax**

```
string2date (string_expression)
```

**string2double**

Returns a floating point number. "String_expression" has the following form: "[whitespace] [sign] [digits] [digits] [d|D|e|E][sign]digits"

**Syntax**

```
string2double (string_expression)
```

**string2DTinterval**

Returns "string_expression" as a date time interval in [-]DD HH:MM[.SS[.FFF]] format.

**Syntax**

```
string2DTinterval (string_expression)
```

**string2int32**

Returns an integer. "String_expression" has the following form: "[whitespace] [+|-] [digits]"

**Syntax**

```
string2int32 (string_expression)
```

**string2int64**

Returns a long integer. "String_expression" has the following form: "[whitespace] [+|-] [digits]"
Syntax
string2int64 ( string_expression )

**string2time**
Returns "string_expression" as a time in HH:MM:SS.FFFFFFF format.

Syntax
string2time ( string_expression )

**string2timestamp**
Returns "string_expression" as a timestamp in YYYY-MM-DD [T|t][white space]+HH:MM:SS.FFFFFFF format.

Syntax
string2timestamp ( string_expression )

**string2timestampTZ**

Syntax
string2timestampTZ ( string_expression )

**string2YMinterval**
Returns "string_expression" as a Year Month Interval in [-]YY MM format.

Syntax
string2YMinterval ( string_expression )

**substring**
Returns the substring of "string_expression" that starts at position "integer_expression1" for "integer_expression2" characters or to the end of "string_expression" if "integer_expression2" is -1. The first character in "string_expression" is at position 1.

Syntax
substring ( string_expression , integer_expression1 ,
integer_expression2 )

Example
substring ( [Sales (analysis)].[Sales staff].[Sales staff].[Sales staff].[Position code], 3, 5 )

Result
Returns characters 3 to 7 of the position codes.

**time2string**
Returns a time as a string in HH:MM:SS.FFF format.

Syntax
time2string ( time_expression )

**timestamp2date**
Converts "timestamp_expression" to a date. The time part of the timestamp will be ignored.
Syntax
timestamp2date ( timestamp_expression )

timestamp2string
Returns a timestamp as a string in YYYY-MM-DD HH:MM:SS.FFFFFFF format.

Syntax
timestamp2string ( timestamp_expression )

timestamp2timestampTZ
Converts "timestamp_expression" to a timestamp with a time zone. The displacement part of the timestamp with the time zone will be zero.

Syntax
timestamp2timestampTZ ( timestamp_expression )

timestampTZ2date
Converts "timestamp_time_zone_expression" to a date. The time and time zone parts of the timestamp will be ignored.

Syntax
timestampTZ2date ( timestamp_time_zone_expression )

timestampTZ2string
Returns a timestamp with the time zone as a string in YYYY-MM-DD HH:MM:SS.FFFFFFF +HHMM or YYYY-MM-DD HH:MM:SS.FFF -HHMM format.

Syntax
timestampTZ2string ( timestamp_time_zone_expression )

timestampTZ2timestamp
Converts "timestamp_time_zone_expression" to a timestamp. The displacement part of the timestamp with the time zone will be ignored.

Syntax
timestampTZ2timestamp ( timestamp_time_zone_expression )

timeTZ2string
Returns a time with the time zone as a string in HH:MM:SS.FFF +HHMM or HH:MM:SS.FFFFFFF -HHMM format. For example, -05:30 means a timezone of GMT minus 5 hours and 30 minutes.

Syntax
timeTZ2string ( timeTZ_expression )

trim
Returns "string_expression" trimmed of any leading and trailing blanks or trimmed of the character specified by "match_character_expression". "Trim_what_expression" may be "leading", "trailing", or "both" (default). "Match_character_expression" can be an empty string to trim blanks or can specify a character to be trimmed.

Syntax
trim ( trim_what_expression , match_character_expression , string_expression )
**upper**
Returns "string_expression" with all lowercase characters converted to uppercase.

**Syntax**
upper ( string_expression )

**YMinterval2string**
Returns "year_month_interval_expression" as a string in (YY MM) or -(YY MM) format.

**Syntax**
YMinterval2string ( year_month_interval_expression )
Appendix G. Report Studio Object and Property Reference

This appendix contains definitions of the objects and properties found in IBM Cognos Report Studio. They are available contextually, by pressing F1 when an object or property is active in the Report Studio authoring environment.

**Objects**

Objects are visible in the Report Studio work area. They can be inserted from the Toolbox tab.

**Properties**

Properties can be set on Report Studio objects. They are available in the lower-left pane of Report Studio.

**Data formatting properties**

Data formatting properties can be set on data values by selecting Default Data Format from the Data menu, or by editing the Data Format property for Report Studio objects.

**Report Studio Objects**

The following is a list of objects available in IBM Cognos Report Studio.

**3-D Area**

A chart in which members of a data series are represented by three-dimensional areas of varying size and color. The three-dimensional area chart is one of three chart types that can be included in a three-dimensional combination chart.

**Properties of 3-D Area**

“Border Color” on page 906, “Borders” on page 906, “Chart Type” on page 911, “Values” on page 1010

**3-D Bar**

A chart in which members of a data series are represented by three-dimensional bars of varying length and color. The three-dimensional bar chart is one of three chart types that can be included in a three-dimensional combination chart.

**Properties of 3-D Bar**

“Border Color” on page 906, “Borders” on page 906, “Chart Type” on page 911, “Values” on page 1010

© Copyright IBM Corp. 2005, 2012
3-D Combination Chart

A chart that includes any number and combination of three-dimensional bar charts, line charts, and area charts. This chart plots any number of data series against one common measure on the vertical numeric axis and one or two common data series on ordinal axes.

Properties of 3-D Combination Chart


3-D Line

A chart in which members of a data series are represented by three-dimensional lines of varying colors. The three-dimensional line chart is one of three chart types that can be included in a three-dimensional combination chart.

Properties of 3-D Line

“Border Color” on page 906, “Borders” on page 906, “Chart Type” on page 911, “Values” on page 1010

3-D Scatter Chart

A chart that plots three measures against one or more data series on a three-dimensional X-Y-Z graph.

Properties of 3-D Scatter Chart

Angular Axis
The angular numeric axis for a polar chart, including labels, titles, range, and scale.

**Properties of Angular Axis**

- Axis Labels
- Axis Line
- Axis Title
- Classes
- Data Format
- Gridlines
- Include Zero For Auto Scale
- Maximum Value
- Minimum Value
- Minor Gridlines
- Scale
- Scale Interval
- Use Same Range For All Instances

Angular Measure
The measure that determines the angular position of each data marker on a polar chart.

**Properties of Angular Measure**

- Conditional Styles
- Custom Label
- Data Format
- Style Variable

Area
The data marker used to represent data series in an area chart.

**Properties of Area**

- Aggregate Function
- Area Shape
- Border Color
- Borders
- Chart Type
- Conditional Palette
- Expression
- Extend Width
- Hierarchy
- Hierarchy Unique Name
- Level
- Level Unique Name
- Member
- Member Unique Name
- Palette
- Property Unique Name
- Rollup Aggregate Function
- Root Members Only
- Series Type
- Set Definition
- Set Sorting
- Show Values

Area
The data marker used to represent data series in an area chart. This object applies only to legacy charts.

**Properties of Area**

- Axis Assignment
- Border Color
- Borders
- Chart Type
- Grouping Type
- Value Location
- Values
- Value Type

As of Time Expression
An expression that produces a Date-Time value. This expression can be used to show report results for a specific time period that is defined by an expression that you create.
Properties of As of Time Expression

“Report Expression” on page 980

Axis Labels

The labels that appear on an axis.

Properties of Axis Labels


Axis Title

The title for an axis of the chart. This object applies only to legacy charts.

Properties of Axis Title


Axis Title

The title for an axis of the chart.

Properties of Axis Title


Bar

A chart in which members of a data series are represented by bars of varying length and color.

Properties of Bar


Bar

A chart in which members of a data series are represented by bars of varying length and color. This object applies only to legacy charts.
Properties of Bar


Baseline

A baseline to be rendered on a chart.

Properties of Baseline


Baseline

A baseline for a polar chart, scatter chart, or bubble chart.

Properties of Baseline


Baseline

A baseline for a three-dimensional combination chart.

Properties of Baseline


Baseline

A baseline for a three-dimensional scatter chart.

Properties of Baseline

Block
A container into which you can insert other objects.

Properties of Block
- “Background Color” on page 902
- “Background Effects” on page 903
- “Border” on page 905
- “Box Type” on page 907
- “Classes” on page 912
- “Conditional Styles” on page 916
- “Direction & Justification” on page 928
- “Display for Orientation” on page 929
- “Font” on page 936
- “Foreground Color” on page 937
- “Horizontal Alignment” on page 942
- “Margin” on page 951
- “Name” on page 961
- “Padding” on page 968
- “Render Variable” on page 978
- “Spacing & Breaking” on page 994
- “Style Variable” on page 996
- “Visible” on page 1011
- “White Space” on page 1012

Bookmark
A link to another area within the same report. The link can be defined as a static value, a query item, or as the result of a report expression.

Properties of Bookmark
- “Data Item Label” on page 923
- “Data Item Value” on page 925
- “Label” on page 945
- “Report Expression” on page 980
- “Source Type” on page 994

Bubble Chart
A point chart that plots one or more data series against three measures: a Y-value, an X-value, and a bubble whose relative size represents the third measure. Multiple points are plotted for each category. This object applies only to legacy charts.

To help distinguish values, set the Tooltips property of this object to Yes.

Properties of Bubble Chart
- “Alternate Text” on page 897
- “Application Drill-Through” on page 898
- “Background Color” on page 902
- “Background Effects” on page 903
- “Baselines” on page 904
- “Border” on page 905
- “Border Color” on page 906
- “Borders” on page 906
- “Box Type” on page 907
- “Bubble Size” on page 908
- “Classes” on page 912
- “Clickable Regions” on page 913
- “Conditional Palette” on page 916
- “Container Select” on page 918
- “Display for Orientation” on page 929
- “Drill-Through Definitions” on page 931
- “Legend” on page 947
- “Margin” on page 951
- “Markers” on page 952
- “Marker Text Location” on page 954
- “Master Detail Relationships” on page 954
- “Maximum Hotspots” on page 955
- “Name” on page 961
- “No Data Contents” on page 963
- “Notes” on page 964
- “Padding” on page 968
- “Pagination” on page 968
- “Palette” on page 969
- “Point Shape” on page 971
- “Query” on page 975
- “Regression Line” on page 977
- “Relative Alignment” on page 977
- “Render Page when Empty” on page 978
- “Render Variable” on page 978
- “Set Variable Values” on page 987
- “Show Hover” on page 988
- “Show Pointer Cursor” on page 989
- “Size & Overflow” on page 991
- “Suppression” on page 997
- “Title” on page 1001
- “Tooltips” on page 1003
- “Value Location” on page 1009
- “Values” on page 1009
- “Visible” on page 1011
- “X Axis” on page 1013
- “Y Axis” on page 1014
**Bubble Chart**

A point chart that plots one or more data series against three measures: a Y-value, an X-value, and a bubble whose relative size represents the third measure. Multiple points are plotted for each category.

To help distinguish values, set the Tooltips property of this object to Yes.

**Properties of Bubble Chart**

- Alternate Text on page 897
- Application Drill-Through on page 898
- Background Effects on page 903
- Border on page 905
- Box Type on page 907
- Bubble Size on page 908
- Classes on page 912
- Clickable Regions on page 913
- Color by Value on page 914
- Colored Regions on page 914
- Conditional Palette on page 916
- Contained Text Direction on page 917
- Container Select on page 918
- Direction & Justification on page 928
- Display for Orientation on page 929
- Drill-Through Definitions on page 931
- Drop Shadow on page 931
- Legend on page 948
- Margin on page 951
- Markers on page 953
- Master Detail Relationships on page 954
- Material Effects on page 954
- Matrix Rows and Columns on page 955
- Maximum Hotspots on page 955
- Name on page 961
- No Data Contents on page 963
- Notes on page 964
- Numeric Baselines on page 966
- Padding on page 968
- Pagination on page 968
- Palette on page 969
- Plot Area Fill on page 971
- Query on page 975
- Relative Alignment on page 977
- Render Page when Empty on page 978
- Render Variable on page 978
- Set Variable Values on page 987
- Show Hover on page 988
- Show Pointer Cursor on page 989
- Show Values on page 991
- Size & Overflow on page 991
- Suppression on page 997
- Title on page 1001
- Tooltips on page 1002
- Trendlines on page 1004
- Visible on page 1011

**Bubble Measure**

The measure that determines the size of each bubble on a bubble chart.

**Properties of Bubble Measure**

- Conditional Styles on page 916
- Custom Label on page 921
- Data Format on page 921

**Bubble Measure**

The measure that determines the size of each bubble on a bubble chart. This object applies only to legacy charts.

**Properties of Bubble Measure**

- Conditional Styles on page 916
- Custom Label on page 921
- Data Format on page 921, Style Variable on page 996

**Bullet Chart**

A chart that compares a measure to a target. Use the Colored Regions property to relate the compared measures against additional qualitative measurements, such as colored regions for good, satisfactory, and poor.

**Properties of Bullet Chart**

- Alternate Text on page 897
- Application Drill-Through on page 898
- Background Effects on page 903
- Bevel on page 905
- Border on page 905
Bullet Measure

The measure that determines the size of the bullet for a bullet chart.

Properties of Bullet Measure

“Custom Label” on page 921, “Data Format” on page 921

Button

A button in a static button bar control.

Properties of Button

“Icon” on page 943, “Label” on page 945

Button

A single static button control. The button requires a row in the data table of the control.

Properties of Button


Button Bar

A static button bar control. Each button requires a corresponding row in the data table of the control.

Properties of Button Bar

Button Icon
The icon used to identify each button in a data button bar control. The icons are obtained from a data item inserted into the control.

Properties of Button Icon
"Data Item" on page 922

Button Label
The label used to identify each button in a data button bar control. Each label is determined by the data items inserted into the control.

Properties of Button Label
"Data Item" on page 922

Button Value
Data items that are used to determine what appears as the button labels in a data button bar control.

Properties of Button Value
"Data Item" on page 922

Calculated Measure
A data item that is a calculated member.

Properties of Calculated Measure

Calculated Member
An item, within a dimension, that represents an occurrence of schema data defined as a calculation of two or more members.

Properties of Calculated Member
"Caption” on page 910, “Data Item” on page 922, “Name” on page 963

Calculated Member
A data item that is a calculated member.

Properties of Calculated Member

Caption
The caption on a Field Set object.
Properties of Caption

“Background Color” on page 902, “Border” on page 905, “Classes” on page 912,
“Conditional Styles” on page 916, “Font” on page 936, “Foreground Color” on
page 937, “Margin” on page 951, “Padding” on page 968, “Style Variable” on page
996.

Card

A card in a static deck control.

Properties of Card

“Current Card” on page 920.

Card Label

The label used to identify a card in a deck control.

Properties of Card Label

“Data Item” on page 922.

Card Value

A data item that is used to determine the data that appears in the cards of a data
deck control.

Properties of Card Value

“Data Item” on page 922.

Category Axis

The axis line for an ordinal, or non-numeric, axis. This object applies only to legacy
charts.

Properties of Category Axis

“Allow 45° Rotation” on page 896, “Allow 90° Rotation” on page 896, “Allow
Line” on page 901, “Axis Title” on page 902, “Axis Title” on page 901, “Classes” on
931, “First Label Index” on page 935, “Gridlines” on page 939, “Label Control” on
page 946, “Maximum Truncation Characters” on page 956, “Minor Gridlines” on

Category axis

The axis line for an ordinal, or non-numeric, axis.

Properties of Category axis

“Axis Labels” on page 900, “Axis Line” on page 901, “Axis Title” on page 902,
“Axis Title” on page 901, “Gridlines” on page 939, “Minor Gridlines” on page 959,
“Number of Minor Intervals” on page 965, “Reverse Category Order” on page 982.
Category Baseline
A baseline for the category in a chart.

Properties of Category Baseline

Chart Body
Defines the body style of the chart itself. The style of the body can be set independently of the chart itself. This object applies only to legacy charts.

Properties of Chart Body

Chart Footer
A footer for the chart. This object applies only to legacy charts.

Properties of Chart Footer
Chart Measure
The measure for the chart.

Properties of Chart Measure
“Conditional Styles” on page 916, “Custom Label” on page 921, “Data Format” on page 921

Chart Node Member
A data item, and its accompanying text, to render on the chart.

Properties of Chart Node Member

Chart Subtitle
The subtitle for a chart. This object applies only to legacy charts.

Properties of Chart Subtitle

Chart Subtitle
The subtitle for a chart.

Properties of Chart Subtitle

Chart Text Item
The data source and format for a text item, such as a legend item, legend title, axis label, or axis title. This object applies only to legacy charts.

Properties of Chart Text Item
Chart Text Item

The data source and format for a text item, such as a legend item, legend title, axis label, or axis title.

Properties of Chart Text Item

Chart Title

The title text that appears at the top of the chart. This object applies only to legacy charts.

Properties of Chart Title

Check Box

A check box in a static check box group control.

Properties of Check Box

Check Box Group

A static check box group control. Each check box requires a corresponding row in the data table of the control.
Properties of Check Box Group

“Application Drill-Through” on page 898, “Check Boxes Definition” on page 911,
“Contained Text Direction” on page 917, “Container Filter” on page 918,
“Container Select” on page 925, “Control Enable” on page 919, “Direction &
Justification” on page 928, “Display for Orientation” on page 929, “Name” on page
Values” on page 987, “Text Color” on page 1000

Check Box Icon
The icon used to identify each check box in a data check box group control. The
icons are obtained from a data item inserted into the control.

Properties of Check Box Icon

“Data Item” on page 922

Check Box Label
The label used to identify a check box in a data check box group control. The label
is determined by the data items inserted into the control.

Properties of Check Box Label

“Data Item” on page 922

Check Box Value
Data items that are used to determine what appears as the check box labels in a
data check box group control.

Properties of Check Box Value

“Data Item” on page 922

Class
The HTML class name for a layout object. Use this attribute to indicate the type of
styling to apply to the object when the report is rendered.

Properties of Class

“Background Effects” on page 903, “Description” on page 926, “Label” on page
945, “Label” on page 945

Color by Value Measure
The measure or value used to determine the color of the points in a scatter or
bubble chart. The points are colored according to the range of the data item instead
of using the palette.

Properties of Color by Value Measure

“Color by Value” on page 914, “Conditional Styles” on page 916, “Custom Label”
on page 921, “Data Format” on page 921
Colored Region

Defines a collection of colored regions, which are rectangles drawn in the chart body to highlight parts of the chart. The regions are drawn behind the data markers and in the same order that they appear in this element. The first region is drawn first, on the bottom, and the last region is drawn on top of the other regions.

Properties of Colored Region


Colored Region

Defines a collection of colored regions, which are rectangles drawn in the chart body to highlight parts of the chart. The regions are drawn behind the data markers and in the same order that they appear in this element. The first region is drawn first, on the bottom, and the last region is drawn on top of the other regions.

Properties of Colored Region


Combination Chart

A chart that uses combinations of column charts, area charts, and line charts as data markers to plot multiple data series. This object applies only to legacy charts.

Properties of Combination Chart

Combination Chart
A chart that uses combinations of column charts, area charts, and line charts as data markers to plot multiple data series.

Properties of Combination Chart

Component Override
Overrides a child object of the Layout Component Reference object.

Properties of Component Override

Conditional Block
A block that can be used for conditional display.

Properties of Conditional Block
Conditional Block
Contains the default set of layout objects to render based on a report variable.

Properties of Conditional Block
- "Background Color" on page 902
- "Background Effects" on page 903
- "Block Variable" on page 905
- "Border" on page 905
- "Box Type" on page 907
- "Classes" on page 912
- "Conditional Styles" on page 916
- "Current Block" on page 920
- "Direction & Justification" on page 928
- "Display for Orientation" on page 929
- "Font" on page 936
- "Foreground Color" on page 937
- "Horizontal Alignment" on page 942
- "Margin" on page 951
- "Padding" on page 968
- "Size & Overflow" on page 991
- "Spacing & Breaking" on page 994
- "Style Variable" on page 996
- "Visible" on page 1011
- "White Space" on page 1012

Context Item Text
The text associated with a context area item.

Properties of Context Item Text
- "Background Color" on page 902
- "Border" on page 905
- "Box Type" on page 907
- "Classes" on page 912
- "Conditional Styles" on page 916
- "Direction & Justification" on page 928
- "Display for Orientation" on page 929
- "Font" on page 936
- "Foreground Color" on page 937
- "Horizontal Alignment" on page 942
- "Label Color" on page 946
- "Maximum Value" on page 957
- "Minimum Value" on page 959
- "Name" on page 961
- "Orientation" on page 967
- "Range Type" on page 977
- "Render Variable" on page 978
- "Separator" on page 986
- "Size & Overflow" on page 991
- "Spacing & Breaking" on page 994
- "Style Variable" on page 996
- "Visible" on page 1011

Continuous Values Slider
A slider control that allows users to slide through numeric values between minimum and maximum values that you define, such as 0 and 100.

Properties of Continuous Values Slider
- "Animate" on page 897
- "Application Drill-Through" on page 898
- "Contained Text" on page 888
- "Direction" on page 917
- "Control Enable" on page 918
- "Data Format" on page 922
- "Direction & Justification" on page 928
- "Display for Orientation" on page 929
- "Label Color" on page 946
- "Maximum Value" on page 957
- "Minimum Value" on page 959
- "Name" on page 961
- "Orientation" on page 967
- "Range Type" on page 977
- "Render Variable" on page 978
- "Set Variable Values" on page 987
- "Show Tooltip" on page 990
- "Step" on page 996
- "Tick Interval" on page 1001
- "Tick Label Skip Interval" on page 1001
- "Tick Type" on page 1001
- "Track Length" on page 1004
- "Update Variables Live" on page 1005
- "Variable" on page 1010
- "Variable for Maximum" on page 1010
- "Variable for Minimum" on page 1010

Crosstab
A layout object used to render the results of a query that aggregates data, and then arranges it in a two-dimensional grid.

Properties of Crosstab
- "Application Drill-Through" on page 898
- "Background Color" on page 902
- "Border" on page 905
- "Box Type" on page 907
- "Classes" on page 912
- "Clickable Regions" on page 913
- "Conditional Styles" on page 916
- "Container Filter" on page 918
- "Container Select" on page 918
- "Default Measure" on page 925
Crosstab Columns

Overrids the style for Crosstab Column Member objects that is defined in the GlobalReportStyles.css file.

Properties of Crosstab Columns

Crosstab Columns

A list of columns in a crosstab.

Properties of Crosstab Columns

Crosstab Corner

The top-left corner of a crosstab, on top of the row labels and to the left of the column labels. It is generally used to represent crosstab members.

Properties of Crosstab Corner
Crosstab Fact Cells

The contents of the fact cells of the crosstab. There is only one fact cell definition for the crosstab, regardless of the number of measures.

Properties of Crosstab Fact Cells

- Aggregate Function
- Background Color
- Background Effects
- Border
- Box Type
- Classes
- Clickable Region
- Column Coordinate
- Conditional Styles
- Data Format
- Define Contents
- Direction & Justification
- Drill-Through Definitions
- Expression
- Font
- Foreground Color
- Hierarchy
- Hierarchy Unique Name
- Horizontal Alignment
- Level
- Level Unique Name
- Member
- Member Unique Name
- Padding
- Property Unique Name
- Rollup Aggregate Function
- Root Members Only
- Row Coordinate
- Set Definition
- Set Sorting
- Size & Overflow
- Spacing & Breaking
- Style Variable
- Vertical Alignment
- White Space

Crosstab Intersection

An intersection in a crosstab. The cell contents of a specific intersection can be overridden and the style defined.

Properties of Crosstab Intersection

- Aggregate Function
- Background Color
- Background Effects
- Border
- Box Type
- Classes
- Clickable Region
- Column Coordinate
- Conditional Styles
- Data Format
- Define Contents
- Direction & Justification
- Drill-Through Definitions
- Expression
- Font
- Foreground Color
- Hierarchy
- Hierarchy Unique Name
- Horizontal Alignment
- Level
- Level Unique Name
- Member
- Member Unique Name
- Padding
- Property Unique Name
- Rollup Aggregate Function
- Root Members Only
- Row Coordinate
- Set Definition
- Set Sorting
- Size & Overflow
- Spacing & Breaking
- Style Variable
- Vertical Alignment
- White Space

Crosstab Member Fact Cells

The contents of the fact cells of a crosstab node member.

Properties of Crosstab Member Fact Cells

- Aggregate Function
- Background Color
- Background Effects
- Border
- Box Type
- Classes
- Clickable Region
- Conditional Styles
Crosstab Node Member

A member in the crosstab node.

Properties of Crosstab Node Member

- "Aggregate Function" on page 895
- "Background Color" on page 902
- "Background Effects" on page 903
- "Border" on page 905
- "Box Type" on page 908
- "Classes" on page 912
- "Clickable Region" on page 913
- "Conditional Styles" on page 916
- "Data Format" on page 921
- "Data Item" on page 922
- "Direction & Justification" on page 928
- "Drill-Through Definitions" on page 931
- "Expression" on page 933
- "Font" on page 936
- "Foreground Color" on page 937
- "Hierarchy" on page 941
- "Hierarchy Unique Name" on page 941
- "Horizontal Alignment" on page 942
- "Level" on page 949
- "Level Indentation" on page 949
- "Level Unique Name" on page 949
- "Member" on page 957
- "Member Unique Name" on page 958
- "Padding" on page 968
- "Property Unique Name" on page 974
- "Rollup Aggregate Function" on page 982
- "Root Members Only" on page 983
- "Set Definition" on page 986
- "Set Sorting" on page 987
- "Size & Overflow" on page 991
- "Spacing & Breaking" on page 994
- "Style Variable" on page 996
- "Vertical Alignment" on page 1011
- "Visible" on page 1011
- "White Space" on page 1012

Crosstab Rows

Overrides the style for Crosstab Row Member objects that is defined in the GlobalReportStyles.css file.

Properties of Crosstab Rows

- "Background Color" on page 902
- "Background Effects" on page 903
- "Border" on page 905
- "Box Type" on page 908
- "Conditional Styles" on page 916
- "Data Format" on page 921
- "Direction & Justification" on page 928
- "Font" on page 936
- "Foreground Color" on page 937
- "Horizontal Alignment" on page 942
- "Padding" on page 968
- "Size & Overflow" on page 991
- "Spacing & Breaking" on page 994
- "Style Variable" on page 996
- "Vertical Alignment" on page 1011
- "Visible" on page 1011
- "White Space" on page 1012

Crosstab Rows

A list of rows in a crosstab.

Properties of Crosstab Rows

- "Background Color" on page 902
- "Background Effects" on page 903
- "Border" on page 905
- "Box Type" on page 908
- "Conditional Styles" on page 916
- "Data Format" on page 921
- "Direction & Justification" on page 928
- "Font" on page 936
Crosstab Space

Inserts an empty cell on a crosstab edge. Allows for the insertion of non-data cells on an edge.

Properties of Crosstab Space

- Background Color on page 902
- Background Effects on page 903
- Border on page 905
- Box Type on page 908
- Classes on page 912
- Clickable Region on page 913
- Conditional Styles on page 916
- Data Format on page 921
- Direction & Justification on page 928
- Drill-Through Definitions on page 931
- Font on page 936
- Foreground Color on page 937
- Horizontal Alignment on page 942
- Node Coordinate on page 964
- Padding on page 968
- Pagination on page 968
- Render Fact Cells on page 978
- Size & Overflow on page 991
- Solve Order on page 992
- Spacing & Breaking on page 994
- Style Variable on page 996
- Vertical Alignment on page 1011
- Visible on page 1011
- White Space on page 1012

Crosstab Summary

The crosstab summary that appears in executed active reports.

Properties of Crosstab Summary

- Background Color on page 902
- Background Effects on page 903
- Border on page 905
- Box Type on page 908
- Classes on page 912
- Clickable Region on page 913
- Conditional Styles on page 916
- Data Format on page 921
- Data Item on page 922
- Direction & Justification on page 928
- Font on page 936
- Foreground Color on page 937
- Horizontal Alignment on page 942
- Node Coordinate on page 964
- Output Aggregation Method on page 967
- Padding on page 968
- Size & Overflow on page 991
- Solve Order on page 992
- Spacing & Breaking on page 994
- Style Variable on page 996
- Vertical Alignment on page 1011
- Visible on page 1011
- White Space on page 1012

Cumulation Label

A label that is rendered for the cumulation line in a Pareto chart.

Properties of Cumulation Label

- Conditional Styles on page 916
- Data Format on page 921
- Properties on page 974
- Query on page 975

Cumulation Line

The cumulation line in a Pareto chart.

Properties of Cumulation Line

- Axis Labels on page 900
- Axis Line on page 901
- Axis Range on page 901
- Axis Title on page 902
- Number of Minor Intervals on page 965
Cumulation Line
A line that shows the cumulative effect of multiple series members on a measure in a Pareto chart. This object applies only to legacy charts.

Properties of Cumulation Line
- “Cumulation Axis” on page 920
- “Cumulation Label” on page 920
- “Line Styles” on page 950
- “Marker Shape” on page 953
- “Marker Size (pt)” on page 953
- “Properties” on page 974
- “Value Location” on page 1009
- “Values” on page 1010

Cumulation Line
A line that shows the cumulative effect of multiple series members on a measure in a Pareto chart.

Properties of Cumulation Line
- “Cumulation Label” on page 920
- “Data Points” on page 924
- “Line Style” on page 950
- “Show Values” on page 990

Cumulation Line Axis
The axis for the cumulation line in a Pareto chart.

Properties of Cumulation Line Axis
- “Axis Labels” on page 900
- “Axis Line” on page 901
- “Axis Title” on page 902
- “Classes” on page 912
- “Conditional Styles” on page 916
- “Data Format” on page 921
- “Font” on page 936
- “Foreground Color” on page 937
- “Gridlines” on page 939
- “Minor Gridlines” on page 959
- “Scale Interval” on page 984
- “Style Variable” on page 996
- “Visible” on page 1011

Cumulation Line Label
A label that is rendered with the cumulation line in a Pareto chart. This object applies only to legacy charts.

Properties of Cumulation Line Label
- “Aggregate Function” on page 895
- “Control Data Item Value” on page 919
- “Data Item Label” on page 922
- “Data Item Value” on page 923
- “Expression” on page 933
- “Hierarchy” on page 941
- “Hierarchy Unique Name” on page 941
- “Level” on page 949
- “Level Unique Name” on page 949
- “Member” on page 957
- “Member Unique Name” on page 958
- “Property Unique Name” on page 974
- “Report Expression” on page 980
- “Rollup Aggregate Function” on page 982
- “Root Members Only” on page 983
- “Set Definition” on page 986
- “Set Sorting” on page 987
- “Source Type” on page 993
- “Text” on page 1000
- “Text Source Variable” on page 1000

Custom Groups
A group of data items defined by the report author.

Properties of Custom Groups
- “Define Custom Grouping” on page 926
- “Label” on page 946
- “Name” on page 960
- “Type” on page 1005
Data Button Bar
A data-driven button bar control. Each button label is determined by the data items inserted into the control.

Properties of Data Button Bar

Data Check Box Group
A data-driven check box group control. Each check box label is determined by the data items inserted into the control.

Properties of Data Check Box Group

Data Deck
A data-driven deck control. Each card in the deck is determined by the data items inserted into the control.

Properties of Data Deck

Data Discrete Values Slider
A slider control that allows users to slide through discrete values. The values on the slider are determined by the data items inserted in the control.

Properties of Data Discrete Values Slider
Data Drop-Down List
A data-driven drop-down list control. The items that appear in the list are determined by the data items inserted into the control.

Properties of Data Drop-Down List

Data Item
A set of data values or members.

Properties of Data Item

Data Iterator
A data-driven iterator control that allows users to navigate through values by using buttons such as previous and next. The values on the iterator are determined by the data items inserted in the control.

