
IBM Software
Product and Application Lifecycle Management

Thought Leadership White Paper

The business value of open
collaboration
How interoperability brings manufacturers and consumers
together to build a smarter planet



2 The business value of open collaboration

Introduction
Building a smarter planet demands software everywhere.
Software runs our business processes, back-office functions and
customer transactions. It drives our web presence, online business
and customer relationships. And increasingly, it’s embedded in
the smart physical products and infrastructure of everyday life—
from automobiles, consumer appliances, phones and personal
devices, to power grids, traffic control and healthcare systems.
Everything we use is increasingly made smarter by software and
connected through the Internet.

Consequently, the ability to rapidly and reliably enhance enter-
prise software systems and the ability to deliver smarter products
and services have become critical differentiators for businesses
that face increasing competitive pressures. To meet these chal-
lenges, business leaders need their software delivery process to
work at least as well as their other business processes. They need
to have predictable delivery cycles; cost-to-value management;
and continuous visibility into work in progress. They need to be
able to rely on the delivery of the software elements of business
initiatives and products—but all too often, despite the best efforts
of vendors and users, they can’t.

Even though development and delivery team members are smart,
hard-working and dedicated to satisfying their stakeholders,
somehow problems still occur. Requirements get lost in transla-
tion from analysis to construction. Test cases get missed, causing
old bugs to reappear. Project progress is hard to decipher and
status is unreliable. Even in the most successful, well-run organi-
zations, too much effort is wasted on mundane, administrative
tasks such as data transfers or status updates. Conversely, 
overly-prescriptive processes risk stifling both creativity and 
productivity.

Why is it so hard for smart, hard-working, dedicated profession-
als to successfully deliver software projects? One major barrier is
often the tools that software development professionals depend

on. More accurately, it lies between those tools. The software
delivery process today is reminiscent of a 1950s office. The sim-
ple act of sending a letter might involve the following steps:

● A manager dictates the letter to a secretary, who takes it down
in shorthand.

● The secretary delivers the shorthand to the typing pool.
● A typist transcribes it, making a carbon copy, and sends it back

for review.
● The manager reads it over and marks any corrections.
● The secretary takes it back, and the wasted carbon copy is 

discarded.
● This cycle repeats until the letter is satisfactory.
● The manager signs it and the secretary mails it.
● Finally, the secretary files the carbon copy in case it is ever

referred to again.

Just imagine the number of ways that this process can go wrong.
The secretary mishears the dictation. The typist misreads the
scribbled shorthand. Or the manager realizes he omitted critical
information when he reads back his own letter—to name just a
few. Each handoff introduces the possibility for errors and omis-
sions, causing costly rework and delays, not to mention the
expense of verification required at every stage to make the
process go smoothly. Unfortunately, this quaint last-century
vignette is all too reminiscent of the process handoffs in modern
software development. In the case of software development, the
problem is even greater as development is far more complex than
the simple task of correctly transcribing a letter. It is an inher-
ently creative and exploratory endeavor, filled with uncertainty,
ambiguity and unpredictability.

In this paper, you will learn the value of “openness” in business
computing, including open standards, open source and open
interfaces. We will also describe an initiative that breaks down the



3IBM Software

barriers between tools so that teams can collaborate seamlessly,
communicate effectively and provide the visibility that the busi-
ness needs—without requiring companies to retool and reskill
their development organizations.

It takes more than a village
Throughout the history of the software development industry,
vendors have created increasingly helpful and sophisticated tools
that have dramatically increased the productivity, accuracy and
effectiveness of every role in the software development life cycle.
But often the effect has been as if we replaced those 1950s type-
writers with word processors, and left every other element of the
process in place. Individuals have better tools today than they
have ever had, but the process itself is still flawed. No matter
how good the business analyst’s requirements tool is, effort will
be wasted if she has to manually hand off those requirements to
designers (as if she were an executive dictating to a shorthand-
recording secretary). It doesn’t matter how good the test
automation software is if the defects get passed back to develop-
ment unreliably (as with hand-scribbled notes on a first draft 
of a letter). Development organizations need a solution to the
challenges that face the team across the life cycle, rather than
merely the challenges facing each individual. What they need 
is collaboration.