Properties of Data Iterator

Data List Box
A data-driven list box control. The items that appear in the list are determined by the data items inserted into the control.

Properties of Data List Box
**Data Radio Button Group**

A data-driven radio button group control. Each radio button label is determined by the data items inserted into the control.

**Properties of Data Radio Button Group**

- Application Drill-Through on page 898
- Contained Text Direction on page 917
- Container Filter on page 918
- Container Select on page 918
- Control Enable on page 919
- Direction & Justification on page 928
- Display for Orientation on page 929
- Master Detail Relationships on page 954
- Name on page 961
- Orientation on page 967
- Query on page 975
- Render Variable on page 978
- Set Variable Values on page 987
- Sorting on page 993
- Suppression on page 997
- Text Color on page 1000

**Data Tab Control**

A data-driven tab control. The label of each tab is determined by the data items inserted into the control.

**Properties of Data Tab Control**

- Application Drill-Through on page 898
- Contained Text Direction on page 917
- Container Select on page 918
- Direction & Justification on page 928
- Display for Orientation on page 929
- Master Detail Relationships on page 954
- Name on page 961
- Query on page 975
- Render Variable on page 978
- Set Variable Values on page 987
- Size on page 991
- Sorting on page 993
- Suppression on page 997
- Tab Orientation on page 998
- Tab Width on page 999

**Data Toggle Button Bar**

A data-driven toggle button bar control. Each toggle button label is determined by the data items inserted into the control.

**Properties of Data Toggle Button Bar**

- Application Drill-Through on page 898
- Contained Text Direction on page 917
- Container Select on page 918
- Direction & Justification on page 928
- Display for Orientation on page 929
- Master Detail Relationships on page 954
- Name on page 961
- Orientation on page 967
- Query on page 975
- Render Variable on page 978
- Set Variable Values on page 987
- Sorting on page 993
- Suppression on page 997

**Date**

The date when the report runs.

**Properties of Date**

- Background Color on page 902
- Classes on page 912
- Data Format on page 921
- Display for Orientation on page 929
- Font on page 936
- Foreground Color on page 937
- Margin on page 951
- Relative Alignment on page 977
**Date & Time Prompt**
A prompt control with which you can select a date and time value.

**Properties of Date & Time Prompt**
- "Box Type" on page 908
- "Calendar Type" on page 910
- "Choices Deselect All Text" on page 912
- "Choices Select All Text" on page 912
- "Choices Text" on page 912
- "Clock Mode" on page 914
- "Conditional Styles" on page 916
- "Contained Text Direction" on page 917
- "Default Selections" on page 925
- "Deselect Text" on page 927
- "Direction & Justification" on page 928
- "Display Milliseconds" on page 930
- "Display Seconds" on page 930
- "First Date" on page 935
- "From Text" on page 937
- "Hide Adornments" on page 941
- "Highest Value Text" on page 942
- "Insert Text" on page 944
- "Last Date" on page 947
- "Lowest Value Text" on page 951
- "Multi-Select" on page 960
- "Name" on page 961
- "Parameter" on page 969
- "Range" on page 976
- "Remove Text" on page 978
- "Render Variable" on page 978
- "Required" on page 981
- "Select UI" on page 986
- "Style Variable" on page 996
- "To Text" on page 1004
- "Visible" on page 1011

**Date Prompt**
A prompt control with which you can select a date value.

**Properties of Date Prompt**
- "Box Type" on page 908
- "Calendar Type" on page 910
- "Choices Deselect All Text" on page 912
- "Choices Select All Text" on page 912
- "Choices Text" on page 912
- " Conditional Styles" on page 916
- "Contained Text Direction" on page 917
- "Default Selections" on page 925
- "Deselect Text" on page 927
- "Direction & Justification" on page 928
- "Display Milliseconds" on page 930
- "Display Seconds" on page 930
- "First Date" on page 935
- "From Text" on page 937
- "Hide Adornments" on page 941
- "Highest Value Text" on page 942
- "Insert Text" on page 944
- "Last Date" on page 947
- "Lowest Value Text" on page 951
- "Multi-Select" on page 960
- "Name" on page 961
- "Parameter" on page 969
- "Range" on page 976
- "Remove Text" on page 978
- "Render Variable" on page 978
- "Required" on page 981
- "Select UI" on page 986
- "Style Variable" on page 996
- "To Text" on page 1004
- "Visible" on page 1011

**Deck**
A static deck control. Each card in the deck requires a corresponding row in the data table of the control.

**Properties of Deck**
- "Application Drill-Through" on page 898
- "Container Filter" on page 918
- "Container Select" on page 918
- "Current Card" on page 920
- "Deck Cards Definition" on page 925
- "Default Card" on page 925
- "Direction & Justification" on page 928
- "Display for Orientation" on page 929
- "Name" on page 961
- "Parameter" on page 969
- "Range" on page 976
- "Relative Alignment" on page 977
- "Remove Text" on page 978
- "Render Variable" on page 978
- "Required" on page 981
- "Select UI" on page 985
- "Style Variable" on page 996
- "To Text" on page 1004
- "Visible" on page 1011

**Default Measure**
A default measure for the chart. If the chart measure cannot be determined by the data series rendered on the chart edges, the default measure is used. This object applies only to legacy charts.
Properties of Default Measure

A default measure for the chart. If the chart measure cannot be determined by the data series rendered on the chart edges, the default measure is used.

Properties of Default Measure

Detail Filter

A set of conditions in a query that narrow the scope of the data returned. A detail filter is applied before aggregation is complete.

Properties of Detail Filter

Dimension

A grouping of descriptive information about an aspect of a business. Dimensions contain levels, whose order defines the hierarchy of organizational structures and data. Dimensions and levels are values by which measures can be viewed, filtered, or aggregated.

Properties of Dimension

Dimensional Edge Summary

A summary that appears on the edge of a crosstab.

Properties of Dimensional Edge Summary

Discrete Values Slider

A static slider control that allows users to slide through discrete values. Each value in the slider comes from a row in the data table of the control.

Properties of Discrete Values Slider
Display Layer
A map layer that is there for appearance only. Display layers do not correspond to data series or measures.

Properties of Display Layer

Drop-Down List
A static drop-down list control. Each item in the list requires a corresponding row in the data table of the control.

Properties of Drop-Down List

Edge Summary
A summary that appears on the edge of a crosstab.

Properties of Edge Summary

Equation Label
An equation label for a trendline displayed on a chart.

Properties of Equation Label

Explicit Member Set
A set of data items that define an explicit set of members.
Properties of Explicit Member Set

Fact
The central values that are aggregated and analyzed. Also known as measures, they are special business measurement values, such as sales or inventory levels.

Properties of Fact

Field Set
A container with a caption, into which you can insert other objects. It is similar to a block object, except that it also has a caption.

Properties of Field Set

Gauge Axis
The axis on the face of the gauge that contains gauge indicators, such as data ranges, color ranges, and interval markers.

Properties of Gauge Axis

Gauge Chart
A chart that plots a data series against a measure using a dial or gauge for the measure, and needles or indicators for the series members.
Properties of Gauge Chart


Gauge Chart

A chart that plots a data series against a measure using a dial or gauge for the measure, and needles or indicators for the series members. This object applies only to legacy charts.

Properties of Gauge Chart


Gauge Labels

A label for each gauge in a multiple gauge chart.

Properties of Gauge Labels

Gauge Numerical Axis

The numeric axis for the gauge chart, including labels, titles, range, and scale.

**Properties of Gauge Numerical Axis**

- Conditional Styles on page 916
- Data Format on page 921
- Font on page 936
- Foreground Color on page 937
- Gridlines on page 939
- Include Zero For Auto Scale on page 943
- Maximum Value on page 957
- Minimum Value on page 959
- Minor Gridlines on page 959
- Scale on page 984
- Scale Interval on page 984
- Style Variable on page 996
- Use Same Range For All Instances on page 1007
- Visible on page 1011

Generated Prompt

A control that acts as a placeholder. The report server will replace this control with an appropriate generated prompt control, as if it was on a generated prompt page.

**Properties of Generated Prompt**

- Hide Adornments on page 941
- Name on page 961
- Parameter on page 969
- Render Variable on page 978
- Required on page 981

Hierarchy Set

A set of data items that define the members of a hierarchy.

**Properties of Hierarchy Set**

- Detail on page 927
- Dimension on page 928
- Hierarchy on page 941
- Hierarchy Unique Name on page 941
- Label on page 946
- Name on page 960
- Root Members Only on page 983
- Set Sorting on page 987
- Type on page 1005

HTML Item

A container into which you can add HTML, such as a link to a multimedia file. HTML items will only appear when you run the report in HTML format.

When you upgrade to the next version of IBM® Cognos® Business Intelligence, the report upgrade processes do not account for the use of undocumented and unsupported mechanisms or features such as JavaScript that refers to IBM Cognos HTML items.

**Properties of HTML Item**

- Aggregate Function on page 895
- Control Data Item Value on page 919
- Data Item Label on page 922
- Data Item Value on page 923
- Description on page 926
- Expression on page 933
- Hierarchy on page 941
- Hierarchy Unique Name on page 941
- HTML on page 943
- HTML Source Variable on page 943
- Level on page 949
- Level Unique Name on page 949
- Member on page 957
- Member Unique Name on page 958
- Name on page 961
- Property Unique Name on page 974
- Render Variable on page 978
- Report Expression on page 980
- Rollup Aggregate Function on page 982
- Root Members Only on page 983
- Set Definition on page 986
- Set Sorting on page 987
- Source Type on page 993
Hyperlink
A hyperlink that can be defined as a static value, a query item, or as the result of a report expression. If a report expression is used, then the other values are ignored.

Properties of Hyperlink

- "Background Color" on page 902
- "Border" on page 905
- "Box Type" on page 907
- "Classes" on page 912
- "Conditional Styles" on page 916
- "Control Data Item Value" on page 919
- "Data Item Label" on page 923
- "Display for Orientation" on page 929
- "Font" on page 936
- "Foreground Color" on page 937
- "Margin" on page 951
- "Name" on page 961
- "Padding" on page 968
- "Relative Alignment" on page 977
- "Report Expression" on page 980
- "Render Variable" on page 978
- "Source Type" on page 993
- "Style Variable" on page 996
- "Text" on page 1000
- "Text Source Variable" on page 1000
- "Visible" on page 1011

Hyperlink Button
A hyperlink that is formatted as a button. The hyperlink can be defined as a static value, a query item, or as the result of a report expression. If a report expression is used, then the other values are ignored.

Properties of Hyperlink Button

- "Background Color" on page 902
- "Border" on page 905
- "Classes" on page 912
- "Conditional Styles" on page 916
- "Control Data Item Value" on page 919
- "Control Data Item Value" on page 922
- "Data Item Label" on page 923
- "Display for Orientation" on page 929
- "Font" on page 936
- "Foreground Color" on page 937
- "Margin" on page 951
- "Name" on page 961
- "Padding" on page 968
- "Relative Alignment" on page 977
- "Render Variable" on page 978
- "Report Expression" on page 980
- "Report Expression" on page 980
- "Source Type" on page 993
- "Source Type" on page 993
- "Style Variable" on page 996
- "Text" on page 1000
- "Text Source Variable" on page 1000
- "URL" on page 1006
- "URL Source Variable" on page 1006

Image
A link to an image file. The link can be a static value, or it can come from a report expression or query item. Use the URL source properties of the image object to define the link.

Properties of Image

- "Aggregate Function" on page 895
- "Alternate Text" on page 897
- "Background Color" on page 902
- "Border" on page 905
- "Box Type" on page 907
- "Classes" on page 912
- "Conditional Styles" on page 916
- "Control Data Item Value" on page 919
- "Data Item Label" on page 923
- "Display for Orientation" on page 929
- "Drill-Through Definitions" on page 931
- "Expression" on page 933
- "Hierarchy" on page 941
- "Hierarchy Unique Name" on page 941
- "Level" on page 949
- "Level Unique Name" on page 949
- "Margin" on page 951
- "Member" on page 957
- "Member Unique Name" on page 958
- "Name" on page 961
Intersection (Tuple)

A data item obtained from the combination of two or more members that you specify. An intersection appears as a single, unified member instead of its component members. Each member must be from a different dimension.

Properties of Intersection (Tuple)

“Dimension” on page 928, “Hierarchy” on page 941, “Label” on page 946, “Members” on page 958, “Name” on page 960, “Type” on page 1005

Interval Prompt

An advanced prompt control that allows you to enter time duration values.

Properties of Interval Prompt


Iterator

A static iterator control that allows users to navigate through values by using buttons such as previous and next. Each value in the iterator comes from a row in the data table of the control.

Properties of Iterator


Iterator First

The button in the iterator that moves the control to the first value.
Properties of Iterator First


Iterator Label Area

The area in the iterator that shows the label of the current value.

Properties of Iterator Label Area


Iterator Last

The button in the iterator that moves the control to the last value.

Properties of Iterator Last


Iterator Next

The button in the iterator that moves the control to the next value.

Properties of Iterator Next


Iterator Previous

The button in the iterator that moves the control to the previous value.

Properties of Iterator Previous


Iterator Value

A data item that is used to determine the data that appears in an iterator control.

Properties of Iterator Value

“Data Item” on page 922

Iterator Value Icon

The icon used to identify each value in an iterator control. The icons are obtained from a data item inserted into the control.

Properties of Iterator Value Icon

“Data Item” on page 922
Iterator Value Label

The label used to identify each value in a data iterator control. Each label is determined by the data items inserted into the control.

Properties of Iterator Value Label

“Data Item” on page 922

Join

A relationship between a field in one table or query and a field of the same data type in another table or query.

Properties of Join

“Join Relationships” on page 945

Key

An object that uniquely identifies members of a level.

If the unique identifier is a primary or alternate key, you need only one key object.
If the unique identifier is a composite key, you need one key object for every data item that participates in making the members of a level unique.

Properties of Key

“Data Item” on page 922, “Name” on page 963

Label

Specifies the text, or label, for the object in a chart.

Properties of Label


Layout Component Reference

A reference to another layout object. Before you can reference an object, its ID property must be set.

Properties of Layout Component Reference

“Component Reference” on page 915, “Embed” on page 932, “Overrides” on page 968

Legend

A key to the patterns or colors assigned to the data series in a chart. This object applies only to legacy charts.

Properties of Legend

Legend
A key to the patterns or colors assigned to the data series in a chart.

Properties of Legend

Legend Title
The title for the legend, including the title text and text style. If this object is empty, a default title is rendered, if available. This object applies only to legacy charts.

Properties of Legend Title

Legend Title
The title for the legend, including the title text and text style. If this object is empty, a default title is rendered, if available.

Properties of Legend Title

Level
A set of members with a predefined set of similar characteristics. For example, the members Year 1999 and Year 2000 in the Time dimension form a year level, while the corresponding quarters form a quarter level.

Properties of Level
Level Hierarchy
Specifies how the levels in a dimension are logically ordered.

Properties of Level Hierarchy

*Name* on page 963

Level Set
A set of data items that define the members of a level.

Properties of Level Set


Line
The data marker used to represent a data series in a line chart.

Properties of Line


Line
The data marker used to represent a data series in a line chart. This object applies only to legacy charts.

Properties of Line


List
A layout object that is used to present query results in a list fashion.

Properties of List

List Box

A static list box control. Each item in the list requires a corresponding row in the data table of the control.

Properties of List Box

- Application Drill-Through
- Contained Text Direction
- Container Filter
- Container Select
- Control Enable
- Direction & Justification
- Display for Orientation
- List Items Definition
- Multi-Select
- Name
- No Value List Item
- Render Variable
- Set Variable Values

List Cell

A cell in a row, you can use for a list header or footer.

Properties of List Cell

- Aggregate Function
- Background Color
- Background Effects
- Border
- Box Type
- Classes
- Conditional Styles
- Data Format
- Direction & Justification
- Expression
- Font
- Foreground Color
- Hierarchy
- Hierarchy Unique Name
- Horizontal Alignment
- Level
- Level Unique Name
- Member
- Member Unique Name
- Output Aggregation Method
- Padding
- Property Unique Name
- Rollup Aggregate Function
- Root Members Only
- Set Definition
- Set Sorting
- Size & Overflow
- Spacing & Breaking
- Style Variable
- Table Header
- Vertical Alignment
- White Space

List Column

A column in a list. Generally, the column will contain a query item, but it may also contain any number of layout objects. For example, the To column in a statement list may present the address in a table format. If the column only contains a query items, then the column will automatically span the group if the query item is grouped.
Properties of List Column


List Column Body

The contents of a column in a list report.

Properties of List Column Body


List Columns

A set of columns in a list.

Properties of List Columns


List Columns

Overrides the style for List Column objects that is defined in the GlobalReportStyles.css file.

Properties of List Columns

List Columns Body Style

Overrides the style for List Column Body objects that is defined in the GlobalReportStyles.css file.

Properties of List Columns Body Style

List Columns Title Style

Overrides the style for List Column Title objects that is defined in the GlobalReportStyles.css file.

Properties of List Columns Title Style

List Column Title

The title of a list column.

Properties of List Column Title
List Footer
Overall footer that appears once at the end of lists. Footers are containers in which you can insert text, images, data items, and report expressions such as the page number.

Properties of List Footer

List Header
Overall header that appears once at the top of lists. Headers are containers in which you can insert text, images, data items, and report expressions such as the current date.

Properties of List Header

List Item
A list item in a static list box control.

Properties of List Item
“Icon” on page 943, “Label” on page 945

List Item Icon
The icon used to identify each item in a data list box control. The icons are obtained from a data item inserted into the control.

Properties of List Item Icon
“Data Item” on page 922

List Item Label
The label used to identify each item in a data list box control. Each label is determined by the data items inserted into the control.

Properties of List Item Label
“Data Item” on page 922

Appendix G. Report Studio Object and Property Reference
List Item Value

Data items that are used to determine what appears as the item labels in a data list box control.

Properties of List Item Value

“Data Item” on page 922

List Page Footer

The footer that appears at the bottom of every page of a list report. This object is rendered after the list details and other list footers. It is useful for presenting page totals.

Properties of List Page Footer

“Push To Bottom” on page 975

List Page Header

The header in the list that will appear on every page rendered. It occurs after the column titles and before the overall group header of the list. It is useful for presenting carry forward totals.

Properties of List Page Header

“Display After Overall Header” on page 929

List Row

A row in a list.

Properties of List Row


List Row Cells Style

Overrides the style for Row Cells Style objects that is defined in the GlobalReportStyles.css file.

Properties of List Row Cells Style

List Summary
A summary that is automatically added as the footer row in a list.

Properties of List Summary

List Summary
The list summary that appears in executed active reports.

Properties of List Summary

Map
A chart that uses a map to show data.

Properties of Map

Map Location
Associates a data series with regions on the region layer of the map.

Properties of Map Location
Map Location
Associates a data series with points on the point layer of the map.

Properties of Map Location

Map Refinement Location
Qualifies the data series members that are associated with regions on the map.

Properties of Map Refinement Location

Map Refinement Location
Qualifies the data series members that are associated with points on the map.

Properties of Map Refinement Location

Marimekko Chart
A type of bar chart that can show three levels of data.

Properties of Marimekko Chart
Marker

A marker, or symbol, that you can place at a static place in a chart. Markers can designate a point of significance that may help you analyze or understand the data.

Properties of Marker

- **Aggregate Function** on page 895
- **Data Item Value** on page 924
- **Expression** on page 933
- **Hierarchy** on page 941
- **Hierarchy Unique Name** on page 941
- **Label Location** on page 946
- **Level** on page 949
- **Level Unique Name** on page 949
- **Marker Shape** on page 953
- **Marker Size (pt)** on page 953
- **Master Detail Relationships** on page 954
- **Member** on page 957
- **Member Offset (%)** on page 957
- **Member Unique Name** on page 958
- **Properties** on page 974
- **Property Unique Name** on page 974
- **Query** on page 975
- **Render Variable** on page 978
- **Rollup Aggregate Function** on page 982
- **Root Members Only** on page 983
- **Set Definition** on page 986
- **Set Sorting** on page 987
- **Standard Deviations** on page 995
- **Visible** on page 1011
- **Visual Angle** on page 1012
- **Y Axis** on page 1014

Marker

A marker, or symbol, that you can place at a static place in a chart. Markers can designate a point of significance that may help you analyze or understand the data. This object applies only to legacy charts.

Properties of Marker

- **Axis Assignment** on page 900
- **Bar, Line, or Area Index** on page 904
- **Box Type** on page 908
- **Data Item Value** on page 923
- **Label** on page 946
- **Marker Color** on page 952
- **Marker Shape** on page 953
- **Marker Size (pt)** on page 953
- **Master Detail Relationships** on page 954
- **Numeric Value** on page 966
- **Percentile** on page 970
- **Percent of Axis** on page 970
- **Position type** on page 972
- **Properties** on page 974
- **Query** on page 975
- **Report Expression** on page 980
- **Standard Deviations** on page 995

Marker

A marker on a point chart. Point charts include scatter charts, polar charts, radar charts, and bubble charts. This object applies only to legacy charts.

Properties of Marker

- **Box Type** on page 908
- **Data Item Value** on page 924
- **Expression** on page 933
- **Label** on page 946
- **Marker Color** on page 952
- **Marker Shape** on page 953
- **Marker Size (pt)** on page 953
- **Master Detail Relationships** on page 954
- **Numeric Value** on page 966
- **Percentile** on page 970
- **Percent of Axis** on page 970
- **Position type** on page 972
- **Properties** on page 974
- **Query** on page 975
MDX

A multidimensional expression (MDX) query against an OLAP data source.

Properties of MDX

Measure

A data item that defines a measure.

Properties of Measure

Member

A data item that defines a member.

Properties of Member

Member Children Set

A set of data items that define the children set of a member.

Properties of Member Children Set

Member Hierarchy

The organization of a dimension's members into a logical tree structure, with each member having one or more "parent" members and an arbitrary number of "child" members.

Properties of Member Hierarchy

Member Property

A property that is associated with members of a level. Attributes can be used to refine a search within level members, or to provide additional information about members.
Properties of Member Property

"Data Item" on page 922, "Name" on page 963

Member Property

A member property from either a level or a hierarchy.

Properties of Member Property

"Dimension" on page 928, "Hierarchy" on page 941, "Label" on page 946, "Level" on page 949, "Name" on page 960, "Property" on page 974, "Property Unique Name" on page 974, "Type" on page 1005

Member Set

A data item that represents a named set. Member sets supply the context for expressions that require evaluation for multiple dimensions. For example, they determine the contexts for which you can apply analytical functions such as rank.

Properties of Member Set

"Data Item" on page 922, "Name" on page 962

Metrics Range Chart

A chart that superimposes target value markers, target range markers, and tolerance range markers over any number or combination of bar, line, and area charts.

Properties of Metrics Range Chart


Metric Studio Diagram

A Metric Studio diagram rendered as a static image.
Properties of Metric Studio Diagram

Named Set
A reference to a named set from the model.

Properties of Named Set

Note
A note on a chart. The source of the note text can be static text, a query item, or a report expression.

Properties of Note

Note
A note on a chart. The source of the note text can be static text, a query item, or a report expression. This object applies only to legacy charts.

Properties of Note

Note Content
The content and style of a note.

Properties of Note Content

No Value List Item
The default item in a list control. When the default item is selected when the report is run, it sets the value of the data item in the control to null. By default, the no value item is the first item in the list.

Properties of No Value List Item
Numerical Axis
The numeric axis for a progressive chart, including labels, titles, range, scale, and gridlines. This object applies only to legacy charts.

Properties of Numerical Axis

Numerical Axis
The numeric axis for a Pareto chart, including labels, titles, and gridlines. This object applies only to legacy charts.

Properties of Numerical Axis

Numeric Axis
The axis that displays numbers.

Properties of Numeric Axis

Numeric Baseline
The baseline on a numeric axis.

Properties of Numeric Baseline

Page
A page in a layout.
Properties of Page


Page Body
The main body of a page.

Properties of Page Body

“Classes” on page 912, “Size & Overflow” on page 991

Page Break Text
The text associated with a page break.

Properties of Page Break Text


Page Footer
The footer of a page.

Properties of Page Footer

“Classes” on page 912, “Size & Overflow” on page 991

Page Header
The header of a page.

Properties of Page Header

“Classes” on page 912, “Size & Overflow” on page 991

Page Number
The number of a page.

Properties of Page Number

Page Set

The set of pages to render according to a grouping structure.

Properties of Page Set

- "Grouping & Sorting" on page 939
- "Master Detail Relationships" on page 954
- "Name" on page 960
- "Pagination" on page 968
- "Properties" on page 974
- "Query" on page 975

Pareto Bars

The bars in a Pareto chart.

Properties of Pareto Bars

- "Axis Labels" on page 900
- "Axis Line" on page 901
- "Axis Range" on page 901
- "Axis Title" on page 902
- "Gridlines" on page 939
- "Minor Gridlines" on page 959
- "Number of Minor Intervals" on page 965

Pareto Chart

A chart in which data series appear as colored sections stacked in columns or bars. The maximum of each column or bar represents the series total as a percentage of the overall total of all data series in the chart.

Negative values are not supported in Pareto charts.

Properties of Pareto Chart

- "Alternate Text" on page 897
- "Application Drill-Through" on page 898
- "Background Effects" on page 903
- "Bar Width" on page 904
- "Bevel" on page 905
- "Border" on page 905
- "Border Color" on page 906
- "Borders" on page 906
- "Box Type" on page 907
- "Category Baselines" on page 911
- "Chart Orientation" on page 911
- "Classes" on page 912
- "Clickable Regions" on page 913
- "Colored Regions" on page 914
- "Conditional Palette" on page 916
- "Controllable Text Direction" on page 917
- "Container Select" on page 918
- "Cumulative Line" on page 920
- "Depth" on page 926
- "Direction & Justification" on page 928
- "Display for Orientation" on page 929
- "Drill-Through Definitions" on page 931
- "Drop Shadow" on page 931
- "Legend" on page 948
- "Margin" on page 951
- "Markers" on page 953
- "Master Detail Relationships" on page 954
- "Material Effects" on page 954
- "Matrix Rows and Columns" on page 955
- "Maximum Hotspots" on page 955
- "Name" on page 961
- "No Data Contents" on page 963
- "Notes" on page 964
- "Numeric Baselines" on page 966
- "Padding" on page 968
- "Pagination" on page 968
- "Palette" on page 969
- "Plot Area Fill" on page 971
- "Query" on page 975
- "Relative Alignment" on page 977
- "Render Page when Empty" on page 978
- "Render Variable" on page 978
- "Set Variable Values" on page 987
- "Show Hover" on page 988
- "Show Pointer Cursor" on page 989
- "Show Values" on page 990
- "Size & Overflow" on page 991
- "Summarize Small Items" on page 997
- "Suppression" on page 997
- "Title" on page 1001
- "ToolTips" on page 1002
- "Visible" on page 1011
Negative values are not supported in Pareto charts.

**Properties of Pareto Chart**


**Pie Chart**

A chart that uses sections of a circle as data markers to plot one or more data series. The size of each section is proportional to the value of each data series for a given category value. Each pie corresponds to a category value. This object applies only to legacy charts.

**Properties of Pie Chart**

Properties of Pie Chart

Pie Labels
The labels that will be drawn if multiple pie charts are rendered. If this object does not exist, no labels will be rendered.

Properties of Pie Labels

Point Color Legend Title
The title for the point color legend. If this object is empty, a default title is rendered, if available.

Properties of Point Color Legend Title

Point Layer
A map layer that includes points, such as cities. The color and size of each point is determined by their respective measure.

Properties of Point Layer
Point Measure
The measure that determines the colors of points on a map chart.

Properties of Point Measure

Point Size Legend Title
The title for the point size legend. If this object is empty, a default title is rendered, if available.

Properties of Point Size Legend Title

Point Size Measure
The measure that determines the size of the points on a map chart.

Properties of Point Size Measure

Polar Chart
A point chart that plots one or more data series against two measures. The radius of a data series is determined by one measure and the arc is determined by the other measure. Multiple points are plotted for each category. They can be distinguished with the help of tool tips if the Tool Tip property is set to Yes.

Properties of Polar Chart

Data” on page 988, “Size Legend Title” on page 992, “Style Variable” on page 996, “Values” on page 1010
Primary Axis
The generic numeric axis for the combination chart. This axis is normally shown as the top-left axis but can be in a different position depending on the chart orientation, as specified in the Chart Orientation property of the chart.

Properties of Primary Axis

Primary Bottom Axis
The numeric axis for a combination chart. This axis is normally rendered as the bottom-left axis, but can change depending on the orientation of the chart, as specified in the Chart Orientation property of the chart.

Properties of Primary Bottom Axis

Progressive Chart
A chart that uses columns as data markers to plot one category across a single measure. The top of the first column represents the starting value for the second column. This chart emphasizes the positive or negative contribution of each value to the total.

Properties of Progressive Chart
Progressive Chart
A chart that uses columns as data markers to plot one category across a single
measure. The top of the first column represents the starting value for the second
column. This chart emphasizes the positive or negative contribution of each value
to the total. This object applies only to legacy charts.

Properties of Progressive Chart

Prompt Button
A predefined button used in prompt pages. Its usage changes according to its Type
property, which can be set to Cancel, Back, Next, Finish, or Reprompt.

Properties of Prompt Button

Query
The data that is to be retrieved from the database. The query consists of a source, a
selection, detailed and summary filters, and dimension information.

Properties of Query
Query Operation

Union, Intersect, Except (minus) operations on one or more queries that result in a projection list upon which other queries can be based.

Properties of Query Operation

“Duplicates” on page 932, “Name” on page 961, “Projection List” on page 974, “Set Operation” on page 987

Query Reference

A reference to another query defined in the same query set.

Properties of Query Reference

“Cardinality” on page 910

Radar Chart

A chart that integrates multiple axes into a single radial figure as lines or stacked areas.

Properties of Radar Chart


Radial Axis

The radial numeric axis for a polar chart or radar chart, including labels, titles, range, and scale.
Properties of Radial Axis

Radial Measure
The measure that determines the distance between the center of the chart and each data marker.

Properties of Radial Measure

Radio Button
A radio button in a static radio button group control.

Properties of Radio Button

Radio Button Group
A static radio button group control. Each radio button requires a corresponding row in the data table of the control.

Properties of Radio Button Group

Radio Button Icon
The icon used to identify each radio button in a data radio button group control. The icons are obtained from a data item inserted into the control.

Properties of Radio Button Icon

Radio Button Label
The label used to identify each radio button in a data radio button group control. Each label is determined by the data items inserted into the control.

Properties of Radio Button Label
Radio Button Value
Data items that are used to determine what appears as the radio button labels in a data radio button group control.

Properties of Radio Button Value

Region Color Legend Title
The title for the region color legend. If this object is empty, a default title is rendered, if available.

Properties of Region Color Legend Title

Region Layer
A map layer that includes regions, such as provinces.

Properties of Region Layer

Region Measure
The measure that determines the colors of regions on a map chart.

Properties of Region Measure

Regression Line
A regression line for a bubble chart or scatter chart.

Properties of Regression Line

Regression Line Label
A label that will be shown in the legend for the regression line.

Repeater
A table into which you can insert items that will be repeated.
Properties of Repeater


Repeater Table

Renders query data in a table.

Properties of Repeater Table


Repeater Table Cell

The contents of a repeater table object.

Properties of Repeater Table Cell


Repeater Table Cell

A cell in an active report repeater table.

Properties of Repeater Table Cell

Rich Text Item

Inserts an object that is used to render a subset of HTML in the layout. The HTML may come from either a static or dynamic source, and the object will also render in PDF output. For information about what elements are allowed in rich text items, see Elements Supported in Rich Text Items.

Properties of Rich Text Item

Row Number

Shows the row numbers in a column.

Properties of Row Number

Row Number

Shows the row numbers in a column in an active report. The active report row number object will always reflect the visible row number in the report. The report row number object reflects the server calculated row number.

Properties of Row Number

Scatter Chart

A point chart that plots one or more data series against two measures. Multiple points are plotted for each category. This object applies only to legacy charts.

Properties of Scatter Chart
Scatter Chart

A point chart that plots one or more data series against two measures. Multiple points are plotted for each category.

Properties of Scatter Chart

Scatter Marker

A marker, or symbol, that you can place at a static place in a chart. Markers can designate a point of significance that may help you analyze or understand the data.

Properties of Scatter Marker
Secondary Axis
The generic numeric axis for the combination chart. This axis is normally shown as the top-right axis but can be in a different position depending on the chart orientation, as specified in the Chart Orientation property of the chart.

Properties of Secondary Axis
- Axis Labels on page 900, Axis Line on page 901, Axis Range on page 901
- Axis Title on page 902, Axis Title on page 901, Gridlines on page 939
- Minor Gridlines on page 959, Number of Minor Intervals on page 965

Secondary Bottom Axis
The numeric axis for a combination chart. This axis is normally shown as the bottom-right axis, but can change depending on the orientation of the chart, as specified in the Chart Orientation property of the chart.

Properties of Secondary Bottom Axis
- Axis Labels on page 900, Axis Line on page 901, Axis Range on page 901
- Axis Title on page 902, Axis Title on page 901, Gridlines on page 939
- Minor Gridlines on page 959, Number of Minor Intervals on page 965

Select & Search Prompt
An advanced prompt control that allows you to search for values. You cannot use this prompt control with SAP BW data sources.

Properties of Select & Search Prompt
- Box Type on page 908, Cascade Source on page 910, Case Insensitive on page 910
- Choices Deselect All Text on page 912, Choices Select All Text on page 912
- Choices Text on page 912, Conditional Styles on page 916
- Contained Text Direction on page 917, Data Format on page 921, Deselect text on page 927
- Direction & Justification on page 928, Display Value on page 930, Hide Adornments on page 941
- Insert Text on page 941, Keywords text on page 945, Multi-Select on page 960
- Name on page 961, Options Text on page 967, Parameter on page 969, Properties on page 974
- Query on page 976, Remove text on page 976, Render Variable on page 978, Required on page 981
- Results Deselect All Text on page 981, Results Select All Text on page 982
- Results Text on page 982, Rows Per Page on page 984, Search Instructions Text on page 984
- Search Text on page 985, Sorting on page 993, Static Choices on page 995
- Style Variable on page 996, Use Value on page 1009
- Visible on page 1011

Set Expression
A set of members.

Properties of Set Expression
- Detail on page 927, Dimension on page 928, Expression on page 933
- Hierarchy on page 941, Label on page 946, Name on page 960, Set Sorting on page 987
- Type on page 1005
Singleton
A query item that you can insert anywhere in the layout of your report where there is no query associated. When the report is run, the singleton object retrieves only the first row value for that query. Singletons are useful for adding boilerplate text to a report, such as a company name or address, to add overall calculations in a report, or to add multidimensional cell calculations in a report.

Properties of Singleton

“Name” on page 961, “Properties” on page 974, “Query” on page 975, “Render Variable” on page 978

Slicer Member Set
A set expression that returns members from a single hierarchy of a single dimension.

Properties of Slicer Member Set

“Expression” on page 933

SQL
An SQL query against a relational data source.

Properties of SQL

“Data Source” on page 924, “Name” on page 962, “SQL” on page 994, “SQL Syntax” on page 995

Static Repeater Table
An active report layout object that is used to present data in a repeating structure. Repeater table controls allow you to create button bars or grids of custom content that control the content that appears in other controls.

Properties of Static Repeater Table


Summary Filter
A set of conditions in a query that narrow the scope of the data returned. A summary filter is applied after aggregation is complete.
Properties of Summary Filter

"Definition" on page 926, "Scope" on page 984, "Usage" on page 1006

Tab

A tab in a static tab control.

Properties of Tab

"Icon" on page 943, "Label" on page 945

Tab Control

A static tab control. Each tab requires a corresponding row in the data table of the control.

Properties of Tab Control


Tab Icon

The icon used to identify each tab in a data tab control. The icons are obtained from a data item inserted into the control.

Properties of Tab Icon

"Data Item" on page 922

Tab Label

The label used to identify each tab in a data tab control. Each label is determined by the data items inserted into the control.

Properties of Tab Label

"Data Item" on page 922

Table

A collection of cells in which objects can be organized in a grid fashion.

Properties of Table

Table Cell
The cells within a row.

Properties of Table Cell

Table of Contents
A collection of Table of Contents Entry objects that refer the same table of contents. The table of contents is generated in the rendered output.

Properties of Table of Contents

Table of Contents Entry
An entry in the table of contents.

Properties of Table of Contents Entry

Table Row
The rows in a table.

Properties of Table Row
Tab Value
Data items that are used to determine what appears as the tab labels in a data tab control.

Properties of Tab Value
“Data Item” on page 922

Target Measure
The target measure for a bullet chart.

Properties of Target Measure
“Custom Label” on page 921, “Data Format” on page 921

Target Measure
The target measure for a metrics range chart.

Properties of Target Measure

Text Box Prompt
A prompt control that allows you to type in a value.

Properties of Text Box Prompt

Text Item
A text item in a report. The content can be static text, or it can come from a query item or report expression.

Properties of Text Item
Time

Returns the time on the report server when the report server started rendering the report.

Properties of Time

- Background Color
- Classes
- Data Format
- Display for Orientation
- Font
- Foreground Color
- Margin
- Relative Alignment

Time Prompt

An advanced prompt control that allows you to select a time value.

Properties of Time Prompt

- Box Type
- Choices Deselect All Text
- Choices Select All Text
- Clock Mode
- Conditional Styles
- Default Selections
- Display Milliseconds
- Display Seconds
- From Text
- Hide Adornments
- Highest Value Text
- Insert Text
- Lowest Value Text
- Multi-Select
- Name
- Parameter
- Range
- Remove Text
- Required
- Select UI
- Style Variable
- To Text
- Visible

Toggle Button Bar

A static toggle button bar control. Each toggle button requires a corresponding row in the data table of the control.

Properties of Toggle Button Bar

- Application Drill-Through
- Button Gap
- Buttons Definition
- Button Width
- Contained Text Direction
- Container Select
- Control Enable
- Direction & Justification
- Display for Orientation
- Name
- Orientation
- Render Variable
- Set Variable Values
Tolerance Measure
The tolerance measure for a metrics chart.

Properties of Tolerance Measure

Total Column
A column or bar representing the total cumulative value of all other columns or bars in a progressive chart.

Properties of Total Column

Total Column Label
The label to be rendered for the total column.

Properties of Total Column Label

Tree Prompt
A data-driven prompt control that shows hierarchical information and allows you to select one or more members.

Properties of Tree Prompt

Trendline
A line or curve that indicates the general direction of the data over time.

Properties of Trendline
Trendline Label

A label that will be shown in the legend for the trend line.

Properties of Trendline Label

Conditional Styles” on page 916, “Data Format” on page 921, “Properties” on page 974, “Query” on page 975

Value

The return value from the evaluation of the report variable.

Value

A group of two or more variable values.

Value Prompt

A prompt control that allows you to select one or more values from a list.

Properties of Value Prompt


Variable

A report variable.

Properties of Variable

“Name” on page 962, “Report Expression” on page 981, “Type” on page 1005

Variable Text Item

A text item that renders the value of an active report variable.

Properties of Variable Text Item

Win-Loss Chart

A microchart in which the value of each column is either 1 or -1, often denoting a win or a loss.

Properties of Win-Loss Chart

- Allow Ties
- Axis Line
- Background Color
- Background Effects
- Border
- Border Color
- Borders
- Box Type
- Chart Orientation
- Classes
- Conditional Styles
- Drill-Through Definitions
- Font
- Footer
- Foreground Color
- Log Color
- Margin
- Master Detail Relationships
- Maximum Hotspots
- Name
- No Data Contents
- Padding
- Pagination
- Query
- Relative Alignment
- Render Page when Empty
- Render Variable
- Size & Overflow
- Style Variable
- Subtitle
- Suppression
- Title
- Tooltips
- Visible
- Win Color
- Win-Loss Threshold

Win-Loss Measure

The measure for a win-loss chart.

Properties of Win-Loss Measure

- Aggregate Function
- Custom Label
- Data Format
- Expression
- Hierarchy
- Hierarchy Unique Name
- Level
- Level Unique Name
- Member
- Member Unique Name
- Property Unique Name
- Rollup Aggregate Function
- Root Members Only
- Set Definition
- Set Sorting

X Axis

The horizontal numeric axis for the chart, including labels, titles, range, and scale.

Properties of X Axis

- Axis Labels
- Axis Line
- Axis Title
- Classes
- Data Format
- Gridlines
- Include Zero For Auto Scale
- Maximum Value
- Minimum Value
- Minor Gridlines
- Scale
- Scale Interval
- Use Same Range For All Instances

X Axis

The x-axis on a scatter or bubble chart.
Properties of X Axis

X Axis

The axis line for an ordinal, or non-numeric, axis.

Properties of X Axis

X Axis Measure

The measure for the horizontal axis of a scatter chart or bubble chart.

Properties of X Axis Measure

Y1 Axis

The numeric axis of a metrics chart, or the primary numeric axis of a combination chart.

Properties of Y1 Axis

Y2 Axis

The secondary numeric axis of a combination chart.

Properties of Y2 Axis
Y Axis
The vertical numeric axis for the chart, including labels, titles, range, and scale.

Properties of Y Axis

Y Axis
The y-axis on a scatter or bubble chart.

Properties of Y Axis

Y Axis
The axis line for an ordinal, or non-numeric, axis.

Properties of Y Axis

Y Axis Measure
The measure for the vertical axis of a scatter chart or bubble chart.

Properties of Y Axis Measure

Z Axis
The third numeric axis for a three-dimensional scatter chart, including labels, titles, range, and scale.

Properties of Z Axis
Z Axis

The vertical numeric axis for a three-dimensional combination chart, including labels, titles, range, and scale.

Properties of Z Axis

- Axis Labels
- Axis Line
- Axis Title
- Classes
- Data Format
- Gridlines
- Include Zero For Auto Scale
- Maximum Value
- Minimum Value
- Minor Gridlines
- Scale
- Scale Interval
- Use Same Range For All Instances

Z Axis Measure

The measure for the third axis of a three-dimensional scatter chart.

Properties of Z Axis Measure

- Conditional Styles
- Custom Label
- Data Format
- Style Variable

Report Studio Properties

The following is a list of properties available in the lower left pane of IBM® Cognos® Report Studio.

3-D Viewing Angle

Specifies the 3-D viewing angle of the chart.

Applies to

- 3-D Combination Chart
- 3-D Scatter Chart

Absolute Position

Specifies that the legend will be positioned absolutely, by setting its pixel position.

Applies to

- Legend

Across

Sets the number of times across, or horizontally, that the contents of the object may be rendered.

The default value depends on the setting of the Repeater Direction property. If it is set to Left to right, top to bottom, the default is one. If it is set to Top to bottom, left to right, the default is 20.
Applies to

“Repeater Table” on page 880, “Static Repeater Table” on page 884

Active Dot Color
Specifies the color of the dot of the selected value in the iterator.

Applies to

“Iterator Label Area” on page 854

Active Report Variable
Specifies the variable to use in the control.

Applies to

“Variable Text Item” on page 890

Aggregate Data Item
Specifies the data item that is used to calculate the summary or aggregation.

Applies to

“Dimensional Edge Summary” on page 847, “Edge Summary” on page 848, “List Summary” on page 863

Aggregate Function
Specifies the type of aggregation to apply. The Automatic setting means that the application groups or summarizes based on the data type. The Summarize setting means that any setting found in the model will be used to determine the type of aggregation. The default setting is Automatic.

Applies to


Aggregation Method
Specifies the type of summary or aggregation that is applied.
Applies to
“Dimensional Edge Summary” on page 847, “Edge Summary” on page 848

Aggregation Method
Specifies the type of summary or aggregation that is applied.

Applies to
“List Summary” on page 863

Allow 45° Rotation
Specifies whether the labels can be rotated 45 degrees if the labels are long.

Applies to
“Category Axis” on page 830, “X Axis” on page 892, “Y Axis” on page 893

Allow 90° Rotation
Specifies whether the labels can be rotated 90 degrees if the labels are long.

Applies to
“Category Axis” on page 830, “X Axis” on page 892, “Y Axis” on page 893

Allow Skip
Specifies whether some labels can be skipped if they are long.

Applies to
“Category Axis” on page 830, “X Axis” on page 892, “Y Axis” on page 893

Allow Sorting
Specifies whether sorting is allowed for the column when the active report is executed. You can set the value of this property for multiple objects simultaneously by first control+clicking the items in the report.

Applies to
“List Column” on page 858, “List Column Body” on page 859, “List Column Title” on page 860

Allow Stagger
Specifies whether the labels can be staggered if they are long.

Applies to
“Category Axis” on page 830, “X Axis” on page 892, “Y Axis” on page 893

Allow Ties
Specifies whether data values that equal the Win Loss Threshold property are converted to zero and mapped on the zero line.
Applies to

“Win-Loss Chart” on page 891

Alternate Text

Specifies a text alternative for non-text objects such as images and charts. Use to make reports accessible for people who use screen readers.

Applies to


Angular Axis

Specifies whether the axis is rendered.

Applies to

“Polar Chart” on page 874

Animate

Specifies whether to animate the movement of the slider.

Applies to

“Continuous Values Slider” on page 837, “Data Discrete Values Slider” on page 843, “Discrete Values Slider” on page 847

Application

Specifies if the condition will be applied before or after aggregation and summarization. When true, the condition will apply to the summarized rows, and a fact, or aggregate, in the expression will be interpreted as the aggregated value of the summarized rows. When false, the condition will apply to the detail database rows from the tabular result set prior to aggregation or summarization, and a fact, or aggregate, in the expression will be interpreted as the individual database value before it has been summarized. This property has no effect on OLAP data sources, on references to non-aggregate items, or when automatic summarization is disabled.

Applies to

“Detail Filter” on page 847
Application Drill-Through
Applies to


Apply Single Class
Specifies whether to apply all of the classes defined or only one class. When set to Yes, the last class that was applied is used.

For example, if you applied a class to a crosstab intersection and another class to the member fact cells of a crosstab row, the class applied to the intersection is the last class applied to the fact cells. For information about the order in which classes are applied, see the topic Create and Modify Report and Object Styles.

This property is set to Yes when you are upgrading a report so that the upgraded report will look the same as the original report. This is because objects in reports created using earlier versions of IBM® Cognos® Business Intelligence support only one class.

Applies to

“Crosstab Fact Cells” on page 839

Area Shape
Specifies the shape of an area in an area chart.

Applies to

“Area” on page 823

Auto Font Size
Specifies whether to automatically resize the font to fit the labels.
Applies to

“Axis Labels” on page 824, “Axis Title” on page 824, “Legend” on page 856, “Legend Title” on page 856

**Auto Group & Summarize**

Specifies whether the application will apply suggested aggregate functions to aggregate data items and group all non-aggregate data items, producing groups and summary rows. If it is set to No, detail rows will be rendered.

**Applies to**

“Query” on page 876

**Auto-Sort**

When running the report, specifies whether to automatically sort based on data type.

**Applies to**

“Query” on page 876

**Auto-Submit**

Specifies whether the application submits the prompt page automatically, as soon as a value is changed.

**Applies to**

“Value Prompt” on page 890

**Auto Truncation**

Specifies whether to allow truncation of text.

**Applies to**

“Legend” on page 855

**Avoid Division by Zero**

Specifies whether the application will return a null value when it encounters a division by zero. This property applies only to relational data sources.

**Applies to**

“Query” on page 876

**Avoid Label Collision**

Controls how labels are arranged. If set to false, the chart uses the default positions. If set to true, the chart uses a different layout to avoid label collision. To keep existing reports unchanged, set this property to false.

**Applies to**

“Pie Chart” on page 872
**Axis Angles**
Specifies the start and end angle and the direction of the gauge axis. All angles are measured in degrees starting from the three o’clock position.

**Applies to**
“Gauge Axis” on page 849

**Axis Assignment**
Specifies the numeric axis to use. This property applies only to legacy charts.

**Applies to**

**Axis Assignment**
Specifies which numeric axis to use.

**Applies to**
“Baseline” on page 825

**Axis Justification**
Specifies whether the data labels are aligned to the inside or outside of the gauge axis.

**Applies to**
“Gauge Axis” on page 849

**Axis Labels**
Specifies whether to show or hide axis labels.

**Applies to**

**Axis Labels**
Specifies whether to show or hide axis labels. This property applies only to legacy charts.

**Applies to**
**Axis Line**

Specifies the properties of the axis line in a chart. This property applies only to legacy charts.

**Applies to**

- "Angular Axis" on page 823
- "Category Axis" on page 830
- "Cumulation Line Axis" on page 842
- "Numerical Axis" on page 869
- "Radial Axis" on page 877
- "Win-Loss Chart" on page 891
- "X Axis" on page 891
- "Y1 Axis" on page 892
- "Y2 Axis" on page 892
- "Y Axis" on page 893
- "Z Axis" on page 893

**Axis Line**

Specifies the properties of the axis line in a chart.

**Applies to**

- "Category axis" on page 830
- "Cumulation Line" on page 841
- "Numeric Axis" on page 869
- "Pareto Bars" on page 871
- "Primary Axis" on page 875
- "Primary Bottom Axis" on page 875
- "Secondary Axis" on page 883
- "Secondary Bottom Axis" on page 883
- "X Axis" on page 891
- "Y Axis" on page 893

**Axis Line**

Specifies the properties of the gauge axis line in a gauge chart.

**Applies to**

- "Gauge Axis" on page 849

**Axis Range**

Specifies the appearance of the range of values on an axis.

**Applies to**

- "Cumulation Line" on page 841
- "Gauge Axis" on page 849
- "Numeric Axis" on page 869
- "Pareto Bars" on page 871
- "Primary Axis" on page 875
- "Primary Bottom Axis" on page 875
- "Secondary Axis" on page 883
- "Secondary Bottom Axis" on page 883
- "X Axis" on page 891
- "Y Axis" on page 893

**Axis Title**

Specifies whether an axis title is rendered.

**Applies to**

- "Angular Axis" on page 823
- "Category Axis" on page 830
- "Category axis" on page 830
- "Cumulation Line" on page 841
- "Numerical Axis" on page 869
- "Numerical Axis" on page 869
- "Radial Axis" on page 877
- "Win-Loss Chart" on page 891
- "X Axis" on page 891
- "Y1 Axis" on page 892
- "Y2 Axis" on page 892
- "Y Axis" on page 893
- "Y Axis" on page 893
- "Z Axis" on page 893
- "Z Axis" on page 894
### Axis Title

Specifies whether an axis title will be rendered. This property applies only to legacy charts.

**Applies to**

- Angular Axis on page 823
- Category Axis on page 830
- Cumulation Line on page 842
- Gauge Chart on page 850
- Map on page 863
- Numerical Axis on page 869
- Pie Chart on page 872
- Radial Axis on page 877
- X Axis on page 891
- Y Axis on page 893
- Z Axis on page 894

### Axis Title

Specifies whether to show the axis titles in a chart.

**Applies to**

- Category axis on page 830
- Cumulation Line on page 841
- Gauge Axis on page 849
- Numeric Axis on page 869
- Pareto Bars on page 871
- Pie Chart on page 872
- Primary Axis on page 875
- Primary Bottom Axis on page 875
- Secondary Axis on page 883
- Secondary Bottom Axis on page 883
- X Axis on page 891
- Y Axis on page 893

### Background Color

Specifies the background color for the object.

**Applies to**

- 3-D Combination Chart on page 822
- 3-D Scatter Chart on page 822
- Block on page 826
- Bubble Chart on page 826
- Caption on page 829
- Chart Body on page 831
- Chart Body on page 831
- Combination Chart on page 835
- Conditional Block on page 836
- Conditional Block on page 837
- Context Item Text on page 837
- Crosstab on page 837
- Crosstab Columns on page 838
- Crosstab Columns on page 838
- Crosstab Corner on page 838
- Crosstab Fact Cells on page 839
- Crosstab Intersection on page 839
- Crosstab Member Fact Cells on page 839
- Crosstab Node Member on page 840
- Crosstab Rows on page 840
- Crosstab Rows on page 840
- Crosstab Space on page 841
- Crosstab Summary on page 841
- Date on page 845
- Field Set on page 849
- Gauge Chart on page 850
- Hyperlink on page 852
- Hyperlink Button on page 852
- Image on page 852
- Legend on page 855
- List on page 857
- List Cell on page 858
- List Column on page 858
- List Column Body on page 859
- List Columns on page 859
- List Columns Body Style on page 860
- List Columns Title Style on page 860
- List Column Title on page 860
- List Footer on page 861
- List Header on page 861
- List Row on page 862
- List Row Cells Style on page 862
- List Summary on page 863
- Map on page 863
- Marimekko Chart on page 864
- Metrics Range Chart on page 867
- Note Content on page 868
- Page on page 869
- Page Break Text on page 870
- Page Number on page 870
- Pareto Chart on page 871
- Pie Chart on page 872
- Polar Chart on page 874
- Progressive Chart on page 876
- Prompt Button on page 876
- Radar Chart on page 877
- Repeater Table on page 880
- Repeater Table Cell on page 880
- Repeater Table Cell on page 880
- Row Number on page 881
- Row Number on page 881
- Scatter Chart on page 881
- Static Repeater Table on page 884
- Table on page 885
- Table Cell on page 886
- Table
Background Effects

Specifies the characteristics of a background. You can add background effects only to objects that have a fixed height and width; if a percentage size is given, the effects are ignored.

Applies to


Background Image

Specifies an image to be used as the background for the object.

Applies to

Bar, Line, or Area Index
Specifies which combination object to use when calculating the position. When multiple series exist, the index of 0 represents the topmost bar, line, or area in the Series drop zone, the index of 1 represents the second one, and so on.

**Applies to**

“Baseline” on page 825, “Baseline” on page 825, “Marker” on page 865

Bar Shape
Specifies the shape of the bars in a bar chart.

**Applies to**

“Bar” on page 824

Bar Width
Specifies the width of the bars as a percentage of the space available. For example, if you specify 50 percent, the bar takes up half of the space available and the bars are separated from each other. If you specify 100 percent, there is no space between the bars. The default value is 80.

**Applies to**

“Bar” on page 824, “Pareto Chart” on page 871, “Progressive Chart” on page 875

Based on
Specifies the series data item on which the trendline is based.

**Applies to**

“Trendline” on page 889

Baselines
Adds reference lines to a chart based on numeric or statistical values, calculations, or layout calculations. This property applies only to legacy charts.
Applies to


Bevel

Specifies whether the chart appears with a beveled edge.

Applies to

“Bar” on page 824, “Bullet Chart” on page 827, “Pareto Chart” on page 871, “Pie Chart” on page 872, “Progressive Chart” on page 875

Block Variable

Specifies a variable based on which the block can be conditionally rendered.

Applies to

“Conditional Block” on page 836, “Conditional Block” on page 837

Border

Specifies the width, style, and color for the border of the object.

Applies to

Border Color

Specifies the color of the border rendered around specific chart elements, such as bars, stacks, areas, points, or pie slices.

**Applies to**

- "3-D Area" on page 821
- "3-D Bar" on page 821
- "3-D Line" on page 822
- "3-D Scatter Chart" on page 822
- "Area" on page 823
- "Bar" on page 824
- "Bubble Chart" on page 826
- "Display Layer" on page 848
- "Gauge Chart" on page 850
- "Legend" on page 855
- "Line" on page 857
- "Marimekko Chart" on page 864
- "Pareto Chart" on page 871
- "Point Layer" on page 873
- "Progressive Chart" on page 875
- "Polar Chart" on page 874
- "Progressive Chart" on page 876
- "Radar Chart" on page 877
- "Region Layer" on page 879
- "Scatter Chart" on page 881
- "Win-Loss Chart" on page 891

Border Color

Specifies the color of the borders around the chart body in a pie chart.

**Applies to**

- "Pie Chart" on page 872

Borders

Specifies whether borders are rendered around specific chart elements, such as bars, stacks, areas, points, or pie slices.

**Applies to**

- "3-D Area" on page 821
- "3-D Bar" on page 821
- "3-D Line" on page 822
- "3-D Scatter Chart" on page 822
- "Area" on page 823
- "Bar" on page 824
- "Bubble Chart" on page 826
- "Display Layer" on page 848
- "Gauge Chart" on page 850
- "Legend" on page 855
- "Line" on page 857
- "Marimekko Chart" on page 864
- "Pareto Chart" on page 871
- "Point Layer" on page 873
- "Progressive Chart" on page 875
- "Polar Chart" on page 874
- "Progressive Chart" on page 876
- "Radar Chart" on page 877
- "Region Layer" on page 879
- "Scatter Chart" on page 881
- "Win-Loss Chart" on page 891

Borders

Specifies whether borders appear around the chart body.

**Applies to**

- "Area" on page 823
- "Bar" on page 824
- "Pareto Chart" on page 871
- "Progressive Chart" on page 875

Borders

Specifies whether borders appear around the chart body in a pie chart.
Applies to

“Pie Chart” on page 872

Bottom Position

Specifies the position of the bottom edge of the colored region.

Applies to

“Colored Region” on page 835

Bottom Position (px)

Specifies the pixel position of the bottom edge of the note measured from the bottom of the chart.

Applies to

“Note” on page 868

Bottom Position (px)

Specifies the pixel position of the bottom edge of the legend measured from the bottom of the chart.

Applies to

“Legend” on page 855

Box Type

Each report object has a container, or box, which can be set to display the contents (the default) or not. This property specifies whether to override the default box type for the object.

When set to None, the object is not rendered and its space is not reserved in the report. You could use this property to remove an object completely from a report when a specific condition is met. When set to Inline, you can insert other objects on the same line as the object. When set to Block, you can insert other objects only on the lines above and below the object.

Applies to

Box Type

Each report object has a container, or box, which can be set to display the contents (the default) or not. This property specifies whether to override the default box type for the object. When set to None, the object is not rendered and its space is not reserved in the report.

Applies to

- "Axis Title" on page 824
- "Baseline" on page 825
- "Chart Footer" on page 831
- "Chart Subtitle" on page 832
- "Chart Title" on page 833
- "Crosstab Columns" on page 838
- "Crosstab Corner" on page 838
- "Crosstab Fact Cells" on page 839
- "Crosstab Intersection" on page 839
- "Crosstab Member Fact Cells" on page 839
- "Crosstab Node Member" on page 840
- "Crosstab Rows" on page 840
- "Crosstab Space" on page 841
- "Crossstab Summary" on page 841
- "Date & Time Prompt" on page 846
- "Date Prompt" on page 846
- "Interval Prompt" on page 853
- "Legend" on page 855
- "Legend Title" on page 856
- "List Column Body Style" on page 860
- "List Columns" on page 859
- "List Columns Title Style" on page 860
- "List Footer" on page 861
- "List Header" on page 861
- "List Row Cells Style" on page 862
- "List Row Cells Title Style" on page 862
- "Marker" on page 865
- "Note Content" on page 868
- "Regression Line" on page 879
- "Repeater Table Cell" on page 880
- "Repeater Table Cell" on page 880
- "Select & Search Prompt" on page 883
- "Select Prompt" on page 887
- "Select Prompt" on page 888
- "Select & Search Prompt" on page 888
- "Text Box Prompt" on page 887
- "Text Box Prompt" on page 887
- "Time Prompt" on page 888
- "Value Prompt" on page 890
- "Variable Text Item" on page 890
- "Win-Loss Chart" on page 891

Bubble Size

Specifies how the bubble size is computed. Minimum-Based assigns the smallest bubble to the minimum data value. Zero-Based computes the bubble size relative to 0. This option is compatible with Excel 2002. Zero-Based with Negatives shows negative bubbles as hollow, and the bubbles get larger as they get further from 0. This option is compatible with Excel 2007.

Applies to

- "Bubble Chart" on page 826

Bubble Size

Specifies how bubble sizes are calculated on a bubble chart.

Applies to

- "Bubble Chart" on page 827

Bullet Indicators

Specifies the size and shape of the bullet chart data marker that represents the actual value.
Applies to
“Bullet Chart” on page 827

Button Definition
Defines the button in the control.

Applies to
“Button” on page 828

Button Gap
Specifies the gap between buttons in the button bar.

Applies to

Buttons Definition
Defines the buttons in the button bar.

Applies to
“Button Bar” on page 828, “Toggle Button Bar” on page 888

Button Width
Specifies the width of buttons in the button bar.

Applies to

Button Width
Specifies the width of the button.

Applies to
“Iterator First” on page 853, “Iterator Last” on page 854, “Iterator Next” on page 854, “Iterator Previous” on page 854

Calculation Intersection
Specifies whether to suppress calculated values that occur at the intersection of a data source calculated member and a query-defined calculated member. When values are suppressed, the characters specified for the Not Applicable characters data format appear in the cells.

Applies to
“Calculated Measure” on page 829, “Calculated Member” on page 829, “Data Item” on page 844, “Dimensional Edge Summary” on page 847, “Edge Summary” on page 848
Calendar Type
Specifies the type of calendar to show. The date values are mapped to the selected calendar before being formatted. The default value is inherited from the user’s content language.

Applies to
“Date & Time Prompt” on page 846, “Date Prompt” on page 846

Caption
Specifies the caption for the level.

Applies to
“Level” on page 856

Caption
Specifies the caption.

Applies to
“Calculated Member” on page 829

Cardinality
Specifies the cardinality for this join operand.

Applies to
“Query Reference” on page 877

Cascade Source
Specifies the parameter whose value is used to filter the values displayed in this control.

Applies to
“Select & Search Prompt” on page 883, “Tree Prompt” on page 889, “Value Prompt” on page 890

Case Insensitive
Specifies whether to perform a case insensitive search by default.

Applies to
“Select & Search Prompt” on page 883

Catalog
Specifies the OLAP catalog.

Applies to
“MDX” on page 866
Category Axis
Specifies whether the axis is rendered.

Applies to

Category Baselines
Adds reference lines on the category axis of a chart based on numeric or statistical values, calculations, or layout calculations.

Applies to
“Category Baseline” on page 831, “Combination Chart” on page 836, “Pareto Chart” on page 871, “Progressive Chart” on page 875

Chart Orientation
Specifies whether the chart is rendered vertically or horizontally.

Applies to

Chart Type
Specifies whether the data may be rendered as either a bar, line, or area. This property applies only to legacy charts.

Applies to
“Area” on page 823, “Bar” on page 824, “Line” on page 857

Check Boxes Definition
Defines the check boxes in the check box group.
Applies to

“Check Box Group” on page 833

**Choices Deselect All Text**

Specifies the text for the link below the choices box that deselects all the items in the box. This property applies to all prompts with either multiple selections and ranges or multiple selections and search. The default link text is Deselect All.

**Applies to**


**Choices Select All Text**

Specifies the text for the link below the choices box that selects all the items in the box. This property applies to all prompts with either multiple selections and ranges or multiple selections and search. The default link text is Select All.

**Applies to**


**Choices Text**

Specifies the title that appears above the choices box when multiple selections are enabled. This property applies to the following prompt types: value, text box, date, date & time, time, interval, and select & search. The default title text is Choices.

**Applies to**


**Classes**

Specifies a class to apply to the object. The class provides a default style. If you apply more than one class, the style properties from all classes are merged together when they are applied. However, if the classes have style properties in common, the style properties from the last class applied override those from previous classes.

**Applies to**

Clickable Region

Specifies whether to make the object clickable when the active report is executed. You can set the value of this property for multiple objects simultaneously by first control+clicking the items in the report.

**Applies to**


Clickable Region

Specifies whether to make the object clickable. When (Default) is selected, the value is inherited from the Clickable Regions property of the parent object.

**Applies to**

“Crosstab Intersection” on page 839, “Crosstab Member Fact Cells” on page 839, “Crosstab Node Member” on page 840, “Crosstab Space” on page 841, “Crosstab Summary” on page 841

Clickable Regions

Specifies which areas of the data container are clickable. For some data containers, if you select to make parts clickable, you can further refine which areas are clickable with the Clickable Region property.
Applies to


Clock Mode
Specifies whether the arms of the clock move.