In an attempt to meet this need, the industry has seen the rise of
successful vendors offering cross-life-cycle tools, such as those
provided under the IBM® Rational® software brand, that pro-
vide the necessary integration and interoperability. However, it’s
rare that a software delivery organization relies solely on a few
tools from a single vendor. More often, teams bring to bear a
range of commercial, open source and in-house developed tools.
Often they employ competing tools in different parts of their
organizations. Realistically then, this discussion can’t be about a
specific tool suite or small number of vendors. Moving beyond
the 1950s analogy requires an industry-wide perspective.

The industry has made numerous attempts to solve the burning
need for tools interoperability, but each of them foundered for
some combination of the following reasons:

● The scope was too ambitious. Any attempt to define a com-
prehensive “integration map” for the whole software life cycle
was doomed to be obsolete before it could be finished.

● It depended on unrealistic levels of vendor cooperation. Each
vendor involved in standardization efforts would try to
entrench its own proprietary advantages in the standard, and
each would just as fiercely resist attempts by its competitors 
to do the same.

● It required “rip-and-replace” adoption by user companies.
Under some proposals, customers would have to replace their
existing tools with new ones. At the very least, they would
need to migrate data to a single common repository. This was
too high a barrier for potential adopters.

● The collaboration was not sufficiently open. Often, the invita-
tion to participate in a standardization effort was driven by
competitive motivations rather than even-handed inclusive-
ness, leading to the omission of key potential contributors and
a lack of credibility.

● The focus was on what vendors wanted, not on what their cus-
tomers needed. As a result, protectionist compromises limited
the business value that user companies could obtain.

Lacking any life cycle-wide strategy for integration, vendors
have resorted to the next-best alternative: individual bridges
between pairs of tools, using vendors’ published proprietary
APIs. The disadvantages of this approach are many, and include:

● The number of integrations rises exponentially with the num-
ber of tools. Developing and maintaining the integrations is
expensive for vendors, and operating them is burdensome for
customers.

● Coverage is limited. Each vendor tends to integrate with the
tools of its allies, and ignore or exclude the tools of its com-
petitors, to the detriment of customers who would simply like
to choose the best tool for each job.



4 The business value of open collaboration

● The integrations are “brittle.” Pairs of tools become tightly
dependent on each other’s internal structures or detailed
behaviors, and upgrading one product can break the integra-
tion. And worse, since each of those tools is on its own release
schedule, customers using a variety of tools may struggle to
find a mix of releases of the interdependent products that work
together.

The greatest integration on earth
Faced with this pressing business need and historical difficulty,
the IBM Rational organization took a step back and asked: What
kind of integration approach would it take to make life cycle col-
laboration successful? We decided that the architecture of the
solution would have to be:

● Incrementally adoptable by user companies. It must not
require wholesale replacement of existing tools or skills or
mass migration of data. Instead, it must allow a step-by-step
implementation, with each step delivering positive value.

● Technically acceptable to vendor companies. It must not
mandate a specific implementation technology or repository
that favors one vendor over another. It must not require ven-
dors to make wholesale changes to their existing products or
give up proprietary product differentiators.

● Authentically open. Participation would have to be open to
any vendor, open source project, or in-house implementer,
regardless of competitive positions or alliances.

As we looked around for a successful means of integration that
fit this profile, we realized that the best precedent is also the
largest example of “integration” that the world has ever seen: the
world wide web itself. By conforming to a modest set of standard
interfaces and a common architectural principle, anyone can par-
ticipate in the web by creating a web site or publishing a blog;
and any browser can consume any of the billions of pages that

make up the web.1 Many different types of content coexist, and
new types are easily added without disruption. Furthermore, the
simple and flexible architecture of the web, and in particular its
common integration mechanism of resource links, allows the
emergence of new uses for all that content that did not exist
when the web was first invented, such as search engines or 
content aggregation.

On the web, no one needs permission to create content, or to
consume content, or to link to content.2 The result of this open
access is that Internet participation has grown exponentially,
while membership in older-style online services that restricted
content and limited users’ choices has rapidly declined.

At IBM, we realized that the way our industry has approached
integration in the past is like those closed, limited online services.
We asked ourselves: how could software life cycle collaboration
be more like the open, unrestricted web? The answer we propose
is agreement on basic specifications for sharing life-cycle
resources. The vehicle to get there is a forum for cooperation
called Open Services for Lifecycle Collaboration (OSLC).