Applies to

“Date & Time Prompt” on page 846, “Time Prompt” on page 888

Color by Value
Specifies how color by value is rendered in a chart.

Applies to

“Bubble Chart” on page 827, “Color by Value Measure” on page 834, “Scatter Chart” on page 882

Colored Regions
Specifies rectangular colored regions drawn in the chart body to highlight parts of the chart. The regions are rendered behind the data markers. The regions are drawn in the same order that they appear in this property. The first region is drawn first, on the bottom, and the last region is drawn on top of the other regions.

Applies to


Color Legend Title
Specifies a title within the legend above the palette for the region color. If this object is not defined, no additional title is drawn. If no legend is drawn, this object is ignored. Styling for this object is inherited from the legend title.

Applies to

“Region Layer” on page 879
**Color Legend Title**

Specifies a title within the legend above the palette for the point color. If this object is not defined, no additional title is drawn. If no legend is drawn, this object is ignored. Styling for this object is inherited from the legend title.

**Applies to**

“Point Layer” on page 873

**Column Coordinate**

Uniquely identifies the column of a node member or spacer on an edge of the crosstab. You cannot modify this value.

**Applies to**

“Crosstab Intersection” on page 839

**Column Titles**

Specifies where or whether column titles may be rendered.

**Applies to**

“List” on page 857

**Column Visibility**

Specifies whether a column is visible when the active report is executed. You can set column visibility based on a condition.

**Applies to**

“List Column” on page 858, “List Column Body” on page 859, “List Column Title” on page 860

**Combinations**

Specifies which axes to show and the chart types to use for the series.

**Applies to**

“Combination Chart” on page 836

**Component Reference**

Specifies the layout object that is referenced. An object is a reusable component only if it has a name.

**Applies to**

“Layout Component Reference” on page 855

**Component Reference**

Specifies the layout object that is referenced. An object is a reusable component only if it has a name. You cannot modify this value.
Applies to "Component Override" on page 836

Conditional Palette
Specifies a conditional palette for the chart.


Conditional Palette
Specifies a conditional palette for the chart. This property applies only to legacy charts.


Conditional Styles
Specifies the conditions and styles used to style the object.

Connecting Lines

Specifies the properties of the lines that connect the segments of a stacked bar. This property is ignored for clustered bars. This property applies only to legacy charts.

Applies to

“Bar” on page 824, “Pareto Chart” on page 871, “Progressive Chart” on page 876

Connecting Lines

Specifies the properties of the lines that connect the segments of a stacked bar in a progressive chart. This property is ignored for clustered bars.

Applies to

“Progressive Chart” on page 875

Contained Text Direction

Specifies the direction of text contained in compound objects. Compound objects include charts, maps, and prompts. Contextual sets the text direction based on the first alphabetic character in the text. If the character belongs to a language that supports bidirectional script, the direction is right to left. Otherwise, the direction is left to right. Numbers and special characters do not influence the text direction. For example, if the text starts with a number followed by an Arabic character, the direction will be right to left. If the text starts with a number followed by a Latin character, the direction will be left to right.

Applies to

Container Filter
Filters items in the control or container based on the value of a variable.

**Applies to**


Container Select
Selects an item in the control or container based on the value of a variable. For example, selects a row in a list, selects a named list item from a drop-down list, or selects a named tab from a tab control.

**Applies to**


Contents Height
Specifies the relative height of list rows. This property is used only when a list has a height defined in the **Size and Overflow** property.

**Stretched** means that the rows will be evenly sized to fit in the list’s height. This is default HTML behavior.
Minimal means that rows will take up only as much space as they need, and be compressed at the top of the list. You can position a footer at the bottom of the list by setting the Push To Bottom property to Yes on a footer object inside the list.

Applies to

“List” on page 857

Control Data Item Value
Specifies the data item used to populate the text item in the control.

Applies to

“Chart Text Item” on page 832, “Chart Text Item” on page 833, “Cumulation Line Label” on page 842, “Hyperlink” on page 852, “Hyperlink Button” on page 852, “Text Item” on page 887

Control Data Item Value
Specifies the data item used to populate the HTML item in the control.

Applies to

“HTML Item” on page 851, “Rich Text Item” on page 881

Control Data Item Value
Specifies the data item used to populate the image in the control.

Applies to

“Hyperlink” on page 852, “Hyperlink Button” on page 852, “Image” on page 852

Control Enable
Enables the control or container based on the value of a variable.

Applies to


Cross Product Allowed
Specifies whether the query will be allowed to run if there is a cross join between database tables. This type of query generates a result set that includes all possible unique combinations of values from the first and second table. The default value is Deny.
Applies to
“Query” on page 876

Cumulation Axis
Specifies whether the axis for the cumulation line is rendered.

Applies to
“Cumulation Line” on page 842

Cumulation Label
Specifies whether a label for the cumulation line is rendered in the legend.

Applies to
“Cumulation Line” on page 842

Cumulation Label
Specifies the label that is shown with the cumulation line on a Pareto chart.

Applies to
“Cumulation Line” on page 842

Cumulative Line
Specifies whether the cumulation line is rendered.

Applies to
“Pareto Chart” on page 871

Cumulative Line
Specifies whether the cumulation line is rendered in a Pareto chart.

Applies to
“Pareto Chart” on page 871

Current Block
Specifies which block is currently being authored.

Applies to
“Conditional Block” on page 836, “Conditional Block” on page 837

Current Card
Specifies which card to show in the report.

Applies to
“Card” on page 830, “Deck” on page 846
Current Tab

Specifies which tab to show in the report.

Applies to

“Tab Control” on page 885

Custom Label

Overrides the default label for the data item.

Applies to


Custom Label

Specifies the data source and format for a text item, such as a legend item, legend title, axis label, or axis title.

Applies to


Data Format

Specifies the data format of the object.

Applies to

Data Format

Specifies the data format of the slider values.

Applies to

- "Continuous Values Slider" on page 837
- "Data Discrete Values Slider" on page 843
- "Discrete Values Slider" on page 847

Data Item

Specifies a reference to a data item. You cannot modify this value.

Applies to

- "Button Icon" on page 829
- "Button Label" on page 829
- "Button Value" on page 829
- "Card Label" on page 830
- "Card Value" on page 830
- "Check Box Icon" on page 834
- "Check Box Label" on page 834
- "Check Box Value" on page 834
- "Crosstab Node Member" on page 840
- "Crosstab Summary" on page 841
- "Iterator Value" on page 854
- "Iterator Value Icon" on page 854
- "Iterator Value Label" on page 855
- "List Item Icon" on page 861
- "List Item Label" on page 861
- "List Item Value" on page 862
- "List Summary" on page 863
- "Member Set" on page 867
- "Radio Button Icon" on page 878
- "Radio Button Label" on page 878
- "Radio Button Value" on page 879
- "Tab Icon" on page 885
- "Tab Label" on page 885
- "Tab Value" on page 887

Data Item Label

Specifies the data item label that defines the text to render.

Applies to

- "Chart Text Item" on page 832
- "Chart Text Item" on page 833
- "Cumulation Line Label" on page 842
- "Hyperlink" on page 852
- "Hyperlink Button" on page 852
- "Text Item" on page 887

Data Item Label

Specifies the data item label that defines the HTML to render.
Applies to

“HTML Item” on page 851, “Rich Text Item” on page 881

Data Item Label
Specifies the data item label that defines the URL.

Applies to

“Hyperlink” on page 852, “Hyperlink Button” on page 852, “Image” on page 852

Data Item Label
Specifies the data item label that defines the bookmark. The value used as the bookmark reference must match this value.

Applies to

“Bookmark” on page 826

Data Item Value
Specifies the data item value that defines the text to render.

Applies to


Data Item Value
Specifies the data item value that defines the HTML to render.

Applies to

“HTML Item” on page 851, “Rich Text Item” on page 881

Data Item Value
Specifies the data item value that defines the URL.

Applies to

“Hyperlink” on page 852, “Hyperlink Button” on page 852, “Image” on page 852

Data Item Value
Specifies the data item value that defines the bookmark. The value used as the bookmark reference must match this value.

Applies to

“Bookmark” on page 826

Data Item Value
Specifies the numeric position by using a data item value.
Applies to


Data Item Value
If the marker or baseline is based on a query calculation, allows you to switch to a different data item.

Applies to

“Marker” on page 865, “Numeric Baseline” on page 869

Data Language
Specifies the language of the data.

Applies to

“Map” on page 863

Data Points
Specifies whether to show data points on the chart and how they are formatted.

Applies to

“Cumulation Line” on page 842

Data Source
Specifies the query data source.

Applies to

“MDX” on page 866, “SQL” on page 884

Days Text
Specifies the title that appears above the days box in interval prompts. The default title text is Days.
Applies to
”Interval Prompt” on page 853

Deck Cards Definition
The cards in the deck. Each card must have a corresponding row in the static data table.

Applies to
”Deck” on page 846

Default Card
Card to display when no other card matches the current variable state.

Applies to
”Data Deck” on page 843

Default Card
Card to display when no other card matches the current variable state.

Applies to
”Deck” on page 846

Default Measure
Specifies the default measure to use for a crosstab or chart. If the measures of the crosstab or chart cannot be determined by what is being rendered on the edges, then the default measure will be rendered.

Applies to
”Crosstab” on page 837

Default Selections
Specifies the collection of default selections for a prompt control.

Applies to
”Date & Time Prompt” on page 846, ”Date Prompt” on page 846, ”Interval Prompt” on page 853, ”Text Box Prompt” on page 887, ”Time Prompt” on page 888, ”Tree Prompt” on page 889, ”Value Prompt” on page 890

Default Title
Specifies whether the default title is generated.

Applies to
”Axis Title” on page 824, ”Legend Title” on page 856
**Default Title**
Specifies whether the default title may be generated.

** Applies to **
“Axis Title” on page 824, “Legend Title” on page 856

**Define Contents**
Overrides the content of the selected crosstab intersection. Use this property to hide measure values for individual cells or to define custom content.

** Applies to **
“Crosstab Intersection” on page 839, “Crosstab Member Fact Cells” on page 839

**Define Custom Grouping**
Specifies the details of the data items in custom groups. Custom groups create groups of data items that are meaningful to you.

** Applies to **
“Custom Groups” on page 842

**Define Member Sets**
Specifies the set structure of a query. If it is not defined, it is assumed that each data item defines an unrelated set.

** Applies to **
“Query” on page 876

**Definition**
Specifies the expression to evaluate when filtering the data.

** Applies to **
“Detail Filter” on page 847, “Summary Filter” on page 884

**Depth**
Specifies the three-dimensional depth effect of the chart. A value of zero indicates a flat chart.

** Applies to **

**Description**
Specifies a description for the object, that is used to assist authoring.
Applies to

“Class” on page 834, “HTML Item” on page 851, “Metric Studio Diagram” on page 867, “Rich Text Item” on page 881

Deselect Text

Specifies the text for the link that deselects the items when the selection is optional. This property applies to the following prompt types: text box, date, date & time, time, interval, value, select & search, and tree. The default link text is Deselect.

Applies to


Detail

Specifies whether the data item is to be used for calculating aggregates or not. When set to Yes, the data item is used to aggregate the lowest level details.

Applies to


Diagram Identifier

Identifies an impact or custom diagram in IBM® Cognos® Metric Studio. Copy the identifier from Metric Studio (Diagrams tab, View the Diagram Identifier button in the Actions column) and paste it in this property. IBM® Cognos® Report Studio decodes the identifier into an image URL. The diagram is imported as a static image.

Applies to

“Metric Studio Diagram” on page 867

Dial Face Fill

Specifies the fill color and effects for the dial face of a gauge chart.

Applies to

“Gauge Chart” on page 849

Dial Outline Color

Specifies the dial outline color in a gauge chart.

Applies to

“Gauge Chart” on page 850
Dictionary
Specifies the aliases to use when matching data values to feature names in the map.

Applies to
"Map" on page 863

Dimension
Specifies a reference to a dimension. You cannot modify this value.

Applies to
"Calculated Measure" on page 829, "Calculated Member" on page 829,
"Dimensional Edge Summary" on page 847, "Explicit Member Set" on page 848,
"Hierarchy Set" on page 833, "Intersection (Tuple)" on page 833, "Level Set" on
page 857, "Measure" on page 866, "Member" on page 866, "Member Children Set"
on page 866, "Member Property" on page 867, "Named Set" on page 868, "Set
Expression" on page 883

Direction & Justification
Specifies text flow properties, such as direction, writing mode, and justification.

Applies to
"Block" on page 826, "Bubble Chart" on page 827, "Bullet Chart" on page 827,
"Button" on page 828, "Button Bar" on page 828, "Check Box Group" on page 833,
"Combination Chart" on page 836, "Conditional Block" on page 836, "Conditional
Block" on page 837, "Context Item Text" on page 837, "Continuous Values Slider"
on page 837, "Crosstab" on page 837, "Crosstab Columns" on page 838, "Crosstab
Columns" on page 838, "Crosstab Corner" on page 838, "Crosstab Fact Cells" on
page 839, "Crosstab Intersection" on page 839, "Crosstab Member Fact Cells" on
page 839, "Crosstab Node Member" on page 840, "Crosstab Rows" on page 840,
"Crosstab Rows" on page 841, "Crosstab Space" on page 841, "Crosstab Summary"on page 841, "Data Button Bar" on page 843, "Data Check Box Group" on page
843, "Data Deck" on page 843, "Data Discrete Values Slider" on page 843, "Data
Drop-Down List" on page 844, "Data Editor" on page 844, "Data List Box" on
page 844, "Data Radio Button Group" on page 845, "Data Tab Control" on page
845, "Data Toggle Button Bar" on page 845, "Date & Time Prompt" on page 846,
"Date Prompt" on page 846, "Deck" on page 846, "Discrete Values Slider" on page
847, "Drop-Down List" on page 848, "Gauge Chart" on page 849, "Hyperlink" on
page 852, "Interval Prompt" on page 853, "Iterator" on page 853, "List" on page
857, "List Box" on page 858, "List Cell" on page 858, "List Column" on page 858,
"List Column Body" on page 859, "List Columns" on page 859, "List Columns" on
page 859, "List Columns Body Style" on page 860, "List Columns Title Style" on
page 860, "List Column Title" on page 860, "List Footer" on page 861, "List
Header" on page 861, "List Row" on page 862, "List Row Cells Style" on page 862,
"List Summary" on page 863, "Map" on page 863, "Page" on page 869, "Page
Break Text" on page 870, "Pareto Chart" on page 871, "Pie Chart" on page 872,
"Progressive Chart" on page 875, "Radio Button Group" on page 878, "Repeater
Table" on page 880, "Repeater Table Cell" on page 880, "Repeater Table Cell" on
page 880, "Row Number" on page 881, "Scatter Chart" on page 882, "Select &
Search Prompt" on page 883, "Static Repeater Table" on page 884, "Tab Control"
on page 885, "Table" on page 885, "Table Cell" on page 886, "Table of Contents"on page 886
Display After Overall Header
Specifications whether the list page header is to be rendered after the overall header.

Applies to
“List Page Header” on page 862

Display for Orientation
Specifies the orientation of the mobile device required to display the object when
the active report is viewed. For example, if Landscape is selected, the object is
displayed only when the mobile device is held in a landscape orientation. The
object is not displayed when the mobile device is rotated into a portrait
orientation.

Applies to
“3-D Combination Chart” on page 822, “3-D Scatter Chart” on page 822, “Block”
on page 826, “Bubble Chart” on page 826, “Bubble Chart” on page 827, “Bullet
Group” on page 833, “Combination Chart” on page 835, “Combination Chart” on
page 836, “Conditional Block” on page 836, “Conditional Block” on page 837,
“Context Item Text” on page 837, “Continuous Values Slider” on page 837,
“Crosstab” on page 837, “Data Button Bar” on page 843, “Data Check Box Group”
on page 843, “Data Deck” on page 843, “Data Discrete Values Slider” on page 843,
“Data Drop-Down List” on page 844, “Data Iterator” on page 844, “Data List Box”
on page 844, “Data Radio Button Group” on page 845, “Data Tab Control” on page
845, “Data Toggle Button Bar” on page 845, “Date” on page 845, “Deck” on page
Set” on page 849, “Gauge Chart” on page 849, “Gauge Chart” on page 850,
“Hyperlink” on page 852, “Hyperlink Button” on page 852, “Image” on page 852,
Summary” on page 863, “Map” on page 863, “Marimekko Chart” on page 864,
“Metrics Range Chart” on page 867, “Page Break Text” on page 870, “Page
Number” on page 870, “Pareto Chart” on page 871, “Pareto Chart” on page 871,
“Pie Chart” on page 872, “Pie Chart” on page 872, “Polar Chart” on page 874,
“Progressive Chart” on page 875, “Progressive Chart” on page 876, “Polar Chart”
on page 874, “Radio Button Group” on page 878, “Repeater Table” on page 880,
“Row Number” on page 881, “Row Number” on page 881, “Scatter Chart” on page
881, “Scatter Chart” on page 882, “Static Repeater Table” on page 884, “Tab
Control” on page 885, “Table” on page 885, “Text Item” on page 887, “Text
Item” on page 887, “Time” on page 888, “Toggle Button Bar” on page 888, “Variable Text
Item” on page 890

Display Frequency
Specifies the frequency for which chart labels are to be rendered. If set to 3, for
example, every third label will be rendered. This property applies only to legacy
charts.
Applies to

"Category Axis" on page 830, "X Axis" on page 892, "Y Axis" on page 893

**Display Milliseconds**

Specifies whether to show the milliseconds. The format of the milliseconds can be controlled by selecting a specific format. This property is ignored if seconds are not rendered. The default value is inherited from the user's content language.

Applies to

"Date & Time Prompt" on page 846, "Interval Prompt" on page 853, "Time Prompt" on page 888

**Display Seconds**

Specifies whether to show the seconds. The format of the seconds can be controlled by selecting a specific format. The default value is inherited from the user's content language.

Applies to

"Date & Time Prompt" on page 846, "Interval Prompt" on page 853, "Time Prompt" on page 888

**Display Value**

Specifies the values rendered to the report user when the prompt is used. These values can be different than the ones that are actually used by the report.

Applies to

"Select & Search Prompt" on page 883, "Value Prompt" on page 890

**Display Values**

Specifies which value of the variable to show. If the variable returns multiple values, List shows the values separated by commas.

Applies to

"Variable Text Item" on page 890

**Dot Color**

Specifies the color of the dots of the values that are not selected in the iterator.

Applies to

"Iterator Label Area" on page 854

**Down**

Specifies the number of times down, or rows, that the frame contents may be rendered.
The default value depends on the setting of the **Repeater Direction** property. If it is set to **Left to right, top to bottom**, the default is 20. If it is set to **Top to bottom, left to right**, the default is one.

**Applies to**

"Repeater Table" on page 880, "Static Repeater Table" on page 884

**Drill-Through Definitions**

Specifies report-to-report drill-through definitions, bookmarks, and drill-through text for the object.

**Applies to**


**Drop-Down Width**

Specifies the width of the drop-down list box.

**Applies to**

"Iterator Label Area" on page 854

**Drop Shadow**

 Defines a drop shadow that is rendered around a container.

**Applies to**

"Crosstab" on page 837, "List" on page 857, "Repeater Table" on page 880, "Table" on page 885

**Drop Shadow**

Specifies whether a drop shadow appears on a chart and how it appears.

**Applies to**

"Bubble Chart" on page 827, "Bullet Chart" on page 827, "Combination Chart" on page 836, "Gauge Chart" on page 849, "Pareto Chart" on page 871, "Pie Chart" on page 872, "Progressive Chart" on page 875, "Scatter Chart" on page 882
Duplicates
Specifications whether duplicate rows will be preserved or removed.

Applies to
“Query Operation” on page 877

Embed
Specifies how to embed the reference object. A reference, or pointer, to the object is stored, by default. Alternatively, a copy of the external object can be stored in the report.

Applies to
“Layout Component Reference” on page 855

End Position
Specifies the position of one edge of the colored region along the numeric axis. The region extends from the position defined in the Start Position to the position defined in this property. The value specified in this property must be greater than the value specified in the Start Position property.

Applies to
“Colored Region” on page 835

Execution Method
Specifies whether the query is a candidate to run concurrently. If set to Concurrent, the query may still execute sequentially based on other factors. If not explicitly set, the query will execute sequentially. Concurrent query execution may improve performance in some cases.

Applies to
“Query” on page 876

Execution Optimization
Specifies how much of the query processing is performed by the client and how much is performed by the database server. If the database server can perform all the query processing, it does.

If All Rows is selected, the optimizer adopts a plan that retrieves all rows of the result set in the least amount of time. This value is generally used in a batch environment.

If First Rows is selected, the optimizer adopts a plan that retrieves the first row as quickly as possible. This value is generally used in an interactive environment.

If Incremental is selected, the optimizer retrieves the first N rows, and then retrieves the next N rows.
Applies to
“Query” on page 876

Expand Features
Specifies whether to center and expand the feature in the map chart. When set to Yes, the map feature is centered and expanded to take up all available space in the chart. When set to No, the map feature is not expanded.

Applies to
“Map” on page 863

Exploded Slices
Specifies the slices that appear pulled out of a pie chart and their appearance.

Applies to
“Pie Chart” on page 872

Expression
Specifies the expression that defines the slicer member set.

Applies to
“Slicer Member Set” on page 884

Expression
Specifies the numeric position for a data marker in a scatter chart.

Applies to
“Marker” on page 865

Expression
Specifies the numeric position for a data marker in a scatter chart.

Applies to
“Marker” on page 865

Expression
Specifies the expression used to populate the data item.

Applies to
Extend Width
Specifies whether the area extends to the width of the chart. This property applies only to defined areas of area charts. When the area chart is converted to a matrix of charts, this property is not supported.

Applies to
“Area” on page 823

Face Color
Specifies the color to show on the face of each gauge in a gauge chart.

Applies to
“Gauge Chart” on page 850

Fact Cells Precedence
Specifies which style property will override the other style property for intersecting cells in a crosstab, the row’s properties, or the column’s properties.

This property only applies to style properties that are both set, but to different values. For example, if the row’s background color is set to yellow and the column’s background color is set to red, you can select which of these properties will override the other. If only the row or the column has a set background color, then that color will be used on the intersecting cell, regardless of this setting.

Applies to
“Crosstab” on page 837

Fill Effects
Specifies the fill effects for the object.

Applies to

First Column Color
Specifies the color, gradient, or pattern to be used for the first column in the progressive chart.

Applies to
“Progressive Chart” on page 876
**First Date**
Specifies the earliest date to render in the control, and the earliest date that can be selected.

**Applies to**
“Date & Time Prompt” on page 846, “Date Prompt” on page 846

**First Label Index**
Specifies which label will be rendered first. If set to 5, for example, the fifth label will be the first label rendered. Subsequent labels will be rendered as defined in the Display Frequency property. This property applies only to legacy charts.

**Applies to**
“Category Axis” on page 830, “X Axis” on page 892, “Y Axis” on page 893

**First Slice Angle**
Specifies the angle at which the first pie slice begins in a pie chart.

**Applies to**
“Pie Chart” on page 872

**Floating**
Specifies how objects flow around an object.

**Float** controls the way the content that follows the selected object will flow around or below it.

**Clear** controls where the selected object is positioned, relative to other floating objects.

**Applies to**
Font
Specifies the font family, size, weight, style, and effects used to display the object’s text.

Applies to


Font Auto-Sizing
Specifies whether to allow automatic resizing of the font.

Applies to

“Legend” on page 855

Footer
Specifies whether a chart footer is rendered. This property applies only to legacy charts.

Applies to

“Win-Loss Chart” on page 891

Footer
Specifies whether a chart footer is rendered.
Applies to

**Foreground Color**
Specifies the color of the object’s text.

Applies to


**From Text**
Specifies the label that appears beside the beginning of a range. This property applies to the following prompt types: date, date & time, time, and interval. The default label text is From.

Applies to

"Date & Time Prompt" on page 846, "Date Prompt" on page 846, "Interval Prompt" on page 853, "TextBox Prompt" on page 887, "Time Prompt" on page 888, "Value Prompt" on page 890

**Gauge Axes**
Specifies the start and end angles for the gauge axes.

Applies to

"Gauge Chart" on page 849

**Gauge Axis Colors**
Specifies the colors of the gauge axis.
Gauge Axis Inner Radius
Specifies the inner radius of the gauge axis as a percentage of the maximum allowed.

Gauge Axis Outer Radius
Specifies the outer radius of the gauge axis as a percentage of the maximum allowed.

Gauge Border
Specifies whether borders appear around the chart body in a gauge chart.

Gauge Labels
Specifies whether gauge labels are rendered.

Gauge Needle
Specifies the size and style of the gauge needle. The chart contains one needle for each row in the data series. All needles on a gauge axis use the same specified styles.

Gauge Palette
Specifies the palette that controls the look of the dial portion of a gauge.

Gauge Pivot
Specifies whether to show the center pivot point and its color, size, and style.
Applies to

"Gauge Chart" on page 849

Generated SQL
Shows the generated SQL or MDX.

Applies to

"Query" on page 876

Gradient
Specifies a color gradient for the page.

Applies to

"Page" on page 869

Gridlines
Specifies the properties of the major gridlines in the gauge axis of a gauge chart.

Applies to

"Gauge Axis" on page 849

Gridlines
Specifies the properties of the major gridlines in a chart.

Applies to


Gridlines
Specifies the properties of the major gridlines in a chart.

Applies to


Grouping & Sorting
Specifies the grouping and sorting structure.
Applies to

“List” on page 857, “Page Set” on page 871, “Repeater” on page 879, “Repeater Table” on page 880

**Grouping Type**

Specifies whether the absolute, stacked, or 100 percent stacked data may be drawn.

**Applies to**

“Area” on page 823, “Bar” on page 824, “Line” on page 857

**Group Span**

Specifies the group that this cell should visually span.

**Applies to**

“List Column Body” on page 859

**Has Fact Cells**

Specifies the contents of the fact cells of the crosstab. There is only one fact cell definition for the crosstab, regardless of the number of measures.

**Applies to**

“Crosstab” on page 837

**Header Text**

Specifies the title that appears above the list of choices in a value prompt. The default title text is the name of the level above the data items that are listed as choices; for example, Regions.

**Applies to**

“Value Prompt” on page 890

**Heading Level**

Specifies the heading level of the table of contents entry.

**Applies to**

“Table of Contents Entry” on page 886

**Height (px)**

Specifies the height of the note, in pixels.

**Applies to**

“Note” on page 868
**Hide Adornments**

Specifies whether to hide the asterisk (*) on required prompts and arrow (->) on type-in prompts that are in an error state.

**Applies to**

- “Date & Time Prompt” on page 846
- “Date Prompt” on page 846
- “Generated Prompt” on page 851
- “Interval Prompt” on page 853
- “Select & Search Prompt” on page 883
- “Text Box Prompt” on page 887
- “Time Prompt” on page 888
- “Tree Prompt” on page 889
- “Value Prompt” on page 890

**Hide Text**

Specifies whether to replace characters entered in the prompt control with asterisk (*) characters.

**Applies to**

- “Text Box Prompt” on page 887

**Hierarchy**

Specifies a reference to a hierarchy. You cannot modify this value.

**Applies to**

- “Area” on page 823
- “Bar” on page 824
- “Calculated Member” on page 829
- “Category Baseline” on page 831
- “Chart Node Member” on page 832
- “Chart Text Item” on page 832
- “Chart Text Item” on page 833
- “Colored Region” on page 835
- “Colored Region” on page 835
- “Crosstab Corner” on page 838
- “Crosstab Fact Cells” on page 839
- “Crosstab Intersection” on page 839
- “Crosstab Member Fact Cells” on page 839
- “Crosstab Node Member” on page 840
- “Cumulation Line Label” on page 842
- “Dimensional Edge Summary” on page 847
- “Explicit Member Set” on page 848
- “Gauge Axis” on page 849
- “Hierarchy Set” on page 851
- “HTML Item” on page 851
- “Image” on page 852
- “Intersection (Tuple)” on page 853
- “Level Set” on page 857
- “Line” on page 857
- “List Cell” on page 858
- “List Column Body” on page 859
- “List Column Title” on page 860
- “Map Location” on page 863
- “Map Location” on page 864
- “Map Refinement Location” on page 864
- “Map Refinement Location” on page 864
- “Marker” on page 865
- “Member” on page 865
- “Member Children Set” on page 866
- “Member Property” on page 867
- “Named Set” on page 868
- “Numeric Baseline” on page 869
- “Rich Text Item” on page 881
- “Scatter Marker” on page 882
- “Set Expression” on page 883
- “Text Item” on page 887
- “Total Column” on page 889
- “Win-Loss Measure” on page 891

**Hierarchy Unique Name**

Specifies the Hierarchy Unique Name (HUN) of the hierarchy to which the data item belongs.

**Applies to**

- “Area” on page 823
- “Bar” on page 824
- “Category Baseline” on page 831
- “Chart Node Member” on page 832
- “Chart Text Item” on page 832
- “Chart Text Item” on page 833
- “Colored Region” on page 835
- “Colored Region” on page 835
- “Crosstab Corner” on page 838
- “Crosstab Fact Cells” on page 839
- “Crosstab Intersection” on page 839
- “Crosstab Member Fact Cells” on page 839
- “Crosstab Node Member” on page 840
- “Cumulation Line Label” on page 842
- “Gauge Axis” on page 849
Highest Value Text
Specifies the label that appears beside the highest value option when ranges are enabled. This property applies to the following prompt types: date, date & time, time, value, text box, and interval. The default label text is Latest date, Latest time, or Highest interval.

Applies to

Hole Size (%)
Specifies the size of the hole in a donut chart. A value of zero indicates a pie chart.

Applies to
“Pie Chart” on page 872, “Pie Chart” on page 872

Horizontal Alignment
Specifies how the contents of the selected object are aligned horizontally.

Applies to
**Hours Text**

Specifies the title that appears above the hours box in interval prompts. The default title text is Hrs.

**Applies to**

“Interval Prompt” on page 853

**HTML**

Specifies the static text used as HTML.

**Applies to**

“HTML Item” on page 851, “Rich Text Item” on page 881

**HTML Source Variable**

Specifies a variable based on which the HTML source is chosen.

**Applies to**

“HTML Item” on page 851, “Rich Text Item” on page 881

**Icon**

Specifies the image used to identify the object in the control.

**Applies to**


**Ignore Data with No Features**

Specifies whether to allow data that has no corresponding features. When set to Yes, data with no corresponding features will be ignored. When set to No, the map will not run if it contains data with no corresponding features.

**Applies to**

“Map” on page 863

**Include Zero For Auto Scale**

Specifies whether the value zero is included in the automatic calculation of the numeric scale. This property applies only to legacy charts.

**Applies to**

Insert Text
Specifies the label that appears on the button that is used to add items to the selected items box in all multiple selection prompts. The default label text is Insert.

Applies to

Iterator First
Specifies whether to show or hide the First button in the iterator.

Applies to
“Data Iterator” on page 844, “Iterator” on page 853

Iterator Label Area
Specifies whether to show or hide the labels of iterator values.

Applies to
“Data Iterator” on page 844, “Iterator” on page 853

Iterator Last
Specifies whether to show or hide the Last button in the iterator.

Applies to
“Data Iterator” on page 844, “Iterator” on page 853

Iterator Next
Specifies whether to show or hide the Next button in the iterator.

Applies to
“Data Iterator” on page 844, “Iterator” on page 853

Iterator Previous
Specifies whether to show or hide the Previous button in the iterator.

Applies to
“Data Iterator” on page 844, “Iterator” on page 853

Iterator Values Definition
Defines the values of the iterator.

Applies to
“Iterator” on page 853
Join Relationships
Specifies how to join the two queries.

Applies to
"Join" on page 855

Keywords Text
Specifies the title that appears above the keyword search box in select & search prompts. The default title text is Keywords.

Applies to
"Select & Search Prompt" on page 883

Label
Specifies the static text that defines the bookmark. The value used as the bookmark reference must match this value.

Applies to
"Bookmark" on page 826

Label
Specifies the class label for a local class.