OSLC: An open forum for collaboration
The goal of OSLC is to re-examine how we look at interoper-
ability so that:

● Any tool can be integrated on an equal footing simply by shar-
ing resources and services agreed to in open specifications.

● Anyone can participate in the specification process on equal
terms, not only vendors but also user companies, industry
forums, open source projects, or motivated individuals.

● Any organization can freely take advantage of the specifica-
tions, whether they choose to contribute to the effort or not.

● The mistakes of the past that led to limited coverage and 
brittle integrations are averted.



5IBM Software

To achieve those ambitions, OSLC embodies three key 
elements:

● A unifying and universal architectural style that takes advan-
tage of the lessons of the web. That style is what the web com-
munity calls linked data. Linked data was conceived as a set of
best practices for using the web to connect related data that
wasn’t previously linked, or using the web to lower the barriers
to linking data currently linked using other methods. OSLC is
inspired by the idea that what works for data on the web can
also work for life-cycle data.3

● A set of technical specifications inspired by real-world 
scenarios, openly published and freely adoptable. This means
creating specifications that apply linked data concepts to the
domain of life-cycle tooling, or simply, specifications for linked
life-cycle data.

● A transparent and open community process with no unreason-
able barriers to participation.

The OSLC organization today is simply a group of people who
share an interest in changing the status quo. They use modern
on-line collaboration tools for discussing specific integration
challenges and scenarios. Solutions are proposed, debated and
prototyped, and ultimately, candidate specifications are pub-
lished. OSLC has no membership fees or applications; no 
egregious bureaucratic processes; and no “purity tests” for par-
ticipation. In fact, there is only one way to influence the work of
the OSLC—to participate in it.

As we established OSLC, we knew that it would be critical that
the intellectual property required to implement compliant prod-
ucts be open. However, it turns out that there is more than one
way to be “open,” and to choose the appropriate way, we had to
take a step back and review the business goals we were hoping to
achieve.

The business value of open markets
Since the beginning of the industrial age, smart companies have
recognized the value of common specifications. Whether its
house bricks, screw threads, car parts or electronic circuitry, mar-
kets work best when suppliers, purchasers and users can rely on
the interoperability and interchangeability of parts regardless of
source. Shared specifications promote competition, diversity of
offerings, reuse of common components and innovation, because
incremental improvements can be built on top of the existing
foundations. Everyone is better off as a result: Sellers create more
value, buyers receive more value and innovators can add more
value. The compact disc (CD) market flourished because Sony
and Philips, the vendors who created the technology, licensed 
the necessary patents widely, reasoning correctly that both were
better off sharing a huge market than owning a small one. By
contrast, the adoption of both HD-DVD and Blu-Ray Disc,
competing formats to succeed the DVD, was stalled for several
years by neither specification becoming universally endorsed.4

And yet, for much of its early history, the IT industry shunned
cooperation, with vendors preferring to protect proprietary fief-
doms rather than promote collaboration. For many years, the
word “standard” in IT was doublespeak for “dominant propri-
etary product.”5 This practice continued despite the growing 
evidence that common specifications were better for everyone.
Buyers benefit because vendors are forced to compete on quality,
price, support and pace of innovation. Vendors benefit because
the market as a whole grows more rapidly—so even though they
have to compete with each other, the amount of business value
available for them to target more than compensates for the loss of
a small, protected niche.6

Less obvious but equally important: open markets create the
opportunity for an ecosystem to emerge in which innovators can
create compatible added-value add-ons, each finding their own



6 The business value of open collaboration

niche. For example, the definition of standardized slots and 
connectors in car dashboards provides customers with an enor-
mous choice of entertainment options, both directly from the car
manufacturer or as an “after market” upgrade. And of course, a
car owner can upgrade the radio to replace the tape player with 
a CD player or the CD player with an iPod dock at any time,
without having to replace the whole car! Even as the entertain-
ment technology has advanced, the interface specification has
remained stable.7 In fact, the creation of a value-enhancing
ecosystem that allows many participants to benefit is often the
single most important predictor for widespread adoption of a
standard for technology.