Applies to
"Class" on page 834

Label
Specifies the class label for a global class. You cannot modify this label.

Applies to
"Class" on page 834

Label
Specifies the name of the no value list item.

Applies to
"No Value List Item" on page 868

Label
Specifies the name of the object in the control.

Applies to
"Button" on page 828, "Button" on page 828, "Check Box" on page 833, "List Item" on page 861, "Radio Button" on page 878, "Tab" on page 885
Label
Specifies whether a label is rendered for the baseline.

Applies to
“Baseline” on page 825, “Baseline” on page 825

Label
Specifies whether a label is rendered for the marker.

Applies to
“Marker” on page 865, “Marker” on page 865

Label
Defines the button label in the iterator.

Applies to
“Iterator First” on page 853, “Iterator Last” on page 854, “Iterator Next” on page 854, “Iterator Previous” on page 854

Label
Specifies the label of the object.

Applies to

Label Color
Specifies the color of labels in the slider.

Applies to
“Continuous Values Slider” on page 837, “Data Discrete Values Slider” on page 843, “Discrete Values Slider” on page 847

Label Control
Controls how the labels in a chart are rendered.

Applies to
“Category Axis” on page 830, “X Axis” on page 892, “Y Axis” on page 893

Label Location
Specifies whether to show the label in the legend or in the chart.
Applies to

“Marker” on page 865, “Scatter Marker” on page 882

Labels
Specifies whether labels are rendered in the chart.

Applies to

“Display Layer” on page 848, “Point Layer” on page 873, “Region Layer” on page 879

Labels
Specifies whether labels are rendered.

Applies to

“Pie Chart” on page 872

Last Date
Specifies the latest date rendered in the control, and the last date that can be selected.

Applies to

“Date & Time Prompt” on page 846, “Date Prompt” on page 846

Left Position
Specifies the position of the left edge of the colored region.

Applies to

“Colored Region” on page 835

Left Position (px)
Specifies the pixel position of the bottom edge of the note measured from the left edge of the chart.

Applies to

“Note” on page 868

Left Position (px)
Specifies the pixel position of the left edge of the legend measured from the left edge of the chart.

Applies to

“Legend” on page 855

Legend
Specifies whether the legend is rendered.
Applies to


Legend
Specifies whether a legend is rendered and where the legend is positioned in a chart.

Applies to


Legend Label
Specifies whether to render the baseline in the legend.

Applies to

“Baseline” on page 825, “Baseline” on 825

Legend Separator
Specifies the separator to use between the legend entry and the value when you show values in the legend. The default is a comma (,) followed by a space.

Applies to

“Legend” on page 856

Legend Title
Specifies whether a legend title is rendered. This property applies only to legacy charts.

Applies to

“Legend” on page 855

Legend Title
Specifies whether a legend title is rendered in a chart.

Applies to

“Legend” on page 856

Legend Title
Specifies whether a legend title is rendered in a chart.
**Applies to**

“Legend” on page 855, “Legend” on page 856

**Level**

Specifies a reference to a level. You cannot modify this value.

**Applies to**


**Level Indentation**

Controls the indentation of the contents of node members in a crosstab.

**Applies to**

“Crosstab Node Member” on page 840

**Level Unique Name**

Specifies the Level Unique Name (LUN) of the level to which the data item belongs.

**Applies to**


**Line and Markers**

Specifies whether to display a line and whether to display markers.
Applies to

“Line” on page 857

Line Shape
Specifies the shape of a line in a line chart.

Applies to

“Line” on page 857

Line Style
Specifies the style, color, and weight of the line in a Pareto chart.

Applies to

“Cumulation Line” on page 842

Line Style
Specifies the style, color, and weight of the line.

Applies to

“Category Baseline” on page 831, “Numeric Baseline” on page 869, “Trendline” on page 889

Line Style
Specifies the style, color, and weight of the line. This property applies only to legacy charts.

Applies to

“Line” on page 857

Line Styles
Specifies the style, color, and weight of the line.

Applies to


Line Type
Specifies the type of line used to connect data values.

Applies to

“Line” on page 857

Line Weight (pt)
Specifies the line thickness in points. A value of zero indicates the thinnest possible line.
List Items Definition
Defines the list items in the control.

Applies to
"Drop-Down List" on page 848, "List Box" on page 858

Loss Color
Specifies a color, color gradient, or pattern to apply to the loss values.

Applies to
"Win-Loss Chart" on page 891

Lowest Value Text
Specifies the label that appears beside the lowest value option when ranges are enabled. This property applies to the following prompt types: date, date & time, time, value, text box, and interval. The default label text is Earliest date, Earliest time, or Lowest interval.

Applies to
"Date & Time Prompt" on page 846, "Date Prompt" on page 846, "Interval Prompt" on page 853, "Text Box Prompt" on page 887, "Time Prompt" on page 888, "Value Prompt" on page 890

Map & Layers
Sets the map and layers for a map chart.

Applies to
"Map" on page 863

Map Drills
Controls the drill definitions in a map. It is possible to define different drill targets for each region or point.

Applies to
"Point Layer" on page 873, "Region Layer" on page 879

Margin
Specifies the margin properties for the object.

Applies to
"3-D Combination Chart" on page 822, "3-D Scatter Chart" on page 822, "Block" on page 826, "Bubble Chart" on page 826, "Bubble Chart" on page 827, "Bullet Chart" on page 827, "Caption" on page 829, "Combination Chart" on page 835
Marimekko Totals

Specifies whether to show totals for each column at the top of the chart.

 Applies to

-Marimekko Chart” on page 864

Marker Color

Specifies a color for the target value markers in a metrics chart.

 Applies to

-Metrics Range Chart” on page 867

Marker Color

Specifies the color of the markers.

 Applies to

-Marker” on page 865

Marker Label

Specifies whether the label for the Target Marker will appear in the legend.

 Applies to

-Metrics Range Chart” on page 867

Markers

Adds reference points to a chart based on numeric or statistical values, calculations, or layout calculations. This property applies only to legacy charts.

 Applies to

-Bubble Chart” on page 826,”Combination Chart” on page 835,”Marimekko Chart” on page 864,”Metrics Range Chart” on page 867,”Pareto Chart” on page 871
Markers
Adds reference points to a chart based on numeric or statistical values, calculations, or layout calculations.

Applies to

“Bubble Chart” on page 827, “Combination Chart” on page 836, “Pareto Chart” on page 871, “Progressive Chart” on page 875, “Scatter Chart” on page 882

Marker Shape
Specifies the shape of the markers.

Applies to

“Cumulation Line” on page 842, “Marker” on page 865, “Marker” on page 865

Marker Shape
Specifies the shape of the marker symbol.

Applies to

“Marker” on page 865, “Scatter Marker” on page 882

Marker Size (pt)
Specifies the size of markers in points. A value of zero means do not show markers.

Applies to


Marker Size (pt)
Specifies the size of markers in points. A value of zero means do not show markers.

Applies to

“Marker” on page 865, “Scatter Marker” on page 882

Marker Style
Specifies the shape, fill type, and color of the markers in the chart.

Applies to

“Marker” on page 865, “Scatter Marker” on page 882
**Marker Text Location**

Specifies where the text of the marker is rendered.

**Applies to**


**Master Detail Relationships**

Specifies relationships between the master data container and the detail data container. Specifically, specifies how query items in the master query are linked to query items or parameters in the detail query.

**Applies to**


**Material Effects**

Specifies a material effect, such as plastic or metallic.

**Applies to**

“Bubble Chart” on page 827, “Combination Chart” on page 836, “Pareto Chart” on page 871, “Progressive Chart” on page 875, “Scatter Chart” on page 882

**Material Effects**

Specifies a material effect, such as plastic or metallic, in a pie chart.
Applies to

“Pie Chart” on page 872

Matrix Rows and Columns

Specifies whether to render a matrix of charts in rows and columns.

Applies to


Maximum Characters

Specifies the maximum number of characters to show before the text is truncated.

Applies to

“Legend” on page 855, “Text Item” on page 887

Maximum Execution Time

Specifies the maximum period, in seconds, that the query can spend to open the database cursor and to retrieve the first row of data. An error is returned if the specified time is exceeded. Note that this property is not for the total time required to execute the query. If no value is specified, no error is returned and the query runs until complete.

Applies to

“Query” on page 876

Maximum Hotspots

Specifies the maximum number of hotspots generated in a chart. A hotspot in a chart appears when you pause a pointer over it. For example, a hotspot on a drill-down symbol or a tooltip gives details about the column, line, or pie slice. If specified, this value overrides the hotspot configuration settings in IBM® Cognos® Administration.

For more information, see the topic Changing the number of hotspots in a chart.

Applies to

**Maximum Rows Retrieved**

Specifies the maximum number of database rows that the query can retrieve. An error is returned if the number of database rows returned exceeds the specified value. If no value is specified, no error is returned and the query returns all rows.

**Applies to**

“Query” on page 876

**Maximum Size (pt)**

Specifies the maximum size used for map point features that have corresponding data. For example, if the minimum size is 2pt and the maximum size is 12pt, the size of each point is calculated using linear interpolation that is based on its measure value.

**Applies to**

“Point Size Measure” on page 874

**Maximum Tables**

Specifies the maximum number of tables that the query can retrieve. An error is returned if the number of tables in the generated IBM® Cognos® SQL exceeds the specified value. If no value is specified, no error is returned and there is no restriction on the number of tables that can be queried.

**Applies to**

“Query” on page 876

**Maximum Text Blob Characters**

Specifies the maximum number of characters that the query is allowed to retrieve for each text BLOB. An error is returned if the number of characters retrieved exceeds the specified value. If no value is specified, no error is returned and text BLOBs can be of any size.

**Applies to**

“Query” on page 876

**Maximum Truncation Characters**

Specifies the maximum number of characters to show before the label is truncated.

If the Allow Truncation property is set to Yes and no value is specified in the **Maximum Characters** property, the application automatically determines the optimum number of characters after which to truncate. Use this property only if you want explicit control over the truncation level. Note that regardless of this property's setting, no truncation will occur if there is sufficient space.

**Applies to**

**Maximum Value**

Specifies the maximum value for the numeric scale. If no value is specified, one will be calculated based on the data.

**Applies to**


**Maximum Value**

Specifies the maximum value for the slider.

**Applies to**

“Continuous Values Slider” on page 837

**MDX**

The text of the typed-in MDX. It is assumed to be appropriate for the type and data source. If it is not the query may fail or produce unexpected results.

**Applies to**

“MDX” on page 866

**Member**

Specifies a reference to a member. You cannot modify this value.

**Applies to**


**Member Offset (%)**

Specifies a position relative to the next item in the chart. This is a percentage value. Negative values indicate before the member and positive values indicate after the member.
Members
Specifies the members of the intersection (tuple).

Applies to
“Intersection (Tuple)” on page 853

Members
Specifies the members in the member set.

Applies to
“Explicit Member Set” on page 848

Member Unique Name
Specifies the Member Unique Name (MUN) of the member.

Applies to

Milliseconds Text
Specifies the title that appears above the milliseconds box in interval prompts. The default title text is ms.

Applies to
“Interval Prompt” on page 853

Minimum Size (pt)
Specifies the minimum size used for map point features that have corresponding data. For example, if the minimum size is 2pt and the maximum size is 12pt, the size of each point is calculated using linear interpolation that is based on its measure value.
Applies to

“Point Size Measure” on page 874

Minimum Value

Specifies the minimum value for the numeric scale. If no value is specified, one will be calculated based on the data.

Applies to


Minimum Value

Specifies the minimum value for the slider.

Applies to

“Continuous Values Slider” on page 837

Minor Gridlines

Specifies the properties of the minor gridlines in the gauge axis of a gauge chart.

Applies to

“Gauge Axis” on page 849

Minor Gridlines

Specifies the properties of the minor gridlines in a chart. This property applies only to legacy charts.

Applies to


Minor Gridlines

Specifies the properties of the minor gridlines in a chart.

Applies to

**Minutes Text**

Specifies the title that appears above the minutes box in interval prompts. The default title text is Mins.

** Applies to **

“Interval Prompt” on page 853

**Multi-Line**

Specifies whether to allow multi-line editing in the text control

** Applies to **

“Text Box Prompt” on page 887

**Multi-Select**

Specifies whether the control allows the selection of multiple values. Note that an associated parameterized filter expression will override this object's setting. If you edit this property but do not get the expected results, check the associated expression for the presence of an operator that specifies how many items can be selected. Examples of multiple selection operators are “in” and “not in”; examples of single selection operators are equal (=), less than (<) and greater than (>).

For example, if you used the prompt wizard to create a parameterized filter expression and selected one of the operators that specify selection rules, changing the value of this property is not sufficient to change this restriction. You must also edit the filter’s expression to remove the offending operator.

To edit a filter expression, you must select the filter, which is accessible from the Query view, using the Explorer bar.

** Applies to **


**Name**

Specifies the name of the object.

** Applies to **


**Name**

Specifies the name of the object.
Applies to

“Page Set” on page 871

Name

Specifies the name of the object.

Applies to

“Page” on page 869

Name

Specifies a unique name that allows layout objects to be reused, usually to take advantage of any applied styling.

Applies to


Name

Specifies the name of the object.

Applies to

“Query” on page 876

Name

Specifies the unique name identifier for a query operation.
Applies to

“Query Operation” on page 877

Name
Specifies the unique name identifier for an SQL object.

Applies to

“SQL” on page 884

Name
Specifies the unique name identifier for an MDX object.

Applies to

“MDX” on page 866

Name
Specifies the name of the object.

Applies to

“Dimension” on page 847

Name
Specifies the name of the object.

Applies to

“Level” on page 856

Name
Specifies the name of the object.

Applies to

“Fact” on page 849

Name
Specifies the name of the object.

Applies to

“Member Set” on page 867

Name
Specifies the name of the object.

Applies to

“Variable” on page 890
Name
Specifies a unique name that allows layout objects to be reused, usually to take advantage of any applied formatting.

Applies to
"Calculated Member" on page 829, "Key" on page 855, "Level Hierarchy" on page 857, "Member Hierarchy" on page 866, "Member Property" on page 866

Negative Column Color
Specifies the color, gradient, or pattern to be used for columns in the progressive chart that represent negative values.

Applies to
"Progressive Chart" on page 876

Nested Label Display
Specifies how to display the axis labels for nested categories. Concatenated separates the labels with a comma.

Applies to
"Axis Labels" on page 824

No Data Contents
Specifies what appears in a data container when there is no data available from the database. When set to No Content, shows an empty data container, such as a blank list. When set to Content specified in the No data tab, shows the content that you specified in the No data tab. You can insert any object from the Toolbox tab. When set to Specified text (the default), shows the text that you specify.

Applies to

No Data Features Size (pt)
Specifies the point size used for map point features that do not have corresponding data.

Applies to
"Map" on page 863
**Node Coordinate**
Uniquely identifies a node member or spacer on an edge of a crosstab. Used by the Crosstab Intersection object to uniquely identify the intersection of elements from each edge. You cannot modify this value.

**Applies to**
- “Crosstab Node Member” on page 840
- “Crosstab Space” on page 841
- “Crosstab Summary” on page 841

**Note Border**
Specifies the properties for the border of a note.

**Applies to**
- “Note” on page 868

**Notes**
Specifies a block of text that you can position on a chart.

**Applies to**
- “3-D Combination Chart” on page 822
- “3-D Scatter Chart” on page 822
- “Bubble Chart” on page 826
- “Combination Chart” on page 835
- “Gauge Chart” on page 830
- “Map” on page 863
- “Marimekko Chart” on page 864
- “Metrics Range Chart” on page 867
- “Pareto Chart” on page 871
- “Pie Chart” on page 872
- “Polar Chart” on page 874
- “Progressive Chart” on page 876
- “Radar Chart” on page 877
- “Scatter Chart” on page 881

**Notes**
Specifies whether a note is rendered in a chart.

**Applies to**
- “Bubble Chart” on page 827
- “Bullet Chart” on page 827
- “Combination Chart” on page 836
- “Gauge Chart” on page 849
- “Pareto Chart” on page 871
- “Pie Chart” on page 872
- “Progressive Chart” on page 875
- “Scatter Chart” on page 882

**Note Text**
Specifies the text that appears in a note within a chart. To edit the note text, you must switch to Page Design view (View > Page Design)

**Applies to**
- “Note” on page 868

**No Value List Item**
Specifies whether to define a default list item. When the default item is selected, sets the value of the data item in the control to null. By default, the no value item is the first item in the list.
Number of Minor Intervals
When minor gridlines are defined for the chart axis, specifies by how many minor intervals to divide the major intervals. The default value is 2, which shows one minor gridline between each major gridline.

Number of Minor Intervals
When minor gridlines are defined for the chart axis, specifies by how many minor intervals to divide the major intervals. The default value is 2, which shows one minor gridline between each major gridline.

Number of Regression Lines
Specifies whether there will be one regression line for all the data or one for each series.

Numbers Only
Specifies whether the Text Box Prompt allows numbers only.

Number Style
Specifies the style to use for page numbers.

Number Style
Specifies the number style to use for the iterator number.
Applies to

“Iterator Label Area” on page 854

Numerical Axis
   Specifies whether the axis is rendered.

Applies to

“3-D Combination Chart” on page 822

Numerical Axis
   Specifies whether the numeric axis of a gauge chart is rendered.

Applies to

“Gauge Chart” on page 850

Numeric Baselines
   Adds reference lines on the numeric axis of a chart based on numeric or statistical
   values, calculations, or layout calculations.

Applies to

“Bubble Chart” on page 827, “Combination Chart” on page 836, “Numeric
   Baseline” on page 869, “Pareto Chart” on page 871, “Progressive Chart” on page
   875, “Scatter Chart” on page 882

Numeric Value
   Specifies the numeric position by using a number.

Applies to

   on page 825, “Marker” on page 865

Numeric Value
   Specifies the value of the numeric position.

Applies to

“Marker” on page 865

Numeric Value
   Specifies the value of the numeric position.

Applies to

“Marker” on page 865
Options Text
Specifies the text for the additional prompt options link in select & search prompts.
The default label text is Options.

Applies to
“Select & Search Prompt” on page 883

Orientation
Specifies the orientation of the control.

Applies to

Outer Join Allowed
Specifies whether outer joins are allowed on the object. This property applies to a single query and overrides the setting in IBM® Cognos® Framework Manager, the modeling tool.

Applies to
“Query” on page 876

Output Aggregation Method
Specifies the aggregation method.

Applies to
“Crosstab Summary” on page 841, “List Summary” on page 863

Output Aggregation Method
Specifies the aggregation method.

Applies to
“List Cell” on page 858

Override Dimension Info
Specifies dimension information for a query. Add dimension information when the data source has no dimension information available or when you want to override, extend, or restrict the information.

For more information, see the topic Add Dimension Information to a Query.

Applies to
“Query” on page 876
Overrides
Specifies whether to override child objects. Before you can override child objects, they must have a name.

Applies to
“Layout Component Reference” on page 855

Padding
Specifies the space between the object and the margin. If there is a border then it specifies the space between the object and the border.

Applies to

Pagination
Specifies pagination rules, such as page breaks, keep-with properties, page counts, and numbering.

Applies to
Palette

Specifies the palette to use for the chart. This property applies only to legacy charts.

Applies to


Palette

Specifies the color palette for a chart.

Applies to


Palette

Map layers use the numeric palette, in which the color of a region or point is based on its numeric value.

Applies to

“Point Layer” on page 873, “Region Layer” on page 879

Parameter

Specifies the parameter that is satisfied by values chosen in the prompt control.

Applies to


Pareto Axis

Specifies whether the axis is rendered.

Applies to

“Pareto Chart” on page 871
PDF Page Setup
Specifies the orientation and paper size for PDF documents.

Applies to

"Page" on page 869

Percentile
Specifies a position based on a data percentile value. This value must be greater than zero.

Applies to

"Baseline" on page 825, "Baseline" on page 825, "Baseline" on page 825, "Baseline" on page 825, "Marker" on page 865

Percentile
Specifies a position based on a data percentile value. This value must be greater than zero.

Applies to

"Marker" on page 865

Percentile
Specifies a position based on a data percentile value. This value must be greater than zero.

Applies to

"Marker" on page 865

Percent of Axis
Specifies a position based on a percentage along the numeric axis. This value must be greater than zero.

Applies to

"Baseline" on page 825, "Baseline" on page 825, "Baseline" on page 825, "Baseline" on page 825, "Marker" on page 865

Percent of Axis
Specifies a position based on a percentage along the numeric axis. This value must be greater than zero.

Applies to

"Marker" on page 865

Percent of Axis
Specifies a position based on a percentage along the numeric axis. This value must be greater than zero.

Applies to

"Marker" on page 865

Percent of Axis
Specifies a position based on a percentage along the numeric axis. This value must be greater than zero.
Applies to

“Marker” on page 865

Performance Pattern

Controls what portions of the range markers for tolerance and target ranges are rendered on a metrics chart.

Applies to

“Metrics Range Chart” on page 867

Pie Labels

Specifies whether pie labels are rendered.

Applies to

“Pie Chart” on page 872

Plot Area Fill

Specifies the fill color and effects for the plot area of a chart.

Applies to

“Bubble Chart” on page 827, “Combination Chart” on page 836, “Pareto Chart” on page 871, “Progressive Chart” on page 875, “Scatter Chart” on page 882

Point Shape

Specifies the shape of the markers. If you choose a value of series or category, the marker shape varies accordingly.

Applies to


Polynomial Exponent

Specifies the highest exponential value to use in the regression calculation.

Applies to

“Regression Line” on page 879

Position

Specifies where to position the legend.

Applies to

“Legend” on page 855

Position

Specifies the position of a note in a chart.
**Position in List**
Specifies the position of the no list value item in the list.

**Position type**
Specifies the source type for the numeric position.

**Position type**
Specifies the type of numeric position on the X-axis. This property applies only to legacy charts.

**Positive Column Color**
Specifies the color, gradient, or pattern to be used for columns in the progressive chart that represent positive values.

**Pre-populate**
Specifies whether to pre-populate the control with values, but only if the parent of this prompt control is optional. This only applies to prompt controls that have a parent in a cascade.
Pre-populate Levels

Specifies the number of levels to pre-populate the prompt with. The default value is 1, which will pre-populate the prompt with only the root members.

Applies to

"Tree Prompt" on page 889

Pre-Sort

Sorts the data that is used by the query to produce a temporary cube when needed, such as for a crosstab against a relational data source. This property affects the default order of members of a level populated from the data item.

Applies to

"Data Item" on page 844

Processing

Specifies whether the query engine will pick up a minimal amount of processing. Local processing only occurs if the database cannot handle the load. This property applies only to dimensional, or OLAP, data sources.

Specifies whether the IBM® Cognos® report server picks up a minimal amount of processing. This property overrides the corresponding governor in the model. If unspecified, the value of the governor in the model is used. This property applies only to relational data sources, unless you use the dynamic query mode.

Database only specifies that all query processing is performed on the database, and none is performed and cached by the IBM Cognos report server. The query executes successfully only if all query operations can be performed by the database.

Limited Local specifies that little, or possibly none, of the query processing is performed by the Cognos report server. Local processing only occurs if the database cannot handle the query.

When using the dynamic query mode, this property applies only to SAP BW data sources and the Limited Local option is not supported. Database Only specifies that little, or possibly none, of the query processing is performed and cached by the Cognos report server. Local processing only occurs if the database cannot handle the query. Consider using this option only if your report performance is unacceptable with the default setting, and becomes usable with this setting. Be aware that results may change with this setting; test carefully to confirm that the results are still correct.

Applies to

"Query" on page 876

Progressive Axis

Specifies whether the axis is rendered.
Applies to

“Progressive Chart” on page 876

Progressive Palette
Specifies the color palette in a progressive chart.

Applies to

“Progressive Chart” on page 875

Projection List
Shows the list of projected data items for the set operation. You can automatically generate the list or manually add data items.

Applies to

“Query Operation” on page 877

Properties
Specifies a list of data items from the query in scope to associate to the selected object. This is necessary when you want to reference a data item that is in the associated query, but not used in the layout.

Applies to


Property
Specifies a reference to a member property. You cannot modify this value.

Applies to

“Member Property” on page 867

Property Unique Name
Specifies the Member Property Unique Name (MPUN) of the member property.
Applies to


Push To Bottom

Specifies whether to position the footer as low as possible inside the parent object.

Applies to

“List Footer” on page 861, “List Page Footer” on page 862

Query

Specifies a reference to a query.

Applies to

Query
Specifies a reference to a query.

Applies to

Radar Type
Specifies how the radar chart is rendered.

Applies to
“Radar Chart” on page 877

Radial Axis
Specifies whether the axis is rendered.

Applies to
“Polar Chart” on page 874, “Radar Chart” on page 877

Radio Buttons Definition
Defines the buttons in the radio button group.

Applies to
“Radio Button Group” on page 878

Range
Specifies whether this control accepts ranges. The setting of the associated parameterized expression for this property will override the setting of this object. If you edit this property but do not get the expected results, check the associated expression for the presence or absence of an in_range operator.

For example, if you created this prompt control with the prompt wizard and set up an associated parameterized filter that accepts ranges, changing the value of this property is not sufficient to change this restriction. You must also edit the filter's expression and remove the in_range operator.

To edit a filter expression, you must select the filter, which is accessible from the Query view, using the Explorer bar.

Applies to

Range Label
Specifies whether the label for the Target Range will appear in the legend.
Applies to

“Metrics Range Chart” on page 867

Range Type
Specifies whether to show one or two thumbs and what region of the track to highlight.

Applies to

“Continuous Values Slider” on page 837, “Data Discrete Values Slider” on page 843, “Discrete Values Slider” on page 847

Regression Line
Specifies whether a regression line is rendered. A regression line is a straight or curved line that best approximates the data points in the series.

Applies to

“Bubble Chart” on page 826, “Scatter Chart” on page 881

Regression Type
Specifies the type of regression used.

Applies to

“Regression Line” on page 879

Relative Alignment
Specifies how to vertically align this object, relative to its siblings.

Applies to

Remove Text
Specifies the label that appears on the button that is used to remove items from the selected items box in all multiple selection prompts. The default label text is Remove.

 Applies to

Render
For list reports, specifies whether to render the column in the report output. Whether set to Yes or No, the query for the column is always executed.

 Applies to
“List Column” on page 858

Render Fact Cells
Specifies whether to render values in the fact cells of the spacer on an edge of the crosstab.

 Applies to
“Crosstab Space” on page 841

Render Page when Empty
Specifies whether to render a page when data containers on a page contain no data. If all data containers on a page have this property set to No and do not have any data to render, the page is not rendered. If any data container on a page has data or has this property set to Yes, the page is rendered.

 Applies to

Render Variable
Specifies a variable based on which the object can be conditionally rendered.
Applies to


Repeater Direction

Specifies the direction in which to populate the rendered repeater cells.

Applies to

“Repeater Table” on page 880, “Static Repeater Table” on page 884

Repeater Table Values Definition

Defines the data values that can appear in the repeater table. Values are organized by data item. In addition to the default data item (Label) and values provided, you can create your own data items and values.

Applies to

“Static Repeater Table” on page 884
Report Expression
Specifies the report expression that defines the text to render.

Applies to

Report Expression
Specifies the report expression used to define the HTML to render.

Applies to
“HTML Item” on page 851, “Rich Text Item” on page 881

Report Expression
Specifies the report expression that defines the URL.

Applies to
“Hyperlink” on page 852, “Hyperlink Button” on page 852, “Image” on page 852

Report Expression
Specifies the report expression that defines the bookmark. The value used as the bookmark reference must match this value.

Applies to
“Bookmark” on page 826

Report Expression
Specifies the numeric position by using a report expression.

Applies to

Report Expression
Specifies the report expression for the member position.

Applies to
“Baseline” on page 825, “Marker” on page 865

Report Expression
Specifies a report expression.

Applies to
“As of Time Expression” on page 823
Report Expression
Specifies the expression to evaluate when determining the value for this variable.

Applies to
“Variable” on page 890

Report Expression
Specifies the numeric position from a report expression.

Applies to
“Marker” on page 865

Report Expression
Specifies the numeric position from a report expression.

Applies to
“Marker” on page 865

Required
Specifies whether the prompt is required or optional. If this property is set to required, the prompt must have a value entered before the report can be run. The Usage setting of the associated parameterized filter for this property will override the setting of this object. If you edit this property, but do not get the expected results, verify the Usage setting of the associated filter.

For example, if you created this prompt control with the prompt wizard and set the associated parameterized filter to be optional, changing the value of this property is not sufficient to change this setting. You must also edit the filter’s Required property to match the setting for this object’s Required property.

To edit a filter expression, you must select the filter, which is accessible from the Query view, using the Explorer bar

Applies to

Results Deselect All Text
Specifies the text for the link below the results box that deselects all the items in the box. This property applies to all prompts with multiple selections and search, tree prompts, and value prompts. The default link text is Deselect All.

Applies to
“Select & Search Prompt” on page 883, “Tree Prompt” on page 889, “Value Prompt” on page 890
**Results Select All Text**
Specifies the text for the link below the results box that selects all the items in the box. This property applies to all prompts with multiple selections and search, tree prompts, and value prompts. The default link text is Select All.

**Applies to**
- “Select & Search Prompt” on page 883
- “Tree Prompt” on page 889
- “Value Prompt” on page 890

**Results Text**
Specifies the title that appears above the results box in select & search prompts. The default title text is Results.

**Applies to**
- “Select & Search Prompt” on page 883

**Reverse Category Order**
Specifies whether to change the order of the categories, such as the bars in a bar chart. The default is No, which means that for a horizontal bar chart, bars start from the bottom to the top.

**Applies to**
- “Category axis” on page 830

**Right Position**
Specifies the position of the right edge of the colored region.

**Applies to**
- “Colored Region” on page 835

**Right Position (px)**
Specifies the pixel position of the right edge of the legend measured from the left edge of the chart.

**Applies to**
- “Legend” on page 855

**Rollup Aggregate Function**
Specifies the type of aggregation to apply to summarized values. These values appear at the higher levels of lists and crosstabs. For OLAP data sources, a rollup aggregate function of Count Distinct is supported for only levels and member sets.

**Applies to**
- “Area” on page 823
- “Bar” on page 824
- “Category Baseline” on page 831
- “Chart Node Member” on page 832
- “Chart Text Item” on page 832
- “Chart Text Item” on page 833
- “Colored Region” on page 835
- “Colored Region” on page 835
- “Crosstab Corner” on page 838
- “Crosstab Fact Cells” on page 839
- “Crosstab Intersection” on page 839
Rollup Processing

Specifies where to compute aggregates. The Extended setting means that aggregates are computed using an extended aggregate operation. The Database setting means that aggregates are computed by the database software. The Local setting means that aggregates are computed by the data retrieval software in the report server, using a running aggregate.

Applies to

“Query” on page 876

Root Members Only

Specifies whether the set contains the root members or all of the members of the hierarchy.

Applies to


Rotate Values

Controls whether or not the values displayed on the chart are rotated when the Chart Orientation property is set to Horizontal. May help make values easier to read on horizontal charts. This property applies only to legacy charts.

Applies to

“Combination Chart” on page 835, “Pareto Chart” on page 871, “Progressive Chart” on page 876

Row Coordinate

Uniquely identifies the row of a node member or spacer on an edge of the crosstab. You cannot modify this value.
Applies to
“Crosstab Intersection” on page 839

Rows Per Page
Specifies the maximum number of rows to show at one time. For Value and Select & Search prompts, allows you to extend or reduce the maximum number of rows beyond the default of 5000.

Applies to

Scale
Specifies whether the numeric scale is logarithmic or linear.

Applies to

Scale Interval
Specifies the interval between ticks on the numeric scale. If no value is specified, one will be calculated based on the data.

Applies to

Scope
Specifies the scope of the filter in terms of the number of levels.

Applies to
“Summary Filter” on page 884

Search Instructions Text
Specifies the instructions that appear above the keyword search box in select & search prompts. The default text is as follows: Type one or more keywords separated by spaces.

Applies to
“Select & Search Prompt” on page 883
Search Text
Specifies the label that appears on the Search button in select & search prompts. The default label text is Search.

Applies to
"Select & Search Prompt" on page 883

Seconds Text
Specifies the title that appears above the seconds box in interval prompts. The default title text is s.

Applies to
"Interval Prompt" on page 853

Select UI
Specifies the user interface to use for the button in the iterator.

Applies to
"Iterator First" on page 853, "Iterator Last" on page 854, "Iterator Next" on page 854, "Iterator Previous" on page 854

Select UI
Specifies the user interface to use for the labels of iterator values.

Applies to
"Iterator Label Area" on page 854

Select UI
Specifies which interface the prompt control renders.

Applies to
"Value Prompt" on page 890

Select UI
Specifies which interface the prompt control renders.

Applies to
"Date Prompt" on page 846

Select UI
Specifies which interface the prompt control renders.

Applies to
"Time Prompt" on page 888
Select UI
Specifies which interface the prompt control renders.

**Applies to**
“Date & Time Prompt” on page 846

Separator
Specifies the separator to use when showing multiple values.

**Applies to**
“Context Item Text” on page 837, “Legend” on page 855

Series Color
Specifies whether data marker colors are synchronized between charts when you use the same data series for multiple charts within a combination chart. For example, if you create a line chart and a bar chart using the years data series, and you set this property to Yes, the data marker for 2010 is the same color in both charts. Use this property to eliminate redundant legend entries and help you interpret the data.

**Applies to**
“3-D Combination Chart” on page 822, “Combination Chart” on page 835, “Combination Chart” on page 836

Series Type
Specifies how the series will be rendered; for example, absolute, stacked, or stacked 100%.

**Applies to**
“Area” on page 823, “Bar” on page 824, “Line” on page 857

Set Definition

**Applies to**
Set Operation
Specifies the set operation to apply to one or more queries, that results in a projection list on which other queries can be based.

Applies to
"Query Operation" on page 877

Set Sorting
Specifies how the set is sorted. By default, the set is not sorted.

Applies to

Set Variable Values
Sets the value of variables when the control or an item in the control is selected.

Applies to
Share Result Set
Specifies whether to share an identical query between data containers that use it. To share a query, data containers must be lists, repeaters, or repeater tables and must use the same grouping structure and list of properties. The data containers cannot be part of a master detail relationship. When set to Yes, the query sends only one request to the database and shares the result. When set to No, the query is not shared.

Applies to
“List” on page 857, “Repeater” on page 879, “Repeater Table” on page 880

Show Caption
Specifies whether, or where, to show the caption.

Applies to
“Field Set” on page 849

Show Data Points
Specifies whether to show value markers and how they are formatted.

Applies to
“Line” on page 857

Show Data Range in Legend
Specifies whether to show the full range of data in the legend. If set to No, only the values from the palette will be shown.

Applies to
“Point Layer” on page 873, “Region Layer” on page 879

Show Features with No Data
Indicates whether to show the features of a map that do not have corresponding data.

Applies to
“Point Layer” on page 873, “Region Layer” on page 879

Show Feelers
Specifies whether feeler lines are rendered for each marker.

Applies to
“3-D Scatter Chart” on page 822

Show Hover
Specifies whether to highlight areas in the data container that are clickable.
Applies to

“3-D Combination Chart” on page 822, “3-D Scatter Chart” on page 822, “Bubble
Chart” on page 826, “Bubble Chart” on page 827, “Bullet Chart” on page 827,
“Combination Chart” on page 835, “Combination Chart” on page 836, “Crosstab”
on page 837, “Crosstab” on page 837, “Gauge Chart” on page 849, “Gauge Chart” on page 850, “List” on
Chart” on page 867, “Pareto Chart” on page 871, “Pareto Chart” on page 871, “Pie
Chart” on page 872, “Pie Chart” on page 872, “Polar Chart” on page 874,
“Progressive Chart” on page 875, “Progressive Chart” on page 876, “Radar Chart”
on page 877, “Repeater Table” on page 880, “Scatter Chart” on page 881, “Scatter
Chart” on page 882, “Static Repeater Table” on page 884

Show Icon
When defined, specifies whether to show the icon for each list item in the
drop-down list.

Applies to

“Data Drop-Down List” on page 844, “Drop-Down List” on page 848

Show Icon
Specifies whether to show the icon for the current label.

Applies to

“Iterator Label Area” on page 854

Show Legend Values
Specifies whether and how to show legend values.

Applies to

“Legend” on page 855

Show line
Specifies whether a line may be rendered. This allows you to show markers
without lines.

Applies to

“Line” on page 857

Show Pointer Cursor
Specifies whether to show the pointer cursor as a hand when hovering over an
area that is clickable. You can set the value of this property for multiple objects
simultaneously by first control+clicking the items in the report.

Applies to

“3-D Combination Chart” on page 822, “3-D Scatter Chart” on page 822, “Bubble
Chart” on page 826, “Bubble Chart” on page 827, “Bullet Chart” on page 827,
“Combination Chart” on page 835, “Combination Chart” on page 836, “Crosstab”
on page 837
### Show Tooltips

Specifies whether to show tooltips of the slider values when the thumb is clicked or moved.

#### Applies to

- Continuous Values Slider on page 837
- Data Discrete Values Slider on page 843
- Discrete Values Slider on page 847

### Show Values

Specifies which values to show in a chart legend.

#### Applies to

- Legend on page 856

### Show Values

Specifies the appearance of data labels in area, bar, line, Pareto, and progressive charts.

#### Applies to

- Area on page 823
- Bar on page 824
- Line on page 857
- Pareto Chart on page 871
- Progressive Chart on page 875

### Show Values

Specifies whether to show the labels for the data markers on the cumulation line in a Pareto chart.

#### Applies to

- Cumulation Line on page 842

### Show Values

Specifies the appearance of data labels in a pie chart.

#### Applies to

- Pie Chart on page 872

### Show Values

Specifies the appearance of data labels in a scatter chart.
Applies to

“Scatter Chart” on page 882

Show Values

Specifies the appearance of data labels in a bubble chart.

Applies to

“Bubble Chart” on page 827

Size

Specifies the height and width of the control.

Applies to


Size & Overflow

Specifies the height and width of the object, as well as how overflow content should be treated, using scroll bars and clipping.

Applies to


Size & Overflow

Specifies the absolute height and width of the object, as well as how overflow content should be treated, using scroll bars and clipping.
Size Legend Title
Specifies a title within the legend above the palette for the point size. If this object is not defined, no additional title is drawn. If no legend is drawn, this object is ignored. Styling for this object is inherited from the legend title.

Applies to
“Point Layer” on page 873

Slice Direction
Specifies the direction in which slices appear in a pie chart.

Applies to
“Pie Chart” on page 872

Slide Animation Direction
Specifies the direction from which a new card appears. Select Auto Horizontal or Auto Vertical to automatically set the direction based on the order of cards in the deck. For example, when Auto Horizontal is specified, if you view the first card in a deck and you select to view the fourth card, the fourth card appears from the right. If you then select to view the first card, the first card appears from the left.

Applies to
“Data Deck” on page 843, “Deck” on page 846

Slider Values Definition
Defines the values of the slider.

Applies to
“Discrete Values Slider” on page 847

Solve Order
Specifies the solve order in the crosstab. The item with the lowest solve order value is calculated first, followed by the next lowest value, and so on. For identical values, column items are calculated first, then row items, and then the measure.
Applies to
“Crosstab Summary” on page 841

Solve Order
Specifies the solve order in crosstabs and charts. The item with the lowest solve order value is calculated first, followed by the next lowest value, and so on. For identical values, in crosstabs, column items are calculated first, then row items, and then the measure. In charts, x-axis items are calculated first and then legend items.

Applies to
“Calculated Measure” on page 829, “Calculated Member” on page 829, “Data Item” on page 844, “Dimensional Edge Summary” on page 847, “Edge Summary” on page 848

Sorting
Specifies the desired sort sequence.

Applies to

Source Type
Specifies the source type of the text.

Applies to
“Chart Text Item” on page 832, “Chart Text Item” on page 833, “Cumulation Line Label” on page 842, “Hyperlink” on page 852, “Hyperlink Button” on page 852, “Text Item” on page 887

Source Type
Specifies the source type of the HTML text.

Applies to
“HTML Item” on page 851, “Rich Text Item” on page 881

Source Type
Specifies the source type of the URL.

Applies to
“Hyperlink” on page 852, “Hyperlink Button” on page 852, “Image” on page 852
Source Type
Specifies the source type of the bookmark.

Applies to
“Bookmark” on page 826

Spacing & Breaking
Specifies text properties such as line height, letter spacing, and word breaking.

Applies to

Spider Effects
 Specifies whether the chart is rendered with web-like flat concentric circles. The Radial Axis property must be set to Show for this property to take effect.

Applies to
“Polar Chart” on page 874, “Radar Chart” on page 877

SQL
The text of the typed-in SQL. It is assumed to be appropriate for the type and data source. If it is not the query may fail, or produce unexpected results.

Applies to
“SQL” on page 884

SQL Join Syntax
Controls the syntax to generate for joins. Click Implicit to generate joins in the WHERE clause. Click Explicit to generate INNER JOIN syntax. If unspecified, the value of the corresponding governor in the model is used.

Applies to
“Query” on page 876
SQL Syntax
Specifies the syntax of the SQL in the query. A value of Cognos SQL indicates that IBM® Cognos® extended SQL-92 syntax is used. A value of Native SQL indicates that native database SQL is used. You cannot use IBM Cognos SQL if the Processing property for the query is set to Database Only; it must have a value of Limited Local. A value of Pass-Through indicates that a standalone query text syntax is used. The default value is Native SQL.

Applies to
“SQL” on page 884

Standard Deviations
Specifies a distance from the mean in standard deviations. This value can be positive or negative. A value of zero indicates the mean value.

Applies to

Standard Deviations
Specifies a distance from the mean in standard deviations. This value can be positive or negative. A value of zero indicates the mean value.

Applies to
“Marker” on page 865

Start Position
Specifies the position of one edge of the colored region along the numeric axis. The region extends from the position defined in this property to the position defined in the End Position property. The value that you specify in this property must be less than the value that is specified in the End Position property.

Applies to
“Colored Region” on page 835

Static Choices
Represents a collection of static choices used by the prompt object.

Applies to
“Select & Search Prompt” on page 883, “Value Prompt” on page 890
Step

Specifies at which intervals the thumb can come to a rest.

Applies to

“Continuous Values Slider” on page 837

Style Variable

Specifies a variable based on which the object can be conditionally styled.

Applies to


Subtitle

Specifies whether a chart subtitle is rendered. This property applies only to legacy charts.

Applies to

“Win-Loss Chart” on page 891
Subtitle

Specifies whether a chart subtitle is rendered.

Applies to

Summarize Small Items

Specifies whether to summarize small items, such as slices, lines, areas, bars, or columns, in the chart and how they are summarized. You cannot summarize small items in charts that have matrix edges or in charts that have multiple numeric axes.

Applies to

- “Combination Chart” on page 836
- “Pareto Chart” on page 871

Summarize Small Slices

Specifies whether to summarize small items, such as slices, lines, areas, bars, or columns, in the chart and how they are summarized. You cannot summarize small items in charts that have matrix edges or in charts that have multiple numeric axes.

Applies to

- “Pie Chart” on page 872

Summary Text

Specifies summary text for table-like objects. Use to make your reports accessible for people who use screen readers. The summary text is never displayed in visual Web browsers. Summary text is used only for screen readers and speech browsers.

Applies to

- “Crosstab” on page 837
- “List” on page 857
- “Repeater Table” on page 880
- “Table” on page 885

Suppress

Specifies the type of suppression to apply to the query results. This property overrides the corresponding SAP BW governor in the model. If unspecified, the value of the governor in the model is used.

When using compatible query mode, this property applies to Essbase, SAP BW, and MSAS data sources. When using dynamic query mode, this property applies to all OLAP data sources, including OLAP over relational (DMR).

Applies to

- “Query” on page 876

Suppression

Specifies zero suppression options for the object.
Table Header

Specifies whether the cell is a table header. Use to make reports accessible for people who use screen readers. When set to Yes, screen readers and speech browsers programmatically create relationships between the table header and table cells.

Applies to

"List Cell" on page 858, "Table Cell" on page 886

Table of Contents

Specifies the name of the table of contents to which the entry belongs.

Applies to

"Table of Contents Entry" on page 886

Table of Contents Name

Specifies the name that uniquely identifies the table of contents.

Applies to

"Table of Contents" on page 886

Table Properties

Specifies the properties for the table object.

Applies to

"Crosstab" on page 837, "List" on page 857, "Repeater Table" on page 880, "Static Repeater Table" on page 884, "Table" on page 885

Tab Orientation

Specifies the orientation of the tabs in the tab control.
Applies to
“Data Tab Control” on page 845, “Tab Control” on page 885

Tabs Definition
Defines the tabs in the tab control.

Applies to
“Tab Control” on page 885

Tab Width
Specifies the width of tabs in the tab control.

Applies to
“Data Tab Control” on page 845, “Tab Control” on page 885

Target Color
Specifies a color for the vertical lines that mark the target ranges for target measure values in a metrics chart.

Applies to
“Metrics Range Chart” on page 867

Target Marker
Specifies whether the status indicators will appear in the legend.

Applies to
“Metrics Range Chart” on page 867

Target Marker Border Color
Specifies a color for the borders around target value markers in a metrics chart.

Applies to
“Metrics Range Chart” on page 867

Target Marker Position
Specifies whether the status indicators will be rendered over the first bar in the cluster or the middle of the cluster. Does not apply to stacked charts.

Applies to
“Metrics Range Chart” on page 867

Target Range (%)
Specifies target ranges centered around target measure values.
Applies to

“Metrics Range Chart” on page 867

Text

Specifies the static text to render.

Applies to


Text Color

Specifies the color of the text of each label.

Applies to

“Check Box Group” on page 833, “Data Check Box Group” on page 843, “Data Radio Button Group” on page 845, “Radio Button Group” on page 878

Text Color

Specifies the text color of the button label.

Applies to


Text Orientation

Specifies the orientation of the text on the gauge axis.

Applies to

“Gauge Axis” on page 849

Text Source Variable

Specifies a variable based on which the text source can be chosen.

Applies to

“Chart Text Item” on page 832, “Chart Text Item” on page 833, “Cumulation Line Label” on page 842, “Hyperlink” on page 852, “Hyperlink Button” on page 852, “Text Item” on page 887

Text Truncation

Specifies whether and how legend items are truncated.

Applies to

“Axis Labels” on page 824, “Legend” on page 856
Tick Interval
Specifies the interval, in slider values, between the appearance of ticks. For example, if you enter 3, a tick will appear for every third value in the slider. To apply this property, a value other than None or No Labels must be specified for the Tick Type property.

Applies to
“Data Discrete Values Slider” on page 843, “Discrete Values Slider” on page 847

Tick Interval
Specifies the interval, in slider values, between the appearance of ticks. For example, if you enter 20 in a slider that contains values between 0 and 100, a tick appears at 20, 40, 60, 80, and 100. To apply this property, a value other than None or No Labels must be specified for the Tick Type property.

Applies to
“Continuous Values Slider” on page 837

Tick Label Skip Interval
Specifies the interval, in ticks, between labels. This helps to avoid label collisions in the slider. If there is a collision between two labels, the second label is not shown.

Applies to
“Continuous Values Slider” on page 837, “Data Discrete Values Slider” on page 843, “Discrete Values Slider” on page 847

Tick Type
Specifies the type of label to show for the ticks in the slider.

Applies to
“Continuous Values Slider” on page 837, “Data Discrete Values Slider” on page 843, “Discrete Values Slider” on page 847

Title
Specifies whether a chart title is rendered. This property applies only to legacy charts.

Applies to
“Win-Loss Chart” on page 891

Title
Specifies whether a chart title is rendered.

Applies to

Title
Specifies whether a chart title is rendered.
Tolerance Color
Specifies a color for the vertical lines that mark the tolerance ranges for target measure values in a metrics chart.

Applies to

“Metrics Range Chart” on page 867

Tolerance Label
Specifies whether the label for the Target Tolerance will appear in the legend.

Applies to

“Metrics Range Chart” on page 867

Tooltips
Specifies whether tooltips are shown in a chart when you hover over data elements. Tooltips are not supported in PDF documents.

Applies to

“Combination Chart” on page 836, “Pareto Chart” on page 871, “Progressive Chart” on page 875

Tooltips
Specifies whether tooltips are shown in a pie chart when you hover over data elements. Tooltips are not supported in PDF documents.

Applies to

“Pie Chart” on page 872

Tooltips
Specifies whether tooltips are shown in a chart when you hover over data elements. Tooltips are not supported in PDF documents.

Applies to

**Tooltips**
Specifies whether tooltips are shown in the chart when you hover over data elements. Tooltips are not supported in PDF documents. This property applies only to legacy charts.

**Applies to**


**Top Position**
Specifies the position of the top edge of the colored region.

**Applies to**

“Colored Region” on page 835

**Top Position (px)**
Specifies the pixel position of the top edge of the legend measured from the bottom of the chart.

**Applies to**

“Legend” on page 855

**Total Column**
Specifies whether a total column is rendered. This property applies only to legacy charts.

**Applies to**

“Progressive Chart” on page 876

**Total Column**
Specifies whether a bar that shows the total cumulative value is rendered.

**Applies to**

“Progressive Chart” on page 875

**Total Column Color**
Specifies the color, gradient, or pattern of the total column on the progressive chart.

**Applies to**

“Total Column” on page 889
To Text
Specifies the label that appears beside the end of a range. This property applies to the following prompt types: date, date & time, time, and interval. The default label text is To.

Applies to

Track Length
Specifies the track length of the slider.

Applies to
“Continuous Values Slider” on page 837, “Data Discrete Values Slider” on page 843, “Discrete Values Slider” on page 847

Trendline Label
Specifies whether to show the default label for the trend line. When set to No, you can type your own label text.

Applies to
“Trendline” on page 889

Trendlines
Adds a trend line or curve that indicates the general direction of the data over time.

Applies to
“Bubble Chart” on page 827, “Combination Chart” on page 836, “Scatter Chart” on page 882

Truncation
Specifies whether labels can be truncated.

Applies to

Truncation Text
Specifies the text to append when a label is truncated.

Applies to
**Type**

Specifies the type of variable.

**Applies to**

"Variable" on page 890

---

**Type**

Specifies the type of trend line.

**Applies to**

"Trendline" on page 889

---

**Type**

Specifies the behavior of the prompt button.

**Applies to**

"Prompt Button" on page 876

---

**Type**

Specifies the type of object.

**Applies to**


---

**Update Variables Live**

Specifies whether to update variables as the thumb is moved. When set to Yes, the report is updated live when the thumb is moved. When set to No, the report is updated only when the thumb is stopped and released.

**Applies to**

"Continuous Values Slider" on page 837, "Data Discrete Values Slider" on page 843, "Discrete Values Slider" on page 847

---

**Upper Range Skew (%)**

Specifies a percentage that affects the positioning of tolerance bar and range with respect to the target value.

**Applies to**

"Metrics Range Chart" on page 867
URL
Specifies the URL, using static text.

Applies to
“Hyperlink” on page 852, “Hyperlink Button” on page 852

URL
Specifies the URL, using static text.

Applies to
“Image” on page 852

URL Source Variable
Specifies a variable based on which the URL source can be chosen.

Applies to
“Hyperlink” on page 852, “Hyperlink Button” on page 852, “Image” on page 852

Usage
Specifies whether the usage of this object is Optional, Required, or Disabled. When Optional, this condition applies if all parameters referenced by the expression are provided with values. If the expression does not refer to any parameters, then this condition is always applied. When Disabled, this condition is never applied, which is useful for authoring and testing purposes.

Applies to
“Detail Filter” on page 847, “Summary Filter” on page 884

Use 1.x Behavior
Specifies that IBM® Cognos® ReportNet® query semantics are used if they differ from IBM Cognos Business Intelligence query rules.

Applies to
“Query” on page 876

Use Aggregate Cache
For SAP BW data sources, specifies whether to use the aggregation cache. We recommend that you use the default value.

Applies to
“Query” on page 876
Use Detail Value on Page
Specifies whether to render a detail value or an aggregate value for a text item that uses a data item as its source. Use this property only when you want to render the value that appears in the first or last detail row of a list, repeater or repeater table on the same page as the text item.

Applies to
“Text Item” on page 887

Use for Parameter Info
Specifies whether the query should be given priority when determining parameter information. Queries with this property set to Yes are checked for parameter information first, followed by queries with this property set to Default. Queries with this property set to No will not be checked for parameter information unless it is referenced in a query that will be checked. Setting this property to Yes on parameterized queries can improve performance in displaying prompt pages.

Applies to
“Query” on page 876

Use Local Cache
Specifies whether a query is a candidate for reusing the query results set. If set to Yes, the query engine can reuse the existing SQL results from the cache. If set to No, the query is executed rather than using cached results. This property applies only to relational and dimensionally-modeled relational (DMR) data sources.

Applies to
“Query” on page 876

User SAP Member Cache
Signals to the SAP BW provider whether the query associated with this property is cached to the IBM® Cognos® Business Intelligence member cache. When set to Yes, the member cache is populated with the dimensions in the query, encrypted, and saved for later use.

Applies to
“Query” on page 876

Use Same Range For All Instances
Specifies that all instances of the chart use the same maximum value. When set to No, the axis maximum value is recalculated for each chart instance. It is only relevant if the chart is involved in a master detail relationship.

Applies to
**Use SAP MUN as Business Key**

Specifies whether to return the full SAP MUN as the value for the business key. Use this query hint to allow a drill-down on a business key for a non-leaf member of an external hierarchy. When set to Yes, the full MUN appears in the report output.

**Applies to**

“Query” on page 876

**Use Set Aggregation**

Specifies which aggregation clause is used to calculate the summary. When set to Yes, the aggregation clause within set is used. When set to No, the aggregation clause within detail is used.

For more information, see the topic Summarizing Values in Crosstabs.

**Applies to**

“Dimensional Edge Summary” on page 847, “Edge Summary” on page 848

**Use SQL Parameters**

Specifies whether the generated SQL uses parameter markers or literal values. When set to Marker, specifies that the generated SQL uses markers to denote that the value will be provided later. When set to Literal, uses literal values in the generated SQL. If not specified, the server determines the behavior.

Dynamic SQL applications have the ability to prepare statements which include markers in the text which denote that the value will be provided later. This is most efficient when the same query is used many times with different values. The technique reduces the number of times a database has to hard parse an SQL statement and it increases the re-use of cached statements. However, when queries navigate larger amounts of data with more complex statements, they have a lower chance of matching other queries. In this case, the use of literal values instead of markers may result in improved performance.

**Applies to**

“Query” on page 876

**Use SQL With Clause**

Specifies whether to send a request to the database using an SQL WITH clause. When set to Yes, and if the database supports WITH clauses, a WITH clause request is generated. When set to No, or if the database does not support WITH clauses, a request using derived tables is generated.

**Applies to**

“Query” on page 876

**Use Thousands Separator**

Specifies whether to delimit digit groups with the thousands separator.
Applies to

“Text Box Prompt” on page 887

Use Value

Specifies the values used by the prompt object.

Applies to

“Tree Prompt” on page 889

Use Value

Specifies the values used by the prompt object. These values can be different than the ones that are rendered to the user.

Applies to

“Select & Search Prompt” on page 883, “Value Prompt” on page 890

Value Location

Specifies where values and labels are to be rendered in the chart. This property applies only to legacy charts.

Applies to


Value Markers

Specifies whether to show special value markers and how they are formatted.

Applies to

“Line” on page 857

Value Representation

Specifies whether values are rendered as percentages.

Applies to

“Pie Chart” on page 872

Values

Specifies what values to show in the chart and whether to show the corresponding measure, series, or category label.

Applies to

“3-D Scatter Chart” on page 822, “Bubble Chart” on page 826, “Polar Chart” on page 874, “Scatter Chart” on page 881
Values
Specifies whether values are rendered in the chart.

Applies to

Values
Specifies whether values are rendered.

Applies to
“Pie Chart” on page 872

Values
Specifies whether values are rendered in the chart.

Applies to
“Marimekko Chart” on page 864

Value Type
Specifies whether absolute values are rendered rather than cumulative values.

Applies to
“Area” on page 823, “Bar” on page 824, “Line” on page 857

Variable
Specifies the variable associated to the slider.

Applies to
“Continuous Values Slider” on page 837

Variable for Maximum
Specifies the variable to use for the maximum value when the slider range type is Range.

Applies to
“Continuous Values Slider” on page 837

Variable for Minimum
Specifies the variable to use for the minimum value when the slider range type is Range.
**Applies to**

"Continuous Values Slider" on page 837

**Vertical Alignment**

Specifies how objects contained in this object are vertically aligned.

**Applies to**


**Visible**

Specifies whether a column or row is visible when the active report is executed. You can set the value of this property for multiple objects simultaneously by first control+clicking the items in the report.

**Applies to**

"Crosstab Node Member" on page 840, "Crosstab Space" on page 841, "Crosstab Summary" on page 841

**Visible**

Specifies whether to display the object. When set to No, the object is hidden but a fixed space is reserved in the report.

**Applies to**

Visual Angle
Specifies the angle, in degrees, in which the chart objects will be displayed when the chart has 3-D effects. This property applies only to legacy charts.

Applies to


White Space
Specifies how to handle the white space inside the object and whether text in the object is wrapped or appears all on one line. The term white space refers to the spaces between words, where text can be wrapped.

When set to Normal, the default, text will wrap when necessary, such as when space is limited.

When set to No Wrap, the text will never wrap to the next line in all report outputs, even if space is limited.

Applies to


Width (px)
Specifies the width of the note, in pixels.

Applies to

“Note” on page 868

Win Color
Specifies a color, color gradient, or pattern to apply to the win values.
Win-Loss Threshold
Specifies the win-loss value in a win-loss chart. It represents values that are ties, which are mapped on the zero line.

Applies to
“Win-Loss Chart” on page 891

X Axis
Specifies whether the axis is rendered.

Applies to
“3-D Combination Chart” on page 822

X Axis
Specifies whether the axis is rendered.

Applies to
“Bubble Chart” on page 826, “Scatter Chart” on page 881

X-Axis Data Item Value
Specifies the scatter marker position on the X-axis.

Applies to
“Scatter Marker” on page 882

Y1 Axis
Specifies whether the axis is rendered.

Applies to
“Combination Chart” on page 835, “Metrics Range Chart” on page 867

Y2 Axis
Specifies whether the axis is rendered.

Applies to
“Combination Chart” on page 835

Y2 Axis Position
Specifies how the second Y axis is rendered. When Y2 Axis Position is set to Dual, the Y2 axis appears across from the Y1 numeric axis. When Y2 Axis Position is set to Bipolar, the Y2 axis appears below the Y1 axis. For example, in a combination chart showing Revenue and Quantity sold by Retailer type, with the Y2 Axis
Position set to Dual, the Revenue columns and the Quantity sold line overlap because the Revenue axis (Y1) and the Quantity sold axis (Y2) are across from each other. However, with the Y2 Axis Position set to Bipolar, the Revenue columns appear above the Quantity sold line, and the data does not overlap. This property applies only to legacy charts.

### Applies to

"Combination Chart" on page 835

### Y Axis

Specifies whether the axis is rendered.

### Applies to

"3-D Combination Chart" on page 822

### Y Axis

Specifies whether the axis is rendered.

### Applies to

"Bubble Chart" on page 826, "Marimekko Chart" on page 864, "Scatter Chart" on page 881

### Y-Axis Data Item Value

Specifies the scatter marker position on the Y-axis.

### Applies to

"Scatter Marker" on page 882

---

### Data Formatting Properties

The following is a list of properties available in the data formatting dialog.

#### "Not Applicable" Characters

Specifies the characters to be displayed when the value to be formatted was not applicable. The default value is two dashes (—). Note that the format will be applied only if the data source supports this error condition.

#### Any Error Characters

Specifies the characters to be displayed when the value to be formatted was not available because of an error. This property is overridden by the more specific formatting error conditions, such as Security Error Characters. The default value is two dashes (—). Note that the format will be applied only if the data source supports this error condition.

#### Calendar Type

Specifies the type of calendar to be displayed. The date values will be mapped to the selected calendar before being formatted. The default value is inherited from the user's content language. Note that the Japanese Imperial setting is only applicable for Japanese languages.
Clock
Specifies whether to display the time in 12-hour or 24-hour format. The default value is inherited from the user's content language.

Currency
Specifies the currency to be used. The default currency symbol will be displayed unless the values of the Currency Display and Currency Symbol properties are changed. The default value is inherited from the model.

Currency Display
Specifies whether to display the international or local currency symbol. By default, the local currency symbol is displayed.

Currency Symbol
Specifies a character or characters to use as the symbol to identify the local currency. This symbol will precede the number and any sign, even if it is a leading sign. A space between the symbol and the numeric value can be specified by entering it in this property, after the symbol. The default value is inherited from the user's content language.

Currency Symbol Position
Specifies where the currency symbol will appear. If End is selected, any spaces that follow the character or characters in the Currency Symbol or International Currency Symbol properties will be rendered between the number and the symbol. The default value is inherited from the user's content language.

Date Ordering
Specifies the order in which to display the day, month, and year. The default value is inherited from the user's content language.

Date Separator
Specifies the character to be displayed between the year, month, and day. The default value is inherited from the user's content language.

Date Style
Specifies the date style. The results rendered are determined by the language. Generally, Short uses only numbers, Medium uses some abbreviated words, Long uses complete words, and Full includes all available details.

Decimal Separator
Specifies the character that will separate non-decimal numbers from decimals. This property is ignored if no decimals are displayed. The default value is inherited from the user's content language.

Digit Shaping
Specifies the digit shaping option to apply. When National is selected, digit shapes are determined from the user's content language. When Contextual is selected, digit shapes are determined from adjoining characters in the value. For example, if the most recent strongly directional character before the numerical character is left-to-right, the number is displayed as a European number. If the most recent strongly directional character before the numerical character is right-to-left, the
number is displayed in Arabic-Indic format. If there are no strongly directional characters before the numerical character, the number is displayed according to the base text direction of the field. When None is selected, no shaping is performed, and the value as it appears in the data source is shown. The default depends on the type of value. When the value is a string, the default is None.

Digit Shaping
Specifies the digit shaping option to apply. When National is selected, digit shapes are determined from the user’s content language. When None is selected, no shaping is performed, and the value as it appears in the data source is shown. The default depends on the type of value. When the value is a number, the default is the ICU default for the language.

Display AM / PM Symbols
Specifies whether to display the AM or PM symbols. The default value is inherited from the user's content language.

Display As Exponent
Specifies whether to render values in scientific notation, using exponents. If this property is set to No, scientific notation will not be used. If this property is not specified, scientific notation will be used only when values exceed the maximum number of digits. The default value is inherited from the user's content language.

Display Days
Specifies whether to display the day. The format of the day can be controlled by selecting one of the specific formats. Selecting Julian means that the 3-digit day of the year will be displayed. The default value is inherited from the user's content language.

Display Eras
Specifies whether to display the era. The default value is inherited from the user's content language.

Display Hours
Specifies whether to display the hours. The default value is inherited from the user's content language.

Display Milliseconds
Specifies whether to display the milliseconds. The format of the milliseconds can be controlled by selecting one of the specific formats. This property is ignored if seconds are not displayed. The default value is inherited from the user's content language.

Display Minutes
Specifies whether to display the minutes. The format of the minutes can be controlled by selecting one of the specific formats. The default value is inherited from the user's content language.
**Display Months**
Specifies whether to display the month. The format of the month can be controlled by selecting one of the specific formats. The default value is inherited from the user's content language.

**Display Months**
Specifies whether to display the month.

**Display Seconds**
Specifies whether to display the seconds. The format of the seconds can be controlled by selecting one of the specific formats. The default value is inherited from the user's content language.

**Display Time Zone**
Specifies whether to display the time zone. The default value is inherited from the user's content language.

**Display Weekdays**
Specifies whether to display the weekday. The format of the weekday can be controlled by selecting one of the specific formats. The default value is inherited from the user's content language.