There are numerous proof points in IT for both the benefits of
open specifications and the importance of an ecosystem. The
database market boomed with the adoption of the SQL open
standard, in part because a variety of vendors could offer value-
added tools for monitoring, tuning and so on, and because skills
such as database design became more portable. The personal
computer market grew dramatically when IBM established the
PC as a dominant format, which allowed:

● Software authors to target one common base of customers
rather than a dozen fragmented markets.

● Peripheral manufacturers to consolidate their costs around a
single technical standard.

More recently, the establishment of the Open Document
Format (ODF) has allowed many different vendors to offer word
processors and office suites in competition with Microsoft,
whose proprietary format used to determine the “standard” in
that market. Many user organizations are mandating ODF
because an open standard guarantees them the crucial ability to
access their own documents in the future without being gov-
erned by the decisions of one company.

Today, the IT industry has, for the most part, embraced open
markets, and it is rare to see a new technology initiative launch
without a corresponding roadmap for establishing an open speci-
fication. However, as the examples above show, “open” comes in
various flavors, ranging from a dominant proprietary format that
is widely licensed to a formal standard approved by an independ-
ent international body. It’s important to choose the right one for
the business objectives at hand. The question that must be
asked—and that is all too often is overlooked—is simply: What
must be standardized to increase business value and decrease
business cost?

Open standards
The most common meaning of “open” concerns itself with 
standardization of the behavior of software. For example, the 
purchaser of a standards-compliant SQL database or a JEE
application server can be confident that the software will pro-
duce the same essential results, regardless of the supplier. Of
course, each vendor is still free to compete on quality, reliability,
cost, support, and extensions of functionality beyond the stan-
dard; and to patent or keep as trade secrets uniquely effective
methods of implementing that standard behavior. Thus, the 
benefits of open standards can be compared to the many stan-
dards for implementation that are commonplace in industry 
and engineering, such as DIN, ISO, ANSI and more. Open
standards gained broad adoption in IT during the 1980s, a
period that saw the emergence of cross-industry organizations
such as the OMG, Open/X and the IETF.8

Open source
The 1990s saw the commercial rise of a new meaning of “open”:
open source.9 In this model, the source code for an application is
made freely available to those who wish to use it, subject to 
certain restrictions (depending on the specific license used to
publish the source code). The most common restriction is the
requirement that any modifications to the source code must be



7IBM Software

shared back with other users under the same terms. Unlike open
standards, which promote common behavior, open source pro-
motes common implementations. There are few parallels outside
of software to the value of open source, because of the unique
nature of software. One loose analogy is to classic books that are
out of copyright. The text of such books might be available in
numerous editions from different publishers, including hardback,
paperback, annotated, collected with other works and so on. But
even this analogy fails to capture the true value of open source
software, much of which comes from the unique flexibility with
which software can be modified, adapted and extended. In fact,
some of the most commercially significant open source projects
have been those that promote a common “platform” allowing
innovators to add value without having to constantly recreate the
common parts. Furthermore, it allows each innovation to
enhance the value of the others. Individual innovations may
themselves be open source, or use conventional commercial
licenses.10

Open interfaces
Most recently, a new meaning for “open” has gained promi-
nence: open interfaces. This model came about from the realiza-
tion that often, companies want to integrate a wide variety of
tools or processes that need to be able to exchange information,
even though each may not know or care what the other endpoint
does with that information. To understand how powerful this
idea is, think of it as analogous to the electricity supply. You
don’t care how the electricity was generated, whether by wind,
coal or nuclear power. You don’t care what path it took to get to
your office or what voltage transformations it went through on
the way. You only care that when it reaches your power recepta-
cle, it provides the expected voltage and frequency. Conversely,
the power company doesn’t care what kind of appliance you 
plug into your sockets. Open interfaces in IT provide the means
for applications to act like “utility suppliers” of information to
each other.

One of the earliest and most widely known successes for this
model was in the arena of news “syndication.” A simple stan-
dard11 was established that allowed servers to publish a series 
of changes as a “feed,” often as news headlines and associated
stories, and allowed clients to aggregate many different feeds 
and present them to a user. The servers are free to choose any
implementation, frequency of publishing, and format of their
contents that they want, as long as the interface follows the stan-
dard. Conversely, users can choose from a huge variety of ways
to view, organize and filter their chosen feeds. Today, a vast array
of information sources—far beyond traditional news stories and
ranging from personal blogs to system maintenance logs—can
be consumed as feeds.