**Display Years**
Specifies whether to display the year. The first two digits of the year, which indicate the century, can be controlled by selecting one of the associated property values. The default value is inherited from the user's content language.

**Display Years**
Specifies whether to display the year.

**Divide By Zero Characters**
Specifies the characters to be displayed when a numeric value is the result of a division by zero. The default value is /0. Note that the format will be applied only if the data source supports this error condition.

**Exponent Symbol**
Specifies the character to be displayed to identify exponents if the scientific notation is used. The symbol will be rendered after the number, separated by a space. The default value is inherited from the user's content language.

**Group Size (digits)**
Specifies the primary grouping size. If a value is specified it represents the number of digits to the left of the decimal point to be grouped together and separated by the thousands separator. The default value is inherited from the user's content language.

**International Currency Symbol**
Specifies a character or characters to use as a symbol to identify the international currency. This symbol will replace the currency symbol. A space between the
symbol and the numeric value can be specified by entering it in this property, after
the symbol. The default value is inherited from the user's content language.

**Mantissa (digits)**

Specifies the number of digits to be displayed following the exponent symbol if the
scientific notation is used.

**Maximum No. of Digits**

Specifies the maximum number of digits that can be displayed. If the maximum
number of digits is not sufficient to display the value, a scientific notation will be
used. The default value is inherited from the user's content language.

**Minimum No. of Digits**

Specifies the minimum number of digits that can be displayed. If the minimum
number of digits is too high to display a value, the padding character will be used.
The default value is inherited from the user's content language.

**Missing Value Characters**

Specifies the character or characters to be displayed when the value is missing. If
no value is entered for this property, an empty string will be displayed.

**Negative Pattern**

Specifies a presentation format, based on patterns, for negative numbers. Some
restrictions exist. The numerical part of the negative pattern is ignored. Only the
suffix and the prefix are used. For example, in the pattern ABC##0.##EFG, ABC is
the prefix, EFG is the suffix and ##0.## is the numerical part of the pattern.

**Negative Sign Position**

Specifies where the negative sign will appear. The default value is inherited from
the user's content language.

**Negative Sign Symbol**

Specifies how to display negative numbers. The default value is inherited from the
user's content language.

**No. of Decimal Places**

Specifies the number of digits to be displayed to the right of the decimal point. If
this property is not set, the number of decimal places will vary depending on the
number rendered.

**Numeric Overflow Characters**

Specifies the characters to be displayed when a numeric value is the result of a
numeric overflow. The default value is two dashes (→). Note that the format will be
applied only if the data source supports this error condition.

**Padding Character**

Specifies the character that will be used to pad values that have fewer digits than
the minimum number of digits. The default value is inherited from the user's
content language.
Pattern

Specifies a presentation format that is based on patterns. The pattern format overrides formats specified in other properties. For example, to format the date as 2009/12/31 23:59:59 PM, use the pattern yyyy/mm/dd hh:mm:ss aa. For example, to format thousands using the letter K, set the Format Type to Number, set the Scale to -3 (to remove 000), and then use the pattern to ####K.

Percentage Symbol

Specifies whether to display the values per hundred (percent) or per thousand. The symbol will be appended to the number and any trailing sign. A space between the numeric value and the symbol can be specified by entering it in this property, after the symbol. The default value is inherited from the user's content language.

Percent Scale (integer)

Scale to be applied to value after formatting. If omitted, no percent scale will be applied and the value will formatted according the normal decimal positioning associated with the percent (or per mille) symbol.

Scale

Specifies how many digits to move the decimal delimiter for formatting purposes. For example, move the decimal three spaces to present values in thousands. The default value is inherited from the database field.

Secondary Group Size (digits)

Specifies the secondary grouping size. If a value is specified it represents the number of digits to the left of the primary group that will be grouped together and separated by the thousands separator. If this property is left blank, the secondary grouping of digits is the same number as the primary group size, as specified by the Group Size (digits) property. The default value is inherited from the user's content language.

Security Error Characters

Specifies the characters to be displayed when the value to be formatted was not available for security reasons. The default value is #!Security. Note that the format will be applied only if the data source supports this error condition.

Thousands Separator

Specifies how to delimit digit groups, such as thousands. This property is only used if the Use Thousands Separator property is set to Yes. The default value is inherited from the user's content language.

Time Separator

Specifies the character to be displayed between the hour, minute, and second. The default value is inherited from the user's content language.

Time Style

Specifies the time style to be displayed. The exact results that will be rendered are determined by the language. Generally, Short means that the minimum details will be displayed, Long adds seconds, and Full means that all details are displayed, including the time zone. The default value is inherited from the user's content language.
**Time Unit**

Specifies the unit of measure of the value. This property will be ignored if any day or time components are shown. The default value is inherited from the user's content language.

**Use Thousands Separator**

Specifies whether the grouping delimiter will be applied as defined by the Group Size property. The default value is inherited from the user's content language.

**Zero Value Characters**

Specifies the character or characters to be displayed when the value is zero (0). If no value is entered for this property, the Maximum No. of Digits property determines how many zero digits are displayed.
Appendix H. Prompt API for IBM Cognos BI

The JavaScript Prompt API provides report authors with a method of customizing prompt interaction in the reports they author.

With the prompt API, JavaScript applications can interact with IBM Cognos Business Intelligence report prompts for the purposes of validation or custom interaction. The prompt API can query and set user selections, validate typed-in values using patterns, set default values using expressions or query data, and more. Examples are provided to show various usage scenarios of the prompt API.

cognos.Prompt object

Defines the class that contains a prompt object from a report.

This object should only be accessed through an instance of cognos.Report.

cognos.Prompt.getControlByName method

Returns the control object associated with a name.

**Syntax**

```
(cognos.Prompt.Control) getControlByName(String sName)
```

**Parameters**

- **sName**

  Specifies the prompt name property set for the control in IBM Cognos Report Studio.

**Returns**

- **{cognos.Prompt.Control}**

  Object associated to the specified sName control. Returns null if the control does not exist.

**Example**

The following is an example of the clearMyPrompt() function.

```
<script type="text/javascript">
 function clearMyPrompt() {
 var oCR = cognos.Report.getReport("_THIS_");
 var myPrompt = oCR.prompt.getControlByName("myPrompt");
 myPrompt.clearValues();
 }
</script>
```

cognos.Prompt.getControls method

Returns an array of all controls associated with the report.

**Syntax**

```
(cognos.Prompt.Control[]) getControls()
```
Parameters

None.

Returns

{cognos.Prompt.Control[]}

An array of controls associated with the report.

Example

This example implements a function, clearAllValues(), that resets (clears the selection of) all prompt controls for a page.

```javascript
<script type="text/javascript">
 function clearAllValues() {
 var oCR = cognos.Report.getReport("_THIS_");
 var aControls = oCR.prompt.getControls();
 for (var i = 0; i < aControls.length; i++) {
 aControls[i].clearValues();
 }
 }
</script>
```

cognos.Prompt.Control object

A control is a visual element in the prompt page, such as a text prompt or a value prompt.

cognos.Prompt.Control.addValues method

Add an array of values to a control.

If the control does not support multiple values, only the first one provided is used.

Syntax

{void} addValues(aValues)

Parameters

{cognos.Value[]} aValues

The new values to use for this control.

Returns

{void}

Example

This example adds an array of two values (use and display) to a prompt.

```javascript
var oCR = cognos.Report.getReport("_THIS_");
function setPromptValue(promptName, useValue, displayValue) {
 var oP = oCR.prompt.getControlByName(promptName);
 var oValue = {'use': useValue, 'display': displayValue };
 oP.addValues([oValues]);
}
setPromptValue ('country', 'ca', 'Canada');
```
**cognos.Prompt.Control.clearValues method**

Clear (or deselect) all values for this control.

**Syntax**

For a text prompt, the text is set to empty. For a value prompt, all the selections are removed.

{void} clearValues()

**Parameters**

None.

**Returns**

{void}

**Example**

This example resets all the controls of a page.

```javascript
function clearAllValues() {
 var oCR = cognos.Report.getReport("_THIS_");
 var aControls = oCR.prompt.getControls();
 for (var i = 0; i < aControls.length; i++) {
 aControls[i].clearValues();
 }
}
```

**cognos.Prompt.Control.getName method**

Returns the name of the control.

The name is set in IBM Cognos Report Studio in the `name` property set for the control.

**Syntax**

{String} getName()

**Parameters**

None.

**Returns**

{String}

The value specified by the `name` property set for the control.

**cognos.Prompt.Control.getValues method**

Returns the current value for the control.

This method always returns an array, even if there is only one value selected.

- The following is an example for a text box prompt (single):
  ```javascript
 [{use: "Smith", display: "Smith"}]
  ```
- The following is an example for a select prompt (multiple):
  ```javascript
 [{use: "CAN", display: "Canada"}, {use: "JPN", display: "Japan"}]
  ```
• The following are examples of range prompts:
  A range is an array of two elements, with the mandatory names start and end. The value of each element is a regular array as in earlier examples. When the range values are equal, this method returns a normal value instead of a range:
  
  ```
 [{use: useValue, display:displayValue}]
  ```
  When the range values are different, this method returns a range:
  
  ```
 [start:{use: useValue, display:displayValue}, end:{use: useValue, display:displayValue}]
  ```

**Syntax**

```{cognos.Value[]} getValues(boolean v_allOptions)```

Parameters

`{Boolean} v_allOptions`

This optional parameter is applicable only to value prompts. The parameter specifies whether to retrieve all values or only selected values.

- If the parameter is true, then all options are returned.
- If the parameter is false or missing, then only the selected options are returned.

The default value of this parameter is false.

Returns

`{cognos.Value[]}` An array of values for the control.

Example

This example demonstrates how to adjust your code based on whether the result is a single value or a range.

```javascript
function isRangeOutOfLimits(datePrompt, rangeLimit) {
  var result = false;
  var v = datePrompt.getValues();
  var rangeValue = v[0];
  var rangeDaysDiff = 0;
  if (rangeValue.start) {
    rangeDaysDiff = 0;
    var startDate = rangeValue.start.use;
    var endDate = rangeValue.end.use;
    rangeDaysDiff = dateUtils.subtractDate(endDate,startDate);
  }
  if (rangeDaysDiff > 0 && rangeDaysDiff <= rangeLimit) {
    result = true;
  }
  return result;
}
```

This example demonstrates the use of the parameter `v_allOptions`.

```javascript
var allValues = valueControl.getValues(true);
var selectedValues = valueControl.getValues();
```

cognos.Prompt.Control.setValidator method

Changes the default validation function for a control to one defined by the user.

When the specified function returns false, the UI element associated with the control indicates that a validation error occurred. When used in a multi-select control, the Insert button is disabled.
Syntax
{void} setValidator(oFct)

Parameters
{function} oFct
A user-defined function that takes the user input as a parameter and returns a
Boolean value.

Returns
{void}

Example
This example demonstrates how to ensure that a valid postal code is provided in
the form A1A 1A1.

textBox.setValidator(
 function (values) {
 var result = false;
 if (values & values.length > 0) {
 var sValue = values[0]['use'];
 var rePostalCodeFormat = new RegExp("^[a-z][0-9][a-z] ?[0-9][a-z][0-9]-\d*$", "gi");
 if (rePostalCodeFormat.test(sValue)) {
 result=true;
 }
 }
 return result;
 }
);
cognos.Report object

Represents a report object in the content store.

Properties

prompt

References a cognos.Prompt object for this instance.

Example

This example creates a new cognos.Report object from the current instance.

```javascript
var ocr = cognos.Report.getReport("_THIS_");
```

The new ocr object is specific to the cognos.Report namespace and avoids collisions with other objects in your scripts. The keyword _THIS_ should always be used. The Report Server will replace it with a unique namespace during report execution.

cognos.Report.getReport method

Namespaces are used to support HTML fragments. Always use a proper namespace when using this method to retrieve a cognos.Report object.

Syntax

```javascript
```

Parameters

{String} sNamespace Optional

Returns

{cognos.Report}

The cognos.Report instance for this namespace.

Example

```javascript
var oCR = cognos.Report.getReport( "_THIS_" );
```

cognos.Report.sendRequest method

Sends a request with the current parameters and values.

Syntax

```javascript
{void} sendRequest(eAction)
```

Parameters

{cognos.Report.Action} eAction

Specifies one of the cognos.Report.Action enumeration values. No other values are allowed.
cognos.Report.Action object

Defines constants for report navigation.

Go back one prompt page.

Syntax
<static> <constant> cognos.Report.Action.BACK

Cancel report execution and navigate to the previous page.

Syntax
<static> <constant> cognos.Report.Action.CANCEL

cognos.Report.Action.FINISH
Submit parameter values and skip all remaining optional prompts and prompt pages.

Syntax
<static> <constant> cognos.Report.Action.FINISH

cognos.Report.Action.NEXT
Submit parameter values and go to the next prompt page.

Syntax
<static> <constant> cognos.Report.Action.NEXT

If the report contains prompt pages, the first prompt page is displayed. Otherwise, if the report doesn't contain prompt pages, this constant will re-prompt for values.

Syntax
<static> <constant> cognos.Report.Action.REPROMPT
cognos.Value class

JSON structure to represent parameter values.

This object includes the following valid attributes:

- display
- end
- start
- use

Simple values

```json
{ 'use': '[a].[b].[c]', 'display': 'Canada' }
```

Range values

```json
{
    'start': {'use': '2007-01-01', 'display': 'January 1, 2007'},
    'end': {'use': '2007-12-31', 'display': 'December 31, 2007'}
}
```

Multiple values

```json
[
    { 'use': '12', 'display': 'Canada' },
    { 'use': '41', 'display': 'Germany' },
    { 'use': '76', 'display': 'Japan' }
]
```
Notices

This information was developed for products and services offered worldwide.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service. This document may describe products, services, or features that are not included in the Program or license entitlement that you have purchased.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Software Group
Attention: Licensing
3755 Riverside Dr
Ottawa, ON K1V 1B7
Canada

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.
IBM, the IBM logo, ibm.com, PowerPlay, ReportNet, TM1, and Cognos are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies:

- Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

- Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

- Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.
Glossary

This glossary includes terms and definitions for IBM Cognos Business Intelligence and IBM Cognos Framework Manager.

The following cross-references are used in this glossary:
• See refers you from a term to a preferred synonym, or from an acronym or abbreviation to the defined full form.
• See also refers you to a related or contrasting term.

To view glossaries for other IBM products, go to www.ibm.com/software/globalization/terminology (opens in new window).

access permission
A privilege that permits the access or use of an object.

accountability scorecard
A scorecard that Metric Studio automatically builds for each user which contains the metrics and projects they own.

agent
A process that performs an action on behalf of a user or other program without user intervention or on a regular schedule, and reports the results back to the user or program.

alias
An alternative name used instead of a primary name.

anonymous access
A type of access that allows users and servers to access a server without first authenticating with it.

application tier component
For installation, the set of processors that access the query databases to gather information and then render the results as PDF and HTML reports and metrics. Application tier components also pass requests to Content Manager and render the results that Content Manager retrieves from the content store.

attribute
1. In dimensional models, a property that provides qualitative information about members of a level in a dimension. For example, the Store level within the Retailer dimension might have properties such as address or retail space. In general, dimensional attributes do not have measure values or rollups associated with them, but are used to locate or filter members.

2. In relational models, a query item that is not a measure or identifier. When a query item is an attribute, it is not intended to be aggregated, or used for grouping or generating prompt pick lists.

3. In BI Modeling, a characteristic of an entity which is descriptive rather than a unique identifier or an aggregative measure.

authentication
The process of validating the identity of a user or server.

authentication provider
The communication mechanism to an external authentication source. Functionalities, such as user authentication, group membership, and namespace searches, are made available through authentication providers.

burst
To create several report results by running a single report once. For example, the user can create a report that shows sales for each employee, and run it once, sending different results to regional managers by bursting on region.
burst key
The dimension or level of a query in the report specification that is used to create, or burst, a set of report results.

calculated member
A member of a dimension whose measure values are not stored but are calculated at run time using an expression.

canvas
An area within a dashboard or workspace that users interact with to create, view, and manipulate content and data.

capability
A group of functions and features that can be hidden or revealed to simplify the user interface. Capabilities can be enabled or disabled by changing preference settings, or they can be controlled through an administration interface.

cardinality
1. For relational data sources, a numerical indication of the relationship between two query subjects, query items, or other model objects.
2. For OLAP data sources, the number of members in a hierarchy. The cardinality property for a hierarchy is used to assign solve orders to expressions.

cascading prompt
A prompt that uses values from a previous prompt to filter the values in the current prompt or pick list.

certificate
In computer security, a digital document that binds a public key to the identity of the certificate owner, thereby enabling the certificate owner to be authenticated. A certificate is issued by a certificate authority and is digitally signed by that authority. See also certificate authority.

certificate authority (CA)
A component that issues certificates to each computer on which components are installed.

cipher suite
The combination of authentication, key exchange algorithm, and the Secure Sockets Layer (SSL) cipher specification used for the secure exchange of data.

class style
A combination of formatting characteristics, such as font, font size, and border, that the user names and stores as a set.

CM
See Content Manager.

Common Gateway Interface (CGI)
An Internet standard for defining scripts that pass information from a web server to an application program, through an HTTP request, and vice versa.

condition
An expression that can be evaluated as true, false, or unknown. It can be expressed in natural language text, in mathematically formal notation, or in a machine-readable language.

conformed dimension
A dimension with a single definition that can be reused or shared across multiple coordinated data marts.

constraint
1. A security specification that denies one or more users the ability to access a model component or to perform a modeling or authoring task.
2. A restriction on the possible values that users can enter in a field.

contact
A named email address to which reports and agent e-mails can be sent. Contacts are never authenticated.

content locale
A code that is used to set the language or dialect used for browsers and report text, and the regional preferences, such as formats for time, date, money, money expressions, and time of day.

Content Manager (CM)
The service that retrieves information from the content store, and saves information to the content store.

content store
The database that contains the data.
credential
A set of information that grants a user or process certain access rights.

cube
A multidimensional representation of data needed for online analytical processing, multidimensional reporting, or multidimensional planning applications.

custom set
In Analysis Studio, a named object which can include filter rules, calculations, and sort rules. Custom sets can define a set of members that is different from any set originally defined in the cube model. See also predefined set, set.

details-based set
A set based on an item and its immediate details. See also set.

dimension
A broad grouping of descriptive data about a major aspect of a business, such as products, dates, or locations. Each dimension includes different levels of members in one or more hierarchies and an optional set of calculated members or special categories.

dimensional data source
A data source containing data modeled using OLAP concepts, including dimensions, hierarchies, and measures.
drill down
In a multidimensional representation of data, to access information by starting with a general category and moving downwards through the hierarchy of information, for example from Years to Quarters to Months.

deployment
The process of moving an application (such as a report or model) to a different instance. For example, reports are often created in a test environment and then deployed to production. When an application is deployed, it is exported, transferred, and imported.
deployment archive
A file used for deployment. A deployment archive contains the data from the content store that is being moved.
deployment specification
A definition of what packages to move (deploy) between source and target environments, the deployment preferences, and the archive name. Deployment specifications are used for import and export.
derived index
A calculated metric that provides a status and a score based on other metrics.
details-based set
A set based on an item and its immediate details. See also set.
dimension
A broad grouping of descriptive data about a major aspect of a business, such as products, dates, or locations. Each dimension includes different levels of members in one or more hierarchies and an optional set of calculated members or special categories.
dimensional data source
A data source containing data modeled using OLAP concepts, including dimensions, hierarchies, and measures.
drill down
In a multidimensional representation of data, to access information by starting with a general category and moving downwards through the hierarchy of information, for example from Years to Quarters to Months.

event
A change to a state, such as the completion or failure of an operation, business process, or human task, that can trigger a subsequent action, such as persisting the event data to a data repository or invoking another business process.
event key
A combination of data items that uniquely defines an event instance. Identifying an event instance enables the agent to determine if it is new, ongoing or stopped.
event list
The set of detected event instances evaluated by the task execution rules to determine which agent tasks should be performed.

F

fact See measure.

G
gateway
An extension of a web server program that transfers information from the web server to another server. Gateways are often CGI programs, but may follow other standards such as ISAPI and Apache modules.
glyph The actual shape (bit pattern, outline) of a character image. For example, italic A and roman A are two different glyphs representing the same underlying character. Strictly speaking, any two images which differ in shape constitute different glyphs. In this usage, glyph is a synonym for character image, or simply image (The Unicode Standard – Version 1.0).
governor A set of rules to limit user activities, such as the execution of reports, that either take too long or consume too many resources.
group A collection of users who can share access authorities for protected resources.
grouping In reporting, the process of organizing common values of query items together and only displaying the value once.

H

hierarchy The organization of a set of entities into a tree structure, with each entity (except the root) having one or more parent entities and an arbitrary number of child entities.

I

information card A display of high-level information about dashboard, workspace, or report content, such as owner, contact information, date modified, and an optional thumbnail view of the dashboard, workspace, or report.

information pane In Analysis Studio, a pane that helps the user to confirm their selection in the data tree by displaying related information, such as the level and attributes.

initiative A task developed to achieve objectives or close the gap between performance and targets. Initiatives are associated with individual objectives and often known as projects, actions, or activities.

item See member.

J

job A group of runnable objects, such as reports, agents, and other jobs that the user runs and schedules as a batch.

job step The smallest part of a job that can be run separately. A job step can be a report or it can be another job.

L

layout The arrangement of printed matter on a screen or page, including margins, line spacing, type specification, header and footer information, indents, and more.

level A set of entities or members that form one section of a hierarchy in a dimension and represent the same type of object. For example, a geographical dimension might contain levels for region, state, and city.

locale A setting that identifies language or geography and determines formatting conventions such as collation, case conversion, character classification, the language of messages, date and time representation, and numeric representation.
MDX See Multidimensional Expression Language.

measure A performance indicator that is quantifiable and used to determine how well a business is operating. For example, measures can be Revenue, Revenue/Employee, and Profit Margin percent.

member A unique item within a hierarchy. For example, Camping Equipment and 4 Man tent are members of the Products hierarchy.

metric A measure to assess performance in a key area of a business.

metric extract A set of mappings between an existing Cognos data source and a Metric Studio object or value. For example, a cube measure named Revenue is mapped to a Metric Studio metric named Revenue Actual Value.

metric package In Cognos Connection, a representation of a Metric Studio application. A metric package contains connection information, reports, and metric management tasks for that application. See also package.

metric store A database that contains content for metric packages. A metric store also contains Metric Studio settings, such as user preferences.

metric type A category of metrics that defines the business rules such as performance pattern, units, and meaning of a group of metrics. For example, Revenue can be a metric type, and European Revenue and North American Revenue would be metrics of this type.

model A physical or business representation of the structure of the data from one or more data sources. A model describes data objects, structure, and grouping, as well as relationships and security. In Cognos BI, a model is created and maintained in Framework Manager. The model or a subset of the model must be published to the Cognos server as a package for users to create and run reports.

model segment A part of a Framework Manager project, such as a parameter map, a data source, a namespace, or a folder, that is a shortcut to a second project. Segments are used to simplify model maintenance or to facilitate multi-user modeling.

multidimensional data source See dimensional data source.

Multidimensional Expression Language (MDX) The multidimensional equivalent of Structured Query Language (SQL).

N

named set See predefined set.

namespace A part of the model in which the names may be defined and used. Within a namespace, each name has a unique meaning.

news item A single entry in a Really Simple Syndication (RSS) compatible format. It can include a headline, text, and a link to more information. A news item task in an agent can be used to create news items for display in a Cognos Connection portlet.

normalization The process of restructuring a data model by reducing its relations to their simplest forms. It is a key step in the task of building a logical relational database design. Normalization helps avoid redundancies and inconsistencies in data. An entity is normalized if it meets a set of constraints for a particular normal form (first normal form, second normal form, and so on).

O

object In Report Studio, an empty information container that can be dragged to a report from the Toolbox tab and then filled with data. Reports are made up of objects, which include crosstabs, text items, calculations, graphics, and tables.
object extract
An extract that defines the metadata for a Metric Studio object, such as a user defined column, a scorecard, or a data source.

package
A subset of a model, which can be the whole model, to be made available to the Cognos server. See also metric package.

page set
In Report Studio, a set of one or more designed pages which repeat in the report output for each instance of a chosen query item. See also set.

passport
Session-based information, stored and encrypted in Content Manager memory, regarding authenticated users. A passport is created the first time a user accesses Cognos 8, and it is retained until a session ends, either when the user logs off or after a specified period of inactivity.

portlet
A reusable component that is part of a web application that provides specific information or services to be presented in the context of a portal.

predefined set
A set of members defined inside an OLAP data source as a list or by an expression. Predefined sets can be used in analysis and report authoring. See also custom set.

product locale
The code or setting that specifies which language, regional settings, or both to use for parts of the product interface, such as menu commands.

project
1. In Metric Studio, a task or set of tasks undertaken by a team and monitored on a scorecard. A project tracks dates, resources, and status.
2. In Framework Manager, a set of models, packages, and related information for administration, and for sharing model information.
3. In Metric Designer, a group of extracts. Each extract contains the metadata that is used to populate the Metric Studio data store or to create applications.

prompt
A report element that asks for parameter values before the report is run.

properties pane
Within a studio, a pane that provides an overview of the properties for selected data. The properties pane can also be used to make several changes and apply them at the same time, instead of repeating several different commands.

publish
In Cognos BI, to expose all or part of a Framework Manager model or Transformer PowerCube, through a package, to the Cognos server, so that the data can be used to create reports and other content.

query
The simple report specifications created and edited by Query Studio.

query item
A representation of a column of data in a data source. Query items may appear in a model or in a report and contain a reference to a database column, a reference to another query item, or a calculation.

query subject
A named collection of query items that are closely functionally related. Query subjects are defined using Framework Manager to represent relational data and form the set of available data for authoring reports in Query Studio and Report Studio. A query subject is similar to a relational view in that it can be treated as a table but does not necessarily reflect the data storage.

Really Simple Syndication (RSS)
An XML file format for syndicated web content that is based on the Really Simple Syndication specification (RSS 2.0). The RSS XML file formats are used by Internet
users to subscribe to websites that have provided RSS feeds. See also Rich Site Summary.

repeater
In Report Studio, a cell container that repeats values within itself with no predefined internal structure.

repeater table
In Report Studio, a table-like container that repeats cells across and down the page or row in the associated query.

report
A set of data deliberately laid out to communicate business information.

report output
The output produced as a result of executing a report specification against a data set.

report specification
An executable definition of a report, including query and layout rules, which can be combined with data to produce a report output.

report view
A reference to another report that has its own properties, such as prompt values, schedules, and results. Report views can be used to share a report specification instead of making copies of it.

response file
An ASCII file that can be customized with the setup and configuration data that automates an installation. During an interactive installation, the setup and configuration data must be entered, but with a response file, the installation can proceed without any intervention.

Rich Site Summary (RSS)
An XML-based format for syndicated web content that is based on the RSS 0.91 specification. The RSS XML file formats are used by Internet users to subscribe to websites that have provided RSS feeds. See also Really Simple Syndication.

RSS
1. See Really Simple Syndication
2. See Rich Site Summary

score
A number or ranking that expresses applicability in relation to a standard.

scorecard
A collection of metrics representing the performance of one unit or aspect of an organization.

scorecard structure
The hierarchy of scorecards that reflects how an enterprise organizes its metrics.

security provider
See authentication provider.

selection-based set
A collection of individual items that the user has explicitly selected. The items or members may be selected from one or more levels of the same hierarchy. See also set.

session
The time during which an authenticated user is logged on.

set
A collection of related items or members. Members in a set may be specifically chosen, or selected by one or more filter rules. See also custom set, details-based set, page set, predefined set, selection-based set, stacked set.

stacked set
Two or more sets arranged one above another in rows or side-by-side in columns. See also set.

strategy
The overall plan of action (such as for a brand unit, business unit, channel, or company) to achieve a stated goal. Strategies normally cover a period of more than one year.

strategy map
In Metric Studio, a visual representation of the strategy and the objectives of that strategy for an organization. For example, a strategy map may show employees how their jobs are aligned to the overall objectives of the organization.

summary
In reporting and analysis, an aggregate value that is calculated for all the values of a particular level or dimension. Examples of summaries include total, minimum, maximum, average, and count.
T

task
An action performed by an agent if the event status meets the task execution rules. For example, an agent can send an email, publish a news item, or run a report.

task execution rule
A user-specified option within an agent that determines which statuses and values cause a task to be run. It determines which tasks to execute for each event instance.

template
In report authoring, a reusable report layout or style that can be used to set the presentation of a query or report.

thumbnail
An icon-sized rendering of a larger graphic image that permits a user to preview the image without opening a view or graphical editor.

tuple
An ordered collection of two or more members from different dimensions. For example, the tuple (2007, Camping Equipment, Japan) returns the value for the intersection of the three members: 2007, Camping Equipment, and Japan. Tuples can be used to filter and sort data, and to create calculations.

U

union set
See stacked set

user
Any individual, organization, process, device, program, protocol, or system that uses the services of a computing system.

user-defined column
In metric management, a column used to represent a value other than the actual or target. It may be an industry benchmark or any other useful additional numerical information for a period, including a calculation based on the other values of the metric. User-defined columns may be different for each metric type.

W

watch list
A list of metrics that each user has chosen to monitor closely. If notification is enabled in Metric Studio, the user will receive email notification of changes to these metrics. Users can also choose to display their watch list as a portlet within Cognos Connection.

watch rule
A user-defined condition that determines whether a report is delivered to the user. When the rule is run, the output is evaluated and, if it satisfies the condition or rule, the report is delivered by email or news item. Watch rules limit report delivery to those reports containing data of significance to the user.

Web Services for Remote Portlets
A standard for creating presentation-oriented web services so that they can be easily integrated within other applications, such as web portals.

widget
A portable, reusable application or piece of dynamic content that can be placed into a web page, receive input, and communicate with an application or with another widget.

work area
The area within a studio that contains the report, analysis, query, or agent currently being used.

workspace
See dashboard
Index

Special characters

-- characters
- characters
* characters
% calculations

Numerics

100% stacked charts
3-D charts

A

absolute charts
access code
 - setting for active report
accessibility features
 - keyboard shortcuts
accessible reports
 - adding alternate text
 - adding summary text
 - associating labels to prompt controls
 - conditional blocks
 - emphasizing text
 - headings
 - report output options
 - specifying cell headers in tables
active reports
 - adding controls
 - adding interactivity
 - controls
 - converting existing reports
 - creating and managing active report variables
 - defining connections between controls
 - drill-through links do not work
 - example
 - in workspaces in IBM Cognos Workspace
 - integrating with IBM Cognos Workspace
 - running
 - saving in MHT format
 - setting access code
 - setting properties
 - specifying maximum number of rows that can appear
 - specifying reaction behavior of controls
 - specifying selection behavior of controls
 - summarizing data
 - unable to view in Firefox
 - using master detail relationships when authoring decks
 - variables
adding
 - data
aggregating
 - member sets
 - samples and time dimensions
 - specifying aggregation properties in models
 - troubleshooting running totals
 - using a simple summary in dimensional reporting
 - using simple summaries in relational reporting
 - values in crosstabs and charts
aliases in maps
aligning objects
alternate text
 - accessibility
alternative hypothesis
Analysis Studio
 - creating templates in Report Studio
 - annotations
 - chart baselines
 - notes in charts
ANOVA
 - post hoc tests
area charts
 - arithmetic overflow errors
 - Auto Group & Summarize
 - automating IBM Cognos BI using the IBM Cognos Software Development Kit
averages
 - moving and rolling
axes
 - in charts
 - titles in maps
axis scales
backgrounds
 - adding background effects to charts
 - adding colors to objects
 - changing in current default charts
 - changing in legacy charts
 - colors not appearing in templates
 - inserting background images
 - troubleshooting in charts
bar charts
base text direction
baselines
 - adding to charts
bevels
 - adding to legacy charts
bidirectional support
 - digit shaping
 - enabling
 - reports
binary round-off errors
bivariate correlation
BlackBerry devices
 - creating mobile reports for
bookmarks
 adding 506
 creating for drill-through access 482
borders
 adding to charts 401
 adding to legacy charts 114
 adding to objects 398
bottom filtering 326
boxplots 215
broadcasting same report to different users
 See burst reports
bubble charts 86
 specifying bubble size in current default charts 146
bubble size 12
Build Prompt Page tool 380
bullet charts 10, 88
 customizing current default charts 150
burst reports 445
 creating against cubes 450
 creating against dimensional data sources 450
 creating calculated fields to define recipients 445
 defining groups 447
 defining recipients 445
 denial of service errors in dimensional reporting 563
 denial of service errors in relational reporting 311
 enabling in IBM Cognos Connection 449
Microsoft Excel format 617
 setting options 448
 troubleshooting 559
business keys
 using for drill-through 485
button bars 177
calculation
 Calculating Intersections 606
calculations
 adding in dimensional reporting 365
 adding in relational reporting 313
 building in dimensional reporting 367
 building query calculations in relational reporting 316
 creating simple in dimensional reporting 366
 creating simple in relational reporting 315
 function quality of service indicators in dimensional reporting 601
 function quality of service indicators in relational reporting 316
 intersecting in crosstabs and charts 603
 limitations in dimensional reporting 602
 limitations in relational reporting 314
 limitations with units of measure in dimensional reporting 602
 limitations with units of measure in relational reporting 313
 null values 606
 resolving in dimensional data sources 606
 solve order in dimensional reporting 601
 solve order in relational reporting 314
 unexplained number discrepancies 551
 using quotation marks in dimensional reporting 602
 using quotation marks in relational reporting 316
CAMID,
 See IBM Cognos Access Manager ID
cascading prompts
 adding 392
 cascading style sheets 417
controls (continued)
defining connections 182
discrete values sliders 179
drop down lists 178
iterators 179
list boxes 178
radio button groups 177
reducing data items defined in static controls 181
row numbers 175
specifying reaction behavior 185
specifying selection behavior 183
tab 176
toggle button bars 177
variable text items 175
converting
lists to crosstabs 69
lists to repeaters 61
reports to templates 515
to MDX in dimensional reporting 360
to SQL in dimensional reporting 360
to SQL in relational reporting 312
copying
reports to the clipboard 517
copying reports 518
correlations 249
Count
changes between IBM Cognos ReportNet and IBM Cognos BI 529
Count Distinct 529
covariance matrix 249
crosstab node members 63
crosstab nodes 63
crosstabs 63
aggregating values 332
allow sorting 187
applying table styles 407
creating single-edge 66
crosstab node members 63
crosstab nodes 63
default measures 68
defining independent drill-through definitions 492
discontinuous 71
formatting 65
indented data 69
inherited table styles 3
intersections 65
nesting data 67
order of styles 65
overflow errors 558
resolving multiple calculations 603
CRX-API-0018 errors 601
CSV format
importing your own files 421
producing reports in 46
cubes
troubleshooting drilling through to relational data 565
cumulation lines
in current default charts 149
in legacy charts 150
currencies
data format limitations in Microsoft Excel output 616
formatting 453
formatting disappearing in SSAS 2005 560
current default charts 73, 526
curve estimation 254

D
dashboards
creating 376
using bullet charts 88
using gauge charts 89
using global filters 379
data
adding 39
data button bars 177
data checkbox groups 178
data decks 176
data discrete values sliders 179
data does not appear in target report
troubleshooting drilling through 560
data drop down lists 178
data formats 453
date and time symbols 460
decimal format symbols 465
locale-sensitive 456
Microsoft Excel limitations 616
specifying default 453
specifying for objects 454
using patterns 459
data items tab 24
data iterators 179
data list boxes 178
data packages
refreshing 38
specifying 37
data points
showing in charts 138
data radio button groups 177
data repeater tables 176
data series in charts 74
data sources 319
data stores
conformed dimensions 484
data tab controls 176
data toggle button bars 177
data trees
customizing 321
date & time prompts 382
date prompts 382
dates
filtering 298
using for drill-through access 487
decimals
rounding 454
decks 176
using master detail relationships 187
decimals
degrees of freedom 202
denial of service errors
in dimensional reporting 563
in relational reporting 311
depth
charts 102
derived columns 299
descriptive statistics 207
detail filters 296
diagrams
Metric Studio 156
dial charts 89
dictionary properties in maps 164
digit shaping 51
 in charts and maps 455
dimensional 329
dimensional coercion rules 608
dimensional data sources
 creating burst reports 450
 creating master detail relationships 358
 report limitations 595
 resolving calculations 606
 running reports against 595
 using with queries 348
dimensional reporting 319
 adding data 319
 best practices 20
 drilling up and down 371
 filtering data 342
 sorting data 345
 summarizing data 330
 using calculations 365
 working with queries 347
dimensionally-modeled relational data sources
 adding dimensional data 319
 limitations when aggregating measures 598
dimensions 39, 319
 conformed 349
 conformed for drill-through access 484
 non-conformed 349
 overlapping named set levels 543
 searching 322
discontinuous crosstabs
 creating 71
 discrete values sliders 179
distributing reports,
 See burst reports
dividing by zero
drilling up and down 371
 troubleshooting 541
Don’t Print class 419
double counting 529
drilling down 371
 creating drill-up/drill-down reports 372
 in charts 152
 using member sets 371
 drilling through 479
 business keys 485
 charts 153
 concepts 480
 creating drill-through reports 488
 cubes to relational data 565
 data does not appear in target report 560
 defining different drill-through definitions for crosstabs 492
IBM Cognos Visualizer reports 498
 in maps 167
 links not active in Safari Web browsers 560
 members and values 483
 Microsoft Excel limitations 616
 model-based access 480
 multiple values 489
 packages 482
 paths 480
 PowerCubes and packages 487
 PowerPlay reports 498
 problems with active reports 566
 relational data to cubes 565
 report formats 481
 report-based access 480
 selection contexts 481
drilling through (continued)
 specifying drill-through text 492
 troubleshooting PowerCubes 564
 using bookmarks 462
 using dates 487
 using member unique names 483
 using scope in model-based reporting 486
 using URLs 482
 with conformed dimensions 484
 wrong data appears in target report 560
drilling up 371
 creating drill-up/drill-down reports 372
 in charts 152
 using member sets 371
drop down lists 178
 defining no list value item 186
drop shadows
 adding to legacy chart elements 114
 drop shadows in charts 401
E
emailing reports,
 See burst reports
empty cells
 specifying what appears for empty data containers 459
 suppressing 457
error messages
 CRX-API-0018 601
 denial of service in dimensional reporting 563
 denial of service in relational reporting 311
 HRESULT 553
 missing items 559
 MSR-PD-0012 548
 MSR-PD-0013 548
 OP-ERR-0199 280, 542
 OP-ERR-0201 543
 OP-ERR-0209 599
 OP-ERR-0210 599
 OP-ERR-0212 599
 OP-ERR-0213 599
 ORA-00907 558
 overflow errors in crosstabs 558
 PCA-ERR-0057 561
 QE-DEF-0288 558
 QE-DEF-0478 608
 RQP-DEF-0177 562
 RSV-SRV-0025 553
 RSV-SRV-0040 541
 UDA-SQL-0114 553, 562
 UDA-SQL-0206 553
 UDA-SQL-0564 562
errors
 application errors upgrading a report 541
 filtering results in error characters 599
 null values in count summaries 544
 out of memory 374
 parse errors with upgraded reports 558
 recursive evaluation 561
 troubleshooting error cells in reports 598
escape characters
 in calculations in dimensional reporting 602
 in calculations in relational reporting 316
example
 linear regression 246
 one-sample T test 224
 one-way ANOVA 226
example (continued)
 one-way chi-square 234
 two-way chi-square 239
examples for relational metadata
 prompts 479
 Excel 2000 format
 deprecation notices 19
 excluded variable statistics 249
Explorer Bar 25
expression editor
 Aster Data 648
 Aster Data Data Type Formatting 650
 Aster Data Math 651
 Aster Data String 648
 Aster Data Trigonometry 651
 Block Functions 647
 browsing data 370
Business Date/Time Functions 642
 Common Functions 768
 Constants 640
 Constructs 641
 creating filters in dimensional reporting 342
 creating filters in relational reporting 299
 creating parameters to create prompts 386
Date Functions 722
 DB2 653
 DB2 Math 653
 DB2 Trigonometry 654
 dimensional coercion rules 608
 Dimensional Functions 777
 Greenplum 670
 Greenplum Data type formatting 672
 Greenplum Math 673
 Greenplum String 670
 Greenplum Trigonometry 673
 Informix 676
 Informix Math 676
 Informix Trigonometry 676
 Macro Functions 755
 Member Summaries 637
 MS Access 682
 MS Access Cast 682
 MS Access Math 683
 MS Access Trigonometry 683
 MySQL 689
 MySQL Math 690
 MySQL String 689
 MySQL Trigonometry 691
 Netezza 693
 Netezza Fuzzy 695
 Netezza Math 693
 Netezza Phonetic 695
 Netezza Trigonometry 693
 Operators 619
 Oracle 699
 Oracle Math 699
 Oracle Trigonometry 699
 Paraccel 708
 Paraccel Data type formatting 709
 Paraccel Math 709
 Paraccel String 708
 Postgres 710
 Postgres Data type formatting 712
 Postgres Math 712
 Postgres String 710
 Postgres Trigonometry 713
 Red Brick 716
expression editor (continued)
 Report Functions 802
 Salesforce.com 722
 SAP BW 721
 SAP BW Math 722
 SAP BW Trigonometry 721
 searching for values 371
 SQL Server 726
 SQL Server Math 726
 SQL Server Trigonometry 726
 Summaries 626
 Sybase 733
 Sybase Math 733
 Sybase Trigonometry 734
 Teradata 742
 Teradata Trigonometry 742
 Vectorwise 747
 Vectorwise Math 748
 Vectorwise String 747
 Vectorwise Trigonometry 748
 Vertica 750
 Vertica Data type formatting 751
 Vertica Math 752
 Vertica String 750
 Vertica Trigonometry 752
expressions
 length 601
 using summary functions in relational reporting 290
extended data items 327
 enabling for new reports 417
 report option 33
external data
 MSR-PD-0012 error when importing 548
 MSR-PD-0013 error when importing 548
 supported data sources 8

F
 facts 39
 field sets
 inserting 402
 fills
 adding to charts 401
 adding to legacy charts 114
filtering
 -- error characters 599
 creating detail filters 296
 creating global prompts in dashboards 379
 creating summary filters 296
 data from SAP BW data sources 600
 data in dimensional reporting 342
 data in relational reporting 299
 date columns 298
 drilling through from IBM Cognos Series 7 to IBM Cognos BI 499
 limitations when specifying the scope 599
 limitations with dimensional data sources 598
 members in a set 326
 multiple-fact queries 349
 removing or editing 299
 removing or editing detail filters 299
 removing or editing summary filters 299
 suppressing null values 457
 to top or bottom values 326
 troubleshooting _make_timestamp columns 553
 using context filters 342
 using slicers 342
filtering (continued)
 workspaces in Cognos Workspace 54
filters
 in_range 393
first-rows optimization
 in dimensional reporting 361
 in relational reporting 313
floating objects 416
fonts
 setting in maps 162
 specifying colors 420
 specifying for reports 399
footers
 adding to maps 163
 adding to reports and lists 397
for clauses
 incorrect results for OLAP 550
 limitations when using in summary functions 597
foregrounds
 adding colors to objects 420
formatting
 disappearing in SSAS 2005 560
functions
 quality of service indicators in dimensional reporting 601
 quality of service indicators in relational reporting 316

G
 gauge charts 89
 generated prompts 383
 global filters in dashboards 379
 glossaries
 accessing the IBM WebSphere Business Glossary 51
 glossary 1033
 gridlines
 adding to charts 121
 in charts 74
 major and minor 117
 grouping
 data in relational reporting 280
 setting group spans 282
 troubleshooting incorrect running totals 561
 troubleshooting nested list reports 542
 troubleshooting subtotals in grouped lists 542
 groups
 custom 281, 329

H
 headers
 adding to reports and lists 397
 creating for sets 68
 heights
 specifying for objects 416
 hiding columns
 list reports 60
 hiding objects 459
 hierarchies 39
 inserting 323
 highlighting
 adding colors to objects 420
 using conditional styles 431
 histograms 213
 horizontal pagination 513
 hotspots 151
 HRESULT errors 553
 HTML format
 producing reports in 42
 HTML items
 inserting 403
 hyperlinks
 buttons are not supported for Microsoft Excel 617
 inserting 404

I
 IBM Cognos for Microsoft Office
 creating reports for 55
 IBM Cognos Software Development Kit 36
 IBM Cognos Statistics
 troubleshooting 547
 IBM Cognos Visualizer reports
 setting up drill-through access to IBM Cognos BI 498
 IBM WebSphere Business Glossary 51
 icons 39
 images
 adding alternate text 534
 adding to chart backgrounds 401
 inserting in backgrounds 400
 inserting in reports 399
 Microsoft Excel limitations 613
 in_range filters 393
 indenting
 data in crosstabs 69
 objects 408
 inline objects 30
 Insertable Objects pane 24, 25
 intersections of members
 in dimensional reporting 369
 interval data 202
 interval prompts 382
 iPhone devices
 creating mobile reports for 56
 iterators 179

J
 Japanese
 Microsoft Excel limitations 616
 join relationships
 creating in relational reporting 307
 justification
 setting for objects 414

L
 labels
 customizing in charts 117
 gauge charts
 customizing 143
 specifying in current default gauge charts 143
 specifying in legacy gauge charts 144
 layout
 using tables 406
 layout component caches 413
 layout component references
 inserting 404
 layouts 28
 adding 441
 choosing 38
 pages 28
layouts (continued)
 relating to queries in dimensional reporting 348
 relating to queries in relational reporting 302
report objects 29
report recommendations 395
using the page structure view 395
legacy charts 73, 526
legends 11
 adding titles in maps 166
 hiding or showing in maps 162
 in charts 74
 in maps 166
positioning in current default charts 123
level hierarchies 319
levels 39, 319
 member unique names 483
levels of measurement 202
limitations
 aggregating measures in dimensionally-modeled relational
 or relational data sources 598
line breaks 415
line charts 79
line spacing 415
lineage information 49
linear regression 249
example 246
linear scales
 showing 117
lines
 adding regression lines to charts 133
 adding regression lines to legacy charts 134
 changing in charts 117
linking data items for drilling 372
list boxes 178
list reports
 hiding columns 60
lists 59
 adding headers and footers 397
 allow sorting 187
 applying table styles 407
 converting to crosstabs 69
 converting to repeaters 61
 formatting 60
 grouping data 280
 hiding or showing columns 186
 inherited table styles 3
 limitations 596
 single-edge crosstabs 66
 subtotals in grouped lists 542
literal strings
 in calculations in dimensional reporting 602
 in calculations in relational reporting 316
locales
locale-sensitive properties 456
location-aware reports
 creating 56
locking objects 30
logarithmic scales 120
 showing 117

M
macros
 adding to expressions 3
mailing labels
 creating 61
maps 159

maps (continued)
 aliases 164
 creating 160
 customizing 163
 dictionary property 164
 drilling through 167
 ignoring data with no features 162
 legends 166
 matching data values 164
Microsoft Excel limitations 616
notes 166
parts of a map report 160
point layers 165
region layers 163
resizing 416
showing or hiding properties 163
updated 1, 6
using from previous versions 7
margins
 setting for objects 408
Marimekko charts 93
markers
 adding to charts 129
master detail relationships
 creating in dimensional reporting 356
 creating in relational reporting 309
 creating when authoring active reports 187
 denial of service errors in dimensional reporting 563
 denial of service errors in relational reporting 311
 linking members from two dimensional data sources 358
 using to join page sets 503
matrices 11
matrix
 charts 142
matrix reports 63
MDX
 adding your own in dimensional reporting 360
 converting to in dimensional reporting 360
 working with in dimensional reporting 359
measures 39
 specifying defaults 68
member properties 319
 inserting 324
member sets
 aggregating 335
 creating 324, 372
member unique names 611
relational metadata 483
troubleshooting running reports with 612
members 39
 drill-through access 483
 excluding 325
 expanding and collapsing 327
 folder 319
 inserting properties 324
 intersections in dimensional reporting 369
 moving 325
Metric Studio diagrams 156
metrics range charts 95
 examples 154
MHT
 saving active reports 188
microcharts 92
 inserting 150
Microsoft Excel
 limitations of nested report objects 616
 producing reports in 47
Microsoft Excel (continued)
 report limitations 613
missing items
 troubleshooting 559
missing values 606
suppressing 457
missing Values
 treatment 202
mobile devices
 creating reports for 56
 inline prompts 4
 unsupported features 56
 model selection statistics 249
 models 39
 aggregation properties 288
 sample models and packages 571
 using design filters 42
moving averages 335
MSR-PD-0012 errors 548
MSR-PD-0013 errors 548
multilingual reports 442
MUNs,
 See member unique names

N
named sets
 limitations when summarizing 331
 nested or parallel sets overlapping 543
names
 updating references 522
native SQL
 in dimensional reporting 359
 in relational reporting 311
nested list reports
 not running after upgrading 542
nested report objects
 Microsoft Excel limitations 616
nested sets
 unexpected summary values 548
nesting
 data in crosstabs 67
new features
 version 10.1.0 9
 version 10.1.1 5
 version 10.2.0 1
no data
 specify not to render pages 45
 specifying what appears 459
No Data Contents 459
nominal data 202
nonparametric tests 233
normal distribution 202
notes 12
 adding to charts 125
 adding to maps 166
null 202
null values 606
 calculations with SAP BW data sources 549
 suppressing 457
 suppressing with filters 457
 troubleshooting in count summaries 544
number data formats
 Microsoft Excel limitations 616
numeric shaping
 See digit shaping
 O
 objects 29
 adding 29
 aligning 406
 as containers 30
 finding in reports 31
 hiding and showing 439
 hierarchies 30
 indenting 408
 inheriting formatting from parents 30
 inline or block 30
 inserting formatting objects 404
 locking and unlocking 30
 reusing for layouts 411
 specifying data format 454
 updating reused 413
OLAP data sources
 inserting data 319
 limitations with relational functions 597
one-sample T test 223
 example 224
one-sample t-tests 222
one-tailed test of significance 202
one-way ANOVA
 example 226
one-way chi-square 233
 example 234
OP-ERR-0199 errors 280, 542
OP-ERR-0201 errors 543
OP-ERR-0209 errors 599
OP-ERR-0210 errors 599
OP-ERR-0212 errors 599
OP-ERR-0213 errors 599
opening reports
 from other studios 518
ORA-00907 errors 558
Oracle data sources
 troubleshooting 558
Oracle Essbase
 changes 543
 ordinal data 202
out of memory errors 374
overflow errors in crosstabs 558

P
packages 39, 319
 changing 523
 drilling through 482
 referencing items in child queries 308
 refreshing 38
 selecting for your report 37
padding
 applying to objects 408
page breaks 513
 controlling 417
 creating 501
 creating with page layers 514
Page Explorer 25
page layers 514
page numbers
 adding 510
 modifying with options 513
page sets
 creating 501
 joining nested page sets 503
adding 501
associating queries with 501
not rendering when there is no data 45
pagination
horizontal in PDF output 513
specifying for HTML output 417
palettes 12
conditional 109
customizing in charts 106
parameter values
 clearing 42
 parameters
 for prompts 386
 using in master detail relationships in dimensional
 reporting 356
 using in master detail relationships in relational
 reporting 309
Pareto charts 90
 cumulation lines in current default charts 149
 cumulation lines in legacy charts 150
 part and partial correlations 249
partial regression plots 249
PCA-ERR-0057 errors 561
PDF format
 producing reports 42
 setting page options 48
percent calculations
 in dimensional reporting 366
 in relational reporting 315
personal data
 importing your own files 421
pie charts 11, 80
 converting to current default donut charts 147
 exploding slices in current default charts 148
 limitations for Microsoft Excel outputs 614
 setting the first slice angle in current default charts 147
point charts 83
 point layers 165
polar charts 94
populations 202
post hoc tests
 ANOVA 229
PowerCubes
 incorrect results 549
 troubleshooting drilling through 564
PowerPlay reports
 setting up drill-through access to IBM Cognos BI 498
printing
 not printing objects 419
progressive column charts 91
prompt pages
 creating your own 381
prompt texts
 customizing 390
prompts (continued)
 inline 4
 interval 382
 modifying 388
 pages 380
 parameters 386
 requiring user input 388
 select & search 382
 selecting multiple values 389
 showing and hiding 390
 showing values in generated SQL or MDX 393
 specifying default selections 390
 specifying default values 391
text box 381
time 382
tree 393
upgrading SAP BW variables 526
using context filters 344
using slicer filters 344
using the Build Prompt Page tool 380
using the expression editor 386
value 381
workspaces in Cognos Workspace 54
Properties 302
Properties pane 25
public variables
 defining in active reports 2, 174
Q
Q-Q plots 221
QE-DEF-0288 errors 558
QE-DEF-0478 errors 608
quadrant charts 87
quadrants
 adding to current default charts 116
quantitative data 202
queries 29
 associating with pages 501
 connecting between data sources in dimensional
 reporting 349
 connecting between data sources in relational
 reporting 302
 in dimensional reporting 347
 in relational reporting 301
 multiple-fact 349
 referencing data items in relational reporting 302, 348
 referencing package items in child queries 308
 relating to layouts in dimensional reporting 348
 relating to layouts in relational reporting 302
 using with dimensional data sources 348
 working with MDX in dimensional reporting 359
 working with SQL in dimensional reporting 359
 working with SQL in relational reporting 311
query calculations
 creating in dimensional reporting 367
 creating in relational reporting 316
 null values in count summaries 544
query context
 defining in charts 137
Query Explorer 25
 using in dimensional reporting 347
 using in relational reporting 301
query macros 467
 adding 469
 using to create prompts 470
Query Studio
 creating templates in Report Studio 515
 quotation marks
 in calculations in dimensional reporting 602
 in calculations in relational reporting 316

R
 R square change 249
 radar charts 94
 radio button groups 177
 ragged hierarchies 328
 ratio data 202
 referenced objects
 changing 412
 updating 413
 refreshing packages 38
 region layers 163
 regression lines 117
 in current default charts 133
 in legacy charts 134
 regression methods
 backward 249
 forward 249
 stepwise 249
 relational functions
 limitations when used with OLAP data sources 597
 relational reporting 279
 adding data 279
 best practices 20
 filtering data 299
 grouping data 280
 sorting data 301
 summarizing data 285
 troubleshooting drilling through to cubes 565
 using calculations 313
 working with queries 301
 Render Page when Empty 45
 repeater tables 176
 adding interactive behavior 1
 repeaters
 converting from lists 61
 formatting 407
 report formats
 CSV 46
 Excel 47
 HTML 42
 PDF 42
 specifying 42
 XML 48
 report outputs
 accessibility options 533
 Microsoft Excel 2007 7
 report properties 417
 report samples 567
 report specifications 36
 Report Studio
 bubble charts 12
 bullet charts 10
 chart axes 12
 chart enhancements 10
 chart formatting 12
 chart legends 11
 color by value 12
 matrix charts 11
 new chart technology 10
 notes 12
 Report Studio (continued)
 pie charts 11
 setting options 31
 ReportNet reports
 formatting changes when upgrading 560
 reports
 active 171
 adding interactivity 173
 converting to active reports 172
 multilingual 442
 supporting bidirectional languages 51
 residuals statistics 249
 resizing
 current default charts 105
 legacy charts 106
 objects 416
 reusing
 styles 396
 rich text items
 inserting 404
 supported elements 405
 rolling averages 335
 rollup calculations
 in dimensional reporting 366
 in relational reporting 315
 round-off errors 551
 rounding numbers 454
 row numbers 175
 inserting 404
 rows
 swapping with columns 69
 rows per page
 controlling for multiple containers in HTML and PDF 45
 setting 42
 RQP-DEF-0177 errors 528, 562
 RSV-SRV-0025 errors 553
 RSV-SRV-0040 errors 541
 run options
 accessibility options 533
 running and moving summaries
 limitations with dimensional functions 602
 running reports 42
 against dimensional data sources 595
 against SAP BW 595
 cannot find database errors 558
 ORA-00907 errors 558
 Report Studio is slow 553
 running totals
 dimensional functions 365
 troubleshooting 561

S
 Safari Web browsers
 drill-through links not active 560
 Sample Outdoors Company 568
 databases, models, and packages 571
 samples 567
 Sample Outdoors Company samples 567
 samples 202, 567
 cubes 572
 database, models, and packages 571
 employees 570
 GO data warehouse 571
 GO Data Warehouse (analysis) package 576
 GO Data Warehouse (query) package 584
 GO Sales (analysis) package 585
samples (continued)
 GO Sales (query) package 586
 GO Sales transactional database 572
 interactive 590
 packages 573
 Prompt API folder 591
 Sales and Marketing (Cube) package 573
 sales and marketing data 570
 Sample Outdoors Sales (cube) package 573
 statistical analysis 588
 The Sample Outdoors Company 568

SAP BW data sources
 creating burst reports 450
 creating expression 603
 large queries 563
 limitations when calculating data 313
 limitations when sorting data 345
 null results 549
 query calculations 544
 running reports against 595
 sectioning reports 544
 units of measure notation 595

SAP variable properties
 unsupported 595

scales
 changing for chart axes 120
 changing intervals 117
 linear 117
 logarithmic 117

scatter charts 85
scatterplot of residuals versus dependent variables 249

scope
 filtering 296
 using in drill-through access 486

screen resolution requirements 23

scrollbars
 adding to block objects 416
 search tab 24

searching
 dimensions 322
 section headings 285

sections
 creating for dimensional data 514
 creating on reports with SAP BW data sources 544
 removing 285
 removing with SAP BW data sources 544

Secure Socket Layer
 Microsoft Excel limitations 616

select & search prompts 382

set definitions 325

set expressions
 building in dimensional reporting 367
 limitations in list reports 596

sets
 editing 325
 filtering 326

sets of members
 creating 324
 nested or parallel sets overlapping 543

showing objects 439
 single-edge crosstabs 66
 singletons 40
 sizes
 specifying for objects 416
 slicer filters
 prompting with 344
 slicers
 creating 342

solve order 603
 combined with calculated rollup aggregate function 605
 dimensional data sources 606

sorting
 crosstabs 187
 data in dimensional reporting 345
 data in relational reporting 300
 limitations with SAP BW data sources 345
 lists 187
 multiple columns in dimensional reporting 347
 multiple columns in relational reporting 300
 source tab 24
 source trees
 customizing 321

spaces
 adding around objects 408
 Specifying chart properties 75

spider charts 94

SQL
 adding your own in dimensional reporting 360
 adding your own in relational reporting 312
 Cognos in dimensional reporting 359
 Cognos in relational reporting 311
 converting to in dimensional reporting 360
 converting to in relational reporting 312
 first-rows optimization in dimensional reporting 361
 first-rows optimization in relational reporting 313
 native in dimensional reporting 359
 native in relational reporting 311
 working with in dimensional reporting 359
 working with in relational reporting 311

SSAS 2005 cubes
 troubleshooting 545

SSAS 2005 data sources
 creating expression 603
 disappearing data formats 560

SSAS cubes
 problems when very large 374
 stacked charts 97
 standard charts 96
 standard deviation 202
 standard error 202
 standardized residuals histograms 249
 standardized residuals PP plots 249
 star charts 94

statistical analysis
 ANOVA 229
 bivariate correlation 244
 boxplots 215
 control charts 262
 curve estimation 254
 descriptive statistics 207
 histograms 213
 linear regression 249
 one-sample T test 223
 one-way chi-square 233
 Q-Q plots 221
 statistical process control 262
 terms 202
 two-way chi-square 238
 statistical power 202
 statistical process control 262
 statistical significance 202
 statistics
 cases 206
 strings
 concatenating 603
studios
Oracle Essbase changes 543
styles
conditional 431
reusing 396
subtotals
troubleshooting in grouped lists 542
summaries
adding simple in dimensional reporting 332
adding simple in relational reporting 287
adding to active reports 188
aggregate in dimensional reporting 336
aggregate in relational reporting 290
automatic in dimensional reporting 336
automatic in relational reporting 290
average in dimensional reporting 337
average in relational reporting 291
calculated 605
calculated in dimensional reporting 337
calculated in relational reporting 291
count distinct in dimensional reporting 338
count distinct in relational reporting 292
count in dimensional reporting 337
count in relational reporting 291
custom in dimensional reporting 339
custom in relational reporting 292
FOR clauses 550
maximum in dimensional reporting 339
maximum in relational reporting 292
median in dimensional reporting 339
median in relational reporting 292
minimum in dimensional reporting 339
minimum in relational reporting 292
none in dimensional reporting 339
none in relational reporting 292
not applicable in dimensional reporting 339
not applicable in relational reporting 292
null values 606
rolling and moving averages 335
standard deviation in dimensional reporting 339
standard deviation in relational reporting 293
summarize in dimensional reporting 340
summarize in relational reporting 293
total in dimensional reporting 340
total in relational reporting 293
troubleshooting 356
variance in dimensional reporting 340
variance in relational reporting 293
summarizing data
in dimensional reporting 330
in relational reporting 285
summary filters 296
summary functions
in dimensional reporting 336
in relational reporting 290
limitations when using FOR clauses 597
using in expressions in relational reporting 290
summary text
adding to tables 535
summary values
unexpected when using nested sets 548
supporting bidirectional languages 2
suppressing
data 457
Symbian devices
creating mobile reports for 56

T
Tab controls 176
Table styles
inherited 3
Tables
adding summary text 535
applying styles 407
inserting 406
Microsoft Excel width limitations 615
specifying cell headers 535
using for layout 406
tables of contents
creating 508
Tabular data
viewing 42
target reports
creating for drilling through from IBM Cognos Series 7 499
Templates
background colors not appearing 542
converting from reports 515
creating 515
text
adding to reports 399
specifying flow in objects 414
text box prompts 381
textures
adding to legacy charts 114
time periods
showing data only for specific 336
time prompts 382
TM1 data sources
order of metadata tree 546
report differences 546
toggle button bars 177
Toolbox tab 24
tooltips
adding to charts 102
hiding or showing in maps 162
top filtering 326
totals
troubleshooting running totals 561
tree prompts
adding 383
controlling the data that appears 393
trend lines 117
in current default charts 133
in legacy charts 134
tuples
in dimensional reporting 369
two-tailed test of significance 202
two-way chi-square 238
example 239
TXT data
importing your own files 421
types of error 202

U
UDA-SQL-0043 errors 562
UDA-SQL-0114 errors 553, 562
UDA-SQL-0206 errors 553
UDA-SQL-0458 errors 528
UDA-SQL-0564 errors 562
unbalanced hierarchies 328
unexplained number calculations 551
union query
 creating 304
units of measure 453
 notation for SAP BW data sources 595
unlocking objects 30
upgrading
 SAP BW prompt variables 526
upgrading reports
 applications errors 541
 errors 528
 formatting not retained 560
 members not suppressed for SAP BW 527
 removing upgrade messages 525
 reports will not open 558
 thousands separators missing 527
user interface 23

V
validating reports 41
value markers
 showing in charts 138
value prompts 381
values
 specifying defaults in prompts 391
variable processing summary 249
variable text items 175
variables
 active reports 2, 172, 174
 adding 437
 conditional styles 436
viewing reports
 troubleshooting 559
views
 page design view 27
 page structure view 27
visual aids 26

W
waterfall charts 91
Web browser settings 35
Web-safe color palettes 420
white spaces
 adding padding to objects 408
 margins 408
widths
 Microsoft Excel limitations 615
 specifying for objects 416
win-loss charts 92
Windows Mobile devices
 creating mobile reports for 56
word breaks 415
workspaces
 Cognos Workspace 53
 prompts in Cognos Workspace 54
wrong data appears in target report
 troubleshooting drilling through 560

X
XLS format
 importing your own files 421
 limitations 613
XML
 importing your own files 421
 producing a report 48
 report specifications 36
XQE-CON-0007 errors 563

Z
zeros
 suppressing 457