The openness of OSLC
Faced with all these choices, we had to ask ourselves: what 
kind of “open” should OSLC be? As we considered the business
drivers, we concluded:

● Demanding that companies reskill and retool, or that partici-
pating vendors substantially redevelop their existing products,
was not an option. Therefore, the common implementation
approach implied by open source was not appropriate.

● Software development and delivery involves not only many
different tools but also many different approaches. So stan-
dardizing the behavior of even the most commonly used types
of tools would make little difference to the overall challenge.
Therefore, the common behavior approach implied by 
traditional open standards was not appropriate.

● To support the diverse array of tools, processes and business
needs—including many we don’t even yet know about—we
realized that the most important thing to agree on was the
interfaces between different tools.



8 The business value of open collaboration

By focusing on agreement about the interfaces, we could allow
each tool provider to participate without having to predetermine
all the ways that users might integrate their particular tool, or
requiring close relationships with all the other tool vendors a
user might choose. We could also allow each user to integrate
their choice of tools in the way that made the most sense and
delivered the most business value in their own circumstances.

We also determined that OSLC interfaces had to satisfy a num-
ber of rigorous requirements, including the following:

● Neutral. The interfaces must be technology-neutral, and
could not favor the implementation details of any particular
vendor’s existing product.

● Adaptable. It must be feasible to retrofit OSLC interfaces to
existing products, without extensive reengineering of products
currently in use.

● Universal. This was the most critical and most challenging
requirement. It means that any asset, resource or artifact used
in the software development and delivery life cycle must be
able to reference and associate itself with any other, regardless
of type, location or implementation.

As noted earlier, as we considered these requirements, we real-
ized that there is already an outstanding example that satisfies 
all of these needs—the web. All links are URLs (universal
addresses), and they have the critical benefit that any web page
or online resource can point to any other, without depending on
any knowledge of what is at the other end of the link. In OSLC,
we have adopted exactly the same linked data approach as the
web itself. OSLC specifications depend on a small set of univer-
sal principles:

● Any asset can refer to any other asset using just one mecha-
nism, namely a URL that identifies the location of that asset.
Conversely, to make its assets available to any other OSLC-
compliant tool, a tool need only expose an appropriate URL
for each asset.

● The list of operations that one tool can perform against
another is very short and is also universal. For example, tools
can request content from each other, send updates to content
and follow links from one resource to another in a standard-
ized way. If another tool that provides the same type of
resources and the same set of simple operations is substituted,
the integration should not change.

● The exposed format, or representation, of a resource is inde-
pendent of the internal format, technology or representation
of any particular provider. Furthermore, the requesting tool
can ignore any part of the representation that it doesn’t 
understand or isn’t concerned with (provided it preserves the
information when it passes it on or passes it back).

When tools expose OSLC interfaces, the assets that they house
can be linked and used just like a “web” of software development
and delivery resources. One powerful consequence of this is that
OSLC integrations are “loosely coupled” and independent of the
target tool. For example, if one part of your testing organization
is using Tool A from one vendor while another part is using Tool
B from another vendor, your requirements analysts can link their
requirements to test cases in exactly the same way, regardless of
the test team with which they collaborate. And if the require-
ments analysts decide to switch to a different requirements tool,
it does not disrupt their collaboration with the testers, provided
that the new tool also implements the OSLC interfaces.

The OSLC community
The community approach that we are taking at OSLC is just as
critical to its success as the technology neutrality described
above. We recognize that customers frequently mix tools from
several vendors, as well as open source projects and “home-
brewed” utilities. Experience has shown that any vendor-
specified set of APIs invariably privilege one vendor’s tools and
disadvantage others’—or at the very least, make other vendors
suspect this is the case. Vendor-specified APIs also leave many
business partner companies struggling to catch up as the vendor
evolves the API independently or in collaboration only with its



9IBM Software

closest partners, leading to suspicion and reluctance to partici-
pate by competing vendors. The result has been the fractured
and unsatisfactory integration landscape of the past, as described
at the beginning of this paper.

Therefore, to promote community involvement and ensure
transparency, all of the work of OSLC is taking place in the
open, at http:open-services.net. There, OSLC is organized by
domain-specific working groups in areas such as change manage-
ment, requirements management, quality management and soft-
ware configuration management. Each work group defines and
prioritizes the scenarios, describes the scope of each iteration
and writes the specifications for interacting with tools in their
domain of interest.

So that the overall objectives of OSLC are met within each
working group—and to avoid the creation of silos that do not
interoperate—the project leads from the OSLC working groups
coordinate their work across the domain areas. The project leads
also collaborate on topics of common interest and in sharing
design best practices that they discover in the course of their
work.

To help ensure that the content developed for OSLC is broadly
consumable, OSLC has adopted two important intellectual
property policies. First, all content posted to the site is covered
under a Creative Commons license (See Appendix B.), with lib-
eral usage rights. This license allows anyone to freely use the
specifications without any license fee or restrictive agreement.
Companies don’t even have to be members of OSLC to use the
specifications. They are freely available to everyone.

Second, all contributors to an OSLC specification publish a
patent non-assert covenant, promising not to assert any “neces-
sary claims” against implementations of the specifications, or
grant a specific license to implementers of a specification. These

policies have been important in securing the participation of
both open source and commercial concerns. OSLC participants
include individuals from software vendors, open source projects,
systems integrators, industry IT teams and the academic 
community.12

Conclusion
Overcoming the challenges of tool interoperability isn’t easy, but
it is important to the teams that apply tools as they try to differ-
entiate their businesses. It’s important to tool providers who face
demands for an ever-increasing set of pair-wise integrations. And
we would argue that it’s important to the industry as a means of
breaking software delivery resources out of the IT silo and mak-
ing them more accessible and interoperable with the broader
business processes. OSLC seeks to change the game, but in a
practical way, learning from the lessons of the past and building
on the success of the Internet.

One thing is clear. OSLC gets better with participation. The
more people get involved, the better chance we have to establish
real collaboration across the life cycle. If you have something to
contribute, we encourage you to join at http:/open-services.net.

Appendix A: The technical architecture 
of OSLC
To collaborate across the software life cycle, the most basic 
technical capability is the need to create and manage navigable
relationships between “resources” or assets. Resources include
everything from requirements to code to test cases to configura-
tions. Complicating matters, some of these resources can be
complex formatted documents such as a requirements specifica-
tion; others are collections of other resources, such as a configu-
ration; others are artifacts created by the process itself, such as a
build log. All of these different resources need to be treated in a
uniform way if tools are to be able to link their assets to each
other without hard-coded foreknowledge of the target endpoint.

http://www.open-services.net
http://www.open-services.net


10 The business value of open collaboration

Identifiable and addressable: The value of URL-accessible
data
On the web, this problem has been solved. All links are URLs
(universal addresses), and they have the crucial benefit that any
web page or resource can point to any other, without depending
on any knowledge of what is at the other end of the link. In
OSLC, we wanted to create a similar means of relating resources
that, like the web, satisfied three basic criteria:

● It must be vendor- and technology-independent. It must pro-
vide a way for any vendor’s representation of a test case, for
instance, to point to any other vendor’s requirement.

● It must be location-independent. Resources are scattered
across multiple repositories and tools, possibly widely or even
globally dispersed. And those resources can move from time to
time.

● It must be able to solve the problems we don’t yet know about,
not just the ones we do. The future will certainly bring new
types of assets into the life cycle, as well as new styles of inte-
gration and aggregation. Like the web itself, the linking mech-
anism must be flexible enough to adapt to change.

Identification and location are the most fundamental parts of 
any digitally based interoperability story. Like the web, every
resource in OSLC has a unique address that tells any other tool
how to locate it—a URL. It is impossible to overstate the funda-
mental importance of having URL-accessible data. This is what
makes an application’s data identifiable and addressable from any
other application, in a completely technologically neutral fash-
ion. A tool that needs to refer to a resource used by another tool,
such as a test tool with a test case that references a requirement,
need store only the URL that identifies that resource, just like
one web page linking to another. By contrast, many existing
Application Lifecycle Management (ALM) tools rely on propri-
etary naming schemes that require deep knowledge of the tool’s
technology to resolve.13

Having a uniform way to identify and locate resources is 
essential, but by itself it merely allows us to establish pointers or
references from one resource to another. To create more useful
integrations, we need one more thing: a standardized “interface,”
or common set of services, that are available for resources.
Again, the web has provided an answer for us that we use in
OSLC: a small set of actions that can be used identically from
any tool to any other tool, regardless of the type of resource or
the technical implementation. OSLC uses a style of integration
called Representational State Transfer (REST) to fetch or mod-
ify any resource, regardless of its type or location, ensuring that
tools remain independent of each other’s implementation details.
In a RESTful architecture, clients initiate requests to servers
using a small set of general purpose services. Servers process
those requests and return appropriate responses.14

Representations
In OSLC as on the web, the notion of a resource is very general.
It could be a requirement, a work item, or even a web page that
enables a user to create or select from a list of resources that
meet certain criteria. These are all resources, identified by 
their URLs.

URLs, along with a RESTful architecture, allow us to locate and
access such a resource, which is often useful by itself, but, by
design, these URLs do not provide a tool with any information
about what’s “inside” the resource. The content is still unknown.
For example, a requirement could be represented by a text docu-
ment describing the requirement, an image showing a screen
mockup, an XML document defining the attributes of the
requirement, or any one of many other representations. A test
case management tool that wants to verify the existence of a test
case for every requirement need not understand the require-
ment’s contents. It need only confirm its existence and location
(i.e., its URL). When the tool’s users want to see or edit the 
contents of the requirement, it functions exactly like a browser.
It navigates the link to retrieve the resource and hands it to an
appropriate tool that understands the resource type.15



11IBM Software

Although we value this flexibility, we can do more with the
resources when we know some details about their format.
Therefore, much of the work in OSLC working groups is to
define agreed-upon resource representations. With this informa-
tion, any tool can examine the common elements of these
resources. This allows much deeper integration between tools.

For example, a tool could view and modify the description of any
life-cycle resource. A quality management tool might refer to a
requirement stored in a requirements management tool and be
able to reflect whether associated test cases pass or fail. A config-
uration management tool might flag tests stored in a test case
management tool as needing to be run during the next regres-
sion test because relevant code modules have been changed. 
A management console might pull information from a wide 
variety of tools to produce a consolidated view of project
progress and status.

And, just like the web, the retrieved representation of a resource
might contain links to further resources. For example, a defect
implicates a code module that is tested by a test case that satisfies
a requirement. Each of these links exploits the same mecha-
nisms: URLs and uniform services.

Appendix B: Creative Commons licenses
and copyrights
OSLC chose to publish its specifications under Creative
Commons licenses so that everyone could adopt these specifica-
tions with confidence. A Creative Commons license is a mecha-
nism that allows a copyright holder, such as the authors of an
OSLC specification, to renounce certain rights that they would
normally have under copyright law, while retaining others. 

This mechanism allows any implementer to take and use the
published OSLC specifications without risk that some kind of
license claim will be enforced against them.

Critically, a Creative Commons license cannot be revoked. For
example, if a vendor implements the published Change
Management 1.0 specification, the copyright owners can never
revoke that vendor’s permission to use that specification in the
ways initially permitted.

More information about Creative Commons is online at
http://creativecommons.org

For more information
To learn more about the business value of open collaboration,
please contact your IBM marketing representative or
IBM Business Partner, or visit the following website:
http://open-services.net

Additionally, financing solutions from IBM Global Financing
can enable effective cash management, protection from technol-
ogy obsolescence, improved total cost of ownership and return
on investment. Also, our Global Asset Recovery Services help
address environmental concerns with new, more energy-efficient
solutions. For more information on IBM Global Financing, visit:
ibm.com/financing

About the authors
Carl Zetie: Strategy team for Rational brand; Market Segment
Manager, IBM

Scott Bosworth: Rational CTO Team; Business Programs
Manager – Operations, IBM

http://www.creativecommons.org
http://www.open-services.net
http://www.ibm.com/financing


Please Recycle

© Copyright IBM Corporation 2011

IBM Corporation Software Group
Route 100
Somers, NY 10589 USA

Produced in the United States of America
May 2011
All Rights Reserved

IBM, the IBM logo, ibm.com and Rational are trademarks or registered
trademarks of International Business Machines Corporation in the United
States, other countries, or both. If these and other IBM trademarked terms
are marked on their first occurrence in this information with a trademark
symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other
countries. A current list of IBM trademarks is available on the web at
“Copyright and trademark information” at ibm.com/legal/copytrade.shtml

Other product, company or service names may be trademarks or service
marks of others.

1 In July 2008, Google announced that its web search surpassed one trillion
unique URLs.

2 Some commercial content providers have objected to a practice known as
“deep linking” because it bypasses their ability to control a site visitor’s access
path or to enforce subscription payments. However, this is an issue of
business models, not of technology.

3 More information about the Linked Data concept can be found online at
http://linkeddata.org

4 Ironically, the DVD standard was almost derailed before it even started by 
an eerily similar format war. The intervention of IBM, which rallied other
computer vendors to agree to boycott both camps unless they compromised
on a unified specification, is a little-known story in the success of DVD.

5 Such situations are so common that the IT industry needs a term for these
“de facto” standards, as contrasted with “de jure” standards, which are
standards established by an independent body and available equitably to any
market participant.

6 Imagine how much the value of mobile phones would be diminished if, for
example, customers of Sprint could only call other customers of Sprint, and
customers of Verizon only other Verizon customers. Extraordinary as it now
sounds, that is exactly how email worked in the early days of online access.
Subscribers to one online service could only email customers on the same
service. Even today, the instant messaging services provided by various web
portal providers pursue this same “walled garden” approach.

RAW14207-USEN-01

7 In the US at least, the cassette deck is now a thing of the past. The last car
available with a factory-installed cassette deck in the US was reportedly a
2010 Lexus. Because of the standardization of interfaces, individuals can,
of course, still add a cassette deck from the wide choice of aftermarket
units, just as they can replace the cassette decks in older cars with CD
players.

8 Some basic standards have existed from the earliest days of IT, especially
in areas strongly influenced by IT’s highly standardized counterpart,
telecommunications. For instance, ASCII dates back to the 1960s, and
other early examples include the programming languages COBOL and
FORTRAN. However, it was not until the 1980s that higher levels of
system behavior were widely standardized.

9 The open source movement had been influential in academic circles for 
at least two decades before it began to impact commercial software
adoption, for example at MIT in the GNU project. However, the impact
on commercial IT rose dramatically with the creation of Linux in the
early 1990s and the Apache web server in the mid 1990s.

10One highly successful example of this model is the Eclipse Foundation.
See http://eclipse.org/

11There are two competing standards that are widely used today: Really
Simple Syndication (RSS) and Atom. Although they differ in detail, both
serve the purpose described here and both share the distinction of
standardizing only the interface between servers and clients. The name
RSS is often used casually to include both standards.

12Learn more about OSLC community members at 
http://open-services.net/html/Snapshot.html

13For example, one tool may require you to know the case-sensitive name 
of a requirement. Another may require the use of an internally-generated
serial number. A third may provide a persistent “handle” that can only be
decoded by calling a proprietary API. To make use of any of these
reference mechanisms, the referring tool must know both what kind of
reference it is dealing with, and also to which tool it refers.

14For a more rigorous and complete definition of REST, see Roy Fielding’s
PhD dissertation, in particular Chapter 5, available online at
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

15For example, if the user of a browser clicks on a link to a PDF document,
the browser will ask Adobe Acrobat to handle the document that is
returned from the server. If the link points to a document in
OpenDocument Text (ODT) format, the browser will use whatever 
tool is available that supports ODT.

http://www.ibm.com/legal/copytrade.shtml
http://www.linkeddata.org
http://www.eclipse.org/
http://www.open-services.net/html/Snapshot.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

	Untitled
	The business value of opencollaboration
	How interoperability brings manufacturer
	Introduction
	It takes more than a village
	The greatest integration on earth
	OSLC: An open forum for collaboration
	The business value of open markets
	Open standards
	Open source
	Open interfaces
	The openness of OSLC
	The OSLC community
	Conclusion
	Appendix A: The technical architecture o
	Identiﬁable and addressable: The value o
	Representations
	Appendix B: Creative Commons licensesand
	For more information
	About the authors


